Compare commits

..

4 Commits

Author SHA1 Message Date
Remi Cadene
5f32d75b58 Save action, display next_action 2025-02-18 22:12:59 +01:00
Remi Cadene
a66a792029 Add save inference 2025-02-18 10:18:49 +01:00
Remi Cadene
b6aedcd9a5 Revert "Replace ArgumentParse by draccus in visualize_dataset_html"
This reverts commit d8746be37dcb84ebaa7896485150f0e5ad5dd3a3.
2025-02-18 10:18:49 +01:00
Remi Cadene
121030cca7 Replace ArgumentParse by draccus in visualize_dataset_html 2025-02-18 10:18:49 +01:00
312 changed files with 4205 additions and 10342 deletions

View File

@@ -1,17 +1,3 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Misc
.git
tmp
@@ -73,7 +59,7 @@ pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
!tests/artifacts
!tests/data
htmlcov/
.tox/
.nox/

14
.gitattributes vendored
View File

@@ -1,17 +1,3 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
*.memmap filter=lfs diff=lfs merge=lfs -text
*.stl filter=lfs diff=lfs merge=lfs -text
*.safetensors filter=lfs diff=lfs merge=lfs -text

View File

@@ -1,17 +1,3 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
name: "\U0001F41B Bug Report"
description: Submit a bug report to help us improve LeRobot
body:

View File

@@ -1,17 +1,3 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Inspired by
# https://github.com/huggingface/peft/blob/main/.github/workflows/build_docker_images.yml
name: Builds

View File

@@ -1,17 +1,3 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Inspired by
# https://github.com/huggingface/peft/blob/main/.github/workflows/nightly.yml
name: Nightly

View File

@@ -1,17 +1,3 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
name: Quality
on:
@@ -46,27 +32,13 @@ jobs:
id: get-ruff-version
run: |
RUFF_VERSION=$(awk '/repo: https:\/\/github.com\/astral-sh\/ruff-pre-commit/{flag=1;next}/rev:/{if(flag){print $2;exit}}' .pre-commit-config.yaml)
echo "ruff_version=${RUFF_VERSION}" >> $GITHUB_OUTPUT
echo "RUFF_VERSION=${RUFF_VERSION}" >> $GITHUB_ENV
- name: Install Ruff
env:
RUFF_VERSION: ${{ steps.get-ruff-version.outputs.ruff_version }}
run: python -m pip install "ruff==${RUFF_VERSION}"
run: python -m pip install "ruff==${{ env.RUFF_VERSION }}"
- name: Ruff check
run: ruff check --output-format=github
- name: Ruff format
run: ruff format --diff
typos:
name: Typos
runs-on: ubuntu-latest
steps:
- name: Checkout Repository
uses: actions/checkout@v4
with:
persist-credentials: false
- name: typos-action
uses: crate-ci/typos@v1.29.10

View File

@@ -1,17 +1,3 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Inspired by
# https://github.com/huggingface/peft/blob/main/.github/workflows/test-docker-build.yml
name: Test Dockerfiles
@@ -57,7 +43,7 @@ jobs:
needs: get_changed_files
runs-on:
group: aws-general-8-plus
if: needs.get_changed_files.outputs.matrix != ''
if: ${{ needs.get_changed_files.outputs.matrix }} != ''
strategy:
fail-fast: false
matrix:

View File

@@ -1,17 +1,3 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
name: Tests
on:

View File

@@ -1,17 +1,3 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
on:
push:

16
.gitignore vendored
View File

@@ -1,17 +1,3 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Logging
logs
tmp
@@ -78,7 +64,7 @@ pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
!tests/artifacts
!tests/data
htmlcov/
.tox/
.nox/

View File

@@ -1,29 +1,7 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
exclude: "tests/artifacts/.*\\.safetensors$"
exclude: ^(tests/data)
default_language_version:
python: python3.10
repos:
##### Meta #####
- repo: meta
hooks:
- id: check-useless-excludes
- id: check-hooks-apply
##### Style / Misc. #####
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v5.0.0
hooks:
@@ -35,40 +13,21 @@ repos:
- id: check-toml
- id: end-of-file-fixer
- id: trailing-whitespace
- repo: https://github.com/crate-ci/typos
rev: v1.30.2
hooks:
- id: typos
args: [--force-exclude]
- repo: https://github.com/asottile/pyupgrade
rev: v3.19.1
hooks:
- id: pyupgrade
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.9.10
rev: v0.9.6
hooks:
- id: ruff
args: [--fix]
- id: ruff-format
##### Security #####
- repo: https://github.com/gitleaks/gitleaks
rev: v8.24.0
rev: v8.23.3
hooks:
- id: gitleaks
- repo: https://github.com/woodruffw/zizmor-pre-commit
rev: v1.4.1
rev: v1.3.1
hooks:
- id: zizmor
- repo: https://github.com/PyCQA/bandit
rev: 1.8.3
hooks:
- id: bandit
args: ["-c", "pyproject.toml"]
additional_dependencies: ["bandit[toml]"]

View File

@@ -228,7 +228,7 @@ Follow these steps to start contributing:
git commit
```
Note, if you already committed some changes that have a wrong formatting, you can use:
Note, if you already commited some changes that have a wrong formatting, you can use:
```bash
pre-commit run --all-files
```
@@ -291,7 +291,7 @@ sudo apt-get install git-lfs
git lfs install
```
Pull artifacts if they're not in [tests/artifacts](tests/artifacts)
Pull artifacts if they're not in [tests/data](tests/data)
```bash
git lfs pull
```

View File

@@ -1,17 +1,3 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
.PHONY: tests
PYTHON_PATH := $(shell which python)
@@ -47,7 +33,6 @@ test-act-ete-train:
--policy.dim_model=64 \
--policy.n_action_steps=20 \
--policy.chunk_size=20 \
--policy.device=$(DEVICE) \
--env.type=aloha \
--env.episode_length=5 \
--dataset.repo_id=lerobot/aloha_sim_transfer_cube_human \
@@ -62,6 +47,7 @@ test-act-ete-train:
--save_checkpoint=true \
--log_freq=1 \
--wandb.enable=false \
--device=$(DEVICE) \
--output_dir=tests/outputs/act/
test-act-ete-train-resume:
@@ -72,11 +58,11 @@ test-act-ete-train-resume:
test-act-ete-eval:
python lerobot/scripts/eval.py \
--policy.path=tests/outputs/act/checkpoints/000004/pretrained_model \
--policy.device=$(DEVICE) \
--env.type=aloha \
--env.episode_length=5 \
--eval.n_episodes=1 \
--eval.batch_size=1
--eval.batch_size=1 \
--device=$(DEVICE)
test-diffusion-ete-train:
python lerobot/scripts/train.py \
@@ -84,7 +70,6 @@ test-diffusion-ete-train:
--policy.down_dims='[64,128,256]' \
--policy.diffusion_step_embed_dim=32 \
--policy.num_inference_steps=10 \
--policy.device=$(DEVICE) \
--env.type=pusht \
--env.episode_length=5 \
--dataset.repo_id=lerobot/pusht \
@@ -99,21 +84,21 @@ test-diffusion-ete-train:
--save_freq=2 \
--log_freq=1 \
--wandb.enable=false \
--device=$(DEVICE) \
--output_dir=tests/outputs/diffusion/
test-diffusion-ete-eval:
python lerobot/scripts/eval.py \
--policy.path=tests/outputs/diffusion/checkpoints/000002/pretrained_model \
--policy.device=$(DEVICE) \
--env.type=pusht \
--env.episode_length=5 \
--eval.n_episodes=1 \
--eval.batch_size=1
--eval.batch_size=1 \
--device=$(DEVICE)
test-tdmpc-ete-train:
python lerobot/scripts/train.py \
--policy.type=tdmpc \
--policy.device=$(DEVICE) \
--env.type=xarm \
--env.task=XarmLift-v0 \
--env.episode_length=5 \
@@ -129,14 +114,15 @@ test-tdmpc-ete-train:
--save_freq=2 \
--log_freq=1 \
--wandb.enable=false \
--device=$(DEVICE) \
--output_dir=tests/outputs/tdmpc/
test-tdmpc-ete-eval:
python lerobot/scripts/eval.py \
--policy.path=tests/outputs/tdmpc/checkpoints/000002/pretrained_model \
--policy.device=$(DEVICE) \
--env.type=xarm \
--env.episode_length=5 \
--env.task=XarmLift-v0 \
--eval.n_episodes=1 \
--eval.batch_size=1
--eval.batch_size=1 \
--device=$(DEVICE)

View File

@@ -23,24 +23,15 @@
</div>
<h2 align="center">
<p><a href="https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md">
Build Your Own SO-100 Robot!</a></p>
<p><a href="https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md">New robot in town: SO-100</a></p>
</h2>
<div align="center">
<img src="media/so100/leader_follower.webp?raw=true" alt="SO-100 leader and follower arms" title="SO-100 leader and follower arms" width="50%">
<p><strong>Meet the SO-100 Just $110 per arm!</strong></p>
<p>Train it in minutes with a few simple moves on your laptop.</p>
<p>Then sit back and watch your creation act autonomously! 🤯</p>
<p><a href="https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md">
Get the full SO-100 tutorial here.</a></p>
<p>Want to take it to the next level? Make your SO-100 mobile by building LeKiwi!</p>
<p>Check out the <a href="https://github.com/huggingface/lerobot/blob/main/examples/11_use_lekiwi.md">LeKiwi tutorial</a> and bring your robot to life on wheels.</p>
<img src="media/lekiwi/kiwi.webp?raw=true" alt="LeKiwi mobile robot" title="LeKiwi mobile robot" width="50%">
<img src="media/so100/leader_follower.webp?raw=true" alt="SO-100 leader and follower arms" title="SO-100 leader and follower arms" width="50%">
<p>We just added a new tutorial on how to build a more affordable robot, at the price of $110 per arm!</p>
<p>Teach it new skills by showing it a few moves with just a laptop.</p>
<p>Then watch your homemade robot act autonomously 🤯</p>
<p>Follow the link to the <a href="https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md">full tutorial for SO-100</a>.</p>
</div>
<br/>
@@ -219,7 +210,7 @@ A `LeRobotDataset` is serialised using several widespread file formats for each
- videos are stored in mp4 format to save space
- metadata are stored in plain json/jsonl files
Dataset can be uploaded/downloaded from the HuggingFace hub seamlessly. To work on a local dataset, you can specify its location with the `root` argument if it's not in the default `~/.cache/huggingface/lerobot` location.
Dataset can be uploaded/downloaded from the HuggingFace hub seamlessly. To work on a local dataset, you can use the `local_files_only` argument and specify its location with the `root` argument if it's not in the default `~/.cache/huggingface/lerobot` location.
### Evaluate a pretrained policy
@@ -232,8 +223,8 @@ python lerobot/scripts/eval.py \
--env.type=pusht \
--eval.batch_size=10 \
--eval.n_episodes=10 \
--policy.use_amp=false \
--policy.device=cuda
--use_amp=false \
--device=cuda
```
Note: After training your own policy, you can re-evaluate the checkpoints with:
@@ -384,6 +375,3 @@ Additionally, if you are using any of the particular policy architecture, pretra
year={2024}
}
```
## Star History
[![Star History Chart](https://api.star-history.com/svg?repos=huggingface/lerobot&type=Timeline)](https://star-history.com/#huggingface/lerobot&Timeline)

View File

@@ -114,7 +114,7 @@ We tried to measure the most impactful parameters for both encoding and decoding
Additional encoding parameters exist that are not included in this benchmark. In particular:
- `-preset` which allows for selecting encoding presets. This represents a collection of options that will provide a certain encoding speed to compression ratio. By leaving this parameter unspecified, it is considered to be `medium` for libx264 and libx265 and `8` for libsvtav1.
- `-tune` which allows to optimize the encoding for certain aspects (e.g. film quality, fast decoding, etc.).
- `-tune` which allows to optimize the encoding for certains aspects (e.g. film quality, fast decoding, etc.).
See the documentation mentioned above for more detailed info on these settings and for a more comprehensive list of other parameters.

View File

@@ -1,29 +1,33 @@
# Configure image
ARG PYTHON_VERSION=3.10
FROM python:${PYTHON_VERSION}-slim
# Configure environment variables
ARG PYTHON_VERSION
ENV DEBIAN_FRONTEND=noninteractive
ENV MUJOCO_GL="egl"
ENV PATH="/opt/venv/bin:$PATH"
ARG DEBIAN_FRONTEND=noninteractive
# Install dependencies and set up Python in a single layer
# Install apt dependencies
RUN apt-get update && apt-get install -y --no-install-recommends \
build-essential cmake git \
build-essential cmake git git-lfs \
libglib2.0-0 libgl1-mesa-glx libegl1-mesa ffmpeg \
speech-dispatcher libgeos-dev \
&& ln -s /usr/bin/python${PYTHON_VERSION} /usr/bin/python \
&& python -m venv /opt/venv \
&& apt-get clean && rm -rf /var/lib/apt/lists/* \
&& echo "source /opt/venv/bin/activate" >> /root/.bashrc
&& apt-get clean && rm -rf /var/lib/apt/lists/*
# Clone repository and install LeRobot in a single layer
COPY . /lerobot
# Create virtual environment
RUN ln -s /usr/bin/python${PYTHON_VERSION} /usr/bin/python
RUN python -m venv /opt/venv
ENV PATH="/opt/venv/bin:$PATH"
RUN echo "source /opt/venv/bin/activate" >> /root/.bashrc
# Install LeRobot
RUN git lfs install
RUN git clone https://github.com/huggingface/lerobot.git /lerobot
WORKDIR /lerobot
RUN /opt/venv/bin/pip install --upgrade --no-cache-dir pip \
&& /opt/venv/bin/pip install --no-cache-dir ".[test, aloha, xarm, pusht, dynamixel]" \
--extra-index-url https://download.pytorch.org/whl/cpu
RUN pip install --upgrade --no-cache-dir pip
RUN pip install --no-cache-dir ".[test, aloha, xarm, pusht, dynamixel]" \
--extra-index-url https://download.pytorch.org/whl/cpu
# Set EGL as the rendering backend for MuJoCo
ENV MUJOCO_GL="egl"
# Execute in bash shell rather than python
CMD ["/bin/bash"]

View File

@@ -1,24 +1,31 @@
FROM nvidia/cuda:12.4.1-base-ubuntu22.04
# Configure environment variables
# Configure image
ARG PYTHON_VERSION=3.10
ENV DEBIAN_FRONTEND=noninteractive
ENV MUJOCO_GL="egl"
ENV PATH="/opt/venv/bin:$PATH"
ARG DEBIAN_FRONTEND=noninteractive
# Install dependencies and set up Python in a single layer
# Install apt dependencies
RUN apt-get update && apt-get install -y --no-install-recommends \
build-essential cmake git \
build-essential cmake git git-lfs \
libglib2.0-0 libgl1-mesa-glx libegl1-mesa ffmpeg \
speech-dispatcher libgeos-dev \
python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv \
&& ln -s /usr/bin/python${PYTHON_VERSION} /usr/bin/python \
&& python -m venv /opt/venv \
&& apt-get clean && rm -rf /var/lib/apt/lists/* \
&& echo "source /opt/venv/bin/activate" >> /root/.bashrc
&& apt-get clean && rm -rf /var/lib/apt/lists/*
# Clone repository and install LeRobot in a single layer
COPY . /lerobot
# Create virtual environment
RUN ln -s /usr/bin/python${PYTHON_VERSION} /usr/bin/python
RUN python -m venv /opt/venv
ENV PATH="/opt/venv/bin:$PATH"
RUN echo "source /opt/venv/bin/activate" >> /root/.bashrc
# Install LeRobot
RUN git lfs install
RUN git clone https://github.com/huggingface/lerobot.git /lerobot
WORKDIR /lerobot
RUN /opt/venv/bin/pip install --upgrade --no-cache-dir pip \
&& /opt/venv/bin/pip install --no-cache-dir ".[test, aloha, xarm, pusht, dynamixel]"
RUN pip install --upgrade --no-cache-dir pip
RUN pip install --no-cache-dir ".[test, aloha, xarm, pusht, dynamixel]"
# Set EGL as the rendering backend for MuJoCo
ENV MUJOCO_GL="egl"

View File

@@ -4,8 +4,8 @@
- [A. Source the parts](#a-source-the-parts)
- [B. Install LeRobot](#b-install-lerobot)
- [C. Configure the Motors](#c-configure-the-motors)
- [D. Step-by-Step Assembly Instructions](#d-step-by-step-assembly-instructions)
- [C. Configure the motors](#c-configure-the-motors)
- [D. Assemble the arms](#d-assemble-the-arms)
- [E. Calibrate](#e-calibrate)
- [F. Teleoperate](#f-teleoperate)
- [G. Record a dataset](#g-record-a-dataset)
@@ -70,7 +70,6 @@ conda install -y -c conda-forge "opencv>=4.10.0"
```
Great :hugs:! You are now done installing LeRobot and we can begin assembling the SO100 arms :robot:.
Every time you now want to use LeRobot you can go to the `~/lerobot` folder where we installed LeRobot and run one of the commands.
## C. Configure the motors
> [!NOTE]
@@ -99,22 +98,22 @@ Example output when identifying the leader arm's port (e.g., `/dev/tty.usbmodem5
```
Finding all available ports for the MotorBus.
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
Remove the usb cable from your MotorsBus and press Enter when done.
Remove the usb cable from your DynamixelMotorsBus and press Enter when done.
[...Disconnect leader arm and press Enter...]
The port of this MotorsBus is /dev/tty.usbmodem575E0031751
The port of this DynamixelMotorsBus is /dev/tty.usbmodem575E0031751
Reconnect the usb cable.
```
Example output when identifying the follower arm's port (e.g., `/dev/tty.usbmodem575E0032081`, or possibly `/dev/ttyACM1` on Linux):
```
Finding all available ports for the MotorBus.
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
Remove the usb cable from your MotorsBus and press Enter when done.
Remove the usb cable from your DynamixelMotorsBus and press Enter when done.
[...Disconnect follower arm and press Enter...]
The port of this MotorsBus is /dev/tty.usbmodem575E0032081
The port of this DynamixelMotorsBus is /dev/tty.usbmodem575E0032081
Reconnect the usb cable.
```
@@ -222,13 +221,19 @@ Redo the process for all your motors until ID 6. Do the same for the 6 motors of
Follow the video for removing gears. You need to remove the gear for the motors of the leader arm. As a result, you will only use the position encoding of the motor and reduce friction to more easily operate the leader arm.
## D. Step-by-Step Assembly Instructions
#### c. Add motor horn to all 12 motors
**Step 1: Clean Parts**
- Remove all support material from the 3D-printed parts.
---
<details>
<summary><strong>Video adding motor horn</strong></summary>
### Additional Guidance
<video src="https://github.com/user-attachments/assets/ef3391a4-ad05-4100-b2bd-1699bf86c969"></video>
</details>
Follow the video for adding the motor horn. For SO-100, you need to align the holes on the motor horn to the motor spline to be approximately 1:30, 4:30, 7:30 and 10:30.
Try to avoid rotating the motor while doing so to keep position 2048 set during configuration. It is especially tricky for the leader motors as it is more sensible without the gears, but it's ok if it's a bit rotated.
## D. Assemble the arms
<details>
<summary><strong>Video assembling arms</strong></summary>
@@ -237,211 +242,7 @@ Follow the video for removing gears. You need to remove the gear for the motors
</details>
**Note:**
This video provides visual guidance for assembling the arms, but it doesn't specify when or how to do the wiring. Inserting the cables beforehand is much easier than doing it afterward. The first arm may take a bit more than 1 hour to assemble, but once you get used to it, you can assemble the second arm in under 1 hour.
---
### First Motor
**Step 2: Insert Wires**
- Insert two wires into the first motor.
<img src="../media/tutorial/img1.jpg" style="height:300px;">
**Step 3: Install in Base**
- Place the first motor into the base.
<img src="../media/tutorial/img2.jpg" style="height:300px;">
**Step 4: Secure Motor**
- Fasten the motor with 4 screws. Two from the bottom and two from top.
**Step 5: Attach Motor Holder**
- Slide over the first motor holder and fasten it using two screws (one on each side).
<img src="../media/tutorial/img4.jpg" style="height:300px;">
**Step 6: Attach Motor Horns**
- Install both motor horns, securing the top horn with a screw. Try not to move the motor position when attaching the motor horn, especially for the leader arms, where we removed the gears.
<img src="../media/tutorial/img5.jpg" style="height:300px;">
<details>
<summary><strong>Video adding motor horn</strong></summary>
<video src="https://github.com/user-attachments/assets/ef3391a4-ad05-4100-b2bd-1699bf86c969"></video>
</details>
**Step 7: Attach Shoulder Part**
- Route one wire to the back of the robot and the other to the left or in photo towards you (see photo).
- Attach the shoulder part.
<img src="../media/tutorial/img6.jpg" style="height:300px;">
**Step 8: Secure Shoulder**
- Tighten the shoulder part with 4 screws on top and 4 on the bottom
*(access bottom holes by turning the shoulder).*
---
### Second Motor Assembly
**Step 9: Install Motor 2**
- Slide the second motor in from the top and link the wire from motor 1 to motor 2.
<img src="../media/tutorial/img8.jpg" style="height:300px;">
**Step 10: Attach Shoulder Holder**
- Add the shoulder motor holder.
- Ensure the wire from motor 1 to motor 2 goes behind the holder while the other wire is routed upward (see photo).
- This part can be tight to assemble, you can use a workbench like the image or a similar setup to push the part around the motor.
<div style="display: flex;">
<img src="../media/tutorial/img9.jpg" style="height:250px;">
<img src="../media/tutorial/img10.jpg" style="height:250px;">
<img src="../media/tutorial/img12.jpg" style="height:250px;">
</div>
**Step 11: Secure Motor 2**
- Fasten the second motor with 4 screws.
**Step 12: Attach Motor Horn**
- Attach both motor horns to motor 2, again use the horn screw.
**Step 13: Attach Base**
- Install the base attachment using 2 screws.
<img src="../media/tutorial/img11.jpg" style="height:300px;">
**Step 14: Attach Upper Arm**
- Attach the upper arm with 4 screws on each side.
<img src="../media/tutorial/img13.jpg" style="height:300px;">
---
### Third Motor Assembly
**Step 15: Install Motor 3**
- Route the motor cable from motor 2 through the cable holder to motor 3, then secure motor 3 with 4 screws.
**Step 16: Attach Motor Horn**
- Attach both motor horns to motor 3 and secure one again with a horn screw.
<img src="../media/tutorial/img14.jpg" style="height:300px;">
**Step 17: Attach Forearm**
- Connect the forearm to motor 3 using 4 screws on each side.
<img src="../media/tutorial/img15.jpg" style="height:300px;">
---
### Fourth Motor Assembly
**Step 18: Install Motor 4**
- Slide in motor 4, attach the cable from motor 3, and secure the cable in its holder with a screw.
<div style="display: flex;">
<img src="../media/tutorial/img16.jpg" style="height:300px;">
<img src="../media/tutorial/img19.jpg" style="height:300px;">
</div>
**Step 19: Attach Motor Holder 4**
- Install the fourth motor holder (a tight fit). Ensure one wire is routed upward and the wire from motor 3 is routed downward (see photo).
<img src="../media/tutorial/img17.jpg" style="height:300px;">
**Step 20: Secure Motor 4 & Attach Horn**
- Fasten motor 4 with 4 screws and attach its motor horns, use for one a horn screw.
<img src="../media/tutorial/img18.jpg" style="height:300px;">
---
### Wrist Assembly
**Step 21: Install Motor 5**
- Insert motor 5 into the wrist holder and secure it with 2 front screws.
<img src="../media/tutorial/img20.jpg" style="height:300px;">
**Step 22: Attach Wrist**
- Connect the wire from motor 4 to motor 5. And already insert the other wire for the gripper.
- Secure the wrist to motor 4 using 4 screws on both sides.
<img src="../media/tutorial/img22.jpg" style="height:300px;">
**Step 23: Attach Wrist Horn**
- Install only one motor horn on the wrist motor and secure it with a horn screw.
<img src="../media/tutorial/img23.jpg" style="height:300px;">
---
### Follower Configuration
**Step 24: Attach Gripper**
- Attach the gripper to motor 5.
<img src="../media/tutorial/img24.jpg" style="height:300px;">
**Step 25: Install Gripper Motor**
- Insert the gripper motor, connect the motor wire from motor 5 to motor 6, and secure it with 3 screws on each side.
<img src="../media/tutorial/img25.jpg" style="height:300px;">
**Step 26: Attach Gripper Horn & Claw**
- Attach the motor horns and again use a horn screw.
- Install the gripper claw and secure it with 4 screws on both sides.
<img src="../media/tutorial/img26.jpg" style="height:300px;">
**Step 27: Mount Controller**
- Attach the motor controller on the back.
<div style="display: flex;">
<img src="../media/tutorial/img27.jpg" style="height:300px;">
<img src="../media/tutorial/img28.jpg" style="height:300px;">
</div>
*Assembly complete proceed to Leader arm assembly.*
---
### Leader Configuration
For the leader configuration, perform **Steps 123**. Make sure that you removed the motor gears from the motors.
**Step 24: Attach Leader Holder**
- Mount the leader holder onto the wrist and secure it with a screw.
<img src="../media/tutorial/img29.jpg" style="height:300px;">
**Step 25: Attach Handle**
- Attach the handle to motor 5 using 4 screws.
<img src="../media/tutorial/img30.jpg" style="height:300px;">
**Step 26: Install Gripper Motor**
- Insert the gripper motor, secure it with 3 screws on each side, attach a motor horn using a horn screw, and connect the motor wire.
<img src="../media/tutorial/img31.jpg" style="height:300px;">
**Step 27: Attach Trigger**
- Attach the follower trigger with 4 screws.
<img src="../media/tutorial/img32.jpg" style="height:300px;">
**Step 28: Mount Controller**
- Attach the motor controller on the back.
<div style="display: flex;">
<img src="../media/tutorial/img27.jpg" style="height:300px;">
<img src="../media/tutorial/img28.jpg" style="height:300px;">
</div>
*Assembly complete proceed to calibration.*
Follow the video for assembling the arms. It is important to insert the cables into the motor that is being assembled before you assemble the motor into the arm! Inserting the cables beforehand is much easier than doing this afterward. The first arm should take a bit more than 1 hour to assemble, but once you get used to it, you can do it under 1 hour for the second arm.
## E. Calibrate
@@ -454,8 +255,8 @@ Next, you'll need to calibrate your SO-100 robot to ensure that the leader and f
You will need to move the follower arm to these positions sequentially:
| 1. Zero position | 2. Rotated position | 3. Rest position |
| ------------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| 1. Zero position | 2. Rotated position | 3. Rest position |
|---|---|---|
| <img src="../media/so100/follower_zero.webp?raw=true" alt="SO-100 follower arm zero position" title="SO-100 follower arm zero position" style="width:100%;"> | <img src="../media/so100/follower_rotated.webp?raw=true" alt="SO-100 follower arm rotated position" title="SO-100 follower arm rotated position" style="width:100%;"> | <img src="../media/so100/follower_rest.webp?raw=true" alt="SO-100 follower arm rest position" title="SO-100 follower arm rest position" style="width:100%;"> |
Make sure both arms are connected and run this script to launch manual calibration:
@@ -470,8 +271,8 @@ python lerobot/scripts/control_robot.py \
#### b. Manual calibration of leader arm
Follow step 6 of the [assembly video](https://youtu.be/FioA2oeFZ5I?t=724) which illustrates the manual calibration. You will need to move the leader arm to these positions sequentially:
| 1. Zero position | 2. Rotated position | 3. Rest position |
| ------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
| 1. Zero position | 2. Rotated position | 3. Rest position |
|---|---|---|
| <img src="../media/so100/leader_zero.webp?raw=true" alt="SO-100 leader arm zero position" title="SO-100 leader arm zero position" style="width:100%;"> | <img src="../media/so100/leader_rotated.webp?raw=true" alt="SO-100 leader arm rotated position" title="SO-100 leader arm rotated position" style="width:100%;"> | <img src="../media/so100/leader_rest.webp?raw=true" alt="SO-100 leader arm rest position" title="SO-100 leader arm rest position" style="width:100%;"> |
Run this script to launch manual calibration:
@@ -534,7 +335,7 @@ python lerobot/scripts/control_robot.py \
--control.push_to_hub=true
```
Note: You can resume recording by adding `--control.resume=true`.
Note: You can resume recording by adding `--control.resume=true`. Also if you didn't push your dataset yet, add `--control.local_files_only=true`.
## H. Visualize a dataset
@@ -543,7 +344,7 @@ If you uploaded your dataset to the hub with `--control.push_to_hub=true`, you c
echo ${HF_USER}/so100_test
```
If you didn't upload with `--control.push_to_hub=false`, you can also visualize it locally with (a window can be opened in the browser `http://127.0.0.1:9090` with the visualization tool):
If you didn't upload with `--control.push_to_hub=false`, you can also visualize it locally with:
```bash
python lerobot/scripts/visualize_dataset_html.py \
--repo-id ${HF_USER}/so100_test \
@@ -562,6 +363,8 @@ python lerobot/scripts/control_robot.py \
--control.episode=0
```
Note: If you didn't push your dataset yet, add `--control.local_files_only=true`.
## J. Train a policy
To train a policy to control your robot, use the [`python lerobot/scripts/train.py`](../lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
@@ -571,14 +374,16 @@ python lerobot/scripts/train.py \
--policy.type=act \
--output_dir=outputs/train/act_so100_test \
--job_name=act_so100_test \
--policy.device=cuda \
--device=cuda \
--wandb.enable=true
```
Note: If you didn't push your dataset yet, add `--control.local_files_only=true`.
Let's explain it:
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/so100_test`.
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor sates, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
4. We provided `policy.device=cuda` since we are training on a Nvidia GPU, but you could use `policy.device=mps` to train on Apple silicon.
4. We provided `device=cuda` since we are training on a Nvidia GPU, but you could use `device=mps` to train on Apple silicon.
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
Training should take several hours. You will find checkpoints in `outputs/train/act_so100_test/checkpoints`.
@@ -611,4 +416,4 @@ As you can see, it's almost the same command as previously used to record your t
Follow this [previous tutorial](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#4-train-a-policy-on-your-data) for a more in-depth tutorial on controlling real robots with LeRobot.
> [!TIP]
> If you have any questions or need help, please reach out on [Discord](https://discord.com/invite/s3KuuzsPFb) in the channel [`#so100-arm`](https://discord.com/channels/1216765309076115607/1237741463832363039).
> If you have any questions or need help, please reach out on Discord in the channel [`#so100-arm`](https://discord.com/channels/1216765309076115607/1237741463832363039).

View File

@@ -2,7 +2,7 @@ This tutorial explains how to use [Moss v1](https://github.com/jess-moss/moss-ro
## Source the parts
Follow this [README](https://github.com/jess-moss/moss-robot-arms). It contains the bill of materials with link to source the parts, as well as the instructions to 3D print the parts and advice if it's your first time printing or if you don't own a 3D printer already.
Follow this [README](https://github.com/jess-moss/moss-robot-arms). It contains the bill of materials, with link to source the parts, as well as the instructions to 3D print the parts, and advices if it's your first time printing or if you don't own a 3D printer already.
**Important**: Before assembling, you will first need to configure your motors. To this end, we provide a nice script, so let's first install LeRobot. After configuration, we will also guide you through assembly.
@@ -176,8 +176,8 @@ Next, you'll need to calibrate your Moss v1 robot to ensure that the leader and
You will need to move the follower arm to these positions sequentially:
| 1. Zero position | 2. Rotated position | 3. Rest position |
| ------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| 1. Zero position | 2. Rotated position | 3. Rest position |
|---|---|---|
| <img src="../media/moss/follower_zero.webp?raw=true" alt="Moss v1 follower arm zero position" title="Moss v1 follower arm zero position" style="width:100%;"> | <img src="../media/moss/follower_rotated.webp?raw=true" alt="Moss v1 follower arm rotated position" title="Moss v1 follower arm rotated position" style="width:100%;"> | <img src="../media/moss/follower_rest.webp?raw=true" alt="Moss v1 follower arm rest position" title="Moss v1 follower arm rest position" style="width:100%;"> |
Make sure both arms are connected and run this script to launch manual calibration:
@@ -192,8 +192,8 @@ python lerobot/scripts/control_robot.py \
**Manual calibration of leader arm**
Follow step 6 of the [assembly video](https://www.youtube.com/watch?v=DA91NJOtMic) which illustrates the manual calibration. You will need to move the leader arm to these positions sequentially:
| 1. Zero position | 2. Rotated position | 3. Rest position |
| ------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------- |
| 1. Zero position | 2. Rotated position | 3. Rest position |
|---|---|---|
| <img src="../media/moss/leader_zero.webp?raw=true" alt="Moss v1 leader arm zero position" title="Moss v1 leader arm zero position" style="width:100%;"> | <img src="../media/moss/leader_rotated.webp?raw=true" alt="Moss v1 leader arm rotated position" title="Moss v1 leader arm rotated position" style="width:100%;"> | <img src="../media/moss/leader_rest.webp?raw=true" alt="Moss v1 leader arm rest position" title="Moss v1 leader arm rest position" style="width:100%;"> |
Run this script to launch manual calibration:
@@ -256,7 +256,7 @@ python lerobot/scripts/control_robot.py \
--control.push_to_hub=true
```
Note: You can resume recording by adding `--control.resume=true`.
Note: You can resume recording by adding `--control.resume=true`. Also if you didn't push your dataset yet, add `--control.local_files_only=true`.
## Visualize a dataset
@@ -284,6 +284,8 @@ python lerobot/scripts/control_robot.py \
--control.episode=0
```
Note: If you didn't push your dataset yet, add `--control.local_files_only=true`.
## Train a policy
To train a policy to control your robot, use the [`python lerobot/scripts/train.py`](../lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
@@ -293,14 +295,16 @@ python lerobot/scripts/train.py \
--policy.type=act \
--output_dir=outputs/train/act_moss_test \
--job_name=act_moss_test \
--policy.device=cuda \
--device=cuda \
--wandb.enable=true
```
Note: If you didn't push your dataset yet, add `--control.local_files_only=true`.
Let's explain it:
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/moss_test`.
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor sates, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
4. We provided `policy.device=cuda` since we are training on a Nvidia GPU, but you could use `policy.device=mps` to train on Apple silicon.
4. We provided `device=cuda` since we are training on a Nvidia GPU, but you could use `device=mps` to train on Apple silicon.
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
Training should take several hours. You will find checkpoints in `outputs/train/act_moss_test/checkpoints`.

View File

@@ -1,17 +1,3 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script demonstrates the use of `LeRobotDataset` class for handling and processing robotic datasets from Hugging Face.
It illustrates how to load datasets, manipulate them, and apply transformations suitable for machine learning tasks in PyTorch.

View File

@@ -1,17 +1,3 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This scripts demonstrates how to evaluate a pretrained policy from the HuggingFace Hub or from your local
training outputs directory. In the latter case, you might want to run examples/3_train_policy.py first.
@@ -44,7 +30,7 @@ pretrained_policy_path = "lerobot/diffusion_pusht"
# OR a path to a local outputs/train folder.
# pretrained_policy_path = Path("outputs/train/example_pusht_diffusion")
policy = DiffusionPolicy.from_pretrained(pretrained_policy_path)
policy = DiffusionPolicy.from_pretrained(pretrained_policy_path, map_location=device)
# Initialize evaluation environment to render two observation types:
# an image of the scene and state/position of the agent. The environment

View File

@@ -1,17 +1,3 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This scripts demonstrates how to train Diffusion Policy on the PushT environment.
Once you have trained a model with this script, you can try to evaluate it on
@@ -99,7 +85,7 @@ def main():
done = False
while not done:
for batch in dataloader:
batch = {k: (v.to(device) if isinstance(v, torch.Tensor) else v) for k, v in batch.items()}
batch = {k: v.to(device, non_blocking=True) for k, v in batch.items()}
loss, _ = policy.forward(batch)
loss.backward()
optimizer.step()

View File

@@ -1,5 +1,5 @@
This tutorial will explain the training script, how to use it, and particularly how to configure everything needed for the training run.
> **Note:** The following assume you're running these commands on a machine equipped with a cuda GPU. If you don't have one (or if you're using a Mac), you can add `--policy.device=cpu` (`--policy.device=mps` respectively). However, be advised that the code executes much slower on cpu.
> **Note:** The following assume you're running these commands on a machine equipped with a cuda GPU. If you don't have one (or if you're using a Mac), you can add `--device=cpu` (`--device=mps` respectively). However, be advised that the code executes much slower on cpu.
## The training script

View File

@@ -386,19 +386,19 @@ When you connect your robot for the first time, the [`ManipulatorRobot`](../lero
Here are the positions you'll move the follower arm to:
| 1. Zero position | 2. Rotated position | 3. Rest position |
| ----------------------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| 1. Zero position | 2. Rotated position | 3. Rest position |
|---|---|---|
| <img src="../media/koch/follower_zero.webp?raw=true" alt="Koch v1.1 follower arm zero position" title="Koch v1.1 follower arm zero position" style="width:100%;"> | <img src="../media/koch/follower_rotated.webp?raw=true" alt="Koch v1.1 follower arm rotated position" title="Koch v1.1 follower arm rotated position" style="width:100%;"> | <img src="../media/koch/follower_rest.webp?raw=true" alt="Koch v1.1 follower arm rest position" title="Koch v1.1 follower arm rest position" style="width:100%;"> |
And here are the corresponding positions for the leader arm:
| 1. Zero position | 2. Rotated position | 3. Rest position |
| ----------------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------- |
| 1. Zero position | 2. Rotated position | 3. Rest position |
|---|---|---|
| <img src="../media/koch/leader_zero.webp?raw=true" alt="Koch v1.1 leader arm zero position" title="Koch v1.1 leader arm zero position" style="width:100%;"> | <img src="../media/koch/leader_rotated.webp?raw=true" alt="Koch v1.1 leader arm rotated position" title="Koch v1.1 leader arm rotated position" style="width:100%;"> | <img src="../media/koch/leader_rest.webp?raw=true" alt="Koch v1.1 leader arm rest position" title="Koch v1.1 leader arm rest position" style="width:100%;"> |
You can watch a [video tutorial of the calibration procedure](https://youtu.be/8drnU9uRY24) for more details.
During calibration, we count the number of full 360-degree rotations your motors have made since they were first used. That's why we ask yo to move to this arbitrary "zero" position. We don't actually "set" the zero position, so you don't need to be accurate. After calculating these "offsets" to shift the motor values around 0, we need to assess the rotation direction of each motor, which might differ. That's why we ask you to rotate all motors to roughly 90 degrees, to measure if the values changed negatively or positively.
During calibration, we count the number of full 360-degree rotations your motors have made since they were first used. That's why we ask yo to move to this arbitrary "zero" position. We don't actually "set" the zero position, so you don't need to be accurate. After calculating these "offsets" to shift the motor values around 0, we need to assess the rotation direction of each motor, which might differ. That's why we ask you to rotate all motors to roughly 90 degrees, to mesure if the values changed negatively or positively.
Finally, the rest position ensures that the follower and leader arms are roughly aligned after calibration, preventing sudden movements that could damage the motors when starting teleoperation.
@@ -626,7 +626,7 @@ Finally, run this code to instantiate and connectyour camera:
from lerobot.common.robot_devices.cameras.configs import OpenCVCameraConfig
from lerobot.common.robot_devices.cameras.opencv import OpenCVCamera
config = OpenCVCameraConfig(camera_index=0)
camera_config = OpenCVCameraConfig(camera_index=0)
camera = OpenCVCamera(config)
camera.connect()
color_image = camera.read()
@@ -663,20 +663,18 @@ camera.disconnect()
**Instantiate your robot with cameras**
Additionally, you can set up your robot to work with your cameras.
Additionaly, you can set up your robot to work with your cameras.
Modify the following Python code with the appropriate camera names and configurations:
```python
robot = ManipulatorRobot(
KochRobotConfig(
leader_arms={"main": leader_arm},
follower_arms={"main": follower_arm},
calibration_dir=".cache/calibration/koch",
cameras={
"laptop": OpenCVCameraConfig(0, fps=30, width=640, height=480),
"phone": OpenCVCameraConfig(1, fps=30, width=640, height=480),
},
)
leader_arms={"main": leader_arm},
follower_arms={"main": follower_arm},
calibration_dir=".cache/calibration/koch",
cameras={
"laptop": OpenCVCameraConfig(0, fps=30, width=640, height=480),
"phone": OpenCVCameraConfig(1, fps=30, width=640, height=480),
},
)
robot.connect()
```
@@ -713,7 +711,7 @@ python lerobot/scripts/control_robot.py \
You will see a lot of lines appearing like this one:
```
INFO 2024-08-10 11:15:03 ol_robot.py:209 dt: 5.12 (195.1hz) dtRlead: 4.93 (203.0hz) dtWfoll: 0.19 (5239.0hz)
INFO 2024-08-10 11:15:03 ol_robot.py:209 dt: 5.12 (195.1hz) dtRlead: 4.93 (203.0hz) dtRfoll: 0.19 (5239.0hz)
```
It contains
@@ -770,7 +768,7 @@ You can use the `record` function from [`lerobot/scripts/control_robot.py`](../l
1. Frames from cameras are saved on disk in threads, and encoded into videos at the end of each episode recording.
2. Video streams from cameras are displayed in window so that you can verify them.
3. Data is stored with [`LeRobotDataset`](../lerobot/common/datasets/lerobot_dataset.py) format which is pushed to your Hugging Face page (unless `--control.push_to_hub=false` is provided).
4. Checkpoints are done during recording, so if any issue occurs, you can resume recording by re-running the same command again with `--control.resume=true`. You will need to manually delete the dataset directory if you want to start recording from scratch.
4. Checkpoints are done during recording, so if any issue occurs, you can resume recording by re-running the same command again with `--control.resume=true`. You might need to add `--control.local_files_only=true` if your dataset was not uploaded to hugging face hub. Also you will need to manually delete the dataset directory to start recording from scratch.
5. Set the flow of data recording using command line arguments:
- `--control.warmup_time_s=10` defines the number of seconds before starting data collection. It allows the robot devices to warmup and synchronize (10 seconds by default).
- `--control.episode_time_s=60` defines the number of seconds for data recording for each episode (60 seconds by default).
@@ -825,8 +823,8 @@ It contains:
- `dtRlead: 5.06 (197.5hz)` which is the delta time of reading the present position of the leader arm.
- `dtWfoll: 0.25 (3963.7hz)` which is the delta time of writing the goal position on the follower arm ; writing is asynchronous so it takes less time than reading.
- `dtRfoll: 6.22 (160.7hz)` which is the delta time of reading the present position on the follower arm.
- `dtRlaptop:32.57 (30.7hz) ` which is the delta time of capturing an image from the laptop camera in the thread running asynchronously.
- `dtRphone:33.84 (29.5hz)` which is the delta time of capturing an image from the phone camera in the thread running asynchronously.
- `dtRlaptop:32.57 (30.7hz) ` which is the delta time of capturing an image from the laptop camera in the thread running asynchrously.
- `dtRphone:33.84 (29.5hz)` which is the delta time of capturing an image from the phone camera in the thread running asynchrously.
Troubleshooting:
- On Linux, if you encounter a hanging issue when using cameras, uninstall opencv and re-install it with conda:
@@ -846,7 +844,7 @@ At the end of data recording, your dataset will be uploaded on your Hugging Face
echo https://huggingface.co/datasets/${HF_USER}/koch_test
```
### b. Advice for recording dataset
### b. Advices for recording dataset
Once you're comfortable with data recording, it's time to create a larger dataset for training. A good starting task is grasping an object at different locations and placing it in a bin. We suggest recording at least 50 episodes, with 10 episodes per location. Keep the cameras fixed and maintain consistent grasping behavior throughout the recordings.
@@ -885,6 +883,8 @@ python lerobot/scripts/control_robot.py \
--control.episode=0
```
Note: You might need to add `--control.local_files_only=true` if your dataset was not uploaded to hugging face hub.
Your robot should replicate movements similar to those you recorded. For example, check out [this video](https://x.com/RemiCadene/status/1793654950905680090) where we use `replay` on a Aloha robot from [Trossen Robotics](https://www.trossenrobotics.com).
## 4. Train a policy on your data
@@ -898,14 +898,16 @@ python lerobot/scripts/train.py \
--policy.type=act \
--output_dir=outputs/train/act_koch_test \
--job_name=act_koch_test \
--policy.device=cuda \
--device=cuda \
--wandb.enable=true
```
Note: You might need to add `--dataset.local_files_only=true` if your dataset was not uploaded to hugging face hub.
Let's explain it:
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/koch_test`.
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor sates, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
4. We provided `policy.device=cuda` since we are training on a Nvidia GPU, but you could use `policy.device=mps` to train on Apple silicon.
4. We provided `device=cuda` since we are training on a Nvidia GPU, but you could use `device=mps` to train on Apple silicon.
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
For more information on the `train` script see the previous tutorial: [`examples/4_train_policy_with_script.md`](../examples/4_train_policy_with_script.md)

View File

@@ -98,7 +98,7 @@ python lerobot/scripts/control_robot.py \
```
This is equivalent to running `stretch_robot_home.py`
> **Note:** If you run any of the LeRobot scripts below and Stretch is not properly homed, it will automatically home/calibrate first.
> **Note:** If you run any of the LeRobot scripts below and Stretch is not poperly homed, it will automatically home/calibrate first.
**Teleoperate**
Before trying teleoperation, you need activate the gamepad controller by pressing the middle button. For more info, see Stretch's [doc](https://docs.hello-robot.com/0.3/getting_started/hello_robot/#gamepad-teleoperation).

View File

@@ -2,7 +2,7 @@ This tutorial explains how to use [Aloha and Aloha 2 stationary](https://www.tro
## Setup
Follow the [documentation from Trossen Robotics](https://docs.trossenrobotics.com/aloha_docs/2.0/getting_started/stationary/hardware_setup.html) for setting up the hardware and plugging the 4 arms and 4 cameras to your computer.
Follow the [documentation from Trossen Robotics](https://docs.trossenrobotics.com/aloha_docs/getting_started/stationary/hardware_setup.html) for setting up the hardware and plugging the 4 arms and 4 cameras to your computer.
## Install LeRobot
@@ -135,14 +135,14 @@ python lerobot/scripts/train.py \
--policy.type=act \
--output_dir=outputs/train/act_aloha_test \
--job_name=act_aloha_test \
--policy.device=cuda \
--device=cuda \
--wandb.enable=true
```
Let's explain it:
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/aloha_test`.
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor sates, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
4. We provided `policy.device=cuda` since we are training on a Nvidia GPU, but you could use `policy.device=mps` to train on Apple silicon.
4. We provided `device=cuda` since we are training on a Nvidia GPU, but you could use `device=mps` to train on Apple silicon.
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
For more information on the `train` script see the previous tutorial: [`examples/4_train_policy_with_script.md`](../examples/4_train_policy_with_script.md)
@@ -172,10 +172,10 @@ python lerobot/scripts/control_robot.py \
As you can see, it's almost the same command as previously used to record your training dataset. Two things changed:
1. There is an additional `--control.policy.path` argument which indicates the path to your policy checkpoint with (e.g. `outputs/train/eval_act_aloha_test/checkpoints/last/pretrained_model`). You can also use the model repository if you uploaded a model checkpoint to the hub (e.g. `${HF_USER}/act_aloha_test`).
2. The name of dataset begins by `eval` to reflect that you are running inference (e.g. `${HF_USER}/eval_act_aloha_test`).
3. We use `--control.num_image_writer_processes=1` instead of the default value (`0`). On our computer, using a dedicated process to write images from the 4 cameras on disk allows to reach constant 30 fps during inference. Feel free to explore different values for `--control.num_image_writer_processes`.
3. We use `--control.num_image_writer_processes=1` instead of the default value (`0`). On our computer, using a dedicated process to write images from the 4 cameras on disk allows to reach constent 30 fps during inference. Feel free to explore different values for `--control.num_image_writer_processes`.
## More
Follow this [previous tutorial](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#4-train-a-policy-on-your-data) for a more in-depth explanation.
Follow this [previous tutorial](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#4-train-a-policy-on-your-data) for a more in-depth explaination.
If you have any question or need help, please reach out on Discord in the channel `#aloha-arm`.

View File

@@ -1,17 +1,3 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script demonstrates how to use torchvision's image transformation with LeRobotDataset for data
augmentation purposes. The transformations are passed to the dataset as an argument upon creation, and

View File

@@ -1,17 +1,3 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This script demonstrates how to slice a dataset and calculate the loss on a subset of the data.
This technique can be useful for debugging and testing purposes, as well as identifying whether a policy

View File

@@ -1,25 +1,10 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import shutil
from pathlib import Path
import numpy as np
from huggingface_hub import HfApi
import torch
from lerobot.common.constants import HF_LEROBOT_HOME
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION, LeRobotDataset
from lerobot.common.datasets.lerobot_dataset import LEROBOT_HOME, LeRobotDataset
from lerobot.common.datasets.push_dataset_to_hub._download_raw import download_raw
PUSHT_TASK = "Push the T-shaped blue block onto the T-shaped green target surface."
@@ -104,9 +89,9 @@ def calculate_coverage(zarr_data):
num_frames = len(block_pos)
coverage = np.zeros((num_frames,), dtype=np.float32)
coverage = np.zeros((num_frames,))
# 8 keypoints with 2 coords each
keypoints = np.zeros((num_frames, 16), dtype=np.float32)
keypoints = np.zeros((num_frames, 16))
# Set x, y, theta (in radians)
goal_pos_angle = np.array([256, 256, np.pi / 4])
@@ -132,7 +117,7 @@ def calculate_coverage(zarr_data):
intersection_area = goal_geom.intersection(block_geom).area
goal_area = goal_geom.area
coverage[i] = intersection_area / goal_area
keypoints[i] = PushTEnv.get_keypoints(block_shapes).flatten()
keypoints[i] = torch.from_numpy(PushTEnv.get_keypoints(block_shapes).flatten())
return coverage, keypoints
@@ -149,8 +134,8 @@ def main(raw_dir: Path, repo_id: str, mode: str = "video", push_to_hub: bool = T
if mode not in ["video", "image", "keypoints"]:
raise ValueError(mode)
if (HF_LEROBOT_HOME / repo_id).exists():
shutil.rmtree(HF_LEROBOT_HOME / repo_id)
if (LEROBOT_HOME / repo_id).exists():
shutil.rmtree(LEROBOT_HOME / repo_id)
if not raw_dir.exists():
download_raw(raw_dir, repo_id="lerobot-raw/pusht_raw")
@@ -163,10 +148,6 @@ def main(raw_dir: Path, repo_id: str, mode: str = "video", push_to_hub: bool = T
action = zarr_data["action"][:]
image = zarr_data["img"] # (b, h, w, c)
if image.dtype == np.float32 and image.max() == np.float32(255):
# HACK: images are loaded as float32 but they actually encode uint8 data
image = image.astype(np.uint8)
episode_data_index = {
"from": np.concatenate(([0], zarr_data.meta["episode_ends"][:-1])),
"to": zarr_data.meta["episode_ends"],
@@ -194,30 +175,28 @@ def main(raw_dir: Path, repo_id: str, mode: str = "video", push_to_hub: bool = T
for frame_idx in range(num_frames):
i = from_idx + frame_idx
idx = i + (frame_idx < num_frames - 1)
frame = {
"action": action[i],
"action": torch.from_numpy(action[i]),
# Shift reward and success by +1 until the last item of the episode
"next.reward": reward[idx : idx + 1],
"next.success": success[idx : idx + 1],
"task": PUSHT_TASK,
"next.reward": reward[i + (frame_idx < num_frames - 1)],
"next.success": success[i + (frame_idx < num_frames - 1)],
}
frame["observation.state"] = agent_pos[i]
frame["observation.state"] = torch.from_numpy(agent_pos[i])
if mode == "keypoints":
frame["observation.environment_state"] = keypoints[i]
frame["observation.environment_state"] = torch.from_numpy(keypoints[i])
else:
frame["observation.image"] = image[i]
frame["observation.image"] = torch.from_numpy(image[i])
dataset.add_frame(frame)
dataset.save_episode()
dataset.save_episode(task=PUSHT_TASK)
dataset.consolidate()
if push_to_hub:
dataset.push_to_hub()
hub_api = HfApi()
hub_api.create_tag(repo_id, tag=CODEBASE_VERSION, repo_type="dataset")
if __name__ == "__main__":
@@ -239,5 +218,5 @@ if __name__ == "__main__":
main(raw_dir, repo_id=repo_id, mode=mode)
# Uncomment if you want to load the local dataset and explore it
# dataset = LeRobotDataset(repo_id=repo_id)
# dataset = LeRobotDataset(repo_id=repo_id, local_files_only=True)
# breakpoint()

View File

@@ -1,4 +0,0 @@
from .camera import Camera
from .configs import CameraConfig
__all__ = ["Camera", "CameraConfig"]

View File

@@ -1,25 +0,0 @@
import abc
import numpy as np
class Camera(abc.ABC):
@abc.abstractmethod
def connect(self):
pass
@abc.abstractmethod
def read(self, temporary_color: str | None = None) -> np.ndarray:
pass
@abc.abstractmethod
def async_read(self) -> np.ndarray:
pass
@abc.abstractmethod
def disconnect(self):
pass
def __del__(self):
if getattr(self, "is_connected", False):
self.disconnect()

View File

@@ -1,11 +0,0 @@
import abc
from dataclasses import dataclass
import draccus
@dataclass
class CameraConfig(draccus.ChoiceRegistry, abc.ABC):
@property
def type(self) -> str:
return self.get_choice_name(self.__class__)

View File

@@ -1,4 +0,0 @@
from .camera_realsense import RealSenseCamera
from .configuration_realsense import RealSenseCameraConfig
__all__ = ["RealSenseCamera", "RealSenseCameraConfig"]

View File

@@ -1,4 +0,0 @@
from .camera_opencv import OpenCVCamera
from .configuration_opencv import OpenCVCameraConfig
__all__ = ["OpenCVCamera", "OpenCVCameraConfig"]

View File

@@ -1,38 +0,0 @@
from dataclasses import dataclass
from ..configs import CameraConfig
@CameraConfig.register_subclass("opencv")
@dataclass
class OpenCVCameraConfig(CameraConfig):
"""
Example of tested options for Intel Real Sense D405:
```python
OpenCVCameraConfig(0, 30, 640, 480)
OpenCVCameraConfig(0, 60, 640, 480)
OpenCVCameraConfig(0, 90, 640, 480)
OpenCVCameraConfig(0, 30, 1280, 720)
```
"""
camera_index: int
fps: int | None = None
width: int | None = None
height: int | None = None
color_mode: str = "rgb"
channels: int | None = None
rotation: int | None = None
mock: bool = False
def __post_init__(self):
if self.color_mode not in ["rgb", "bgr"]:
raise ValueError(
f"`color_mode` is expected to be 'rgb' or 'bgr', but {self.color_mode} is provided."
)
self.channels = 3
if self.rotation not in [-90, None, 90, 180]:
raise ValueError(f"`rotation` must be in [-90, None, 90, 180] (got {self.rotation})")

View File

@@ -1,21 +0,0 @@
from .camera import Camera
from .configs import CameraConfig
def make_cameras_from_configs(camera_configs: dict[str, CameraConfig]) -> dict[str, Camera]:
cameras = {}
for key, cfg in camera_configs.items():
if cfg.type == "opencv":
from .opencv import OpenCVCamera
cameras[key] = OpenCVCamera(cfg)
elif cfg.type == "intelrealsense":
from .intel.camera_realsense import RealSenseCamera
cameras[key] = RealSenseCamera(cfg)
else:
raise ValueError(f"The motor type '{cfg.type}' is not valid.")
return cameras

View File

@@ -1,31 +1,10 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# keys
import os
from pathlib import Path
from huggingface_hub.constants import HF_HOME
OBS_ENV_STATE = "observation.environment_state"
OBS_STATE = "observation.state"
OBS_ENV = "observation.environment_state"
OBS_ROBOT = "observation.state"
OBS_IMAGE = "observation.image"
OBS_IMAGES = "observation.images"
ACTION = "action"
ROBOTS = "robots"
TELEOPERATORS = "teleoperators"
# files & directories
CHECKPOINTS_DIR = "checkpoints"
LAST_CHECKPOINT_LINK = "last"
@@ -36,17 +15,3 @@ TRAINING_STEP = "training_step.json"
OPTIMIZER_STATE = "optimizer_state.safetensors"
OPTIMIZER_PARAM_GROUPS = "optimizer_param_groups.json"
SCHEDULER_STATE = "scheduler_state.json"
if "LEROBOT_HOME" in os.environ:
raise ValueError(
f"You have a 'LEROBOT_HOME' environment variable set to '{os.getenv('LEROBOT_HOME')}'.\n"
"'LEROBOT_HOME' is deprecated, please use 'HF_LEROBOT_HOME' instead."
)
# cache dir
default_cache_path = Path(HF_HOME) / "lerobot"
HF_LEROBOT_HOME = Path(os.getenv("HF_LEROBOT_HOME", default_cache_path)).expanduser()
# calibration dir
default_calibration_path = HF_LEROBOT_HOME / ".calibration"
HF_LEROBOT_CALIBRATION = Path(os.getenv("HF_LEROBOT_CALIBRATION", default_calibration_path)).expanduser()

View File

@@ -1,68 +0,0 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import packaging.version
V2_MESSAGE = """
The dataset you requested ({repo_id}) is in {version} format.
We introduced a new format since v2.0 which is not backward compatible with v1.x.
Please, use our conversion script. Modify the following command with your own task description:
```
python lerobot/common/datasets/v2/convert_dataset_v1_to_v2.py \\
--repo-id {repo_id} \\
--single-task "TASK DESCRIPTION." # <---- /!\\ Replace TASK DESCRIPTION /!\\
```
A few examples to replace TASK DESCRIPTION: "Pick up the blue cube and place it into the bin.", "Insert the
peg into the socket.", "Slide open the ziploc bag.", "Take the elevator to the 1st floor.", "Open the top
cabinet, store the pot inside it then close the cabinet.", "Push the T-shaped block onto the T-shaped
target.", "Grab the spray paint on the shelf and place it in the bin on top of the robot dog.", "Fold the
sweatshirt.", ...
If you encounter a problem, contact LeRobot maintainers on [Discord](https://discord.com/invite/s3KuuzsPFb)
or open an [issue on GitHub](https://github.com/huggingface/lerobot/issues/new/choose).
"""
V21_MESSAGE = """
The dataset you requested ({repo_id}) is in {version} format.
While current version of LeRobot is backward-compatible with it, the version of your dataset still uses global
stats instead of per-episode stats. Update your dataset stats to the new format using this command:
```
python lerobot/common/datasets/v21/convert_dataset_v20_to_v21.py --repo-id={repo_id}
```
If you encounter a problem, contact LeRobot maintainers on [Discord](https://discord.com/invite/s3KuuzsPFb)
or open an [issue on GitHub](https://github.com/huggingface/lerobot/issues/new/choose).
"""
FUTURE_MESSAGE = """
The dataset you requested ({repo_id}) is only available in {version} format.
As we cannot ensure forward compatibility with it, please update your current version of lerobot.
"""
class CompatibilityError(Exception): ...
class BackwardCompatibilityError(CompatibilityError):
def __init__(self, repo_id: str, version: packaging.version.Version):
message = V2_MESSAGE.format(repo_id=repo_id, version=version)
super().__init__(message)
class ForwardCompatibilityError(CompatibilityError):
def __init__(self, repo_id: str, version: packaging.version.Version):
message = FUTURE_MESSAGE.format(repo_id=repo_id, version=version)
super().__init__(message)

View File

@@ -13,164 +13,202 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from copy import deepcopy
from math import ceil
from lerobot.common.datasets.utils import load_image_as_numpy
import einops
import torch
import tqdm
def estimate_num_samples(
dataset_len: int, min_num_samples: int = 100, max_num_samples: int = 10_000, power: float = 0.75
) -> int:
"""Heuristic to estimate the number of samples based on dataset size.
The power controls the sample growth relative to dataset size.
Lower the power for less number of samples.
def get_stats_einops_patterns(dataset, num_workers=0):
"""These einops patterns will be used to aggregate batches and compute statistics.
For default arguments, we have:
- from 1 to ~500, num_samples=100
- at 1000, num_samples=177
- at 2000, num_samples=299
- at 5000, num_samples=594
- at 10000, num_samples=1000
- at 20000, num_samples=1681
Note: We assume the images are in channel first format
"""
if dataset_len < min_num_samples:
min_num_samples = dataset_len
return max(min_num_samples, min(int(dataset_len**power), max_num_samples))
dataloader = torch.utils.data.DataLoader(
dataset,
num_workers=num_workers,
batch_size=2,
shuffle=False,
)
batch = next(iter(dataloader))
def sample_indices(data_len: int) -> list[int]:
num_samples = estimate_num_samples(data_len)
return np.round(np.linspace(0, data_len - 1, num_samples)).astype(int).tolist()
stats_patterns = {}
for key in dataset.features:
# sanity check that tensors are not float64
assert batch[key].dtype != torch.float64
def auto_downsample_height_width(img: np.ndarray, target_size: int = 150, max_size_threshold: int = 300):
_, height, width = img.shape
# if isinstance(feats_type, (VideoFrame, Image)):
if key in dataset.meta.camera_keys:
# sanity check that images are channel first
_, c, h, w = batch[key].shape
assert c < h and c < w, f"expect channel first images, but instead {batch[key].shape}"
if max(width, height) < max_size_threshold:
# no downsampling needed
return img
# sanity check that images are float32 in range [0,1]
assert batch[key].dtype == torch.float32, f"expect torch.float32, but instead {batch[key].dtype=}"
assert batch[key].max() <= 1, f"expect pixels lower than 1, but instead {batch[key].max()=}"
assert batch[key].min() >= 0, f"expect pixels greater than 1, but instead {batch[key].min()=}"
downsample_factor = int(width / target_size) if width > height else int(height / target_size)
return img[:, ::downsample_factor, ::downsample_factor]
def sample_images(image_paths: list[str]) -> np.ndarray:
sampled_indices = sample_indices(len(image_paths))
images = None
for i, idx in enumerate(sampled_indices):
path = image_paths[idx]
# we load as uint8 to reduce memory usage
img = load_image_as_numpy(path, dtype=np.uint8, channel_first=True)
img = auto_downsample_height_width(img)
if images is None:
images = np.empty((len(sampled_indices), *img.shape), dtype=np.uint8)
images[i] = img
return images
def get_feature_stats(array: np.ndarray, axis: tuple, keepdims: bool) -> dict[str, np.ndarray]:
return {
"min": np.min(array, axis=axis, keepdims=keepdims),
"max": np.max(array, axis=axis, keepdims=keepdims),
"mean": np.mean(array, axis=axis, keepdims=keepdims),
"std": np.std(array, axis=axis, keepdims=keepdims),
"count": np.array([len(array)]),
}
def compute_episode_stats(episode_data: dict[str, list[str] | np.ndarray], features: dict) -> dict:
ep_stats = {}
for key, data in episode_data.items():
if features[key]["dtype"] == "string":
continue # HACK: we should receive np.arrays of strings
elif features[key]["dtype"] in ["image", "video"]:
ep_ft_array = sample_images(data) # data is a list of image paths
axes_to_reduce = (0, 2, 3) # keep channel dim
keepdims = True
stats_patterns[key] = "b c h w -> c 1 1"
elif batch[key].ndim == 2:
stats_patterns[key] = "b c -> c "
elif batch[key].ndim == 1:
stats_patterns[key] = "b -> 1"
else:
ep_ft_array = data # data is already a np.ndarray
axes_to_reduce = 0 # compute stats over the first axis
keepdims = data.ndim == 1 # keep as np.array
raise ValueError(f"{key}, {batch[key].shape}")
ep_stats[key] = get_feature_stats(ep_ft_array, axis=axes_to_reduce, keepdims=keepdims)
# finally, we normalize and remove batch dim for images
if features[key]["dtype"] in ["image", "video"]:
ep_stats[key] = {
k: v if k == "count" else np.squeeze(v / 255.0, axis=0) for k, v in ep_stats[key].items()
}
return ep_stats
return stats_patterns
def _assert_type_and_shape(stats_list: list[dict[str, dict]]):
for i in range(len(stats_list)):
for fkey in stats_list[i]:
for k, v in stats_list[i][fkey].items():
if not isinstance(v, np.ndarray):
raise ValueError(
f"Stats must be composed of numpy array, but key '{k}' of feature '{fkey}' is of type '{type(v)}' instead."
)
if v.ndim == 0:
raise ValueError("Number of dimensions must be at least 1, and is 0 instead.")
if k == "count" and v.shape != (1,):
raise ValueError(f"Shape of 'count' must be (1), but is {v.shape} instead.")
if "image" in fkey and k != "count" and v.shape != (3, 1, 1):
raise ValueError(f"Shape of '{k}' must be (3,1,1), but is {v.shape} instead.")
def compute_stats(dataset, batch_size=8, num_workers=8, max_num_samples=None):
"""Compute mean/std and min/max statistics of all data keys in a LeRobotDataset."""
if max_num_samples is None:
max_num_samples = len(dataset)
# for more info on why we need to set the same number of workers, see `load_from_videos`
stats_patterns = get_stats_einops_patterns(dataset, num_workers)
# mean and std will be computed incrementally while max and min will track the running value.
mean, std, max, min = {}, {}, {}, {}
for key in stats_patterns:
mean[key] = torch.tensor(0.0).float()
std[key] = torch.tensor(0.0).float()
max[key] = torch.tensor(-float("inf")).float()
min[key] = torch.tensor(float("inf")).float()
def create_seeded_dataloader(dataset, batch_size, seed):
generator = torch.Generator()
generator.manual_seed(seed)
dataloader = torch.utils.data.DataLoader(
dataset,
num_workers=num_workers,
batch_size=batch_size,
shuffle=True,
drop_last=False,
generator=generator,
)
return dataloader
# Note: Due to be refactored soon. The point of storing `first_batch` is to make sure we don't get
# surprises when rerunning the sampler.
first_batch = None
running_item_count = 0 # for online mean computation
dataloader = create_seeded_dataloader(dataset, batch_size, seed=1337)
for i, batch in enumerate(
tqdm.tqdm(dataloader, total=ceil(max_num_samples / batch_size), desc="Compute mean, min, max")
):
this_batch_size = len(batch["index"])
running_item_count += this_batch_size
if first_batch is None:
first_batch = deepcopy(batch)
for key, pattern in stats_patterns.items():
batch[key] = batch[key].float()
# Numerically stable update step for mean computation.
batch_mean = einops.reduce(batch[key], pattern, "mean")
# Hint: to update the mean we need x̄ₙ = (Nₙ₋₁x̄ₙ₋₁ + Bₙxₙ) / Nₙ, where the subscript represents
# the update step, N is the running item count, B is this batch size, x̄ is the running mean,
# and x is the current batch mean. Some rearrangement is then required to avoid risking
# numerical overflow. Another hint: Nₙ₋₁ = Nₙ - Bₙ. Rearrangement yields
# x̄ₙ = x̄ₙ₋₁ + Bₙ * (xₙ - x̄ₙ₋₁) / Nₙ
mean[key] = mean[key] + this_batch_size * (batch_mean - mean[key]) / running_item_count
max[key] = torch.maximum(max[key], einops.reduce(batch[key], pattern, "max"))
min[key] = torch.minimum(min[key], einops.reduce(batch[key], pattern, "min"))
if i == ceil(max_num_samples / batch_size) - 1:
break
first_batch_ = None
running_item_count = 0 # for online std computation
dataloader = create_seeded_dataloader(dataset, batch_size, seed=1337)
for i, batch in enumerate(
tqdm.tqdm(dataloader, total=ceil(max_num_samples / batch_size), desc="Compute std")
):
this_batch_size = len(batch["index"])
running_item_count += this_batch_size
# Sanity check to make sure the batches are still in the same order as before.
if first_batch_ is None:
first_batch_ = deepcopy(batch)
for key in stats_patterns:
assert torch.equal(first_batch_[key], first_batch[key])
for key, pattern in stats_patterns.items():
batch[key] = batch[key].float()
# Numerically stable update step for mean computation (where the mean is over squared
# residuals).See notes in the mean computation loop above.
batch_std = einops.reduce((batch[key] - mean[key]) ** 2, pattern, "mean")
std[key] = std[key] + this_batch_size * (batch_std - std[key]) / running_item_count
if i == ceil(max_num_samples / batch_size) - 1:
break
for key in stats_patterns:
std[key] = torch.sqrt(std[key])
stats = {}
for key in stats_patterns:
stats[key] = {
"mean": mean[key],
"std": std[key],
"max": max[key],
"min": min[key],
}
return stats
def aggregate_feature_stats(stats_ft_list: list[dict[str, dict]]) -> dict[str, dict[str, np.ndarray]]:
"""Aggregates stats for a single feature."""
means = np.stack([s["mean"] for s in stats_ft_list])
variances = np.stack([s["std"] ** 2 for s in stats_ft_list])
counts = np.stack([s["count"] for s in stats_ft_list])
total_count = counts.sum(axis=0)
def aggregate_stats(ls_datasets) -> dict[str, torch.Tensor]:
"""Aggregate stats of multiple LeRobot datasets into one set of stats without recomputing from scratch.
# Prepare weighted mean by matching number of dimensions
while counts.ndim < means.ndim:
counts = np.expand_dims(counts, axis=-1)
The final stats will have the union of all data keys from each of the datasets.
# Compute the weighted mean
weighted_means = means * counts
total_mean = weighted_means.sum(axis=0) / total_count
# Compute the variance using the parallel algorithm
delta_means = means - total_mean
weighted_variances = (variances + delta_means**2) * counts
total_variance = weighted_variances.sum(axis=0) / total_count
return {
"min": np.min(np.stack([s["min"] for s in stats_ft_list]), axis=0),
"max": np.max(np.stack([s["max"] for s in stats_ft_list]), axis=0),
"mean": total_mean,
"std": np.sqrt(total_variance),
"count": total_count,
}
def aggregate_stats(stats_list: list[dict[str, dict]]) -> dict[str, dict[str, np.ndarray]]:
"""Aggregate stats from multiple compute_stats outputs into a single set of stats.
The final stats will have the union of all data keys from each of the stats dicts.
For instance:
- new_min = min(min_dataset_0, min_dataset_1, ...)
The final stats will have the union of all data keys from each of the datasets. For instance:
- new_max = max(max_dataset_0, max_dataset_1, ...)
- new_mean = (mean of all data, weighted by counts)
- new_min = min(min_dataset_0, min_dataset_1, ...)
- new_mean = (mean of all data)
- new_std = (std of all data)
"""
_assert_type_and_shape(stats_list)
data_keys = {key for stats in stats_list for key in stats}
aggregated_stats = {key: {} for key in data_keys}
for key in data_keys:
stats_with_key = [stats[key] for stats in stats_list if key in stats]
aggregated_stats[key] = aggregate_feature_stats(stats_with_key)
return aggregated_stats
data_keys = set()
for dataset in ls_datasets:
data_keys.update(dataset.meta.stats.keys())
stats = {k: {} for k in data_keys}
for data_key in data_keys:
for stat_key in ["min", "max"]:
# compute `max(dataset_0["max"], dataset_1["max"], ...)`
stats[data_key][stat_key] = einops.reduce(
torch.stack(
[ds.meta.stats[data_key][stat_key] for ds in ls_datasets if data_key in ds.meta.stats],
dim=0,
),
"n ... -> ...",
stat_key,
)
total_samples = sum(d.num_frames for d in ls_datasets if data_key in d.meta.stats)
# Compute the "sum" statistic by multiplying each mean by the number of samples in the respective
# dataset, then divide by total_samples to get the overall "mean".
# NOTE: the brackets around (d.num_frames / total_samples) are needed tor minimize the risk of
# numerical overflow!
stats[data_key]["mean"] = sum(
d.meta.stats[data_key]["mean"] * (d.num_frames / total_samples)
for d in ls_datasets
if data_key in d.meta.stats
)
# The derivation for standard deviation is a little more involved but is much in the same spirit as
# the computation of the mean.
# Given two sets of data where the statistics are known:
# σ_combined = sqrt[ (n1 * (σ1^2 + d1^2) + n2 * (σ2^2 + d2^2)) / (n1 + n2) ]
# where d1 = μ1 - μ_combined, d2 = μ2 - μ_combined
# NOTE: the brackets around (d.num_frames / total_samples) are needed tor minimize the risk of
# numerical overflow!
stats[data_key]["std"] = torch.sqrt(
sum(
(
d.meta.stats[data_key]["std"] ** 2
+ (d.meta.stats[data_key]["mean"] - stats[data_key]["mean"]) ** 2
)
* (d.num_frames / total_samples)
for d in ls_datasets
if data_key in d.meta.stats
)
)
return stats

View File

@@ -83,18 +83,15 @@ def make_dataset(cfg: TrainPipelineConfig) -> LeRobotDataset | MultiLeRobotDatas
)
if isinstance(cfg.dataset.repo_id, str):
ds_meta = LeRobotDatasetMetadata(
cfg.dataset.repo_id, root=cfg.dataset.root, revision=cfg.dataset.revision
)
ds_meta = LeRobotDatasetMetadata(cfg.dataset.repo_id, local_files_only=cfg.dataset.local_files_only)
delta_timestamps = resolve_delta_timestamps(cfg.policy, ds_meta)
dataset = LeRobotDataset(
cfg.dataset.repo_id,
root=cfg.dataset.root,
episodes=cfg.dataset.episodes,
delta_timestamps=delta_timestamps,
image_transforms=image_transforms,
revision=cfg.dataset.revision,
video_backend=cfg.dataset.video_backend,
local_files_only=cfg.dataset.local_files_only,
)
else:
raise NotImplementedError("The MultiLeRobotDataset isn't supported for now.")

View File

@@ -38,40 +38,22 @@ def safe_stop_image_writer(func):
return wrapper
def image_array_to_pil_image(image_array: np.ndarray, range_check: bool = True) -> PIL.Image.Image:
def image_array_to_image(image_array: np.ndarray) -> PIL.Image.Image:
# TODO(aliberts): handle 1 channel and 4 for depth images
if image_array.ndim != 3:
raise ValueError(f"The array has {image_array.ndim} dimensions, but 3 is expected for an image.")
if image_array.shape[0] == 3:
if image_array.ndim == 3 and image_array.shape[0] in [1, 3]:
# Transpose from pytorch convention (C, H, W) to (H, W, C)
image_array = image_array.transpose(1, 2, 0)
elif image_array.shape[-1] != 3:
raise NotImplementedError(
f"The image has {image_array.shape[-1]} channels, but 3 is required for now."
)
if image_array.dtype != np.uint8:
if range_check:
max_ = image_array.max().item()
min_ = image_array.min().item()
if max_ > 1.0 or min_ < 0.0:
raise ValueError(
"The image data type is float, which requires values in the range [0.0, 1.0]. "
f"However, the provided range is [{min_}, {max_}]. Please adjust the range or "
"provide a uint8 image with values in the range [0, 255]."
)
# Assume the image is in [0, 1] range for floating-point data
image_array = np.clip(image_array, 0, 1)
image_array = (image_array * 255).astype(np.uint8)
return PIL.Image.fromarray(image_array)
def write_image(image: np.ndarray | PIL.Image.Image, fpath: Path):
try:
if isinstance(image, np.ndarray):
img = image_array_to_pil_image(image)
img = image_array_to_image(image)
elif isinstance(image, PIL.Image.Image):
img = image
else:

View File

@@ -13,57 +13,50 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import logging
import os
import shutil
from functools import cached_property
from pathlib import Path
from typing import Callable
import datasets
import numpy as np
import packaging.version
import PIL.Image
import torch
import torch.utils
from datasets import concatenate_datasets, load_dataset
from huggingface_hub import HfApi, snapshot_download
from huggingface_hub.constants import REPOCARD_NAME
from huggingface_hub.errors import RevisionNotFoundError
from datasets import load_dataset
from huggingface_hub import create_repo, snapshot_download, upload_folder
from lerobot.common.constants import HF_LEROBOT_HOME
from lerobot.common.datasets.compute_stats import aggregate_stats, compute_episode_stats
from lerobot.common.datasets.compute_stats import aggregate_stats, compute_stats
from lerobot.common.datasets.image_writer import AsyncImageWriter, write_image
from lerobot.common.datasets.utils import (
DEFAULT_FEATURES,
DEFAULT_IMAGE_PATH,
EPISODES_PATH,
INFO_PATH,
STATS_PATH,
TASKS_PATH,
append_jsonlines,
backward_compatible_episodes_stats,
check_delta_timestamps,
check_timestamps_sync,
check_version_compatibility,
create_branch,
create_empty_dataset_info,
create_lerobot_dataset_card,
embed_images,
get_delta_indices,
get_episode_data_index,
get_features_from_robot,
get_hf_features_from_features,
get_safe_version,
get_hub_safe_version,
hf_transform_to_torch,
is_valid_version,
load_episodes,
load_episodes_stats,
load_info,
load_stats,
load_tasks,
validate_episode_buffer,
validate_frame,
write_episode,
write_episode_stats,
write_info,
serialize_dict,
write_json,
write_parquet,
)
from lerobot.common.datasets.video_utils import (
VideoFrame,
@@ -71,9 +64,11 @@ from lerobot.common.datasets.video_utils import (
encode_video_frames,
get_video_info,
)
from lerobot.common.robots.utils import Robot
from lerobot.common.robot_devices.robots.utils import Robot
CODEBASE_VERSION = "v2.1"
# For maintainers, see lerobot/common/datasets/push_dataset_to_hub/CODEBASE_VERSION.md
CODEBASE_VERSION = "v2.0"
LEROBOT_HOME = Path(os.getenv("LEROBOT_HOME", "~/.cache/huggingface/lerobot")).expanduser()
class LeRobotDatasetMetadata:
@@ -81,36 +76,19 @@ class LeRobotDatasetMetadata:
self,
repo_id: str,
root: str | Path | None = None,
revision: str | None = None,
force_cache_sync: bool = False,
local_files_only: bool = False,
):
self.repo_id = repo_id
self.revision = revision if revision else CODEBASE_VERSION
self.root = Path(root) if root is not None else HF_LEROBOT_HOME / repo_id
self.root = Path(root) if root is not None else LEROBOT_HOME / repo_id
self.local_files_only = local_files_only
try:
if force_cache_sync:
raise FileNotFoundError
self.load_metadata()
except (FileNotFoundError, NotADirectoryError):
if is_valid_version(self.revision):
self.revision = get_safe_version(self.repo_id, self.revision)
(self.root / "meta").mkdir(exist_ok=True, parents=True)
self.pull_from_repo(allow_patterns="meta/")
self.load_metadata()
def load_metadata(self):
# Load metadata
(self.root / "meta").mkdir(exist_ok=True, parents=True)
self.pull_from_repo(allow_patterns="meta/")
self.info = load_info(self.root)
check_version_compatibility(self.repo_id, self._version, CODEBASE_VERSION)
self.tasks, self.task_to_task_index = load_tasks(self.root)
self.stats = load_stats(self.root)
self.tasks = load_tasks(self.root)
self.episodes = load_episodes(self.root)
if self._version < packaging.version.parse("v2.1"):
self.stats = load_stats(self.root)
self.episodes_stats = backward_compatible_episodes_stats(self.stats, self.episodes)
else:
self.episodes_stats = load_episodes_stats(self.root)
self.stats = aggregate_stats(list(self.episodes_stats.values()))
def pull_from_repo(
self,
@@ -120,16 +98,21 @@ class LeRobotDatasetMetadata:
snapshot_download(
self.repo_id,
repo_type="dataset",
revision=self.revision,
revision=self._hub_version,
local_dir=self.root,
allow_patterns=allow_patterns,
ignore_patterns=ignore_patterns,
local_files_only=self.local_files_only,
)
@cached_property
def _hub_version(self) -> str | None:
return None if self.local_files_only else get_hub_safe_version(self.repo_id, CODEBASE_VERSION)
@property
def _version(self) -> packaging.version.Version:
def _version(self) -> str:
"""Codebase version used to create this dataset."""
return packaging.version.parse(self.info["codebase_version"])
return self.info["codebase_version"]
def get_data_file_path(self, ep_index: int) -> Path:
ep_chunk = self.get_episode_chunk(ep_index)
@@ -219,65 +202,54 @@ class LeRobotDatasetMetadata:
"""Max number of episodes per chunk."""
return self.info["chunks_size"]
def get_task_index(self, task: str) -> int | None:
@property
def task_to_task_index(self) -> dict:
return {task: task_idx for task_idx, task in self.tasks.items()}
def get_task_index(self, task: str) -> int:
"""
Given a task in natural language, returns its task_index if the task already exists in the dataset,
otherwise return None.
otherwise creates a new task_index.
"""
return self.task_to_task_index.get(task, None)
task_index = self.task_to_task_index.get(task, None)
return task_index if task_index is not None else self.total_tasks
def add_task(self, task: str):
"""
Given a task in natural language, add it to the dictionary of tasks.
"""
if task in self.task_to_task_index:
raise ValueError(f"The task '{task}' already exists and can't be added twice.")
task_index = self.info["total_tasks"]
self.task_to_task_index[task] = task_index
self.tasks[task_index] = task
self.info["total_tasks"] += 1
task_dict = {
"task_index": task_index,
"task": task,
}
append_jsonlines(task_dict, self.root / TASKS_PATH)
def save_episode(
self,
episode_index: int,
episode_length: int,
episode_tasks: list[str],
episode_stats: dict[str, dict],
) -> None:
def save_episode(self, episode_index: int, episode_length: int, task: str, task_index: int) -> None:
self.info["total_episodes"] += 1
self.info["total_frames"] += episode_length
if task_index not in self.tasks:
self.info["total_tasks"] += 1
self.tasks[task_index] = task
task_dict = {
"task_index": task_index,
"task": task,
}
append_jsonlines(task_dict, self.root / TASKS_PATH)
chunk = self.get_episode_chunk(episode_index)
if chunk >= self.total_chunks:
self.info["total_chunks"] += 1
self.info["splits"] = {"train": f"0:{self.info['total_episodes']}"}
self.info["total_videos"] += len(self.video_keys)
if len(self.video_keys) > 0:
self.update_video_info()
write_info(self.info, self.root)
write_json(self.info, self.root / INFO_PATH)
episode_dict = {
"episode_index": episode_index,
"tasks": episode_tasks,
"tasks": [task],
"length": episode_length,
}
self.episodes[episode_index] = episode_dict
write_episode(episode_dict, self.root)
self.episodes.append(episode_dict)
append_jsonlines(episode_dict, self.root / EPISODES_PATH)
self.episodes_stats[episode_index] = episode_stats
self.stats = aggregate_stats([self.stats, episode_stats]) if self.stats else episode_stats
write_episode_stats(episode_index, episode_stats, self.root)
# TODO(aliberts): refactor stats in save_episodes
# image_sampling = int(self.fps / 2) # sample 2 img/s for the stats
# ep_stats = compute_episode_stats(episode_buffer, self.features, episode_length, image_sampling=image_sampling)
# ep_stats = serialize_dict(ep_stats)
# append_jsonlines(ep_stats, self.root / STATS_PATH)
def update_video_info(self) -> None:
def write_video_info(self) -> None:
"""
Warning: this function writes info from first episode videos, implicitly assuming that all videos have
been encoded the same way. Also, this means it assumes the first episode exists.
@@ -287,6 +259,8 @@ class LeRobotDatasetMetadata:
video_path = self.root / self.get_video_file_path(ep_index=0, vid_key=key)
self.info["features"][key]["info"] = get_video_info(video_path)
write_json(self.info, self.root / INFO_PATH)
def __repr__(self):
feature_keys = list(self.features)
return (
@@ -312,7 +286,7 @@ class LeRobotDatasetMetadata:
"""Creates metadata for a LeRobotDataset."""
obj = cls.__new__(cls)
obj.repo_id = repo_id
obj.root = Path(root) if root is not None else HF_LEROBOT_HOME / repo_id
obj.root = Path(root) if root is not None else LEROBOT_HOME / repo_id
obj.root.mkdir(parents=True, exist_ok=False)
@@ -330,7 +304,6 @@ class LeRobotDatasetMetadata:
)
else:
# TODO(aliberts, rcadene): implement sanity check for features
features = {**features, **DEFAULT_FEATURES}
# check if none of the features contains a "/" in their names,
# as this would break the dict flattening in the stats computation, which uses '/' as separator
@@ -340,13 +313,12 @@ class LeRobotDatasetMetadata:
features = {**features, **DEFAULT_FEATURES}
obj.tasks, obj.task_to_task_index = {}, {}
obj.episodes_stats, obj.stats, obj.episodes = {}, {}, {}
obj.tasks, obj.stats, obj.episodes = {}, {}, []
obj.info = create_empty_dataset_info(CODEBASE_VERSION, fps, robot_type, features, use_videos)
if len(obj.video_keys) > 0 and not use_videos:
raise ValueError()
write_json(obj.info, obj.root / INFO_PATH)
obj.revision = None
obj.local_files_only = True
return obj
@@ -359,9 +331,8 @@ class LeRobotDataset(torch.utils.data.Dataset):
image_transforms: Callable | None = None,
delta_timestamps: dict[list[float]] | None = None,
tolerance_s: float = 1e-4,
revision: str | None = None,
force_cache_sync: bool = False,
download_videos: bool = True,
local_files_only: bool = False,
video_backend: str | None = None,
):
"""
@@ -371,7 +342,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
- On your local disk in the 'root' folder. This is typically the case when you recorded your
dataset locally and you may or may not have pushed it to the hub yet. Instantiating this class
with 'root' will load your dataset directly from disk. This can happen while you're offline (no
internet connection).
internet connection), in that case, use local_files_only=True.
- On the Hugging Face Hub at the address https://huggingface.co/datasets/{repo_id} and not on
your local disk in the 'root' folder. Instantiating this class with this 'repo_id' will download
@@ -391,7 +362,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
- info contains various information about the dataset like shapes, keys, fps etc.
- stats stores the dataset statistics of the different modalities for normalization
- tasks contains the prompts for each task of the dataset, which can be used for
task-conditioned training.
task-conditionned training.
- hf_dataset (from datasets.Dataset), which will read any values from parquet files.
- videos (optional) from which frames are loaded to be synchronous with data from parquet files.
@@ -453,28 +424,24 @@ class LeRobotDataset(torch.utils.data.Dataset):
timestamps is separated to the next by 1/fps +/- tolerance_s. This also applies to frames
decoded from video files. It is also used to check that `delta_timestamps` (when provided) are
multiples of 1/fps. Defaults to 1e-4.
revision (str, optional): An optional Git revision id which can be a branch name, a tag, or a
commit hash. Defaults to current codebase version tag.
sync_cache_first (bool, optional): Flag to sync and refresh local files first. If True and files
are already present in the local cache, this will be faster. However, files loaded might not
be in sync with the version on the hub, especially if you specified 'revision'. Defaults to
False.
download_videos (bool, optional): Flag to download the videos. Note that when set to True but the
video files are already present on local disk, they won't be downloaded again. Defaults to
True.
local_files_only (bool, optional): Flag to use local files only. If True, no requests to the hub
will be made. Defaults to False.
video_backend (str | None, optional): Video backend to use for decoding videos. There is currently
a single option which is the pyav decoder used by Torchvision. Defaults to pyav.
"""
super().__init__()
self.repo_id = repo_id
self.root = Path(root) if root else HF_LEROBOT_HOME / repo_id
self.root = Path(root) if root else LEROBOT_HOME / repo_id
self.image_transforms = image_transforms
self.delta_timestamps = delta_timestamps
self.episodes = episodes
self.tolerance_s = tolerance_s
self.revision = revision if revision else CODEBASE_VERSION
self.video_backend = video_backend if video_backend else "pyav"
self.delta_indices = None
self.local_files_only = local_files_only
# Unused attributes
self.image_writer = None
@@ -483,92 +450,64 @@ class LeRobotDataset(torch.utils.data.Dataset):
self.root.mkdir(exist_ok=True, parents=True)
# Load metadata
self.meta = LeRobotDatasetMetadata(
self.repo_id, self.root, self.revision, force_cache_sync=force_cache_sync
)
if self.episodes is not None and self.meta._version >= packaging.version.parse("v2.1"):
episodes_stats = [self.meta.episodes_stats[ep_idx] for ep_idx in self.episodes]
self.stats = aggregate_stats(episodes_stats)
self.meta = LeRobotDatasetMetadata(self.repo_id, self.root, self.local_files_only)
# Check version
check_version_compatibility(self.repo_id, self.meta._version, CODEBASE_VERSION)
# Load actual data
try:
if force_cache_sync:
raise FileNotFoundError
assert all((self.root / fpath).is_file() for fpath in self.get_episodes_file_paths())
self.hf_dataset = self.load_hf_dataset()
except (AssertionError, FileNotFoundError, NotADirectoryError):
self.revision = get_safe_version(self.repo_id, self.revision)
self.download_episodes(download_videos)
self.hf_dataset = self.load_hf_dataset()
self.download_episodes(download_videos)
self.hf_dataset = self.load_hf_dataset()
self.episode_data_index = get_episode_data_index(self.meta.episodes, self.episodes)
# Check timestamps
timestamps = torch.stack(self.hf_dataset["timestamp"]).numpy()
episode_indices = torch.stack(self.hf_dataset["episode_index"]).numpy()
ep_data_index_np = {k: t.numpy() for k, t in self.episode_data_index.items()}
check_timestamps_sync(timestamps, episode_indices, ep_data_index_np, self.fps, self.tolerance_s)
check_timestamps_sync(self.hf_dataset, self.episode_data_index, self.fps, self.tolerance_s)
# Setup delta_indices
if self.delta_timestamps is not None:
check_delta_timestamps(self.delta_timestamps, self.fps, self.tolerance_s)
self.delta_indices = get_delta_indices(self.delta_timestamps, self.fps)
# Available stats implies all videos have been encoded and dataset is iterable
self.consolidated = self.meta.stats is not None
def push_to_hub(
self,
branch: str | None = None,
tags: list | None = None,
license: str | None = "apache-2.0",
tag_version: bool = True,
push_videos: bool = True,
private: bool = False,
allow_patterns: list[str] | str | None = None,
upload_large_folder: bool = False,
**card_kwargs,
) -> None:
if not self.consolidated:
logging.warning(
"You are trying to upload to the hub a LeRobotDataset that has not been consolidated yet. "
"Consolidating first."
)
self.consolidate()
ignore_patterns = ["images/"]
if not push_videos:
ignore_patterns.append("videos/")
hub_api = HfApi()
hub_api.create_repo(
create_repo(
repo_id=self.repo_id,
private=private,
repo_type="dataset",
exist_ok=True,
)
if branch:
hub_api.create_branch(
repo_id=self.repo_id,
branch=branch,
revision=self.revision,
repo_type="dataset",
exist_ok=True,
)
upload_kwargs = {
"repo_id": self.repo_id,
"folder_path": self.root,
"repo_type": "dataset",
"revision": branch,
"allow_patterns": allow_patterns,
"ignore_patterns": ignore_patterns,
}
if upload_large_folder:
hub_api.upload_large_folder(**upload_kwargs)
else:
hub_api.upload_folder(**upload_kwargs)
if not hub_api.file_exists(self.repo_id, REPOCARD_NAME, repo_type="dataset", revision=branch):
card = create_lerobot_dataset_card(
tags=tags, dataset_info=self.meta.info, license=license, **card_kwargs
)
card.push_to_hub(repo_id=self.repo_id, repo_type="dataset", revision=branch)
if tag_version:
with contextlib.suppress(RevisionNotFoundError):
hub_api.delete_tag(self.repo_id, tag=CODEBASE_VERSION, repo_type="dataset")
hub_api.create_tag(self.repo_id, tag=CODEBASE_VERSION, revision=branch, repo_type="dataset")
upload_folder(
repo_id=self.repo_id,
folder_path=self.root,
repo_type="dataset",
ignore_patterns=ignore_patterns,
)
card = create_lerobot_dataset_card(
tags=tags, dataset_info=self.meta.info, license=license, **card_kwargs
)
card.push_to_hub(repo_id=self.repo_id, repo_type="dataset")
create_branch(repo_id=self.repo_id, branch=CODEBASE_VERSION, repo_type="dataset")
def pull_from_repo(
self,
@@ -578,10 +517,11 @@ class LeRobotDataset(torch.utils.data.Dataset):
snapshot_download(
self.repo_id,
repo_type="dataset",
revision=self.revision,
revision=self.meta._hub_version,
local_dir=self.root,
allow_patterns=allow_patterns,
ignore_patterns=ignore_patterns,
local_files_only=self.local_files_only,
)
def download_episodes(self, download_videos: bool = True) -> None:
@@ -595,23 +535,17 @@ class LeRobotDataset(torch.utils.data.Dataset):
files = None
ignore_patterns = None if download_videos else "videos/"
if self.episodes is not None:
files = self.get_episodes_file_paths()
files = [str(self.meta.get_data_file_path(ep_idx)) for ep_idx in self.episodes]
if len(self.meta.video_keys) > 0 and download_videos:
video_files = [
str(self.meta.get_video_file_path(ep_idx, vid_key))
for vid_key in self.meta.video_keys
for ep_idx in self.episodes
]
files += video_files
self.pull_from_repo(allow_patterns=files, ignore_patterns=ignore_patterns)
def get_episodes_file_paths(self) -> list[Path]:
episodes = self.episodes if self.episodes is not None else list(range(self.meta.total_episodes))
fpaths = [str(self.meta.get_data_file_path(ep_idx)) for ep_idx in episodes]
if len(self.meta.video_keys) > 0:
video_files = [
str(self.meta.get_video_file_path(ep_idx, vid_key))
for vid_key in self.meta.video_keys
for ep_idx in episodes
]
fpaths += video_files
return fpaths
def load_hf_dataset(self) -> datasets.Dataset:
"""hf_dataset contains all the observations, states, actions, rewards, etc."""
if self.episodes is None:
@@ -623,15 +557,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
# TODO(aliberts): hf_dataset.set_format("torch")
hf_dataset.set_transform(hf_transform_to_torch)
return hf_dataset
def create_hf_dataset(self) -> datasets.Dataset:
features = get_hf_features_from_features(self.features)
ft_dict = {col: [] for col in features}
hf_dataset = datasets.Dataset.from_dict(ft_dict, features=features, split="train")
# TODO(aliberts): hf_dataset.set_format("torch")
hf_dataset.set_transform(hf_transform_to_torch)
return hf_dataset
@property
@@ -698,7 +624,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
if key not in self.meta.video_keys
}
def _query_videos(self, query_timestamps: dict[str, list[float]], ep_idx: int) -> dict[str, torch.Tensor]:
def _query_videos(self, query_timestamps: dict[str, list[float]], ep_idx: int) -> dict:
"""Note: When using data workers (e.g. DataLoader with num_workers>0), do not call this function
in the main process (e.g. by using a second Dataloader with num_workers=0). It will result in a
Segmentation Fault. This probably happens because a memory reference to the video loader is created in
@@ -728,7 +654,8 @@ class LeRobotDataset(torch.utils.data.Dataset):
query_indices = None
if self.delta_indices is not None:
query_indices, padding = self._get_query_indices(idx, ep_idx)
current_ep_idx = self.episodes.index(ep_idx) if self.episodes is not None else ep_idx
query_indices, padding = self._get_query_indices(idx, current_ep_idx)
query_result = self._query_hf_dataset(query_indices)
item = {**item, **padding}
for key, val in query_result.items():
@@ -764,13 +691,10 @@ class LeRobotDataset(torch.utils.data.Dataset):
def create_episode_buffer(self, episode_index: int | None = None) -> dict:
current_ep_idx = self.meta.total_episodes if episode_index is None else episode_index
ep_buffer = {}
# size and task are special cases that are not in self.features
ep_buffer["size"] = 0
ep_buffer["task"] = []
for key in self.features:
ep_buffer[key] = current_ep_idx if key == "episode_index" else []
return ep_buffer
return {
"size": 0,
**{key: current_ep_idx if key == "episode_index" else [] for key in self.features},
}
def _get_image_file_path(self, episode_index: int, image_key: str, frame_index: int) -> Path:
fpath = DEFAULT_IMAGE_PATH.format(
@@ -792,35 +716,25 @@ class LeRobotDataset(torch.utils.data.Dataset):
temporary directory — nothing is written to disk. To save those frames, the 'save_episode()' method
then needs to be called.
"""
# Convert torch to numpy if needed
for name in frame:
if isinstance(frame[name], torch.Tensor):
frame[name] = frame[name].numpy()
validate_frame(frame, self.features)
# TODO(aliberts, rcadene): Add sanity check for the input, check it's numpy or torch,
# check the dtype and shape matches, etc.
if self.episode_buffer is None:
self.episode_buffer = self.create_episode_buffer()
# Automatically add frame_index and timestamp to episode buffer
frame_index = self.episode_buffer["size"]
timestamp = frame.pop("timestamp") if "timestamp" in frame else frame_index / self.fps
self.episode_buffer["frame_index"].append(frame_index)
self.episode_buffer["timestamp"].append(timestamp)
# Add frame features to episode_buffer
for key in frame:
if key == "task":
# Note: we associate the task in natural language to its task index during `save_episode`
self.episode_buffer["task"].append(frame["task"])
continue
if key not in self.features:
raise ValueError(
f"An element of the frame is not in the features. '{key}' not in '{self.features.keys()}'."
)
raise ValueError(key)
if self.features[key]["dtype"] in ["image", "video"]:
if self.features[key]["dtype"] not in ["image", "video"]:
item = frame[key].numpy() if isinstance(frame[key], torch.Tensor) else frame[key]
self.episode_buffer[key].append(item)
elif self.features[key]["dtype"] in ["image", "video"]:
img_path = self._get_image_file_path(
episode_index=self.episode_buffer["episode_index"], image_key=key, frame_index=frame_index
)
@@ -828,95 +742,80 @@ class LeRobotDataset(torch.utils.data.Dataset):
img_path.parent.mkdir(parents=True, exist_ok=True)
self._save_image(frame[key], img_path)
self.episode_buffer[key].append(str(img_path))
else:
self.episode_buffer[key].append(frame[key])
self.episode_buffer["size"] += 1
def save_episode(self, episode_data: dict | None = None) -> None:
def save_episode(self, task: str, encode_videos: bool = True, episode_data: dict | None = None) -> None:
"""
This will save to disk the current episode in self.episode_buffer.
This will save to disk the current episode in self.episode_buffer. Note that since it affects files on
disk, it sets self.consolidated to False to ensure proper consolidation later on before uploading to
the hub.
Args:
episode_data (dict | None, optional): Dict containing the episode data to save. If None, this will
save the current episode in self.episode_buffer, which is filled with 'add_frame'. Defaults to
None.
Use 'encode_videos' if you want to encode videos during the saving of this episode. Otherwise,
you can do it later with dataset.consolidate(). This is to give more flexibility on when to spend
time for video encoding.
"""
if not episode_data:
episode_buffer = self.episode_buffer
validate_episode_buffer(episode_buffer, self.meta.total_episodes, self.features)
# size and task are special cases that won't be added to hf_dataset
episode_length = episode_buffer.pop("size")
tasks = episode_buffer.pop("task")
episode_tasks = list(set(tasks))
episode_index = episode_buffer["episode_index"]
if episode_index != self.meta.total_episodes:
# TODO(aliberts): Add option to use existing episode_index
raise NotImplementedError(
"You might have manually provided the episode_buffer with an episode_index that doesn't "
"match the total number of episodes in the dataset. This is not supported for now."
)
episode_buffer["index"] = np.arange(self.meta.total_frames, self.meta.total_frames + episode_length)
episode_buffer["episode_index"] = np.full((episode_length,), episode_index)
if episode_length == 0:
raise ValueError(
"You must add one or several frames with `add_frame` before calling `add_episode`."
)
# Add new tasks to the tasks dictionary
for task in episode_tasks:
task_index = self.meta.get_task_index(task)
if task_index is None:
self.meta.add_task(task)
task_index = self.meta.get_task_index(task)
# Given tasks in natural language, find their corresponding task indices
episode_buffer["task_index"] = np.array([self.meta.get_task_index(task) for task in tasks])
if not set(episode_buffer.keys()) == set(self.features):
raise ValueError()
for key, ft in self.features.items():
# index, episode_index, task_index are already processed above, and image and video
# are processed separately by storing image path and frame info as meta data
if key in ["index", "episode_index", "task_index"] or ft["dtype"] in ["image", "video"]:
if key == "index":
episode_buffer[key] = np.arange(
self.meta.total_frames, self.meta.total_frames + episode_length
)
elif key == "episode_index":
episode_buffer[key] = np.full((episode_length,), episode_index)
elif key == "task_index":
episode_buffer[key] = np.full((episode_length,), task_index)
elif ft["dtype"] in ["image", "video"]:
continue
episode_buffer[key] = np.stack(episode_buffer[key])
elif len(ft["shape"]) == 1 and ft["shape"][0] == 1:
episode_buffer[key] = np.array(episode_buffer[key], dtype=ft["dtype"])
elif len(ft["shape"]) == 1 and ft["shape"][0] > 1:
episode_buffer[key] = np.stack(episode_buffer[key])
else:
raise ValueError(key)
self._wait_image_writer()
self._save_episode_table(episode_buffer, episode_index)
ep_stats = compute_episode_stats(episode_buffer, self.features)
if len(self.meta.video_keys) > 0:
self.meta.save_episode(episode_index, episode_length, task, task_index)
if encode_videos and len(self.meta.video_keys) > 0:
video_paths = self.encode_episode_videos(episode_index)
for key in self.meta.video_keys:
episode_buffer[key] = video_paths[key]
# `meta.save_episode` be executed after encoding the videos
self.meta.save_episode(episode_index, episode_length, episode_tasks, ep_stats)
ep_data_index = get_episode_data_index(self.meta.episodes, [episode_index])
ep_data_index_np = {k: t.numpy() for k, t in ep_data_index.items()}
check_timestamps_sync(
episode_buffer["timestamp"],
episode_buffer["episode_index"],
ep_data_index_np,
self.fps,
self.tolerance_s,
)
video_files = list(self.root.rglob("*.mp4"))
assert len(video_files) == self.num_episodes * len(self.meta.video_keys)
parquet_files = list(self.root.rglob("*.parquet"))
assert len(parquet_files) == self.num_episodes
# delete images
img_dir = self.root / "images"
if img_dir.is_dir():
shutil.rmtree(self.root / "images")
if not episode_data: # Reset the buffer
self.episode_buffer = self.create_episode_buffer()
self.consolidated = False
def _save_episode_table(self, episode_buffer: dict, episode_index: int) -> None:
episode_dict = {key: episode_buffer[key] for key in self.hf_features}
ep_dataset = datasets.Dataset.from_dict(episode_dict, features=self.hf_features, split="train")
ep_dataset = embed_images(ep_dataset)
self.hf_dataset = concatenate_datasets([self.hf_dataset, ep_dataset])
self.hf_dataset.set_transform(hf_transform_to_torch)
ep_data_path = self.root / self.meta.get_data_file_path(ep_index=episode_index)
ep_data_path.parent.mkdir(parents=True, exist_ok=True)
ep_dataset.to_parquet(ep_data_path)
write_parquet(ep_dataset, ep_data_path)
def clear_episode_buffer(self) -> None:
episode_index = self.episode_buffer["episode_index"]
@@ -985,6 +884,38 @@ class LeRobotDataset(torch.utils.data.Dataset):
return video_paths
def consolidate(self, run_compute_stats: bool = True, keep_image_files: bool = False) -> None:
self.hf_dataset = self.load_hf_dataset()
self.episode_data_index = get_episode_data_index(self.meta.episodes, self.episodes)
check_timestamps_sync(self.hf_dataset, self.episode_data_index, self.fps, self.tolerance_s)
if len(self.meta.video_keys) > 0:
self.encode_videos()
self.meta.write_video_info()
if not keep_image_files:
img_dir = self.root / "images"
if img_dir.is_dir():
shutil.rmtree(self.root / "images")
video_files = list(self.root.rglob("*.mp4"))
assert len(video_files) == self.num_episodes * len(self.meta.video_keys)
parquet_files = list(self.root.rglob("*.parquet"))
assert len(parquet_files) == self.num_episodes
if run_compute_stats:
self.stop_image_writer()
# TODO(aliberts): refactor stats in save_episodes
self.meta.stats = compute_stats(self)
serialized_stats = serialize_dict(self.meta.stats)
write_json(serialized_stats, self.root / STATS_PATH)
self.consolidated = True
else:
logging.warning(
"Skipping computation of the dataset statistics, dataset is not fully consolidated."
)
@classmethod
def create(
cls,
@@ -1013,7 +944,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
)
obj.repo_id = obj.meta.repo_id
obj.root = obj.meta.root
obj.revision = None
obj.local_files_only = obj.meta.local_files_only
obj.tolerance_s = tolerance_s
obj.image_writer = None
@@ -1023,8 +954,14 @@ class LeRobotDataset(torch.utils.data.Dataset):
# TODO(aliberts, rcadene, alexander-soare): Merge this with OnlineBuffer/DataBuffer
obj.episode_buffer = obj.create_episode_buffer()
# This bool indicates that the current LeRobotDataset instance is in sync with the files on disk. It
# is used to know when certain operations are need (for instance, computing dataset statistics). In
# order to be able to push the dataset to the hub, it needs to be consolidated first by calling
# self.consolidate().
obj.consolidated = True
obj.episodes = None
obj.hf_dataset = obj.create_hf_dataset()
obj.hf_dataset = None
obj.image_transforms = None
obj.delta_timestamps = None
obj.delta_indices = None
@@ -1049,11 +986,12 @@ class MultiLeRobotDataset(torch.utils.data.Dataset):
delta_timestamps: dict[list[float]] | None = None,
tolerances_s: dict | None = None,
download_videos: bool = True,
local_files_only: bool = False,
video_backend: str | None = None,
):
super().__init__()
self.repo_ids = repo_ids
self.root = Path(root) if root else HF_LEROBOT_HOME
self.root = Path(root) if root else LEROBOT_HOME
self.tolerances_s = tolerances_s if tolerances_s else {repo_id: 1e-4 for repo_id in repo_ids}
# Construct the underlying datasets passing everything but `transform` and `delta_timestamps` which
# are handled by this class.
@@ -1066,6 +1004,7 @@ class MultiLeRobotDataset(torch.utils.data.Dataset):
delta_timestamps=delta_timestamps,
tolerance_s=self.tolerances_s[repo_id],
download_videos=download_videos,
local_files_only=local_files_only,
video_backend=video_backend,
)
for repo_id in repo_ids
@@ -1093,10 +1032,7 @@ class MultiLeRobotDataset(torch.utils.data.Dataset):
self.image_transforms = image_transforms
self.delta_timestamps = delta_timestamps
# TODO(rcadene, aliberts): We should not perform this aggregation for datasets
# with multiple robots of different ranges. Instead we should have one normalization
# per robot.
self.stats = aggregate_stats([dataset.meta.stats for dataset in self._datasets])
self.stats = aggregate_stats(self._datasets)
@property
def repo_id_to_index(self):

View File

@@ -0,0 +1,56 @@
## Using / Updating `CODEBASE_VERSION` (for maintainers)
Since our dataset pushed to the hub are decoupled with the evolution of this repo, we ensure compatibility of
the datasets with our code, we use a `CODEBASE_VERSION` (defined in
lerobot/common/datasets/lerobot_dataset.py) variable.
For instance, [`lerobot/pusht`](https://huggingface.co/datasets/lerobot/pusht) has many versions to maintain backward compatibility between LeRobot codebase versions:
- [v1.0](https://huggingface.co/datasets/lerobot/pusht/tree/v1.0)
- [v1.1](https://huggingface.co/datasets/lerobot/pusht/tree/v1.1)
- [v1.2](https://huggingface.co/datasets/lerobot/pusht/tree/v1.2)
- [v1.3](https://huggingface.co/datasets/lerobot/pusht/tree/v1.3)
- [v1.4](https://huggingface.co/datasets/lerobot/pusht/tree/v1.4)
- [v1.5](https://huggingface.co/datasets/lerobot/pusht/tree/v1.5)
- [v1.6](https://huggingface.co/datasets/lerobot/pusht/tree/v1.6) <-- last version
- [main](https://huggingface.co/datasets/lerobot/pusht/tree/main) <-- points to the last version
Starting with v1.6, every dataset pushed to the hub or saved locally also have this version number in their
`info.json` metadata.
### Uploading a new dataset
If you are pushing a new dataset, you don't need to worry about any of the instructions below, nor to be
compatible with previous codebase versions. The `push_dataset_to_hub.py` script will automatically tag your
dataset with the current `CODEBASE_VERSION`.
### Updating an existing dataset
If you want to update an existing dataset, you need to change the `CODEBASE_VERSION` from `lerobot_dataset.py`
before running `push_dataset_to_hub.py`. This is especially useful if you introduce a breaking change
intentionally or not (i.e. something not backward compatible such as modifying the reward functions used,
deleting some frames at the end of an episode, etc.). That way, people running a previous version of the
codebase won't be affected by your change and backward compatibility is maintained.
However, you will need to update the version of ALL the other datasets so that they have the new
`CODEBASE_VERSION` as a branch in their hugging face dataset repository. Don't worry, there is an easy way
that doesn't require to run `push_dataset_to_hub.py`. You can just "branch-out" from the `main` branch on HF
dataset repo by running this script which corresponds to a `git checkout -b` (so no copy or upload needed):
```python
from huggingface_hub import HfApi
from lerobot import available_datasets
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
api = HfApi()
for repo_id in available_datasets:
dataset_info = api.list_repo_refs(repo_id, repo_type="dataset")
branches = [b.name for b in dataset_info.branches]
if CODEBASE_VERSION in branches:
print(f"{repo_id} already @{CODEBASE_VERSION}, skipping.")
continue
else:
# Now create a branch named after the new version by branching out from "main"
# which is expected to be the preceding version
api.create_branch(repo_id, repo_type="dataset", branch=CODEBASE_VERSION, revision="main")
print(f"{repo_id} successfully updated @{CODEBASE_VERSION}")
```

View File

@@ -152,7 +152,7 @@ def download_raw(raw_dir: Path, repo_id: str):
stacklevel=1,
)
# Send warning if raw_dir isn't well formatted
# Send warning if raw_dir isn't well formated
if raw_dir.parts[-2] != user_id or raw_dir.parts[-1] != dataset_id:
warnings.warn(
f"""`raw_dir` ({raw_dir}) doesn't contain a community or user id `/` the name of the dataset that

View File

@@ -68,9 +68,9 @@ def load_from_raw(raw_dir: Path, videos_dir: Path, fps: int, video: bool, episod
modality_df,
on="timestamp_utc",
# "nearest" is the best option over "backward", since the latter can desynchronizes camera timestamps by
# matching timestamps that are too far apart, in order to fit the backward constraints. It's not the case for "nearest".
# matching timestamps that are too far appart, in order to fit the backward constraints. It's not the case for "nearest".
# However, note that "nearest" might synchronize the reference camera with other cameras on slightly future timestamps.
# are too far apart.
# are too far appart.
direction="nearest",
tolerance=pd.Timedelta(f"{1 / fps} seconds"),
)
@@ -126,7 +126,7 @@ def load_from_raw(raw_dir: Path, videos_dir: Path, fps: int, video: bool, episod
videos_dir.parent.mkdir(parents=True, exist_ok=True)
videos_dir.symlink_to((raw_dir / "videos").absolute())
# sanity check the video paths are well formatted
# sanity check the video paths are well formated
for key in df:
if "observation.images." not in key:
continue
@@ -143,7 +143,7 @@ def load_from_raw(raw_dir: Path, videos_dir: Path, fps: int, video: bool, episod
# it is the case for video_frame dictionary = [{"path": ..., "timestamp": ...}]
data_dict[key] = [video_frame[0] for video_frame in df[key].values]
# sanity check the video path is well formatted
# sanity check the video path is well formated
video_path = videos_dir.parent / data_dict[key][0]["path"]
if not video_path.exists():
raise ValueError(f"Video file not found in {video_path}")

View File

@@ -17,7 +17,7 @@
For all datasets in the RLDS format.
For https://github.com/google-deepmind/open_x_embodiment (OPENX) datasets.
NOTE: You need to install tensorflow and tensorflow_datasets before running this script.
NOTE: You need to install tensorflow and tensorflow_datsets before running this script.
Example:
python lerobot/scripts/push_dataset_to_hub.py \

View File

@@ -13,10 +13,10 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import importlib.resources
import json
import logging
import textwrap
from collections.abc import Iterator
from itertools import accumulate
from pathlib import Path
@@ -27,21 +27,14 @@ from typing import Any
import datasets
import jsonlines
import numpy as np
import packaging.version
import pyarrow.compute as pc
import torch
from datasets.table import embed_table_storage
from huggingface_hub import DatasetCard, DatasetCardData, HfApi
from huggingface_hub.errors import RevisionNotFoundError
from PIL import Image as PILImage
from torchvision import transforms
from lerobot.common.datasets.backward_compatibility import (
V21_MESSAGE,
BackwardCompatibilityError,
ForwardCompatibilityError,
)
from lerobot.common.robots.utils import Robot
from lerobot.common.utils.utils import is_valid_numpy_dtype_string
from lerobot.common.robot_devices.robots.utils import Robot
from lerobot.configs.types import DictLike, FeatureType, PolicyFeature
DEFAULT_CHUNK_SIZE = 1000 # Max number of episodes per chunk
@@ -49,7 +42,6 @@ DEFAULT_CHUNK_SIZE = 1000 # Max number of episodes per chunk
INFO_PATH = "meta/info.json"
EPISODES_PATH = "meta/episodes.jsonl"
STATS_PATH = "meta/stats.json"
EPISODES_STATS_PATH = "meta/episodes_stats.jsonl"
TASKS_PATH = "meta/tasks.jsonl"
DEFAULT_VIDEO_PATH = "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4"
@@ -120,26 +112,17 @@ def get_nested_item(obj: DictLike, flattened_key: str, sep: str = "/") -> Any:
def serialize_dict(stats: dict[str, torch.Tensor | np.ndarray | dict]) -> dict:
serialized_dict = {}
for key, value in flatten_dict(stats).items():
if isinstance(value, (torch.Tensor, np.ndarray)):
serialized_dict[key] = value.tolist()
elif isinstance(value, np.generic):
serialized_dict[key] = value.item()
elif isinstance(value, (int, float)):
serialized_dict[key] = value
else:
raise NotImplementedError(f"The value '{value}' of type '{type(value)}' is not supported.")
serialized_dict = {key: value.tolist() for key, value in flatten_dict(stats).items()}
return unflatten_dict(serialized_dict)
def embed_images(dataset: datasets.Dataset) -> datasets.Dataset:
def write_parquet(dataset: datasets.Dataset, fpath: Path) -> None:
# Embed image bytes into the table before saving to parquet
format = dataset.format
dataset = dataset.with_format("arrow")
dataset = dataset.map(embed_table_storage, batched=False)
dataset = dataset.with_format(**format)
return dataset
dataset.to_parquet(fpath)
def load_json(fpath: Path) -> Any:
@@ -170,10 +153,6 @@ def append_jsonlines(data: dict, fpath: Path) -> None:
writer.write(data)
def write_info(info: dict, local_dir: Path):
write_json(info, local_dir / INFO_PATH)
def load_info(local_dir: Path) -> dict:
info = load_json(local_dir / INFO_PATH)
for ft in info["features"].values():
@@ -181,76 +160,29 @@ def load_info(local_dir: Path) -> dict:
return info
def write_stats(stats: dict, local_dir: Path):
serialized_stats = serialize_dict(stats)
write_json(serialized_stats, local_dir / STATS_PATH)
def cast_stats_to_numpy(stats) -> dict[str, dict[str, np.ndarray]]:
stats = {key: np.array(value) for key, value in flatten_dict(stats).items()}
return unflatten_dict(stats)
def load_stats(local_dir: Path) -> dict[str, dict[str, np.ndarray]]:
def load_stats(local_dir: Path) -> dict:
if not (local_dir / STATS_PATH).exists():
return None
stats = load_json(local_dir / STATS_PATH)
return cast_stats_to_numpy(stats)
stats = {key: torch.tensor(value) for key, value in flatten_dict(stats).items()}
return unflatten_dict(stats)
def write_task(task_index: int, task: dict, local_dir: Path):
task_dict = {
"task_index": task_index,
"task": task,
}
append_jsonlines(task_dict, local_dir / TASKS_PATH)
def load_tasks(local_dir: Path) -> tuple[dict, dict]:
def load_tasks(local_dir: Path) -> dict:
tasks = load_jsonlines(local_dir / TASKS_PATH)
tasks = {item["task_index"]: item["task"] for item in sorted(tasks, key=lambda x: x["task_index"])}
task_to_task_index = {task: task_index for task_index, task in tasks.items()}
return tasks, task_to_task_index
def write_episode(episode: dict, local_dir: Path):
append_jsonlines(episode, local_dir / EPISODES_PATH)
return {item["task_index"]: item["task"] for item in sorted(tasks, key=lambda x: x["task_index"])}
def load_episodes(local_dir: Path) -> dict:
episodes = load_jsonlines(local_dir / EPISODES_PATH)
return {item["episode_index"]: item for item in sorted(episodes, key=lambda x: x["episode_index"])}
return load_jsonlines(local_dir / EPISODES_PATH)
def write_episode_stats(episode_index: int, episode_stats: dict, local_dir: Path):
# We wrap episode_stats in a dictionary since `episode_stats["episode_index"]`
# is a dictionary of stats and not an integer.
episode_stats = {"episode_index": episode_index, "stats": serialize_dict(episode_stats)}
append_jsonlines(episode_stats, local_dir / EPISODES_STATS_PATH)
def load_episodes_stats(local_dir: Path) -> dict:
episodes_stats = load_jsonlines(local_dir / EPISODES_STATS_PATH)
return {
item["episode_index"]: cast_stats_to_numpy(item["stats"])
for item in sorted(episodes_stats, key=lambda x: x["episode_index"])
}
def backward_compatible_episodes_stats(
stats: dict[str, dict[str, np.ndarray]], episodes: list[int]
) -> dict[str, dict[str, np.ndarray]]:
return {ep_idx: stats for ep_idx in episodes}
def load_image_as_numpy(
fpath: str | Path, dtype: np.dtype = np.float32, channel_first: bool = True
) -> np.ndarray:
def load_image_as_numpy(fpath: str | Path, dtype="float32", channel_first: bool = True) -> np.ndarray:
img = PILImage.open(fpath).convert("RGB")
img_array = np.array(img, dtype=dtype)
if channel_first: # (H, W, C) -> (C, H, W)
img_array = np.transpose(img_array, (2, 0, 1))
if np.issubdtype(dtype, np.floating):
if "float" in dtype:
img_array /= 255.0
return img_array
@@ -269,95 +201,77 @@ def hf_transform_to_torch(items_dict: dict[torch.Tensor | None]):
elif first_item is None:
pass
else:
items_dict[key] = [x if isinstance(x, str) else torch.tensor(x) for x in items_dict[key]]
items_dict[key] = [torch.tensor(x) for x in items_dict[key]]
return items_dict
def is_valid_version(version: str) -> bool:
try:
packaging.version.parse(version)
return True
except packaging.version.InvalidVersion:
return False
def _get_major_minor(version: str) -> tuple[int]:
split = version.strip("v").split(".")
return int(split[0]), int(split[1])
class BackwardCompatibilityError(Exception):
def __init__(self, repo_id, version):
message = textwrap.dedent(f"""
BackwardCompatibilityError: The dataset you requested ({repo_id}) is in {version} format.
We introduced a new format since v2.0 which is not backward compatible with v1.x.
Please, use our conversion script. Modify the following command with your own task description:
```
python lerobot/common/datasets/v2/convert_dataset_v1_to_v2.py \\
--repo-id {repo_id} \\
--single-task "TASK DESCRIPTION." # <---- /!\\ Replace TASK DESCRIPTION /!\\
```
A few examples to replace TASK DESCRIPTION: "Pick up the blue cube and place it into the bin.",
"Insert the peg into the socket.", "Slide open the ziploc bag.", "Take the elevator to the 1st floor.",
"Open the top cabinet, store the pot inside it then close the cabinet.", "Push the T-shaped block onto the T-shaped target.",
"Grab the spray paint on the shelf and place it in the bin on top of the robot dog.", "Fold the sweatshirt.", ...
If you encounter a problem, contact LeRobot maintainers on [Discord](https://discord.com/invite/s3KuuzsPFb)
or open an [issue on GitHub](https://github.com/huggingface/lerobot/issues/new/choose).
""")
super().__init__(message)
def check_version_compatibility(
repo_id: str,
version_to_check: str | packaging.version.Version,
current_version: str | packaging.version.Version,
enforce_breaking_major: bool = True,
repo_id: str, version_to_check: str, current_version: str, enforce_breaking_major: bool = True
) -> None:
v_check = (
packaging.version.parse(version_to_check)
if not isinstance(version_to_check, packaging.version.Version)
else version_to_check
)
v_current = (
packaging.version.parse(current_version)
if not isinstance(current_version, packaging.version.Version)
else current_version
)
if v_check.major < v_current.major and enforce_breaking_major:
raise BackwardCompatibilityError(repo_id, v_check)
elif v_check.minor < v_current.minor:
logging.warning(V21_MESSAGE.format(repo_id=repo_id, version=v_check))
def get_repo_versions(repo_id: str) -> list[packaging.version.Version]:
"""Returns available valid versions (branches and tags) on given repo."""
api = HfApi()
repo_refs = api.list_repo_refs(repo_id, repo_type="dataset")
repo_refs = [b.name for b in repo_refs.branches + repo_refs.tags]
repo_versions = []
for ref in repo_refs:
with contextlib.suppress(packaging.version.InvalidVersion):
repo_versions.append(packaging.version.parse(ref))
return repo_versions
def get_safe_version(repo_id: str, version: str | packaging.version.Version) -> str:
"""
Returns the version if available on repo or the latest compatible one.
Otherwise, will throw a `CompatibilityError`.
"""
target_version = (
packaging.version.parse(version) if not isinstance(version, packaging.version.Version) else version
)
hub_versions = get_repo_versions(repo_id)
if not hub_versions:
raise RevisionNotFoundError(
f"""Your dataset must be tagged with a codebase version.
Assuming _version_ is the codebase_version value in the info.json, you can run this:
```python
from huggingface_hub import HfApi
hub_api = HfApi()
hub_api.create_tag("{repo_id}", tag="_version_", repo_type="dataset")
```
"""
current_major, _ = _get_major_minor(current_version)
major_to_check, _ = _get_major_minor(version_to_check)
if major_to_check < current_major and enforce_breaking_major:
raise BackwardCompatibilityError(repo_id, version_to_check)
elif float(version_to_check.strip("v")) < float(current_version.strip("v")):
logging.warning(
f"""The dataset you requested ({repo_id}) was created with a previous version ({version_to_check}) of the
codebase. The current codebase version is {current_version}. You should be fine since
backward compatibility is maintained. If you encounter a problem, contact LeRobot maintainers on
Discord ('https://discord.com/invite/s3KuuzsPFb') or open an issue on github.""",
)
if target_version in hub_versions:
return f"v{target_version}"
compatibles = [
v for v in hub_versions if v.major == target_version.major and v.minor <= target_version.minor
]
if compatibles:
return_version = max(compatibles)
if return_version < target_version:
logging.warning(f"Revision {version} for {repo_id} not found, using version v{return_version}")
return f"v{return_version}"
def get_hub_safe_version(repo_id: str, version: str) -> str:
api = HfApi()
dataset_info = api.list_repo_refs(repo_id, repo_type="dataset")
branches = [b.name for b in dataset_info.branches]
if version not in branches:
num_version = float(version.strip("v"))
hub_num_versions = [float(v.strip("v")) for v in branches if v.startswith("v")]
if num_version >= 2.0 and all(v < 2.0 for v in hub_num_versions):
raise BackwardCompatibilityError(repo_id, version)
lower_major = [v for v in hub_versions if v.major < target_version.major]
if lower_major:
raise BackwardCompatibilityError(repo_id, max(lower_major))
upper_versions = [v for v in hub_versions if v > target_version]
assert len(upper_versions) > 0
raise ForwardCompatibilityError(repo_id, min(upper_versions))
logging.warning(
f"""You are trying to load a dataset from {repo_id} created with a previous version of the
codebase. The following versions are available: {branches}.
The requested version ('{version}') is not found. You should be fine since
backward compatibility is maintained. If you encounter a problem, contact LeRobot maintainers on
Discord ('https://discord.com/invite/s3KuuzsPFb') or open an issue on github.""",
)
if "main" not in branches:
raise ValueError(f"Version 'main' not found on {repo_id}")
return "main"
else:
return version
def get_hf_features_from_features(features: dict) -> datasets.Features:
@@ -369,20 +283,11 @@ def get_hf_features_from_features(features: dict) -> datasets.Features:
hf_features[key] = datasets.Image()
elif ft["shape"] == (1,):
hf_features[key] = datasets.Value(dtype=ft["dtype"])
elif len(ft["shape"]) == 1:
else:
assert len(ft["shape"]) == 1
hf_features[key] = datasets.Sequence(
length=ft["shape"][0], feature=datasets.Value(dtype=ft["dtype"])
)
elif len(ft["shape"]) == 2:
hf_features[key] = datasets.Array2D(shape=ft["shape"], dtype=ft["dtype"])
elif len(ft["shape"]) == 3:
hf_features[key] = datasets.Array3D(shape=ft["shape"], dtype=ft["dtype"])
elif len(ft["shape"]) == 4:
hf_features[key] = datasets.Array4D(shape=ft["shape"], dtype=ft["dtype"])
elif len(ft["shape"]) == 5:
hf_features[key] = datasets.Array5D(shape=ft["shape"], dtype=ft["dtype"])
else:
raise ValueError(f"Corresponding feature is not valid: {ft}")
return datasets.Features(hf_features)
@@ -453,85 +358,88 @@ def create_empty_dataset_info(
def get_episode_data_index(
episode_dicts: dict[dict], episodes: list[int] | None = None
episode_dicts: list[dict], episodes: list[int] | None = None
) -> dict[str, torch.Tensor]:
episode_lengths = {ep_idx: ep_dict["length"] for ep_idx, ep_dict in episode_dicts.items()}
episode_lengths = {ep_idx: ep_dict["length"] for ep_idx, ep_dict in enumerate(episode_dicts)}
if episodes is not None:
episode_lengths = {ep_idx: episode_lengths[ep_idx] for ep_idx in episodes}
cumulative_lengths = list(accumulate(episode_lengths.values()))
cumulative_lenghts = list(accumulate(episode_lengths.values()))
return {
"from": torch.LongTensor([0] + cumulative_lengths[:-1]),
"to": torch.LongTensor(cumulative_lengths),
"from": torch.LongTensor([0] + cumulative_lenghts[:-1]),
"to": torch.LongTensor(cumulative_lenghts),
}
def calculate_total_episode(
hf_dataset: datasets.Dataset, raise_if_not_contiguous: bool = True
) -> dict[str, torch.Tensor]:
episode_indices = sorted(hf_dataset.unique("episode_index"))
total_episodes = len(episode_indices)
if raise_if_not_contiguous and episode_indices != list(range(total_episodes)):
raise ValueError("episode_index values are not sorted and contiguous.")
return total_episodes
def calculate_episode_data_index(hf_dataset: datasets.Dataset) -> dict[str, torch.Tensor]:
episode_lengths = []
table = hf_dataset.data.table
total_episodes = calculate_total_episode(hf_dataset)
for ep_idx in range(total_episodes):
ep_table = table.filter(pc.equal(table["episode_index"], ep_idx))
episode_lengths.insert(ep_idx, len(ep_table))
cumulative_lenghts = list(accumulate(episode_lengths))
return {
"from": torch.LongTensor([0] + cumulative_lenghts[:-1]),
"to": torch.LongTensor(cumulative_lenghts),
}
def check_timestamps_sync(
timestamps: np.ndarray,
episode_indices: np.ndarray,
episode_data_index: dict[str, np.ndarray],
hf_dataset: datasets.Dataset,
episode_data_index: dict[str, torch.Tensor],
fps: int,
tolerance_s: float,
raise_value_error: bool = True,
) -> bool:
"""
This check is to make sure that each timestamp is separated from the next by (1/fps) +/- tolerance
to account for possible numerical error.
Args:
timestamps (np.ndarray): Array of timestamps in seconds.
episode_indices (np.ndarray): Array indicating the episode index for each timestamp.
episode_data_index (dict[str, np.ndarray]): A dictionary that includes 'to',
which identifies indices for the end of each episode.
fps (int): Frames per second. Used to check the expected difference between consecutive timestamps.
tolerance_s (float): Allowed deviation from the expected (1/fps) difference.
raise_value_error (bool): Whether to raise a ValueError if the check fails.
Returns:
bool: True if all checked timestamp differences lie within tolerance, False otherwise.
Raises:
ValueError: If the check fails and `raise_value_error` is True.
This check is to make sure that each timestamps is separated to the next by 1/fps +/- tolerance to
account for possible numerical error.
"""
if timestamps.shape != episode_indices.shape:
raise ValueError(
"timestamps and episode_indices should have the same shape. "
f"Found {timestamps.shape=} and {episode_indices.shape=}."
)
timestamps = torch.stack(hf_dataset["timestamp"])
diffs = torch.diff(timestamps)
within_tolerance = torch.abs(diffs - 1 / fps) <= tolerance_s
# Consecutive differences
diffs = np.diff(timestamps)
within_tolerance = np.abs(diffs - (1.0 / fps)) <= tolerance_s
# Mask to ignore differences at the boundaries between episodes
mask = np.ones(len(diffs), dtype=bool)
ignored_diffs = episode_data_index["to"][:-1] - 1 # indices at the end of each episode
# We mask differences between the timestamp at the end of an episode
# and the one at the start of the next episode since these are expected
# to be outside tolerance.
mask = torch.ones(len(diffs), dtype=torch.bool)
ignored_diffs = episode_data_index["to"][:-1] - 1
mask[ignored_diffs] = False
filtered_within_tolerance = within_tolerance[mask]
# Check if all remaining diffs are within tolerance
if not np.all(filtered_within_tolerance):
if not torch.all(filtered_within_tolerance):
# Track original indices before masking
original_indices = np.arange(len(diffs))
original_indices = torch.arange(len(diffs))
filtered_indices = original_indices[mask]
outside_tolerance_filtered_indices = np.nonzero(~filtered_within_tolerance)[0]
outside_tolerance_filtered_indices = torch.nonzero(~filtered_within_tolerance) # .squeeze()
outside_tolerance_indices = filtered_indices[outside_tolerance_filtered_indices]
episode_indices = torch.stack(hf_dataset["episode_index"])
outside_tolerances = []
for idx in outside_tolerance_indices:
entry = {
"timestamps": [timestamps[idx], timestamps[idx + 1]],
"diff": diffs[idx],
"episode_index": episode_indices[idx].item()
if hasattr(episode_indices[idx], "item")
else episode_indices[idx],
"episode_index": episode_indices[idx].item(),
}
outside_tolerances.append(entry)
if raise_value_error:
raise ValueError(
f"""One or several timestamps unexpectedly violate the tolerance inside episode range.
This might be due to synchronization issues during data collection.
This might be due to synchronization issues with timestamps during data collection.
\n{pformat(outside_tolerances)}"""
)
return False
@@ -696,118 +604,3 @@ class IterableNamespace(SimpleNamespace):
def keys(self):
return vars(self).keys()
def validate_frame(frame: dict, features: dict):
optional_features = {"timestamp"}
expected_features = (set(features) - set(DEFAULT_FEATURES.keys())) | {"task"}
actual_features = set(frame.keys())
error_message = validate_features_presence(actual_features, expected_features, optional_features)
if "task" in frame:
error_message += validate_feature_string("task", frame["task"])
common_features = actual_features & (expected_features | optional_features)
for name in common_features - {"task"}:
error_message += validate_feature_dtype_and_shape(name, features[name], frame[name])
if error_message:
raise ValueError(error_message)
def validate_features_presence(
actual_features: set[str], expected_features: set[str], optional_features: set[str]
):
error_message = ""
missing_features = expected_features - actual_features
extra_features = actual_features - (expected_features | optional_features)
if missing_features or extra_features:
error_message += "Feature mismatch in `frame` dictionary:\n"
if missing_features:
error_message += f"Missing features: {missing_features}\n"
if extra_features:
error_message += f"Extra features: {extra_features}\n"
return error_message
def validate_feature_dtype_and_shape(name: str, feature: dict, value: np.ndarray | PILImage.Image | str):
expected_dtype = feature["dtype"]
expected_shape = feature["shape"]
if is_valid_numpy_dtype_string(expected_dtype):
return validate_feature_numpy_array(name, expected_dtype, expected_shape, value)
elif expected_dtype in ["image", "video"]:
return validate_feature_image_or_video(name, expected_shape, value)
elif expected_dtype == "string":
return validate_feature_string(name, value)
else:
raise NotImplementedError(f"The feature dtype '{expected_dtype}' is not implemented yet.")
def validate_feature_numpy_array(
name: str, expected_dtype: str, expected_shape: list[int], value: np.ndarray
):
error_message = ""
if isinstance(value, np.ndarray):
actual_dtype = value.dtype
actual_shape = value.shape
if actual_dtype != np.dtype(expected_dtype):
error_message += f"The feature '{name}' of dtype '{actual_dtype}' is not of the expected dtype '{expected_dtype}'.\n"
if actual_shape != expected_shape:
error_message += f"The feature '{name}' of shape '{actual_shape}' does not have the expected shape '{expected_shape}'.\n"
else:
error_message += f"The feature '{name}' is not a 'np.ndarray'. Expected type is '{expected_dtype}', but type '{type(value)}' provided instead.\n"
return error_message
def validate_feature_image_or_video(name: str, expected_shape: list[str], value: np.ndarray | PILImage.Image):
# Note: The check of pixels range ([0,1] for float and [0,255] for uint8) is done by the image writer threads.
error_message = ""
if isinstance(value, np.ndarray):
actual_shape = value.shape
c, h, w = expected_shape
if len(actual_shape) != 3 or (actual_shape != (c, h, w) and actual_shape != (h, w, c)):
error_message += f"The feature '{name}' of shape '{actual_shape}' does not have the expected shape '{(c, h, w)}' or '{(h, w, c)}'.\n"
elif isinstance(value, PILImage.Image):
pass
else:
error_message += f"The feature '{name}' is expected to be of type 'PIL.Image' or 'np.ndarray' channel first or channel last, but type '{type(value)}' provided instead.\n"
return error_message
def validate_feature_string(name: str, value: str):
if not isinstance(value, str):
return f"The feature '{name}' is expected to be of type 'str', but type '{type(value)}' provided instead.\n"
return ""
def validate_episode_buffer(episode_buffer: dict, total_episodes: int, features: dict):
if "size" not in episode_buffer:
raise ValueError("size key not found in episode_buffer")
if "task" not in episode_buffer:
raise ValueError("task key not found in episode_buffer")
if episode_buffer["episode_index"] != total_episodes:
# TODO(aliberts): Add option to use existing episode_index
raise NotImplementedError(
"You might have manually provided the episode_buffer with an episode_index that doesn't "
"match the total number of episodes already in the dataset. This is not supported for now."
)
if episode_buffer["size"] == 0:
raise ValueError("You must add one or several frames with `add_frame` before calling `add_episode`.")
buffer_keys = set(episode_buffer.keys()) - {"task", "size"}
if not buffer_keys == set(features):
raise ValueError(
f"Features from `episode_buffer` don't match the ones in `features`."
f"In episode_buffer not in features: {buffer_keys - set(features)}"
f"In features not in episode_buffer: {set(features) - buffer_keys}"
)

View File

@@ -27,11 +27,10 @@ from textwrap import dedent
from lerobot import available_datasets
from lerobot.common.datasets.v2.convert_dataset_v1_to_v2 import convert_dataset
from lerobot.common.robots.aloha.configuration_aloha import AlohaRobotConfig
from lerobot.common.robot_devices.robots.configs import AlohaRobotConfig
LOCAL_DIR = Path("data/")
# spellchecker:off
ALOHA_MOBILE_INFO = {
"robot_config": AlohaRobotConfig(),
"license": "mit",
@@ -857,7 +856,6 @@ DATASETS = {
}""").lstrip(),
},
}
# spellchecker:on
def batch_convert():

View File

@@ -17,7 +17,7 @@
"""
This script will help you convert any LeRobot dataset already pushed to the hub from codebase version 1.6 to
2.0. You will be required to provide the 'tasks', which is a short but accurate description in plain English
for each of the task performed in the dataset. This will allow to easily train models with task-conditioning.
for each of the task performed in the dataset. This will allow to easily train models with task-conditionning.
We support 3 different scenarios for these tasks (see instructions below):
1. Single task dataset: all episodes of your dataset have the same single task.
@@ -130,7 +130,7 @@ from lerobot.common.datasets.utils import (
create_branch,
create_lerobot_dataset_card,
flatten_dict,
get_safe_version,
get_hub_safe_version,
load_json,
unflatten_dict,
write_json,
@@ -141,8 +141,8 @@ from lerobot.common.datasets.video_utils import (
get_image_pixel_channels,
get_video_info,
)
from lerobot.common.robots import RobotConfig
from lerobot.common.robots.utils import make_robot_config
from lerobot.common.robot_devices.robots.configs import RobotConfig
from lerobot.common.robot_devices.robots.utils import make_robot_config
V16 = "v1.6"
V20 = "v2.0"
@@ -443,7 +443,7 @@ def convert_dataset(
test_branch: str | None = None,
**card_kwargs,
):
v1 = get_safe_version(repo_id, V16)
v1 = get_hub_safe_version(repo_id, V16)
v1x_dir = local_dir / V16 / repo_id
v20_dir = local_dir / V20 / repo_id
v1x_dir.mkdir(parents=True, exist_ok=True)

View File

@@ -1,87 +0,0 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import traceback
from pathlib import Path
from datasets import get_dataset_config_info
from huggingface_hub import HfApi
from lerobot import available_datasets
from lerobot.common.datasets.lerobot_dataset import LeRobotDatasetMetadata
from lerobot.common.datasets.utils import INFO_PATH, write_info
from lerobot.common.datasets.v21.convert_dataset_v20_to_v21 import V20, SuppressWarnings
LOCAL_DIR = Path("data/")
hub_api = HfApi()
def fix_dataset(repo_id: str) -> str:
if not hub_api.revision_exists(repo_id, V20, repo_type="dataset"):
return f"{repo_id}: skipped (not in {V20})."
dataset_info = get_dataset_config_info(repo_id, "default")
with SuppressWarnings():
lerobot_metadata = LeRobotDatasetMetadata(repo_id, revision=V20, force_cache_sync=True)
meta_features = {key for key, ft in lerobot_metadata.features.items() if ft["dtype"] != "video"}
parquet_features = set(dataset_info.features)
diff_parquet_meta = parquet_features - meta_features
diff_meta_parquet = meta_features - parquet_features
if diff_parquet_meta:
raise ValueError(f"In parquet not in info.json: {parquet_features - meta_features}")
if not diff_meta_parquet:
return f"{repo_id}: skipped (no diff)"
if diff_meta_parquet:
logging.warning(f"In info.json not in parquet: {meta_features - parquet_features}")
assert diff_meta_parquet == {"language_instruction"}
lerobot_metadata.features.pop("language_instruction")
write_info(lerobot_metadata.info, lerobot_metadata.root)
commit_info = hub_api.upload_file(
path_or_fileobj=lerobot_metadata.root / INFO_PATH,
path_in_repo=INFO_PATH,
repo_id=repo_id,
repo_type="dataset",
revision=V20,
commit_message="Remove 'language_instruction'",
create_pr=True,
)
return f"{repo_id}: success - PR: {commit_info.pr_url}"
def batch_fix():
status = {}
LOCAL_DIR.mkdir(parents=True, exist_ok=True)
logfile = LOCAL_DIR / "fix_features_v20.txt"
for num, repo_id in enumerate(available_datasets):
print(f"\nConverting {repo_id} ({num}/{len(available_datasets)})")
print("---------------------------------------------------------")
try:
status = fix_dataset(repo_id)
except Exception:
status = f"{repo_id}: failed\n {traceback.format_exc()}"
logging.info(status)
with open(logfile, "a") as file:
file.write(status + "\n")
if __name__ == "__main__":
batch_fix()

View File

@@ -1,54 +0,0 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script is for internal use to convert all datasets under the 'lerobot' hub user account to v2.1.
"""
import traceback
from pathlib import Path
from huggingface_hub import HfApi
from lerobot import available_datasets
from lerobot.common.datasets.v21.convert_dataset_v20_to_v21 import V21, convert_dataset
LOCAL_DIR = Path("data/")
def batch_convert():
status = {}
LOCAL_DIR.mkdir(parents=True, exist_ok=True)
logfile = LOCAL_DIR / "conversion_log_v21.txt"
hub_api = HfApi()
for num, repo_id in enumerate(available_datasets):
print(f"\nConverting {repo_id} ({num}/{len(available_datasets)})")
print("---------------------------------------------------------")
try:
if hub_api.revision_exists(repo_id, V21, repo_type="dataset"):
status = f"{repo_id}: success (already in {V21})."
else:
convert_dataset(repo_id)
status = f"{repo_id}: success."
except Exception:
status = f"{repo_id}: failed\n {traceback.format_exc()}"
with open(logfile, "a") as file:
file.write(status + "\n")
if __name__ == "__main__":
batch_convert()

View File

@@ -1,114 +0,0 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script will help you convert any LeRobot dataset already pushed to the hub from codebase version 2.0 to
2.1. It will:
- Generate per-episodes stats and writes them in `episodes_stats.jsonl`
- Check consistency between these new stats and the old ones.
- Remove the deprecated `stats.json`.
- Update codebase_version in `info.json`.
- Push this new version to the hub on the 'main' branch and tags it with "v2.1".
Usage:
```bash
python lerobot/common/datasets/v21/convert_dataset_v20_to_v21.py \
--repo-id=aliberts/koch_tutorial
```
"""
import argparse
import logging
from huggingface_hub import HfApi
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION, LeRobotDataset
from lerobot.common.datasets.utils import EPISODES_STATS_PATH, STATS_PATH, load_stats, write_info
from lerobot.common.datasets.v21.convert_stats import check_aggregate_stats, convert_stats
V20 = "v2.0"
V21 = "v2.1"
class SuppressWarnings:
def __enter__(self):
self.previous_level = logging.getLogger().getEffectiveLevel()
logging.getLogger().setLevel(logging.ERROR)
def __exit__(self, exc_type, exc_val, exc_tb):
logging.getLogger().setLevel(self.previous_level)
def convert_dataset(
repo_id: str,
branch: str | None = None,
num_workers: int = 4,
):
with SuppressWarnings():
dataset = LeRobotDataset(repo_id, revision=V20, force_cache_sync=True)
if (dataset.root / EPISODES_STATS_PATH).is_file():
(dataset.root / EPISODES_STATS_PATH).unlink()
convert_stats(dataset, num_workers=num_workers)
ref_stats = load_stats(dataset.root)
check_aggregate_stats(dataset, ref_stats)
dataset.meta.info["codebase_version"] = CODEBASE_VERSION
write_info(dataset.meta.info, dataset.root)
dataset.push_to_hub(branch=branch, tag_version=False, allow_patterns="meta/")
# delete old stats.json file
if (dataset.root / STATS_PATH).is_file:
(dataset.root / STATS_PATH).unlink()
hub_api = HfApi()
if hub_api.file_exists(
repo_id=dataset.repo_id, filename=STATS_PATH, revision=branch, repo_type="dataset"
):
hub_api.delete_file(
path_in_repo=STATS_PATH, repo_id=dataset.repo_id, revision=branch, repo_type="dataset"
)
hub_api.create_tag(repo_id, tag=CODEBASE_VERSION, revision=branch, repo_type="dataset")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--repo-id",
type=str,
required=True,
help="Repository identifier on Hugging Face: a community or a user name `/` the name of the dataset "
"(e.g. `lerobot/pusht`, `cadene/aloha_sim_insertion_human`).",
)
parser.add_argument(
"--branch",
type=str,
default=None,
help="Repo branch to push your dataset. Defaults to the main branch.",
)
parser.add_argument(
"--num-workers",
type=int,
default=4,
help="Number of workers for parallelizing stats compute. Defaults to 4.",
)
args = parser.parse_args()
convert_dataset(**vars(args))

View File

@@ -1,99 +0,0 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from concurrent.futures import ThreadPoolExecutor, as_completed
import numpy as np
from tqdm import tqdm
from lerobot.common.datasets.compute_stats import aggregate_stats, get_feature_stats, sample_indices
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.datasets.utils import write_episode_stats
def sample_episode_video_frames(dataset: LeRobotDataset, episode_index: int, ft_key: str) -> np.ndarray:
ep_len = dataset.meta.episodes[episode_index]["length"]
sampled_indices = sample_indices(ep_len)
query_timestamps = dataset._get_query_timestamps(0.0, {ft_key: sampled_indices})
video_frames = dataset._query_videos(query_timestamps, episode_index)
return video_frames[ft_key].numpy()
def convert_episode_stats(dataset: LeRobotDataset, ep_idx: int):
ep_start_idx = dataset.episode_data_index["from"][ep_idx]
ep_end_idx = dataset.episode_data_index["to"][ep_idx]
ep_data = dataset.hf_dataset.select(range(ep_start_idx, ep_end_idx))
ep_stats = {}
for key, ft in dataset.features.items():
if ft["dtype"] == "video":
# We sample only for videos
ep_ft_data = sample_episode_video_frames(dataset, ep_idx, key)
else:
ep_ft_data = np.array(ep_data[key])
axes_to_reduce = (0, 2, 3) if ft["dtype"] in ["image", "video"] else 0
keepdims = True if ft["dtype"] in ["image", "video"] else ep_ft_data.ndim == 1
ep_stats[key] = get_feature_stats(ep_ft_data, axis=axes_to_reduce, keepdims=keepdims)
if ft["dtype"] in ["image", "video"]: # remove batch dim
ep_stats[key] = {
k: v if k == "count" else np.squeeze(v, axis=0) for k, v in ep_stats[key].items()
}
dataset.meta.episodes_stats[ep_idx] = ep_stats
def convert_stats(dataset: LeRobotDataset, num_workers: int = 0):
assert dataset.episodes is None
print("Computing episodes stats")
total_episodes = dataset.meta.total_episodes
if num_workers > 0:
with ThreadPoolExecutor(max_workers=num_workers) as executor:
futures = {
executor.submit(convert_episode_stats, dataset, ep_idx): ep_idx
for ep_idx in range(total_episodes)
}
for future in tqdm(as_completed(futures), total=total_episodes):
future.result()
else:
for ep_idx in tqdm(range(total_episodes)):
convert_episode_stats(dataset, ep_idx)
for ep_idx in tqdm(range(total_episodes)):
write_episode_stats(ep_idx, dataset.meta.episodes_stats[ep_idx], dataset.root)
def check_aggregate_stats(
dataset: LeRobotDataset,
reference_stats: dict[str, dict[str, np.ndarray]],
video_rtol_atol: tuple[float] = (1e-2, 1e-2),
default_rtol_atol: tuple[float] = (5e-6, 6e-5),
):
"""Verifies that the aggregated stats from episodes_stats are close to reference stats."""
agg_stats = aggregate_stats(list(dataset.meta.episodes_stats.values()))
for key, ft in dataset.features.items():
# These values might need some fine-tuning
if ft["dtype"] == "video":
# to account for image sub-sampling
rtol, atol = video_rtol_atol
else:
rtol, atol = default_rtol_atol
for stat, val in agg_stats[key].items():
if key in reference_stats and stat in reference_stats[key]:
err_msg = f"feature='{key}' stats='{stat}'"
np.testing.assert_allclose(
val, reference_stats[key][stat], rtol=rtol, atol=atol, err_msg=err_msg
)

View File

@@ -69,11 +69,11 @@ def decode_video_frames_torchvision(
# set the first and last requested timestamps
# Note: previous timestamps are usually loaded, since we need to access the previous key frame
first_ts = min(timestamps)
last_ts = max(timestamps)
first_ts = timestamps[0]
last_ts = timestamps[-1]
# access closest key frame of the first requested frame
# Note: closest key frame timestamp is usually smaller than `first_ts` (e.g. key frame can be the first frame of the video)
# Note: closest key frame timestamp is usally smaller than `first_ts` (e.g. key frame can be the first frame of the video)
# for details on what `seek` is doing see: https://pyav.basswood-io.com/docs/stable/api/container.html?highlight=inputcontainer#av.container.InputContainer.seek
reader.seek(first_ts, keyframes_only=keyframes_only)

View File

@@ -1,15 +1 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .configs import AlohaEnv, EnvConfig, PushtEnv, XarmEnv # noqa: F401

View File

@@ -1,23 +1,9 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import abc
from dataclasses import dataclass, field
import draccus
from lerobot.common.constants import ACTION, OBS_ENV_STATE, OBS_IMAGE, OBS_IMAGES, OBS_STATE
from lerobot.common.constants import ACTION, OBS_ENV, OBS_IMAGE, OBS_IMAGES, OBS_ROBOT
from lerobot.configs.types import FeatureType, PolicyFeature
@@ -53,7 +39,7 @@ class AlohaEnv(EnvConfig):
features_map: dict[str, str] = field(
default_factory=lambda: {
"action": ACTION,
"agent_pos": OBS_STATE,
"agent_pos": OBS_ROBOT,
"top": f"{OBS_IMAGE}.top",
"pixels/top": f"{OBS_IMAGES}.top",
}
@@ -94,8 +80,8 @@ class PushtEnv(EnvConfig):
features_map: dict[str, str] = field(
default_factory=lambda: {
"action": ACTION,
"agent_pos": OBS_STATE,
"environment_state": OBS_ENV_STATE,
"agent_pos": OBS_ROBOT,
"environment_state": OBS_ENV,
"pixels": OBS_IMAGE,
}
)
@@ -136,7 +122,7 @@ class XarmEnv(EnvConfig):
features_map: dict[str, str] = field(
default_factory=lambda: {
"action": ACTION,
"agent_pos": OBS_STATE,
"agent_pos": OBS_ROBOT,
"pixels": OBS_IMAGE,
}
)

View File

@@ -37,12 +37,12 @@ def make_env(cfg: EnvConfig, n_envs: int = 1, use_async_envs: bool = False) -> g
Args:
cfg (EnvConfig): the config of the environment to instantiate.
n_envs (int, optional): The number of parallelized env to return. Defaults to 1.
use_async_envs (bool, optional): Whether to return an AsyncVectorEnv or a SyncVectorEnv. Defaults to
use_async_envs (bool, optional): Wether to return an AsyncVectorEnv or a SyncVectorEnv. Defaults to
False.
Raises:
ValueError: if n_envs < 1
ModuleNotFoundError: If the requested env package is not installed
ModuleNotFoundError: If the requested env package is not intalled
Returns:
gym.vector.VectorEnv: The parallelized gym.env instance.

View File

@@ -1,17 +0,0 @@
class DeviceNotConnectedError(ConnectionError):
"""Exception raised when the device is not connected."""
def __init__(self, message="This device is not connected. Try calling `connect()` first."):
self.message = message
super().__init__(self.message)
class DeviceAlreadyConnectedError(ConnectionError):
"""Exception raised when the device is already connected."""
def __init__(
self,
message="This device is already connected. Try not calling `connect()` twice.",
):
self.message = message
super().__init__(self.message)

View File

@@ -1,3 +0,0 @@
from .motors_bus import MotorsBus
__all__ = ["MotorsBus"]

View File

@@ -1,41 +0,0 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import abc
from dataclasses import dataclass
import draccus
@dataclass
class MotorsBusConfig(draccus.ChoiceRegistry, abc.ABC):
@property
def type(self) -> str:
return self.get_choice_name(self.__class__)
@MotorsBusConfig.register_subclass("dynamixel")
@dataclass
class DynamixelMotorsBusConfig(MotorsBusConfig):
port: str
motors: dict[str, tuple[int, str]]
mock: bool = False
@MotorsBusConfig.register_subclass("feetech")
@dataclass
class FeetechMotorsBusConfig(MotorsBusConfig):
port: str
motors: dict[str, tuple[int, str]]
mock: bool = False

View File

@@ -1,4 +0,0 @@
from .dynamixel import DynamixelMotorsBus, TorqueMode, set_operating_mode
from .dynamixel_calibration import run_arm_calibration
__all__ = ["DynamixelMotorsBus", "TorqueMode", "set_operating_mode", "run_arm_calibration"]

View File

@@ -1,9 +0,0 @@
from .feetech import FeetechMotorsBus, TorqueMode
from .feetech_calibration import apply_feetech_offsets_from_calibration, run_full_arm_calibration
__all__ = [
"FeetechMotorsBus",
"TorqueMode",
"apply_feetech_offsets_from_calibration",
"run_full_arm_calibration",
]

View File

@@ -1,254 +0,0 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from ..motors_bus import MotorsBus
from .feetech import (
CalibrationMode,
FeetechMotorsBus,
TorqueMode,
)
URL_TEMPLATE = (
"https://raw.githubusercontent.com/huggingface/lerobot/main/media/{robot}/{arm}_{position}.webp"
)
def disable_torque(arm: MotorsBus):
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
raise ValueError("To run calibration, the torque must be disabled on all motors.")
def get_calibration_modes(arm: MotorsBus):
"""Returns calibration modes for each motor (DEGREE for rotational, LINEAR for gripper)."""
return [
CalibrationMode.LINEAR.name if name == "gripper" else CalibrationMode.DEGREE.name
for name in arm.motor_names
]
def reset_offset(motor_id, motor_bus):
# Open the write lock, changes to EEPROM do NOT persist yet
motor_bus.write("Lock", 1)
# Set offset to 0
motor_name = motor_bus.motor_names[motor_id - 1]
motor_bus.write("Offset", 0, motor_names=[motor_name])
# Close the write lock, changes to EEPROM do persist
motor_bus.write("Lock", 0)
# Confirm that the offset is zero by reading it back
confirmed_offset = motor_bus.read("Offset")[motor_id - 1]
print(f"Offset for motor {motor_id} reset to: {confirmed_offset}")
return confirmed_offset
def calibrate_homing_motor(motor_id, motor_bus):
reset_offset(motor_id, motor_bus)
home_ticks = motor_bus.read("Present_Position")[motor_id - 1] # Read index starts at 0
print(f"Encoder offset (present position in homing position): {home_ticks}")
return home_ticks
def calibrate_linear_motor(motor_id, motor_bus):
motor_names = motor_bus.motor_names
motor_name = motor_names[motor_id - 1]
reset_offset(motor_id, motor_bus)
input(f"Close the {motor_name}, then press Enter...")
start_pos = motor_bus.read("Present_Position")[motor_id - 1] # Read index starts ar 0
print(f" [Motor {motor_id}] start position recorded: {start_pos}")
input(f"Open the {motor_name} fully, then press Enter...")
end_pos = motor_bus.read("Present_Position")[motor_id - 1] # Read index starts ar 0
print(f" [Motor {motor_id}] end position recorded: {end_pos}")
return start_pos, end_pos
def single_motor_calibration(arm: MotorsBus, motor_id: int):
"""Calibrates a single motor and returns its calibration data for updating the calibration file."""
disable_torque(arm)
print(f"\n--- Calibrating Motor {motor_id} ---")
start_pos = 0
end_pos = 0
encoder_offset = 0
if motor_id == 6:
start_pos, end_pos = calibrate_linear_motor(motor_id, arm)
else:
input("Move the motor to (zero) position, then press Enter...")
encoder_offset = calibrate_homing_motor(motor_id, arm)
print(f"Calibration for motor ID:{motor_id} done.")
# Create a calibration dictionary for the single motor
calib_dict = {
"homing_offset": int(encoder_offset),
"drive_mode": 0,
"start_pos": int(start_pos),
"end_pos": int(end_pos),
"calib_mode": get_calibration_modes(arm)[motor_id - 1],
"motor_name": arm.motor_names[motor_id - 1],
}
return calib_dict
def run_full_arm_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
"""
Runs a full calibration process for all motors in a robotic arm.
This function calibrates each motor in the arm, determining encoder offsets and
start/end positions for linear and rotational motors. The calibration data is then
stored in a dictionary for later use.
**Calibration Process:**
- The user is prompted to move the arm to its homing position before starting.
- Motors with rotational motion are calibrated using a homing method.
- Linear actuators (e.g., grippers) are calibrated separately.
- Encoder offsets, start positions, and end positions are recorded.
**Example Usage:**
```python
run_full_arm_calibration(arm, "so100", "left", "follower")
```
"""
disable_torque(arm)
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
print("\nMove arm to homing position (middle)")
print(
"See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="zero")
) # TODO(pepijn): replace with new instruction homing pos (all motors in middle) in tutorial
input("Press Enter to continue...")
start_positions = np.zeros(len(arm.motor_indices))
end_positions = np.zeros(len(arm.motor_indices))
encoder_offsets = np.zeros(len(arm.motor_indices))
modes = get_calibration_modes(arm)
for i, motor_id in enumerate(arm.motor_indices):
if modes[i] == CalibrationMode.DEGREE.name:
encoder_offsets[i] = calibrate_homing_motor(motor_id, arm)
start_positions[i] = 0
end_positions[i] = 0
for i, motor_id in enumerate(arm.motor_indices):
if modes[i] == CalibrationMode.LINEAR.name:
start_positions[i], end_positions[i] = calibrate_linear_motor(motor_id, arm)
encoder_offsets[i] = 0
print("\nMove arm to rest position")
input("Press Enter to continue...")
print(f"\n calibration of {robot_type} {arm_name} {arm_type} done!")
# Force drive_mode values (can be static)
drive_modes = [0, 1, 0, 0, 1, 0]
calib_dict = {
"homing_offset": encoder_offsets.astype(int).tolist(),
"drive_mode": drive_modes,
"start_pos": start_positions.astype(int).tolist(),
"end_pos": end_positions.astype(int).tolist(),
"calib_mode": get_calibration_modes(arm),
"motor_names": arm.motor_names,
}
return calib_dict
def run_full_auto_arm_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
"""TODO(pepijn): Add this method later as extra
Example of usage:
```python
run_full_auto_arm_calibration(arm, "so100", "left", "follower")
```
"""
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
def apply_feetech_offsets_from_calibration(motorsbus: FeetechMotorsBus, calibration_dict: dict):
"""
Reads 'calibration_dict' containing 'homing_offset' and 'motor_names',
then writes each motor's offset to the servo's internal Offset (0x1F) in EPROM.
This version is modified so each homed position (originally 0) will now read
2047, i.e. 180° away from 0 in the 4096-count circle. Offsets are permanently
stored in EEPROM, so the servo's Present_Position is hardware-shifted even
after power cycling.
Steps:
1) Subtract 2047 from the old offset (so 0 -> 2047).
2) Clamp to [-2047..+2047].
3) Encode sign bit and magnitude into a 12-bit number.
"""
homing_offsets = calibration_dict["homing_offset"]
motor_names = calibration_dict["motor_names"]
start_pos = calibration_dict["start_pos"]
# Open the write lock, changes to EEPROM do NOT persist yet
motorsbus.write("Lock", 1)
# For each motor, set the 'Offset' parameter
for m_name, old_offset in zip(motor_names, homing_offsets, strict=False):
# If bus doesnt have a motor named m_name, skip
if m_name not in motorsbus.motors:
print(f"Warning: '{m_name}' not found in motorsbus.motors; skipping offset.")
continue
if m_name == "gripper":
old_offset = start_pos # If gripper set the offset to the start position of the gripper
continue
# Shift the offset so the homed position reads 2047
new_offset = old_offset - 2047
# Clamp to [-2047..+2047]
if new_offset > 2047:
new_offset = 2047
print(
f"Warning: '{new_offset}' is getting clamped because its larger then 2047; This should not happen!"
)
elif new_offset < -2047:
new_offset = -2047
print(
f"Warning: '{new_offset}' is getting clamped because its smaller then -2047; This should not happen!"
)
# Determine the direction (sign) bit and magnitude
direction_bit = 1 if new_offset < 0 else 0
magnitude = abs(new_offset)
# Combine sign bit (bit 11) with the magnitude (bits 0..10)
servo_offset = (direction_bit << 11) | magnitude
# Write offset to servo
motorsbus.write("Offset", servo_offset, motor_names=m_name)
print(
f"Set offset for {m_name}: "
f"old_offset={old_offset}, new_offset={new_offset}, servo_encoded={magnitude} + direction={direction_bit}"
)
motorsbus.write("Lock", 0)
print("Offsets have been saved to EEPROM successfully.")

View File

@@ -1,46 +0,0 @@
import abc
class MotorsBus(abc.ABC):
"""The main LeRobot class for implementing motors buses."""
def __init__(
self,
motors: dict[str, tuple[int, str]],
):
self.motors = motors
def __len__(self):
return len(self.motors)
@abc.abstractmethod
def connect(self):
pass
@abc.abstractmethod
def reconnect(self):
pass
@abc.abstractmethod
def set_calibration(self, calibration: dict[str, list]):
pass
@abc.abstractmethod
def apply_calibration(self):
pass
@abc.abstractmethod
def revert_calibration(self):
pass
@abc.abstractmethod
def read(self):
pass
@abc.abstractmethod
def write(self):
pass
@abc.abstractmethod
def disconnect(self):
pass

View File

@@ -1,56 +0,0 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .configs import MotorsBusConfig
from .motors_bus import MotorsBus
def make_motors_buses_from_configs(motors_bus_configs: dict[str, MotorsBusConfig]) -> list[MotorsBus]:
motors_buses = {}
for key, cfg in motors_bus_configs.items():
if cfg.type == "dynamixel":
from .dynamixel import DynamixelMotorsBus
motors_buses[key] = DynamixelMotorsBus(cfg)
elif cfg.type == "feetech":
from lerobot.common.motors.feetech.feetech import FeetechMotorsBus
motors_buses[key] = FeetechMotorsBus(cfg)
else:
raise ValueError(f"The motor type '{cfg.type}' is not valid.")
return motors_buses
def make_motors_bus(motor_type: str, **kwargs) -> MotorsBus:
if motor_type == "dynamixel":
from .configs import DynamixelMotorsBusConfig
from .dynamixel import DynamixelMotorsBus
config = DynamixelMotorsBusConfig(**kwargs)
return DynamixelMotorsBus(config)
elif motor_type == "feetech":
from feetech import FeetechMotorsBus
from .configs import FeetechMotorsBusConfig
config = FeetechMotorsBusConfig(**kwargs)
return FeetechMotorsBus(config)
else:
raise ValueError(f"The motor type '{motor_type}' is not valid.")

View File

@@ -1,15 +1 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .optimizers import OptimizerConfig as OptimizerConfig

View File

@@ -1,17 +1,3 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .act.configuration_act import ACTConfig as ACTConfig
from .diffusion.configuration_diffusion import DiffusionConfig as DiffusionConfig
from .pi0.configuration_pi0 import PI0Config as PI0Config

View File

@@ -64,7 +64,7 @@ class ACTConfig(PreTrainedConfig):
output_normalization_modes: Similar dictionary as `normalize_input_modes`, but to unnormalize to the
original scale. Note that this is also used for normalizing the training targets.
vision_backbone: Name of the torchvision resnet backbone to use for encoding images.
pretrained_backbone_weights: Pretrained weights from torchvision to initialize the backbone.
pretrained_backbone_weights: Pretrained weights from torchvision to initalize the backbone.
`None` means no pretrained weights.
replace_final_stride_with_dilation: Whether to replace the ResNet's final 2x2 stride with a dilated
convolution.

View File

@@ -155,25 +155,34 @@ class ACTPolicy(PreTrainedPolicy):
batch = self.normalize_targets(batch)
actions_hat, (mu_hat, log_sigma_x2_hat) = self.model(batch)
l1_loss = (
F.l1_loss(batch["action"], actions_hat, reduction="none") * ~batch["action_is_pad"].unsqueeze(-1)
).mean()
l1_loss = F.l1_loss(batch["action"], actions_hat, reduction="none")
l1_loss *= ~batch["action_is_pad"].unsqueeze(-1)
loss_dict = {"l1_loss": l1_loss.item()}
bsize, seqlen, num_motors = l1_loss.shape
output_dict = {
"l1_loss": l1_loss.mean().item(),
"l1_loss_per_item": l1_loss.view(bsize, seqlen * num_motors).mean(dim=1),
"action": self.unnormalize_outputs({"action": actions_hat})["action"],
}
if self.config.use_vae:
# Calculate Dₖₗ(latent_pdf || standard_normal). Note: After computing the KL-divergence for
# each dimension independently, we sum over the latent dimension to get the total
# KL-divergence per batch element, then take the mean over the batch.
# (See App. B of https://arxiv.org/abs/1312.6114 for more details).
mean_kld = (
(-0.5 * (1 + log_sigma_x2_hat - mu_hat.pow(2) - (log_sigma_x2_hat).exp())).sum(-1).mean()
)
loss_dict["kld_loss"] = mean_kld.item()
mean_kld = (-0.5 * (1 + log_sigma_x2_hat - mu_hat.pow(2) - (log_sigma_x2_hat).exp())).sum(-1)
output_dict["kld_loss_per_item"] = mean_kld
mean_kld = mean_kld.mean()
output_dict["kld_loss"] = mean_kld.item()
loss = l1_loss + mean_kld * self.config.kl_weight
output_dict["loss_per_item"] = (
output_dict["l1_loss_per_item"] + output_dict["kld_loss_per_item"] * self.config.kl_weight
)
else:
loss = l1_loss
return loss, loss_dict
return loss, output_dict
class ACTTemporalEnsembler:

View File

@@ -68,7 +68,7 @@ class DiffusionConfig(PreTrainedConfig):
within the image size. If None, no cropping is done.
crop_is_random: Whether the crop should be random at training time (it's always a center crop in eval
mode).
pretrained_backbone_weights: Pretrained weights from torchvision to initialize the backbone.
pretrained_backbone_weights: Pretrained weights from torchvision to initalize the backbone.
`None` means no pretrained weights.
use_group_norm: Whether to replace batch normalization with group normalization in the backbone.
The group sizes are set to be about 16 (to be precise, feature_dim // 16).
@@ -99,7 +99,7 @@ class DiffusionConfig(PreTrainedConfig):
num_inference_steps: Number of reverse diffusion steps to use at inference time (steps are evenly
spaced). If not provided, this defaults to be the same as `num_train_timesteps`.
do_mask_loss_for_padding: Whether to mask the loss when there are copy-padded actions. See
`LeRobotDataset` and `load_previous_and_future_frames` for more information. Note, this defaults
`LeRobotDataset` and `load_previous_and_future_frames` for mor information. Note, this defaults
to False as the original Diffusion Policy implementation does the same.
"""

View File

@@ -33,7 +33,7 @@ from diffusers.schedulers.scheduling_ddim import DDIMScheduler
from diffusers.schedulers.scheduling_ddpm import DDPMScheduler
from torch import Tensor, nn
from lerobot.common.constants import OBS_ENV_STATE, OBS_STATE
from lerobot.common.constants import OBS_ENV, OBS_ROBOT
from lerobot.common.policies.diffusion.configuration_diffusion import DiffusionConfig
from lerobot.common.policies.normalize import Normalize, Unnormalize
from lerobot.common.policies.pretrained import PreTrainedPolicy
@@ -238,8 +238,8 @@ class DiffusionModel(nn.Module):
def _prepare_global_conditioning(self, batch: dict[str, Tensor]) -> Tensor:
"""Encode image features and concatenate them all together along with the state vector."""
batch_size, n_obs_steps = batch[OBS_STATE].shape[:2]
global_cond_feats = [batch[OBS_STATE]]
batch_size, n_obs_steps = batch[OBS_ROBOT].shape[:2]
global_cond_feats = [batch[OBS_ROBOT]]
# Extract image features.
if self.config.image_features:
if self.config.use_separate_rgb_encoder_per_camera:
@@ -269,7 +269,7 @@ class DiffusionModel(nn.Module):
global_cond_feats.append(img_features)
if self.config.env_state_feature:
global_cond_feats.append(batch[OBS_ENV_STATE])
global_cond_feats.append(batch[OBS_ENV])
# Concatenate features then flatten to (B, global_cond_dim).
return torch.cat(global_cond_feats, dim=-1).flatten(start_dim=1)

View File

@@ -16,6 +16,7 @@
import logging
import torch
from torch import nn
from lerobot.common.datasets.lerobot_dataset import LeRobotDatasetMetadata
@@ -75,6 +76,7 @@ def make_policy_config(policy_type: str, **kwargs) -> PreTrainedConfig:
def make_policy(
cfg: PreTrainedConfig,
device: str | torch.device,
ds_meta: LeRobotDatasetMetadata | None = None,
env_cfg: EnvConfig | None = None,
) -> PreTrainedPolicy:
@@ -86,6 +88,7 @@ def make_policy(
Args:
cfg (PreTrainedConfig): The config of the policy to make. If `pretrained_path` is set, the policy will
be loaded with the weights from that path.
device (str): the device to load the policy onto.
ds_meta (LeRobotDatasetMetadata | None, optional): Dataset metadata to take input/output shapes and
statistics to use for (un)normalization of inputs/outputs in the policy. Defaults to None.
env_cfg (EnvConfig | None, optional): The config of a gym environment to parse features from. Must be
@@ -93,7 +96,7 @@ def make_policy(
Raises:
ValueError: Either ds_meta or env and env_cfg must be provided.
NotImplementedError: if the policy.type is 'vqbet' and the policy device 'mps' (due to an incompatibility)
NotImplementedError: if the policy.type is 'vqbet' and the device 'mps' (due to an incompatibility)
Returns:
PreTrainedPolicy: _description_
@@ -108,7 +111,7 @@ def make_policy(
# https://github.com/pytorch/pytorch/issues/77764. As a temporary fix, you can set the environment
# variable `PYTORCH_ENABLE_MPS_FALLBACK=1` to use the CPU as a fallback for this op. WARNING: this will be
# slower than running natively on MPS.
if cfg.type == "vqbet" and cfg.device == "mps":
if cfg.type == "vqbet" and str(device) == "mps":
raise NotImplementedError(
"Current implementation of VQBeT does not support `mps` backend. "
"Please use `cpu` or `cuda` backend."
@@ -142,7 +145,7 @@ def make_policy(
# Make a fresh policy.
policy = policy_cls(**kwargs)
policy.to(cfg.device)
policy.to(device)
assert isinstance(policy, nn.Module)
# policy = torch.compile(policy, mode="reduce-overhead")

View File

@@ -13,7 +13,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
from torch import Tensor, nn
@@ -78,29 +77,17 @@ def create_stats_buffers(
}
)
# TODO(aliberts, rcadene): harmonize this to only use one framework (np or torch)
if stats:
if isinstance(stats[key]["mean"], np.ndarray):
if norm_mode is NormalizationMode.MEAN_STD:
buffer["mean"].data = torch.from_numpy(stats[key]["mean"]).to(dtype=torch.float32)
buffer["std"].data = torch.from_numpy(stats[key]["std"]).to(dtype=torch.float32)
elif norm_mode is NormalizationMode.MIN_MAX:
buffer["min"].data = torch.from_numpy(stats[key]["min"]).to(dtype=torch.float32)
buffer["max"].data = torch.from_numpy(stats[key]["max"]).to(dtype=torch.float32)
elif isinstance(stats[key]["mean"], torch.Tensor):
# Note: The clone is needed to make sure that the logic in save_pretrained doesn't see duplicated
# tensors anywhere (for example, when we use the same stats for normalization and
# unnormalization). See the logic here
# https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/py_src/safetensors/torch.py#L97.
if norm_mode is NormalizationMode.MEAN_STD:
buffer["mean"].data = stats[key]["mean"].clone().to(dtype=torch.float32)
buffer["std"].data = stats[key]["std"].clone().to(dtype=torch.float32)
elif norm_mode is NormalizationMode.MIN_MAX:
buffer["min"].data = stats[key]["min"].clone().to(dtype=torch.float32)
buffer["max"].data = stats[key]["max"].clone().to(dtype=torch.float32)
else:
type_ = type(stats[key]["mean"])
raise ValueError(f"np.ndarray or torch.Tensor expected, but type is '{type_}' instead.")
# Note: The clone is needed to make sure that the logic in save_pretrained doesn't see duplicated
# tensors anywhere (for example, when we use the same stats for normalization and
# unnormalization). See the logic here
# https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/py_src/safetensors/torch.py#L97.
if norm_mode is NormalizationMode.MEAN_STD:
buffer["mean"].data = stats[key]["mean"].clone()
buffer["std"].data = stats[key]["std"].clone()
elif norm_mode is NormalizationMode.MIN_MAX:
buffer["min"].data = stats[key]["min"].clone()
buffer["max"].data = stats[key]["max"].clone()
stats_buffers[key] = buffer
return stats_buffers
@@ -154,7 +141,6 @@ class Normalize(nn.Module):
batch = dict(batch) # shallow copy avoids mutating the input batch
for key, ft in self.features.items():
if key not in batch:
# FIXME(aliberts, rcadene): This might lead to silent fail!
continue
norm_mode = self.norm_map.get(ft.type, NormalizationMode.IDENTITY)

View File

@@ -1,17 +1,3 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from lerobot.common.optim.optimizers import AdamWConfig
@@ -90,7 +76,6 @@ class PI0Config(PreTrainedConfig):
def __post_init__(self):
super().__post_init__()
# TODO(Steven): Validate device and amp? in all policy configs?
"""Input validation (not exhaustive)."""
if self.n_action_steps > self.chunk_size:
raise ValueError(

View File

@@ -1,17 +1,3 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
@@ -45,7 +31,7 @@ def main():
cfg = PreTrainedConfig.from_pretrained(ckpt_torch_dir)
cfg.pretrained_path = ckpt_torch_dir
policy = make_policy(cfg, ds_meta=dataset.meta)
policy = make_policy(cfg, device, ds_meta=dataset.meta)
# policy = torch.compile(policy, mode="reduce-overhead")

View File

@@ -1,17 +1,3 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import pickle
from pathlib import Path
@@ -101,7 +87,7 @@ def main():
cfg = PreTrainedConfig.from_pretrained(ckpt_torch_dir)
cfg.pretrained_path = ckpt_torch_dir
policy = make_policy(cfg, dataset_meta)
policy = make_policy(cfg, device, dataset_meta)
# loss_dict = policy.forward(batch, noise=noise, time=time_beta)
# loss_dict["loss"].backward()

View File

@@ -1,17 +1,3 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from transformers import GemmaConfig, PaliGemmaConfig

View File

@@ -1,22 +1,8 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Convert pi0 parameters from Jax to Pytorch
Follow [README of openpi](https://github.com/Physical-Intelligence/openpi) to create a new environment
and install the required libraries.
and install the required librairies.
```bash
cd ~/code/openpi

View File

@@ -1,17 +1,3 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.nn.functional as F # noqa: N812
from packaging.version import Version

View File

@@ -57,7 +57,7 @@ import torch.nn.functional as F # noqa: N812
from torch import Tensor, nn
from transformers import AutoTokenizer
from lerobot.common.constants import ACTION, OBS_STATE
from lerobot.common.constants import ACTION, OBS_ROBOT
from lerobot.common.policies.normalize import Normalize, Unnormalize
from lerobot.common.policies.pi0.configuration_pi0 import PI0Config
from lerobot.common.policies.pi0.paligemma_with_expert import (
@@ -271,7 +271,7 @@ class PI0Policy(PreTrainedPolicy):
self.eval()
if self.config.adapt_to_pi_aloha:
batch[OBS_STATE] = self._pi_aloha_decode_state(batch[OBS_STATE])
batch[OBS_ROBOT] = self._pi_aloha_decode_state(batch[OBS_ROBOT])
batch = self.normalize_inputs(batch)
@@ -303,7 +303,7 @@ class PI0Policy(PreTrainedPolicy):
def forward(self, batch: dict[str, Tensor], noise=None, time=None) -> tuple[Tensor, dict[str, Tensor]]:
"""Do a full training forward pass to compute the loss"""
if self.config.adapt_to_pi_aloha:
batch[OBS_STATE] = self._pi_aloha_decode_state(batch[OBS_STATE])
batch[OBS_ROBOT] = self._pi_aloha_decode_state(batch[OBS_ROBOT])
batch[ACTION] = self._pi_aloha_encode_actions_inv(batch[ACTION])
batch = self.normalize_inputs(batch)
@@ -313,7 +313,7 @@ class PI0Policy(PreTrainedPolicy):
state = self.prepare_state(batch)
lang_tokens, lang_masks = self.prepare_language(batch)
actions = self.prepare_action(batch)
actions_is_pad = batch.get("actions_is_pad")
actions_is_pad = batch.get("actions_id_pad")
loss_dict = {}
losses = self.model.forward(images, img_masks, lang_tokens, lang_masks, state, actions, noise, time)
@@ -380,7 +380,7 @@ class PI0Policy(PreTrainedPolicy):
def prepare_language(self, batch) -> tuple[Tensor, Tensor]:
"""Tokenize the text input"""
device = batch[OBS_STATE].device
device = batch[OBS_ROBOT].device
tasks = batch["task"]
# PaliGemma prompt has to end with a new line
@@ -427,7 +427,7 @@ class PI0Policy(PreTrainedPolicy):
def prepare_state(self, batch):
"""Pad state"""
state = pad_vector(batch[OBS_STATE], self.config.max_state_dim)
state = pad_vector(batch[OBS_ROBOT], self.config.max_state_dim)
return state
def prepare_action(self, batch):

View File

@@ -1,17 +1,3 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Union
import torch

View File

@@ -1,16 +1,3 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import abc
import logging
import os
@@ -86,6 +73,7 @@ class PreTrainedPolicy(nn.Module, HubMixin, abc.ABC):
cache_dir: str | Path | None = None,
local_files_only: bool = False,
revision: str | None = None,
map_location: str = "cpu",
strict: bool = False,
**kwargs,
) -> T:
@@ -110,7 +98,7 @@ class PreTrainedPolicy(nn.Module, HubMixin, abc.ABC):
if os.path.isdir(model_id):
print("Loading weights from local directory")
model_file = os.path.join(model_id, SAFETENSORS_SINGLE_FILE)
policy = cls._load_as_safetensor(instance, model_file, config.device, strict)
policy = cls._load_as_safetensor(instance, model_file, map_location, strict)
else:
try:
model_file = hf_hub_download(
@@ -124,13 +112,13 @@ class PreTrainedPolicy(nn.Module, HubMixin, abc.ABC):
token=token,
local_files_only=local_files_only,
)
policy = cls._load_as_safetensor(instance, model_file, config.device, strict)
policy = cls._load_as_safetensor(instance, model_file, map_location, strict)
except HfHubHTTPError as e:
raise FileNotFoundError(
f"{SAFETENSORS_SINGLE_FILE} not found on the HuggingFace Hub in {model_id}"
) from e
policy.to(config.device)
policy.to(map_location)
policy.eval()
return policy

View File

@@ -76,7 +76,7 @@ class TDMPCConfig(PreTrainedConfig):
n_pi_samples: Number of samples to draw from the policy / world model rollout every CEM iteration. Can
be zero.
uncertainty_regularizer_coeff: Coefficient for the uncertainty regularization used when estimating
trajectory values (this is the λ coefficient in eqn 4 of FOWM).
trajectory values (this is the λ coeffiecient in eqn 4 of FOWM).
n_elites: The number of elite samples to use for updating the gaussian parameters every CEM iteration.
elite_weighting_temperature: The temperature to use for softmax weighting (by trajectory value) of the
elites, when updating the gaussian parameters for CEM.
@@ -165,7 +165,7 @@ class TDMPCConfig(PreTrainedConfig):
"""Input validation (not exhaustive)."""
if self.n_gaussian_samples <= 0:
raise ValueError(
f"The number of gaussian samples for CEM should be non-zero. Got `{self.n_gaussian_samples=}`"
f"The number of guassian samples for CEM should be non-zero. Got `{self.n_gaussian_samples=}`"
)
if self.normalization_mapping["ACTION"] is not NormalizationMode.MIN_MAX:
raise ValueError(

View File

@@ -35,7 +35,7 @@ import torch.nn as nn
import torch.nn.functional as F # noqa: N812
from torch import Tensor
from lerobot.common.constants import OBS_ENV_STATE, OBS_STATE
from lerobot.common.constants import OBS_ENV, OBS_ROBOT
from lerobot.common.policies.normalize import Normalize, Unnormalize
from lerobot.common.policies.pretrained import PreTrainedPolicy
from lerobot.common.policies.tdmpc.configuration_tdmpc import TDMPCConfig
@@ -753,9 +753,9 @@ class TDMPCObservationEncoder(nn.Module):
)
)
if self.config.env_state_feature:
feat.append(self.env_state_enc_layers(obs_dict[OBS_ENV_STATE]))
feat.append(self.env_state_enc_layers(obs_dict[OBS_ENV]))
if self.config.robot_state_feature:
feat.append(self.state_enc_layers(obs_dict[OBS_STATE]))
feat.append(self.state_enc_layers(obs_dict[OBS_ROBOT]))
return torch.stack(feat, dim=0).mean(0)

View File

@@ -66,7 +66,7 @@ class VQBeTConfig(PreTrainedConfig):
within the image size. If None, no cropping is done.
crop_is_random: Whether the crop should be random at training time (it's always a center crop in eval
mode).
pretrained_backbone_weights: Pretrained weights from torchvision to initialize the backbone.
pretrained_backbone_weights: Pretrained weights from torchvision to initalize the backbone.
`None` means no pretrained weights.
use_group_norm: Whether to replace batch normalization with group normalization in the backbone.
The group sizes are set to be about 16 (to be precise, feature_dim // 16).

View File

@@ -485,7 +485,7 @@ class VQBeTHead(nn.Module):
def forward(self, x, **kwargs) -> dict:
# N is the batch size, and T is number of action query tokens, which are process through same GPT
N, T, _ = x.shape
# we calculate N and T side parallelly. Thus, the dimensions would be
# we calculate N and T side parallely. Thus, the dimensions would be
# (batch size * number of action query tokens, action chunk size, action dimension)
x = einops.rearrange(x, "N T WA -> (N T) WA")
@@ -772,7 +772,7 @@ class VqVae(nn.Module):
Encoder and decoder are MLPs consisting of an input, output layer, and hidden layer, respectively.
The vq_layer uses residual VQs.
This class contains functions for training the encoder and decoder along with the residual VQ layer (for training phase 1),
This class contains functions for training the encoder and decoder along with the residual VQ layer (for trainign phase 1),
as well as functions to help BeT training part in training phase 2.
"""

View File

@@ -38,7 +38,7 @@ from lerobot.common.policies.vqbet.configuration_vqbet import VQBeTConfig
This file is part of a VQ-BeT that utilizes code from the following repositories:
- Vector Quantize PyTorch code is licensed under the MIT License:
Original source: https://github.com/lucidrains/vector-quantize-pytorch
Origianl source: https://github.com/lucidrains/vector-quantize-pytorch
- nanoGPT part is an adaptation of Andrej Karpathy's nanoGPT implementation in PyTorch.
Original source: https://github.com/karpathy/nanoGPT
@@ -289,7 +289,7 @@ class GPT(nn.Module):
This file is a part for Residual Vector Quantization that utilizes code from the following repository:
- Phil Wang's vector-quantize-pytorch implementation in PyTorch.
Original source: https://github.com/lucidrains/vector-quantize-pytorch
Origianl source: https://github.com/lucidrains/vector-quantize-pytorch
- The vector-quantize-pytorch code is licensed under the MIT License:
@@ -1349,9 +1349,9 @@ class EuclideanCodebook(nn.Module):
# calculate distributed variance
variance_number = reduce((data - batch_mean) ** 2, "h n d -> h 1 d", "sum")
distributed.all_reduce(variance_number)
batch_variance = variance_number / num_vectors
variance_numer = reduce((data - batch_mean) ** 2, "h n d -> h 1 d", "sum")
distributed.all_reduce(variance_numer)
batch_variance = variance_numer / num_vectors
self.update_with_decay("batch_variance", batch_variance, self.affine_param_batch_decay)

View File

@@ -1,35 +1,64 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import abc
from dataclasses import dataclass
from ..configs import CameraConfig
import draccus
@CameraConfig.register_subclass("intelrealsense")
@dataclass
class RealSenseCameraConfig(CameraConfig):
class CameraConfig(draccus.ChoiceRegistry, abc.ABC):
@property
def type(self) -> str:
return self.get_choice_name(self.__class__)
@CameraConfig.register_subclass("opencv")
@dataclass
class OpenCVCameraConfig(CameraConfig):
"""
Example of tested options for Intel Real Sense D405:
```python
RealSenseCameraConfig(128422271347, 30, 640, 480)
RealSenseCameraConfig(128422271347, 60, 640, 480)
RealSenseCameraConfig(128422271347, 90, 640, 480)
RealSenseCameraConfig(128422271347, 30, 1280, 720)
RealSenseCameraConfig(128422271347, 30, 640, 480, use_depth=True)
RealSenseCameraConfig(128422271347, 30, 640, 480, rotation=90)
OpenCVCameraConfig(0, 30, 640, 480)
OpenCVCameraConfig(0, 60, 640, 480)
OpenCVCameraConfig(0, 90, 640, 480)
OpenCVCameraConfig(0, 30, 1280, 720)
```
"""
camera_index: int
fps: int | None = None
width: int | None = None
height: int | None = None
color_mode: str = "rgb"
channels: int | None = None
rotation: int | None = None
mock: bool = False
def __post_init__(self):
if self.color_mode not in ["rgb", "bgr"]:
raise ValueError(
f"`color_mode` is expected to be 'rgb' or 'bgr', but {self.color_mode} is provided."
)
self.channels = 3
if self.rotation not in [-90, None, 90, 180]:
raise ValueError(f"`rotation` must be in [-90, None, 90, 180] (got {self.rotation})")
@CameraConfig.register_subclass("intelrealsense")
@dataclass
class IntelRealSenseCameraConfig(CameraConfig):
"""
Example of tested options for Intel Real Sense D405:
```python
IntelRealSenseCameraConfig(128422271347, 30, 640, 480)
IntelRealSenseCameraConfig(128422271347, 60, 640, 480)
IntelRealSenseCameraConfig(128422271347, 90, 640, 480)
IntelRealSenseCameraConfig(128422271347, 30, 1280, 720)
IntelRealSenseCameraConfig(128422271347, 30, 640, 480, use_depth=True)
IntelRealSenseCameraConfig(128422271347, 30, 640, 480, rotation=90)
```
"""

View File

@@ -1,17 +1,3 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file contains utilities for recording frames from Intel Realsense cameras.
"""
@@ -31,15 +17,14 @@ from threading import Thread
import numpy as np
from PIL import Image
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from lerobot.common.utils.robot_utils import (
from lerobot.common.robot_devices.cameras.configs import IntelRealSenseCameraConfig
from lerobot.common.robot_devices.utils import (
RobotDeviceAlreadyConnectedError,
RobotDeviceNotConnectedError,
busy_wait,
)
from lerobot.common.utils.utils import capture_timestamp_utc
from ..camera import Camera
from .configuration_realsense import RealSenseCameraConfig
SERIAL_NUMBER_INDEX = 1
@@ -49,7 +34,7 @@ def find_cameras(raise_when_empty=True, mock=False) -> list[dict]:
connected to the computer.
"""
if mock:
import tests.cameras.mock_pyrealsense2 as rs
import tests.mock_pyrealsense2 as rs
else:
import pyrealsense2 as rs
@@ -101,7 +86,7 @@ def save_images_from_cameras(
serial_numbers = [cam["serial_number"] for cam in camera_infos]
if mock:
import tests.cameras.mock_cv2 as cv2
import tests.mock_cv2 as cv2
else:
import cv2
@@ -109,11 +94,13 @@ def save_images_from_cameras(
cameras = []
for cam_sn in serial_numbers:
print(f"{cam_sn=}")
config = RealSenseCameraConfig(serial_number=cam_sn, fps=fps, width=width, height=height, mock=mock)
camera = RealSenseCamera(config)
config = IntelRealSenseCameraConfig(
serial_number=cam_sn, fps=fps, width=width, height=height, mock=mock
)
camera = IntelRealSenseCamera(config)
camera.connect()
print(
f"RealSenseCamera({camera.serial_number}, fps={camera.fps}, width={camera.capture_width}, height={camera.capture_height}, color_mode={camera.color_mode})"
f"IntelRealSenseCamera({camera.serial_number}, fps={camera.fps}, width={camera.width}, height={camera.height}, color_mode={camera.color_mode})"
)
cameras.append(camera)
@@ -165,11 +152,11 @@ def save_images_from_cameras(
camera.disconnect()
class RealSenseCamera(Camera):
class IntelRealSenseCamera:
"""
The RealSenseCamera class is similar to OpenCVCamera class but adds additional features for Intel Real Sense cameras:
The IntelRealSenseCamera class is similar to OpenCVCamera class but adds additional features for Intel Real Sense cameras:
- is instantiated with the serial number of the camera - won't randomly change as it can be the case of OpenCVCamera for Linux,
- can also be instantiated with the camera's name — if it's unique using RealSenseCamera.init_from_name(),
- can also be instantiated with the camera's name — if it's unique using IntelRealSenseCamera.init_from_name(),
- depth map can be returned.
To find the camera indices of your cameras, you can run our utility script that will save a few frames for each camera:
@@ -177,15 +164,15 @@ class RealSenseCamera(Camera):
python lerobot/common/robot_devices/cameras/intelrealsense.py --images-dir outputs/images_from_intelrealsense_cameras
```
When an RealSenseCamera is instantiated, if no specific config is provided, the default fps, width, height and color_mode
When an IntelRealSenseCamera is instantiated, if no specific config is provided, the default fps, width, height and color_mode
of the given camera will be used.
Example of instantiating with a serial number:
```python
from lerobot.common.robot_devices.cameras.configs import RealSenseCameraConfig
from lerobot.common.robot_devices.cameras.configs import IntelRealSenseCameraConfig
config = RealSenseCameraConfig(serial_number=128422271347)
camera = RealSenseCamera(config)
config = IntelRealSenseCameraConfig(serial_number=128422271347)
camera = IntelRealSenseCamera(config)
camera.connect()
color_image = camera.read()
# when done using the camera, consider disconnecting
@@ -194,21 +181,21 @@ class RealSenseCamera(Camera):
Example of instantiating with a name if it's unique:
```
config = RealSenseCameraConfig(name="Intel RealSense D405")
config = IntelRealSenseCameraConfig(name="Intel RealSense D405")
```
Example of changing default fps, width, height and color_mode:
```python
config = RealSenseCameraConfig(serial_number=128422271347, fps=30, width=1280, height=720)
config = RealSenseCameraConfig(serial_number=128422271347, fps=90, width=640, height=480)
config = RealSenseCameraConfig(serial_number=128422271347, fps=90, width=640, height=480, color_mode="bgr")
config = IntelRealSenseCameraConfig(serial_number=128422271347, fps=30, width=1280, height=720)
config = IntelRealSenseCameraConfig(serial_number=128422271347, fps=90, width=640, height=480)
config = IntelRealSenseCameraConfig(serial_number=128422271347, fps=90, width=640, height=480, color_mode="bgr")
# Note: might error out upon `camera.connect()` if these settings are not compatible with the camera
```
Example of returning depth:
```python
config = RealSenseCameraConfig(serial_number=128422271347, use_depth=True)
camera = RealSenseCamera(config)
config = IntelRealSenseCameraConfig(serial_number=128422271347, use_depth=True)
camera = IntelRealSenseCamera(config)
camera.connect()
color_image, depth_map = camera.read()
```
@@ -216,27 +203,16 @@ class RealSenseCamera(Camera):
def __init__(
self,
config: RealSenseCameraConfig,
config: IntelRealSenseCameraConfig,
):
self.config = config
if config.name is not None:
self.serial_number = self.find_serial_number_from_name(config.name)
else:
self.serial_number = config.serial_number
# Store the raw (capture) resolution from the config.
self.capture_width = config.width
self.capture_height = config.height
# If rotated by ±90, swap width and height.
if config.rotation in [-90, 90]:
self.width = config.height
self.height = config.width
else:
self.width = config.width
self.height = config.height
self.fps = config.fps
self.width = config.width
self.height = config.height
self.channels = config.channels
self.color_mode = config.color_mode
self.use_depth = config.use_depth
@@ -252,10 +228,11 @@ class RealSenseCamera(Camera):
self.logs = {}
if self.mock:
import tests.cameras.mock_cv2 as cv2
import tests.mock_cv2 as cv2
else:
import cv2
# TODO(alibets): Do we keep original width/height or do we define them after rotation?
self.rotation = None
if config.rotation == -90:
self.rotation = cv2.ROTATE_90_COUNTERCLOCKWISE
@@ -281,29 +258,27 @@ class RealSenseCamera(Camera):
def connect(self):
if self.is_connected:
raise DeviceAlreadyConnectedError(f"RealSenseCamera({self.serial_number}) is already connected.")
raise RobotDeviceAlreadyConnectedError(
f"IntelRealSenseCamera({self.serial_number}) is already connected."
)
if self.mock:
import tests.cameras.mock_pyrealsense2 as rs
import tests.mock_pyrealsense2 as rs
else:
import pyrealsense2 as rs
config = rs.config()
config.enable_device(str(self.serial_number))
if self.fps and self.capture_width and self.capture_height:
if self.fps and self.width and self.height:
# TODO(rcadene): can we set rgb8 directly?
config.enable_stream(
rs.stream.color, self.capture_width, self.capture_height, rs.format.rgb8, self.fps
)
config.enable_stream(rs.stream.color, self.width, self.height, rs.format.rgb8, self.fps)
else:
config.enable_stream(rs.stream.color)
if self.use_depth:
if self.fps and self.capture_width and self.capture_height:
config.enable_stream(
rs.stream.depth, self.capture_width, self.capture_height, rs.format.z16, self.fps
)
if self.fps and self.width and self.height:
config.enable_stream(rs.stream.depth, self.width, self.height, rs.format.z16, self.fps)
else:
config.enable_stream(rs.stream.depth)
@@ -327,7 +302,7 @@ class RealSenseCamera(Camera):
"To find the serial number you should use, run `python lerobot/common/robot_devices/cameras/intelrealsense.py`."
)
raise OSError(f"Can't access RealSenseCamera({self.serial_number}).")
raise OSError(f"Can't access IntelRealSenseCamera({self.serial_number}).")
color_stream = profile.get_stream(rs.stream.color)
color_profile = color_stream.as_video_stream_profile()
@@ -339,20 +314,20 @@ class RealSenseCamera(Camera):
if self.fps is not None and not math.isclose(self.fps, actual_fps, rel_tol=1e-3):
# Using `OSError` since it's a broad that encompasses issues related to device communication
raise OSError(
f"Can't set {self.fps=} for RealSenseCamera({self.serial_number}). Actual value is {actual_fps}."
f"Can't set {self.fps=} for IntelRealSenseCamera({self.serial_number}). Actual value is {actual_fps}."
)
if self.capture_width is not None and self.capture_width != actual_width:
if self.width is not None and self.width != actual_width:
raise OSError(
f"Can't set {self.capture_width=} for RealSenseCamera({self.serial_number}). Actual value is {actual_width}."
f"Can't set {self.width=} for IntelRealSenseCamera({self.serial_number}). Actual value is {actual_width}."
)
if self.capture_height is not None and self.capture_height != actual_height:
if self.height is not None and self.height != actual_height:
raise OSError(
f"Can't set {self.capture_height=} for RealSenseCamera({self.serial_number}). Actual value is {actual_height}."
f"Can't set {self.height=} for IntelRealSenseCamera({self.serial_number}). Actual value is {actual_height}."
)
self.fps = round(actual_fps)
self.capture_width = round(actual_width)
self.capture_height = round(actual_height)
self.width = round(actual_width)
self.height = round(actual_height)
self.is_connected = True
@@ -367,12 +342,12 @@ class RealSenseCamera(Camera):
If you are reading data from other sensors, we advise to use `camera.async_read()` which is non blocking version of `camera.read()`.
"""
if not self.is_connected:
raise DeviceNotConnectedError(
f"RealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
raise RobotDeviceNotConnectedError(
f"IntelRealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
)
if self.mock:
import tests.cameras.mock_cv2 as cv2
import tests.mock_cv2 as cv2
else:
import cv2
@@ -383,7 +358,7 @@ class RealSenseCamera(Camera):
color_frame = frame.get_color_frame()
if not color_frame:
raise OSError(f"Can't capture color image from RealSenseCamera({self.serial_number}).")
raise OSError(f"Can't capture color image from IntelRealSenseCamera({self.serial_number}).")
color_image = np.asanyarray(color_frame.get_data())
@@ -398,7 +373,7 @@ class RealSenseCamera(Camera):
color_image = cv2.cvtColor(color_image, cv2.COLOR_RGB2BGR)
h, w, _ = color_image.shape
if h != self.capture_height or w != self.capture_width:
if h != self.height or w != self.width:
raise OSError(
f"Can't capture color image with expected height and width ({self.height} x {self.width}). ({h} x {w}) returned instead."
)
@@ -415,12 +390,12 @@ class RealSenseCamera(Camera):
if self.use_depth:
depth_frame = frame.get_depth_frame()
if not depth_frame:
raise OSError(f"Can't capture depth image from RealSenseCamera({self.serial_number}).")
raise OSError(f"Can't capture depth image from IntelRealSenseCamera({self.serial_number}).")
depth_map = np.asanyarray(depth_frame.get_data())
h, w = depth_map.shape
if h != self.capture_height or w != self.capture_width:
if h != self.height or w != self.width:
raise OSError(
f"Can't capture depth map with expected height and width ({self.height} x {self.width}). ({h} x {w}) returned instead."
)
@@ -442,8 +417,8 @@ class RealSenseCamera(Camera):
def async_read(self):
"""Access the latest color image"""
if not self.is_connected:
raise DeviceNotConnectedError(
f"RealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
raise RobotDeviceNotConnectedError(
f"IntelRealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
)
if self.thread is None:
@@ -469,8 +444,8 @@ class RealSenseCamera(Camera):
def disconnect(self):
if not self.is_connected:
raise DeviceNotConnectedError(
f"RealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
raise RobotDeviceNotConnectedError(
f"IntelRealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
)
if self.thread is not None and self.thread.is_alive():
@@ -492,14 +467,14 @@ class RealSenseCamera(Camera):
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Save a few frames using `RealSenseCamera` for all cameras connected to the computer, or a selected subset."
description="Save a few frames using `IntelRealSenseCamera` for all cameras connected to the computer, or a selected subset."
)
parser.add_argument(
"--serial-numbers",
type=int,
nargs="*",
default=None,
help="List of serial numbers used to instantiate the `RealSenseCamera`. If not provided, find and use all available camera indices.",
help="List of serial numbers used to instantiate the `IntelRealSenseCamera`. If not provided, find and use all available camera indices.",
)
parser.add_argument(
"--fps",

View File

@@ -1,17 +1,3 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file contains utilities for recording frames from cameras. For more info look at `OpenCVCamera` docstring.
"""
@@ -29,15 +15,14 @@ from threading import Thread
import numpy as np
from PIL import Image
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from lerobot.common.utils.robot_utils import (
from lerobot.common.robot_devices.cameras.configs import OpenCVCameraConfig
from lerobot.common.robot_devices.utils import (
RobotDeviceAlreadyConnectedError,
RobotDeviceNotConnectedError,
busy_wait,
)
from lerobot.common.utils.utils import capture_timestamp_utc
from ..camera import Camera
from .configuration_opencv import OpenCVCameraConfig
# The maximum opencv device index depends on your operating system. For instance,
# if you have 3 cameras, they should be associated to index 0, 1, and 2. This is the case
# on MacOS. However, on Ubuntu, the indices are different like 6, 16, 23.
@@ -81,7 +66,7 @@ def _find_cameras(
possible_camera_ids: list[int | str], raise_when_empty=False, mock=False
) -> list[int | str]:
if mock:
import tests.cameras.mock_cv2 as cv2
import tests.mock_cv2 as cv2
else:
import cv2
@@ -145,8 +130,8 @@ def save_images_from_cameras(
camera = OpenCVCamera(config)
camera.connect()
print(
f"OpenCVCamera({camera.camera_index}, fps={camera.fps}, width={camera.capture_width}, "
f"height={camera.capture_height}, color_mode={camera.color_mode})"
f"OpenCVCamera({camera.camera_index}, fps={camera.fps}, width={camera.width}, "
f"height={camera.height}, color_mode={camera.color_mode})"
)
cameras.append(camera)
@@ -191,7 +176,7 @@ def save_images_from_cameras(
print(f"Images have been saved to {images_dir}")
class OpenCVCamera(Camera):
class OpenCVCamera:
"""
The OpenCVCamera class allows to efficiently record images from cameras. It relies on opencv2 to communicate
with the cameras. Most cameras are compatible. For more info, see the [Video I/O with OpenCV Overview](https://docs.opencv.org/4.x/d0/da7/videoio_overview.html).
@@ -245,19 +230,9 @@ class OpenCVCamera(Camera):
else:
raise ValueError(f"Please check the provided camera_index: {self.camera_index}")
# Store the raw (capture) resolution from the config.
self.capture_width = config.width
self.capture_height = config.height
# If rotated by ±90, swap width and height.
if config.rotation in [-90, 90]:
self.width = config.height
self.height = config.width
else:
self.width = config.width
self.height = config.height
self.fps = config.fps
self.width = config.width
self.height = config.height
self.channels = config.channels
self.color_mode = config.color_mode
self.mock = config.mock
@@ -270,10 +245,11 @@ class OpenCVCamera(Camera):
self.logs = {}
if self.mock:
import tests.cameras.mock_cv2 as cv2
import tests.mock_cv2 as cv2
else:
import cv2
# TODO(aliberts): Do we keep original width/height or do we define them after rotation?
self.rotation = None
if config.rotation == -90:
self.rotation = cv2.ROTATE_90_COUNTERCLOCKWISE
@@ -284,10 +260,10 @@ class OpenCVCamera(Camera):
def connect(self):
if self.is_connected:
raise DeviceAlreadyConnectedError(f"OpenCVCamera({self.camera_index}) is already connected.")
raise RobotDeviceAlreadyConnectedError(f"OpenCVCamera({self.camera_index}) is already connected.")
if self.mock:
import tests.cameras.mock_cv2 as cv2
import tests.mock_cv2 as cv2
else:
import cv2
@@ -295,20 +271,10 @@ class OpenCVCamera(Camera):
# when other threads are used to save the images.
cv2.setNumThreads(1)
backend = (
cv2.CAP_V4L2
if platform.system() == "Linux"
else cv2.CAP_DSHOW
if platform.system() == "Windows"
else cv2.CAP_AVFOUNDATION
if platform.system() == "Darwin"
else cv2.CAP_ANY
)
camera_idx = f"/dev/video{self.camera_index}" if platform.system() == "Linux" else self.camera_index
# First create a temporary camera trying to access `camera_index`,
# and verify it is a valid camera by calling `isOpened`.
tmp_camera = cv2.VideoCapture(camera_idx, backend)
tmp_camera = cv2.VideoCapture(camera_idx)
is_camera_open = tmp_camera.isOpened()
# Release camera to make it accessible for `find_camera_indices`
tmp_camera.release()
@@ -331,14 +297,14 @@ class OpenCVCamera(Camera):
# Secondly, create the camera that will be used downstream.
# Note: For some unknown reason, calling `isOpened` blocks the camera which then
# needs to be re-created.
self.camera = cv2.VideoCapture(camera_idx, backend)
self.camera = cv2.VideoCapture(camera_idx)
if self.fps is not None:
self.camera.set(cv2.CAP_PROP_FPS, self.fps)
if self.capture_width is not None:
self.camera.set(cv2.CAP_PROP_FRAME_WIDTH, self.capture_width)
if self.capture_height is not None:
self.camera.set(cv2.CAP_PROP_FRAME_HEIGHT, self.capture_height)
if self.width is not None:
self.camera.set(cv2.CAP_PROP_FRAME_WIDTH, self.width)
if self.height is not None:
self.camera.set(cv2.CAP_PROP_FRAME_HEIGHT, self.height)
actual_fps = self.camera.get(cv2.CAP_PROP_FPS)
actual_width = self.camera.get(cv2.CAP_PROP_FRAME_WIDTH)
@@ -350,22 +316,19 @@ class OpenCVCamera(Camera):
raise OSError(
f"Can't set {self.fps=} for OpenCVCamera({self.camera_index}). Actual value is {actual_fps}."
)
if self.capture_width is not None and not math.isclose(
self.capture_width, actual_width, rel_tol=1e-3
):
if self.width is not None and not math.isclose(self.width, actual_width, rel_tol=1e-3):
raise OSError(
f"Can't set {self.capture_width=} for OpenCVCamera({self.camera_index}). Actual value is {actual_width}."
f"Can't set {self.width=} for OpenCVCamera({self.camera_index}). Actual value is {actual_width}."
)
if self.capture_height is not None and not math.isclose(
self.capture_height, actual_height, rel_tol=1e-3
):
if self.height is not None and not math.isclose(self.height, actual_height, rel_tol=1e-3):
raise OSError(
f"Can't set {self.capture_height=} for OpenCVCamera({self.camera_index}). Actual value is {actual_height}."
f"Can't set {self.height=} for OpenCVCamera({self.camera_index}). Actual value is {actual_height}."
)
self.fps = round(actual_fps)
self.capture_width = round(actual_width)
self.capture_height = round(actual_height)
self.width = round(actual_width)
self.height = round(actual_height)
self.is_connected = True
def read(self, temporary_color_mode: str | None = None) -> np.ndarray:
@@ -376,7 +339,7 @@ class OpenCVCamera(Camera):
If you are reading data from other sensors, we advise to use `camera.async_read()` which is non blocking version of `camera.read()`.
"""
if not self.is_connected:
raise DeviceNotConnectedError(
raise RobotDeviceNotConnectedError(
f"OpenCVCamera({self.camera_index}) is not connected. Try running `camera.connect()` first."
)
@@ -399,14 +362,14 @@ class OpenCVCamera(Camera):
# so we convert the image color from BGR to RGB.
if requested_color_mode == "rgb":
if self.mock:
import tests.cameras.mock_cv2 as cv2
import tests.mock_cv2 as cv2
else:
import cv2
color_image = cv2.cvtColor(color_image, cv2.COLOR_BGR2RGB)
h, w, _ = color_image.shape
if h != self.capture_height or w != self.capture_width:
if h != self.height or w != self.width:
raise OSError(
f"Can't capture color image with expected height and width ({self.height} x {self.width}). ({h} x {w}) returned instead."
)
@@ -433,7 +396,7 @@ class OpenCVCamera(Camera):
def async_read(self):
if not self.is_connected:
raise DeviceNotConnectedError(
raise RobotDeviceNotConnectedError(
f"OpenCVCamera({self.camera_index}) is not connected. Try running `camera.connect()` first."
)
@@ -455,7 +418,7 @@ class OpenCVCamera(Camera):
def disconnect(self):
if not self.is_connected:
raise DeviceNotConnectedError(
raise RobotDeviceNotConnectedError(
f"OpenCVCamera({self.camera_index}) is not connected. Try running `camera.connect()` first."
)

View File

@@ -0,0 +1,53 @@
from typing import Protocol
import numpy as np
from lerobot.common.robot_devices.cameras.configs import (
CameraConfig,
IntelRealSenseCameraConfig,
OpenCVCameraConfig,
)
# Defines a camera type
class Camera(Protocol):
def connect(self): ...
def read(self, temporary_color: str | None = None) -> np.ndarray: ...
def async_read(self) -> np.ndarray: ...
def disconnect(self): ...
def make_cameras_from_configs(camera_configs: dict[str, CameraConfig]) -> list[Camera]:
cameras = {}
for key, cfg in camera_configs.items():
if cfg.type == "opencv":
from lerobot.common.robot_devices.cameras.opencv import OpenCVCamera
cameras[key] = OpenCVCamera(cfg)
elif cfg.type == "intelrealsense":
from lerobot.common.robot_devices.cameras.intelrealsense import IntelRealSenseCamera
cameras[key] = IntelRealSenseCamera(cfg)
else:
raise ValueError(f"The motor type '{cfg.type}' is not valid.")
return cameras
def make_camera(camera_type, **kwargs) -> Camera:
if camera_type == "opencv":
from lerobot.common.robot_devices.cameras.opencv import OpenCVCamera
config = OpenCVCameraConfig(**kwargs)
return OpenCVCamera(config)
elif camera_type == "intelrealsense":
from lerobot.common.robot_devices.cameras.intelrealsense import IntelRealSenseCamera
config = IntelRealSenseCameraConfig(**kwargs)
return IntelRealSenseCamera(config)
else:
raise ValueError(f"The camera type '{camera_type}' is not valid.")

View File

@@ -1,25 +1,14 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from dataclasses import dataclass
from pathlib import Path
import draccus
from lerobot.common.robots import RobotConfig
from lerobot.common.robot_devices.robots.configs import RobotConfig
from lerobot.common.utils.utils import auto_select_torch_device, is_amp_available, is_torch_device_available
from lerobot.configs import parser
from lerobot.configs.policies import PreTrainedConfig
from lerobot.configs.train import TrainPipelineConfig
@dataclass
@@ -54,6 +43,11 @@ class RecordControlConfig(ControlConfig):
# Root directory where the dataset will be stored (e.g. 'dataset/path').
root: str | Path | None = None
policy: PreTrainedConfig | None = None
# TODO(rcadene, aliberts): By default, use device and use_amp values from policy checkpoint.
device: str | None = None # cuda | cpu | mps
# `use_amp` determines whether to use Automatic Mixed Precision (AMP) for training and evaluation. With AMP,
# automatic gradient scaling is used.
use_amp: bool | None = None
# Limit the frames per second. By default, uses the policy fps.
fps: int | None = None
# Number of seconds before starting data collection. It allows the robot devices to warmup and synchronize.
@@ -66,13 +60,15 @@ class RecordControlConfig(ControlConfig):
num_episodes: int = 50
# Encode frames in the dataset into video
video: bool = True
# By default, run the computation of the data statistics at the end of data collection. Compute intensive and not required to just replay an episode.
run_compute_stats: bool = True
# Upload dataset to Hugging Face hub.
push_to_hub: bool = True
# Upload on private repository on the Hugging Face hub.
private: bool = False
# Add tags to your dataset on the hub.
tags: list[str] | None = None
# Number of subprocesses handling the saving of frames as PNG. Set to 0 to use threads only;
# Number of subprocesses handling the saving of frames as PNGs. Set to 0 to use threads only;
# set to ≥1 to use subprocesses, each using threads to write images. The best number of processes
# and threads depends on your system. We recommend 4 threads per camera with 0 processes.
# If fps is unstable, adjust the thread count. If still unstable, try using 1 or more subprocesses.
@@ -87,6 +83,9 @@ class RecordControlConfig(ControlConfig):
play_sounds: bool = True
# Resume recording on an existing dataset.
resume: bool = False
# TODO(rcadene, aliberts): remove local_files_only when refactor with dataset as argument
# Use local files only. By default, this script will try to fetch the dataset from the hub if it exists.
local_files_only: bool = False
def __post_init__(self):
# HACK: We parse again the cli args here to get the pretrained path if there was one.
@@ -96,6 +95,27 @@ class RecordControlConfig(ControlConfig):
self.policy = PreTrainedConfig.from_pretrained(policy_path, cli_overrides=cli_overrides)
self.policy.pretrained_path = policy_path
# When no device or use_amp are given, use the one from training config.
if self.device is None or self.use_amp is None:
train_cfg = TrainPipelineConfig.from_pretrained(policy_path)
if self.device is None:
self.device = train_cfg.device
if self.use_amp is None:
self.use_amp = train_cfg.use_amp
# Automatically switch to available device if necessary
if not is_torch_device_available(self.device):
auto_device = auto_select_torch_device()
logging.warning(f"Device '{self.device}' is not available. Switching to '{auto_device}'.")
self.device = auto_device
# Automatically deactivate AMP if necessary
if self.use_amp and not is_amp_available(self.device):
logging.warning(
f"Automatic Mixed Precision (amp) is not available on device '{self.device}'. Deactivating AMP."
)
self.use_amp = False
@ControlConfig.register_subclass("replay")
@dataclass
@@ -110,12 +130,9 @@ class ReplayControlConfig(ControlConfig):
fps: int | None = None
# Use vocal synthesis to read events.
play_sounds: bool = True
@ControlConfig.register_subclass("remote_robot")
@dataclass
class RemoteRobotConfig(ControlConfig):
log_interval: int = 100
# TODO(rcadene, aliberts): remove local_files_only when refactor with dataset as argument
# Use local files only. By default, this script will try to fetch the dataset from the hub if it exists.
local_files_only: bool = False
@dataclass

View File

@@ -1,17 +1,3 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
########################################################################################
# Utilities
########################################################################################
@@ -26,15 +12,15 @@ from functools import cache
import cv2
import torch
import tqdm
from deepdiff import DeepDiff
from termcolor import colored
from lerobot.common.datasets.image_writer import safe_stop_image_writer
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.datasets.utils import get_features_from_robot
from lerobot.common.policies.pretrained import PreTrainedPolicy
from lerobot.common.robots.utils import Robot
from lerobot.common.utils.robot_utils import busy_wait
from lerobot.common.robot_devices.robots.utils import Robot
from lerobot.common.robot_devices.utils import busy_wait
from lerobot.common.utils.utils import get_safe_torch_device, has_method
@@ -194,8 +180,9 @@ def record_episode(
episode_time_s,
display_cameras,
policy,
device,
use_amp,
fps,
single_task,
):
control_loop(
robot=robot,
@@ -204,9 +191,10 @@ def record_episode(
dataset=dataset,
events=events,
policy=policy,
device=device,
use_amp=use_amp,
fps=fps,
teleoperate=policy is None,
single_task=single_task,
)
@@ -218,9 +206,10 @@ def control_loop(
display_cameras=False,
dataset: LeRobotDataset | None = None,
events=None,
policy: PreTrainedPolicy = None,
policy=None,
device: torch.device | str | None = None,
use_amp: bool | None = None,
fps: int | None = None,
single_task: str | None = None,
):
# TODO(rcadene): Add option to record logs
if not robot.is_connected:
@@ -235,12 +224,12 @@ def control_loop(
if teleoperate and policy is not None:
raise ValueError("When `teleoperate` is True, `policy` should be None.")
if dataset is not None and single_task is None:
raise ValueError("You need to provide a task as argument in `single_task`.")
if dataset is not None and fps is not None and dataset.fps != fps:
raise ValueError(f"The dataset fps should be equal to requested fps ({dataset['fps']} != {fps}).")
if isinstance(device, str):
device = get_safe_torch_device(device)
timestamp = 0
start_episode_t = time.perf_counter()
while timestamp < control_time_s:
@@ -252,16 +241,14 @@ def control_loop(
observation = robot.capture_observation()
if policy is not None:
pred_action = predict_action(
observation, policy, get_safe_torch_device(policy.config.device), policy.config.use_amp
)
pred_action = predict_action(observation, policy, device, use_amp)
# Action can eventually be clipped using `max_relative_target`,
# so action actually sent is saved in the dataset.
action = robot.send_action(pred_action)
action = {"action": action}
if dataset is not None:
frame = {**observation, **action, "task": single_task}
frame = {**observation, **action}
dataset.add_frame(frame)
if display_cameras and not is_headless():
@@ -283,18 +270,24 @@ def control_loop(
break
def reset_environment(robot, events, reset_time_s, fps):
def reset_environment(robot, events, reset_time_s):
# TODO(rcadene): refactor warmup_record and reset_environment
# TODO(alibets): allow for teleop during reset
if has_method(robot, "teleop_safety_stop"):
robot.teleop_safety_stop()
control_loop(
robot=robot,
control_time_s=reset_time_s,
events=events,
fps=fps,
teleoperate=True,
)
timestamp = 0
start_vencod_t = time.perf_counter()
# Wait if necessary
with tqdm.tqdm(total=reset_time_s, desc="Waiting") as pbar:
while timestamp < reset_time_s:
time.sleep(1)
timestamp = time.perf_counter() - start_vencod_t
pbar.update(1)
if events["exit_early"]:
events["exit_early"] = False
break
def stop_recording(robot, listener, display_cameras):

View File

@@ -0,0 +1,27 @@
import abc
from dataclasses import dataclass
import draccus
@dataclass
class MotorsBusConfig(draccus.ChoiceRegistry, abc.ABC):
@property
def type(self) -> str:
return self.get_choice_name(self.__class__)
@MotorsBusConfig.register_subclass("dynamixel")
@dataclass
class DynamixelMotorsBusConfig(MotorsBusConfig):
port: str
motors: dict[str, tuple[int, str]]
mock: bool = False
@MotorsBusConfig.register_subclass("feetech")
@dataclass
class FeetechMotorsBusConfig(MotorsBusConfig):
port: str
motors: dict[str, tuple[int, str]]
mock: bool = False

View File

@@ -1,17 +1,3 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import enum
import logging
import math
@@ -22,7 +8,8 @@ from copy import deepcopy
import numpy as np
import tqdm
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from lerobot.common.robot_devices.motors.configs import DynamixelMotorsBusConfig
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
from lerobot.common.utils.utils import capture_timestamp_utc
PROTOCOL_VERSION = 2.0
@@ -255,7 +242,7 @@ class DriveMode(enum.Enum):
class CalibrationMode(enum.Enum):
# Joints with rotational motions are expressed in degrees in nominal range of [-180, 180]
DEGREE = 0
# Joints with linear motions (like gripper of Aloha) are expressed in nominal range of [0, 100]
# Joints with linear motions (like gripper of Aloha) are experessed in nominal range of [0, 100]
LINEAR = 1
@@ -287,10 +274,11 @@ class DynamixelMotorsBus:
motor_index = 6
motor_model = "xl330-m288"
motors_bus = DynamixelMotorsBus(
config = DynamixelMotorsBusConfig(
port="/dev/tty.usbmodem575E0031751",
motors={motor_name: (motor_index, motor_model)},
)
motors_bus = DynamixelMotorsBus(config)
motors_bus.connect()
position = motors_bus.read("Present_Position")
@@ -306,13 +294,11 @@ class DynamixelMotorsBus:
def __init__(
self,
port: str,
motors: dict[str, tuple[int, str]],
mock: bool = False,
config: DynamixelMotorsBusConfig,
):
self.port = port
self.motors = motors
self.mock = mock
self.port = config.port
self.motors = config.motors
self.mock = config.mock
self.model_ctrl_table = deepcopy(MODEL_CONTROL_TABLE)
self.model_resolution = deepcopy(MODEL_RESOLUTION)
@@ -327,12 +313,12 @@ class DynamixelMotorsBus:
def connect(self):
if self.is_connected:
raise DeviceAlreadyConnectedError(
raise RobotDeviceAlreadyConnectedError(
f"DynamixelMotorsBus({self.port}) is already connected. Do not call `motors_bus.connect()` twice."
)
if self.mock:
import tests.motors.mock_dynamixel_sdk as dxl
import tests.mock_dynamixel_sdk as dxl
else:
import dynamixel_sdk as dxl
@@ -356,7 +342,7 @@ class DynamixelMotorsBus:
def reconnect(self):
if self.mock:
import tests.motors.mock_dynamixel_sdk as dxl
import tests.mock_dynamixel_sdk as dxl
else:
import dynamixel_sdk as dxl
@@ -624,7 +610,7 @@ class DynamixelMotorsBus:
# 0-centered resolution range (e.g. [-2048, 2048] for resolution=4096)
values[i] = values[i] / HALF_TURN_DEGREE * (resolution // 2)
# Subtract the homing offsets to come back to actual motor range of values
# Substract the homing offsets to come back to actual motor range of values
# which can be arbitrary.
values[i] -= homing_offset
@@ -646,7 +632,7 @@ class DynamixelMotorsBus:
def read_with_motor_ids(self, motor_models, motor_ids, data_name, num_retry=NUM_READ_RETRY):
if self.mock:
import tests.motors.mock_dynamixel_sdk as dxl
import tests.mock_dynamixel_sdk as dxl
else:
import dynamixel_sdk as dxl
@@ -684,14 +670,14 @@ class DynamixelMotorsBus:
def read(self, data_name, motor_names: str | list[str] | None = None):
if not self.is_connected:
raise DeviceNotConnectedError(
raise RobotDeviceNotConnectedError(
f"DynamixelMotorsBus({self.port}) is not connected. You need to run `motors_bus.connect()`."
)
start_time = time.perf_counter()
if self.mock:
import tests.motors.mock_dynamixel_sdk as dxl
import tests.mock_dynamixel_sdk as dxl
else:
import dynamixel_sdk as dxl
@@ -757,7 +743,7 @@ class DynamixelMotorsBus:
def write_with_motor_ids(self, motor_models, motor_ids, data_name, values, num_retry=NUM_WRITE_RETRY):
if self.mock:
import tests.motors.mock_dynamixel_sdk as dxl
import tests.mock_dynamixel_sdk as dxl
else:
import dynamixel_sdk as dxl
@@ -786,14 +772,14 @@ class DynamixelMotorsBus:
def write(self, data_name, values: int | float | np.ndarray, motor_names: str | list[str] | None = None):
if not self.is_connected:
raise DeviceNotConnectedError(
raise RobotDeviceNotConnectedError(
f"DynamixelMotorsBus({self.port}) is not connected. You need to run `motors_bus.connect()`."
)
start_time = time.perf_counter()
if self.mock:
import tests.motors.mock_dynamixel_sdk as dxl
import tests.mock_dynamixel_sdk as dxl
else:
import dynamixel_sdk as dxl
@@ -855,7 +841,7 @@ class DynamixelMotorsBus:
def disconnect(self):
if not self.is_connected:
raise DeviceNotConnectedError(
raise RobotDeviceNotConnectedError(
f"DynamixelMotorsBus({self.port}) is not connected. Try running `motors_bus.connect()` first."
)
@@ -871,25 +857,3 @@ class DynamixelMotorsBus:
def __del__(self):
if getattr(self, "is_connected", False):
self.disconnect()
def set_operating_mode(arm: DynamixelMotorsBus):
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
raise ValueError("To run set robot preset, the torque must be disabled on all motors.")
# Use 'extended position mode' for all motors except gripper, because in joint mode the servos can't
# rotate more than 360 degrees (from 0 to 4095) And some mistake can happen while assembling the arm,
# you could end up with a servo with a position 0 or 4095 at a crucial point See [
# https://emanual.robotis.com/docs/en/dxl/x/x_series/#operating-mode11]
all_motors_except_gripper = [name for name in arm.motor_names if name != "gripper"]
if len(all_motors_except_gripper) > 0:
# 4 corresponds to Extended Position on Koch motors
arm.write("Operating_Mode", 4, all_motors_except_gripper)
# Use 'position control current based' for gripper to be limited by the limit of the current.
# For the follower gripper, it means it can grasp an object without forcing too much even tho,
# it's goal position is a complete grasp (both gripper fingers are ordered to join and reach a touch).
# For the leader gripper, it means we can use it as a physical trigger, since we can force with our finger
# to make it move, and it will move back to its original target position when we release the force.
# 5 corresponds to Current Controlled Position on Koch gripper motors "xl330-m077, xl330-m288"
arm.write("Operating_Mode", 5, "gripper")

View File

@@ -1,18 +1,6 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import enum
import logging
import math
import time
import traceback
from copy import deepcopy
@@ -20,7 +8,8 @@ from copy import deepcopy
import numpy as np
import tqdm
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from lerobot.common.robot_devices.motors.configs import FeetechMotorsBusConfig
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
from lerobot.common.utils.utils import capture_timestamp_utc
PROTOCOL_VERSION = 0
@@ -29,6 +18,13 @@ TIMEOUT_MS = 1000
MAX_ID_RANGE = 252
# The following bounds define the lower and upper joints range (after calibration).
# For joints in degree (i.e. revolute joints), their nominal range is [-180, 180] degrees
# which corresponds to a half rotation on the left and half rotation on the right.
# Some joints might require higher range, so we allow up to [-270, 270] degrees until
# an error is raised.
LOWER_BOUND_DEGREE = -270
UPPER_BOUND_DEGREE = 270
# For joints in percentage (i.e. joints that move linearly like the prismatic joint of a gripper),
# their nominal range is [0, 100] %. For instance, for Aloha gripper, 0% is fully
# closed, and 100% is fully open. To account for slight calibration issue, we allow up to
@@ -38,6 +34,7 @@ UPPER_BOUND_LINEAR = 110
HALF_TURN_DEGREE = 180
# See this link for STS3215 Memory Table:
# https://docs.google.com/spreadsheets/d/1GVs7W1VS1PqdhA1nW-abeyAHhTUxKUdR/edit?usp=sharing&ouid=116566590112741600240&rtpof=true&sd=true
# data_name: (address, size_byte)
@@ -103,6 +100,8 @@ SCS_SERIES_BAUDRATE_TABLE = {
}
CALIBRATION_REQUIRED = ["Goal_Position", "Present_Position"]
CONVERT_UINT32_TO_INT32_REQUIRED = ["Goal_Position", "Present_Position"]
MODEL_CONTROL_TABLE = {
"scs_series": SCS_SERIES_CONTROL_TABLE,
@@ -124,63 +123,15 @@ NUM_READ_RETRY = 20
NUM_WRITE_RETRY = 20
def convert_ticks_to_degrees(ticks, model):
resolutions = MODEL_RESOLUTION[model]
# Convert the ticks to degrees
return ticks * (360.0 / resolutions)
def convert_degrees_to_ticks(degrees, model):
resolutions = MODEL_RESOLUTION[model]
# Convert degrees to motor ticks
return int(degrees * (resolutions / 360.0))
def adjusted_to_homing_ticks(raw_motor_ticks: int, model: str, motorbus, motor_id: int) -> int:
def convert_degrees_to_steps(degrees: float | np.ndarray, models: str | list[str]) -> np.ndarray:
"""This function converts the degree range to the step range for indicating motors rotation.
It assumes a motor achieves a full rotation by going from -180 degree position to +180.
The motor resolution (e.g. 4096) corresponds to the number of steps needed to achieve a full rotation.
"""
Takes a raw reading [0..(res-1)] (e.g. 0..4095) and shifts it so that '2048'
becomes 0 in the homed coordinate system ([-2048..+2047] for 4096 resolution).
"""
resolutions = MODEL_RESOLUTION[model]
# Shift raw ticks by half-resolution so 2048 -> 0, then wrap [0..res-1].
ticks = (raw_motor_ticks - (resolutions // 2)) % resolutions
# If above halfway, fold it into negative territory => [-2048..+2047].
if ticks > (resolutions // 2):
ticks -= resolutions
# Flip sign if drive_mode is set.
drive_mode = 0
if motorbus.calibration is not None:
drive_mode = motorbus.calibration["drive_mode"][motor_id - 1]
if drive_mode:
ticks *= -1
return ticks
def adjusted_to_motor_ticks(adjusted_pos: int, model: str, motorbus, motor_id: int) -> int:
"""
Inverse of adjusted_to_homing_ticks(). Takes a 'homed' position in [-2048..+2047]
and recovers the raw [0..(res-1)] ticks with 2048 as midpoint.
"""
# Flip sign if drive_mode was set.
drive_mode = 0
if motorbus.calibration is not None:
drive_mode = motorbus.calibration["drive_mode"][motor_id - 1]
if drive_mode:
adjusted_pos *= -1
resolutions = MODEL_RESOLUTION[model]
# Shift by +half-resolution and wrap into [0..res-1].
# This undoes the earlier shift by -half-resolution.
ticks = (adjusted_pos + (resolutions // 2)) % resolutions
return ticks
resolutions = [MODEL_RESOLUTION[model] for model in models]
steps = degrees / 180 * np.array(resolutions) / 2
steps = steps.astype(int)
return steps
def convert_to_bytes(value, bytes, mock=False):
@@ -270,7 +221,7 @@ class DriveMode(enum.Enum):
class CalibrationMode(enum.Enum):
# Joints with rotational motions are expressed in degrees in nominal range of [-180, 180]
DEGREE = 0
# Joints with linear motions (like gripper of Aloha) are expressed in nominal range of [0, 100]
# Joints with linear motions (like gripper of Aloha) are experessed in nominal range of [0, 100]
LINEAR = 1
@@ -302,10 +253,11 @@ class FeetechMotorsBus:
motor_index = 6
motor_model = "sts3215"
motors_bus = FeetechMotorsBus(
config = FeetechMotorsBusConfig(
port="/dev/tty.usbmodem575E0031751",
motors={motor_name: (motor_index, motor_model)},
)
motors_bus = FeetechMotorsBus(config)
motors_bus.connect()
position = motors_bus.read("Present_Position")
@@ -321,13 +273,11 @@ class FeetechMotorsBus:
def __init__(
self,
port: str,
motors: dict[str, tuple[int, str]],
mock: bool = False,
config: FeetechMotorsBusConfig,
):
self.port = port
self.motors = motors
self.mock = mock
self.port = config.port
self.motors = config.motors
self.mock = config.mock
self.model_ctrl_table = deepcopy(MODEL_CONTROL_TABLE)
self.model_resolution = deepcopy(MODEL_RESOLUTION)
@@ -340,14 +290,16 @@ class FeetechMotorsBus:
self.group_writers = {}
self.logs = {}
self.track_positions = {}
def connect(self):
if self.is_connected:
raise DeviceAlreadyConnectedError(
raise RobotDeviceAlreadyConnectedError(
f"FeetechMotorsBus({self.port}) is already connected. Do not call `motors_bus.connect()` twice."
)
if self.mock:
import tests.motors.mock_scservo_sdk as scs
import tests.mock_scservo_sdk as scs
else:
import scservo_sdk as scs
@@ -371,7 +323,7 @@ class FeetechMotorsBus:
def reconnect(self):
if self.mock:
import tests.motors.mock_scservo_sdk as scs
import tests.mock_scservo_sdk as scs
else:
import scservo_sdk as scs
@@ -436,7 +388,33 @@ class FeetechMotorsBus:
def set_calibration(self, calibration: dict[str, list]):
self.calibration = calibration
def apply_calibration_autocorrect(self, values: np.ndarray | list, motor_names: list[str] | None):
"""This function apply the calibration, automatically detects out of range errors for motors values and attempt to correct.
For more info, see docstring of `apply_calibration` and `autocorrect_calibration`.
"""
try:
values = self.apply_calibration(values, motor_names)
except JointOutOfRangeError as e:
print(e)
self.autocorrect_calibration(values, motor_names)
values = self.apply_calibration(values, motor_names)
return values
def apply_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
"""Convert from unsigned int32 joint position range [0, 2**32[ to the universal float32 nominal degree range ]-180.0, 180.0[ with
a "zero position" at 0 degree.
Note: We say "nominal degree range" since the motors can take values outside this range. For instance, 190 degrees, if the motor
rotate more than a half a turn from the zero position. However, most motors can't rotate more than 180 degrees and will stay in this range.
Joints values are original in [0, 2**32[ (unsigned int32). Each motor are expected to complete a full rotation
when given a goal position that is + or - their resolution. For instance, feetech xl330-m077 have a resolution of 4096, and
at any position in their original range, let's say the position 56734, they complete a full rotation clockwise by moving to 60830,
or anticlockwise by moving to 52638. The position in the original range is arbitrary and might change a lot between each motor.
To harmonize between motors of the same model, different robots, or even models of different brands, we propose to work
in the centered nominal degree range ]-180, 180[.
"""
if motor_names is None:
motor_names = self.motor_names
@@ -448,11 +426,34 @@ class FeetechMotorsBus:
calib_mode = self.calibration["calib_mode"][calib_idx]
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
motor_idx, model = self.motors[name]
drive_mode = self.calibration["drive_mode"][calib_idx]
homing_offset = self.calibration["homing_offset"][calib_idx]
_, model = self.motors[name]
resolution = self.model_resolution[model]
# Convert raw motor ticks to homed ticks, then convert the homed ticks to degrees
values[i] = adjusted_to_homing_ticks(values[i], model, self, motor_idx)
values[i] = convert_ticks_to_degrees(values[i], model)
# Update direction of rotation of the motor to match between leader and follower.
# In fact, the motor of the leader for a given joint can be assembled in an
# opposite direction in term of rotation than the motor of the follower on the same joint.
if drive_mode:
values[i] *= -1
# Convert from range [-2**31, 2**31[ to
# nominal range ]-resolution, resolution[ (e.g. ]-2048, 2048[)
values[i] += homing_offset
# Convert from range ]-resolution, resolution[ to
# universal float32 centered degree range ]-180, 180[
values[i] = values[i] / (resolution // 2) * HALF_TURN_DEGREE
if (values[i] < LOWER_BOUND_DEGREE) or (values[i] > UPPER_BOUND_DEGREE):
raise JointOutOfRangeError(
f"Wrong motor position range detected for {name}. "
f"Expected to be in nominal range of [-{HALF_TURN_DEGREE}, {HALF_TURN_DEGREE}] degrees (a full rotation), "
f"with a maximum range of [{LOWER_BOUND_DEGREE}, {UPPER_BOUND_DEGREE}] degrees to account for joints that can rotate a bit more, "
f"but present value is {values[i]} degree. "
"This might be due to a cable connection issue creating an artificial 360 degrees jump in motor values. "
"You need to recalibrate by running: `python lerobot/scripts/control_robot.py calibrate`"
)
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
start_pos = self.calibration["start_pos"][calib_idx]
@@ -474,6 +475,103 @@ class FeetechMotorsBus:
return values
def autocorrect_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
"""This function automatically detects issues with values of motors after calibration, and correct for these issues.
Some motors might have values outside of expected maximum bounds after calibration.
For instance, for a joint in degree, its value can be outside [-270, 270] degrees, which is totally unexpected given
a nominal range of [-180, 180] degrees, which represents half a turn to the left or right starting from zero position.
Known issues:
#1: Motor value randomly shifts of a full turn, caused by hardware/connection errors.
#2: Motor internal homing offset is shifted of a full turn, caused by using default calibration (e.g Aloha).
#3: motor internal homing offset is shifted of less or more than a full turn, caused by using default calibration
or by human error during manual calibration.
Issues #1 and #2 can be solved by shifting the calibration homing offset by a full turn.
Issue #3 will be visually detected by user and potentially captured by the safety feature `max_relative_target`,
that will slow down the motor, raise an error asking to recalibrate. Manual recalibrating will solve the issue.
Note: A full turn corresponds to 360 degrees but also to 4096 steps for a motor resolution of 4096.
"""
if motor_names is None:
motor_names = self.motor_names
# Convert from unsigned int32 original range [0, 2**32] to signed float32 range
values = values.astype(np.float32)
for i, name in enumerate(motor_names):
calib_idx = self.calibration["motor_names"].index(name)
calib_mode = self.calibration["calib_mode"][calib_idx]
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
drive_mode = self.calibration["drive_mode"][calib_idx]
homing_offset = self.calibration["homing_offset"][calib_idx]
_, model = self.motors[name]
resolution = self.model_resolution[model]
if drive_mode:
values[i] *= -1
# Convert from initial range to range [-180, 180] degrees
calib_val = (values[i] + homing_offset) / (resolution // 2) * HALF_TURN_DEGREE
in_range = (calib_val > LOWER_BOUND_DEGREE) and (calib_val < UPPER_BOUND_DEGREE)
# Solve this inequality to find the factor to shift the range into [-180, 180] degrees
# values[i] = (values[i] + homing_offset + resolution * factor) / (resolution // 2) * HALF_TURN_DEGREE
# - HALF_TURN_DEGREE <= (values[i] + homing_offset + resolution * factor) / (resolution // 2) * HALF_TURN_DEGREE <= HALF_TURN_DEGREE
# (- HALF_TURN_DEGREE / HALF_TURN_DEGREE * (resolution // 2) - values[i] - homing_offset) / resolution <= factor <= (HALF_TURN_DEGREE / 180 * (resolution // 2) - values[i] - homing_offset) / resolution
low_factor = (
-HALF_TURN_DEGREE / HALF_TURN_DEGREE * (resolution // 2) - values[i] - homing_offset
) / resolution
upp_factor = (
HALF_TURN_DEGREE / HALF_TURN_DEGREE * (resolution // 2) - values[i] - homing_offset
) / resolution
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
start_pos = self.calibration["start_pos"][calib_idx]
end_pos = self.calibration["end_pos"][calib_idx]
# Convert from initial range to range [0, 100] in %
calib_val = (values[i] - start_pos) / (end_pos - start_pos) * 100
in_range = (calib_val > LOWER_BOUND_LINEAR) and (calib_val < UPPER_BOUND_LINEAR)
# Solve this inequality to find the factor to shift the range into [0, 100] %
# values[i] = (values[i] - start_pos + resolution * factor) / (end_pos + resolution * factor - start_pos - resolution * factor) * 100
# values[i] = (values[i] - start_pos + resolution * factor) / (end_pos - start_pos) * 100
# 0 <= (values[i] - start_pos + resolution * factor) / (end_pos - start_pos) * 100 <= 100
# (start_pos - values[i]) / resolution <= factor <= (end_pos - values[i]) / resolution
low_factor = (start_pos - values[i]) / resolution
upp_factor = (end_pos - values[i]) / resolution
if not in_range:
# Get first integer between the two bounds
if low_factor < upp_factor:
factor = math.ceil(low_factor)
if factor > upp_factor:
raise ValueError(f"No integer found between bounds [{low_factor=}, {upp_factor=}]")
else:
factor = math.ceil(upp_factor)
if factor > low_factor:
raise ValueError(f"No integer found between bounds [{low_factor=}, {upp_factor=}]")
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
out_of_range_str = f"{LOWER_BOUND_DEGREE} < {calib_val} < {UPPER_BOUND_DEGREE} degrees"
in_range_str = f"{LOWER_BOUND_DEGREE} < {calib_val} < {UPPER_BOUND_DEGREE} degrees"
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
out_of_range_str = f"{LOWER_BOUND_LINEAR} < {calib_val} < {UPPER_BOUND_LINEAR} %"
in_range_str = f"{LOWER_BOUND_LINEAR} < {calib_val} < {UPPER_BOUND_LINEAR} %"
logging.warning(
f"Auto-correct calibration of motor '{name}' by shifting value by {abs(factor)} full turns, "
f"from '{out_of_range_str}' to '{in_range_str}'."
)
# A full turn corresponds to 360 degrees but also to 4096 steps for a motor resolution of 4096.
self.calibration["homing_offset"][calib_idx] += resolution * factor
def revert_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
"""Inverse of `apply_calibration`."""
if motor_names is None:
@@ -484,11 +582,23 @@ class FeetechMotorsBus:
calib_mode = self.calibration["calib_mode"][calib_idx]
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
motor_idx, model = self.motors[name]
drive_mode = self.calibration["drive_mode"][calib_idx]
homing_offset = self.calibration["homing_offset"][calib_idx]
_, model = self.motors[name]
resolution = self.model_resolution[model]
# Convert degrees to homed ticks, then convert the homed ticks to raw ticks
values[i] = convert_degrees_to_ticks(values[i], model)
values[i] = adjusted_to_motor_ticks(values[i], model, self, motor_idx)
# Convert from nominal 0-centered degree range [-180, 180] to
# 0-centered resolution range (e.g. [-2048, 2048] for resolution=4096)
values[i] = values[i] / HALF_TURN_DEGREE * (resolution // 2)
# Substract the homing offsets to come back to actual motor range of values
# which can be arbitrary.
values[i] -= homing_offset
# Remove drive mode, which is the rotation direction of the motor, to come back to
# actual motor rotation direction which can be arbitrary.
if drive_mode:
values[i] *= -1
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
start_pos = self.calibration["start_pos"][calib_idx]
@@ -501,9 +611,46 @@ class FeetechMotorsBus:
values = np.round(values).astype(np.int32)
return values
def avoid_rotation_reset(self, values, motor_names, data_name):
if data_name not in self.track_positions:
self.track_positions[data_name] = {
"prev": [None] * len(self.motor_names),
# Assume False at initialization
"below_zero": [False] * len(self.motor_names),
"above_max": [False] * len(self.motor_names),
}
track = self.track_positions[data_name]
if motor_names is None:
motor_names = self.motor_names
for i, name in enumerate(motor_names):
idx = self.motor_names.index(name)
if track["prev"][idx] is None:
track["prev"][idx] = values[i]
continue
# Detect a full rotation occured
if abs(track["prev"][idx] - values[i]) > 2048:
# Position went below 0 and got reset to 4095
if track["prev"][idx] < values[i]:
# So we set negative value by adding a full rotation
values[i] -= 4096
# Position went above 4095 and got reset to 0
elif track["prev"][idx] > values[i]:
# So we add a full rotation
values[i] += 4096
track["prev"][idx] = values[i]
return values
def read_with_motor_ids(self, motor_models, motor_ids, data_name, num_retry=NUM_READ_RETRY):
if self.mock:
import tests.motors.mock_scservo_sdk as scs
import tests.mock_scservo_sdk as scs
else:
import scservo_sdk as scs
@@ -541,12 +688,12 @@ class FeetechMotorsBus:
def read(self, data_name, motor_names: str | list[str] | None = None):
if self.mock:
import tests.motors.mock_scservo_sdk as scs
import tests.mock_scservo_sdk as scs
else:
import scservo_sdk as scs
if not self.is_connected:
raise DeviceNotConnectedError(
raise RobotDeviceNotConnectedError(
f"FeetechMotorsBus({self.port}) is not connected. You need to run `motors_bus.connect()`."
)
@@ -574,7 +721,7 @@ class FeetechMotorsBus:
self.port_handler.ser.reset_output_buffer()
self.port_handler.ser.reset_input_buffer()
# Create new group reader
# create new group reader
self.group_readers[group_key] = scs.GroupSyncRead(
self.port_handler, self.packet_handler, addr, bytes
)
@@ -599,8 +746,15 @@ class FeetechMotorsBus:
values = np.array(values)
# Convert to signed int to use range [-2048, 2048] for our motor positions.
if data_name in CONVERT_UINT32_TO_INT32_REQUIRED:
values = values.astype(np.int32)
if data_name in CALIBRATION_REQUIRED:
values = self.avoid_rotation_reset(values, motor_names, data_name)
if data_name in CALIBRATION_REQUIRED and self.calibration is not None:
values = self.apply_calibration(values, motor_names)
values = self.apply_calibration_autocorrect(values, motor_names)
# log the number of seconds it took to read the data from the motors
delta_ts_name = get_log_name("delta_timestamp_s", "read", data_name, motor_names)
@@ -614,7 +768,7 @@ class FeetechMotorsBus:
def write_with_motor_ids(self, motor_models, motor_ids, data_name, values, num_retry=NUM_WRITE_RETRY):
if self.mock:
import tests.motors.mock_scservo_sdk as scs
import tests.mock_scservo_sdk as scs
else:
import scservo_sdk as scs
@@ -643,14 +797,14 @@ class FeetechMotorsBus:
def write(self, data_name, values: int | float | np.ndarray, motor_names: str | list[str] | None = None):
if not self.is_connected:
raise DeviceNotConnectedError(
raise RobotDeviceNotConnectedError(
f"FeetechMotorsBus({self.port}) is not connected. You need to run `motors_bus.connect()`."
)
start_time = time.perf_counter()
if self.mock:
import tests.motors.mock_scservo_sdk as scs
import tests.mock_scservo_sdk as scs
else:
import scservo_sdk as scs
@@ -712,7 +866,7 @@ class FeetechMotorsBus:
def disconnect(self):
if not self.is_connected:
raise DeviceNotConnectedError(
raise RobotDeviceNotConnectedError(
f"FeetechMotorsBus({self.port}) is not connected. Try running `motors_bus.connect()` first."
)

View File

@@ -0,0 +1,53 @@
from typing import Protocol
from lerobot.common.robot_devices.motors.configs import (
DynamixelMotorsBusConfig,
FeetechMotorsBusConfig,
MotorsBusConfig,
)
class MotorsBus(Protocol):
def motor_names(self): ...
def set_calibration(self): ...
def apply_calibration(self): ...
def revert_calibration(self): ...
def read(self): ...
def write(self): ...
def make_motors_buses_from_configs(motors_bus_configs: dict[str, MotorsBusConfig]) -> list[MotorsBus]:
motors_buses = {}
for key, cfg in motors_bus_configs.items():
if cfg.type == "dynamixel":
from lerobot.common.robot_devices.motors.dynamixel import DynamixelMotorsBus
motors_buses[key] = DynamixelMotorsBus(cfg)
elif cfg.type == "feetech":
from lerobot.common.robot_devices.motors.feetech import FeetechMotorsBus
motors_buses[key] = FeetechMotorsBus(cfg)
else:
raise ValueError(f"The motor type '{cfg.type}' is not valid.")
return motors_buses
def make_motors_bus(motor_type: str, **kwargs) -> MotorsBus:
if motor_type == "dynamixel":
from lerobot.common.robot_devices.motors.dynamixel import DynamixelMotorsBus
config = DynamixelMotorsBusConfig(**kwargs)
return DynamixelMotorsBus(config)
elif motor_type == "feetech":
from lerobot.common.robot_devices.motors.feetech import FeetechMotorsBus
config = FeetechMotorsBusConfig(**kwargs)
return FeetechMotorsBus(config)
else:
raise ValueError(f"The motor type '{motor_type}' is not valid.")

View File

@@ -0,0 +1,516 @@
import abc
from dataclasses import dataclass, field
from typing import Sequence
import draccus
from lerobot.common.robot_devices.cameras.configs import (
CameraConfig,
IntelRealSenseCameraConfig,
OpenCVCameraConfig,
)
from lerobot.common.robot_devices.motors.configs import (
DynamixelMotorsBusConfig,
FeetechMotorsBusConfig,
MotorsBusConfig,
)
@dataclass
class RobotConfig(draccus.ChoiceRegistry, abc.ABC):
@property
def type(self) -> str:
return self.get_choice_name(self.__class__)
# TODO(rcadene, aliberts): remove ManipulatorRobotConfig abstraction
@dataclass
class ManipulatorRobotConfig(RobotConfig):
leader_arms: dict[str, MotorsBusConfig] = field(default_factory=lambda: {})
follower_arms: dict[str, MotorsBusConfig] = field(default_factory=lambda: {})
cameras: dict[str, CameraConfig] = field(default_factory=lambda: {})
# Optionally limit the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length
# as the number of motors in your follower arms (assumes all follower arms have the same number of
# motors).
max_relative_target: list[float] | float | None = None
# Optionally set the leader arm in torque mode with the gripper motor set to this angle. This makes it
# possible to squeeze the gripper and have it spring back to an open position on its own. If None, the
# gripper is not put in torque mode.
gripper_open_degree: float | None = None
mock: bool = False
def __post_init__(self):
if self.mock:
for arm in self.leader_arms.values():
if not arm.mock:
arm.mock = True
for arm in self.follower_arms.values():
if not arm.mock:
arm.mock = True
for cam in self.cameras.values():
if not cam.mock:
cam.mock = True
if self.max_relative_target is not None and isinstance(self.max_relative_target, Sequence):
for name in self.follower_arms:
if len(self.follower_arms[name].motors) != len(self.max_relative_target):
raise ValueError(
f"len(max_relative_target)={len(self.max_relative_target)} but the follower arm with name {name} has "
f"{len(self.follower_arms[name].motors)} motors. Please make sure that the "
f"`max_relative_target` list has as many parameters as there are motors per arm. "
"Note: This feature does not yet work with robots where different follower arms have "
"different numbers of motors."
)
@RobotConfig.register_subclass("aloha")
@dataclass
class AlohaRobotConfig(ManipulatorRobotConfig):
# Specific to Aloha, LeRobot comes with default calibration files. Assuming the motors have been
# properly assembled, no manual calibration step is expected. If you need to run manual calibration,
# simply update this path to ".cache/calibration/aloha"
calibration_dir: str = ".cache/calibration/aloha_default"
# /!\ FOR SAFETY, READ THIS /!\
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
# For Aloha, for every goal position request, motor rotations are capped at 5 degrees by default.
# When you feel more confident with teleoperation or running the policy, you can extend
# this safety limit and even removing it by setting it to `null`.
# Also, everything is expected to work safely out-of-the-box, but we highly advise to
# first try to teleoperate the grippers only (by commenting out the rest of the motors in this yaml),
# then to gradually add more motors (by uncommenting), until you can teleoperate both arms fully
max_relative_target: int | None = 5
leader_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"left": DynamixelMotorsBusConfig(
# window_x
port="/dev/ttyDXL_leader_left",
motors={
# name: (index, model)
"waist": [1, "xm430-w350"],
"shoulder": [2, "xm430-w350"],
"shoulder_shadow": [3, "xm430-w350"],
"elbow": [4, "xm430-w350"],
"elbow_shadow": [5, "xm430-w350"],
"forearm_roll": [6, "xm430-w350"],
"wrist_angle": [7, "xm430-w350"],
"wrist_rotate": [8, "xl430-w250"],
"gripper": [9, "xc430-w150"],
},
),
"right": DynamixelMotorsBusConfig(
# window_x
port="/dev/ttyDXL_leader_right",
motors={
# name: (index, model)
"waist": [1, "xm430-w350"],
"shoulder": [2, "xm430-w350"],
"shoulder_shadow": [3, "xm430-w350"],
"elbow": [4, "xm430-w350"],
"elbow_shadow": [5, "xm430-w350"],
"forearm_roll": [6, "xm430-w350"],
"wrist_angle": [7, "xm430-w350"],
"wrist_rotate": [8, "xl430-w250"],
"gripper": [9, "xc430-w150"],
},
),
}
)
follower_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"left": DynamixelMotorsBusConfig(
port="/dev/ttyDXL_follower_left",
motors={
# name: (index, model)
"waist": [1, "xm540-w270"],
"shoulder": [2, "xm540-w270"],
"shoulder_shadow": [3, "xm540-w270"],
"elbow": [4, "xm540-w270"],
"elbow_shadow": [5, "xm540-w270"],
"forearm_roll": [6, "xm540-w270"],
"wrist_angle": [7, "xm540-w270"],
"wrist_rotate": [8, "xm430-w350"],
"gripper": [9, "xm430-w350"],
},
),
"right": DynamixelMotorsBusConfig(
port="/dev/ttyDXL_follower_right",
motors={
# name: (index, model)
"waist": [1, "xm540-w270"],
"shoulder": [2, "xm540-w270"],
"shoulder_shadow": [3, "xm540-w270"],
"elbow": [4, "xm540-w270"],
"elbow_shadow": [5, "xm540-w270"],
"forearm_roll": [6, "xm540-w270"],
"wrist_angle": [7, "xm540-w270"],
"wrist_rotate": [8, "xm430-w350"],
"gripper": [9, "xm430-w350"],
},
),
}
)
# Troubleshooting: If one of your IntelRealSense cameras freeze during
# data recording due to bandwidth limit, you might need to plug the camera
# on another USB hub or PCIe card.
cameras: dict[str, CameraConfig] = field(
default_factory=lambda: {
"cam_high": IntelRealSenseCameraConfig(
serial_number=128422271347,
fps=30,
width=640,
height=480,
),
"cam_low": IntelRealSenseCameraConfig(
serial_number=130322270656,
fps=30,
width=640,
height=480,
),
"cam_left_wrist": IntelRealSenseCameraConfig(
serial_number=218622272670,
fps=30,
width=640,
height=480,
),
"cam_right_wrist": IntelRealSenseCameraConfig(
serial_number=130322272300,
fps=30,
width=640,
height=480,
),
}
)
mock: bool = False
@RobotConfig.register_subclass("koch")
@dataclass
class KochRobotConfig(ManipulatorRobotConfig):
calibration_dir: str = ".cache/calibration/koch"
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
leader_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": DynamixelMotorsBusConfig(
port="/dev/tty.usbmodem585A0085511",
motors={
# name: (index, model)
"shoulder_pan": [1, "xl330-m077"],
"shoulder_lift": [2, "xl330-m077"],
"elbow_flex": [3, "xl330-m077"],
"wrist_flex": [4, "xl330-m077"],
"wrist_roll": [5, "xl330-m077"],
"gripper": [6, "xl330-m077"],
},
),
}
)
follower_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": DynamixelMotorsBusConfig(
port="/dev/tty.usbmodem585A0076891",
motors={
# name: (index, model)
"shoulder_pan": [1, "xl430-w250"],
"shoulder_lift": [2, "xl430-w250"],
"elbow_flex": [3, "xl330-m288"],
"wrist_flex": [4, "xl330-m288"],
"wrist_roll": [5, "xl330-m288"],
"gripper": [6, "xl330-m288"],
},
),
}
)
cameras: dict[str, CameraConfig] = field(
default_factory=lambda: {
"laptop": OpenCVCameraConfig(
camera_index=0,
fps=30,
width=640,
height=480,
),
"phone": OpenCVCameraConfig(
camera_index=1,
fps=30,
width=640,
height=480,
),
}
)
# ~ Koch specific settings ~
# Sets the leader arm in torque mode with the gripper motor set to this angle. This makes it possible
# to squeeze the gripper and have it spring back to an open position on its own.
gripper_open_degree: float = 35.156
mock: bool = False
@RobotConfig.register_subclass("koch_bimanual")
@dataclass
class KochBimanualRobotConfig(ManipulatorRobotConfig):
calibration_dir: str = ".cache/calibration/koch_bimanual"
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
leader_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"left": DynamixelMotorsBusConfig(
port="/dev/tty.usbmodem585A0085511",
motors={
# name: (index, model)
"shoulder_pan": [1, "xl330-m077"],
"shoulder_lift": [2, "xl330-m077"],
"elbow_flex": [3, "xl330-m077"],
"wrist_flex": [4, "xl330-m077"],
"wrist_roll": [5, "xl330-m077"],
"gripper": [6, "xl330-m077"],
},
),
"right": DynamixelMotorsBusConfig(
port="/dev/tty.usbmodem575E0031751",
motors={
# name: (index, model)
"shoulder_pan": [1, "xl330-m077"],
"shoulder_lift": [2, "xl330-m077"],
"elbow_flex": [3, "xl330-m077"],
"wrist_flex": [4, "xl330-m077"],
"wrist_roll": [5, "xl330-m077"],
"gripper": [6, "xl330-m077"],
},
),
}
)
follower_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"left": DynamixelMotorsBusConfig(
port="/dev/tty.usbmodem585A0076891",
motors={
# name: (index, model)
"shoulder_pan": [1, "xl430-w250"],
"shoulder_lift": [2, "xl430-w250"],
"elbow_flex": [3, "xl330-m288"],
"wrist_flex": [4, "xl330-m288"],
"wrist_roll": [5, "xl330-m288"],
"gripper": [6, "xl330-m288"],
},
),
"right": DynamixelMotorsBusConfig(
port="/dev/tty.usbmodem575E0032081",
motors={
# name: (index, model)
"shoulder_pan": [1, "xl430-w250"],
"shoulder_lift": [2, "xl430-w250"],
"elbow_flex": [3, "xl330-m288"],
"wrist_flex": [4, "xl330-m288"],
"wrist_roll": [5, "xl330-m288"],
"gripper": [6, "xl330-m288"],
},
),
}
)
cameras: dict[str, CameraConfig] = field(
default_factory=lambda: {
"laptop": OpenCVCameraConfig(
camera_index=0,
fps=30,
width=640,
height=480,
),
"phone": OpenCVCameraConfig(
camera_index=1,
fps=30,
width=640,
height=480,
),
}
)
# ~ Koch specific settings ~
# Sets the leader arm in torque mode with the gripper motor set to this angle. This makes it possible
# to squeeze the gripper and have it spring back to an open position on its own.
gripper_open_degree: float = 35.156
mock: bool = False
@RobotConfig.register_subclass("moss")
@dataclass
class MossRobotConfig(ManipulatorRobotConfig):
calibration_dir: str = ".cache/calibration/moss"
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
leader_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
port="/dev/tty.usbmodem58760431091",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
},
),
}
)
follower_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
port="/dev/tty.usbmodem585A0076891",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
},
),
}
)
cameras: dict[str, CameraConfig] = field(
default_factory=lambda: {
"laptop": OpenCVCameraConfig(
camera_index=0,
fps=30,
width=640,
height=480,
),
"phone": OpenCVCameraConfig(
camera_index=1,
fps=30,
width=640,
height=480,
),
}
)
mock: bool = False
@RobotConfig.register_subclass("so100")
@dataclass
class So100RobotConfig(ManipulatorRobotConfig):
calibration_dir: str = ".cache/calibration/so100"
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
leader_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
port="/dev/tty.usbmodem58760431091",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
},
),
}
)
follower_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
port="/dev/tty.usbmodem585A0076891",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
},
),
}
)
cameras: dict[str, CameraConfig] = field(
default_factory=lambda: {
"laptop": OpenCVCameraConfig(
camera_index=0,
fps=30,
width=640,
height=480,
),
"phone": OpenCVCameraConfig(
camera_index=1,
fps=30,
width=640,
height=480,
),
}
)
mock: bool = False
@RobotConfig.register_subclass("stretch")
@dataclass
class StretchRobotConfig(RobotConfig):
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
cameras: dict[str, CameraConfig] = field(
default_factory=lambda: {
"navigation": OpenCVCameraConfig(
camera_index="/dev/hello-nav-head-camera",
fps=10,
width=1280,
height=720,
rotation=-90,
),
"head": IntelRealSenseCameraConfig(
name="Intel RealSense D435I",
fps=30,
width=640,
height=480,
rotation=90,
),
"wrist": IntelRealSenseCameraConfig(
name="Intel RealSense D405",
fps=30,
width=640,
height=480,
),
}
)
mock: bool = False

View File

@@ -1,28 +1,14 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Logic to calibrate a robot arm built with dynamixel motors"""
# TODO(rcadene, aliberts): move this logic into the robot code when refactoring
import numpy as np
from ..motors_bus import MotorsBus
from .dynamixel import (
from lerobot.common.robot_devices.motors.dynamixel import (
CalibrationMode,
TorqueMode,
convert_degrees_to_steps,
)
from lerobot.common.robot_devices.motors.utils import MotorsBus
URL_TEMPLATE = (
"https://raw.githubusercontent.com/huggingface/lerobot/main/media/{robot}/{arm}_{position}.webp"
@@ -101,7 +87,7 @@ def run_arm_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type
# For instance, if the motor rotates 90 degree, and its value is -90 after applying the homing offset, then we know its rotation direction
# is inverted. However, for the calibration being successful, we need everyone to follow the same target position.
# Sometimes, there is only one possible rotation direction. For instance, if the gripper is closed, there is only one direction which
# corresponds to opening the gripper. When the rotation direction is ambiguous, we arbitrarily rotate clockwise from the point of view
# corresponds to opening the gripper. When the rotation direction is ambiguous, we arbitrarely rotate clockwise from the point of view
# of the previous motor in the kinetic chain.
print("\nMove arm to rotated target position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rotated"))
@@ -129,7 +115,7 @@ def run_arm_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type
# TODO(rcadene): make type of joints (DEGREE or LINEAR) configurable from yaml?
if robot_type in ["aloha"] and "gripper" in arm.motor_names:
# Joints with linear motions (like gripper of Aloha) are expressed in nominal range of [0, 100]
# Joints with linear motions (like gripper of Aloha) are experessed in nominal range of [0, 100]
calib_idx = arm.motor_names.index("gripper")
calib_mode[calib_idx] = CalibrationMode.LINEAR.name

View File

@@ -0,0 +1,484 @@
"""Logic to calibrate a robot arm built with feetech motors"""
# TODO(rcadene, aliberts): move this logic into the robot code when refactoring
import time
import numpy as np
from lerobot.common.robot_devices.motors.feetech import (
CalibrationMode,
TorqueMode,
convert_degrees_to_steps,
)
from lerobot.common.robot_devices.motors.utils import MotorsBus
URL_TEMPLATE = (
"https://raw.githubusercontent.com/huggingface/lerobot/main/media/{robot}/{arm}_{position}.webp"
)
# The following positions are provided in nominal degree range ]-180, +180[
# For more info on these constants, see comments in the code where they get used.
ZERO_POSITION_DEGREE = 0
ROTATED_POSITION_DEGREE = 90
def assert_drive_mode(drive_mode):
# `drive_mode` is in [0,1] with 0 means original rotation direction for the motor, and 1 means inverted.
if not np.all(np.isin(drive_mode, [0, 1])):
raise ValueError(f"`drive_mode` contains values other than 0 or 1: ({drive_mode})")
def apply_drive_mode(position, drive_mode):
assert_drive_mode(drive_mode)
# Convert `drive_mode` from [0, 1] with 0 indicates original rotation direction and 1 inverted,
# to [-1, 1] with 1 indicates original rotation direction and -1 inverted.
signed_drive_mode = -(drive_mode * 2 - 1)
position *= signed_drive_mode
return position
def move_until_block(arm, motor_name, positive_direction=True, while_move_hook=None):
count = 0
while True:
present_pos = arm.read("Present_Position", motor_name)
if positive_direction:
# Move +100 steps every time. Lower the steps to lower the speed at which the arm moves.
arm.write("Goal_Position", present_pos + 100, motor_name)
else:
arm.write("Goal_Position", present_pos - 100, motor_name)
if while_move_hook is not None:
while_move_hook()
present_pos = arm.read("Present_Position", motor_name).item()
present_speed = arm.read("Present_Speed", motor_name).item()
present_current = arm.read("Present_Current", motor_name).item()
# present_load = arm.read("Present_Load", motor_name).item()
# present_voltage = arm.read("Present_Voltage", motor_name).item()
# present_temperature = arm.read("Present_Temperature", motor_name).item()
# print(f"{present_pos=}")
# print(f"{present_speed=}")
# print(f"{present_current=}")
# print(f"{present_load=}")
# print(f"{present_voltage=}")
# print(f"{present_temperature=}")
if present_speed == 0 and present_current > 40:
count += 1
if count > 100 or present_current > 300:
return present_pos
else:
count = 0
def move_to_calibrate(
arm,
motor_name,
invert_drive_mode=False,
positive_first=True,
in_between_move_hook=None,
while_move_hook=None,
):
initial_pos = arm.read("Present_Position", motor_name)
if positive_first:
p_present_pos = move_until_block(
arm, motor_name, positive_direction=True, while_move_hook=while_move_hook
)
else:
n_present_pos = move_until_block(
arm, motor_name, positive_direction=False, while_move_hook=while_move_hook
)
if in_between_move_hook is not None:
in_between_move_hook()
if positive_first:
n_present_pos = move_until_block(
arm, motor_name, positive_direction=False, while_move_hook=while_move_hook
)
else:
p_present_pos = move_until_block(
arm, motor_name, positive_direction=True, while_move_hook=while_move_hook
)
zero_pos = (n_present_pos + p_present_pos) / 2
calib_data = {
"initial_pos": initial_pos,
"homing_offset": zero_pos if invert_drive_mode else -zero_pos,
"invert_drive_mode": invert_drive_mode,
"drive_mode": -1 if invert_drive_mode else 0,
"zero_pos": zero_pos,
"start_pos": n_present_pos if invert_drive_mode else p_present_pos,
"end_pos": p_present_pos if invert_drive_mode else n_present_pos,
}
return calib_data
def apply_offset(calib, offset):
calib["zero_pos"] += offset
if calib["drive_mode"]:
calib["homing_offset"] += offset
else:
calib["homing_offset"] -= offset
return calib
def run_arm_auto_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
if robot_type == "so100":
return run_arm_auto_calibration_so100(arm, robot_type, arm_name, arm_type)
elif robot_type == "moss":
return run_arm_auto_calibration_moss(arm, robot_type, arm_name, arm_type)
else:
raise ValueError(robot_type)
def run_arm_auto_calibration_so100(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
"""All the offsets and magic numbers are hand tuned, and are unique to SO-100 follower arms"""
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
raise ValueError("To run calibration, the torque must be disabled on all motors.")
if not (robot_type == "so100" and arm_type == "follower"):
raise NotImplementedError("Auto calibration only supports the follower of so100 arms for now.")
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
print("\nMove arm to initial position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="initial"))
input("Press Enter to continue...")
# Lower the acceleration of the motors (in [0,254])
initial_acceleration = arm.read("Acceleration")
arm.write("Lock", 0)
arm.write("Acceleration", 10)
time.sleep(1)
arm.write("Torque_Enable", TorqueMode.ENABLED.value)
print(f'{arm.read("Present_Position", "elbow_flex")=}')
calib = {}
init_wf_pos = arm.read("Present_Position", "wrist_flex")
init_sl_pos = arm.read("Present_Position", "shoulder_lift")
init_ef_pos = arm.read("Present_Position", "elbow_flex")
arm.write("Goal_Position", init_wf_pos - 800, "wrist_flex")
arm.write("Goal_Position", init_sl_pos + 150 + 1024, "shoulder_lift")
arm.write("Goal_Position", init_ef_pos - 2048, "elbow_flex")
time.sleep(2)
print("Calibrate shoulder_pan")
calib["shoulder_pan"] = move_to_calibrate(arm, "shoulder_pan")
arm.write("Goal_Position", calib["shoulder_pan"]["zero_pos"], "shoulder_pan")
time.sleep(1)
print("Calibrate gripper")
calib["gripper"] = move_to_calibrate(arm, "gripper", invert_drive_mode=True)
time.sleep(1)
print("Calibrate wrist_flex")
calib["wrist_flex"] = move_to_calibrate(arm, "wrist_flex")
calib["wrist_flex"] = apply_offset(calib["wrist_flex"], offset=80)
def in_between_move_hook():
nonlocal arm, calib
time.sleep(2)
ef_pos = arm.read("Present_Position", "elbow_flex")
sl_pos = arm.read("Present_Position", "shoulder_lift")
arm.write("Goal_Position", ef_pos + 1024, "elbow_flex")
arm.write("Goal_Position", sl_pos - 1024, "shoulder_lift")
time.sleep(2)
print("Calibrate elbow_flex")
calib["elbow_flex"] = move_to_calibrate(
arm, "elbow_flex", positive_first=False, in_between_move_hook=in_between_move_hook
)
calib["elbow_flex"] = apply_offset(calib["elbow_flex"], offset=80 - 1024)
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] + 1024 + 512, "elbow_flex")
time.sleep(1)
def in_between_move_hook():
nonlocal arm, calib
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"], "elbow_flex")
print("Calibrate shoulder_lift")
calib["shoulder_lift"] = move_to_calibrate(
arm,
"shoulder_lift",
invert_drive_mode=True,
positive_first=False,
in_between_move_hook=in_between_move_hook,
)
# add an 30 steps as offset to align with body
calib["shoulder_lift"] = apply_offset(calib["shoulder_lift"], offset=1024 - 50)
def while_move_hook():
nonlocal arm, calib
positions = {
"shoulder_lift": round(calib["shoulder_lift"]["zero_pos"] - 1600),
"elbow_flex": round(calib["elbow_flex"]["zero_pos"] + 1700),
"wrist_flex": round(calib["wrist_flex"]["zero_pos"] + 800),
"gripper": round(calib["gripper"]["end_pos"]),
}
arm.write("Goal_Position", list(positions.values()), list(positions.keys()))
arm.write("Goal_Position", round(calib["shoulder_lift"]["zero_pos"] - 1600), "shoulder_lift")
time.sleep(2)
arm.write("Goal_Position", round(calib["elbow_flex"]["zero_pos"] + 1700), "elbow_flex")
time.sleep(2)
arm.write("Goal_Position", round(calib["wrist_flex"]["zero_pos"] + 800), "wrist_flex")
time.sleep(2)
arm.write("Goal_Position", round(calib["gripper"]["end_pos"]), "gripper")
time.sleep(2)
print("Calibrate wrist_roll")
calib["wrist_roll"] = move_to_calibrate(
arm, "wrist_roll", invert_drive_mode=True, positive_first=False, while_move_hook=while_move_hook
)
arm.write("Goal_Position", calib["wrist_roll"]["zero_pos"], "wrist_roll")
time.sleep(1)
arm.write("Goal_Position", calib["gripper"]["start_pos"], "gripper")
time.sleep(1)
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"], "wrist_flex")
time.sleep(1)
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] + 2048, "elbow_flex")
arm.write("Goal_Position", calib["shoulder_lift"]["zero_pos"] - 2048, "shoulder_lift")
time.sleep(1)
arm.write("Goal_Position", calib["shoulder_pan"]["zero_pos"], "shoulder_pan")
time.sleep(1)
calib_modes = []
for name in arm.motor_names:
if name == "gripper":
calib_modes.append(CalibrationMode.LINEAR.name)
else:
calib_modes.append(CalibrationMode.DEGREE.name)
calib_dict = {
"homing_offset": [calib[name]["homing_offset"] for name in arm.motor_names],
"drive_mode": [calib[name]["drive_mode"] for name in arm.motor_names],
"start_pos": [calib[name]["start_pos"] for name in arm.motor_names],
"end_pos": [calib[name]["end_pos"] for name in arm.motor_names],
"calib_mode": calib_modes,
"motor_names": arm.motor_names,
}
# Re-enable original accerlation
arm.write("Lock", 0)
arm.write("Acceleration", initial_acceleration)
time.sleep(1)
return calib_dict
def run_arm_auto_calibration_moss(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
"""All the offsets and magic numbers are hand tuned, and are unique to SO-100 follower arms"""
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
raise ValueError("To run calibration, the torque must be disabled on all motors.")
if not (robot_type == "moss" and arm_type == "follower"):
raise NotImplementedError("Auto calibration only supports the follower of moss arms for now.")
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
print("\nMove arm to initial position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="initial"))
input("Press Enter to continue...")
# Lower the acceleration of the motors (in [0,254])
initial_acceleration = arm.read("Acceleration")
arm.write("Lock", 0)
arm.write("Acceleration", 10)
time.sleep(1)
arm.write("Torque_Enable", TorqueMode.ENABLED.value)
sl_pos = arm.read("Present_Position", "shoulder_lift")
arm.write("Goal_Position", sl_pos - 1024 - 450, "shoulder_lift")
ef_pos = arm.read("Present_Position", "elbow_flex")
arm.write("Goal_Position", ef_pos + 1024 + 450, "elbow_flex")
time.sleep(2)
calib = {}
print("Calibrate shoulder_pan")
calib["shoulder_pan"] = move_to_calibrate(arm, "shoulder_pan")
arm.write("Goal_Position", calib["shoulder_pan"]["zero_pos"], "shoulder_pan")
time.sleep(1)
print("Calibrate gripper")
calib["gripper"] = move_to_calibrate(arm, "gripper", invert_drive_mode=True)
time.sleep(1)
print("Calibrate wrist_flex")
calib["wrist_flex"] = move_to_calibrate(arm, "wrist_flex", invert_drive_mode=True)
calib["wrist_flex"] = apply_offset(calib["wrist_flex"], offset=-210 + 1024)
wr_pos = arm.read("Present_Position", "wrist_roll")
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 1024, "wrist_flex")
time.sleep(1)
arm.write("Goal_Position", wr_pos - 1024, "wrist_roll")
time.sleep(1)
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 2048, "wrist_flex")
time.sleep(1)
arm.write("Goal_Position", calib["gripper"]["end_pos"], "gripper")
time.sleep(1)
print("Calibrate wrist_roll")
calib["wrist_roll"] = move_to_calibrate(arm, "wrist_roll", invert_drive_mode=True)
calib["wrist_roll"] = apply_offset(calib["wrist_roll"], offset=790)
arm.write("Goal_Position", calib["wrist_roll"]["zero_pos"] - 1024, "wrist_roll")
arm.write("Goal_Position", calib["gripper"]["start_pos"], "gripper")
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 1024, "wrist_flex")
time.sleep(1)
arm.write("Goal_Position", calib["wrist_roll"]["zero_pos"], "wrist_roll")
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 2048, "wrist_flex")
def in_between_move_elbow_flex_hook():
nonlocal arm, calib
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"], "wrist_flex")
print("Calibrate elbow_flex")
calib["elbow_flex"] = move_to_calibrate(
arm,
"elbow_flex",
invert_drive_mode=True,
in_between_move_hook=in_between_move_elbow_flex_hook,
)
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 1024, "wrist_flex")
def in_between_move_shoulder_lift_hook():
nonlocal arm, calib
sl = arm.read("Present_Position", "shoulder_lift")
arm.write("Goal_Position", sl - 1500, "shoulder_lift")
time.sleep(1)
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] + 1536, "elbow_flex")
time.sleep(1)
arm.write("Goal_Position", calib["wrist_flex"]["start_pos"], "wrist_flex")
time.sleep(1)
print("Calibrate shoulder_lift")
calib["shoulder_lift"] = move_to_calibrate(
arm, "shoulder_lift", in_between_move_hook=in_between_move_shoulder_lift_hook
)
calib["shoulder_lift"] = apply_offset(calib["shoulder_lift"], offset=-1024)
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 1024, "wrist_flex")
time.sleep(1)
arm.write("Goal_Position", calib["shoulder_lift"]["zero_pos"] + 2048, "shoulder_lift")
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] - 1024 - 400, "elbow_flex")
time.sleep(2)
calib_modes = []
for name in arm.motor_names:
if name == "gripper":
calib_modes.append(CalibrationMode.LINEAR.name)
else:
calib_modes.append(CalibrationMode.DEGREE.name)
calib_dict = {
"homing_offset": [calib[name]["homing_offset"] for name in arm.motor_names],
"drive_mode": [calib[name]["drive_mode"] for name in arm.motor_names],
"start_pos": [calib[name]["start_pos"] for name in arm.motor_names],
"end_pos": [calib[name]["end_pos"] for name in arm.motor_names],
"calib_mode": calib_modes,
"motor_names": arm.motor_names,
}
# Re-enable original accerlation
arm.write("Lock", 0)
arm.write("Acceleration", initial_acceleration)
time.sleep(1)
return calib_dict
def run_arm_manual_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
"""This function ensures that a neural network trained on data collected on a given robot
can work on another robot. For instance before calibration, setting a same goal position
for each motor of two different robots will get two very different positions. But after calibration,
the two robots will move to the same position.To this end, this function computes the homing offset
and the drive mode for each motor of a given robot.
Homing offset is used to shift the motor position to a ]-2048, +2048[ nominal range (when the motor uses 2048 steps
to complete a half a turn). This range is set around an arbitrary "zero position" corresponding to all motor positions
being 0. During the calibration process, you will need to manually move the robot to this "zero position".
Drive mode is used to invert the rotation direction of the motor. This is useful when some motors have been assembled
in the opposite orientation for some robots. During the calibration process, you will need to manually move the robot
to the "rotated position".
After calibration, the homing offsets and drive modes are stored in a cache.
Example of usage:
```python
run_arm_calibration(arm, "so100", "left", "follower")
```
"""
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
raise ValueError("To run calibration, the torque must be disabled on all motors.")
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
print("\nMove arm to zero position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="zero"))
input("Press Enter to continue...")
# We arbitrarily chose our zero target position to be a straight horizontal position with gripper upwards and closed.
# It is easy to identify and all motors are in a "quarter turn" position. Once calibration is done, this position will
# correspond to every motor angle being 0. If you set all 0 as Goal Position, the arm will move in this position.
zero_target_pos = convert_degrees_to_steps(ZERO_POSITION_DEGREE, arm.motor_models)
# Compute homing offset so that `present_position + homing_offset ~= target_position`.
zero_pos = arm.read("Present_Position")
homing_offset = zero_target_pos - zero_pos
# The rotated target position corresponds to a rotation of a quarter turn from the zero position.
# This allows to identify the rotation direction of each motor.
# For instance, if the motor rotates 90 degree, and its value is -90 after applying the homing offset, then we know its rotation direction
# is inverted. However, for the calibration being successful, we need everyone to follow the same target position.
# Sometimes, there is only one possible rotation direction. For instance, if the gripper is closed, there is only one direction which
# corresponds to opening the gripper. When the rotation direction is ambiguous, we arbitrarely rotate clockwise from the point of view
# of the previous motor in the kinetic chain.
print("\nMove arm to rotated target position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rotated"))
input("Press Enter to continue...")
rotated_target_pos = convert_degrees_to_steps(ROTATED_POSITION_DEGREE, arm.motor_models)
# Find drive mode by rotating each motor by a quarter of a turn.
# Drive mode indicates if the motor rotation direction should be inverted (=1) or not (=0).
rotated_pos = arm.read("Present_Position")
drive_mode = (rotated_pos < zero_pos).astype(np.int32)
# Re-compute homing offset to take into account drive mode
rotated_drived_pos = apply_drive_mode(rotated_pos, drive_mode)
homing_offset = rotated_target_pos - rotated_drived_pos
print("\nMove arm to rest position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rest"))
input("Press Enter to continue...")
print()
# Joints with rotational motions are expressed in degrees in nominal range of [-180, 180]
calib_modes = []
for name in arm.motor_names:
if name == "gripper":
calib_modes.append(CalibrationMode.LINEAR.name)
else:
calib_modes.append(CalibrationMode.DEGREE.name)
calib_dict = {
"homing_offset": homing_offset.tolist(),
"drive_mode": drive_mode.tolist(),
"start_pos": zero_pos.tolist(),
"end_pos": rotated_pos.tolist(),
"calib_mode": calib_modes,
"motor_names": arm.motor_names,
}
return calib_dict

Some files were not shown because too many files have changed in this diff Show More