forked from tangger/lerobot
Check and improve spelling
This commit is contained in:
@@ -1,19 +1,18 @@
|
||||
# Cameras
|
||||
|
||||
Here we describe how to setup and use a camera with LeRobot. We support different ways of capturing videos in LeRobot such as using a phone camera, integrated laptop camera, external webcam or an Intel realsense camera.
|
||||
|
||||
## Setup Cameras
|
||||
Here we describe how to set up and use a camera with LeRobot. We support different ways of capturing videos in LeRobot, such as using a phone camera, an integrated laptop camera, an external webcam, or an Intel realsense camera.
|
||||
## Set up Cameras
|
||||
|
||||
There are three ways to connect and use a camera with LeRobot:
|
||||
1. Use [Camera Class](./setup_cameras?use+phone=Mac#use-opencvcamera) which allows you to use any camera: usb, realsense, laptop webcam
|
||||
1. Use [Camera Class](./setup_cameras?use+phone=Mac#use-opencvcamera), which allows you to use any camera: usb, realsense, laptop webcam
|
||||
2. Use [iPhone camera](./setup_cameras?use+phone=Mac#use-your-phone) with MacOS
|
||||
3. Use [Phone camera](./setup_cameras?use+phone=Linux#use-your-phone) on Linux
|
||||
|
||||
### Use Camera Class
|
||||
|
||||
In LeRobot you can efficiently record frames from most cameras using either the OpenCVCamera class or the RealSenseCamera class. For more details on compatibility for the OpenCVCamera class, see [Video I/O with OpenCV Overview](https://docs.opencv.org/4.x/d0/da7/videoio_overview.html).
|
||||
In LeRobot, you can efficiently record frames from most cameras using either the OpenCVCamera class or the RealSenseCamera class. For more details on compatibility for the OpenCVCamera class, see [Video I/O with OpenCV Overview](https://docs.opencv.org/4.x/d0/da7/videoio_overview.html).
|
||||
|
||||
To instantiate an camera, you need a camera index. When you only have one camera like a webcam of a laptop, the camera index is usually `0` but it might differ, and the camera index might change if you reboot your computer or re-plug your camera. This behavior depends on your operating system.
|
||||
To instantiate a camera, you need a camera index. When you only have one camera like a webcam of a laptop, the camera index is usually `0` but it might differ, and the camera index might change if you reboot your computer or re-plug your camera. This behavior depends on your operating system.
|
||||
|
||||
To find the camera indices, run the following script:
|
||||
```bash
|
||||
@@ -48,10 +47,7 @@ Camera #1:
|
||||
```
|
||||
|
||||
> [!WARNING]
|
||||
> On MacOS you could get this error: `Error finding RealSense cameras: failed to set power state`, this can be solved by running the same command with `sudo` permissions.
|
||||
|
||||
|
||||
Now that you have the camera indexes, you should specify the camera's in the config.
|
||||
> On , you could get this error: `Error finding RealSense cameras: failed to set power state`, this can be solved by running the same command with `sudo` permissions.
|
||||
|
||||
### Use your phone
|
||||
<hfoptions id="use phone">
|
||||
|
||||
@@ -1,29 +1,29 @@
|
||||
# Getting Started with Real-World Robots
|
||||
|
||||
This tutorial will explain you how to train a neural network to autonomously control a real robot.
|
||||
This tutorial will explain how to train a neural network to control a real robot autonomously.
|
||||
|
||||
**You'll learn:**
|
||||
1. How to record and visualize your dataset.
|
||||
2. How to train a policy using your data and prepare it for evaluation.
|
||||
3. How to evaluate your policy and visualize the results.
|
||||
|
||||
By following these steps, you'll be able to replicate tasks like picking up a Lego block and placing it in a bin with a high success rate, as demonstrated in [this video](https://x.com/RemiCadene/status/1814680760592572934).
|
||||
By following these steps, you'll be able to replicate tasks, such as picking up a Lego block and placing it in a bin with a high success rate, as shown in [this video](https://x.com/RemiCadene/status/1814680760592572934).
|
||||
|
||||
This tutorial is not specifically made for one robot. We show and explain the commands and API examples, which can be used and easily modified for all supported robots.
|
||||
This tutorial isn’t tied to a specific robot: we walk you through the commands and API snippets you can adapt for any supported platform.
|
||||
|
||||
During the data collection phase, you will control an robot with an "telop" device (leader arm, keyboard). This process is known as "teleoperation." This technique is used to collect robot trajectories.
|
||||
During data collection, you’ll use a “teloperation” device, such as a leader arm or keyboard to teleoperate the robot and record its motion trajectories.
|
||||
|
||||
After you collected trajectories, you'll train a neural network to imitate these trajectories and deploy the network to enable your robot to operate autonomously.
|
||||
Once you’ve gathered enough trajectories, you’ll train a neural network to imitate these trajectories and deploy the trained model so your robot can perform the task autonomously.
|
||||
|
||||
If you encounter any issues at any step of the tutorial, feel free to seek help on [Discord](https://discord.com/invite/s3KuuzsPFb).
|
||||
If you run into any issues at any point, jump into our [Discord community](https://discord.com/invite/s3KuuzsPFb) for support.
|
||||
|
||||
## Setup and Calibrate
|
||||
## Set up and Calibrate
|
||||
|
||||
If you haven't yet setup and calibrated your robot and teleop device please so so by following the robot specific tutorial.
|
||||
If you haven't yet set up and calibrated your robot and teleop device, please do so by following the robot-specific tutorial.
|
||||
|
||||
## Teleoperate
|
||||
|
||||
To teleoperate an robot with an leader arm, in this example we use the SO101, run the command below, for each command we also specify a API example that does the same thing.
|
||||
In this example, we’ll demonstrate how to teleoperate the SO101 robot. For each command, we also provide a corresponding API example.
|
||||
|
||||
<hfoptions id="teleoperate_so101">
|
||||
<hfoption id="Command">
|
||||
@@ -71,11 +71,11 @@ The teleoperate command will automatically:
|
||||
|
||||
## Cameras
|
||||
|
||||
To add cameras to your setup follow this [Guide](./cameras#setup-cameras).
|
||||
To add cameras to your setup, follow this [Guide](./cameras#setup-cameras).
|
||||
|
||||
## Teleoperate with cameras
|
||||
|
||||
We can now teleoperate again while at the same time visualizing the cameras and joint positions with `rerun`. In this example we use the Koch arm.
|
||||
With `rerun`, you can teleoperate again while simultaneously visualizing the camera feeds and joint positions. In this example, we’re using the Koch arm.
|
||||
|
||||
<hfoptions id="teleoperate_koch_camera">
|
||||
<hfoption id="Command">
|
||||
@@ -172,10 +172,10 @@ You should see on your laptop something like this: ```[INFO] Connected to remote
|
||||
| F | Decrease speed |
|
||||
|
||||
> [!TIP]
|
||||
> If you use a different keyboard you can change the keys for each command in the [`LeKiwiConfig`](../lerobot/common/robot_devices/robots/configs.py).
|
||||
> If you use a different keyboard, you can change the keys for each command in the [`LeKiwiConfig`](../lerobot/common/robot_devices/robots/configs.py).
|
||||
|
||||
### Wired version
|
||||
If you have the **wired** LeKiwi version please run all commands including both these teleoperation commands on your laptop.
|
||||
If you have the **wired** LeKiwi version, please run all commands on your laptop.
|
||||
|
||||
## Record a dataset
|
||||
|
||||
@@ -183,7 +183,7 @@ Once you're familiar with teleoperation, you can record your first dataset.
|
||||
|
||||
We use the Hugging Face hub features for uploading your dataset. If you haven't previously used the Hub, make sure you can login via the cli using a write-access token, this token can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens).
|
||||
|
||||
Add your token to the cli by running this command:
|
||||
Add your token to the CLI by running this command:
|
||||
```bash
|
||||
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
|
||||
```
|
||||
@@ -194,7 +194,7 @@ HF_USER=$(huggingface-cli whoami | head -n 1)
|
||||
echo $HF_USER
|
||||
```
|
||||
|
||||
Now you can record a dataset, to record 2 episodes and upload your dataset to the hub execute this command tailored to SO101:
|
||||
Now you can record a dataset. To record 2 episodes and upload your dataset to the hub, execute this command tailored to the SO101.
|
||||
```bash
|
||||
python -m lerobot.record \
|
||||
--robot.type=so101_follower \
|
||||
@@ -228,7 +228,7 @@ INFO 2024-08-10 15:02:58 ol_robot.py:219 dt:33.34 (30.0hz) dtRlead: 5.06 (197.5h
|
||||
|
||||
|
||||
#### Dataset upload
|
||||
Locally your dataset is stored in this folder: `~/.cache/huggingface/lerobot/{repo-id}` (e.g. `data/cadene/so101_test`). At the end of data recording, your dataset will be uploaded on your Hugging Face page (e.g. https://huggingface.co/datasets/cadene/so101_test) that you can obtain by running:
|
||||
Locally, your dataset is stored in this folder: `~/.cache/huggingface/lerobot/{repo-id}` (e.g. `data/cadene/so101_test`). At the end of data recording, your dataset will be uploaded on your Hugging Face page (e.g. https://huggingface.co/datasets/cadene/so101_test) that you can obtain by running:
|
||||
```bash
|
||||
echo https://huggingface.co/datasets/${HF_USER}/so101_test
|
||||
```
|
||||
@@ -303,7 +303,7 @@ This will launch a local web server that looks like this:
|
||||
|
||||
## Replay an episode
|
||||
|
||||
A useful feature is the `replay` function, which allows to replay on your robot any episode that you've recorded or episodes from any dataset out there. This function helps you test the repeatability of your robot's actions and assess transferability across robots of the same model.
|
||||
A useful feature is the `replay` function, which allows you to replay any episode that you've recorded or episodes from any dataset out there. This function helps you test the repeatability of your robot's actions and assess transferability across robots of the same model.
|
||||
|
||||
You can replay the first episode on your robot with:
|
||||
```bash
|
||||
|
||||
@@ -78,7 +78,7 @@ pip install -e ".[aloha, pusht]"
|
||||
```
|
||||
|
||||
## Motor SDK
|
||||
For Koch v1.1 install the Dynamixel sdk, for SO100/SO101/Moss install the Feetech sdk.
|
||||
For Koch v1.1 install the Dynamixel SDK, for SO100/SO101/Moss install the Feetech SDK.
|
||||
|
||||
<hfoptions id="install motors">
|
||||
<hfoption id="Feetech">
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
# Koch v1.1
|
||||
|
||||
In the steps below we explain how to assemble the Koch v1.1 robot.
|
||||
In the steps below, we explain how to assemble the Koch v1.1 robot.
|
||||
|
||||
## Order and Assemble the parts
|
||||
## Order and assemble the parts
|
||||
|
||||
Follow the sourcing and assembling instructions provided in this [README](https://github.com/jess-moss/koch-v1-1). This will guide you through setting up both the follower and leader arms, as shown in the image below.
|
||||
|
||||
@@ -10,22 +10,22 @@ For a visual walkthrough of the assembly process, you can refer to [this video t
|
||||
|
||||
> [!WARNING]
|
||||
> Since the production of this video, we simplified the configuration phase. Because of this, two things differ from the instructions in that video:
|
||||
> - Don't plug all the motors cables right away and wait for being instructed to do so in [Configure the motors](#configure-the-motors).
|
||||
> - Don't plug in all the motor cables right away and wait to be instructed to do so in [Configure the motors](#configure-the-motors).
|
||||
> - Don't screw in the controller board (PCB) to the base right away and wait for being instructed to do so in [Configure the motors](#configure-the-motors).
|
||||
|
||||
|
||||
## Install LeRobot 🤗
|
||||
|
||||
To install LeRobot follow our [Installation Guide](./installation)
|
||||
To install LeRobot follow, our [Installation Guide](./installation)
|
||||
|
||||
In addition to these instructions, you need to install the Dynamixel sdk:
|
||||
In addition to these instructions, you need to install the Dynamixel SDK:
|
||||
```bash
|
||||
pip install -e ".[dynamixel]"
|
||||
```
|
||||
|
||||
## Configure the motors
|
||||
|
||||
### 1. Find the USB ports associated to each arm
|
||||
### 1. Find the USB ports associated with each arm
|
||||
|
||||
To find the port for each bus servo adapter, run this script:
|
||||
```bash
|
||||
@@ -83,7 +83,7 @@ Each motor is identified by a unique id on the bus. When brand new, motors usual
|
||||
|
||||
To that end, we first need to connect to each motor individually with the controller in order to set these. Since we will write these parameters in the non-volatile section of the motors' internal memory (EEPROM), we'll only need to do this once.
|
||||
|
||||
If you are repurposing motors from another robot, you will probably also need to perform this step as the ids and baudrate likely won't match.
|
||||
If you are repurposing motors from another robot, you will probably also need to perform this step, as the ids and baudrate likely won't match.
|
||||
|
||||
#### Follower
|
||||
|
||||
@@ -113,17 +113,17 @@ follower.setup_motors()
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
You should see the following instruction
|
||||
You should see the following instruction.
|
||||
```
|
||||
Connect the controller board to the 'gripper' motor only and press enter.
|
||||
```
|
||||
|
||||
As instructed, plug the gripper's motor. Make sure it's the only motor connected to the board, and that the motor itself is not yet daisy chained to any other motor. As you press `[Enter]`, the script will automatically set the id and baudrate for that motor.
|
||||
As instructed, plug the gripper's motor. Make sure it's the only motor connected to the board, and that the motor itself is not yet daisy-chained to any other motor. As you press `[Enter]`, the script will automatically set the id and baudrate for that motor.
|
||||
|
||||
<details>
|
||||
<summary>Troubleshooting</summary>
|
||||
|
||||
If you get an error at that point, check your cables and make sure they are plugged-in properly:
|
||||
If you get an error at that point, check your cables and make sure they are plugged in properly:
|
||||
<ul>
|
||||
<li>Power supply</li>
|
||||
<li>USB cable between your computer and the controller board</li>
|
||||
@@ -143,12 +143,12 @@ Followed by the next instruction:
|
||||
Connect the controller board to the 'wrist_roll' motor only and press enter.
|
||||
```
|
||||
|
||||
You can disconnect the 3-pin cable from the controller board but you can leave it connected to the gripper motor on the other end as it will already be in the right place. Now, plug-in another 3-pin cable to the wrist roll motor and connect it to the controller board. As with the previous motor, make sure it is the only motor connected to the board and that the motor itself isn't connected to any other one.
|
||||
You can disconnect the 3-pin cable from the controller board but you can leave it connected to the gripper motor on the other end as it will already be in the right place. Now, plug in another 3-pin cable to the wrist roll motor and connect it to the controller board. As with the previous motor, make sure it is the only motor connected to the board and that the motor itself isn't connected to any other one.
|
||||
|
||||
Repeat the operation for each motor as instructed.
|
||||
|
||||
> [!TIP]
|
||||
> Check your cabling at each step before pressing Enter. For instance, as the power supply cable might disconnect as you manipulate the board.
|
||||
> Check your cabling at each step before pressing Enter. For instance, the power supply cable might disconnect as you manipulate the board.
|
||||
|
||||
When you are done, the script will simply finish, at which point the motors are ready to be used. You can now plug the 3-pin cable from each motor to the next one, and the cable from the first motor (the 'shoulder pan' with id=1) to the controller board, which can now be attached to the base of the arm.
|
||||
|
||||
@@ -184,7 +184,7 @@ The calibration process is very important because it allows a neural network tra
|
||||
|
||||
#### Follower
|
||||
|
||||
Run the following command of API example to calbrate the follower arm:
|
||||
Run the following command or API example to calibrate the follower arm:
|
||||
|
||||
<hfoptions id="calibrate_follower">
|
||||
<hfoption id="Command">
|
||||
@@ -212,11 +212,11 @@ follower.disconnect()
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
We unified the calibration method for most robots, thus the calibration steps for this Koch arm are the same as the steps for the SO100 and SO101. First we have to move the robot to position where each joint is in the middle of its range, then we press `Enter`. Secondly we move all joints thru their full range of motion. A video of this same process for the SO101 as reference can be found [here](http://localhost:5173/so101#calibration-video)
|
||||
We unified the calibration method for most robots. Thus, the calibration steps for this Koch arm are the same as the steps for the SO100 and SO101. First, we have to move the robot to the position where each joint is in the middle of its range, then we press `Enter`. Secondly, we move all joints through their full range of motion. A video of this same process for the SO101 as reference can be found [here](http://localhost:5173/so101#calibration-video)
|
||||
|
||||
#### Leader
|
||||
|
||||
Run the following command of API example to calbrate the leader arm:
|
||||
Do the same steps to calibrate the leader arm, run the following command or API example:
|
||||
|
||||
<hfoptions id="calibrate_leader">
|
||||
<hfoption id="Command">
|
||||
|
||||
@@ -1,23 +1,23 @@
|
||||
# LeKiwi
|
||||
|
||||
In the steps below we explain how to assemble the LeKiwi mobile robot.
|
||||
In the steps below, we explain how to assemble the LeKiwi mobile robot.
|
||||
|
||||
## Source the parts
|
||||
|
||||
Follow this [README](https://github.com/SIGRobotics-UIUC/LeKiwi). It contains the bill of materials, with a link to source the parts, as well as the instructions to 3D print the parts,
|
||||
and advice if it's your first time printing or if you don't own a 3D printer.
|
||||
Follow this [README](https://github.com/SIGRobotics-UIUC/LeKiwi). It contains the bill of materials, with a link to source the parts, as well as the instructions to 3D print the parts.
|
||||
And advise if it's your first time printing or if you don't own a 3D printer.
|
||||
|
||||
### Wired version
|
||||
If you have the **wired** LeKiwi version you can skip the installation of the Raspberry Pi and setting up SSH. You can also run all commands directly on your PC for both the LeKiwi scripts and the leader arm scripts for teleoperating.
|
||||
If you have the **wired** LeKiwi version, you can skip the installation of the Raspberry Pi and setting up SSH. You can also run all commands directly on your PC for both the LeKiwi scripts and the leader arm scripts for teleoperating.
|
||||
|
||||
## Install software on Pi
|
||||
Now we have to setup the remote PC that will run on the LeKiwi Robot. This is normally a Raspberry Pi, but can be any PC that can run on 5V and has enough usb ports (2 or more) for the cameras and motor control board.
|
||||
Now we have to set up the remote PC that will run on the LeKiwi Robot. This is normally a Raspberry Pi, but can be any PC that can run on 5V and has enough usb ports (2 or more) for the cameras and motor control board.
|
||||
|
||||
### Install OS
|
||||
For setting up the Raspberry Pi and its SD-card see: [Setup PI](https://www.raspberrypi.com/documentation/computers/getting-started.html). Here is explained how to download the [Imager](https://www.raspberrypi.com/software/) to install Raspberry Pi OS or Ubuntu.
|
||||
|
||||
### Setup SSH
|
||||
After setting up your Pi, you should enable and setup [SSH](https://www.raspberrypi.com/news/coding-on-raspberry-pi-remotely-with-visual-studio-code/) (Secure Shell Protocol) so you can login into the Pi from your laptop without requiring a screen, keyboard and mouse in the Pi. A great tutorial on how to do this can be found [here](https://www.raspberrypi.com/documentation/computers/remote-access.html#ssh). Logging into your Pi can be done in your Command Prompt (cmd) or if you use VSCode you can use [this](https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-ssh) extension.
|
||||
After setting up your Pi, you should enable and set up [SSH](https://www.raspberrypi.com/news/coding-on-raspberry-pi-remotely-with-visual-studio-code/) (Secure Shell Protocol) so you can log in to the Pi from your laptop without requiring a screen, keyboard, and mouse on the Pi. A great tutorial on how to do this can be found [here](https://www.raspberrypi.com/documentation/computers/remote-access.html#ssh). Logging into your Pi can be done in your Command Prompt (cmd) or, if you use VSCode you can use [this](https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-ssh) extension.
|
||||
|
||||
### Install LeRobot on Pi 🤗
|
||||
|
||||
@@ -29,22 +29,22 @@ pip install -e ".[feetech]"
|
||||
```
|
||||
|
||||
## Install LeRobot locally
|
||||
If you already have install LeRobot on your laptop/pc you can skip this step, otherwise please follow along as we do the same steps we did on the Pi.
|
||||
If you already have installed LeRobot on your laptop/pc you can skip this step; otherwise, please follow along as we do the same steps we did on the Pi.
|
||||
|
||||
Follow our [Installation Guide](./installation)
|
||||
|
||||
Great :hugs:! You are now done installing LeRobot and we can begin assembling the SO100/SO101 arms and the mobile base :robot:.
|
||||
Every time you now want to use LeRobot you can go to the `~/lerobot` folder where we installed LeRobot and run one of the commands.
|
||||
Great :hugs:! You are now done installing LeRobot, and we can begin assembling the SO100/SO101 arms and the mobile base :robot:.
|
||||
Every time you now want to use LeRobot, you can go to the `~/lerobot` folder where we installed LeRobot and run one of the commands.
|
||||
|
||||
# Step-by-Step Assembly Instructions
|
||||
|
||||
First we will assemble the two SO100/SO101 arms. One to attach to the mobile base and one for teleoperation. Then we will assemble the mobile base. The instructions for assembling can be found on these two pages:
|
||||
First, we will assemble the two SO100/SO101 arms. One to attach to the mobile base and one for teleoperation. Then we will assemble the mobile base. The instructions for assembling can be found on these two pages:
|
||||
|
||||
- [Assemble SO101](./so101#step-by-step-assembly-instructions)
|
||||
- [Assemble LeKiwi](https://github.com/SIGRobotics-UIUC/LeKiwi/blob/main/Assembly.md)
|
||||
|
||||
### Configure motors
|
||||
The instructions for configuring the motors can be found in the SO101 [docs](./so101#configure-the-motors). Besides the ID's for the arm motors we also need to set the motor ID's for the mobile base. These need to be in a specific order to work. Below an image of the motor ID's and motor mounting positions for the mobile base. Note that we only use one Motor Control board on LeKiwi. This means the motor ID's for the wheels are 7, 8 and 9.
|
||||
The instructions for configuring the motors can be found in the SO101 [docs](./so101#configure-the-motors). Besides the ids for the arm motors, we also need to set the motor ids for the mobile base. These need to be in a specific order to work. Below an image of the motor ids and motor mounting positions for the mobile base. Note that we only use one Motor Control board on LeKiwi. This means the motor ids for the wheels are 7, 8 and 9.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/blob/main/lerobot/motor_ids.webp" alt="Motor ID's for mobile robot" title="Motor ID's for mobile robot" width="60%">
|
||||
|
||||
@@ -53,7 +53,7 @@ The instructions for configuring the motors can be found in the SO101 [docs](./s
|
||||
If you are having trouble connecting to the Mobile SO100, follow these steps to diagnose and resolve the issue.
|
||||
|
||||
#### 1. Verify IP Address Configuration
|
||||
Make sure that the correct ip for the Pi is used in the commands or in your code. To check the Raspberry Pi's IP address, run (on the Pi command line):
|
||||
Make sure that the correct IP for the Pi is used in the commands or in your code. To check the Raspberry Pi's IP address, run (on the Pi command line):
|
||||
```bash
|
||||
hostname -I
|
||||
```
|
||||
@@ -87,7 +87,7 @@ The calibration process is very important because it allows a neural network tra
|
||||
|
||||
### Calibrate follower arm (on mobile base)
|
||||
|
||||
Make sure the arm is connected to the Raspberry Pi and run this script or API example (on the Raspberry Pi via ssh) to launch calibration of the follower arm:
|
||||
Make sure the arm is connected to the Raspberry Pi and run this script or API example (on the Raspberry Pi via SSH) to launch calibration of the follower arm:
|
||||
<hfoptions id="calibrate_follower">
|
||||
<hfoption id="Command">
|
||||
```bash
|
||||
@@ -114,13 +114,13 @@ lekiwi.disconnect()
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
We unified the calibration method for most robots, thus the calibration steps for this SO100 arm are the same as the steps for the Koch and SO101. First we have to move the robot to position where each joint is in the middle of its range, then we press `Enter`. Secondly we move all joints thru their full range of motion. A video of this same process for the SO101 as reference can be found [here](http://localhost:5173/so101#calibration-video)
|
||||
We unified the calibration method for most robots, thus, the calibration steps for this SO100 arm are the same as the steps for the Koch and SO101. First, we have to move the robot to the position where each joint is in the middle of its range, then we press `Enter`. Secondly, we move all joints through their full range of motion. A video of this same process for the SO101 as reference can be found [here](http://localhost:5173/so101#calibration-video)
|
||||
|
||||
### Wired version
|
||||
If you have the **wired** LeKiwi version please run all commands including this calibration command on your laptop.
|
||||
If you have the **wired** LeKiwi version, please run all commands on your laptop.
|
||||
|
||||
### Calibrate leader arm
|
||||
Then to calibrate the leader arm (which is attached to the laptop/pc). Run the following command of API example on your laptop:
|
||||
Then, to calibrate the leader arm (which is attached to the laptop/pc). Run the following command of API example on your laptop:
|
||||
<hfoptions id="calibrate_leader">
|
||||
<hfoption id="Command">
|
||||
```bash
|
||||
|
||||
@@ -1,17 +1,16 @@
|
||||
# SO-100
|
||||
|
||||
In the steps below we explain how to assemble the SO-100 robot.
|
||||
In the steps below, we explain how to assemble the SO-100 robot.
|
||||
|
||||
## Source the parts
|
||||
|
||||
Follow this [README](https://github.com/TheRobotStudio/SO-ARM100/blob/main/SO100.md). It contains the bill of materials, with a link to source the parts, as well as the instructions to 3D print the parts,
|
||||
and advice if it's your first time printing or if you don't own a 3D printer.
|
||||
Follow this [README](https://github.com/TheRobotStudio/SO-ARM100/blob/main/SO100.md). It contains the bill of materials, with a link to source the parts, as well as the instructions to 3D print the parts. And advise if it's your first time printing or if you don't own a 3D printer.
|
||||
|
||||
## Install LeRobot 🤗
|
||||
|
||||
To install LeRobot follow our [Installation Guide](./installation)
|
||||
To install LeRobot, follow our [Installation Guide](./installation)
|
||||
|
||||
In addition to these instructions, you need to install the Feetech sdk:
|
||||
In addition to these instructions, you need to install the Feetech SDK:
|
||||
```bash
|
||||
pip install -e ".[feetech]"
|
||||
```
|
||||
@@ -30,7 +29,7 @@ pip install -e ".[feetech]"
|
||||
Follow the video for removing gears. You need to remove the gear for the motors of the leader arm. As a result, you will only use the position encoding of the motor and reduce friction to more easily operate the leader arm.
|
||||
|
||||
### Clean Parts
|
||||
Remove all support material from the 3D-printed parts, the easiest way to do this is using a small screwdriver to get underneath the support material.
|
||||
Remove all support material from the 3D-printed parts. The easiest way to do this is using a small screwdriver to get underneath the support material.
|
||||
|
||||
### Additional Guidance
|
||||
|
||||
@@ -76,7 +75,7 @@ This video provides visual guidance for assembling the arms, but it doesn't spec
|
||||
</details>
|
||||
|
||||
**Step 7: Attach Shoulder Part**
|
||||
- Route one wire to the back of the robot and the other to the left or in photo towards you (see photo).
|
||||
- Route one wire to the back of the robot and the other to the left or towards you (see photo).
|
||||
- Attach the shoulder part.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/blob/main/lerobot/so100_assembly_6.jpg" style="height:300px;">
|
||||
@@ -201,7 +200,7 @@ This video provides visual guidance for assembling the arms, but it doesn't spec
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/blob/main/lerobot/so100_assembly_26.jpg" style="height:300px;">
|
||||
|
||||
**Step 27: Mount Controller**
|
||||
- Attach the motor controller on the back.
|
||||
- Attach the motor controller to the back of the robot.
|
||||
|
||||
<div style="display: flex;">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/blob/main/lerobot/so100_assembly_27.jpg" style="height:300px;">
|
||||
@@ -237,7 +236,7 @@ For the leader configuration, perform **Steps 1–23**. Make sure that you remov
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/blob/main/lerobot/so100_assembly_32.jpg" style="height:300px;">
|
||||
|
||||
**Step 28: Mount Controller**
|
||||
- Attach the motor controller on the back.
|
||||
- Attach the motor controller to the back of the robot.
|
||||
|
||||
<div style="display: flex;">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/blob/main/lerobot/so100_assembly_27.jpg" style="height:300px;">
|
||||
@@ -246,7 +245,7 @@ For the leader configuration, perform **Steps 1–23**. Make sure that you remov
|
||||
|
||||
## Configure the motors
|
||||
|
||||
### 1. Find the USB ports associated to each arm
|
||||
### 1. Find the USB ports associated with each arm
|
||||
|
||||
To find the port for each bus servo adapter, run this script:
|
||||
```bash
|
||||
@@ -339,12 +338,12 @@ You should see the following instruction
|
||||
Connect the controller board to the 'gripper' motor only and press enter.
|
||||
```
|
||||
|
||||
As instructed, plug the gripper's motor. Make sure it's the only motor connected to the board, and that the motor itself is not yet daisy chained to any other motor. As you press `[Enter]`, the script will automatically set the id and baudrate for that motor.
|
||||
As instructed, plug the gripper's motor. Make sure it's the only motor connected to the board, and that the motor itself is not yet daisy-chained to any other motor. As you press `[Enter]`, the script will automatically set the id and baudrate for that motor.
|
||||
|
||||
<details>
|
||||
<summary>Troubleshooting</summary>
|
||||
|
||||
If you get an error at that point, check your cables and make sure they are plugged-in properly:
|
||||
If you get an error at that point, check your cables and make sure they are plugged in properly:
|
||||
<ul>
|
||||
<li>Power supply</li>
|
||||
<li>USB cable between your computer and the controller board</li>
|
||||
@@ -364,12 +363,12 @@ Followed by the next instruction:
|
||||
Connect the controller board to the 'wrist_roll' motor only and press enter.
|
||||
```
|
||||
|
||||
You can disconnect the 3-pin cable from the controller board but you can leave it connected to the gripper motor on the other end as it will already be in the right place. Now, plug-in another 3-pin cable to the wrist roll motor and connect it to the controller board. As with the previous motor, make sure it is the only motor connected to the board and that the motor itself isn't connected to any other one.
|
||||
You can disconnect the 3-pin cable from the controller board, but you can leave it connected to the gripper motor on the other end, as it will already be in the right place. Now, plug in another 3-pin cable to the wrist roll motor and connect it to the controller board. As with the previous motor, make sure it is the only motor connected to the board and that the motor itself isn't connected to any other one.
|
||||
|
||||
Repeat the operation for each motor as instructed.
|
||||
|
||||
> [!TIP]
|
||||
> Check your cabling at each step before pressing Enter. For instance, as the power supply cable might disconnect as you manipulate the board.
|
||||
> Check your cabling at each step before pressing Enter. For instance, the power supply cable might disconnect as you manipulate the board.
|
||||
|
||||
When you are done, the script will simply finish, at which point the motors are ready to be used. You can now plug the 3-pin cable from each motor to the next one, and the cable from the first motor (the 'shoulder pan' with id=1) to the controller board, which can now be attached to the base of the arm.
|
||||
|
||||
@@ -405,7 +404,7 @@ The calibration process is very important because it allows a neural network tra
|
||||
|
||||
#### Follower
|
||||
|
||||
Run the following command of API example to calbrate the follower arm:
|
||||
Run the following command or API example to calibrate the follower arm:
|
||||
|
||||
<hfoptions id="calibrate_follower">
|
||||
<hfoption id="Command">
|
||||
@@ -433,11 +432,11 @@ follower.disconnect()
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
We unified the calibration method for most robots, thus the calibration steps for this SO100 arm are the same as the steps for the Koch and SO101. First we have to move the robot to position where each joint is in the middle of its range, then we press `Enter`. Secondly we move all joints thru their full range of motion. A video of this same process for the SO101 as reference can be found [here](http://localhost:5173/so101#calibration-video)
|
||||
We unified the calibration method for most robots. Thus, the calibration steps for this SO100 arm are the same as the steps for the Koch and SO101. First, we have to move the robot to the position where each joint is in the middle of its range, then we press `Enter`. Secondly, we move all joints through their full range of motion. A video of this same process for the SO101 as reference can be found [here](http://localhost:5173/so101#calibration-video)
|
||||
|
||||
#### Leader
|
||||
|
||||
Run the following command of API example to calbrate the leader arm:
|
||||
Do the same steps to calibrate the leader arm, run the following command or API example:
|
||||
|
||||
<hfoptions id="calibrate_leader">
|
||||
<hfoption id="Command">
|
||||
|
||||
@@ -1,24 +1,24 @@
|
||||
# SO-101
|
||||
|
||||
In the steps below we explain how to assemble our flagship robot, the SO-101.
|
||||
In the steps below, we explain how to assemble our flagship robot, the SO-101.
|
||||
|
||||
## Source the parts
|
||||
|
||||
Follow this [README](https://github.com/TheRobotStudio/SO-ARM100). It contains the bill of materials, with a link to source the parts, as well as the instructions to 3D print the parts,
|
||||
and advice if it's your first time printing or if you don't own a 3D printer.
|
||||
Follow this [README](https://github.com/TheRobotStudio/SO-ARM100). It contains the bill of materials, with a link to source the parts, as well as the instructions to 3D print the parts.
|
||||
And advise if it's your first time printing or if you don't own a 3D printer.
|
||||
|
||||
## Install LeRobot 🤗
|
||||
|
||||
To install LeRobot follow our [Installation Guide](./installation)
|
||||
To install LeRobot, follow our [Installation Guide](./installation)
|
||||
|
||||
In addition to these instructions, you need to install the Feetech sdk:
|
||||
In addition to these instructions, you need to install the Feetech SDK:
|
||||
```bash
|
||||
pip install -e ".[feetech]"
|
||||
```
|
||||
|
||||
## Step-by-Step Assembly Instructions
|
||||
|
||||
The follower arm uses 6x STS3215 motors with 1/345 gearing. The leader however uses three differently geared motors to make sure it can both sustain its own weight and it can be moved without requiring much force. Which motor is needed for which joint is shown in table below.
|
||||
The follower arm uses 6x STS3215 motors with 1/345 gearing. The leader, however, uses three differently geared motors to make sure it can both sustain its own weight and it can be moved without requiring much force. Which motor is needed for which joint is shown in the table below.
|
||||
|
||||
| Leader-Arm Axis | Motor | Gear Ratio |
|
||||
|-----------------|:-------:|:----------:|
|
||||
@@ -30,12 +30,12 @@ The follower arm uses 6x STS3215 motors with 1/345 gearing. The leader however u
|
||||
| Gripper | 6 | 1 / 147 |
|
||||
|
||||
### Clean Parts
|
||||
Remove all support material from the 3D-printed parts, the easiest way to do this is using a small screwdriver to get underneath the support material.
|
||||
Remove all support material from the 3D-printed parts. The easiest way to do this is using a small screwdriver to get underneath the support material.
|
||||
|
||||
### Joint 1
|
||||
|
||||
- Place the first motor into the base.
|
||||
- Fasten the motor with 4 M2x6mm screws (smallest screws). Two from the top and two from bottom.
|
||||
- Fasten the motor with 4 M2x6mm screws (smallest screws). Two from the top and two from the bottom.
|
||||
- Slide over the first motor holder and fasten it using two M2x6mm screws (one on each side).
|
||||
- Install both motor horns, securing the top horn with a M3x6mm screw.
|
||||
- Attach the shoulder part.
|
||||
@@ -132,7 +132,7 @@ Remove all support material from the 3D-printed parts, the easiest way to do thi
|
||||
|
||||
## Configure the motors
|
||||
|
||||
### 1. Find the USB ports associated to each arm
|
||||
### 1. Find the USB ports associated with each arm
|
||||
|
||||
To find the port for each bus servo adapter, run this script:
|
||||
```bash
|
||||
@@ -233,12 +233,12 @@ You should see the following instruction
|
||||
Connect the controller board to the 'gripper' motor only and press enter.
|
||||
```
|
||||
|
||||
As instructed, plug the gripper's motor. Make sure it's the only motor connected to the board, and that the motor itself is not yet daisy chained to any other motor. As you press `[Enter]`, the script will automatically set the id and baudrate for that motor.
|
||||
As instructed, plug the gripper's motor. Make sure it's the only motor connected to the board, and that the motor itself is not yet daisy-chained to any other motor. As you press `[Enter]`, the script will automatically set the id and baudrate for that motor.
|
||||
|
||||
<details>
|
||||
<summary>Troubleshooting</summary>
|
||||
|
||||
If you get an error at that point, check your cables and make sure they are plugged-in properly:
|
||||
If you get an error at that point, check your cables and make sure they are plugged in properly:
|
||||
<ul>
|
||||
<li>Power supply</li>
|
||||
<li>USB cable between your computer and the controller board</li>
|
||||
@@ -258,12 +258,12 @@ Followed by the next instruction:
|
||||
Connect the controller board to the 'wrist_roll' motor only and press enter.
|
||||
```
|
||||
|
||||
You can disconnect the 3-pin cable from the controller board but you can leave it connected to the gripper motor on the other end as it will already be in the right place. Now, plug-in another 3-pin cable to the wrist roll motor and connect it to the controller board. As with the previous motor, make sure it is the only motor connected to the board and that the motor itself isn't connected to any other one.
|
||||
You can disconnect the 3-pin cable from the controller board, but you can leave it connected to the gripper motor on the other end, as it will already be in the right place. Now, plug in another 3-pin cable to the wrist roll motor and connect it to the controller board. As with the previous motor, make sure it is the only motor connected to the board and that the motor itself isn't connected to any other one.
|
||||
|
||||
Repeat the operation for each motor as instructed.
|
||||
|
||||
> [!TIP]
|
||||
> Check your cabling at each step before pressing Enter. For instance, as the power supply cable might disconnect as you manipulate the board.
|
||||
> Check your cabling at each step before pressing Enter. For instance, the power supply cable might disconnect as you manipulate the board.
|
||||
|
||||
When you are done, the script will simply finish, at which point the motors are ready to be used. You can now plug the 3-pin cable from each motor to the next one, and the cable from the first motor (the 'shoulder pan' with id=1) to the controller board, which can now be attached to the base of the arm.
|
||||
|
||||
@@ -299,7 +299,7 @@ The calibration process is very important because it allows a neural network tra
|
||||
|
||||
#### Follower
|
||||
|
||||
Run the following command of API example to calbrate the follower arm:
|
||||
Run the following command or API example to calibrate the follower arm:
|
||||
|
||||
<hfoptions id="calibrate_follower">
|
||||
<hfoption id="Command">
|
||||
@@ -327,7 +327,7 @@ follower.disconnect()
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
The video below shows how to perform the calibration. First you need to move the robot to the position where all joints are in the middle of their ranges. Then after pressing enter you have to move each joint thru its full range of motion.
|
||||
The video below shows how to perform the calibration. First you need to move the robot to the position where all joints are in the middle of their ranges. Then after pressing enter you have to move each joint through its full range of motion.
|
||||
|
||||
##### Calibration video
|
||||
|
||||
@@ -339,7 +339,7 @@ The video below shows how to perform the calibration. First you need to move the
|
||||
|
||||
#### Leader
|
||||
|
||||
Do the same steps to calibrate the Leader arm, run the following command of API example:
|
||||
Do the same steps to calibrate the leader arm, run the following command or API example:
|
||||
|
||||
<hfoptions id="calibrate_leader">
|
||||
<hfoption id="Command">
|
||||
|
||||
Reference in New Issue
Block a user