forked from tangger/lerobot
Compare commits
2 Commits
chore/bump
...
user/rcade
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
b1e4b7967e | ||
|
|
70d7b99d09 |
67
examples/pretrained.py
Normal file
67
examples/pretrained.py
Normal file
@@ -0,0 +1,67 @@
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from huggingface_hub import snapshot_download
|
||||
from omegaconf import OmegaConf
|
||||
from tensordict.nn import TensorDictModule
|
||||
|
||||
from lerobot.common.datasets.factory import make_offline_buffer
|
||||
from lerobot.common.envs.factory import make_env
|
||||
from lerobot.common.logger import log_output_dir
|
||||
from lerobot.common.policies.factory import make_policy
|
||||
from lerobot.common.utils import get_safe_torch_device, init_logging, set_seed
|
||||
from lerobot.scripts.eval import eval_policy
|
||||
|
||||
folder = Path(snapshot_download("lerobot/diffusion_policy_pusht_image", revision="v1.0"))
|
||||
cfg = OmegaConf.load(folder / "config.yaml")
|
||||
cfg.policy.pretrained_model_path = folder / "model.pt"
|
||||
cfg.eval_episodes = 1
|
||||
cfg.episode_length = 50
|
||||
# cfg.device = "cpu"
|
||||
|
||||
out_dir = "tmp/"
|
||||
|
||||
if out_dir is None:
|
||||
raise NotImplementedError()
|
||||
|
||||
init_logging()
|
||||
|
||||
# Check device is available
|
||||
get_safe_torch_device(cfg.device, log=True)
|
||||
|
||||
torch.backends.cudnn.benchmark = True
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
set_seed(cfg.seed)
|
||||
|
||||
log_output_dir(out_dir)
|
||||
|
||||
logging.info("make_offline_buffer")
|
||||
offline_buffer = make_offline_buffer(cfg)
|
||||
|
||||
logging.info("make_env")
|
||||
env = make_env(cfg, transform=offline_buffer.transform)
|
||||
|
||||
if cfg.policy.pretrained_model_path:
|
||||
policy = make_policy(cfg)
|
||||
policy = TensorDictModule(
|
||||
policy,
|
||||
in_keys=["observation", "step_count"],
|
||||
out_keys=["action"],
|
||||
)
|
||||
else:
|
||||
# when policy is None, rollout a random policy
|
||||
policy = None
|
||||
|
||||
metrics = eval_policy(
|
||||
env,
|
||||
policy=policy,
|
||||
save_video=True,
|
||||
video_dir=Path(out_dir) / "eval",
|
||||
fps=cfg.env.fps,
|
||||
max_steps=cfg.env.episode_length,
|
||||
num_episodes=cfg.eval_episodes,
|
||||
)
|
||||
print(metrics)
|
||||
|
||||
logging.info("End of eval")
|
||||
Reference in New Issue
Block a user