forked from tangger/lerobot
Compare commits
13 Commits
fix_aloha_
...
user/rcade
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
bbf617fd92 | ||
|
|
73f46bac56 | ||
|
|
b0d954c6e1 | ||
|
|
bd3111f28b | ||
|
|
cf15cba5fc | ||
|
|
042e193995 | ||
|
|
d585c73f9f | ||
|
|
504d2aaf48 | ||
|
|
83f4f7f7e8 | ||
|
|
633115d861 | ||
|
|
57fb5fe8a6 | ||
|
|
0b51a335bc | ||
|
|
111cd58f8a |
1
.gitignore
vendored
1
.gitignore
vendored
@@ -121,7 +121,6 @@ celerybeat.pid
|
||||
# Environments
|
||||
.env
|
||||
.venv
|
||||
env/
|
||||
venv/
|
||||
ENV/
|
||||
env.bak/
|
||||
|
||||
55
README.md
55
README.md
@@ -127,13 +127,21 @@ wandb login
|
||||
|
||||
Check out [example 1](./examples/1_load_lerobot_dataset.py) that illustrates how to use our dataset class which automatically download data from the Hugging Face hub.
|
||||
|
||||
You can also locally visualize episodes from a dataset by executing our script from the command line:
|
||||
You can also locally visualize episodes from a dataset on the hub by executing our script from the command line:
|
||||
```bash
|
||||
python lerobot/scripts/visualize_dataset.py \
|
||||
--repo-id lerobot/pusht \
|
||||
--episode-index 0
|
||||
```
|
||||
|
||||
or from a dataset in a local folder with the root `DATA_DIR` environment variable
|
||||
```bash
|
||||
DATA_DIR='./my_local_data_dir' python lerobot/scripts/visualize_dataset.py \
|
||||
--repo-id lerobot/pusht \
|
||||
--episode-index 0
|
||||
```
|
||||
|
||||
|
||||
It will open `rerun.io` and display the camera streams, robot states and actions, like this:
|
||||
|
||||
https://github-production-user-asset-6210df.s3.amazonaws.com/4681518/328035972-fd46b787-b532-47e2-bb6f-fd536a55a7ed.mov?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAVCODYLSA53PQK4ZA%2F20240505%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20240505T172924Z&X-Amz-Expires=300&X-Amz-Signature=d680b26c532eeaf80740f08af3320d22ad0b8a4e4da1bcc4f33142c15b509eda&X-Amz-SignedHeaders=host&actor_id=24889239&key_id=0&repo_id=748713144
|
||||
@@ -141,6 +149,51 @@ https://github-production-user-asset-6210df.s3.amazonaws.com/4681518/328035972-f
|
||||
|
||||
Our script can also visualize datasets stored on a distant server. See `python lerobot/scripts/visualize_dataset.py --help` for more instructions.
|
||||
|
||||
### The `LeRobotDataset` format
|
||||
|
||||
A dataset in `LeRobotDataset` format is very simple to use. It can be loaded from a repository on the Hugging Face hub or a local folder simply with e.g. `dataset = LeRobotDataset("lerobot/aloha_static_coffee")` and can be indexed into like any Hugging Face and Pytorch dataset. For instance `dataset[0]` will retrieve a sample of the dataset observations and actions in pytorch tensors format ready to be fed to a model.
|
||||
|
||||
A specificity of `LeRobotDataset` is that we can retrieve several frames for one sample query. By setting `delta_timestamps` to a list of delta timestamps, e.g. `delta_timestamps = {"observation.image": [-1, -0.5, -0.2, 0]}` one can retrieve, for each query, 4 images including one at -1 second before the current time step, the two others at -0.5 second and -0.2, and the final one at the current time step (0 second). See example [1_load_lerobot_dataset.py](examples/1_load_lerobot_dataset.py) for more details on `delta_timestamps`.
|
||||
|
||||
Under the hood, the `LeRobotDataset` format makes use of several ways to serialize data which can be useful to understand if you plan to work more closely with this format. We tried to make a flexible yet simple dataset format that would cover most type of features and specificities present in reinforcement learning and robotics, in simulation and in real-world, with a focus on cameras and robot states.
|
||||
|
||||
Here are the important details and internal structure organization of a typical `LeRobotDataset` instantiated with `dataset = LeRobotDataset("lerobot/aloha_static_coffee")`. The exact features will change from dataset to dataset but not the main aspects:
|
||||
|
||||
```
|
||||
dataset attributes:
|
||||
├ hf_dataset: a Hugging Face dataset (backed by Arrow/parquet). Typical features example:
|
||||
│ ├ observation.images.cam_high: VideoFrame
|
||||
│ │ VideoFrame = {'path': path to a mp4 video, 'timestamp': float32 timestamp in the video}
|
||||
│ ├ observation.state: List of float32: position of an arm joints (for instance)
|
||||
│ ... (more observations)
|
||||
│ ├ action: List of float32
|
||||
│ ├ episode_index: int64: index of the episode for this sample
|
||||
│ ├ frame_index: int64: index of the frame for this sample in the episode ; starts at 0 for each episode
|
||||
│ ├ timestamp: float32: timestamp in the episode
|
||||
│ ├ next.done: bool: indicates the end of en episode ; True for the last frame in each episode
|
||||
│ └ index: int64: general index in the whole dataset
|
||||
├ episode_data_index: contains 2 tensors with the start and end indices of each episode
|
||||
│ ├ from: 1D int64 tensor of first frame index for each episode: shape (num episodes,) starts with 0
|
||||
│ └ to: 1D int64 tensor of last frame index for each episode: shape (num episodes,)
|
||||
├ stats: a dictionary of statistics (max, mean, min, std) for each feature in the dataset, for instance
|
||||
│ ├ observation.images.cam_high: {'max': tensor with same number of dimensions (e.g. `(c, 1, 1)` for images, `(c,)` for states), etc.}
|
||||
│ ...
|
||||
├ info: a dictionary of metadata on the dataset
|
||||
│ ├ fps: float - frame per second the dataset is recorded/synchronized to
|
||||
│ └ video: bool - indicates if frames are encoded in mp4 video files to save space or stored as png files
|
||||
├ videos_dir: path to where the mp4 videos or png images are stored/accessed
|
||||
└ camera_keys: List of string: the keys to access camera features in the item returned by the dataset (e.g. `["observation.images.cam_high", ...]`)
|
||||
```
|
||||
|
||||
A `LeRobotDataset` is serialised using several widespread file formats for each of its parts, namely:
|
||||
- hf_dataset stored using Hugging Face datasets library serialization to parquet
|
||||
- videos are stored in mp4 format to save space or png files
|
||||
- episode_data_index saved using `safetensor` tensor serializtion format
|
||||
- stats saved using `safetensor` tensor serializtion format
|
||||
- info are saved using JSON
|
||||
|
||||
Dataset can uploaded/downloaded from the HuggingFace hub seamlessly. To work on a local dataset, you can set the `DATA_DIR` environment variable to you root dataset folder as illustrated in the above section on dataset visualization.
|
||||
|
||||
### Evaluate a pretrained policy
|
||||
|
||||
Check out [example 2](./examples/2_evaluate_pretrained_policy.py) that illustrates how to download a pretrained policy from Hugging Face hub, and run an evaluation on its corresponding environment.
|
||||
|
||||
@@ -70,7 +70,7 @@ python lerobot/scripts/train.py policy=act env=aloha
|
||||
|
||||
There are two things to note here:
|
||||
- Config overrides are passed as `param_name=param_value`.
|
||||
- Here we have overridden the defaults section. `policy=act` tells Hydra to use `policy/act.yaml`, and `env=aloha` tells Hydra to use `env/pusht.yaml`.
|
||||
- Here we have overridden the defaults section. `policy=act` tells Hydra to use `policy/act.yaml`, and `env=aloha` tells Hydra to use `env/aloha.yaml`.
|
||||
|
||||
_As an aside: we've set up all of our configurations so that they reproduce state-of-the-art results from papers in the literature._
|
||||
|
||||
|
||||
89
examples/real_robot_example/README.md
Normal file
89
examples/real_robot_example/README.md
Normal file
@@ -0,0 +1,89 @@
|
||||
# Using `lerobot` on a real world arm
|
||||
|
||||
|
||||
In this example, we'll be using `lerobot` on a real world arm to:
|
||||
- record a dataset in the `lerobot` format
|
||||
- (soon) train a policy on it
|
||||
- (soon) run the policy in the real-world
|
||||
|
||||
## Which robotic arm to use
|
||||
|
||||
In this example we're using the [open-source low-cost arm from Alexander Koch](https://github.com/AlexanderKoch-Koch/low_cost_robot) in the specific setup of:
|
||||
- having 6 servos per arm, i.e. using the elbow-to-wrist extension
|
||||
- adding two cameras around it, one on top and one in the front
|
||||
- having a teleoperation arm as well (build the leader and the follower arms in A. Koch repo, both with elbow-to-wrist extensions)
|
||||
|
||||
I'm using these cameras (but the setup should not be sensitive to the exact cameras you're using):
|
||||
- C922 Pro Stream Webcam
|
||||
- Intel(R) RealSense D455 (using only the RGB input)
|
||||
|
||||
|
||||
In general, this example should be very easily extendable to any type of arm using Dynamixel servos with at least one camera by changing a couple of configuration in the gym env.
|
||||
|
||||
## Install the example
|
||||
|
||||
Follow these steps:
|
||||
- install `lerobot`
|
||||
- install the Dynamixel-sdk: `pip install dynamixel-sdk`
|
||||
|
||||
## Usage
|
||||
|
||||
### 0 - record examples
|
||||
|
||||
Run the `record_training_data.py` example, selecting the duration and number of episodes you want to record, e.g.
|
||||
```
|
||||
DATA_DIR='./data' python record_training_data.py \
|
||||
--repo-id=thomwolf/blue_red_sort \
|
||||
--num-episodes=50 \
|
||||
--num-frames=400
|
||||
```
|
||||
|
||||
TODO:
|
||||
- various length episodes
|
||||
- being able to drop episodes
|
||||
- checking uploading to the hub
|
||||
|
||||
### 1 - visualize the dataset
|
||||
|
||||
Use the standard dataset visualization script pointing it to the right folder:
|
||||
```
|
||||
DATA_DIR='./data' python ../../lerobot/scripts/visualize_dataset.py \
|
||||
--repo-id thomwolf/blue_red_sort \
|
||||
--episode-index 0
|
||||
```
|
||||
|
||||
### 2 - Train a policy
|
||||
|
||||
From the example directory let's run this command to train a model using ACT
|
||||
|
||||
```
|
||||
DATA_DIR='./data' python ../../lerobot/scripts/train.py \
|
||||
device=cuda \
|
||||
hydra.searchpath=[file://./train_config/] \
|
||||
hydra.run.dir=./outputs/train/blue_red_sort \
|
||||
dataset_repo_id=thomwolf/blue_red_sort \
|
||||
env=gym_real_world \
|
||||
policy=act_real_world \
|
||||
wandb.enable=false
|
||||
```
|
||||
|
||||
### 3 - Evaluate the policy in the real world
|
||||
|
||||
From the example directory let's run this command to evaluate our policy.
|
||||
The configuration for running the policy is in the checkpoint of the model.
|
||||
You can override parameters as follow:
|
||||
|
||||
```
|
||||
python run_policy.py \
|
||||
-p ./outputs/train/blue_red_sort/checkpoints/last/pretrained_model/
|
||||
env.episode_length=1000
|
||||
```
|
||||
|
||||
|
||||
## Convert a hdf5 dataset recorded with the original ACT repo
|
||||
|
||||
You can convert a dataset from the raw data format of HDF5 files like in: https://github.com/tonyzhaozh/act with the following command:
|
||||
|
||||
```
|
||||
python ./lerobot/scripts/push_dataset_to_hub.py
|
||||
```
|
||||
@@ -0,0 +1,840 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 48,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import torch\n",
|
||||
"from safetensors.torch import load_file, save_file\n",
|
||||
"from pprint import pprint"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 52,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"original_ckpt_path = \"/home/thomwolf/Documents/Github/ACT/checkpoints/blue_red_sort/policy_last.ckpt\"\n",
|
||||
"converted_ckpt_path = \"/home/thomwolf/Documents/Github/ACT/checkpoints/blue_red_sort/model.safetensors\"\n",
|
||||
"\n",
|
||||
"comparison_main_path = \"/home/thomwolf/Documents/Github/lerobot/examples/real_robot_example/outputs/train/blue_red_debug_no_masking/checkpoints/last/pretrained_model/\"\n",
|
||||
"comparison_safetensor_path = comparison_main_path + \"model.safetensors\"\n",
|
||||
"comparison_config_json_path = comparison_main_path + \"config.json\"\n",
|
||||
"comparison_config_yaml_path = comparison_main_path + \"config.yaml\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 28,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"a = torch.load(original_ckpt_path)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"b = load_file(comparison_safetensor_path)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"['model.action_head.bias',\n",
|
||||
" 'model.action_head.weight',\n",
|
||||
" 'model.backbone.bn1.bias',\n",
|
||||
" 'model.backbone.bn1.running_mean',\n",
|
||||
" 'model.backbone.bn1.running_var',\n",
|
||||
" 'model.backbone.bn1.weight',\n",
|
||||
" 'model.backbone.conv1.weight',\n",
|
||||
" 'model.backbone.layer1.0.bn1.bias',\n",
|
||||
" 'model.backbone.layer1.0.bn1.running_mean',\n",
|
||||
" 'model.backbone.layer1.0.bn1.running_var',\n",
|
||||
" 'model.backbone.layer1.0.bn1.weight',\n",
|
||||
" 'model.backbone.layer1.0.bn2.bias',\n",
|
||||
" 'model.backbone.layer1.0.bn2.running_mean',\n",
|
||||
" 'model.backbone.layer1.0.bn2.running_var',\n",
|
||||
" 'model.backbone.layer1.0.bn2.weight',\n",
|
||||
" 'model.backbone.layer1.0.conv1.weight',\n",
|
||||
" 'model.backbone.layer1.0.conv2.weight',\n",
|
||||
" 'model.backbone.layer1.1.bn1.bias',\n",
|
||||
" 'model.backbone.layer1.1.bn1.running_mean',\n",
|
||||
" 'model.backbone.layer1.1.bn1.running_var',\n",
|
||||
" 'model.backbone.layer1.1.bn1.weight',\n",
|
||||
" 'model.backbone.layer1.1.bn2.bias',\n",
|
||||
" 'model.backbone.layer1.1.bn2.running_mean',\n",
|
||||
" 'model.backbone.layer1.1.bn2.running_var',\n",
|
||||
" 'model.backbone.layer1.1.bn2.weight',\n",
|
||||
" 'model.backbone.layer1.1.conv1.weight',\n",
|
||||
" 'model.backbone.layer1.1.conv2.weight',\n",
|
||||
" 'model.backbone.layer2.0.bn1.bias',\n",
|
||||
" 'model.backbone.layer2.0.bn1.running_mean',\n",
|
||||
" 'model.backbone.layer2.0.bn1.running_var',\n",
|
||||
" 'model.backbone.layer2.0.bn1.weight',\n",
|
||||
" 'model.backbone.layer2.0.bn2.bias',\n",
|
||||
" 'model.backbone.layer2.0.bn2.running_mean',\n",
|
||||
" 'model.backbone.layer2.0.bn2.running_var',\n",
|
||||
" 'model.backbone.layer2.0.bn2.weight',\n",
|
||||
" 'model.backbone.layer2.0.conv1.weight',\n",
|
||||
" 'model.backbone.layer2.0.conv2.weight',\n",
|
||||
" 'model.backbone.layer2.0.downsample.0.weight',\n",
|
||||
" 'model.backbone.layer2.0.downsample.1.bias',\n",
|
||||
" 'model.backbone.layer2.0.downsample.1.running_mean',\n",
|
||||
" 'model.backbone.layer2.0.downsample.1.running_var',\n",
|
||||
" 'model.backbone.layer2.0.downsample.1.weight',\n",
|
||||
" 'model.backbone.layer2.1.bn1.bias',\n",
|
||||
" 'model.backbone.layer2.1.bn1.running_mean',\n",
|
||||
" 'model.backbone.layer2.1.bn1.running_var',\n",
|
||||
" 'model.backbone.layer2.1.bn1.weight',\n",
|
||||
" 'model.backbone.layer2.1.bn2.bias',\n",
|
||||
" 'model.backbone.layer2.1.bn2.running_mean',\n",
|
||||
" 'model.backbone.layer2.1.bn2.running_var',\n",
|
||||
" 'model.backbone.layer2.1.bn2.weight',\n",
|
||||
" 'model.backbone.layer2.1.conv1.weight',\n",
|
||||
" 'model.backbone.layer2.1.conv2.weight',\n",
|
||||
" 'model.backbone.layer3.0.bn1.bias',\n",
|
||||
" 'model.backbone.layer3.0.bn1.running_mean',\n",
|
||||
" 'model.backbone.layer3.0.bn1.running_var',\n",
|
||||
" 'model.backbone.layer3.0.bn1.weight',\n",
|
||||
" 'model.backbone.layer3.0.bn2.bias',\n",
|
||||
" 'model.backbone.layer3.0.bn2.running_mean',\n",
|
||||
" 'model.backbone.layer3.0.bn2.running_var',\n",
|
||||
" 'model.backbone.layer3.0.bn2.weight',\n",
|
||||
" 'model.backbone.layer3.0.conv1.weight',\n",
|
||||
" 'model.backbone.layer3.0.conv2.weight',\n",
|
||||
" 'model.backbone.layer3.0.downsample.0.weight',\n",
|
||||
" 'model.backbone.layer3.0.downsample.1.bias',\n",
|
||||
" 'model.backbone.layer3.0.downsample.1.running_mean',\n",
|
||||
" 'model.backbone.layer3.0.downsample.1.running_var',\n",
|
||||
" 'model.backbone.layer3.0.downsample.1.weight',\n",
|
||||
" 'model.backbone.layer3.1.bn1.bias',\n",
|
||||
" 'model.backbone.layer3.1.bn1.running_mean',\n",
|
||||
" 'model.backbone.layer3.1.bn1.running_var',\n",
|
||||
" 'model.backbone.layer3.1.bn1.weight',\n",
|
||||
" 'model.backbone.layer3.1.bn2.bias',\n",
|
||||
" 'model.backbone.layer3.1.bn2.running_mean',\n",
|
||||
" 'model.backbone.layer3.1.bn2.running_var',\n",
|
||||
" 'model.backbone.layer3.1.bn2.weight',\n",
|
||||
" 'model.backbone.layer3.1.conv1.weight',\n",
|
||||
" 'model.backbone.layer3.1.conv2.weight',\n",
|
||||
" 'model.backbone.layer4.0.bn1.bias',\n",
|
||||
" 'model.backbone.layer4.0.bn1.running_mean',\n",
|
||||
" 'model.backbone.layer4.0.bn1.running_var',\n",
|
||||
" 'model.backbone.layer4.0.bn1.weight',\n",
|
||||
" 'model.backbone.layer4.0.bn2.bias',\n",
|
||||
" 'model.backbone.layer4.0.bn2.running_mean',\n",
|
||||
" 'model.backbone.layer4.0.bn2.running_var',\n",
|
||||
" 'model.backbone.layer4.0.bn2.weight',\n",
|
||||
" 'model.backbone.layer4.0.conv1.weight',\n",
|
||||
" 'model.backbone.layer4.0.conv2.weight',\n",
|
||||
" 'model.backbone.layer4.0.downsample.0.weight',\n",
|
||||
" 'model.backbone.layer4.0.downsample.1.bias',\n",
|
||||
" 'model.backbone.layer4.0.downsample.1.running_mean',\n",
|
||||
" 'model.backbone.layer4.0.downsample.1.running_var',\n",
|
||||
" 'model.backbone.layer4.0.downsample.1.weight',\n",
|
||||
" 'model.backbone.layer4.1.bn1.bias',\n",
|
||||
" 'model.backbone.layer4.1.bn1.running_mean',\n",
|
||||
" 'model.backbone.layer4.1.bn1.running_var',\n",
|
||||
" 'model.backbone.layer4.1.bn1.weight',\n",
|
||||
" 'model.backbone.layer4.1.bn2.bias',\n",
|
||||
" 'model.backbone.layer4.1.bn2.running_mean',\n",
|
||||
" 'model.backbone.layer4.1.bn2.running_var',\n",
|
||||
" 'model.backbone.layer4.1.bn2.weight',\n",
|
||||
" 'model.backbone.layer4.1.conv1.weight',\n",
|
||||
" 'model.backbone.layer4.1.conv2.weight',\n",
|
||||
" 'model.decoder.layers.0.linear1.bias',\n",
|
||||
" 'model.decoder.layers.0.linear1.weight',\n",
|
||||
" 'model.decoder.layers.0.linear2.bias',\n",
|
||||
" 'model.decoder.layers.0.linear2.weight',\n",
|
||||
" 'model.decoder.layers.0.multihead_attn.in_proj_bias',\n",
|
||||
" 'model.decoder.layers.0.multihead_attn.in_proj_weight',\n",
|
||||
" 'model.decoder.layers.0.multihead_attn.out_proj.bias',\n",
|
||||
" 'model.decoder.layers.0.multihead_attn.out_proj.weight',\n",
|
||||
" 'model.decoder.layers.0.norm1.bias',\n",
|
||||
" 'model.decoder.layers.0.norm1.weight',\n",
|
||||
" 'model.decoder.layers.0.norm2.bias',\n",
|
||||
" 'model.decoder.layers.0.norm2.weight',\n",
|
||||
" 'model.decoder.layers.0.norm3.bias',\n",
|
||||
" 'model.decoder.layers.0.norm3.weight',\n",
|
||||
" 'model.decoder.layers.0.self_attn.in_proj_bias',\n",
|
||||
" 'model.decoder.layers.0.self_attn.in_proj_weight',\n",
|
||||
" 'model.decoder.layers.0.self_attn.out_proj.bias',\n",
|
||||
" 'model.decoder.layers.0.self_attn.out_proj.weight',\n",
|
||||
" 'model.decoder_pos_embed.weight',\n",
|
||||
" 'model.encoder.layers.0.linear1.bias',\n",
|
||||
" 'model.encoder.layers.0.linear1.weight',\n",
|
||||
" 'model.encoder.layers.0.linear2.bias',\n",
|
||||
" 'model.encoder.layers.0.linear2.weight',\n",
|
||||
" 'model.encoder.layers.0.norm1.bias',\n",
|
||||
" 'model.encoder.layers.0.norm1.weight',\n",
|
||||
" 'model.encoder.layers.0.norm2.bias',\n",
|
||||
" 'model.encoder.layers.0.norm2.weight',\n",
|
||||
" 'model.encoder.layers.0.self_attn.in_proj_bias',\n",
|
||||
" 'model.encoder.layers.0.self_attn.in_proj_weight',\n",
|
||||
" 'model.encoder.layers.0.self_attn.out_proj.bias',\n",
|
||||
" 'model.encoder.layers.0.self_attn.out_proj.weight',\n",
|
||||
" 'model.encoder.layers.1.linear1.bias',\n",
|
||||
" 'model.encoder.layers.1.linear1.weight',\n",
|
||||
" 'model.encoder.layers.1.linear2.bias',\n",
|
||||
" 'model.encoder.layers.1.linear2.weight',\n",
|
||||
" 'model.encoder.layers.1.norm1.bias',\n",
|
||||
" 'model.encoder.layers.1.norm1.weight',\n",
|
||||
" 'model.encoder.layers.1.norm2.bias',\n",
|
||||
" 'model.encoder.layers.1.norm2.weight',\n",
|
||||
" 'model.encoder.layers.1.self_attn.in_proj_bias',\n",
|
||||
" 'model.encoder.layers.1.self_attn.in_proj_weight',\n",
|
||||
" 'model.encoder.layers.1.self_attn.out_proj.bias',\n",
|
||||
" 'model.encoder.layers.1.self_attn.out_proj.weight',\n",
|
||||
" 'model.encoder.layers.2.linear1.bias',\n",
|
||||
" 'model.encoder.layers.2.linear1.weight',\n",
|
||||
" 'model.encoder.layers.2.linear2.bias',\n",
|
||||
" 'model.encoder.layers.2.linear2.weight',\n",
|
||||
" 'model.encoder.layers.2.norm1.bias',\n",
|
||||
" 'model.encoder.layers.2.norm1.weight',\n",
|
||||
" 'model.encoder.layers.2.norm2.bias',\n",
|
||||
" 'model.encoder.layers.2.norm2.weight',\n",
|
||||
" 'model.encoder.layers.2.self_attn.in_proj_bias',\n",
|
||||
" 'model.encoder.layers.2.self_attn.in_proj_weight',\n",
|
||||
" 'model.encoder.layers.2.self_attn.out_proj.bias',\n",
|
||||
" 'model.encoder.layers.2.self_attn.out_proj.weight',\n",
|
||||
" 'model.encoder.layers.3.linear1.bias',\n",
|
||||
" 'model.encoder.layers.3.linear1.weight',\n",
|
||||
" 'model.encoder.layers.3.linear2.bias',\n",
|
||||
" 'model.encoder.layers.3.linear2.weight',\n",
|
||||
" 'model.encoder.layers.3.norm1.bias',\n",
|
||||
" 'model.encoder.layers.3.norm1.weight',\n",
|
||||
" 'model.encoder.layers.3.norm2.bias',\n",
|
||||
" 'model.encoder.layers.3.norm2.weight',\n",
|
||||
" 'model.encoder.layers.3.self_attn.in_proj_bias',\n",
|
||||
" 'model.encoder.layers.3.self_attn.in_proj_weight',\n",
|
||||
" 'model.encoder.layers.3.self_attn.out_proj.bias',\n",
|
||||
" 'model.encoder.layers.3.self_attn.out_proj.weight',\n",
|
||||
" 'model.encoder_img_feat_input_proj.bias',\n",
|
||||
" 'model.encoder_img_feat_input_proj.weight',\n",
|
||||
" 'model.encoder_latent_input_proj.bias',\n",
|
||||
" 'model.encoder_latent_input_proj.weight',\n",
|
||||
" 'model.encoder_robot_and_latent_pos_embed.weight',\n",
|
||||
" 'model.encoder_robot_state_input_proj.bias',\n",
|
||||
" 'model.encoder_robot_state_input_proj.weight',\n",
|
||||
" 'model.vae_encoder.layers.0.linear1.bias',\n",
|
||||
" 'model.vae_encoder.layers.0.linear1.weight',\n",
|
||||
" 'model.vae_encoder.layers.0.linear2.bias',\n",
|
||||
" 'model.vae_encoder.layers.0.linear2.weight',\n",
|
||||
" 'model.vae_encoder.layers.0.norm1.bias',\n",
|
||||
" 'model.vae_encoder.layers.0.norm1.weight',\n",
|
||||
" 'model.vae_encoder.layers.0.norm2.bias',\n",
|
||||
" 'model.vae_encoder.layers.0.norm2.weight',\n",
|
||||
" 'model.vae_encoder.layers.0.self_attn.in_proj_bias',\n",
|
||||
" 'model.vae_encoder.layers.0.self_attn.in_proj_weight',\n",
|
||||
" 'model.vae_encoder.layers.0.self_attn.out_proj.bias',\n",
|
||||
" 'model.vae_encoder.layers.0.self_attn.out_proj.weight',\n",
|
||||
" 'model.vae_encoder.layers.1.linear1.bias',\n",
|
||||
" 'model.vae_encoder.layers.1.linear1.weight',\n",
|
||||
" 'model.vae_encoder.layers.1.linear2.bias',\n",
|
||||
" 'model.vae_encoder.layers.1.linear2.weight',\n",
|
||||
" 'model.vae_encoder.layers.1.norm1.bias',\n",
|
||||
" 'model.vae_encoder.layers.1.norm1.weight',\n",
|
||||
" 'model.vae_encoder.layers.1.norm2.bias',\n",
|
||||
" 'model.vae_encoder.layers.1.norm2.weight',\n",
|
||||
" 'model.vae_encoder.layers.1.self_attn.in_proj_bias',\n",
|
||||
" 'model.vae_encoder.layers.1.self_attn.in_proj_weight',\n",
|
||||
" 'model.vae_encoder.layers.1.self_attn.out_proj.bias',\n",
|
||||
" 'model.vae_encoder.layers.1.self_attn.out_proj.weight',\n",
|
||||
" 'model.vae_encoder.layers.2.linear1.bias',\n",
|
||||
" 'model.vae_encoder.layers.2.linear1.weight',\n",
|
||||
" 'model.vae_encoder.layers.2.linear2.bias',\n",
|
||||
" 'model.vae_encoder.layers.2.linear2.weight',\n",
|
||||
" 'model.vae_encoder.layers.2.norm1.bias',\n",
|
||||
" 'model.vae_encoder.layers.2.norm1.weight',\n",
|
||||
" 'model.vae_encoder.layers.2.norm2.bias',\n",
|
||||
" 'model.vae_encoder.layers.2.norm2.weight',\n",
|
||||
" 'model.vae_encoder.layers.2.self_attn.in_proj_bias',\n",
|
||||
" 'model.vae_encoder.layers.2.self_attn.in_proj_weight',\n",
|
||||
" 'model.vae_encoder.layers.2.self_attn.out_proj.bias',\n",
|
||||
" 'model.vae_encoder.layers.2.self_attn.out_proj.weight',\n",
|
||||
" 'model.vae_encoder.layers.3.linear1.bias',\n",
|
||||
" 'model.vae_encoder.layers.3.linear1.weight',\n",
|
||||
" 'model.vae_encoder.layers.3.linear2.bias',\n",
|
||||
" 'model.vae_encoder.layers.3.linear2.weight',\n",
|
||||
" 'model.vae_encoder.layers.3.norm1.bias',\n",
|
||||
" 'model.vae_encoder.layers.3.norm1.weight',\n",
|
||||
" 'model.vae_encoder.layers.3.norm2.bias',\n",
|
||||
" 'model.vae_encoder.layers.3.norm2.weight',\n",
|
||||
" 'model.vae_encoder.layers.3.self_attn.in_proj_bias',\n",
|
||||
" 'model.vae_encoder.layers.3.self_attn.in_proj_weight',\n",
|
||||
" 'model.vae_encoder.layers.3.self_attn.out_proj.bias',\n",
|
||||
" 'model.vae_encoder.layers.3.self_attn.out_proj.weight',\n",
|
||||
" 'model.vae_encoder_action_input_proj.bias',\n",
|
||||
" 'model.vae_encoder_action_input_proj.weight',\n",
|
||||
" 'model.vae_encoder_cls_embed.weight',\n",
|
||||
" 'model.vae_encoder_latent_output_proj.bias',\n",
|
||||
" 'model.vae_encoder_latent_output_proj.weight',\n",
|
||||
" 'model.vae_encoder_pos_enc',\n",
|
||||
" 'model.vae_encoder_robot_state_input_proj.bias',\n",
|
||||
" 'model.vae_encoder_robot_state_input_proj.weight',\n",
|
||||
" 'normalize_inputs.buffer_observation_images_front.mean',\n",
|
||||
" 'normalize_inputs.buffer_observation_images_front.std',\n",
|
||||
" 'normalize_inputs.buffer_observation_images_top.mean',\n",
|
||||
" 'normalize_inputs.buffer_observation_images_top.std',\n",
|
||||
" 'normalize_inputs.buffer_observation_state.mean',\n",
|
||||
" 'normalize_inputs.buffer_observation_state.std',\n",
|
||||
" 'normalize_targets.buffer_action.mean',\n",
|
||||
" 'normalize_targets.buffer_action.std',\n",
|
||||
" 'unnormalize_outputs.buffer_action.mean',\n",
|
||||
" 'unnormalize_outputs.buffer_action.std']\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"dest = list(b.keys())\n",
|
||||
"pprint(dest)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 29,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"['model.pos_table',\n",
|
||||
" 'model.transformer.encoder.layers.0.self_attn.in_proj_weight',\n",
|
||||
" 'model.transformer.encoder.layers.0.self_attn.in_proj_bias',\n",
|
||||
" 'model.transformer.encoder.layers.0.self_attn.out_proj.weight',\n",
|
||||
" 'model.transformer.encoder.layers.0.self_attn.out_proj.bias',\n",
|
||||
" 'model.transformer.encoder.layers.0.linear1.weight',\n",
|
||||
" 'model.transformer.encoder.layers.0.linear1.bias',\n",
|
||||
" 'model.transformer.encoder.layers.0.linear2.weight',\n",
|
||||
" 'model.transformer.encoder.layers.0.linear2.bias',\n",
|
||||
" 'model.transformer.encoder.layers.0.norm1.weight',\n",
|
||||
" 'model.transformer.encoder.layers.0.norm1.bias',\n",
|
||||
" 'model.transformer.encoder.layers.0.norm2.weight',\n",
|
||||
" 'model.transformer.encoder.layers.0.norm2.bias',\n",
|
||||
" 'model.transformer.encoder.layers.1.self_attn.in_proj_weight',\n",
|
||||
" 'model.transformer.encoder.layers.1.self_attn.in_proj_bias',\n",
|
||||
" 'model.transformer.encoder.layers.1.self_attn.out_proj.weight',\n",
|
||||
" 'model.transformer.encoder.layers.1.self_attn.out_proj.bias',\n",
|
||||
" 'model.transformer.encoder.layers.1.linear1.weight',\n",
|
||||
" 'model.transformer.encoder.layers.1.linear1.bias',\n",
|
||||
" 'model.transformer.encoder.layers.1.linear2.weight',\n",
|
||||
" 'model.transformer.encoder.layers.1.linear2.bias',\n",
|
||||
" 'model.transformer.encoder.layers.1.norm1.weight',\n",
|
||||
" 'model.transformer.encoder.layers.1.norm1.bias',\n",
|
||||
" 'model.transformer.encoder.layers.1.norm2.weight',\n",
|
||||
" 'model.transformer.encoder.layers.1.norm2.bias',\n",
|
||||
" 'model.transformer.encoder.layers.2.self_attn.in_proj_weight',\n",
|
||||
" 'model.transformer.encoder.layers.2.self_attn.in_proj_bias',\n",
|
||||
" 'model.transformer.encoder.layers.2.self_attn.out_proj.weight',\n",
|
||||
" 'model.transformer.encoder.layers.2.self_attn.out_proj.bias',\n",
|
||||
" 'model.transformer.encoder.layers.2.linear1.weight',\n",
|
||||
" 'model.transformer.encoder.layers.2.linear1.bias',\n",
|
||||
" 'model.transformer.encoder.layers.2.linear2.weight',\n",
|
||||
" 'model.transformer.encoder.layers.2.linear2.bias',\n",
|
||||
" 'model.transformer.encoder.layers.2.norm1.weight',\n",
|
||||
" 'model.transformer.encoder.layers.2.norm1.bias',\n",
|
||||
" 'model.transformer.encoder.layers.2.norm2.weight',\n",
|
||||
" 'model.transformer.encoder.layers.2.norm2.bias',\n",
|
||||
" 'model.transformer.encoder.layers.3.self_attn.in_proj_weight',\n",
|
||||
" 'model.transformer.encoder.layers.3.self_attn.in_proj_bias',\n",
|
||||
" 'model.transformer.encoder.layers.3.self_attn.out_proj.weight',\n",
|
||||
" 'model.transformer.encoder.layers.3.self_attn.out_proj.bias',\n",
|
||||
" 'model.transformer.encoder.layers.3.linear1.weight',\n",
|
||||
" 'model.transformer.encoder.layers.3.linear1.bias',\n",
|
||||
" 'model.transformer.encoder.layers.3.linear2.weight',\n",
|
||||
" 'model.transformer.encoder.layers.3.linear2.bias',\n",
|
||||
" 'model.transformer.encoder.layers.3.norm1.weight',\n",
|
||||
" 'model.transformer.encoder.layers.3.norm1.bias',\n",
|
||||
" 'model.transformer.encoder.layers.3.norm2.weight',\n",
|
||||
" 'model.transformer.encoder.layers.3.norm2.bias',\n",
|
||||
" 'model.transformer.decoder.layers.0.self_attn.in_proj_weight',\n",
|
||||
" 'model.transformer.decoder.layers.0.self_attn.in_proj_bias',\n",
|
||||
" 'model.transformer.decoder.layers.0.self_attn.out_proj.weight',\n",
|
||||
" 'model.transformer.decoder.layers.0.self_attn.out_proj.bias',\n",
|
||||
" 'model.transformer.decoder.layers.0.multihead_attn.in_proj_weight',\n",
|
||||
" 'model.transformer.decoder.layers.0.multihead_attn.in_proj_bias',\n",
|
||||
" 'model.transformer.decoder.layers.0.multihead_attn.out_proj.weight',\n",
|
||||
" 'model.transformer.decoder.layers.0.multihead_attn.out_proj.bias',\n",
|
||||
" 'model.transformer.decoder.layers.0.linear1.weight',\n",
|
||||
" 'model.transformer.decoder.layers.0.linear1.bias',\n",
|
||||
" 'model.transformer.decoder.layers.0.linear2.weight',\n",
|
||||
" 'model.transformer.decoder.layers.0.linear2.bias',\n",
|
||||
" 'model.transformer.decoder.layers.0.norm1.weight',\n",
|
||||
" 'model.transformer.decoder.layers.0.norm1.bias',\n",
|
||||
" 'model.transformer.decoder.layers.0.norm2.weight',\n",
|
||||
" 'model.transformer.decoder.layers.0.norm2.bias',\n",
|
||||
" 'model.transformer.decoder.layers.0.norm3.weight',\n",
|
||||
" 'model.transformer.decoder.layers.0.norm3.bias',\n",
|
||||
" 'model.transformer.decoder.layers.1.self_attn.in_proj_weight',\n",
|
||||
" 'model.transformer.decoder.layers.1.self_attn.in_proj_bias',\n",
|
||||
" 'model.transformer.decoder.layers.1.self_attn.out_proj.weight',\n",
|
||||
" 'model.transformer.decoder.layers.1.self_attn.out_proj.bias',\n",
|
||||
" 'model.transformer.decoder.layers.1.multihead_attn.in_proj_weight',\n",
|
||||
" 'model.transformer.decoder.layers.1.multihead_attn.in_proj_bias',\n",
|
||||
" 'model.transformer.decoder.layers.1.multihead_attn.out_proj.weight',\n",
|
||||
" 'model.transformer.decoder.layers.1.multihead_attn.out_proj.bias',\n",
|
||||
" 'model.transformer.decoder.layers.1.linear1.weight',\n",
|
||||
" 'model.transformer.decoder.layers.1.linear1.bias',\n",
|
||||
" 'model.transformer.decoder.layers.1.linear2.weight',\n",
|
||||
" 'model.transformer.decoder.layers.1.linear2.bias',\n",
|
||||
" 'model.transformer.decoder.layers.1.norm1.weight',\n",
|
||||
" 'model.transformer.decoder.layers.1.norm1.bias',\n",
|
||||
" 'model.transformer.decoder.layers.1.norm2.weight',\n",
|
||||
" 'model.transformer.decoder.layers.1.norm2.bias',\n",
|
||||
" 'model.transformer.decoder.layers.1.norm3.weight',\n",
|
||||
" 'model.transformer.decoder.layers.1.norm3.bias',\n",
|
||||
" 'model.transformer.decoder.layers.2.self_attn.in_proj_weight',\n",
|
||||
" 'model.transformer.decoder.layers.2.self_attn.in_proj_bias',\n",
|
||||
" 'model.transformer.decoder.layers.2.self_attn.out_proj.weight',\n",
|
||||
" 'model.transformer.decoder.layers.2.self_attn.out_proj.bias',\n",
|
||||
" 'model.transformer.decoder.layers.2.multihead_attn.in_proj_weight',\n",
|
||||
" 'model.transformer.decoder.layers.2.multihead_attn.in_proj_bias',\n",
|
||||
" 'model.transformer.decoder.layers.2.multihead_attn.out_proj.weight',\n",
|
||||
" 'model.transformer.decoder.layers.2.multihead_attn.out_proj.bias',\n",
|
||||
" 'model.transformer.decoder.layers.2.linear1.weight',\n",
|
||||
" 'model.transformer.decoder.layers.2.linear1.bias',\n",
|
||||
" 'model.transformer.decoder.layers.2.linear2.weight',\n",
|
||||
" 'model.transformer.decoder.layers.2.linear2.bias',\n",
|
||||
" 'model.transformer.decoder.layers.2.norm1.weight',\n",
|
||||
" 'model.transformer.decoder.layers.2.norm1.bias',\n",
|
||||
" 'model.transformer.decoder.layers.2.norm2.weight',\n",
|
||||
" 'model.transformer.decoder.layers.2.norm2.bias',\n",
|
||||
" 'model.transformer.decoder.layers.2.norm3.weight',\n",
|
||||
" 'model.transformer.decoder.layers.2.norm3.bias',\n",
|
||||
" 'model.transformer.decoder.layers.3.self_attn.in_proj_weight',\n",
|
||||
" 'model.transformer.decoder.layers.3.self_attn.in_proj_bias',\n",
|
||||
" 'model.transformer.decoder.layers.3.self_attn.out_proj.weight',\n",
|
||||
" 'model.transformer.decoder.layers.3.self_attn.out_proj.bias',\n",
|
||||
" 'model.transformer.decoder.layers.3.multihead_attn.in_proj_weight',\n",
|
||||
" 'model.transformer.decoder.layers.3.multihead_attn.in_proj_bias',\n",
|
||||
" 'model.transformer.decoder.layers.3.multihead_attn.out_proj.weight',\n",
|
||||
" 'model.transformer.decoder.layers.3.multihead_attn.out_proj.bias',\n",
|
||||
" 'model.transformer.decoder.layers.3.linear1.weight',\n",
|
||||
" 'model.transformer.decoder.layers.3.linear1.bias',\n",
|
||||
" 'model.transformer.decoder.layers.3.linear2.weight',\n",
|
||||
" 'model.transformer.decoder.layers.3.linear2.bias',\n",
|
||||
" 'model.transformer.decoder.layers.3.norm1.weight',\n",
|
||||
" 'model.transformer.decoder.layers.3.norm1.bias',\n",
|
||||
" 'model.transformer.decoder.layers.3.norm2.weight',\n",
|
||||
" 'model.transformer.decoder.layers.3.norm2.bias',\n",
|
||||
" 'model.transformer.decoder.layers.3.norm3.weight',\n",
|
||||
" 'model.transformer.decoder.layers.3.norm3.bias',\n",
|
||||
" 'model.transformer.decoder.layers.4.self_attn.in_proj_weight',\n",
|
||||
" 'model.transformer.decoder.layers.4.self_attn.in_proj_bias',\n",
|
||||
" 'model.transformer.decoder.layers.4.self_attn.out_proj.weight',\n",
|
||||
" 'model.transformer.decoder.layers.4.self_attn.out_proj.bias',\n",
|
||||
" 'model.transformer.decoder.layers.4.multihead_attn.in_proj_weight',\n",
|
||||
" 'model.transformer.decoder.layers.4.multihead_attn.in_proj_bias',\n",
|
||||
" 'model.transformer.decoder.layers.4.multihead_attn.out_proj.weight',\n",
|
||||
" 'model.transformer.decoder.layers.4.multihead_attn.out_proj.bias',\n",
|
||||
" 'model.transformer.decoder.layers.4.linear1.weight',\n",
|
||||
" 'model.transformer.decoder.layers.4.linear1.bias',\n",
|
||||
" 'model.transformer.decoder.layers.4.linear2.weight',\n",
|
||||
" 'model.transformer.decoder.layers.4.linear2.bias',\n",
|
||||
" 'model.transformer.decoder.layers.4.norm1.weight',\n",
|
||||
" 'model.transformer.decoder.layers.4.norm1.bias',\n",
|
||||
" 'model.transformer.decoder.layers.4.norm2.weight',\n",
|
||||
" 'model.transformer.decoder.layers.4.norm2.bias',\n",
|
||||
" 'model.transformer.decoder.layers.4.norm3.weight',\n",
|
||||
" 'model.transformer.decoder.layers.4.norm3.bias',\n",
|
||||
" 'model.transformer.decoder.layers.5.self_attn.in_proj_weight',\n",
|
||||
" 'model.transformer.decoder.layers.5.self_attn.in_proj_bias',\n",
|
||||
" 'model.transformer.decoder.layers.5.self_attn.out_proj.weight',\n",
|
||||
" 'model.transformer.decoder.layers.5.self_attn.out_proj.bias',\n",
|
||||
" 'model.transformer.decoder.layers.5.multihead_attn.in_proj_weight',\n",
|
||||
" 'model.transformer.decoder.layers.5.multihead_attn.in_proj_bias',\n",
|
||||
" 'model.transformer.decoder.layers.5.multihead_attn.out_proj.weight',\n",
|
||||
" 'model.transformer.decoder.layers.5.multihead_attn.out_proj.bias',\n",
|
||||
" 'model.transformer.decoder.layers.5.linear1.weight',\n",
|
||||
" 'model.transformer.decoder.layers.5.linear1.bias',\n",
|
||||
" 'model.transformer.decoder.layers.5.linear2.weight',\n",
|
||||
" 'model.transformer.decoder.layers.5.linear2.bias',\n",
|
||||
" 'model.transformer.decoder.layers.5.norm1.weight',\n",
|
||||
" 'model.transformer.decoder.layers.5.norm1.bias',\n",
|
||||
" 'model.transformer.decoder.layers.5.norm2.weight',\n",
|
||||
" 'model.transformer.decoder.layers.5.norm2.bias',\n",
|
||||
" 'model.transformer.decoder.layers.5.norm3.weight',\n",
|
||||
" 'model.transformer.decoder.layers.5.norm3.bias',\n",
|
||||
" 'model.transformer.decoder.layers.6.self_attn.in_proj_weight',\n",
|
||||
" 'model.transformer.decoder.layers.6.self_attn.in_proj_bias',\n",
|
||||
" 'model.transformer.decoder.layers.6.self_attn.out_proj.weight',\n",
|
||||
" 'model.transformer.decoder.layers.6.self_attn.out_proj.bias',\n",
|
||||
" 'model.transformer.decoder.layers.6.multihead_attn.in_proj_weight',\n",
|
||||
" 'model.transformer.decoder.layers.6.multihead_attn.in_proj_bias',\n",
|
||||
" 'model.transformer.decoder.layers.6.multihead_attn.out_proj.weight',\n",
|
||||
" 'model.transformer.decoder.layers.6.multihead_attn.out_proj.bias',\n",
|
||||
" 'model.transformer.decoder.layers.6.linear1.weight',\n",
|
||||
" 'model.transformer.decoder.layers.6.linear1.bias',\n",
|
||||
" 'model.transformer.decoder.layers.6.linear2.weight',\n",
|
||||
" 'model.transformer.decoder.layers.6.linear2.bias',\n",
|
||||
" 'model.transformer.decoder.layers.6.norm1.weight',\n",
|
||||
" 'model.transformer.decoder.layers.6.norm1.bias',\n",
|
||||
" 'model.transformer.decoder.layers.6.norm2.weight',\n",
|
||||
" 'model.transformer.decoder.layers.6.norm2.bias',\n",
|
||||
" 'model.transformer.decoder.layers.6.norm3.weight',\n",
|
||||
" 'model.transformer.decoder.layers.6.norm3.bias',\n",
|
||||
" 'model.transformer.decoder.norm.weight',\n",
|
||||
" 'model.transformer.decoder.norm.bias',\n",
|
||||
" 'model.encoder.layers.0.self_attn.in_proj_weight',\n",
|
||||
" 'model.encoder.layers.0.self_attn.in_proj_bias',\n",
|
||||
" 'model.encoder.layers.0.self_attn.out_proj.weight',\n",
|
||||
" 'model.encoder.layers.0.self_attn.out_proj.bias',\n",
|
||||
" 'model.encoder.layers.0.linear1.weight',\n",
|
||||
" 'model.encoder.layers.0.linear1.bias',\n",
|
||||
" 'model.encoder.layers.0.linear2.weight',\n",
|
||||
" 'model.encoder.layers.0.linear2.bias',\n",
|
||||
" 'model.encoder.layers.0.norm1.weight',\n",
|
||||
" 'model.encoder.layers.0.norm1.bias',\n",
|
||||
" 'model.encoder.layers.0.norm2.weight',\n",
|
||||
" 'model.encoder.layers.0.norm2.bias',\n",
|
||||
" 'model.encoder.layers.1.self_attn.in_proj_weight',\n",
|
||||
" 'model.encoder.layers.1.self_attn.in_proj_bias',\n",
|
||||
" 'model.encoder.layers.1.self_attn.out_proj.weight',\n",
|
||||
" 'model.encoder.layers.1.self_attn.out_proj.bias',\n",
|
||||
" 'model.encoder.layers.1.linear1.weight',\n",
|
||||
" 'model.encoder.layers.1.linear1.bias',\n",
|
||||
" 'model.encoder.layers.1.linear2.weight',\n",
|
||||
" 'model.encoder.layers.1.linear2.bias',\n",
|
||||
" 'model.encoder.layers.1.norm1.weight',\n",
|
||||
" 'model.encoder.layers.1.norm1.bias',\n",
|
||||
" 'model.encoder.layers.1.norm2.weight',\n",
|
||||
" 'model.encoder.layers.1.norm2.bias',\n",
|
||||
" 'model.encoder.layers.2.self_attn.in_proj_weight',\n",
|
||||
" 'model.encoder.layers.2.self_attn.in_proj_bias',\n",
|
||||
" 'model.encoder.layers.2.self_attn.out_proj.weight',\n",
|
||||
" 'model.encoder.layers.2.self_attn.out_proj.bias',\n",
|
||||
" 'model.encoder.layers.2.linear1.weight',\n",
|
||||
" 'model.encoder.layers.2.linear1.bias',\n",
|
||||
" 'model.encoder.layers.2.linear2.weight',\n",
|
||||
" 'model.encoder.layers.2.linear2.bias',\n",
|
||||
" 'model.encoder.layers.2.norm1.weight',\n",
|
||||
" 'model.encoder.layers.2.norm1.bias',\n",
|
||||
" 'model.encoder.layers.2.norm2.weight',\n",
|
||||
" 'model.encoder.layers.2.norm2.bias',\n",
|
||||
" 'model.encoder.layers.3.self_attn.in_proj_weight',\n",
|
||||
" 'model.encoder.layers.3.self_attn.in_proj_bias',\n",
|
||||
" 'model.encoder.layers.3.self_attn.out_proj.weight',\n",
|
||||
" 'model.encoder.layers.3.self_attn.out_proj.bias',\n",
|
||||
" 'model.encoder.layers.3.linear1.weight',\n",
|
||||
" 'model.encoder.layers.3.linear1.bias',\n",
|
||||
" 'model.encoder.layers.3.linear2.weight',\n",
|
||||
" 'model.encoder.layers.3.linear2.bias',\n",
|
||||
" 'model.encoder.layers.3.norm1.weight',\n",
|
||||
" 'model.encoder.layers.3.norm1.bias',\n",
|
||||
" 'model.encoder.layers.3.norm2.weight',\n",
|
||||
" 'model.encoder.layers.3.norm2.bias',\n",
|
||||
" 'model.action_head.weight',\n",
|
||||
" 'model.action_head.bias',\n",
|
||||
" 'model.is_pad_head.weight',\n",
|
||||
" 'model.is_pad_head.bias',\n",
|
||||
" 'model.query_embed.weight',\n",
|
||||
" 'model.input_proj.weight',\n",
|
||||
" 'model.input_proj.bias',\n",
|
||||
" 'model.backbones.0.0.body.conv1.weight',\n",
|
||||
" 'model.backbones.0.0.body.bn1.weight',\n",
|
||||
" 'model.backbones.0.0.body.bn1.bias',\n",
|
||||
" 'model.backbones.0.0.body.bn1.running_mean',\n",
|
||||
" 'model.backbones.0.0.body.bn1.running_var',\n",
|
||||
" 'model.backbones.0.0.body.bn1.num_batches_tracked',\n",
|
||||
" 'model.backbones.0.0.body.layer1.0.conv1.weight',\n",
|
||||
" 'model.backbones.0.0.body.layer1.0.bn1.weight',\n",
|
||||
" 'model.backbones.0.0.body.layer1.0.bn1.bias',\n",
|
||||
" 'model.backbones.0.0.body.layer1.0.bn1.running_mean',\n",
|
||||
" 'model.backbones.0.0.body.layer1.0.bn1.running_var',\n",
|
||||
" 'model.backbones.0.0.body.layer1.0.bn1.num_batches_tracked',\n",
|
||||
" 'model.backbones.0.0.body.layer1.0.conv2.weight',\n",
|
||||
" 'model.backbones.0.0.body.layer1.0.bn2.weight',\n",
|
||||
" 'model.backbones.0.0.body.layer1.0.bn2.bias',\n",
|
||||
" 'model.backbones.0.0.body.layer1.0.bn2.running_mean',\n",
|
||||
" 'model.backbones.0.0.body.layer1.0.bn2.running_var',\n",
|
||||
" 'model.backbones.0.0.body.layer1.0.bn2.num_batches_tracked',\n",
|
||||
" 'model.backbones.0.0.body.layer1.1.conv1.weight',\n",
|
||||
" 'model.backbones.0.0.body.layer1.1.bn1.weight',\n",
|
||||
" 'model.backbones.0.0.body.layer1.1.bn1.bias',\n",
|
||||
" 'model.backbones.0.0.body.layer1.1.bn1.running_mean',\n",
|
||||
" 'model.backbones.0.0.body.layer1.1.bn1.running_var',\n",
|
||||
" 'model.backbones.0.0.body.layer1.1.bn1.num_batches_tracked',\n",
|
||||
" 'model.backbones.0.0.body.layer1.1.conv2.weight',\n",
|
||||
" 'model.backbones.0.0.body.layer1.1.bn2.weight',\n",
|
||||
" 'model.backbones.0.0.body.layer1.1.bn2.bias',\n",
|
||||
" 'model.backbones.0.0.body.layer1.1.bn2.running_mean',\n",
|
||||
" 'model.backbones.0.0.body.layer1.1.bn2.running_var',\n",
|
||||
" 'model.backbones.0.0.body.layer1.1.bn2.num_batches_tracked',\n",
|
||||
" 'model.backbones.0.0.body.layer2.0.conv1.weight',\n",
|
||||
" 'model.backbones.0.0.body.layer2.0.bn1.weight',\n",
|
||||
" 'model.backbones.0.0.body.layer2.0.bn1.bias',\n",
|
||||
" 'model.backbones.0.0.body.layer2.0.bn1.running_mean',\n",
|
||||
" 'model.backbones.0.0.body.layer2.0.bn1.running_var',\n",
|
||||
" 'model.backbones.0.0.body.layer2.0.bn1.num_batches_tracked',\n",
|
||||
" 'model.backbones.0.0.body.layer2.0.conv2.weight',\n",
|
||||
" 'model.backbones.0.0.body.layer2.0.bn2.weight',\n",
|
||||
" 'model.backbones.0.0.body.layer2.0.bn2.bias',\n",
|
||||
" 'model.backbones.0.0.body.layer2.0.bn2.running_mean',\n",
|
||||
" 'model.backbones.0.0.body.layer2.0.bn2.running_var',\n",
|
||||
" 'model.backbones.0.0.body.layer2.0.bn2.num_batches_tracked',\n",
|
||||
" 'model.backbones.0.0.body.layer2.0.downsample.0.weight',\n",
|
||||
" 'model.backbones.0.0.body.layer2.0.downsample.1.weight',\n",
|
||||
" 'model.backbones.0.0.body.layer2.0.downsample.1.bias',\n",
|
||||
" 'model.backbones.0.0.body.layer2.0.downsample.1.running_mean',\n",
|
||||
" 'model.backbones.0.0.body.layer2.0.downsample.1.running_var',\n",
|
||||
" 'model.backbones.0.0.body.layer2.0.downsample.1.num_batches_tracked',\n",
|
||||
" 'model.backbones.0.0.body.layer2.1.conv1.weight',\n",
|
||||
" 'model.backbones.0.0.body.layer2.1.bn1.weight',\n",
|
||||
" 'model.backbones.0.0.body.layer2.1.bn1.bias',\n",
|
||||
" 'model.backbones.0.0.body.layer2.1.bn1.running_mean',\n",
|
||||
" 'model.backbones.0.0.body.layer2.1.bn1.running_var',\n",
|
||||
" 'model.backbones.0.0.body.layer2.1.bn1.num_batches_tracked',\n",
|
||||
" 'model.backbones.0.0.body.layer2.1.conv2.weight',\n",
|
||||
" 'model.backbones.0.0.body.layer2.1.bn2.weight',\n",
|
||||
" 'model.backbones.0.0.body.layer2.1.bn2.bias',\n",
|
||||
" 'model.backbones.0.0.body.layer2.1.bn2.running_mean',\n",
|
||||
" 'model.backbones.0.0.body.layer2.1.bn2.running_var',\n",
|
||||
" 'model.backbones.0.0.body.layer2.1.bn2.num_batches_tracked',\n",
|
||||
" 'model.backbones.0.0.body.layer3.0.conv1.weight',\n",
|
||||
" 'model.backbones.0.0.body.layer3.0.bn1.weight',\n",
|
||||
" 'model.backbones.0.0.body.layer3.0.bn1.bias',\n",
|
||||
" 'model.backbones.0.0.body.layer3.0.bn1.running_mean',\n",
|
||||
" 'model.backbones.0.0.body.layer3.0.bn1.running_var',\n",
|
||||
" 'model.backbones.0.0.body.layer3.0.bn1.num_batches_tracked',\n",
|
||||
" 'model.backbones.0.0.body.layer3.0.conv2.weight',\n",
|
||||
" 'model.backbones.0.0.body.layer3.0.bn2.weight',\n",
|
||||
" 'model.backbones.0.0.body.layer3.0.bn2.bias',\n",
|
||||
" 'model.backbones.0.0.body.layer3.0.bn2.running_mean',\n",
|
||||
" 'model.backbones.0.0.body.layer3.0.bn2.running_var',\n",
|
||||
" 'model.backbones.0.0.body.layer3.0.bn2.num_batches_tracked',\n",
|
||||
" 'model.backbones.0.0.body.layer3.0.downsample.0.weight',\n",
|
||||
" 'model.backbones.0.0.body.layer3.0.downsample.1.weight',\n",
|
||||
" 'model.backbones.0.0.body.layer3.0.downsample.1.bias',\n",
|
||||
" 'model.backbones.0.0.body.layer3.0.downsample.1.running_mean',\n",
|
||||
" 'model.backbones.0.0.body.layer3.0.downsample.1.running_var',\n",
|
||||
" 'model.backbones.0.0.body.layer3.0.downsample.1.num_batches_tracked',\n",
|
||||
" 'model.backbones.0.0.body.layer3.1.conv1.weight',\n",
|
||||
" 'model.backbones.0.0.body.layer3.1.bn1.weight',\n",
|
||||
" 'model.backbones.0.0.body.layer3.1.bn1.bias',\n",
|
||||
" 'model.backbones.0.0.body.layer3.1.bn1.running_mean',\n",
|
||||
" 'model.backbones.0.0.body.layer3.1.bn1.running_var',\n",
|
||||
" 'model.backbones.0.0.body.layer3.1.bn1.num_batches_tracked',\n",
|
||||
" 'model.backbones.0.0.body.layer3.1.conv2.weight',\n",
|
||||
" 'model.backbones.0.0.body.layer3.1.bn2.weight',\n",
|
||||
" 'model.backbones.0.0.body.layer3.1.bn2.bias',\n",
|
||||
" 'model.backbones.0.0.body.layer3.1.bn2.running_mean',\n",
|
||||
" 'model.backbones.0.0.body.layer3.1.bn2.running_var',\n",
|
||||
" 'model.backbones.0.0.body.layer3.1.bn2.num_batches_tracked',\n",
|
||||
" 'model.backbones.0.0.body.layer4.0.conv1.weight',\n",
|
||||
" 'model.backbones.0.0.body.layer4.0.bn1.weight',\n",
|
||||
" 'model.backbones.0.0.body.layer4.0.bn1.bias',\n",
|
||||
" 'model.backbones.0.0.body.layer4.0.bn1.running_mean',\n",
|
||||
" 'model.backbones.0.0.body.layer4.0.bn1.running_var',\n",
|
||||
" 'model.backbones.0.0.body.layer4.0.bn1.num_batches_tracked',\n",
|
||||
" 'model.backbones.0.0.body.layer4.0.conv2.weight',\n",
|
||||
" 'model.backbones.0.0.body.layer4.0.bn2.weight',\n",
|
||||
" 'model.backbones.0.0.body.layer4.0.bn2.bias',\n",
|
||||
" 'model.backbones.0.0.body.layer4.0.bn2.running_mean',\n",
|
||||
" 'model.backbones.0.0.body.layer4.0.bn2.running_var',\n",
|
||||
" 'model.backbones.0.0.body.layer4.0.bn2.num_batches_tracked',\n",
|
||||
" 'model.backbones.0.0.body.layer4.0.downsample.0.weight',\n",
|
||||
" 'model.backbones.0.0.body.layer4.0.downsample.1.weight',\n",
|
||||
" 'model.backbones.0.0.body.layer4.0.downsample.1.bias',\n",
|
||||
" 'model.backbones.0.0.body.layer4.0.downsample.1.running_mean',\n",
|
||||
" 'model.backbones.0.0.body.layer4.0.downsample.1.running_var',\n",
|
||||
" 'model.backbones.0.0.body.layer4.0.downsample.1.num_batches_tracked',\n",
|
||||
" 'model.backbones.0.0.body.layer4.1.conv1.weight',\n",
|
||||
" 'model.backbones.0.0.body.layer4.1.bn1.weight',\n",
|
||||
" 'model.backbones.0.0.body.layer4.1.bn1.bias',\n",
|
||||
" 'model.backbones.0.0.body.layer4.1.bn1.running_mean',\n",
|
||||
" 'model.backbones.0.0.body.layer4.1.bn1.running_var',\n",
|
||||
" 'model.backbones.0.0.body.layer4.1.bn1.num_batches_tracked',\n",
|
||||
" 'model.backbones.0.0.body.layer4.1.conv2.weight',\n",
|
||||
" 'model.backbones.0.0.body.layer4.1.bn2.weight',\n",
|
||||
" 'model.backbones.0.0.body.layer4.1.bn2.bias',\n",
|
||||
" 'model.backbones.0.0.body.layer4.1.bn2.running_mean',\n",
|
||||
" 'model.backbones.0.0.body.layer4.1.bn2.running_var',\n",
|
||||
" 'model.backbones.0.0.body.layer4.1.bn2.num_batches_tracked',\n",
|
||||
" 'model.input_proj_robot_state.weight',\n",
|
||||
" 'model.input_proj_robot_state.bias',\n",
|
||||
" 'model.cls_embed.weight',\n",
|
||||
" 'model.encoder_action_proj.weight',\n",
|
||||
" 'model.encoder_action_proj.bias',\n",
|
||||
" 'model.encoder_joint_proj.weight',\n",
|
||||
" 'model.encoder_joint_proj.bias',\n",
|
||||
" 'model.latent_proj.weight',\n",
|
||||
" 'model.latent_proj.bias',\n",
|
||||
" 'model.latent_out_proj.weight',\n",
|
||||
" 'model.latent_out_proj.bias',\n",
|
||||
" 'model.additional_pos_embed.weight']\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"orig = list(a.keys())\n",
|
||||
"pprint(orig)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 45,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"a = torch.load(original_ckpt_path)\n",
|
||||
"\n",
|
||||
"to_remove_startswith = ['model.transformer.decoder.layers.1.',\n",
|
||||
" 'model.transformer.decoder.layers.2.',\n",
|
||||
" 'model.transformer.decoder.layers.3.',\n",
|
||||
" 'model.transformer.decoder.layers.4.',\n",
|
||||
" 'model.transformer.decoder.layers.5.',\n",
|
||||
" 'model.transformer.decoder.layers.6.',\n",
|
||||
" 'model.transformer.decoder.norm.',\n",
|
||||
" 'model.is_pad_head']\n",
|
||||
"\n",
|
||||
"to_remove_in = ['num_batches_tracked',]\n",
|
||||
"\n",
|
||||
"conv = {}\n",
|
||||
"\n",
|
||||
"keys = list(a.keys())\n",
|
||||
"for k in keys:\n",
|
||||
" if any(k.startswith(tr) for tr in to_remove_startswith):\n",
|
||||
" a.pop(k)\n",
|
||||
" continue\n",
|
||||
" if any(tr in k for tr in to_remove_in):\n",
|
||||
" a.pop(k)\n",
|
||||
" continue\n",
|
||||
" if k.startswith('model.transformer.encoder.layers.'):\n",
|
||||
" conv[k.replace('transformer.', '')] = a.pop(k)\n",
|
||||
" if k.startswith('model.transformer.decoder.layers.0.'):\n",
|
||||
" conv[k.replace('transformer.', '')] = a.pop(k)\n",
|
||||
" if k.startswith('model.encoder.layers.'):\n",
|
||||
" conv[k.replace('encoder.', 'vae_encoder.')] = a.pop(k)\n",
|
||||
" if k.startswith('model.action_head.'):\n",
|
||||
" conv[k] = a.pop(k)\n",
|
||||
" if k.startswith('model.pos_table'):\n",
|
||||
" conv[k.replace('pos_table', 'vae_encoder_pos_enc')] = a.pop(k)\n",
|
||||
" if k.startswith('model.query_embed.'):\n",
|
||||
" conv[k.replace('query_embed', 'decoder_pos_embed')] = a.pop(k)\n",
|
||||
" if k.startswith('model.input_proj.'):\n",
|
||||
" conv[k.replace('input_proj.', 'encoder_img_feat_input_proj.')] = a.pop(k)\n",
|
||||
" if k.startswith('model.input_proj_robot_state.'):\n",
|
||||
" conv[k.replace('input_proj_robot_state.', 'encoder_robot_state_input_proj.')] = a.pop(k)\n",
|
||||
" if k.startswith('model.backbones.0.0.body.'):\n",
|
||||
" conv[k.replace('backbones.0.0.body', 'backbone')] = a.pop(k)\n",
|
||||
" if k.startswith('model.cls_embed.'):\n",
|
||||
" conv[k.replace('cls_embed', 'vae_encoder_cls_embed')] = a.pop(k)\n",
|
||||
" if k.startswith('model.encoder_action_proj.'):\n",
|
||||
" conv[k.replace('encoder_action_proj', 'vae_encoder_action_input_proj')] = a.pop(k)\n",
|
||||
" if k.startswith('model.encoder_joint_proj.'):\n",
|
||||
" conv[k.replace('encoder_joint_proj', 'vae_encoder_robot_state_input_proj')] = a.pop(k)\n",
|
||||
" if k.startswith('model.latent_proj.'):\n",
|
||||
" conv[k.replace('latent_proj', 'vae_encoder_latent_output_proj')] = a.pop(k)\n",
|
||||
" if k.startswith('model.latent_out_proj.'):\n",
|
||||
" conv[k.replace('latent_out_proj', 'encoder_latent_input_proj')] = a.pop(k)\n",
|
||||
" if k.startswith('model.additional_pos_embed.'):\n",
|
||||
" conv[k.replace('additional_pos_embed', 'encoder_robot_and_latent_pos_embed')] = a.pop(k)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 46,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"OrderedDict()"
|
||||
]
|
||||
},
|
||||
"execution_count": 46,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"a"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 47,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"for k, v in conv.items():\n",
|
||||
" assert b[k].shape == v.shape\n",
|
||||
" b[k] = v"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 53,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"save_file(b, converted_ckpt_path)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 54,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'/home/thomwolf/Documents/Github/ACT/checkpoints/blue_red_sort/config.yaml'"
|
||||
]
|
||||
},
|
||||
"execution_count": 54,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Now also copy the config files\n",
|
||||
"import shutil\n",
|
||||
"shutil.copy(comparison_config_json_path, converted_ckpt_path.replace('model.safetensors', 'config.json'))\n",
|
||||
"shutil.copy(comparison_config_yaml_path, converted_ckpt_path.replace('model.safetensors', 'config.yaml'))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "lerobot",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.14"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
8
examples/real_robot_example/gym_real_world/__init__.py
Normal file
8
examples/real_robot_example/gym_real_world/__init__.py
Normal file
@@ -0,0 +1,8 @@
|
||||
from gymnasium.envs.registration import register
|
||||
|
||||
register(
|
||||
id="gym_real_world/RealEnv-v0",
|
||||
entry_point="gym_real_world.gym_environment:RealEnv",
|
||||
max_episode_steps=300,
|
||||
nondeterministic=True,
|
||||
)
|
||||
363
examples/real_robot_example/gym_real_world/dynamixel.py
Normal file
363
examples/real_robot_example/gym_real_world/dynamixel.py
Normal file
@@ -0,0 +1,363 @@
|
||||
# ruff: noqa
|
||||
"""From Alexander Koch low_cost_robot codebase at https://github.com/AlexanderKoch-Koch/low_cost_robot
|
||||
Dynamixel class to control the dynamixel servos
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import enum
|
||||
import math
|
||||
import os
|
||||
from dataclasses import dataclass
|
||||
|
||||
import numpy as np
|
||||
from dynamixel_sdk import * # Uses Dynamixel SDK library
|
||||
|
||||
|
||||
def pos2pwm(pos: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
:param pos: numpy array of joint positions in range [-pi, pi]
|
||||
:return: numpy array of pwm values in range [0, 4096]
|
||||
"""
|
||||
return ((pos / 3.14 + 1.0) * 2048).astype(np.int64)
|
||||
|
||||
|
||||
def pwm2pos(pwm: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
:param pwm: numpy array of pwm values in range [0, 4096]
|
||||
:return: numpy array of joint positions in range [-pi, pi]
|
||||
"""
|
||||
return (pwm / 2048 - 1) * 3.14
|
||||
|
||||
|
||||
def pwm2vel(pwm: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
:param pwm: numpy array of pwm/s joint velocities
|
||||
:return: numpy array of rad/s joint velocities
|
||||
"""
|
||||
return pwm * 3.14 / 2048
|
||||
|
||||
|
||||
def vel2pwm(vel: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
:param vel: numpy array of rad/s joint velocities
|
||||
:return: numpy array of pwm/s joint velocities
|
||||
"""
|
||||
return (vel * 2048 / 3.14).astype(np.int64)
|
||||
|
||||
|
||||
class ReadAttribute(enum.Enum):
|
||||
TEMPERATURE = 146
|
||||
VOLTAGE = 145
|
||||
VELOCITY = 128
|
||||
POSITION = 132
|
||||
CURRENT = 126
|
||||
PWM = 124
|
||||
HARDWARE_ERROR_STATUS = 70
|
||||
HOMING_OFFSET = 20
|
||||
BAUDRATE = 8
|
||||
|
||||
|
||||
class OperatingMode(enum.Enum):
|
||||
VELOCITY = 1
|
||||
POSITION = 3
|
||||
CURRENT_CONTROLLED_POSITION = 5
|
||||
PWM = 16
|
||||
UNKNOWN = -1
|
||||
|
||||
|
||||
class Dynamixel:
|
||||
ADDR_TORQUE_ENABLE = 64
|
||||
ADDR_GOAL_POSITION = 116
|
||||
ADDR_VELOCITY_LIMIT = 44
|
||||
ADDR_GOAL_PWM = 100
|
||||
OPERATING_MODE_ADDR = 11
|
||||
POSITION_I = 82
|
||||
POSITION_P = 84
|
||||
ADDR_ID = 7
|
||||
|
||||
@dataclass
|
||||
class Config:
|
||||
def instantiate(self):
|
||||
return Dynamixel(self)
|
||||
|
||||
baudrate: int = 57600
|
||||
protocol_version: float = 2.0
|
||||
device_name: str = "" # /dev/tty.usbserial-1120'
|
||||
dynamixel_id: int = 1
|
||||
|
||||
def __init__(self, config: Config):
|
||||
self.config = config
|
||||
self.connect()
|
||||
|
||||
def connect(self):
|
||||
if self.config.device_name == "":
|
||||
for port_name in os.listdir("/dev"):
|
||||
if "ttyUSB" in port_name or "ttyACM" in port_name:
|
||||
self.config.device_name = "/dev/" + port_name
|
||||
print(f"using device {self.config.device_name}")
|
||||
self.portHandler = PortHandler(self.config.device_name)
|
||||
# self.portHandler.LA
|
||||
self.packetHandler = PacketHandler(self.config.protocol_version)
|
||||
if not self.portHandler.openPort():
|
||||
raise Exception(f"Failed to open port {self.config.device_name}")
|
||||
|
||||
if not self.portHandler.setBaudRate(self.config.baudrate):
|
||||
raise Exception(f"failed to set baudrate to {self.config.baudrate}")
|
||||
|
||||
# self.operating_mode = OperatingMode.UNKNOWN
|
||||
# self.torque_enabled = False
|
||||
# self._disable_torque()
|
||||
|
||||
self.operating_modes = [None for _ in range(32)]
|
||||
self.torque_enabled = [None for _ in range(32)]
|
||||
return True
|
||||
|
||||
def disconnect(self):
|
||||
self.portHandler.closePort()
|
||||
|
||||
def set_goal_position(self, motor_id, goal_position):
|
||||
# if self.operating_modes[motor_id] is not OperatingMode.POSITION:
|
||||
# self._disable_torque(motor_id)
|
||||
# self.set_operating_mode(motor_id, OperatingMode.POSITION)
|
||||
|
||||
# if not self.torque_enabled[motor_id]:
|
||||
# self._enable_torque(motor_id)
|
||||
|
||||
# self._enable_torque(motor_id)
|
||||
dxl_comm_result, dxl_error = self.packetHandler.write4ByteTxRx(
|
||||
self.portHandler, motor_id, self.ADDR_GOAL_POSITION, goal_position
|
||||
)
|
||||
# self._process_response(dxl_comm_result, dxl_error)
|
||||
# print(f'set position of motor {motor_id} to {goal_position}')
|
||||
|
||||
def set_pwm_value(self, motor_id: int, pwm_value, tries=3):
|
||||
if self.operating_modes[motor_id] is not OperatingMode.PWM:
|
||||
self._disable_torque(motor_id)
|
||||
self.set_operating_mode(motor_id, OperatingMode.PWM)
|
||||
|
||||
if not self.torque_enabled[motor_id]:
|
||||
self._enable_torque(motor_id)
|
||||
# print(f'enabling torque')
|
||||
dxl_comm_result, dxl_error = self.packetHandler.write2ByteTxRx(
|
||||
self.portHandler, motor_id, self.ADDR_GOAL_PWM, pwm_value
|
||||
)
|
||||
# self._process_response(dxl_comm_result, dxl_error)
|
||||
# print(f'set pwm of motor {motor_id} to {pwm_value}')
|
||||
if dxl_comm_result != COMM_SUCCESS:
|
||||
if tries <= 1:
|
||||
raise ConnectionError(f"dxl_comm_result: {self.packetHandler.getTxRxResult(dxl_comm_result)}")
|
||||
else:
|
||||
print(f"dynamixel pwm setting failure trying again with {tries - 1} tries")
|
||||
self.set_pwm_value(motor_id, pwm_value, tries=tries - 1)
|
||||
elif dxl_error != 0:
|
||||
print(f"dxl error {dxl_error}")
|
||||
raise ConnectionError(f"dynamixel error: {self.packetHandler.getTxRxResult(dxl_error)}")
|
||||
|
||||
def read_temperature(self, motor_id: int):
|
||||
return self._read_value(motor_id, ReadAttribute.TEMPERATURE, 1)
|
||||
|
||||
def read_velocity(self, motor_id: int):
|
||||
pos = self._read_value(motor_id, ReadAttribute.VELOCITY, 4)
|
||||
if pos > 2**31:
|
||||
pos -= 2**32
|
||||
# print(f'read position {pos} for motor {motor_id}')
|
||||
return pos
|
||||
|
||||
def read_position(self, motor_id: int):
|
||||
pos = self._read_value(motor_id, ReadAttribute.POSITION, 4)
|
||||
if pos > 2**31:
|
||||
pos -= 2**32
|
||||
# print(f'read position {pos} for motor {motor_id}')
|
||||
return pos
|
||||
|
||||
def read_position_degrees(self, motor_id: int) -> float:
|
||||
return (self.read_position(motor_id) / 4096) * 360
|
||||
|
||||
def read_position_radians(self, motor_id: int) -> float:
|
||||
return (self.read_position(motor_id) / 4096) * 2 * math.pi
|
||||
|
||||
def read_current(self, motor_id: int):
|
||||
current = self._read_value(motor_id, ReadAttribute.CURRENT, 2)
|
||||
if current > 2**15:
|
||||
current -= 2**16
|
||||
return current
|
||||
|
||||
def read_present_pwm(self, motor_id: int):
|
||||
return self._read_value(motor_id, ReadAttribute.PWM, 2)
|
||||
|
||||
def read_hardware_error_status(self, motor_id: int):
|
||||
return self._read_value(motor_id, ReadAttribute.HARDWARE_ERROR_STATUS, 1)
|
||||
|
||||
def disconnect(self):
|
||||
self.portHandler.closePort()
|
||||
|
||||
def set_id(self, old_id, new_id, use_broadcast_id: bool = False):
|
||||
"""
|
||||
sets the id of the dynamixel servo
|
||||
@param old_id: current id of the servo
|
||||
@param new_id: new id
|
||||
@param use_broadcast_id: set ids of all connected dynamixels if True.
|
||||
If False, change only servo with self.config.id
|
||||
@return:
|
||||
"""
|
||||
if use_broadcast_id:
|
||||
current_id = 254
|
||||
else:
|
||||
current_id = old_id
|
||||
dxl_comm_result, dxl_error = self.packetHandler.write1ByteTxRx(
|
||||
self.portHandler, current_id, self.ADDR_ID, new_id
|
||||
)
|
||||
self._process_response(dxl_comm_result, dxl_error, old_id)
|
||||
self.config.id = id
|
||||
|
||||
def _enable_torque(self, motor_id):
|
||||
dxl_comm_result, dxl_error = self.packetHandler.write1ByteTxRx(
|
||||
self.portHandler, motor_id, self.ADDR_TORQUE_ENABLE, 1
|
||||
)
|
||||
self._process_response(dxl_comm_result, dxl_error, motor_id)
|
||||
self.torque_enabled[motor_id] = True
|
||||
|
||||
def _disable_torque(self, motor_id):
|
||||
dxl_comm_result, dxl_error = self.packetHandler.write1ByteTxRx(
|
||||
self.portHandler, motor_id, self.ADDR_TORQUE_ENABLE, 0
|
||||
)
|
||||
self._process_response(dxl_comm_result, dxl_error, motor_id)
|
||||
self.torque_enabled[motor_id] = False
|
||||
|
||||
def _process_response(self, dxl_comm_result: int, dxl_error: int, motor_id: int):
|
||||
if dxl_comm_result != COMM_SUCCESS:
|
||||
raise ConnectionError(
|
||||
f"dxl_comm_result for motor {motor_id}: {self.packetHandler.getTxRxResult(dxl_comm_result)}"
|
||||
)
|
||||
elif dxl_error != 0:
|
||||
print(f"dxl error {dxl_error}")
|
||||
raise ConnectionError(
|
||||
f"dynamixel error for motor {motor_id}: {self.packetHandler.getTxRxResult(dxl_error)}"
|
||||
)
|
||||
|
||||
def set_operating_mode(self, motor_id: int, operating_mode: OperatingMode):
|
||||
dxl_comm_result, dxl_error = self.packetHandler.write2ByteTxRx(
|
||||
self.portHandler, motor_id, self.OPERATING_MODE_ADDR, operating_mode.value
|
||||
)
|
||||
self._process_response(dxl_comm_result, dxl_error, motor_id)
|
||||
self.operating_modes[motor_id] = operating_mode
|
||||
|
||||
def set_pwm_limit(self, motor_id: int, limit: int):
|
||||
dxl_comm_result, dxl_error = self.packetHandler.write2ByteTxRx(self.portHandler, motor_id, 36, limit)
|
||||
self._process_response(dxl_comm_result, dxl_error, motor_id)
|
||||
|
||||
def set_velocity_limit(self, motor_id: int, velocity_limit):
|
||||
dxl_comm_result, dxl_error = self.packetHandler.write4ByteTxRx(
|
||||
self.portHandler, motor_id, self.ADDR_VELOCITY_LIMIT, velocity_limit
|
||||
)
|
||||
self._process_response(dxl_comm_result, dxl_error, motor_id)
|
||||
|
||||
def set_P(self, motor_id: int, P: int):
|
||||
dxl_comm_result, dxl_error = self.packetHandler.write2ByteTxRx(
|
||||
self.portHandler, motor_id, self.POSITION_P, P
|
||||
)
|
||||
self._process_response(dxl_comm_result, dxl_error, motor_id)
|
||||
|
||||
def set_I(self, motor_id: int, I: int):
|
||||
dxl_comm_result, dxl_error = self.packetHandler.write2ByteTxRx(
|
||||
self.portHandler, motor_id, self.POSITION_I, I
|
||||
)
|
||||
self._process_response(dxl_comm_result, dxl_error, motor_id)
|
||||
|
||||
def read_home_offset(self, motor_id: int):
|
||||
self._disable_torque(motor_id)
|
||||
# dxl_comm_result, dxl_error = self.packetHandler.write4ByteTxRx(self.portHandler, motor_id,
|
||||
# ReadAttribute.HOMING_OFFSET.value, home_position)
|
||||
home_offset = self._read_value(motor_id, ReadAttribute.HOMING_OFFSET, 4)
|
||||
# self._process_response(dxl_comm_result, dxl_error)
|
||||
self._enable_torque(motor_id)
|
||||
return home_offset
|
||||
|
||||
def set_home_offset(self, motor_id: int, home_position: int):
|
||||
self._disable_torque(motor_id)
|
||||
dxl_comm_result, dxl_error = self.packetHandler.write4ByteTxRx(
|
||||
self.portHandler, motor_id, ReadAttribute.HOMING_OFFSET.value, home_position
|
||||
)
|
||||
self._process_response(dxl_comm_result, dxl_error, motor_id)
|
||||
self._enable_torque(motor_id)
|
||||
|
||||
def set_baudrate(self, motor_id: int, baudrate):
|
||||
# translate baudrate into dynamixel baudrate setting id
|
||||
if baudrate == 57600:
|
||||
baudrate_id = 1
|
||||
elif baudrate == 1_000_000:
|
||||
baudrate_id = 3
|
||||
elif baudrate == 2_000_000:
|
||||
baudrate_id = 4
|
||||
elif baudrate == 3_000_000:
|
||||
baudrate_id = 5
|
||||
elif baudrate == 4_000_000:
|
||||
baudrate_id = 6
|
||||
else:
|
||||
raise Exception("baudrate not implemented")
|
||||
|
||||
self._disable_torque(motor_id)
|
||||
dxl_comm_result, dxl_error = self.packetHandler.write1ByteTxRx(
|
||||
self.portHandler, motor_id, ReadAttribute.BAUDRATE.value, baudrate_id
|
||||
)
|
||||
self._process_response(dxl_comm_result, dxl_error, motor_id)
|
||||
|
||||
def _read_value(self, motor_id, attribute: ReadAttribute, num_bytes: int, tries=10):
|
||||
try:
|
||||
if num_bytes == 1:
|
||||
value, dxl_comm_result, dxl_error = self.packetHandler.read1ByteTxRx(
|
||||
self.portHandler, motor_id, attribute.value
|
||||
)
|
||||
elif num_bytes == 2:
|
||||
value, dxl_comm_result, dxl_error = self.packetHandler.read2ByteTxRx(
|
||||
self.portHandler, motor_id, attribute.value
|
||||
)
|
||||
elif num_bytes == 4:
|
||||
value, dxl_comm_result, dxl_error = self.packetHandler.read4ByteTxRx(
|
||||
self.portHandler, motor_id, attribute.value
|
||||
)
|
||||
except Exception:
|
||||
if tries == 0:
|
||||
raise Exception
|
||||
else:
|
||||
return self._read_value(motor_id, attribute, num_bytes, tries=tries - 1)
|
||||
if dxl_comm_result != COMM_SUCCESS:
|
||||
if tries <= 1:
|
||||
# print("%s" % self.packetHandler.getTxRxResult(dxl_comm_result))
|
||||
raise ConnectionError(f"dxl_comm_result {dxl_comm_result} for servo {motor_id} value {value}")
|
||||
else:
|
||||
print(f"dynamixel read failure for servo {motor_id} trying again with {tries - 1} tries")
|
||||
time.sleep(0.02)
|
||||
return self._read_value(motor_id, attribute, num_bytes, tries=tries - 1)
|
||||
elif dxl_error != 0: # # print("%s" % self.packetHandler.getRxPacketError(dxl_error))
|
||||
# raise ConnectionError(f'dxl_error {dxl_error} binary ' + "{0:b}".format(37))
|
||||
if tries == 0 and dxl_error != 128:
|
||||
raise Exception(f"Failed to read value from motor {motor_id} error is {dxl_error}")
|
||||
else:
|
||||
return self._read_value(motor_id, attribute, num_bytes, tries=tries - 1)
|
||||
return value
|
||||
|
||||
def set_home_position(self, motor_id: int):
|
||||
print(f"setting home position for motor {motor_id}")
|
||||
self.set_home_offset(motor_id, 0)
|
||||
current_position = self.read_position(motor_id)
|
||||
print(f"position before {current_position}")
|
||||
self.set_home_offset(motor_id, -current_position)
|
||||
# dynamixel.set_home_offset(motor_id, -4096)
|
||||
# dynamixel.set_home_offset(motor_id, -4294964109)
|
||||
current_position = self.read_position(motor_id)
|
||||
# print(f'signed position {current_position - 2** 32}')
|
||||
print(f"position after {current_position}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
dynamixel = Dynamixel.Config(baudrate=1_000_000, device_name="/dev/tty.usbmodem57380045631").instantiate()
|
||||
motor_id = 1
|
||||
pos = dynamixel.read_position(motor_id)
|
||||
for i in range(10):
|
||||
s = time.monotonic()
|
||||
pos = dynamixel.read_position(motor_id)
|
||||
delta = time.monotonic() - s
|
||||
print(f"read position took {delta}")
|
||||
print(f"position {pos}")
|
||||
192
examples/real_robot_example/gym_real_world/gym_environment.py
Normal file
192
examples/real_robot_example/gym_real_world/gym_environment.py
Normal file
@@ -0,0 +1,192 @@
|
||||
import time
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
import cv2
|
||||
import gymnasium as gym
|
||||
import numpy as np
|
||||
from gymnasium import spaces
|
||||
|
||||
from .dynamixel import pos2pwm, pwm2pos
|
||||
from .robot import Robot
|
||||
|
||||
FPS = 30
|
||||
|
||||
CAMERAS_SHAPES = {
|
||||
"images.high": (480, 640, 3),
|
||||
"images.low": (480, 640, 3),
|
||||
}
|
||||
|
||||
CAMERAS_PORTS = {
|
||||
"images.high": "/dev/video6",
|
||||
"images.low": "/dev/video0",
|
||||
}
|
||||
|
||||
LEADER_PORT = "/dev/ttyACM1"
|
||||
FOLLOWER_PORT = "/dev/ttyACM0"
|
||||
|
||||
MockRobot = MagicMock()
|
||||
MockRobot.read_position = MagicMock()
|
||||
MockRobot.read_position.return_value = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0])
|
||||
|
||||
MockCamera = MagicMock()
|
||||
MockCamera.isOpened = MagicMock(return_value=True)
|
||||
MockCamera.read = MagicMock(return_value=(True, np.zeros((480, 640, 3), dtype=np.uint8)))
|
||||
|
||||
|
||||
def capture_image(cam, cam_width, cam_height):
|
||||
# Capture a single frame
|
||||
_, frame = cam.read()
|
||||
image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||||
# # Define your crop coordinates (top left corner and bottom right corner)
|
||||
# x1, y1 = 400, 0 # Example starting coordinates (top left of the crop rectangle)
|
||||
# x2, y2 = 1600, 900 # Example ending coordinates (bottom right of the crop rectangle)
|
||||
# # Crop the image
|
||||
# image = image[y1:y2, x1:x2]
|
||||
# Resize the image
|
||||
image = cv2.resize(image, (cam_width, cam_height), interpolation=cv2.INTER_AREA)
|
||||
|
||||
return image
|
||||
|
||||
|
||||
class RealEnv(gym.Env):
|
||||
metadata = {}
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
record: bool = False,
|
||||
num_joints: int = 6,
|
||||
cameras_shapes: dict = CAMERAS_SHAPES,
|
||||
cameras_ports: dict = CAMERAS_PORTS,
|
||||
follower_port: str = FOLLOWER_PORT,
|
||||
leader_port: str = LEADER_PORT,
|
||||
warmup_steps: int = 100,
|
||||
trigger_torque=70,
|
||||
fps: int = FPS,
|
||||
fps_tolerance: float = 0.1,
|
||||
mock: bool = False,
|
||||
):
|
||||
self.num_joints = num_joints
|
||||
self.cameras_shapes = cameras_shapes
|
||||
self.cameras_ports = cameras_ports
|
||||
self.warmup_steps = warmup_steps
|
||||
assert len(self.cameras_shapes) == len(self.cameras_ports), "Number of cameras and shapes must match."
|
||||
|
||||
self.follower_port = follower_port
|
||||
self.leader_port = leader_port
|
||||
self.record = record
|
||||
self.fps = fps
|
||||
self.fps_tolerance = fps_tolerance
|
||||
|
||||
# Initialize the robot
|
||||
self.follower = Robot(device_name=self.follower_port) if not mock else MockRobot
|
||||
if self.record:
|
||||
self.leader = Robot(device_name=self.leader_port) if not mock else MockRobot
|
||||
self.leader.set_trigger_torque(trigger_torque)
|
||||
|
||||
# Initialize the cameras - sorted by camera names
|
||||
self.cameras = {}
|
||||
for cn, p in sorted(self.cameras_ports.items()):
|
||||
self.cameras[cn] = cv2.VideoCapture(p) if not mock else MockCamera
|
||||
if not self.cameras[cn].isOpened():
|
||||
raise OSError(
|
||||
f"Cannot open camera port {p} for {cn}."
|
||||
f" Make sure the camera is connected and the port is correct."
|
||||
f"Also check you are not spinning several instances of the same environment (eval.batch_size)"
|
||||
)
|
||||
|
||||
# Specify gym action and observation spaces
|
||||
observation_space = {}
|
||||
|
||||
if self.num_joints > 0:
|
||||
observation_space["agent_pos"] = spaces.Box(
|
||||
low=-1000.0,
|
||||
high=1000.0,
|
||||
shape=(num_joints,),
|
||||
dtype=np.float64,
|
||||
)
|
||||
if self.record:
|
||||
observation_space["leader_pos"] = spaces.Box(
|
||||
low=-1000.0,
|
||||
high=1000.0,
|
||||
shape=(num_joints,),
|
||||
dtype=np.float64,
|
||||
)
|
||||
|
||||
if self.cameras_shapes:
|
||||
for cn, hwc_shape in self.cameras_shapes.items():
|
||||
# Assumes images are unsigned int8 in [0,255]
|
||||
observation_space[cn] = spaces.Box(
|
||||
low=0,
|
||||
high=255,
|
||||
# height x width x channels (e.g. 480 x 640 x 3)
|
||||
shape=hwc_shape,
|
||||
dtype=np.uint8,
|
||||
)
|
||||
|
||||
self.observation_space = spaces.Dict(observation_space)
|
||||
self.action_space = spaces.Box(low=-1, high=1, shape=(num_joints,), dtype=np.float32)
|
||||
|
||||
self._observation = {}
|
||||
self._terminated = False
|
||||
self.timestamps = []
|
||||
|
||||
def _get_obs(self):
|
||||
qpos = self.follower.read_position()
|
||||
self._observation["agent_pos"] = pwm2pos(qpos)
|
||||
for cn, c in self.cameras.items():
|
||||
self._observation[cn] = capture_image(c, self.cameras_shapes[cn][1], self.cameras_shapes[cn][0])
|
||||
|
||||
if self.record:
|
||||
action = self.leader.read_position()
|
||||
self._observation["leader_pos"] = pwm2pos(action)
|
||||
|
||||
def reset(self, seed: int | None = None):
|
||||
# Reset the robot and sync the leader and follower if we are recording
|
||||
for _ in range(self.warmup_steps):
|
||||
self._get_obs()
|
||||
if self.record:
|
||||
self.follower.set_goal_pos(pos2pwm(self._observation["leader_pos"]))
|
||||
self._terminated = False
|
||||
info = {}
|
||||
self.timestamps = []
|
||||
return self._observation, info
|
||||
|
||||
def step(self, action: np.ndarray = None):
|
||||
if self.timestamps:
|
||||
# wait the right amount of time to stay at the desired fps
|
||||
time.sleep(max(0, 1 / self.fps - (time.time() - self.timestamps[-1])))
|
||||
|
||||
self.timestamps.append(time.time())
|
||||
|
||||
# Get the observation
|
||||
self._get_obs()
|
||||
if self.record:
|
||||
# Teleoperate the leader
|
||||
self.follower.set_goal_pos(pos2pwm(self._observation["leader_pos"]))
|
||||
else:
|
||||
# Apply the action to the follower
|
||||
self.follower.set_goal_pos(pos2pwm(action))
|
||||
|
||||
reward = 0
|
||||
terminated = truncated = self._terminated
|
||||
info = {"timestamp": self.timestamps[-1] - self.timestamps[0], "fps_error": False}
|
||||
|
||||
# Check if we are able to keep up with the desired fps
|
||||
if len(self.timestamps) > 1 and (self.timestamps[-1] - self.timestamps[-2]) > 1 / (
|
||||
self.fps - self.fps_tolerance
|
||||
):
|
||||
print(
|
||||
f"Error: recording fps {1 / (self.timestamps[-1] - self.timestamps[-2]):.5f} is lower"
|
||||
f" than min admited fps {(self.fps - self.fps_tolerance):.5f}"
|
||||
f" at frame {len(self.timestamps)}"
|
||||
)
|
||||
info["fps_error"] = True
|
||||
|
||||
return self._observation, reward, terminated, truncated, info
|
||||
|
||||
def render(self): ...
|
||||
|
||||
def close(self):
|
||||
self.follower._disable_torque()
|
||||
if self.record:
|
||||
self.leader._disable_torque()
|
||||
173
examples/real_robot_example/gym_real_world/robot.py
Normal file
173
examples/real_robot_example/gym_real_world/robot.py
Normal file
@@ -0,0 +1,173 @@
|
||||
# ruff: noqa
|
||||
"""From Alexander Koch low_cost_robot codebase at https://github.com/AlexanderKoch-Koch/low_cost_robot
|
||||
Class to control the robot using dynamixel servos.
|
||||
"""
|
||||
|
||||
from enum import Enum, auto
|
||||
from typing import Union
|
||||
|
||||
import numpy as np
|
||||
from dynamixel_sdk import DXL_HIBYTE, DXL_HIWORD, DXL_LOBYTE, DXL_LOWORD, GroupSyncRead, GroupSyncWrite
|
||||
|
||||
from .dynamixel import Dynamixel, OperatingMode, ReadAttribute
|
||||
|
||||
|
||||
class MotorControlType(Enum):
|
||||
PWM = auto()
|
||||
POSITION_CONTROL = auto()
|
||||
DISABLED = auto()
|
||||
UNKNOWN = auto()
|
||||
|
||||
|
||||
class Robot:
|
||||
def __init__(self, device_name: str, baudrate=1_000_000, servo_ids=[1, 2, 3, 4, 5, 6]) -> None:
|
||||
self.servo_ids = servo_ids
|
||||
self.dynamixel = Dynamixel.Config(baudrate=baudrate, device_name=device_name).instantiate()
|
||||
self._init_motors()
|
||||
|
||||
def _init_motors(self):
|
||||
self.position_reader = GroupSyncRead(
|
||||
self.dynamixel.portHandler, self.dynamixel.packetHandler, ReadAttribute.POSITION.value, 4
|
||||
)
|
||||
for id in self.servo_ids:
|
||||
self.position_reader.addParam(id)
|
||||
|
||||
self.velocity_reader = GroupSyncRead(
|
||||
self.dynamixel.portHandler, self.dynamixel.packetHandler, ReadAttribute.VELOCITY.value, 4
|
||||
)
|
||||
for id in self.servo_ids:
|
||||
self.velocity_reader.addParam(id)
|
||||
|
||||
self.pos_writer = GroupSyncWrite(
|
||||
self.dynamixel.portHandler, self.dynamixel.packetHandler, self.dynamixel.ADDR_GOAL_POSITION, 4
|
||||
)
|
||||
for id in self.servo_ids:
|
||||
self.pos_writer.addParam(id, [2048])
|
||||
|
||||
self.pwm_writer = GroupSyncWrite(
|
||||
self.dynamixel.portHandler, self.dynamixel.packetHandler, self.dynamixel.ADDR_GOAL_PWM, 2
|
||||
)
|
||||
for id in self.servo_ids:
|
||||
self.pwm_writer.addParam(id, [2048])
|
||||
# self._disable_torque()
|
||||
self.motor_control_state = MotorControlType.DISABLED
|
||||
|
||||
def read_position(self, tries=2):
|
||||
"""
|
||||
Reads the joint positions of the robot. 2048 is the center position. 0 and 4096 are 180 degrees in each direction.
|
||||
:param tries: maximum number of tries to read the position
|
||||
:return: list of joint positions in range [0, 4096]
|
||||
"""
|
||||
result = self.position_reader.txRxPacket()
|
||||
if result != 0:
|
||||
if tries > 0:
|
||||
return self.read_position(tries=tries - 1)
|
||||
else:
|
||||
print("failed to read position!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
|
||||
positions = []
|
||||
for id in self.servo_ids:
|
||||
position = self.position_reader.getData(id, ReadAttribute.POSITION.value, 4)
|
||||
if position > 2**31:
|
||||
position -= 2**32
|
||||
positions.append(position)
|
||||
return np.array(positions)
|
||||
|
||||
def read_velocity(self):
|
||||
"""
|
||||
Reads the joint velocities of the robot.
|
||||
:return: list of joint velocities,
|
||||
"""
|
||||
self.velocity_reader.txRxPacket()
|
||||
velocties = []
|
||||
for id in self.servo_ids:
|
||||
velocity = self.velocity_reader.getData(id, ReadAttribute.VELOCITY.value, 4)
|
||||
if velocity > 2**31:
|
||||
velocity -= 2**32
|
||||
velocties.append(velocity)
|
||||
return np.array(velocties)
|
||||
|
||||
def set_goal_pos(self, action):
|
||||
"""
|
||||
:param action: list or numpy array of target joint positions in range [0, 4096[
|
||||
"""
|
||||
if self.motor_control_state is not MotorControlType.POSITION_CONTROL:
|
||||
self._set_position_control()
|
||||
for i, motor_id in enumerate(self.servo_ids):
|
||||
data_write = [
|
||||
DXL_LOBYTE(DXL_LOWORD(action[i])),
|
||||
DXL_HIBYTE(DXL_LOWORD(action[i])),
|
||||
DXL_LOBYTE(DXL_HIWORD(action[i])),
|
||||
DXL_HIBYTE(DXL_HIWORD(action[i])),
|
||||
]
|
||||
self.pos_writer.changeParam(motor_id, data_write)
|
||||
|
||||
self.pos_writer.txPacket()
|
||||
|
||||
def set_pwm(self, action):
|
||||
"""
|
||||
Sets the pwm values for the servos.
|
||||
:param action: list or numpy array of pwm values in range [0, 885]
|
||||
"""
|
||||
if self.motor_control_state is not MotorControlType.PWM:
|
||||
self._set_pwm_control()
|
||||
for i, motor_id in enumerate(self.servo_ids):
|
||||
data_write = [
|
||||
DXL_LOBYTE(DXL_LOWORD(action[i])),
|
||||
DXL_HIBYTE(DXL_LOWORD(action[i])),
|
||||
]
|
||||
self.pwm_writer.changeParam(motor_id, data_write)
|
||||
|
||||
self.pwm_writer.txPacket()
|
||||
|
||||
def set_trigger_torque(self, torque: int):
|
||||
"""
|
||||
Sets a constant torque torque for the last servo in the chain. This is useful for the trigger of the leader arm
|
||||
"""
|
||||
self.dynamixel._enable_torque(self.servo_ids[-1])
|
||||
self.dynamixel.set_pwm_value(self.servo_ids[-1], torque)
|
||||
|
||||
def limit_pwm(self, limit: Union[int, list, np.ndarray]):
|
||||
"""
|
||||
Limits the pwm values for the servos in for position control
|
||||
@param limit: 0 ~ 885
|
||||
@return:
|
||||
"""
|
||||
if isinstance(limit, int):
|
||||
limits = [
|
||||
limit,
|
||||
] * 5
|
||||
else:
|
||||
limits = limit
|
||||
self._disable_torque()
|
||||
for motor_id, limit in zip(self.servo_ids, limits, strict=False):
|
||||
self.dynamixel.set_pwm_limit(motor_id, limit)
|
||||
self._enable_torque()
|
||||
|
||||
def _disable_torque(self):
|
||||
print(f"disabling torque for servos {self.servo_ids}")
|
||||
for motor_id in self.servo_ids:
|
||||
self.dynamixel._disable_torque(motor_id)
|
||||
|
||||
def _enable_torque(self):
|
||||
print(f"enabling torque for servos {self.servo_ids}")
|
||||
for motor_id in self.servo_ids:
|
||||
self.dynamixel._enable_torque(motor_id)
|
||||
|
||||
def _set_pwm_control(self):
|
||||
self._disable_torque()
|
||||
for motor_id in self.servo_ids:
|
||||
self.dynamixel.set_operating_mode(motor_id, OperatingMode.PWM)
|
||||
self._enable_torque()
|
||||
self.motor_control_state = MotorControlType.PWM
|
||||
|
||||
def _set_position_control(self):
|
||||
self._disable_torque()
|
||||
for motor_id in self.servo_ids:
|
||||
# TODO(rcadene): redesign
|
||||
if motor_id == 9:
|
||||
self.dynamixel.set_operating_mode(9, OperatingMode.CURRENT_CONTROLLED_POSITION)
|
||||
else:
|
||||
self.dynamixel.set_operating_mode(motor_id, OperatingMode.POSITION)
|
||||
|
||||
self._enable_torque()
|
||||
self.motor_control_state = MotorControlType.POSITION_CONTROL
|
||||
237
examples/real_robot_example/record_training_data.py
Normal file
237
examples/real_robot_example/record_training_data.py
Normal file
@@ -0,0 +1,237 @@
|
||||
"""This script demonstrates how to record a LeRobot dataset of training data
|
||||
using a very simple gym environment (see in examples/real_robot_example/gym_real_world/gym_environment.py).
|
||||
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import copy
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import gym_real_world # noqa: F401
|
||||
import gymnasium as gym
|
||||
import numpy as np
|
||||
import torch
|
||||
from datasets import Dataset, Features, Sequence, Value
|
||||
from omegaconf import OmegaConf
|
||||
from tqdm import tqdm
|
||||
|
||||
from lerobot.common.datasets.compute_stats import compute_stats
|
||||
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION, DATA_DIR, LeRobotDataset
|
||||
from lerobot.common.datasets.push_dataset_to_hub.utils import concatenate_episodes, save_images_concurrently
|
||||
from lerobot.common.datasets.utils import (
|
||||
hf_transform_to_torch,
|
||||
)
|
||||
from lerobot.common.datasets.video_utils import VideoFrame, encode_video_frames
|
||||
from lerobot.scripts.push_dataset_to_hub import push_meta_data_to_hub, push_videos_to_hub, save_meta_data
|
||||
|
||||
# parse the repo_id name via command line
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--repo-id", type=str, default="thomwolf/blue_red_sort")
|
||||
parser.add_argument("--num-episodes", type=int, default=2)
|
||||
parser.add_argument("--num-frames", type=int, default=400)
|
||||
parser.add_argument("--num-workers", type=int, default=16)
|
||||
parser.add_argument("--keep-last", action="store_true")
|
||||
parser.add_argument("--data_dir", type=str, default=None)
|
||||
parser.add_argument("--push-to-hub", action="store_true")
|
||||
parser.add_argument("--fps", type=int, default=30, help="Frames per second of the recording.")
|
||||
parser.add_argument(
|
||||
"--fps_tolerance",
|
||||
type=float,
|
||||
default=0.5,
|
||||
help="Tolerance in fps for the recording before dropping episodes.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--revision", type=str, default=CODEBASE_VERSION, help="Codebase version used to generate the dataset."
|
||||
)
|
||||
parser.add_argument("--gym-config", type=str, default=None, help="Path to the gym config file.")
|
||||
parser.add_argument("--mock_robot", action="store_true")
|
||||
args = parser.parse_args()
|
||||
|
||||
repo_id = args.repo_id
|
||||
num_episodes = args.num_episodes
|
||||
num_frames = args.num_frames
|
||||
revision = args.revision
|
||||
fps = args.fps
|
||||
fps_tolerance = args.fps_tolerance
|
||||
|
||||
out_data = DATA_DIR / repo_id if args.data_dir is None else Path(args.data_dir)
|
||||
|
||||
# During data collection, frames are stored as png images in `images_dir`
|
||||
images_dir = out_data / "images"
|
||||
# After data collection, png images of each episode are encoded into a mp4 file stored in `videos_dir`
|
||||
videos_dir = out_data / "videos"
|
||||
meta_data_dir = out_data / "meta_data"
|
||||
|
||||
gym_config = None
|
||||
if args.config is not None:
|
||||
gym_config = OmegaConf.load(args.config)
|
||||
|
||||
# Create image and video directories
|
||||
if not os.path.exists(images_dir):
|
||||
os.makedirs(images_dir, exist_ok=True)
|
||||
if not os.path.exists(videos_dir):
|
||||
os.makedirs(videos_dir, exist_ok=True)
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Create the gym environment - check the kwargs in gym_real_world/gym_environment.py
|
||||
gym_handle = "gym_real_world/RealEnv-v0"
|
||||
gym_kwargs = {}
|
||||
if gym_config is not None:
|
||||
gym_kwargs = OmegaConf.to_container(gym_config.gym_kwargs)
|
||||
env = gym.make(
|
||||
gym_handle, disable_env_checker=True, record=True, fps=fps, fps_tolerance=fps_tolerance, mock=True
|
||||
)
|
||||
|
||||
ep_dicts = []
|
||||
episode_data_index = {"from": [], "to": []}
|
||||
ep_fps = []
|
||||
id_from = 0
|
||||
id_to = 0
|
||||
os.system('spd-say "gym environment created"')
|
||||
|
||||
ep_idx = 0
|
||||
while ep_idx < num_episodes:
|
||||
# bring the follower to the leader and start camera
|
||||
env.reset()
|
||||
|
||||
os.system(f'spd-say "go {ep_idx}"')
|
||||
# init buffers
|
||||
obs_replay = {k: [] for k in env.observation_space}
|
||||
|
||||
drop_episode = False
|
||||
timestamps = []
|
||||
for _ in tqdm(range(num_frames)):
|
||||
# Apply the next action
|
||||
observation, _, _, _, info = env.step(action=None)
|
||||
# images_stacked = np.hstack(list(observation['pixels'].values()))
|
||||
# images_stacked = cv2.cvtColor(images_stacked, cv2.COLOR_RGB2BGR)
|
||||
# cv2.imshow('frame', images_stacked)
|
||||
|
||||
if info["fps_error"]:
|
||||
os.system(f'spd-say "Error fps too low, dropping episode {ep_idx}"')
|
||||
drop_episode = True
|
||||
break
|
||||
|
||||
# store data
|
||||
for key in observation:
|
||||
obs_replay[key].append(copy.deepcopy(observation[key]))
|
||||
timestamps.append(info["timestamp"])
|
||||
|
||||
# if cv2.waitKey(1) & 0xFF == ord('q'):
|
||||
# break
|
||||
|
||||
os.system('spd-say "stop"')
|
||||
|
||||
if not drop_episode:
|
||||
os.system(f'spd-say "saving episode {ep_idx}"')
|
||||
ep_dict = {}
|
||||
# store images in png and create the video
|
||||
for img_key in env.cameras:
|
||||
save_images_concurrently(
|
||||
obs_replay[img_key],
|
||||
images_dir / f"{img_key}_episode_{ep_idx:06d}",
|
||||
args.num_workers,
|
||||
)
|
||||
fname = f"{img_key}_episode_{ep_idx:06d}.mp4"
|
||||
# store the reference to the video frame
|
||||
ep_dict[f"observation.{img_key}"] = [
|
||||
{"path": f"videos/{fname}", "timestamp": tstp} for tstp in timestamps
|
||||
]
|
||||
|
||||
state = torch.tensor(np.array(obs_replay["agent_pos"]))
|
||||
action = torch.tensor(np.array(obs_replay["leader_pos"]))
|
||||
next_done = torch.zeros(num_frames, dtype=torch.bool)
|
||||
next_done[-1] = True
|
||||
|
||||
ep_dict["observation.state"] = state
|
||||
ep_dict["action"] = action
|
||||
ep_dict["episode_index"] = torch.tensor([ep_idx] * num_frames, dtype=torch.int64)
|
||||
ep_dict["frame_index"] = torch.arange(0, num_frames, 1)
|
||||
ep_dict["timestamp"] = torch.tensor(timestamps)
|
||||
ep_dict["next.done"] = next_done
|
||||
ep_fps.append(num_frames / timestamps[-1])
|
||||
ep_dicts.append(ep_dict)
|
||||
print(f"Episode {ep_idx} done, fps: {ep_fps[-1]:.2f}")
|
||||
|
||||
episode_data_index["from"].append(id_from)
|
||||
episode_data_index["to"].append(
|
||||
id_from + num_frames if args.keep_last else id_from + num_frames - 1
|
||||
)
|
||||
|
||||
id_to = id_from + num_frames if args.keep_last else id_from + num_frames - 1
|
||||
id_from = id_to
|
||||
|
||||
ep_idx += 1
|
||||
|
||||
env.close()
|
||||
|
||||
os.system('spd-say "encode video frames"')
|
||||
for ep_idx in range(num_episodes):
|
||||
for img_key in env.cameras:
|
||||
# If necessary, we may want to encode the video
|
||||
# with variable frame rate: https://superuser.com/questions/1661901/encoding-video-from-vfr-still-images
|
||||
encode_video_frames(
|
||||
images_dir / f"{img_key}_episode_{ep_idx:06d}",
|
||||
videos_dir / f"{img_key}_episode_{ep_idx:06d}.mp4",
|
||||
ep_fps[ep_idx],
|
||||
)
|
||||
|
||||
os.system('spd-say "concatenate episodes"')
|
||||
data_dict = concatenate_episodes(
|
||||
ep_dicts, drop_episodes_last_frame=not args.keep_last
|
||||
) # Since our fps varies we are sometimes off tolerance for the last frame
|
||||
|
||||
features = {}
|
||||
|
||||
keys = [key for key in data_dict if "observation.images." in key]
|
||||
for key in keys:
|
||||
features[key] = VideoFrame()
|
||||
|
||||
features["observation.state"] = Sequence(
|
||||
length=data_dict["observation.state"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
features["action"] = Sequence(
|
||||
length=data_dict["action"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
features["episode_index"] = Value(dtype="int64", id=None)
|
||||
features["frame_index"] = Value(dtype="int64", id=None)
|
||||
features["timestamp"] = Value(dtype="float32", id=None)
|
||||
features["next.done"] = Value(dtype="bool", id=None)
|
||||
features["index"] = Value(dtype="int64", id=None)
|
||||
|
||||
hf_dataset = Dataset.from_dict(data_dict, features=Features(features))
|
||||
hf_dataset.set_transform(hf_transform_to_torch)
|
||||
|
||||
info = {
|
||||
"fps": sum(ep_fps) / len(ep_fps), # to have a good tolerance in data processing for the slowest video
|
||||
"video": 1,
|
||||
}
|
||||
|
||||
os.system('spd-say "from preloaded"')
|
||||
lerobot_dataset = LeRobotDataset.from_preloaded(
|
||||
repo_id=repo_id,
|
||||
version=revision,
|
||||
hf_dataset=hf_dataset,
|
||||
episode_data_index=episode_data_index,
|
||||
info=info,
|
||||
videos_dir=videos_dir,
|
||||
)
|
||||
os.system('spd-say "compute stats"')
|
||||
stats = compute_stats(lerobot_dataset)
|
||||
|
||||
os.system('spd-say "save to disk"')
|
||||
hf_dataset = hf_dataset.with_format(None) # to remove transforms that cant be saved
|
||||
hf_dataset.save_to_disk(str(out_data / "train"))
|
||||
|
||||
save_meta_data(info, stats, episode_data_index, meta_data_dir)
|
||||
|
||||
if args.push_to_hub:
|
||||
hf_dataset.push_to_hub(repo_id, token=True, revision="main")
|
||||
hf_dataset.push_to_hub(repo_id, token=True, revision=revision)
|
||||
|
||||
push_meta_data_to_hub(repo_id, meta_data_dir, revision="main")
|
||||
push_meta_data_to_hub(repo_id, meta_data_dir, revision=revision)
|
||||
|
||||
push_videos_to_hub(repo_id, videos_dir, revision="main")
|
||||
push_videos_to_hub(repo_id, videos_dir, revision=revision)
|
||||
60
examples/real_robot_example/run_policy.py
Normal file
60
examples/real_robot_example/run_policy.py
Normal file
@@ -0,0 +1,60 @@
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import gym_real_world # noqa: F401
|
||||
import gymnasium as gym # noqa: F401
|
||||
from huggingface_hub import snapshot_download
|
||||
from huggingface_hub.utils._errors import RepositoryNotFoundError
|
||||
from huggingface_hub.utils._validators import HFValidationError
|
||||
|
||||
from lerobot.common.utils.utils import init_logging
|
||||
from lerobot.scripts.eval import eval
|
||||
|
||||
if __name__ == "__main__":
|
||||
init_logging()
|
||||
|
||||
parser = argparse.ArgumentParser(
|
||||
description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter
|
||||
)
|
||||
group = parser.add_mutually_exclusive_group(required=True)
|
||||
group.add_argument(
|
||||
"-p",
|
||||
"--pretrained-policy-name-or-path",
|
||||
help=(
|
||||
"Either the repo ID of a model hosted on the Hub or a path to a directory containing weights "
|
||||
"saved using `Policy.save_pretrained`. If not provided, the policy is initialized from scratch "
|
||||
"(useful for debugging). This argument is mutually exclusive with `--config`."
|
||||
),
|
||||
)
|
||||
parser.add_argument("--revision", help="Optionally provide the Hugging Face Hub revision ID.")
|
||||
parser.add_argument(
|
||||
"overrides",
|
||||
nargs="*",
|
||||
help="Any key=value arguments to override config values (use dots for.nested=overrides)",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
try:
|
||||
pretrained_policy_path = Path(
|
||||
snapshot_download(args.pretrained_policy_name_or_path, revision=args.revision)
|
||||
)
|
||||
except (HFValidationError, RepositoryNotFoundError) as e:
|
||||
if isinstance(e, HFValidationError):
|
||||
error_message = (
|
||||
"The provided pretrained_policy_name_or_path is not a valid Hugging Face Hub repo ID."
|
||||
)
|
||||
else:
|
||||
error_message = (
|
||||
"The provided pretrained_policy_name_or_path was not found on the Hugging Face Hub."
|
||||
)
|
||||
|
||||
logging.warning(f"{error_message} Treating it as a local directory.")
|
||||
pretrained_policy_path = Path(args.pretrained_policy_name_or_path)
|
||||
if not pretrained_policy_path.is_dir() or not pretrained_policy_path.exists():
|
||||
raise ValueError(
|
||||
"The provided pretrained_policy_name_or_path is not a valid/existing Hugging Face Hub "
|
||||
"repo ID, nor is it an existing local directory."
|
||||
)
|
||||
|
||||
eval(pretrained_policy_path=pretrained_policy_path, config_overrides=args.overrides)
|
||||
@@ -0,0 +1,103 @@
|
||||
# @package _global_
|
||||
|
||||
# Use `act_real.yaml` to train on real-world Aloha/Aloha2 datasets.
|
||||
# Compared to `act.yaml`, it contains 4 cameras (i.e. right_wrist, left_wrist, images,
|
||||
# low) instead of 1 camera (i.e. top). Also, `training.eval_freq` is set to -1. This config is used
|
||||
# to evaluate checkpoints at a certain frequency of training steps. When it is set to -1, it deactivates evaluation.
|
||||
# This is because real-world evaluation is done through [dora-lerobot](https://github.com/dora-rs/dora-lerobot).
|
||||
# Look at its README for more information on how to evaluate a checkpoint in the real-world.
|
||||
#
|
||||
# Example of usage for training:
|
||||
# ```bash
|
||||
# python lerobot/scripts/train.py \
|
||||
# policy=act_real \
|
||||
# env=aloha_real
|
||||
# ```
|
||||
|
||||
seed: 1000
|
||||
dataset_repo_id: ???
|
||||
|
||||
override_dataset_stats:
|
||||
observation.images.high:
|
||||
# stats from imagenet, since we use a pretrained vision model
|
||||
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
|
||||
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
|
||||
observation.images.low:
|
||||
# stats from imagenet, since we use a pretrained vision model
|
||||
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
|
||||
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
|
||||
|
||||
training:
|
||||
offline_steps: 1000
|
||||
online_steps: 0
|
||||
eval_freq: -1
|
||||
save_freq: 1000
|
||||
log_freq: 100
|
||||
save_checkpoint: true
|
||||
|
||||
batch_size: 8
|
||||
lr: 1e-5
|
||||
lr_backbone: 1e-5
|
||||
weight_decay: 1e-4
|
||||
grad_clip_norm: 10
|
||||
online_steps_between_rollouts: 1
|
||||
|
||||
delta_timestamps:
|
||||
action: "[i / ${fps} for i in range(1, ${policy.chunk_size} + 1)]"
|
||||
|
||||
eval:
|
||||
n_episodes: 1
|
||||
batch_size: 1
|
||||
|
||||
# See `configuration_act.py` for more details.
|
||||
policy:
|
||||
name: act
|
||||
|
||||
# Input / output structure.
|
||||
n_obs_steps: 1
|
||||
chunk_size: 100 # chunk_size
|
||||
n_action_steps: 100
|
||||
|
||||
input_shapes:
|
||||
# TODO(rcadene, alexander-soare): add variables for height and width from the dataset/env?
|
||||
observation.images.high: [3, 480, 640]
|
||||
observation.images.low: [3, 480, 640]
|
||||
observation.state: ["${env.state_dim}"]
|
||||
output_shapes:
|
||||
action: ["${env.action_dim}"]
|
||||
|
||||
# Normalization / Unnormalization
|
||||
input_normalization_modes:
|
||||
observation.images.high: mean_std
|
||||
observation.images.low: mean_std
|
||||
observation.state: mean_std
|
||||
output_normalization_modes:
|
||||
action: mean_std
|
||||
|
||||
# Architecture.
|
||||
# Vision backbone.
|
||||
vision_backbone: resnet18
|
||||
pretrained_backbone_weights: ResNet18_Weights.IMAGENET1K_V1
|
||||
replace_final_stride_with_dilation: false
|
||||
# Transformer layers.
|
||||
pre_norm: false
|
||||
dim_model: 512
|
||||
n_heads: 8
|
||||
dim_feedforward: 3200
|
||||
feedforward_activation: relu
|
||||
n_encoder_layers: 4
|
||||
# Note: Although the original ACT implementation has 7 for `n_decoder_layers`, there is a bug in the code
|
||||
# that means only the first layer is used. Here we match the original implementation by setting this to 1.
|
||||
# See this issue https://github.com/tonyzhaozh/act/issues/25#issue-2258740521.
|
||||
n_decoder_layers: 1
|
||||
# VAE.
|
||||
use_vae: true
|
||||
latent_dim: 32
|
||||
n_vae_encoder_layers: 4
|
||||
|
||||
# Inference.
|
||||
temporal_ensemble_momentum: null
|
||||
|
||||
# Training and loss computation.
|
||||
dropout: 0.1
|
||||
kl_weight: 10.0
|
||||
@@ -0,0 +1,103 @@
|
||||
# @package _global_
|
||||
|
||||
# Use `act_real.yaml` to train on real-world Aloha/Aloha2 datasets.
|
||||
# Compared to `act.yaml`, it contains 4 cameras (i.e. right_wrist, left_wrist, images,
|
||||
# front) instead of 1 camera (i.e. top). Also, `training.eval_freq` is set to -1. This config is used
|
||||
# to evaluate checkpoints at a certain frequency of training steps. When it is set to -1, it deactivates evaluation.
|
||||
# This is because real-world evaluation is done through [dora-lerobot](https://github.com/dora-rs/dora-lerobot).
|
||||
# Look at its README for more information on how to evaluate a checkpoint in the real-world.
|
||||
#
|
||||
# Example of usage for training:
|
||||
# ```bash
|
||||
# python lerobot/scripts/train.py \
|
||||
# policy=act_real \
|
||||
# env=aloha_real
|
||||
# ```
|
||||
|
||||
seed: 1000
|
||||
dataset_repo_id: ???
|
||||
|
||||
override_dataset_stats:
|
||||
observation.images.top:
|
||||
# stats from imagenet, since we use a pretrained vision model
|
||||
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
|
||||
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
|
||||
observation.images.front:
|
||||
# stats from imagenet, since we use a pretrained vision model
|
||||
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
|
||||
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
|
||||
|
||||
training:
|
||||
offline_steps: 1000
|
||||
online_steps: 0
|
||||
eval_freq: -1
|
||||
save_freq: 1000
|
||||
log_freq: 100
|
||||
save_checkpoint: true
|
||||
|
||||
batch_size: 8
|
||||
lr: 1e-5
|
||||
lr_backbone: 1e-5
|
||||
weight_decay: 1e-4
|
||||
grad_clip_norm: 10
|
||||
online_steps_between_rollouts: 1
|
||||
|
||||
delta_timestamps:
|
||||
action: "[i / ${fps} for i in range(1, ${policy.chunk_size} + 1)]"
|
||||
|
||||
eval:
|
||||
n_episodes: 1
|
||||
batch_size: 1
|
||||
|
||||
# See `configuration_act.py` for more details.
|
||||
policy:
|
||||
name: act
|
||||
|
||||
# Input / output structure.
|
||||
n_obs_steps: 1
|
||||
chunk_size: 100 # chunk_size
|
||||
n_action_steps: 100
|
||||
|
||||
input_shapes:
|
||||
# TODO(rcadene, alexander-soare): add variables for height and width from the dataset/env?
|
||||
observation.images.top: [3, 480, 640]
|
||||
observation.images.front: [3, 480, 640]
|
||||
observation.state: ["${env.state_dim}"]
|
||||
output_shapes:
|
||||
action: ["${env.action_dim}"]
|
||||
|
||||
# Normalization / Unnormalization
|
||||
input_normalization_modes:
|
||||
observation.images.top: mean_std
|
||||
observation.images.front: mean_std
|
||||
observation.state: mean_std
|
||||
output_normalization_modes:
|
||||
action: mean_std
|
||||
|
||||
# Architecture.
|
||||
# Vision backbone.
|
||||
vision_backbone: resnet18
|
||||
pretrained_backbone_weights: ResNet18_Weights.IMAGENET1K_V1
|
||||
replace_final_stride_with_dilation: false
|
||||
# Transformer layers.
|
||||
pre_norm: false
|
||||
dim_model: 512
|
||||
n_heads: 8
|
||||
dim_feedforward: 3200
|
||||
feedforward_activation: relu
|
||||
n_encoder_layers: 4
|
||||
# Note: Although the original ACT implementation has 7 for `n_decoder_layers`, there is a bug in the code
|
||||
# that means only the first layer is used. Here we match the original implementation by setting this to 1.
|
||||
# See this issue https://github.com/tonyzhaozh/act/issues/25#issue-2258740521.
|
||||
n_decoder_layers: 1
|
||||
# VAE.
|
||||
use_vae: true
|
||||
latent_dim: 32
|
||||
n_vae_encoder_layers: 4
|
||||
|
||||
# Inference.
|
||||
temporal_ensemble_momentum: null
|
||||
|
||||
# Training and loss computation.
|
||||
dropout: 0.1
|
||||
kl_weight: 10.0
|
||||
@@ -45,6 +45,9 @@ import itertools
|
||||
|
||||
from lerobot.__version__ import __version__ # noqa: F401
|
||||
|
||||
# TODO(rcadene): Improve policies and envs. As of now, an item in `available_policies`
|
||||
# refers to a yaml file AND a modeling name. Same for `available_envs` which refers to
|
||||
# a yaml file AND a environment name. The difference should be more obvious.
|
||||
available_tasks_per_env = {
|
||||
"aloha": [
|
||||
"AlohaInsertion-v0",
|
||||
@@ -52,6 +55,7 @@ available_tasks_per_env = {
|
||||
],
|
||||
"pusht": ["PushT-v0"],
|
||||
"xarm": ["XarmLift-v0"],
|
||||
"dora_aloha_real": ["DoraAloha-v0", "DoraKoch-v0", "DoraReachy2-v0"],
|
||||
}
|
||||
available_envs = list(available_tasks_per_env.keys())
|
||||
|
||||
@@ -77,6 +81,23 @@ available_datasets_per_env = {
|
||||
"lerobot/xarm_push_medium_image",
|
||||
"lerobot/xarm_push_medium_replay_image",
|
||||
],
|
||||
"dora_aloha_real": [
|
||||
"lerobot/aloha_static_battery",
|
||||
"lerobot/aloha_static_candy",
|
||||
"lerobot/aloha_static_coffee",
|
||||
"lerobot/aloha_static_coffee_new",
|
||||
"lerobot/aloha_static_cups_open",
|
||||
"lerobot/aloha_static_fork_pick_up",
|
||||
"lerobot/aloha_static_pingpong_test",
|
||||
"lerobot/aloha_static_pro_pencil",
|
||||
"lerobot/aloha_static_screw_driver",
|
||||
"lerobot/aloha_static_tape",
|
||||
"lerobot/aloha_static_thread_velcro",
|
||||
"lerobot/aloha_static_towel",
|
||||
"lerobot/aloha_static_vinh_cup",
|
||||
"lerobot/aloha_static_vinh_cup_left",
|
||||
"lerobot/aloha_static_ziploc_slide",
|
||||
],
|
||||
}
|
||||
|
||||
available_real_world_datasets = [
|
||||
@@ -108,16 +129,19 @@ available_datasets = list(
|
||||
itertools.chain(*available_datasets_per_env.values(), available_real_world_datasets)
|
||||
)
|
||||
|
||||
# lists all available policies from `lerobot/common/policies` by their class attribute: `name`.
|
||||
available_policies = [
|
||||
"act",
|
||||
"diffusion",
|
||||
"tdmpc",
|
||||
]
|
||||
|
||||
# keys and values refer to yaml files
|
||||
available_policies_per_env = {
|
||||
"aloha": ["act"],
|
||||
"pusht": ["diffusion"],
|
||||
"xarm": ["tdmpc"],
|
||||
"dora_aloha_real": ["act_real"],
|
||||
}
|
||||
|
||||
env_task_pairs = [(env, task) for env, tasks in available_tasks_per_env.items() for task in tasks]
|
||||
|
||||
@@ -16,17 +16,15 @@
|
||||
from copy import deepcopy
|
||||
from math import ceil
|
||||
|
||||
import datasets
|
||||
import einops
|
||||
import torch
|
||||
import tqdm
|
||||
from datasets import Image
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
||||
from lerobot.common.datasets.video_utils import VideoFrame
|
||||
|
||||
|
||||
def get_stats_einops_patterns(dataset: LeRobotDataset | datasets.Dataset, num_workers=0):
|
||||
def get_stats_einops_patterns(dataset, num_workers=0):
|
||||
"""These einops patterns will be used to aggregate batches and compute statistics.
|
||||
|
||||
Note: We assume the images are in channel first format
|
||||
@@ -66,9 +64,8 @@ def get_stats_einops_patterns(dataset: LeRobotDataset | datasets.Dataset, num_wo
|
||||
return stats_patterns
|
||||
|
||||
|
||||
def compute_stats(
|
||||
dataset: LeRobotDataset | datasets.Dataset, batch_size=32, num_workers=16, max_num_samples=None
|
||||
):
|
||||
def compute_stats(dataset, batch_size=32, num_workers=16, max_num_samples=None):
|
||||
"""Compute mean/std and min/max statistics of all data keys in a LeRobotDataset."""
|
||||
if max_num_samples is None:
|
||||
max_num_samples = len(dataset)
|
||||
|
||||
@@ -159,3 +156,54 @@ def compute_stats(
|
||||
"min": min[key],
|
||||
}
|
||||
return stats
|
||||
|
||||
|
||||
def aggregate_stats(ls_datasets) -> dict[str, torch.Tensor]:
|
||||
"""Aggregate stats of multiple LeRobot datasets into one set of stats without recomputing from scratch.
|
||||
|
||||
The final stats will have the union of all data keys from each of the datasets.
|
||||
|
||||
The final stats will have the union of all data keys from each of the datasets. For instance:
|
||||
- new_max = max(max_dataset_0, max_dataset_1, ...)
|
||||
- new_min = min(min_dataset_0, min_dataset_1, ...)
|
||||
- new_mean = (mean of all data)
|
||||
- new_std = (std of all data)
|
||||
"""
|
||||
data_keys = set()
|
||||
for dataset in ls_datasets:
|
||||
data_keys.update(dataset.stats.keys())
|
||||
stats = {k: {} for k in data_keys}
|
||||
for data_key in data_keys:
|
||||
for stat_key in ["min", "max"]:
|
||||
# compute `max(dataset_0["max"], dataset_1["max"], ...)`
|
||||
stats[data_key][stat_key] = einops.reduce(
|
||||
torch.stack([d.stats[data_key][stat_key] for d in ls_datasets if data_key in d.stats], dim=0),
|
||||
"n ... -> ...",
|
||||
stat_key,
|
||||
)
|
||||
total_samples = sum(d.num_samples for d in ls_datasets if data_key in d.stats)
|
||||
# Compute the "sum" statistic by multiplying each mean by the number of samples in the respective
|
||||
# dataset, then divide by total_samples to get the overall "mean".
|
||||
# NOTE: the brackets around (d.num_samples / total_samples) are needed tor minimize the risk of
|
||||
# numerical overflow!
|
||||
stats[data_key]["mean"] = sum(
|
||||
d.stats[data_key]["mean"] * (d.num_samples / total_samples)
|
||||
for d in ls_datasets
|
||||
if data_key in d.stats
|
||||
)
|
||||
# The derivation for standard deviation is a little more involved but is much in the same spirit as
|
||||
# the computation of the mean.
|
||||
# Given two sets of data where the statistics are known:
|
||||
# σ_combined = sqrt[ (n1 * (σ1^2 + d1^2) + n2 * (σ2^2 + d2^2)) / (n1 + n2) ]
|
||||
# where d1 = μ1 - μ_combined, d2 = μ2 - μ_combined
|
||||
# NOTE: the brackets around (d.num_samples / total_samples) are needed tor minimize the risk of
|
||||
# numerical overflow!
|
||||
stats[data_key]["std"] = torch.sqrt(
|
||||
sum(
|
||||
(d.stats[data_key]["std"] ** 2 + (d.stats[data_key]["mean"] - stats[data_key]["mean"]) ** 2)
|
||||
* (d.num_samples / total_samples)
|
||||
for d in ls_datasets
|
||||
if data_key in d.stats
|
||||
)
|
||||
)
|
||||
return stats
|
||||
@@ -16,9 +16,9 @@
|
||||
import logging
|
||||
|
||||
import torch
|
||||
from omegaconf import OmegaConf
|
||||
from omegaconf import ListConfig, OmegaConf
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset, MultiLeRobotDataset
|
||||
|
||||
|
||||
def resolve_delta_timestamps(cfg):
|
||||
@@ -35,25 +35,54 @@ def resolve_delta_timestamps(cfg):
|
||||
cfg.training.delta_timestamps[key] = eval(delta_timestamps[key])
|
||||
|
||||
|
||||
def make_dataset(
|
||||
cfg,
|
||||
split="train",
|
||||
):
|
||||
if cfg.env.name not in cfg.dataset_repo_id:
|
||||
logging.warning(
|
||||
f"There might be a mismatch between your training dataset ({cfg.dataset_repo_id=}) and your "
|
||||
f"environment ({cfg.env.name=})."
|
||||
def make_dataset(cfg, split: str = "train") -> LeRobotDataset | MultiLeRobotDataset:
|
||||
"""
|
||||
Args:
|
||||
cfg: A Hydra config as per the LeRobot config scheme.
|
||||
split: Select the data subset used to create an instance of LeRobotDataset.
|
||||
All datasets hosted on [lerobot](https://huggingface.co/lerobot) contain only one subset: "train".
|
||||
Thus, by default, `split="train"` selects all the available data. `split` aims to work like the
|
||||
slicer in the hugging face datasets:
|
||||
https://huggingface.co/docs/datasets/v2.19.0/loading#slice-splits
|
||||
As of now, it only supports `split="train[:n]"` to load the first n frames of the dataset or
|
||||
`split="train[n:]"` to load the last n frames. For instance `split="train[:1000]"`.
|
||||
Returns:
|
||||
The LeRobotDataset.
|
||||
"""
|
||||
if not isinstance(cfg.dataset_repo_id, (str, ListConfig)):
|
||||
raise ValueError(
|
||||
"Expected cfg.dataset_repo_id to be either a single string to load one dataset or a list of "
|
||||
"strings to load multiple datasets."
|
||||
)
|
||||
|
||||
# A soft check to warn if the environment matches the dataset. Don't check if we are using a real world env (dora).
|
||||
if not cfg.env.real_world:
|
||||
if isinstance(cfg.dataset_repo_id, str):
|
||||
dataset_repo_ids = [cfg.dataset_repo_id] # single dataset
|
||||
else:
|
||||
dataset_repo_ids = cfg.dataset_repo_id # multiple datasets
|
||||
|
||||
for dataset_repo_id in dataset_repo_ids:
|
||||
if cfg.env.name not in dataset_repo_id:
|
||||
logging.warning(
|
||||
f"There might be a mismatch between your training dataset ({dataset_repo_id=}) and your "
|
||||
f"environment ({cfg.env.name=})."
|
||||
)
|
||||
|
||||
resolve_delta_timestamps(cfg)
|
||||
|
||||
# TODO(rcadene): add data augmentations
|
||||
|
||||
dataset = LeRobotDataset(
|
||||
cfg.dataset_repo_id,
|
||||
split=split,
|
||||
delta_timestamps=cfg.training.get("delta_timestamps"),
|
||||
)
|
||||
if isinstance(cfg.dataset_repo_id, str):
|
||||
dataset = LeRobotDataset(
|
||||
cfg.dataset_repo_id,
|
||||
split=split,
|
||||
delta_timestamps=cfg.training.get("delta_timestamps"),
|
||||
)
|
||||
else:
|
||||
dataset = MultiLeRobotDataset(
|
||||
cfg.dataset_repo_id, split=split, delta_timestamps=cfg.training.get("delta_timestamps")
|
||||
)
|
||||
|
||||
if cfg.get("override_dataset_stats"):
|
||||
for key, stats_dict in cfg.override_dataset_stats.items():
|
||||
|
||||
@@ -13,12 +13,16 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import logging
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import Callable
|
||||
|
||||
import datasets
|
||||
import torch
|
||||
import torch.utils
|
||||
|
||||
from lerobot.common.datasets.compute_stats import aggregate_stats
|
||||
from lerobot.common.datasets.utils import (
|
||||
calculate_episode_data_index,
|
||||
load_episode_data_index,
|
||||
@@ -42,7 +46,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
version: str | None = CODEBASE_VERSION,
|
||||
root: Path | None = DATA_DIR,
|
||||
split: str = "train",
|
||||
transform: callable = None,
|
||||
transform: Callable | None = None,
|
||||
delta_timestamps: dict[list[float]] | None = None,
|
||||
):
|
||||
super().__init__()
|
||||
@@ -171,7 +175,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
@classmethod
|
||||
def from_preloaded(
|
||||
cls,
|
||||
repo_id: str,
|
||||
repo_id: str = "from_preloaded",
|
||||
version: str | None = CODEBASE_VERSION,
|
||||
root: Path | None = None,
|
||||
split: str = "train",
|
||||
@@ -183,7 +187,15 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
stats=None,
|
||||
info=None,
|
||||
videos_dir=None,
|
||||
):
|
||||
) -> "LeRobotDataset":
|
||||
"""Create a LeRobot Dataset from existing data and attributes instead of loading from the filesystem.
|
||||
|
||||
It is especially useful when converting raw data into LeRobotDataset before saving the dataset
|
||||
on the filesystem or uploading to the hub.
|
||||
|
||||
Note: Meta-data attributes like `repo_id`, `version`, `root`, etc are optional and potentially
|
||||
meaningless depending on the downstream usage of the return dataset.
|
||||
"""
|
||||
# create an empty object of type LeRobotDataset
|
||||
obj = cls.__new__(cls)
|
||||
obj.repo_id = repo_id
|
||||
@@ -195,6 +207,193 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
obj.hf_dataset = hf_dataset
|
||||
obj.episode_data_index = episode_data_index
|
||||
obj.stats = stats
|
||||
obj.info = info
|
||||
obj.info = info if info is not None else {}
|
||||
obj.videos_dir = videos_dir
|
||||
return obj
|
||||
|
||||
|
||||
class MultiLeRobotDataset(torch.utils.data.Dataset):
|
||||
"""A dataset consisting of multiple underlying `LeRobotDataset`s.
|
||||
|
||||
The underlying `LeRobotDataset`s are effectively concatenated, and this class adopts much of the API
|
||||
structure of `LeRobotDataset`.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
repo_ids: list[str],
|
||||
version: str | None = CODEBASE_VERSION,
|
||||
root: Path | None = DATA_DIR,
|
||||
split: str = "train",
|
||||
transform: Callable | None = None,
|
||||
delta_timestamps: dict[list[float]] | None = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.repo_ids = repo_ids
|
||||
# Construct the underlying datasets passing everything but `transform` and `delta_timestamps` which
|
||||
# are handled by this class.
|
||||
self._datasets = [
|
||||
LeRobotDataset(
|
||||
repo_id,
|
||||
version=version,
|
||||
root=root,
|
||||
split=split,
|
||||
delta_timestamps=delta_timestamps,
|
||||
transform=transform,
|
||||
)
|
||||
for repo_id in repo_ids
|
||||
]
|
||||
# Check that some properties are consistent across datasets. Note: We may relax some of these
|
||||
# consistency requirements in future iterations of this class.
|
||||
for repo_id, dataset in zip(self.repo_ids, self._datasets, strict=True):
|
||||
if dataset.info != self._datasets[0].info:
|
||||
raise ValueError(
|
||||
f"Detected a mismatch in dataset info between {self.repo_ids[0]} and {repo_id}. This is "
|
||||
"not yet supported."
|
||||
)
|
||||
# Disable any data keys that are not common across all of the datasets. Note: we may relax this
|
||||
# restriction in future iterations of this class. For now, this is necessary at least for being able
|
||||
# to use PyTorch's default DataLoader collate function.
|
||||
self.disabled_data_keys = set()
|
||||
intersection_data_keys = set(self._datasets[0].hf_dataset.features)
|
||||
for dataset in self._datasets:
|
||||
intersection_data_keys.intersection_update(dataset.hf_dataset.features)
|
||||
if len(intersection_data_keys) == 0:
|
||||
raise RuntimeError(
|
||||
"Multiple datasets were provided but they had no keys common to all of them. The "
|
||||
"multi-dataset functionality currently only keeps common keys."
|
||||
)
|
||||
for repo_id, dataset in zip(self.repo_ids, self._datasets, strict=True):
|
||||
extra_keys = set(dataset.hf_dataset.features).difference(intersection_data_keys)
|
||||
logging.warning(
|
||||
f"keys {extra_keys} of {repo_id} were disabled as they are not contained in all the "
|
||||
"other datasets."
|
||||
)
|
||||
self.disabled_data_keys.update(extra_keys)
|
||||
|
||||
self.version = version
|
||||
self.root = root
|
||||
self.split = split
|
||||
self.transform = transform
|
||||
self.delta_timestamps = delta_timestamps
|
||||
self.stats = aggregate_stats(self._datasets)
|
||||
|
||||
@property
|
||||
def repo_id_to_index(self):
|
||||
"""Return a mapping from dataset repo_id to a dataset index automatically created by this class.
|
||||
|
||||
This index is incorporated as a data key in the dictionary returned by `__getitem__`.
|
||||
"""
|
||||
return {repo_id: i for i, repo_id in enumerate(self.repo_ids)}
|
||||
|
||||
@property
|
||||
def repo_index_to_id(self):
|
||||
"""Return the inverse mapping if repo_id_to_index."""
|
||||
return {v: k for k, v in self.repo_id_to_index}
|
||||
|
||||
@property
|
||||
def fps(self) -> int:
|
||||
"""Frames per second used during data collection.
|
||||
|
||||
NOTE: Fow now, this relies on a check in __init__ to make sure all sub-datasets have the same info.
|
||||
"""
|
||||
return self._datasets[0].info["fps"]
|
||||
|
||||
@property
|
||||
def video(self) -> bool:
|
||||
"""Returns True if this dataset loads video frames from mp4 files.
|
||||
|
||||
Returns False if it only loads images from png files.
|
||||
|
||||
NOTE: Fow now, this relies on a check in __init__ to make sure all sub-datasets have the same info.
|
||||
"""
|
||||
return self._datasets[0].info.get("video", False)
|
||||
|
||||
@property
|
||||
def features(self) -> datasets.Features:
|
||||
features = {}
|
||||
for dataset in self._datasets:
|
||||
features.update({k: v for k, v in dataset.features.items() if k not in self.disabled_data_keys})
|
||||
return features
|
||||
|
||||
@property
|
||||
def camera_keys(self) -> list[str]:
|
||||
"""Keys to access image and video stream from cameras."""
|
||||
keys = []
|
||||
for key, feats in self.features.items():
|
||||
if isinstance(feats, (datasets.Image, VideoFrame)):
|
||||
keys.append(key)
|
||||
return keys
|
||||
|
||||
@property
|
||||
def video_frame_keys(self) -> list[str]:
|
||||
"""Keys to access video frames that requires to be decoded into images.
|
||||
|
||||
Note: It is empty if the dataset contains images only,
|
||||
or equal to `self.cameras` if the dataset contains videos only,
|
||||
or can even be a subset of `self.cameras` in a case of a mixed image/video dataset.
|
||||
"""
|
||||
video_frame_keys = []
|
||||
for key, feats in self.features.items():
|
||||
if isinstance(feats, VideoFrame):
|
||||
video_frame_keys.append(key)
|
||||
return video_frame_keys
|
||||
|
||||
@property
|
||||
def num_samples(self) -> int:
|
||||
"""Number of samples/frames."""
|
||||
return sum(d.num_samples for d in self._datasets)
|
||||
|
||||
@property
|
||||
def num_episodes(self) -> int:
|
||||
"""Number of episodes."""
|
||||
return sum(d.num_episodes for d in self._datasets)
|
||||
|
||||
@property
|
||||
def tolerance_s(self) -> float:
|
||||
"""Tolerance in seconds used to discard loaded frames when their timestamps
|
||||
are not close enough from the requested frames. It is only used when `delta_timestamps`
|
||||
is provided or when loading video frames from mp4 files.
|
||||
"""
|
||||
# 1e-4 to account for possible numerical error
|
||||
return 1 / self.fps - 1e-4
|
||||
|
||||
def __len__(self):
|
||||
return self.num_samples
|
||||
|
||||
def __getitem__(self, idx: int) -> dict[str, torch.Tensor]:
|
||||
if idx >= len(self):
|
||||
raise IndexError(f"Index {idx} out of bounds.")
|
||||
# Determine which dataset to get an item from based on the index.
|
||||
start_idx = 0
|
||||
dataset_idx = 0
|
||||
for dataset in self._datasets:
|
||||
if idx >= start_idx + dataset.num_samples:
|
||||
start_idx += dataset.num_samples
|
||||
dataset_idx += 1
|
||||
continue
|
||||
break
|
||||
else:
|
||||
raise AssertionError("We expect the loop to break out as long as the index is within bounds.")
|
||||
item = self._datasets[dataset_idx][idx - start_idx]
|
||||
item["dataset_index"] = torch.tensor(dataset_idx)
|
||||
for data_key in self.disabled_data_keys:
|
||||
if data_key in item:
|
||||
del item[data_key]
|
||||
return item
|
||||
|
||||
def __repr__(self):
|
||||
return (
|
||||
f"{self.__class__.__name__}(\n"
|
||||
f" Repository IDs: '{self.repo_ids}',\n"
|
||||
f" Version: '{self.version}',\n"
|
||||
f" Split: '{self.split}',\n"
|
||||
f" Number of Samples: {self.num_samples},\n"
|
||||
f" Number of Episodes: {self.num_episodes},\n"
|
||||
f" Type: {'video (.mp4)' if self.video else 'image (.png)'},\n"
|
||||
f" Recorded Frames per Second: {self.fps},\n"
|
||||
f" Camera Keys: {self.camera_keys},\n"
|
||||
f" Video Frame Keys: {self.video_frame_keys if self.video else 'N/A'},\n"
|
||||
f" Transformations: {self.transform},\n"
|
||||
f")"
|
||||
)
|
||||
|
||||
@@ -43,9 +43,6 @@ def get_cameras(hdf5_data):
|
||||
|
||||
|
||||
def check_format(raw_dir) -> bool:
|
||||
# only frames from simulation are uncompressed
|
||||
compressed_images = "sim" not in raw_dir.name
|
||||
|
||||
hdf5_paths = list(raw_dir.glob("episode_*.hdf5"))
|
||||
assert len(hdf5_paths) != 0
|
||||
for hdf5_path in hdf5_paths:
|
||||
@@ -62,17 +59,15 @@ def check_format(raw_dir) -> bool:
|
||||
for camera in get_cameras(data):
|
||||
assert num_frames == data[f"/observations/images/{camera}"].shape[0]
|
||||
|
||||
if compressed_images:
|
||||
assert data[f"/observations/images/{camera}"].ndim == 2
|
||||
else:
|
||||
assert data[f"/observations/images/{camera}"].ndim == 4
|
||||
# ndim 2 when image are compressed and 4 when uncompressed
|
||||
assert data[f"/observations/images/{camera}"].ndim in [2, 4]
|
||||
if data[f"/observations/images/{camera}"].ndim == 4:
|
||||
b, h, w, c = data[f"/observations/images/{camera}"].shape
|
||||
assert c < h and c < w, f"Expect (h,w,c) image format but ({h=},{w=},{c=}) provided."
|
||||
|
||||
|
||||
def load_from_raw(raw_dir, out_dir, fps, video, debug):
|
||||
# only frames from simulation are uncompressed
|
||||
compressed_images = "sim" not in raw_dir.name
|
||||
|
||||
hdf5_files = list(raw_dir.glob("*.hdf5"))
|
||||
ep_dicts = []
|
||||
@@ -99,7 +94,7 @@ def load_from_raw(raw_dir, out_dir, fps, video, debug):
|
||||
for camera in get_cameras(ep):
|
||||
img_key = f"observation.images.{camera}"
|
||||
|
||||
if compressed_images:
|
||||
if ep[f"/observations/images/{camera}"].ndim == 2:
|
||||
import cv2
|
||||
|
||||
# load one compressed image after the other in RAM and uncompress
|
||||
|
||||
@@ -21,19 +21,24 @@ import PIL
|
||||
import torch
|
||||
|
||||
|
||||
def concatenate_episodes(ep_dicts):
|
||||
def concatenate_episodes(ep_dicts, drop_episodes_last_frame=False):
|
||||
data_dict = {}
|
||||
|
||||
keys = ep_dicts[0].keys()
|
||||
for key in keys:
|
||||
if torch.is_tensor(ep_dicts[0][key][0]):
|
||||
data_dict[key] = torch.cat([ep_dict[key] for ep_dict in ep_dicts])
|
||||
if drop_episodes_last_frame:
|
||||
data_dict[key] = torch.cat([ep_dict[key][:-1] for ep_dict in ep_dicts])
|
||||
else:
|
||||
data_dict[key] = torch.cat([ep_dict[key] for ep_dict in ep_dicts])
|
||||
else:
|
||||
if key not in data_dict:
|
||||
data_dict[key] = []
|
||||
for ep_dict in ep_dicts:
|
||||
for x in ep_dict[key]:
|
||||
data_dict[key].append(x)
|
||||
if drop_episodes_last_frame:
|
||||
data_dict[key].pop()
|
||||
|
||||
total_frames = data_dict["frame_index"].shape[0]
|
||||
data_dict["index"] = torch.arange(0, total_frames, 1)
|
||||
|
||||
61
lerobot/common/datasets/sampler.py
Normal file
61
lerobot/common/datasets/sampler.py
Normal file
@@ -0,0 +1,61 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from typing import Iterator, Union
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
class EpisodeAwareSampler:
|
||||
def __init__(
|
||||
self,
|
||||
episode_data_index: dict,
|
||||
episode_indices_to_use: Union[list, None] = None,
|
||||
drop_n_first_frames: int = 0,
|
||||
drop_n_last_frames: int = 0,
|
||||
shuffle: bool = False,
|
||||
):
|
||||
"""Sampler that optionally incorporates episode boundary information.
|
||||
|
||||
Args:
|
||||
episode_data_index: Dictionary with keys 'from' and 'to' containing the start and end indices of each episode.
|
||||
episode_indices_to_use: List of episode indices to use. If None, all episodes are used.
|
||||
Assumes that episodes are indexed from 0 to N-1.
|
||||
drop_n_first_frames: Number of frames to drop from the start of each episode.
|
||||
drop_n_last_frames: Number of frames to drop from the end of each episode.
|
||||
shuffle: Whether to shuffle the indices.
|
||||
"""
|
||||
indices = []
|
||||
for episode_idx, (start_index, end_index) in enumerate(
|
||||
zip(episode_data_index["from"], episode_data_index["to"], strict=True)
|
||||
):
|
||||
if episode_indices_to_use is None or episode_idx in episode_indices_to_use:
|
||||
indices.extend(
|
||||
range(start_index.item() + drop_n_first_frames, end_index.item() - drop_n_last_frames)
|
||||
)
|
||||
|
||||
self.indices = indices
|
||||
self.shuffle = shuffle
|
||||
|
||||
def __iter__(self) -> Iterator[int]:
|
||||
if self.shuffle:
|
||||
for i in torch.randperm(len(self.indices)):
|
||||
yield self.indices[i]
|
||||
else:
|
||||
for i in self.indices:
|
||||
yield i
|
||||
|
||||
def __len__(self) -> int:
|
||||
return len(self.indices)
|
||||
@@ -59,7 +59,7 @@ def unflatten_dict(d, sep="/"):
|
||||
return outdict
|
||||
|
||||
|
||||
def hf_transform_to_torch(items_dict):
|
||||
def hf_transform_to_torch(items_dict: dict[torch.Tensor | None]):
|
||||
"""Get a transform function that convert items from Hugging Face dataset (pyarrow)
|
||||
to torch tensors. Importantly, images are converted from PIL, which corresponds to
|
||||
a channel last representation (h w c) of uint8 type, to a torch image representation
|
||||
@@ -73,6 +73,8 @@ def hf_transform_to_torch(items_dict):
|
||||
elif isinstance(first_item, dict) and "path" in first_item and "timestamp" in first_item:
|
||||
# video frame will be processed downstream
|
||||
pass
|
||||
elif first_item is None:
|
||||
pass
|
||||
else:
|
||||
items_dict[key] = [torch.tensor(x) for x in items_dict[key]]
|
||||
return items_dict
|
||||
@@ -318,8 +320,7 @@ def calculate_episode_data_index(hf_dataset: datasets.Dataset) -> Dict[str, torc
|
||||
|
||||
|
||||
def reset_episode_index(hf_dataset: datasets.Dataset) -> datasets.Dataset:
|
||||
"""
|
||||
Reset the `episode_index` of the provided HuggingFace Dataset.
|
||||
"""Reset the `episode_index` of the provided HuggingFace Dataset.
|
||||
|
||||
`episode_data_index` (and related functionality such as `load_previous_and_future_frames`) requires the
|
||||
`episode_index` to be sorted, continuous (1,1,1 and not 1,2,1) and start at 0.
|
||||
@@ -338,6 +339,7 @@ def reset_episode_index(hf_dataset: datasets.Dataset) -> datasets.Dataset:
|
||||
return example
|
||||
|
||||
hf_dataset = hf_dataset.map(modify_ep_idx_func)
|
||||
|
||||
return hf_dataset
|
||||
|
||||
|
||||
|
||||
@@ -29,10 +29,12 @@ def preprocess_observation(observations: dict[str, np.ndarray]) -> dict[str, Ten
|
||||
# map to expected inputs for the policy
|
||||
return_observations = {}
|
||||
|
||||
if isinstance(observations["pixels"], dict):
|
||||
if "pixels" in observations and isinstance(observations["pixels"], dict):
|
||||
imgs = {f"observation.images.{key}": img for key, img in observations["pixels"].items()}
|
||||
else:
|
||||
elif "pixels" in observations and isinstance(observations["pixels"], np.ndarray):
|
||||
imgs = {"observation.image": observations["pixels"]}
|
||||
else:
|
||||
imgs = {f"observation.{key}": img for key, img in observations.items() if "images" in key}
|
||||
|
||||
for imgkey, img in imgs.items():
|
||||
img = torch.from_numpy(img)
|
||||
|
||||
@@ -25,6 +25,13 @@ class ACTConfig:
|
||||
The parameters you will most likely need to change are the ones which depend on the environment / sensors.
|
||||
Those are: `input_shapes` and 'output_shapes`.
|
||||
|
||||
Notes on the inputs and outputs:
|
||||
- At least one key starting with "observation.image is required as an input.
|
||||
- If there are multiple keys beginning with "observation.images." they are treated as multiple camera
|
||||
views. Right now we only support all images having the same shape.
|
||||
- May optionally work without an "observation.state" key for the proprioceptive robot state.
|
||||
- "action" is required as an output key.
|
||||
|
||||
Args:
|
||||
n_obs_steps: Number of environment steps worth of observations to pass to the policy (takes the
|
||||
current step and additional steps going back).
|
||||
@@ -33,15 +40,15 @@ class ACTConfig:
|
||||
This should be no greater than the chunk size. For example, if the chunk size size 100, you may
|
||||
set this to 50. This would mean that the model predicts 100 steps worth of actions, runs 50 in the
|
||||
environment, and throws the other 50 out.
|
||||
input_shapes: A dictionary defining the shapes of the input data for the policy.
|
||||
The key represents the input data name, and the value is a list indicating the dimensions
|
||||
of the corresponding data. For example, "observation.images.top" refers to an input from the
|
||||
"top" camera with dimensions [3, 96, 96], indicating it has three color channels and 96x96 resolution.
|
||||
Importantly, shapes doesn't include batch dimension or temporal dimension.
|
||||
output_shapes: A dictionary defining the shapes of the output data for the policy.
|
||||
The key represents the output data name, and the value is a list indicating the dimensions
|
||||
of the corresponding data. For example, "action" refers to an output shape of [14], indicating
|
||||
14-dimensional actions. Importantly, shapes doesn't include batch dimension or temporal dimension.
|
||||
input_shapes: A dictionary defining the shapes of the input data for the policy. The key represents
|
||||
the input data name, and the value is a list indicating the dimensions of the corresponding data.
|
||||
For example, "observation.image" refers to an input from a camera with dimensions [3, 96, 96],
|
||||
indicating it has three color channels and 96x96 resolution. Importantly, `input_shapes` doesn't
|
||||
include batch dimension or temporal dimension.
|
||||
output_shapes: A dictionary defining the shapes of the output data for the policy. The key represents
|
||||
the output data name, and the value is a list indicating the dimensions of the corresponding data.
|
||||
For example, "action" refers to an output shape of [14], indicating 14-dimensional actions.
|
||||
Importantly, `output_shapes` doesn't include batch dimension or temporal dimension.
|
||||
input_normalization_modes: A dictionary with key representing the modality (e.g. "observation.state"),
|
||||
and the value specifies the normalization mode to apply. The two available modes are "mean_std"
|
||||
which subtracts the mean and divides by the standard deviation and "min_max" which rescale in a
|
||||
@@ -122,7 +129,9 @@ class ACTConfig:
|
||||
# Note: Although the original ACT implementation has 7 for `n_decoder_layers`, there is a bug in the code
|
||||
# that means only the first layer is used. Here we match the original implementation by setting this to 1.
|
||||
# See this issue https://github.com/tonyzhaozh/act/issues/25#issue-2258740521.
|
||||
# As a consequence we also remove the final, unused layer normalization, by default
|
||||
n_decoder_layers: int = 1
|
||||
decoder_norm: bool = False
|
||||
# VAE.
|
||||
use_vae: bool = True
|
||||
latent_dim: int = 32
|
||||
|
||||
@@ -198,27 +198,31 @@ class ACT(nn.Module):
|
||||
def __init__(self, config: ACTConfig):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
# BERT style VAE encoder with input [cls, *joint_space_configuration, *action_sequence].
|
||||
# BERT style VAE encoder with input tokens [cls, robot_state, *action_sequence].
|
||||
# The cls token forms parameters of the latent's distribution (like this [*means, *log_variances]).
|
||||
self.use_input_state = "observation.state" in config.input_shapes
|
||||
if self.config.use_vae:
|
||||
self.vae_encoder = ACTEncoder(config)
|
||||
self.vae_encoder_cls_embed = nn.Embedding(1, config.dim_model)
|
||||
# Projection layer for joint-space configuration to hidden dimension.
|
||||
self.vae_encoder_robot_state_input_proj = nn.Linear(
|
||||
config.input_shapes["observation.state"][0], config.dim_model
|
||||
)
|
||||
if self.use_input_state:
|
||||
self.vae_encoder_robot_state_input_proj = nn.Linear(
|
||||
config.input_shapes["observation.state"][0], config.dim_model
|
||||
)
|
||||
# Projection layer for action (joint-space target) to hidden dimension.
|
||||
self.vae_encoder_action_input_proj = nn.Linear(
|
||||
config.input_shapes["observation.state"][0], config.dim_model
|
||||
config.output_shapes["action"][0], config.dim_model
|
||||
)
|
||||
self.latent_dim = config.latent_dim
|
||||
# Projection layer from the VAE encoder's output to the latent distribution's parameter space.
|
||||
self.vae_encoder_latent_output_proj = nn.Linear(config.dim_model, self.latent_dim * 2)
|
||||
# Fixed sinusoidal positional embedding the whole input to the VAE encoder. Unsqueeze for batch
|
||||
self.vae_encoder_latent_output_proj = nn.Linear(config.dim_model, config.latent_dim * 2)
|
||||
# Fixed sinusoidal positional embedding for the input to the VAE encoder. Unsqueeze for batch
|
||||
# dimension.
|
||||
num_input_token_encoder = 1 + config.chunk_size
|
||||
if self.use_input_state:
|
||||
num_input_token_encoder += 1
|
||||
self.register_buffer(
|
||||
"vae_encoder_pos_enc",
|
||||
create_sinusoidal_pos_embedding(1 + 1 + config.chunk_size, config.dim_model).unsqueeze(0),
|
||||
create_sinusoidal_pos_embedding(num_input_token_encoder, config.dim_model).unsqueeze(0),
|
||||
)
|
||||
|
||||
# Backbone for image feature extraction.
|
||||
@@ -238,15 +242,17 @@ class ACT(nn.Module):
|
||||
|
||||
# Transformer encoder input projections. The tokens will be structured like
|
||||
# [latent, robot_state, image_feature_map_pixels].
|
||||
self.encoder_robot_state_input_proj = nn.Linear(
|
||||
config.input_shapes["observation.state"][0], config.dim_model
|
||||
)
|
||||
self.encoder_latent_input_proj = nn.Linear(self.latent_dim, config.dim_model)
|
||||
if self.use_input_state:
|
||||
self.encoder_robot_state_input_proj = nn.Linear(
|
||||
config.input_shapes["observation.state"][0], config.dim_model
|
||||
)
|
||||
self.encoder_latent_input_proj = nn.Linear(config.latent_dim, config.dim_model)
|
||||
self.encoder_img_feat_input_proj = nn.Conv2d(
|
||||
backbone_model.fc.in_features, config.dim_model, kernel_size=1
|
||||
)
|
||||
# Transformer encoder positional embeddings.
|
||||
self.encoder_robot_and_latent_pos_embed = nn.Embedding(2, config.dim_model)
|
||||
num_input_token_decoder = 2 if self.use_input_state else 1
|
||||
self.encoder_robot_and_latent_pos_embed = nn.Embedding(num_input_token_decoder, config.dim_model)
|
||||
self.encoder_cam_feat_pos_embed = ACTSinusoidalPositionEmbedding2d(config.dim_model // 2)
|
||||
|
||||
# Transformer decoder.
|
||||
@@ -285,7 +291,7 @@ class ACT(nn.Module):
|
||||
"action" in batch
|
||||
), "actions must be provided when using the variational objective in training mode."
|
||||
|
||||
batch_size = batch["observation.state"].shape[0]
|
||||
batch_size = batch["observation.images"].shape[0]
|
||||
|
||||
# Prepare the latent for input to the transformer encoder.
|
||||
if self.config.use_vae and "action" in batch:
|
||||
@@ -293,31 +299,43 @@ class ACT(nn.Module):
|
||||
cls_embed = einops.repeat(
|
||||
self.vae_encoder_cls_embed.weight, "1 d -> b 1 d", b=batch_size
|
||||
) # (B, 1, D)
|
||||
robot_state_embed = self.vae_encoder_robot_state_input_proj(batch["observation.state"]).unsqueeze(
|
||||
1
|
||||
) # (B, 1, D)
|
||||
if self.use_input_state:
|
||||
robot_state_embed = self.vae_encoder_robot_state_input_proj(batch["observation.state"])
|
||||
robot_state_embed = robot_state_embed.unsqueeze(1) # (B, 1, D)
|
||||
action_embed = self.vae_encoder_action_input_proj(batch["action"]) # (B, S, D)
|
||||
vae_encoder_input = torch.cat([cls_embed, robot_state_embed, action_embed], axis=1) # (B, S+2, D)
|
||||
|
||||
if self.use_input_state:
|
||||
vae_encoder_input = [cls_embed, robot_state_embed, action_embed] # (B, S+2, D)
|
||||
else:
|
||||
vae_encoder_input = [cls_embed, action_embed]
|
||||
vae_encoder_input = torch.cat(vae_encoder_input, axis=1)
|
||||
|
||||
# Prepare fixed positional embedding.
|
||||
# Note: detach() shouldn't be necessary but leaving it the same as the original code just in case.
|
||||
pos_embed = self.vae_encoder_pos_enc.clone().detach() # (1, S+2, D)
|
||||
|
||||
# Forward pass through VAE encoder to get the latent PDF parameters.
|
||||
cls_joint_is_pad = torch.full((batch_size, 2), False).to(
|
||||
batch["observation.state"].device
|
||||
) # False: not a padding
|
||||
key_padding_mask = torch.cat([cls_joint_is_pad, batch["action_is_pad"]], axis=1) # (bs, seq+1)
|
||||
cls_token_out = self.vae_encoder(
|
||||
vae_encoder_input.permute(1, 0, 2), pos_embed=pos_embed.permute(1, 0, 2)
|
||||
vae_encoder_input.permute(1, 0, 2),
|
||||
pos_embed=pos_embed.permute(1, 0, 2),
|
||||
key_padding_mask=key_padding_mask,
|
||||
)[0] # select the class token, with shape (B, D)
|
||||
latent_pdf_params = self.vae_encoder_latent_output_proj(cls_token_out)
|
||||
mu = latent_pdf_params[:, : self.latent_dim]
|
||||
mu = latent_pdf_params[:, : self.config.latent_dim]
|
||||
# This is 2log(sigma). Done this way to match the original implementation.
|
||||
log_sigma_x2 = latent_pdf_params[:, self.latent_dim :]
|
||||
log_sigma_x2 = latent_pdf_params[:, self.config.latent_dim :]
|
||||
|
||||
# Sample the latent with the reparameterization trick.
|
||||
latent_sample = mu + log_sigma_x2.div(2).exp() * torch.randn_like(mu)
|
||||
else:
|
||||
# When not using the VAE encoder, we set the latent to be all zeros.
|
||||
mu = log_sigma_x2 = None
|
||||
latent_sample = torch.zeros([batch_size, self.latent_dim], dtype=torch.float32).to(
|
||||
# TODO(rcadene, alexander-soare): remove call to `.to` to speedup forward ; precompute and use buffer
|
||||
latent_sample = torch.zeros([batch_size, self.config.latent_dim], dtype=torch.float32).to(
|
||||
batch["observation.state"].device
|
||||
)
|
||||
|
||||
@@ -326,8 +344,10 @@ class ACT(nn.Module):
|
||||
all_cam_features = []
|
||||
all_cam_pos_embeds = []
|
||||
images = batch["observation.images"]
|
||||
|
||||
for cam_index in range(images.shape[-4]):
|
||||
cam_features = self.backbone(images[:, cam_index])["feature_map"]
|
||||
# TODO(rcadene, alexander-soare): remove call to `.to` to speedup forward ; precompute and use buffer
|
||||
cam_pos_embed = self.encoder_cam_feat_pos_embed(cam_features).to(dtype=cam_features.dtype)
|
||||
cam_features = self.encoder_img_feat_input_proj(cam_features) # (B, C, h, w)
|
||||
all_cam_features.append(cam_features)
|
||||
@@ -337,13 +357,15 @@ class ACT(nn.Module):
|
||||
cam_pos_embed = torch.cat(all_cam_pos_embeds, axis=-1)
|
||||
|
||||
# Get positional embeddings for robot state and latent.
|
||||
robot_state_embed = self.encoder_robot_state_input_proj(batch["observation.state"]) # (B, C)
|
||||
if self.use_input_state:
|
||||
robot_state_embed = self.encoder_robot_state_input_proj(batch["observation.state"]) # (B, C)
|
||||
latent_embed = self.encoder_latent_input_proj(latent_sample) # (B, C)
|
||||
|
||||
# Stack encoder input and positional embeddings moving to (S, B, C).
|
||||
encoder_in_feats = [latent_embed, robot_state_embed] if self.use_input_state else [latent_embed]
|
||||
encoder_in = torch.cat(
|
||||
[
|
||||
torch.stack([latent_embed, robot_state_embed], axis=0),
|
||||
torch.stack(encoder_in_feats, axis=0),
|
||||
einops.rearrange(encoder_in, "b c h w -> (h w) b c"),
|
||||
]
|
||||
)
|
||||
@@ -357,6 +379,7 @@ class ACT(nn.Module):
|
||||
|
||||
# Forward pass through the transformer modules.
|
||||
encoder_out = self.encoder(encoder_in, pos_embed=pos_embed)
|
||||
# TODO(rcadene, alexander-soare): remove call to `device` ; precompute and use buffer
|
||||
decoder_in = torch.zeros(
|
||||
(self.config.chunk_size, batch_size, self.config.dim_model),
|
||||
dtype=pos_embed.dtype,
|
||||
@@ -385,9 +408,11 @@ class ACTEncoder(nn.Module):
|
||||
self.layers = nn.ModuleList([ACTEncoderLayer(config) for _ in range(config.n_encoder_layers)])
|
||||
self.norm = nn.LayerNorm(config.dim_model) if config.pre_norm else nn.Identity()
|
||||
|
||||
def forward(self, x: Tensor, pos_embed: Tensor | None = None) -> Tensor:
|
||||
def forward(
|
||||
self, x: Tensor, pos_embed: Tensor | None = None, key_padding_mask: Tensor | None = None
|
||||
) -> Tensor:
|
||||
for layer in self.layers:
|
||||
x = layer(x, pos_embed=pos_embed)
|
||||
x = layer(x, pos_embed=pos_embed, key_padding_mask=key_padding_mask)
|
||||
x = self.norm(x)
|
||||
return x
|
||||
|
||||
@@ -410,12 +435,14 @@ class ACTEncoderLayer(nn.Module):
|
||||
self.activation = get_activation_fn(config.feedforward_activation)
|
||||
self.pre_norm = config.pre_norm
|
||||
|
||||
def forward(self, x, pos_embed: Tensor | None = None) -> Tensor:
|
||||
def forward(self, x, pos_embed: Tensor | None = None, key_padding_mask: Tensor | None = None) -> Tensor:
|
||||
skip = x
|
||||
if self.pre_norm:
|
||||
x = self.norm1(x)
|
||||
q = k = x if pos_embed is None else x + pos_embed
|
||||
x = self.self_attn(q, k, value=x)[0] # select just the output, not the attention weights
|
||||
x = self.self_attn(q, k, value=x, key_padding_mask=key_padding_mask)[
|
||||
0
|
||||
] # select just the output, not the attention weights
|
||||
x = skip + self.dropout1(x)
|
||||
if self.pre_norm:
|
||||
skip = x
|
||||
@@ -435,7 +462,10 @@ class ACTDecoder(nn.Module):
|
||||
"""Convenience module for running multiple decoder layers followed by normalization."""
|
||||
super().__init__()
|
||||
self.layers = nn.ModuleList([ACTDecoderLayer(config) for _ in range(config.n_decoder_layers)])
|
||||
self.norm = nn.LayerNorm(config.dim_model)
|
||||
if config.decoder_norm:
|
||||
self.norm = nn.LayerNorm(config.dim_model)
|
||||
else:
|
||||
self.norm = nn.Identity()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
@@ -448,8 +478,7 @@ class ACTDecoder(nn.Module):
|
||||
x = layer(
|
||||
x, encoder_out, decoder_pos_embed=decoder_pos_embed, encoder_pos_embed=encoder_pos_embed
|
||||
)
|
||||
if self.norm is not None:
|
||||
x = self.norm(x)
|
||||
x = self.norm(x)
|
||||
return x
|
||||
|
||||
|
||||
|
||||
@@ -26,21 +26,26 @@ class DiffusionConfig:
|
||||
The parameters you will most likely need to change are the ones which depend on the environment / sensors.
|
||||
Those are: `input_shapes` and `output_shapes`.
|
||||
|
||||
Notes on the inputs and outputs:
|
||||
- "observation.state" is required as an input key.
|
||||
- A key starting with "observation.image is required as an input.
|
||||
- "action" is required as an output key.
|
||||
|
||||
Args:
|
||||
n_obs_steps: Number of environment steps worth of observations to pass to the policy (takes the
|
||||
current step and additional steps going back).
|
||||
horizon: Diffusion model action prediction size as detailed in `DiffusionPolicy.select_action`.
|
||||
n_action_steps: The number of action steps to run in the environment for one invocation of the policy.
|
||||
See `DiffusionPolicy.select_action` for more details.
|
||||
input_shapes: A dictionary defining the shapes of the input data for the policy.
|
||||
The key represents the input data name, and the value is a list indicating the dimensions
|
||||
of the corresponding data. For example, "observation.image" refers to an input from
|
||||
a camera with dimensions [3, 96, 96], indicating it has three color channels and 96x96 resolution.
|
||||
Importantly, shapes doesnt include batch dimension or temporal dimension.
|
||||
output_shapes: A dictionary defining the shapes of the output data for the policy.
|
||||
The key represents the output data name, and the value is a list indicating the dimensions
|
||||
of the corresponding data. For example, "action" refers to an output shape of [14], indicating
|
||||
14-dimensional actions. Importantly, shapes doesnt include batch dimension or temporal dimension.
|
||||
input_shapes: A dictionary defining the shapes of the input data for the policy. The key represents
|
||||
the input data name, and the value is a list indicating the dimensions of the corresponding data.
|
||||
For example, "observation.image" refers to an input from a camera with dimensions [3, 96, 96],
|
||||
indicating it has three color channels and 96x96 resolution. Importantly, `input_shapes` doesn't
|
||||
include batch dimension or temporal dimension.
|
||||
output_shapes: A dictionary defining the shapes of the output data for the policy. The key represents
|
||||
the output data name, and the value is a list indicating the dimensions of the corresponding data.
|
||||
For example, "action" refers to an output shape of [14], indicating 14-dimensional actions.
|
||||
Importantly, `output_shapes` doesn't include batch dimension or temporal dimension.
|
||||
input_normalization_modes: A dictionary with key representing the modality (e.g. "observation.state"),
|
||||
and the value specifies the normalization mode to apply. The two available modes are "mean_std"
|
||||
which subtracts the mean and divides by the standard deviation and "min_max" which rescale in a
|
||||
|
||||
@@ -239,10 +239,8 @@ class DiffusionModel(nn.Module):
|
||||
global_cond = torch.cat([batch["observation.state"], img_features], dim=-1).flatten(start_dim=1)
|
||||
|
||||
# run sampling
|
||||
sample = self.conditional_sample(batch_size, global_cond=global_cond)
|
||||
actions = self.conditional_sample(batch_size, global_cond=global_cond)
|
||||
|
||||
# `horizon` steps worth of actions (from the first observation).
|
||||
actions = sample[..., : self.config.output_shapes["action"][0]]
|
||||
# Extract `n_action_steps` steps worth of actions (from the current observation).
|
||||
start = n_obs_steps - 1
|
||||
end = start + self.config.n_action_steps
|
||||
|
||||
@@ -147,7 +147,7 @@ class Normalize(nn.Module):
|
||||
assert not torch.isinf(min).any(), _no_stats_error_str("min")
|
||||
assert not torch.isinf(max).any(), _no_stats_error_str("max")
|
||||
# normalize to [0,1]
|
||||
batch[key] = (batch[key] - min) / (max - min)
|
||||
batch[key] = (batch[key] - min) / (max - min + 1e-8)
|
||||
# normalize to [-1, 1]
|
||||
batch[key] = batch[key] * 2 - 1
|
||||
else:
|
||||
|
||||
@@ -31,6 +31,15 @@ class TDMPCConfig:
|
||||
n_action_repeats: The number of times to repeat the action returned by the planning. (hint: Google
|
||||
action repeats in Q-learning or ask your favorite chatbot)
|
||||
horizon: Horizon for model predictive control.
|
||||
input_shapes: A dictionary defining the shapes of the input data for the policy. The key represents
|
||||
the input data name, and the value is a list indicating the dimensions of the corresponding data.
|
||||
For example, "observation.image" refers to an input from a camera with dimensions [3, 96, 96],
|
||||
indicating it has three color channels and 96x96 resolution. Importantly, `input_shapes` doesn't
|
||||
include batch dimension or temporal dimension.
|
||||
output_shapes: A dictionary defining the shapes of the output data for the policy. The key represents
|
||||
the output data name, and the value is a list indicating the dimensions of the corresponding data.
|
||||
For example, "action" refers to an output shape of [14], indicating 14-dimensional actions.
|
||||
Importantly, `output_shapes` doesn't include batch dimension or temporal dimension.
|
||||
input_normalization_modes: A dictionary with key representing the modality (e.g. "observation.state"),
|
||||
and the value specifies the normalization mode to apply. The two available modes are "mean_std"
|
||||
which subtracts the mean and divides by the standard deviation and "min_max" which rescale in a
|
||||
|
||||
325
lerobot/common/robot_devices/cameras/intelrealsense.py
Normal file
325
lerobot/common/robot_devices/cameras/intelrealsense.py
Normal file
@@ -0,0 +1,325 @@
|
||||
|
||||
|
||||
import argparse
|
||||
from dataclasses import dataclass, replace
|
||||
from pathlib import Path
|
||||
from threading import Thread
|
||||
import time
|
||||
import traceback
|
||||
import cv2
|
||||
import numpy as np
|
||||
import pyrealsense2 as rs
|
||||
|
||||
from lerobot.common.robot_devices.cameras.opencv import find_camera_indices
|
||||
from lerobot.common.robot_devices.cameras.utils import save_color_image, save_depth_image
|
||||
|
||||
SERIAL_NUMBER_INDEX = 1
|
||||
|
||||
def find_camera_indices(raise_when_empty=True):
|
||||
camera_ids = []
|
||||
for device in rs.context().query_devices():
|
||||
serial_number = int(device.get_info(rs.camera_info(SERIAL_NUMBER_INDEX)))
|
||||
camera_ids.append(serial_number)
|
||||
|
||||
if raise_when_empty and len(camera_ids) == 0:
|
||||
raise OSError("Not a single camera was detected. Try re-plugging, or re-installing `librealsense` and its python wrapper `pyrealsense2`, or updating the firmware.")
|
||||
|
||||
return camera_ids
|
||||
|
||||
def benchmark_cameras(cameras, out_dir=None, save_images=False):
|
||||
if save_images:
|
||||
out_dir = Path(out_dir)
|
||||
out_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
while True:
|
||||
now = time.time()
|
||||
for camera in cameras:
|
||||
if camera.use_depth:
|
||||
color_image, depth_image = camera.capture_image("bgr" if save_images else "rgb")
|
||||
else:
|
||||
color_image = camera.capture_image("bgr" if save_images else "rgb")
|
||||
|
||||
if save_images:
|
||||
image_path = out_dir / f"camera_{camera.camera_index:02}.png"
|
||||
print(f"Write to {image_path}")
|
||||
save_color_image(color_image, image_path, write_shape=True)
|
||||
|
||||
if camera.use_depth:
|
||||
# Apply colormap on depth image (image must be converted to 8-bit per pixel first)
|
||||
depth_image_path = out_dir / f"camera_{camera.camera_index:02}_depth.png"
|
||||
print(f"Write to {depth_image_path}")
|
||||
save_depth_image(depth_image_path, depth_image, write_shape=True)
|
||||
|
||||
dt_s = (time.time() - now)
|
||||
dt_ms = dt_s * 1000
|
||||
freq = 1 / dt_s
|
||||
print(f"Latency (ms): {dt_ms:.2f}\tFrequency: {freq:.2f}")
|
||||
|
||||
if save_images:
|
||||
break
|
||||
if cv2.waitKey(1) & 0xFF == ord("q"):
|
||||
break
|
||||
|
||||
# Pre-defined configs that worked
|
||||
|
||||
@dataclass
|
||||
class IntelRealSenseCameraConfig:
|
||||
"""
|
||||
Example of tested options for Intel Real Sense D405:
|
||||
|
||||
```python
|
||||
IntelRealSenseCameraConfig(30, 640, 480)
|
||||
IntelRealSenseCameraConfig(60, 640, 480)
|
||||
IntelRealSenseCameraConfig(90, 640, 480)
|
||||
IntelRealSenseCameraConfig(30, 1280, 720)
|
||||
|
||||
IntelRealSenseCameraConfig(30, 640, 480, use_depth=True)
|
||||
IntelRealSenseCameraConfig(60, 640, 480, use_depth=True)
|
||||
IntelRealSenseCameraConfig(90, 640, 480, use_depth=True)
|
||||
IntelRealSenseCameraConfig(30, 1280, 720, use_depth=True)
|
||||
```
|
||||
"""
|
||||
fps: int | None = None
|
||||
width: int | None = None
|
||||
height: int | None = None
|
||||
color: str = "rgb"
|
||||
use_depth: bool = False
|
||||
force_hardware_reset: bool = True
|
||||
|
||||
|
||||
|
||||
class IntelRealSenseCamera():
|
||||
# TODO(rcadene): improve dosctring
|
||||
"""
|
||||
Using this class requires:
|
||||
- [installing `librealsense` and its python wrapper `pyrealsense2`](https://github.com/IntelRealSense/librealsense/blob/master/doc/distribution_linux.md)
|
||||
- [updating the camera(s) firmware](https://dev.intelrealsense.com/docs/firmware-releases-d400)
|
||||
|
||||
Example of getting the `camera_index` for your camera(s):
|
||||
```bash
|
||||
rs-fw-update -l
|
||||
|
||||
> Connected devices:
|
||||
> 1) [USB] Intel RealSense D405 s/n 128422270109, update serial number: 133323070634, firmware version: 5.16.0.1
|
||||
> 2) [USB] Intel RealSense D405 s/n 128422271609, update serial number: 130523070758, firmware version: 5.16.0.1
|
||||
> 3) [USB] Intel RealSense D405 s/n 128422271614, update serial number: 133323070576, firmware version: 5.16.0.1
|
||||
> 4) [USB] Intel RealSense D405 s/n 128422271393, update serial number: 133323070271, firmware version: 5.16.0.1
|
||||
```
|
||||
|
||||
Example of uage:
|
||||
|
||||
```python
|
||||
camera = IntelRealSenseCamera(128422270109) # serial number (s/n)
|
||||
color_image = camera.capture_image()
|
||||
```
|
||||
|
||||
Example of capturing additional depth image:
|
||||
|
||||
```python
|
||||
config = IntelRealSenseCameraConfig(use_depth=True)
|
||||
camera = IntelRealSenseCamera(128422270109, config)
|
||||
color_image, depth_image = camera.capture_image()
|
||||
```
|
||||
"""
|
||||
AVAILABLE_CAMERA_INDICES = find_camera_indices()
|
||||
|
||||
def __init__(self,
|
||||
camera_index: int | None = None,
|
||||
config: IntelRealSenseCameraConfig | None = None,
|
||||
**kwargs,
|
||||
):
|
||||
if config is None:
|
||||
config = IntelRealSenseCameraConfig()
|
||||
# Overwrite config arguments using kwargs
|
||||
config = replace(config, **kwargs)
|
||||
|
||||
self.camera_index = camera_index
|
||||
self.fps = config.fps
|
||||
self.width = config.width
|
||||
self.height = config.height
|
||||
self.color = config.color
|
||||
self.use_depth = config.use_depth
|
||||
self.force_hardware_reset = config.force_hardware_reset
|
||||
|
||||
# TODO(rcadene): move these two check in config dataclass
|
||||
if self.color not in ["rgb", "bgr"]:
|
||||
raise ValueError(f"Expected color values are 'rgb' or 'bgr', but {self.color} is provided.")
|
||||
|
||||
if (self.fps or self.width or self.height) and not (self.fps and self.width and self.height):
|
||||
raise ValueError(f"Expected all fps, width and height to be set, when one of them is set, but {self.fps=}, {self.width=}, {self.height=}.")
|
||||
|
||||
if self.camera_index is None:
|
||||
raise ValueError(f"`camera_index` is expected to be a serial number of one of these available cameras ({IntelRealSenseCamera.AVAILABLE_CAMERA_INDICES}), but {camera_index} is provided instead.")
|
||||
|
||||
self.camera = None
|
||||
self.is_connected = False
|
||||
|
||||
self.t = Thread(target=self.capture_image_loop, args=())
|
||||
self.t.daemon = True
|
||||
self._color_image = None
|
||||
|
||||
def connect(self):
|
||||
if self.is_connected:
|
||||
raise ValueError(f"Camera {self.camera_index} is already connected.")
|
||||
|
||||
config = rs.config()
|
||||
config.enable_device(str(self.camera_index))
|
||||
|
||||
if self.fps and self.width and self.height:
|
||||
# TODO(rcadene): can we set rgb8 directly?
|
||||
config.enable_stream(rs.stream.color, self.width, self.height, rs.format.rgb8, self.fps)
|
||||
else:
|
||||
config.enable_stream(rs.stream.color)
|
||||
|
||||
if self.use_depth:
|
||||
if self.fps and self.width and self.height:
|
||||
config.enable_stream(rs.stream.depth, self.width, self.height, rs.format.z16, self.fps)
|
||||
else:
|
||||
config.enable_stream(rs.stream.depth)
|
||||
|
||||
self.camera = rs.pipeline()
|
||||
try:
|
||||
self.camera.start(config)
|
||||
except RuntimeError:
|
||||
# Verify that the provided `camera_index` is valid before printing the traceback
|
||||
if self.camera_index not in IntelRealSenseCamera.AVAILABLE_CAMERA_INDICES:
|
||||
raise ValueError(f"`camera_index` is expected to be a serial number of one of these available cameras {IntelRealSenseCamera.AVAILABLE_CAMERA_INDICES}, but {self.camera_index} is provided instead.")
|
||||
traceback.print_exc()
|
||||
|
||||
self.is_connected = True
|
||||
self.t.start()
|
||||
|
||||
def capture_image(self, temporary_color: str | None = None) -> np.ndarray | tuple[np.ndarray, np.ndarray]:
|
||||
frame = self.camera.wait_for_frames()
|
||||
|
||||
color_frame = frame.get_color_frame()
|
||||
if not color_frame:
|
||||
raise OSError(f"Can't capture color image from camera {self.camera_index}.")
|
||||
color_image = np.asanyarray(color_frame.get_data())
|
||||
|
||||
if temporary_color is None:
|
||||
requested_color = self.color
|
||||
else:
|
||||
requested_color = temporary_color
|
||||
|
||||
if requested_color not in ["rgb", "bgr"]:
|
||||
raise ValueError(f"Expected color values are 'rgb' or 'bgr', but {requested_color} is provided.")
|
||||
|
||||
# OpenCV uses BGR format as default (blue, green red) for all operations, including displaying images.
|
||||
# However, Deep Learning framework such as LeRobot uses RGB format as default to train neural networks,
|
||||
# so we convert the image color from BGR to RGB.
|
||||
# if requested_color == "rgb":
|
||||
# color_image = cv2.cvtColor(color_image, cv2.COLOR_BGR2RGB)
|
||||
|
||||
if self.use_depth:
|
||||
depth_frame = frame.get_depth_frame()
|
||||
if not depth_frame:
|
||||
raise OSError(f"Can't capture depth image from camera {self.camera_index}.")
|
||||
depth_image = np.asanyarray(depth_frame.get_data())
|
||||
|
||||
return color_image, depth_image
|
||||
else:
|
||||
return color_image
|
||||
|
||||
def capture_image_loop(self):
|
||||
while True:
|
||||
self._color_image = self.capture_image()
|
||||
|
||||
def read(self):
|
||||
while self._color_image is None:
|
||||
time.sleep(0.1)
|
||||
return self._color_image
|
||||
|
||||
def disconnect(self):
|
||||
if getattr(self, "camera", None):
|
||||
try:
|
||||
self.camera.stop()
|
||||
except RuntimeError as e:
|
||||
if "stop() cannot be called before start()" in str(e):
|
||||
# skip this runtime error
|
||||
return
|
||||
traceback.print_exc()
|
||||
|
||||
def __del__(self):
|
||||
self.disconnect()
|
||||
|
||||
|
||||
def save_images_config(config, out_dir: Path):
|
||||
camera_ids = IntelRealSenseCamera.AVAILABLE_CAMERA_INDICES
|
||||
cameras = []
|
||||
print(f"Available camera indices: {camera_ids}")
|
||||
for camera_idx in camera_ids:
|
||||
camera = IntelRealSenseCamera(camera_idx, config)
|
||||
cameras.append(camera)
|
||||
|
||||
out_dir = out_dir.parent / f"{out_dir.name}_{config.width}x{config.height}_{config.fps}_depth_{config.use_depth}"
|
||||
benchmark_cameras(cameras, out_dir, save_images=True)
|
||||
|
||||
def benchmark_config(config, camera_ids: list[int]):
|
||||
cameras = [IntelRealSenseCamera(idx, config) for idx in camera_ids]
|
||||
benchmark_cameras(cameras)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--mode", type=str, choices=["save_images", 'benchmark'], default="save_images")
|
||||
parser.add_argument("--camera-ids", type=int, nargs="*", default=[128422271609, 128422271614, 128422271393])
|
||||
parser.add_argument("--fps", type=int, default=30)
|
||||
parser.add_argument("--width", type=str, default=640)
|
||||
parser.add_argument("--height", type=str, default=480)
|
||||
parser.add_argument("--use-depth", type=int, default=0)
|
||||
parser.add_argument("--out-dir", type=Path, default="outputs/benchmark_cameras/intelrealsense/2024_06_22_1738")
|
||||
args = parser.parse_args()
|
||||
|
||||
config = IntelRealSenseCameraConfig(args.fps, args.width, args.height, use_depth=bool(args.use_depth))
|
||||
# config = IntelRealSenseCameraConfig()
|
||||
# config = IntelRealSenseCameraConfig(60, 640, 480)
|
||||
# config = IntelRealSenseCameraConfig(90, 640, 480)
|
||||
# config = IntelRealSenseCameraConfig(30, 1280, 720)
|
||||
|
||||
if args.mode == "save_images":
|
||||
save_images_config(config, args.out_dir)
|
||||
elif args.mode == "benchmark":
|
||||
benchmark_config(config, args.camera_ids)
|
||||
else:
|
||||
raise ValueError(args.mode)
|
||||
|
||||
|
||||
# if __name__ == "__main__":
|
||||
# # Works well!
|
||||
# # use_depth = False
|
||||
# # fps = 90
|
||||
# # width = 640
|
||||
# # height = 480
|
||||
|
||||
# # # Works well!
|
||||
# # use_depth = True
|
||||
# # fps = 90
|
||||
# # width = 640
|
||||
# # height = 480
|
||||
|
||||
# # # Doesn't work well, latency varies too much
|
||||
# # use_depth = True
|
||||
# # fps = 30
|
||||
# # width = 1280
|
||||
# # height = 720
|
||||
|
||||
# # Works well
|
||||
# use_depth = False
|
||||
# fps = 30
|
||||
# width = 1280
|
||||
# height = 720
|
||||
|
||||
# config = IntelRealSenseCameraConfig()
|
||||
# # config = IntelRealSenseCameraConfig(fps, width, height, use_depth=use_depth)
|
||||
# cameras = [
|
||||
# # IntelRealSenseCamera(0, config),
|
||||
# # IntelRealSenseCamera(128422270109, config),
|
||||
# IntelRealSenseCamera(128422271609, config),
|
||||
# IntelRealSenseCamera(128422271614, config),
|
||||
# IntelRealSenseCamera(128422271393, config),
|
||||
# ]
|
||||
|
||||
# out_dir = "outputs/benchmark_cameras/intelrealsense/2024_06_22_1729"
|
||||
# out_dir += f"{config.width}x{config.height}_{config.fps}_depth_{config.use_depth}"
|
||||
# benchmark_cameras(cameras, out_dir, save_images=False)
|
||||
249
lerobot/common/robot_devices/cameras/opencv.py
Normal file
249
lerobot/common/robot_devices/cameras/opencv.py
Normal file
@@ -0,0 +1,249 @@
|
||||
|
||||
|
||||
import argparse
|
||||
from dataclasses import dataclass, replace
|
||||
from pathlib import Path
|
||||
from threading import Thread
|
||||
import time
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from lerobot.common.robot_devices.cameras.utils import save_color_image
|
||||
|
||||
|
||||
def find_camera_indices(raise_when_empty=False, max_index_search_range=60):
|
||||
camera_ids = []
|
||||
for camera_idx in range(max_index_search_range):
|
||||
camera = cv2.VideoCapture(camera_idx)
|
||||
is_open = camera.isOpened()
|
||||
camera.release()
|
||||
|
||||
if is_open:
|
||||
print(f"Camera found at index {camera_idx}")
|
||||
camera_ids.append(camera_idx)
|
||||
|
||||
if raise_when_empty and len(camera_ids) == 0:
|
||||
raise OSError("Not a single camera was detected. Try re-plugging, or re-installing `opencv2`, or your camera driver, or make sure your camera is compatible with opencv2.")
|
||||
|
||||
return camera_ids
|
||||
|
||||
def benchmark_cameras(cameras, out_dir=None, save_images=False, num_warmup_frames=4):
|
||||
if out_dir:
|
||||
out_dir = Path(out_dir)
|
||||
out_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
for _ in range(num_warmup_frames):
|
||||
for camera in cameras:
|
||||
try:
|
||||
camera.capture_image()
|
||||
time.sleep(0.01)
|
||||
except OSError as e:
|
||||
print(e)
|
||||
|
||||
while True:
|
||||
now = time.time()
|
||||
for camera in cameras:
|
||||
color_image = camera.capture_image("bgr" if save_images else "rgb")
|
||||
|
||||
if save_images:
|
||||
image_path = out_dir / f"camera_{camera.camera_index:02}.png"
|
||||
print(f"Write to {image_path}")
|
||||
save_color_image(color_image, image_path, write_shape=True)
|
||||
|
||||
dt_s = (time.time() - now)
|
||||
dt_ms = dt_s * 1000
|
||||
freq = 1 / dt_s
|
||||
print(f"Latency (ms): {dt_ms:.2f}\tFrequency: {freq:.2f}")
|
||||
|
||||
if save_images:
|
||||
break
|
||||
if cv2.waitKey(1) & 0xFF == ord("q"):
|
||||
break
|
||||
|
||||
|
||||
@dataclass
|
||||
class OpenCVCameraConfig:
|
||||
"""
|
||||
Example of tested options for Intel Real Sense D405:
|
||||
|
||||
```python
|
||||
OpenCVCameraConfig(30, 640, 480)
|
||||
OpenCVCameraConfig(60, 640, 480)
|
||||
OpenCVCameraConfig(90, 640, 480)
|
||||
OpenCVCameraConfig(30, 1280, 720)
|
||||
```
|
||||
"""
|
||||
fps: int | None = None
|
||||
width: int | None = None
|
||||
height: int | None = None
|
||||
color: str = "rgb"
|
||||
|
||||
|
||||
|
||||
class OpenCVCamera():
|
||||
# TODO(rcadene): improve dosctring
|
||||
"""
|
||||
https://docs.opencv.org/4.x/d0/da7/videoio_overview.html
|
||||
https://docs.opencv.org/4.x/d4/d15/group__videoio__flags__base.html#ga023786be1ee68a9105bf2e48c700294d
|
||||
|
||||
Example of uage:
|
||||
|
||||
```python
|
||||
camera = OpenCVCamera(2)
|
||||
color_image = camera.capture_image()
|
||||
```
|
||||
"""
|
||||
def __init__(self, camera_index: int, config: OpenCVCameraConfig | None = None, **kwargs):
|
||||
if config is None:
|
||||
config = OpenCVCameraConfig()
|
||||
# Overwrite config arguments using kwargs
|
||||
config = replace(config, **kwargs)
|
||||
|
||||
self.camera_index = camera_index
|
||||
self.fps = config.fps
|
||||
self.width = config.width
|
||||
self.height = config.height
|
||||
self.color = config.color
|
||||
|
||||
if self.color not in ["rgb", "bgr"]:
|
||||
raise ValueError(f"Expected color values are 'rgb' or 'bgr', but {self.color} is provided.")
|
||||
|
||||
if self.camera_index is None:
|
||||
raise ValueError(f"`camera_index` is expected to be one of these available cameras {OpenCVCamera.AVAILABLE_CAMERAS_INDICES}, but {camera_index} is provided instead.")
|
||||
|
||||
self.camera = None
|
||||
self.is_connected = False
|
||||
|
||||
self.t = Thread(target=self.capture_image_loop, args=())
|
||||
self.t.daemon = True
|
||||
self._color_image = None
|
||||
|
||||
def connect(self):
|
||||
if self.is_connected:
|
||||
raise ValueError(f"Camera {self.camera_index} is already connected.")
|
||||
|
||||
# First create a temporary camera trying to access `camera_index`,
|
||||
# and verify it is a valid camera by calling `isOpened`.
|
||||
tmp_camera = cv2.VideoCapture(self.camera_index)
|
||||
is_camera_open = tmp_camera.isOpened()
|
||||
# Release camera to make it accessible for `find_camera_indices`
|
||||
del tmp_camera
|
||||
|
||||
# If the camera doesn't work, display the camera indices corresponding to
|
||||
# valid cameras.
|
||||
if not is_camera_open:
|
||||
# Verify that the provided `camera_index` is valid before printing the traceback
|
||||
if self.camera_index not in find_camera_indices():
|
||||
raise ValueError(f"`camera_index` is expected to be one of these available cameras {OpenCVCamera.AVAILABLE_CAMERAS_INDICES}, but {self.camera_index} is provided instead.")
|
||||
|
||||
raise OSError(f"Can't access camera {self.camera_index}.")
|
||||
|
||||
# Secondly, create the camera that will be used downstream.
|
||||
# Note: For some unknown reason, calling `isOpened` blocks the camera which then
|
||||
# needs to be re-created.
|
||||
self.camera = cv2.VideoCapture(self.camera_index)
|
||||
|
||||
if self.fps:
|
||||
self.camera.set(cv2.CAP_PROP_FPS, self.fps)
|
||||
if self.width:
|
||||
self.camera.set(cv2.CAP_PROP_FRAME_WIDTH, self.width)
|
||||
if self.height:
|
||||
self.camera.set(cv2.CAP_PROP_FRAME_HEIGHT, self.height)
|
||||
|
||||
actual_fps = self.camera.get(cv2.CAP_PROP_FPS)
|
||||
actual_width = self.camera.get(cv2.CAP_PROP_FRAME_WIDTH)
|
||||
actual_height = self.camera.get(cv2.CAP_PROP_FRAME_HEIGHT)
|
||||
|
||||
if self.fps and self.fps != actual_fps:
|
||||
raise OSError(f"Can't set {self.fps=} for camera {self.camera_index}. Actual value is {actual_fps}.")
|
||||
if self.width and self.width != actual_width:
|
||||
raise OSError(f"Can't set {self.width=} for camera {self.camera_index}. Actual value is {actual_width}.")
|
||||
if self.height and self.height != actual_height:
|
||||
raise OSError(f"Can't set {self.height=} for camera {self.camera_index}. Actual value is {actual_height}.")
|
||||
|
||||
self.is_connected = True
|
||||
self.t.start()
|
||||
|
||||
def capture_image(self, temporary_color: str | None = None) -> np.ndarray:
|
||||
if not self.is_connected:
|
||||
self.connect()
|
||||
|
||||
ret, color_image = self.camera.read()
|
||||
if not ret:
|
||||
raise OSError(f"Can't capture color image from camera {self.camera_index}.")
|
||||
|
||||
if temporary_color is None:
|
||||
requested_color = self.color
|
||||
else:
|
||||
requested_color = temporary_color
|
||||
|
||||
if requested_color not in ["rgb", "bgr"]:
|
||||
raise ValueError(f"Expected color values are 'rgb' or 'bgr', but {requested_color} is provided.")
|
||||
|
||||
# OpenCV uses BGR format as default (blue, green red) for all operations, including displaying images.
|
||||
# However, Deep Learning framework such as LeRobot uses RGB format as default to train neural networks,
|
||||
# so we convert the image color from BGR to RGB.
|
||||
if requested_color == "rgb":
|
||||
color_image = cv2.cvtColor(color_image, cv2.COLOR_BGR2RGB)
|
||||
|
||||
return color_image
|
||||
|
||||
def capture_image_loop(self):
|
||||
while True:
|
||||
self._color_image = self.capture_image()
|
||||
|
||||
def read(self):
|
||||
while self._color_image is None:
|
||||
time.sleep(0.1)
|
||||
return self._color_image
|
||||
|
||||
def disconnect(self):
|
||||
if getattr(self, "camera", None):
|
||||
self.camera.release()
|
||||
|
||||
def __del__(self):
|
||||
self.disconnect()
|
||||
|
||||
|
||||
def save_images_config(config: OpenCVCameraConfig, out_dir: Path):
|
||||
cameras = []
|
||||
print(f"Available camera indices: {OpenCVCamera.AVAILABLE_CAMERAS_INDICES}")
|
||||
for camera_idx in OpenCVCamera.AVAILABLE_CAMERAS_INDICES:
|
||||
camera = OpenCVCamera(camera_idx, config)
|
||||
cameras.append(camera)
|
||||
|
||||
out_dir = out_dir.parent / f"{out_dir.name}_{config.width}x{config.height}_{config.fps}"
|
||||
benchmark_cameras(cameras, out_dir, save_images=True)
|
||||
|
||||
def benchmark_config(config: OpenCVCameraConfig, camera_ids: list[int]):
|
||||
cameras = [OpenCVCamera(idx, config) for idx in camera_ids]
|
||||
benchmark_cameras(cameras)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--mode", type=str, choices=["save_images", 'benchmark'], default="save_images")
|
||||
parser.add_argument("--camera-ids", type=int, nargs="*", default=[16, 4, 22, 10])
|
||||
parser.add_argument("--fps", type=int, default=30)
|
||||
parser.add_argument("--width", type=str, default=640)
|
||||
parser.add_argument("--height", type=str, default=480)
|
||||
parser.add_argument("--out-dir", type=Path, default="outputs/benchmark_cameras/opencv/2024_06_22_1727")
|
||||
args = parser.parse_args()
|
||||
|
||||
config = OpenCVCameraConfig(args.fps, args.width, args.height)
|
||||
# config = OpenCVCameraConfig()
|
||||
# config = OpenCVCameraConfig(60, 640, 480)
|
||||
# config = OpenCVCameraConfig(90, 640, 480)
|
||||
# config = OpenCVCameraConfig(30, 1280, 720)
|
||||
|
||||
if args.mode == "save_images":
|
||||
save_images_config(config, args.out_dir)
|
||||
elif args.mode == "benchmark":
|
||||
benchmark_config(config, args.camera_ids)
|
||||
else:
|
||||
raise ValueError(args.mode)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
48
lerobot/common/robot_devices/cameras/utils.py
Normal file
48
lerobot/common/robot_devices/cameras/utils.py
Normal file
@@ -0,0 +1,48 @@
|
||||
|
||||
from pathlib import Path
|
||||
import time
|
||||
import cv2
|
||||
from typing import Protocol
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def write_shape_on_image_inplace(image):
|
||||
height, width = image.shape[:2]
|
||||
text = f'Width: {width} Height: {height}'
|
||||
|
||||
# Define the font, scale, color, and thickness
|
||||
font = cv2.FONT_HERSHEY_SIMPLEX
|
||||
font_scale = 1
|
||||
color = (255, 0, 0) # Blue in BGR
|
||||
thickness = 2
|
||||
|
||||
position = (10, height - 10) # 10 pixels from the bottom-left corner
|
||||
cv2.putText(image, text, position, font, font_scale, color, thickness)
|
||||
|
||||
|
||||
def save_color_image(image, path, write_shape=False):
|
||||
path = Path(path)
|
||||
path.parent.mkdir(parents=True, exist_ok=True)
|
||||
if write_shape:
|
||||
write_shape_on_image_inplace(image)
|
||||
cv2.imwrite(str(path), image)
|
||||
|
||||
|
||||
def save_depth_image(depth, path, write_shape=False):
|
||||
path = Path(path)
|
||||
path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Apply colormap on depth image (image must be converted to 8-bit per pixel first)
|
||||
depth_image = cv2.applyColorMap(cv2.convertScaleAbs(depth, alpha=0.03), cv2.COLORMAP_JET)
|
||||
|
||||
if write_shape:
|
||||
write_shape_on_image_inplace(depth_image)
|
||||
cv2.imwrite(str(path), depth_image)
|
||||
|
||||
|
||||
# Defines a camera type
|
||||
class Camera(Protocol):
|
||||
def connect(self): ...
|
||||
def read(self, temporary_color: str | None = None) -> np.ndarray: ...
|
||||
def disconnect(self): ...
|
||||
405
lerobot/common/robot_devices/motors/dynamixel.py
Normal file
405
lerobot/common/robot_devices/motors/dynamixel.py
Normal file
@@ -0,0 +1,405 @@
|
||||
from copy import deepcopy
|
||||
import enum
|
||||
from typing import Union
|
||||
import numpy as np
|
||||
|
||||
from dynamixel_sdk import PacketHandler, PortHandler, COMM_SUCCESS, GroupSyncRead, GroupSyncWrite
|
||||
from dynamixel_sdk import DXL_HIBYTE, DXL_HIWORD, DXL_LOBYTE, DXL_LOWORD
|
||||
|
||||
PROTOCOL_VERSION = 2.0
|
||||
BAUD_RATE = 1_000_000
|
||||
TIMEOUT_MS = 1000
|
||||
|
||||
# https://emanual.robotis.com/docs/en/dxl/x/xl330-m077
|
||||
# https://emanual.robotis.com/docs/en/dxl/x/xl330-m288
|
||||
# https://emanual.robotis.com/docs/en/dxl/x/xl430-w250
|
||||
# https://emanual.robotis.com/docs/en/dxl/x/xm430-w350
|
||||
# https://emanual.robotis.com/docs/en/dxl/x/xm540-w270
|
||||
|
||||
# data_name: (address, size_byte)
|
||||
X_SERIES_CONTROL_TABLE = {
|
||||
"Model_Number": (0, 2),
|
||||
"Model_Information": (2, 4),
|
||||
"Firmware_Version": (6, 1),
|
||||
"ID": (7, 1),
|
||||
"Baud_Rate": (8, 1),
|
||||
"Return_Delay_Time": (9, 1),
|
||||
"Drive_Mode": (10, 1),
|
||||
"Operating_Mode": (11, 1),
|
||||
"Secondary_ID": (12, 1),
|
||||
"Protocol_Type": (13, 1),
|
||||
"Homing_Offset": (20, 4),
|
||||
"Moving_Threshold": (24, 4),
|
||||
"Temperature_Limit": (31, 1),
|
||||
"Max_Voltage_Limit": (32, 2),
|
||||
"Min_Voltage_Limit": (34, 2),
|
||||
"PWM_Limit": (36, 2),
|
||||
"Current_Limit": (38, 2),
|
||||
"Acceleration_Limit": (40, 4),
|
||||
"Velocity_Limit": (44, 4),
|
||||
"Max_Position_Limit": (48, 4),
|
||||
"Min_Position_Limit": (52, 4),
|
||||
"Shutdown": (63, 1),
|
||||
"Torque_Enable": (64, 1),
|
||||
"LED": (65, 1),
|
||||
"Status_Return_Level": (68, 1),
|
||||
"Registered_Instruction": (69, 1),
|
||||
"Hardware_Error_Status": (70, 1),
|
||||
"Velocity_I_Gain": (76, 2),
|
||||
"Velocity_P_Gain": (78, 2),
|
||||
"Position_D_Gain": (80, 2),
|
||||
"Position_I_Gain": (82, 2),
|
||||
"Position_P_Gain": (84, 2),
|
||||
"Feedforward_2nd_Gain": (88, 2),
|
||||
"Feedforward_1st_Gain": (90, 2),
|
||||
"Bus_Watchdog": (98, 1),
|
||||
"Goal_PWM": (100, 2),
|
||||
"Goal_Current": (102, 2),
|
||||
"Goal_Velocity": (104, 4),
|
||||
"Profile_Acceleration": (108, 4),
|
||||
"Profile_Velocity": (112, 4),
|
||||
"Goal_Position": (116, 4),
|
||||
"Realtime_Tick": (120, 2),
|
||||
"Moving": (122, 1),
|
||||
"Moving_Status": (123, 1),
|
||||
"Present_PWM": (124, 2),
|
||||
"Present_Current": (126, 2),
|
||||
"Present_Velocity": (128, 4),
|
||||
"Present_Position": (132, 4),
|
||||
"Velocity_Trajectory": (136, 4),
|
||||
"Position_Trajectory": (140, 4),
|
||||
"Present_Input_Voltage": (144, 2),
|
||||
"Present_Temperature": (146, 1)
|
||||
}
|
||||
|
||||
CALIBRATION_REQUIRED = ["Goal_Position", "Present_Position"]
|
||||
CONVERT_UINT32_TO_INT32_REQUIRED = ["Goal_Position", "Present_Position"]
|
||||
#CONVERT_POSITION_TO_ANGLE_REQUIRED = ["Goal_Position", "Present_Position"]
|
||||
CONVERT_POSITION_TO_ANGLE_REQUIRED = []
|
||||
|
||||
MODEL_CONTROL_TABLE = {
|
||||
"x_series": X_SERIES_CONTROL_TABLE,
|
||||
"xl330-m077": X_SERIES_CONTROL_TABLE,
|
||||
"xl330-m288": X_SERIES_CONTROL_TABLE,
|
||||
"xl430-w250": X_SERIES_CONTROL_TABLE,
|
||||
"xm430-w350": X_SERIES_CONTROL_TABLE,
|
||||
"xm540-w270": X_SERIES_CONTROL_TABLE,
|
||||
}
|
||||
|
||||
def uint32_to_int32(values: np.ndarray):
|
||||
"""
|
||||
Convert an unsigned 32-bit integer array to a signed 32-bit integer array.
|
||||
"""
|
||||
for i in range(len(values)):
|
||||
if values[i] is not None and values[i] > 2147483647:
|
||||
values[i] = values[i] - 4294967296
|
||||
return values
|
||||
|
||||
def int32_to_uint32(values: np.ndarray):
|
||||
"""
|
||||
Convert a signed 32-bit integer array to an unsigned 32-bit integer array.
|
||||
"""
|
||||
for i in range(len(values)):
|
||||
if values[i] is not None and values[i] < 0:
|
||||
values[i] = values[i] + 4294967296
|
||||
return values
|
||||
|
||||
def motor_position_to_angle(position: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Convert from motor position in [-2048, 2048] to radian in [-pi, pi]
|
||||
"""
|
||||
return (position / 2048) * 3.14
|
||||
|
||||
def motor_angle_to_position(angle: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Convert from radian in [-pi, pi] to motor position in [-2048, 2048]
|
||||
"""
|
||||
return ((angle / 3.14) * 2048).astype(np.int64)
|
||||
|
||||
|
||||
# def pwm2vel(pwm: np.ndarray) -> np.ndarray:
|
||||
# """
|
||||
# :param pwm: numpy array of pwm/s joint velocities
|
||||
# :return: numpy array of rad/s joint velocities
|
||||
# """
|
||||
# return pwm * 3.14 / 2048
|
||||
|
||||
|
||||
# def vel2pwm(vel: np.ndarray) -> np.ndarray:
|
||||
# """
|
||||
# :param vel: numpy array of rad/s joint velocities
|
||||
# :return: numpy array of pwm/s joint velocities
|
||||
# """
|
||||
# return (vel * 2048 / 3.14).astype(np.int64)
|
||||
|
||||
|
||||
def get_group_sync_key(data_name, motor_names):
|
||||
group_key = f"{data_name}_" + "_".join([name for name in motor_names])
|
||||
return group_key
|
||||
|
||||
|
||||
class TorqueMode(enum.Enum):
|
||||
ENABLED = 1
|
||||
DISABLED = 0
|
||||
|
||||
|
||||
class OperatingMode(enum.Enum):
|
||||
VELOCITY = 1
|
||||
POSITION = 3
|
||||
EXTENDED_POSITION = 4
|
||||
CURRENT_CONTROLLED_POSITION = 5
|
||||
PWM = 16
|
||||
UNKNOWN = -1
|
||||
|
||||
|
||||
class DriveMode(enum.Enum):
|
||||
NON_INVERTED = 0
|
||||
INVERTED = 1
|
||||
|
||||
|
||||
class DynamixelMotorsBus:
|
||||
|
||||
def __init__(self, port: str, motors: dict[str, tuple[int, str]],
|
||||
extra_model_control_table: dict[str, list[tuple]] | None = None):
|
||||
self.port = port
|
||||
self.motors = motors
|
||||
|
||||
self.model_ctrl_table = deepcopy(MODEL_CONTROL_TABLE)
|
||||
if extra_model_control_table:
|
||||
self.model_ctrl_table.update(extra_model_control_table)
|
||||
|
||||
self.port_handler = PortHandler(self.port)
|
||||
self.packet_handler = PacketHandler(PROTOCOL_VERSION)
|
||||
|
||||
if not self.port_handler.openPort():
|
||||
raise OSError(f"Failed to open port {self.port}")
|
||||
|
||||
self.port_handler.setBaudRate(BAUD_RATE)
|
||||
self.port_handler.setPacketTimeoutMillis(TIMEOUT_MS)
|
||||
|
||||
self.group_readers = {}
|
||||
self.group_writers = {}
|
||||
|
||||
self.calibration = None
|
||||
|
||||
@property
|
||||
def motor_names(self) -> list[int]:
|
||||
return list(self.motors.keys())
|
||||
|
||||
def set_calibration(self, calibration: dict[str, tuple[int, bool]]):
|
||||
self.calibration = calibration
|
||||
|
||||
def apply_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
|
||||
if not self.calibration:
|
||||
return values
|
||||
|
||||
if motor_names is None:
|
||||
motor_names = self.motor_names
|
||||
|
||||
for i, name in enumerate(motor_names):
|
||||
homing_offset, drive_mode = self.calibration[name]
|
||||
|
||||
if values[i] is not None:
|
||||
if drive_mode:
|
||||
values[i] *= -1
|
||||
values[i] += homing_offset
|
||||
|
||||
return values
|
||||
|
||||
def revert_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
|
||||
if not self.calibration:
|
||||
return values
|
||||
|
||||
if motor_names is None:
|
||||
motor_names = self.motor_names
|
||||
|
||||
for i, name in enumerate(motor_names):
|
||||
homing_offset, drive_mode = self.calibration[name]
|
||||
|
||||
if values[i] is not None:
|
||||
values[i] -= homing_offset
|
||||
if drive_mode:
|
||||
values[i] *= -1
|
||||
|
||||
return values
|
||||
|
||||
def read(self, data_name, motor_names: list[str] | None = None):
|
||||
if motor_names is None:
|
||||
motor_names = self.motor_names
|
||||
|
||||
motor_ids = []
|
||||
models = []
|
||||
for name in motor_names:
|
||||
motor_idx, model = self.motors[name]
|
||||
motor_ids.append(motor_idx)
|
||||
models.append(model)
|
||||
|
||||
# TODO(rcadene): assert all motors follow same address
|
||||
addr, bytes = self.model_ctrl_table[model][data_name]
|
||||
group_key = get_group_sync_key(data_name, motor_names)
|
||||
|
||||
if data_name not in self.group_readers:
|
||||
# create new group reader
|
||||
self.group_readers[group_key] = GroupSyncRead(self.port_handler, self.packet_handler, addr, bytes)
|
||||
for idx in motor_ids:
|
||||
self.group_readers[group_key].addParam(idx)
|
||||
|
||||
comm = self.group_readers[group_key].txRxPacket()
|
||||
if comm != COMM_SUCCESS:
|
||||
raise ConnectionError(
|
||||
f"Read failed due to communication error on port {self.port} for group_key {group_key}: "
|
||||
f"{self.packet_handler.getTxRxResult(comm)}"
|
||||
)
|
||||
|
||||
values = []
|
||||
for idx in motor_ids:
|
||||
value = self.group_readers[group_key].getData(idx, addr, bytes)
|
||||
values.append(value)
|
||||
|
||||
values = np.array(values)
|
||||
|
||||
# TODO(rcadene): explain why
|
||||
if data_name in CONVERT_UINT32_TO_INT32_REQUIRED:
|
||||
values = uint32_to_int32(values)
|
||||
|
||||
if data_name in CALIBRATION_REQUIRED:
|
||||
values = self.apply_calibration(values, motor_names)
|
||||
|
||||
if data_name in CONVERT_POSITION_TO_ANGLE_REQUIRED:
|
||||
values = motor_position_to_angle(values)
|
||||
|
||||
return values
|
||||
|
||||
def write(self, data_name, values: int | float | np.ndarray, motor_names: str | list[str] | None = None):
|
||||
if motor_names is None:
|
||||
motor_names = self.motor_names
|
||||
|
||||
if isinstance(motor_names, str):
|
||||
motor_names = [motor_names]
|
||||
|
||||
motor_ids = []
|
||||
models = []
|
||||
for name in motor_names:
|
||||
motor_idx, model = self.motors[name]
|
||||
motor_ids.append(motor_idx)
|
||||
models.append(model)
|
||||
|
||||
if isinstance(values, (int, float, np.integer)):
|
||||
values = [int(values)] * len(motor_ids)
|
||||
|
||||
values = np.array(values)
|
||||
|
||||
if data_name in CONVERT_POSITION_TO_ANGLE_REQUIRED:
|
||||
values = motor_angle_to_position(values)
|
||||
|
||||
if data_name in CALIBRATION_REQUIRED:
|
||||
values = self.revert_calibration(values, motor_names)
|
||||
|
||||
# TODO(rcadene): why dont we do it?
|
||||
# if data_name in CONVERT_INT32_TO_UINT32_REQUIRED:
|
||||
# values = int32_to_uint32(values)
|
||||
|
||||
values = values.tolist()
|
||||
|
||||
# TODO(rcadene): assert all motors follow same address
|
||||
addr, bytes = self.model_ctrl_table[model][data_name]
|
||||
group_key = get_group_sync_key(data_name, motor_names)
|
||||
|
||||
init_group = data_name not in self.group_readers
|
||||
if init_group:
|
||||
self.group_writers[group_key] = GroupSyncWrite(self.port_handler, self.packet_handler, addr, bytes)
|
||||
|
||||
for idx, value in zip(motor_ids, values):
|
||||
if bytes == 1:
|
||||
data = [
|
||||
DXL_LOBYTE(DXL_LOWORD(value)),
|
||||
]
|
||||
elif bytes == 2:
|
||||
data = [
|
||||
DXL_LOBYTE(DXL_LOWORD(value)),
|
||||
DXL_HIBYTE(DXL_LOWORD(value)),
|
||||
]
|
||||
elif bytes == 4:
|
||||
data = [
|
||||
DXL_LOBYTE(DXL_LOWORD(value)),
|
||||
DXL_HIBYTE(DXL_LOWORD(value)),
|
||||
DXL_LOBYTE(DXL_HIWORD(value)),
|
||||
DXL_HIBYTE(DXL_HIWORD(value)),
|
||||
]
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
f"Value of the number of bytes to be sent is expected to be in [1, 2, 4], but "
|
||||
f"{bytes} is provided instead.")
|
||||
|
||||
if init_group:
|
||||
self.group_writers[group_key].addParam(idx, data)
|
||||
else:
|
||||
self.group_writers[group_key].changeParam(idx, data)
|
||||
|
||||
comm = self.group_writers[group_key].txPacket()
|
||||
if comm != COMM_SUCCESS:
|
||||
raise ConnectionError(
|
||||
f"Write failed due to communication error on port {self.port} for group_key {group_key}: "
|
||||
f"{self.packet_handler.getTxRxResult(comm)}"
|
||||
)
|
||||
|
||||
# def read(self, data_name, motor_name: str):
|
||||
# motor_idx, model = self.motors[motor_name]
|
||||
# addr, bytes = self.model_ctrl_table[model][data_name]
|
||||
|
||||
# args = (self.port_handler, motor_idx, addr)
|
||||
# if bytes == 1:
|
||||
# value, comm, err = self.packet_handler.read1ByteTxRx(*args)
|
||||
# elif bytes == 2:
|
||||
# value, comm, err = self.packet_handler.read2ByteTxRx(*args)
|
||||
# elif bytes == 4:
|
||||
# value, comm, err = self.packet_handler.read4ByteTxRx(*args)
|
||||
# else:
|
||||
# raise NotImplementedError(
|
||||
# f"Value of the number of bytes to be sent is expected to be in [1, 2, 4], but "
|
||||
# f"{bytes} is provided instead.")
|
||||
|
||||
# if comm != COMM_SUCCESS:
|
||||
# raise ConnectionError(
|
||||
# f"Read failed due to communication error on port {self.port} for motor {motor_idx}: "
|
||||
# f"{self.packet_handler.getTxRxResult(comm)}"
|
||||
# )
|
||||
# elif err != 0:
|
||||
# raise ConnectionError(
|
||||
# f"Read failed due to error {err} on port {self.port} for motor {motor_idx}: "
|
||||
# f"{self.packet_handler.getTxRxResult(err)}"
|
||||
# )
|
||||
|
||||
# if data_name in CALIBRATION_REQUIRED:
|
||||
# value = self.apply_calibration([value], [motor_name])[0]
|
||||
|
||||
# return value
|
||||
|
||||
# def write(self, data_name, value, motor_name: str):
|
||||
# if data_name in CALIBRATION_REQUIRED:
|
||||
# value = self.revert_calibration([value], [motor_name])[0]
|
||||
|
||||
# motor_idx, model = self.motors[motor_name]
|
||||
# addr, bytes = self.model_ctrl_table[model][data_name]
|
||||
# args = (self.port_handler, motor_idx, addr, value)
|
||||
# if bytes == 1:
|
||||
# comm, err = self.packet_handler.write1ByteTxRx(*args)
|
||||
# elif bytes == 2:
|
||||
# comm, err = self.packet_handler.write2ByteTxRx(*args)
|
||||
# elif bytes == 4:
|
||||
# comm, err = self.packet_handler.write4ByteTxRx(*args)
|
||||
# else:
|
||||
# raise NotImplementedError(
|
||||
# f"Value of the number of bytes to be sent is expected to be in [1, 2, 4], but {bytes} "
|
||||
# f"is provided instead.")
|
||||
|
||||
# if comm != COMM_SUCCESS:
|
||||
# raise ConnectionError(
|
||||
# f"Write failed due to communication error on port {self.port} for motor {motor_idx}: "
|
||||
# f"{self.packet_handler.getTxRxResult(comm)}"
|
||||
# )
|
||||
# elif err != 0:
|
||||
# raise ConnectionError(
|
||||
# f"Write failed due to error {err} on port {self.port} for motor {motor_idx}: "
|
||||
# f"{self.packet_handler.getTxRxResult(err)}"
|
||||
# )
|
||||
713
lerobot/common/robot_devices/motors/feetech.py
Normal file
713
lerobot/common/robot_devices/motors/feetech.py
Normal file
@@ -0,0 +1,713 @@
|
||||
from copy import deepcopy
|
||||
import enum
|
||||
import numpy as np
|
||||
|
||||
from scservo_sdk import PacketHandler, PortHandler, COMM_SUCCESS, GroupSyncRead, GroupSyncWrite
|
||||
from scservo_sdk import SCS_HIBYTE, SCS_HIBYTE, SCS_LOBYTE, SCS_LOWORD
|
||||
|
||||
PROTOCOL_VERSION = 0
|
||||
BAUD_RATE = 1_000_000
|
||||
TIMEOUT_MS = 1000
|
||||
|
||||
|
||||
def u32_to_i32(value: int | np.array) -> int | np.array:
|
||||
"""
|
||||
Convert an unsigned 32-bit integer array to a signed 32-bit integer array.
|
||||
"""
|
||||
|
||||
if isinstance(value, int):
|
||||
if value > 2147483647:
|
||||
value = value - 4294967296
|
||||
else:
|
||||
for i in range(len(value)):
|
||||
if value[i] is not None and value[i] > 2147483647:
|
||||
value[i] = value[i] - 4294967296
|
||||
|
||||
return value
|
||||
|
||||
|
||||
def i32_to_u32(value: int | np.array) -> int | np.array:
|
||||
"""
|
||||
Convert a signed 32-bit integer array to an unsigned 32-bit integer array.
|
||||
"""
|
||||
|
||||
if isinstance(value, int):
|
||||
if value < 0:
|
||||
value = value + 4294967296
|
||||
else:
|
||||
for i in range(len(value)):
|
||||
if value[i] is not None and value[i] < 0:
|
||||
value[i] = value[i] + 4294967296
|
||||
|
||||
return value
|
||||
|
||||
|
||||
def retrieve_ids_and_command(values: np.array, ids: np.array) -> (list[int], np.array):
|
||||
"""
|
||||
Convert the values to a chain command. Skip the None values and return the ids and values.
|
||||
"""
|
||||
|
||||
non_none_values = np.array([value for value in values if value is not None])
|
||||
non_none_values_ids = [ids[i] for i, value in enumerate(values) if value is not None]
|
||||
|
||||
return non_none_values_ids, non_none_values
|
||||
|
||||
|
||||
class TorqueMode(enum.Enum):
|
||||
ENABLED = 1
|
||||
DISABLED = 0
|
||||
|
||||
|
||||
class OperatingMode(enum.Enum):
|
||||
pass
|
||||
|
||||
|
||||
class DriveMode(enum.Enum):
|
||||
pass
|
||||
|
||||
|
||||
SCS_SERIES_CONTROL_TABLE = [
|
||||
("Model", 3, 2),
|
||||
("ID", 5, 1),
|
||||
("Baud_Rate", 6, 1),
|
||||
("Return_Delay", 7, 1),
|
||||
("Response_Status_Level", 8, 1),
|
||||
("Min_Angle_Limit", 9, 2),
|
||||
("Max_Angle_Limit", 11, 2),
|
||||
("Max_Temperature_Limit", 13, 1),
|
||||
("Max_Voltage_Limit", 14, 1),
|
||||
("Min_Voltage_Limit", 15, 1),
|
||||
("Max_Torque_Limit", 16, 2),
|
||||
("Phase", 18, 1),
|
||||
("Unloading_Condition", 19, 1),
|
||||
("LED_Alarm_Condition", 20, 1),
|
||||
("P_Coefficient", 21, 1),
|
||||
("D_Coefficient", 22, 1),
|
||||
("I_Coefficient", 23, 1),
|
||||
("Minimum_Startup_Force", 24, 2),
|
||||
("CW_Dead_Zone", 26, 1),
|
||||
("CCW_Dead_Zone", 27, 1),
|
||||
("Protection_Current", 28, 2),
|
||||
("Angular_Resolution", 30, 1),
|
||||
("Offset", 31, 2),
|
||||
("Mode", 33, 1),
|
||||
("Protective_Torque", 34, 1),
|
||||
("Protection_Time", 35, 1),
|
||||
("Overload_Torque", 36, 1),
|
||||
("Speed_closed_loop_P_proportional_coefficient", 37, 1),
|
||||
("Over_Current_Protection_Time", 38, 1),
|
||||
("Velocity_closed_loop_I_integral_coefficient", 39, 1),
|
||||
("Torque_Enable", 40, 1),
|
||||
("Acceleration", 41, 1),
|
||||
("Goal_Position", 42, 2),
|
||||
("Goal_Time", 44, 2),
|
||||
("Goal_Speed", 46, 2),
|
||||
("Lock", 55, 1),
|
||||
("Present_Position", 56, 2),
|
||||
("Present_Speed", 58, 2),
|
||||
("Present_Load", 60, 2),
|
||||
("Present_Voltage", 62, 1),
|
||||
("Present_Temperature", 63, 1),
|
||||
("Status", 65, 1),
|
||||
("Moving", 66, 1),
|
||||
("Present_Current", 69, 2)
|
||||
]
|
||||
|
||||
MODEL_CONTROL_TABLE = {
|
||||
"scs_series": SCS_SERIES_CONTROL_TABLE,
|
||||
"sts3215": SCS_SERIES_CONTROL_TABLE,
|
||||
}
|
||||
|
||||
|
||||
class FeetechBus:
|
||||
|
||||
def __init__(self, port: str, motor_models: dict[int, str],
|
||||
extra_model_control_table: dict[str, list[tuple]] | None = None):
|
||||
self.port = port
|
||||
self.motor_models = motor_models
|
||||
|
||||
self.model_ctrl_table = deepcopy(MODEL_CONTROL_TABLE)
|
||||
if extra_model_control_table:
|
||||
self.model_ctrl_table.update(extra_model_control_table)
|
||||
|
||||
# Find read/write addresses and number of bytes for each motor
|
||||
self.motor_ctrl = {}
|
||||
for idx, model in self.motor_models.items():
|
||||
for data_name, addr, bytes in self.model_ctrl_table[model]:
|
||||
if idx not in self.motor_ctrl:
|
||||
self.motor_ctrl[idx] = {}
|
||||
self.motor_ctrl[idx][data_name] = {
|
||||
"addr": addr,
|
||||
"bytes": bytes,
|
||||
}
|
||||
|
||||
self.port_handler = PortHandler(self.port)
|
||||
self.packet_handler = PacketHandler(PROTOCOL_VERSION)
|
||||
|
||||
if not self.port_handler.openPort():
|
||||
raise OSError(f"Failed to open port {self.port}")
|
||||
|
||||
self.port_handler.setBaudRate(BAUD_RATE)
|
||||
self.port_handler.setPacketTimeoutMillis(TIMEOUT_MS)
|
||||
|
||||
self.group_readers = {}
|
||||
self.group_writers = {}
|
||||
|
||||
@property
|
||||
def motor_ids(self) -> list[int]:
|
||||
return list(self.motor_models.keys())
|
||||
|
||||
def close(self):
|
||||
self.port_handler.closePort()
|
||||
|
||||
def write(self, data_name, value, motor_idx: int):
|
||||
|
||||
addr = self.motor_ctrl[motor_idx][data_name]["addr"]
|
||||
bytes = self.motor_ctrl[motor_idx][data_name]["bytes"]
|
||||
args = (self.port_handler, motor_idx, addr, value)
|
||||
if bytes == 1:
|
||||
comm, err = self.packet_handler.write1ByteTxRx(*args)
|
||||
elif bytes == 2:
|
||||
comm, err = self.packet_handler.write2ByteTxRx(*args)
|
||||
elif bytes == 4:
|
||||
comm, err = self.packet_handler.write4ByteTxRx(*args)
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
f"Value of the number of bytes to be sent is expected to be in [1, 2, 4], but {bytes} "
|
||||
f"is provided instead.")
|
||||
|
||||
if comm != COMM_SUCCESS:
|
||||
raise ConnectionError(
|
||||
f"Write failed due to communication error on port {self.port} for motor {motor_idx}: "
|
||||
f"{self.packet_handler.getTxRxResult(comm)}"
|
||||
)
|
||||
elif err != 0:
|
||||
raise ConnectionError(
|
||||
f"Write failed due to error {err} on port {self.port} for motor {motor_idx}: "
|
||||
f"{self.packet_handler.getTxRxResult(err)}"
|
||||
)
|
||||
|
||||
def read(self, data_name, motor_idx: int):
|
||||
addr = self.motor_ctrl[motor_idx][data_name]["addr"]
|
||||
bytes = self.motor_ctrl[motor_idx][data_name]["bytes"]
|
||||
args = (self.port_handler, motor_idx, addr)
|
||||
if bytes == 1:
|
||||
value, comm, err = self.packet_handler.read1ByteTxRx(*args)
|
||||
elif bytes == 2:
|
||||
value, comm, err = self.packet_handler.read2ByteTxRx(*args)
|
||||
elif bytes == 4:
|
||||
value, comm, err = self.packet_handler.read4ByteTxRx(*args)
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
f"Value of the number of bytes to be sent is expected to be in [1, 2, 4], but "
|
||||
f"{bytes} is provided instead.")
|
||||
|
||||
if comm != COMM_SUCCESS:
|
||||
raise ConnectionError(
|
||||
f"Read failed due to communication error on port {self.port} for motor {motor_idx}: "
|
||||
f"{self.packet_handler.getTxRxResult(comm)}"
|
||||
)
|
||||
elif err != 0:
|
||||
raise ConnectionError(
|
||||
f"Read failed due to error {err} on port {self.port} for motor {motor_idx}: "
|
||||
f"{self.packet_handler.getTxRxResult(err)}"
|
||||
)
|
||||
|
||||
return value
|
||||
|
||||
def sync_read(self, data_name, motor_ids: list[int] | None = None):
|
||||
if motor_ids is None:
|
||||
motor_ids = self.motor_ids
|
||||
|
||||
group_key = f"{data_name}_" + "_".join([str(idx) for idx in motor_ids])
|
||||
first_motor_idx = list(self.motor_ctrl.keys())[0]
|
||||
addr = self.motor_ctrl[first_motor_idx][data_name]["addr"]
|
||||
bytes = self.motor_ctrl[first_motor_idx][data_name]["bytes"]
|
||||
|
||||
if data_name not in self.group_readers:
|
||||
self.group_readers[group_key] = GroupSyncRead(self.port_handler, self.packet_handler, addr, bytes)
|
||||
for idx in motor_ids:
|
||||
self.group_readers[group_key].addParam(idx)
|
||||
|
||||
comm = self.group_readers[group_key].txRxPacket()
|
||||
if comm != COMM_SUCCESS:
|
||||
raise ConnectionError(
|
||||
f"Read failed due to communication error on port {self.port} for group_key {group_key}: "
|
||||
f"{self.packet_handler.getTxRxResult(comm)}"
|
||||
)
|
||||
|
||||
values = []
|
||||
for idx in motor_ids:
|
||||
value = self.group_readers[group_key].getData(idx, addr, bytes)
|
||||
values.append(value)
|
||||
|
||||
return np.array(values)
|
||||
|
||||
def sync_write(self, data_name, values: int | list[int], motor_ids: int | list[int] | None = None):
|
||||
if motor_ids is None:
|
||||
motor_ids = self.motor_ids
|
||||
|
||||
if isinstance(motor_ids, int):
|
||||
motor_ids = [motor_ids]
|
||||
|
||||
if isinstance(values, (int, np.integer)):
|
||||
values = [int(values)] * len(motor_ids)
|
||||
|
||||
if isinstance(values, np.ndarray):
|
||||
values = values.tolist()
|
||||
|
||||
group_key = f"{data_name}_" + "_".join([str(idx) for idx in motor_ids])
|
||||
|
||||
first_motor_idx = list(self.motor_ctrl.keys())[0]
|
||||
addr = self.motor_ctrl[first_motor_idx][data_name]["addr"]
|
||||
bytes = self.motor_ctrl[first_motor_idx][data_name]["bytes"]
|
||||
init_group = data_name not in self.group_readers
|
||||
|
||||
if init_group:
|
||||
self.group_writers[group_key] = GroupSyncWrite(self.port_handler, self.packet_handler, addr, bytes)
|
||||
|
||||
for idx, value in zip(motor_ids, values):
|
||||
if bytes == 1:
|
||||
data = [
|
||||
SCS_LOBYTE(SCS_LOWORD(value)),
|
||||
]
|
||||
elif bytes == 2:
|
||||
data = [
|
||||
SCS_LOBYTE(SCS_LOWORD(value)),
|
||||
SCS_HIBYTE(SCS_LOWORD(value)),
|
||||
]
|
||||
elif bytes == 4:
|
||||
data = [
|
||||
SCS_LOBYTE(SCS_LOWORD(value)),
|
||||
SCS_HIBYTE(SCS_LOWORD(value)),
|
||||
SCS_LOBYTE(SCS_HIBYTE(value)),
|
||||
SCS_HIBYTE(SCS_HIBYTE(value)),
|
||||
]
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
f"Value of the number of bytes to be sent is expected to be in [1, 2, 4], but {bytes} "
|
||||
f"is provided instead.")
|
||||
|
||||
if init_group:
|
||||
self.group_writers[group_key].addParam(idx, data)
|
||||
else:
|
||||
self.group_writers[group_key].changeParam(idx, data)
|
||||
|
||||
comm = self.group_writers[group_key].txPacket()
|
||||
if comm != COMM_SUCCESS:
|
||||
raise ConnectionError(
|
||||
f"Write failed due to communication error on port {self.port} for group_key {group_key}: "
|
||||
f"{self.packet_handler.getTxRxResult(comm)}"
|
||||
)
|
||||
|
||||
def read_model(self, motor_idx: int):
|
||||
return self.read("Model", motor_idx)
|
||||
|
||||
def sync_read_model(self, motor_ids: list[int] | None = None):
|
||||
return self.sync_read("Model", motor_ids)
|
||||
|
||||
def write_id(self, value, motor_idx: int):
|
||||
self.write("ID", value, motor_idx)
|
||||
|
||||
def read_id(self, motor_idx: int):
|
||||
return self.read("ID", motor_idx)
|
||||
|
||||
def sync_read_id(self, motor_ids: list[int] | None = None):
|
||||
return self.sync_read("ID", motor_ids)
|
||||
|
||||
def sync_write_id(self, values: int | list[int], motor_ids: list[int] | None = None):
|
||||
self.sync_write("ID", values, motor_ids)
|
||||
|
||||
def write_baud_rate(self, value, motor_idx: int):
|
||||
self.write("Baud_Rate", value, motor_idx)
|
||||
|
||||
def read_baud_rate(self, motor_idx: int):
|
||||
return self.read("Baud_Rate", motor_idx)
|
||||
|
||||
def sync_read_baud_rate(self, motor_ids: list[int] | None = None):
|
||||
return self.sync_read("Baud_Rate", motor_ids)
|
||||
|
||||
def sync_write_baud_rate(self, values: int | list[int], motor_ids: list[int] | None = None):
|
||||
self.sync_write("Baud_Rate", values, motor_ids)
|
||||
|
||||
def read_return_delay(self, motor_idx: int):
|
||||
return self.read("Return_Delay", motor_idx)
|
||||
|
||||
def sync_read_return_delay(self, motor_ids: list[int] | None = None):
|
||||
return self.sync_read("Return_Delay", motor_ids)
|
||||
|
||||
def read_response_status_level(self, motor_idx: int):
|
||||
return self.read("Response_Status_Level", motor_idx)
|
||||
|
||||
def sync_read_response_status_level(self, motor_ids: list[int] | None = None):
|
||||
return self.sync_read("Response_Status_Level", motor_ids)
|
||||
|
||||
def write_min_angle_limit(self, value, motor_idx: int):
|
||||
self.write("Min_Angle_Limit", value, motor_idx)
|
||||
|
||||
def read_min_angle_limit(self, motor_idx: int):
|
||||
return self.read("Min_Angle_Limit", motor_idx)
|
||||
|
||||
def sync_read_min_angle_limit(self, motor_ids: list[int] | None = None):
|
||||
return self.sync_read("Min_Angle_Limit", motor_ids)
|
||||
|
||||
def sync_write_min_angle_limit(self, values: int | list[int], motor_ids: list[int] | None = None):
|
||||
self.sync_write("Min_Angle_Limit", values, motor_ids)
|
||||
|
||||
def write_max_angle_limit(self, value, motor_idx: int):
|
||||
self.write("Max_Angle_Limit", value, motor_idx)
|
||||
|
||||
def read_max_angle_limit(self, motor_idx: int):
|
||||
return self.read("Max_Angle_Limit", motor_idx)
|
||||
|
||||
def sync_read_max_angle_limit(self, motor_ids: list[int] | None = None):
|
||||
return self.sync_read("Max_Angle_Limit", motor_ids)
|
||||
|
||||
def sync_write_max_angle_limit(self, values: int | list[int], motor_ids: list[int] | None = None):
|
||||
self.sync_write("Max_Angle_Limit", values, motor_ids)
|
||||
|
||||
def write_max_temperature_limit(self, value, motor_idx: int):
|
||||
self.write("Max_Temperature_Limit", value, motor_idx)
|
||||
|
||||
def read_max_temperature_limit(self, motor_idx: int):
|
||||
return self.read("Max_Temperature_Limit", motor_idx)
|
||||
|
||||
def sync_read_max_temperature_limit(self, motor_ids: list[int] | None = None):
|
||||
return self.sync_read("Max_Temperature_Limit", motor_ids)
|
||||
|
||||
def sync_write_max_temperature_limit(self, values: int | list[int], motor_ids: list[int] | None = None):
|
||||
self.sync_write("Max_Temperature_Limit", values, motor_ids)
|
||||
|
||||
def write_max_voltage_limit(self, value, motor_idx: int):
|
||||
self.write("Max_Voltage_Limit", value, motor_idx)
|
||||
|
||||
def read_max_voltage_limit(self, motor_idx: int):
|
||||
return self.read("Max_Voltage_Limit", motor_idx)
|
||||
|
||||
def sync_read_max_voltage_limit(self, motor_ids: list[int] | None = None):
|
||||
return self.sync_read("Max_Voltage_Limit", motor_ids)
|
||||
|
||||
def sync_write_max_voltage_limit(self, values: int | list[int], motor_ids: list[int] | None = None):
|
||||
self.sync_write("Max_Voltage_Limit", values, motor_ids)
|
||||
|
||||
def write_min_voltage_limit(self, value, motor_idx: int):
|
||||
self.write("Min_Voltage_Limit", value, motor_idx)
|
||||
|
||||
def read_min_voltage_limit(self, motor_idx: int):
|
||||
return self.read("Min_Voltage_Limit", motor_idx)
|
||||
|
||||
def sync_read_min_voltage_limit(self, motor_ids: list[int] | None = None):
|
||||
return self.sync_read("Min_Voltage_Limit", motor_ids)
|
||||
|
||||
def sync_write_min_voltage_limit(self, values: int | list[int], motor_ids: list[int] | None = None):
|
||||
self.sync_write("Min_Voltage_Limit", values, motor_ids)
|
||||
|
||||
def write_max_torque_limit(self, value, motor_idx: int):
|
||||
self.write("Max_Torque_Limit", value, motor_idx)
|
||||
|
||||
def read_max_torque_limit(self, motor_idx: int):
|
||||
return self.read("Max_Torque_Limit", motor_idx)
|
||||
|
||||
def sync_read_max_torque_limit(self, motor_ids: list[int] | None = None):
|
||||
return self.sync_read("Max_Torque_Limit", motor_ids)
|
||||
|
||||
def sync_write_max_torque_limit(self, values: int | list[int], motor_ids: list[int] | None = None):
|
||||
self.sync_write("Max_Torque_Limit", values, motor_ids)
|
||||
|
||||
def write_p_coefficient(self, value, motor_idx: int):
|
||||
self.write("P_Coefficient", value, motor_idx)
|
||||
|
||||
def read_p_coefficient(self, motor_idx: int):
|
||||
return self.read("P_Coefficient", motor_idx)
|
||||
|
||||
def sync_read_p_coefficient(self, motor_ids: list[int] | None = None):
|
||||
return self.sync_read("P_Coefficient", motor_ids)
|
||||
|
||||
def sync_write_p_coefficient(self, values: int | list[int], motor_ids: list[int] | None = None):
|
||||
self.sync_write("P_Coefficient", values, motor_ids)
|
||||
|
||||
def write_d_coefficient(self, value, motor_idx: int):
|
||||
self.write("D_Coefficient", value, motor_idx)
|
||||
|
||||
def read_d_coefficient(self, motor_idx: int):
|
||||
return self.read("D_Coefficient", motor_idx)
|
||||
|
||||
def sync_read_d_coefficient(self, motor_ids: list[int] | None = None):
|
||||
return self.sync_read("D_Coefficient", motor_ids)
|
||||
|
||||
def sync_write_d_coefficient(self, values: int | list[int], motor_ids: list[int] | None = None):
|
||||
self.sync_write("D_Coefficient", values, motor_ids)
|
||||
|
||||
def write_i_coefficient(self, value, motor_idx: int):
|
||||
self.write("I_Coefficient", value, motor_idx)
|
||||
|
||||
def read_i_coefficient(self, motor_idx: int):
|
||||
return self.read("I_Coefficient", motor_idx)
|
||||
|
||||
def sync_read_i_coefficient(self, motor_ids: list[int] | None = None):
|
||||
return self.sync_read("I_Coefficient", motor_ids)
|
||||
|
||||
def sync_write_i_coefficient(self, values: int | list[int], motor_ids: list[int] | None = None):
|
||||
self.sync_write("I_Coefficient", values, motor_ids)
|
||||
|
||||
def write_minimum_startup_force(self, value, motor_idx: int):
|
||||
self.write("Minimum_Startup_Force", value, motor_idx)
|
||||
|
||||
def read_minimum_startup_force(self, motor_idx: int):
|
||||
return self.read("Minimum_Startup_Force", motor_idx)
|
||||
|
||||
def sync_read_minimum_startup_force(self, motor_ids: list[int] | None = None):
|
||||
return self.sync_read("Minimum_Startup_Force", motor_ids)
|
||||
|
||||
def sync_write_minimum_startup_force(self, values: int | list[int], motor_ids: list[int] | None = None):
|
||||
self.sync_write("Minimum_Startup_Force", values, motor_ids)
|
||||
|
||||
def write_cw_dead_zone(self, value, motor_idx: int):
|
||||
self.write("CW_Dead_Zone", value, motor_idx)
|
||||
|
||||
def read_cw_dead_zone(self, motor_idx: int):
|
||||
return self.read("CW_Dead_Zone", motor_idx)
|
||||
|
||||
def sync_read_cw_dead_zone(self, motor_ids: list[int] | None = None):
|
||||
return self.sync_read("CW_Dead_Zone", motor_ids)
|
||||
|
||||
def sync_write_cw_dead_zone(self, values: int | list[int], motor_ids: list[int] | None = None):
|
||||
self.sync_write("CW_Dead_Zone", values, motor_ids)
|
||||
|
||||
def write_ccw_dead_zone(self, value, motor_idx: int):
|
||||
self.write("CCW_Dead_Zone", value, motor_idx)
|
||||
|
||||
def read_ccw_dead_zone(self, motor_idx: int):
|
||||
return self.read("CCW_Dead_Zone", motor_idx)
|
||||
|
||||
def sync_read_ccw_dead_zone(self, motor_ids: list[int] | None = None):
|
||||
return self.sync_read("CCW_Dead_Zone", motor_ids)
|
||||
|
||||
def sync_write_ccw_dead_zone(self, values: int | list[int], motor_ids: list[int] | None = None):
|
||||
self.sync_write("CCW_Dead_Zone", values, motor_ids)
|
||||
|
||||
def write_protection_current(self, value, motor_idx: int):
|
||||
self.write("Protection_Current", value, motor_idx)
|
||||
|
||||
def read_protection_current(self, motor_idx: int):
|
||||
return self.read("Protection_Current", motor_idx)
|
||||
|
||||
def sync_read_protection_current(self, motor_ids: list[int] | None = None):
|
||||
return self.sync_read("Protection_Current", motor_ids)
|
||||
|
||||
def sync_write_protection_current(self, values: int | list[int], motor_ids: list[int] | None = None):
|
||||
self.sync_write("Protection_Current", values, motor_ids)
|
||||
|
||||
def read_angular_resolution(self, motor_idx: int):
|
||||
return self.read("Angular_Resolution", motor_idx)
|
||||
|
||||
def sync_read_angular_resolution(self, motor_ids: list[int] | None = None):
|
||||
return self.sync_read("Angular_Resolution", motor_ids)
|
||||
|
||||
def write_offset(self, value, motor_idx: int):
|
||||
self.write("Offset", value, motor_idx)
|
||||
|
||||
def read_offset(self, motor_idx: int):
|
||||
return self.read("Offset", motor_idx)
|
||||
|
||||
def sync_read_offset(self, motor_ids: list[int] | None = None):
|
||||
return self.sync_read("Offset", motor_ids)
|
||||
|
||||
def sync_write_offset(self, values: int | list[int], motor_ids: list[int] | None = None):
|
||||
self.sync_write("Offset", values, motor_ids)
|
||||
|
||||
def write_mode(self, value, motor_idx: int):
|
||||
self.write("Mode", value, motor_idx)
|
||||
|
||||
def read_mode(self, motor_idx: int):
|
||||
return self.read("Mode", motor_idx)
|
||||
|
||||
def sync_read_mode(self, motor_ids: list[int] | None = None):
|
||||
return self.sync_read("Mode", motor_ids)
|
||||
|
||||
def sync_write_mode(self, values: int | list[int], motor_ids: list[int] | None = None):
|
||||
self.sync_write("Mode", values, motor_ids)
|
||||
|
||||
def write_protective_torque(self, value, motor_idx: int):
|
||||
self.write("Protective_Torque", value, motor_idx)
|
||||
|
||||
def read_protective_torque(self, motor_idx: int):
|
||||
return self.read("Protective_Torque", motor_idx)
|
||||
|
||||
def sync_read_protective_torque(self, motor_ids: list[int] | None = None):
|
||||
return self.sync_read("Protective_Torque", motor_ids)
|
||||
|
||||
def sync_write_protective_torque(self, values: int | list[int], motor_ids: list[int] | None = None):
|
||||
self.sync_write("Protective_Torque", values, motor_ids)
|
||||
|
||||
def read_protection_time(self, motor_idx: int):
|
||||
return self.read("Protection_Time", motor_idx)
|
||||
|
||||
def sync_read_protection_time(self, motor_ids: list[int] | None = None):
|
||||
return self.sync_read("Protection_Time", motor_ids)
|
||||
|
||||
def write_speed_closed_loop_p_proportional_coefficient(self, value, motor_idx: int):
|
||||
self.write("Speed_closed_loop_P_proportional_coefficient", value, motor_idx)
|
||||
|
||||
def read_speed_closed_loop_p_proportional_coefficient(self, motor_idx: int):
|
||||
return self.read("Speed_closed_loop_P_proportional_coefficient", motor_idx)
|
||||
|
||||
def sync_read_speed_closed_loop_p_proportional_coefficient(self, motor_ids: list[int] | None = None):
|
||||
return self.sync_read("Speed_closed_loop_P_proportional_coefficient", motor_ids)
|
||||
|
||||
def sync_write_speed_closed_loop_p_proportional_coefficient(self, values: int | list[int],
|
||||
motor_ids: list[int] | None = None):
|
||||
self.sync_write("Speed_closed_loop_P_proportional_coefficient", values, motor_ids)
|
||||
|
||||
def write_over_current_protection_time(self, value, motor_idx: int):
|
||||
self.write("Over_Current_Protection_Time", value, motor_idx)
|
||||
|
||||
def read_over_current_protection_time(self, motor_idx: int):
|
||||
return self.read("Over_Current_Protection_Time", motor_idx)
|
||||
|
||||
def sync_read_over_current_protection_time(self, motor_ids: list[int] | None = None):
|
||||
return self.sync_read("Over_Current_Protection_Time", motor_ids)
|
||||
|
||||
def sync_write_over_current_protection_time(self, values: int | list[int], motor_ids: list[int] | None = None):
|
||||
self.sync_write("Over_Current_Protection_Time", values, motor_ids)
|
||||
|
||||
def write_velocity_closed_loop_i_integral_coefficient(self, value, motor_idx: int):
|
||||
self.write("Velocity_closed_loop_I_integral_coefficient", value, motor_idx)
|
||||
|
||||
def read_velocity_closed_loop_i_integral_coefficient(self, motor_idx: int):
|
||||
return self.read("Velocity_closed_loop_I_integral_coefficient", motor_idx)
|
||||
|
||||
def sync_read_velocity_closed_loop_i_integral_coefficient(self, motor_ids: list[int] | None = None):
|
||||
return self.sync_read("Velocity_closed_loop_I_integral_coefficient", motor_ids)
|
||||
|
||||
def sync_write_velocity_closed_loop_i_integral_coefficient(self, values: int | list[int],
|
||||
motor_ids: list[int] | None = None):
|
||||
self.sync_write("Velocity_closed_loop_I_integral_coefficient", values, motor_ids)
|
||||
|
||||
def write_torque_enable(self, value, motor_idx: int):
|
||||
self.write("Torque_Enable", value, motor_idx)
|
||||
|
||||
def read_torque_enable(self, motor_idx: int):
|
||||
return self.read("Torque_Enable", motor_idx)
|
||||
|
||||
def sync_read_torque_enable(self, motor_ids: list[int] | None = None):
|
||||
return self.sync_read("Torque_Enable", motor_ids)
|
||||
|
||||
def sync_write_torque_enable(self, values: int | list[int], motor_ids: list[int] | None = None):
|
||||
self.sync_write("Torque_Enable", values, motor_ids)
|
||||
|
||||
def write_goal_position_u32(self, value, motor_idx: int):
|
||||
self.write("Goal_Position", value, motor_idx)
|
||||
|
||||
def write_goal_position_i32(self, value, motor_idx: int):
|
||||
self.write("Goal_Position", i32_to_u32(value), motor_idx)
|
||||
|
||||
def read_goal_position_u32(self, motor_idx: int):
|
||||
return self.read("Goal_Position", motor_idx)
|
||||
|
||||
def read_goal_position_i32(self, motor_idx: int):
|
||||
goal_position_u32 = self.read_goal_position_u32(motor_idx)
|
||||
|
||||
return u32_to_i32(goal_position_u32)
|
||||
|
||||
def sync_read_goal_position_u32(self, motor_ids: list[int] | None = None):
|
||||
return self.sync_read("Goal_Position", motor_ids)
|
||||
|
||||
def sync_read_goal_position_i32(self, motor_ids: list[int] | None = None):
|
||||
goal_position_u32 = self.sync_read_goal_position_u32(motor_ids)
|
||||
|
||||
return u32_to_i32(goal_position_u32)
|
||||
|
||||
def sync_write_goal_position_u32(self, values: int | list[int], motor_ids: list[int] | None = None):
|
||||
self.sync_write("Goal_Position", values, motor_ids)
|
||||
|
||||
def sync_write_goal_position_i32(self, values: int | list[int], motor_ids: list[int] | None = None):
|
||||
self.sync_write("Goal_Position", i32_to_u32(values), motor_ids)
|
||||
|
||||
def write_goal_time(self, value, motor_idx: int):
|
||||
self.write("Goal_Time", value, motor_idx)
|
||||
|
||||
def read_goal_time(self, motor_idx: int):
|
||||
return self.read("Goal_Time", motor_idx)
|
||||
|
||||
def sync_read_goal_time(self, motor_ids: list[int] | None = None):
|
||||
return self.sync_read("Goal_Time", motor_ids)
|
||||
|
||||
def sync_write_goal_time(self, values: int | list[int], motor_ids: list[int] | None = None):
|
||||
self.sync_write("Goal_Time", values, motor_ids)
|
||||
|
||||
def write_goal_speed(self, value, motor_idx: int):
|
||||
self.write("Goal_Speed", value, motor_idx)
|
||||
|
||||
def read_goal_speed(self, motor_idx: int):
|
||||
return self.read("Goal_Speed", motor_idx)
|
||||
|
||||
def sync_read_goal_speed(self, motor_ids: list[int] | None = None):
|
||||
return self.sync_read("Goal_Speed", motor_ids)
|
||||
|
||||
def sync_write_goal_speed(self, values: int | list[int], motor_ids: list[int] | None = None):
|
||||
self.sync_write("Goal_Speed", values, motor_ids)
|
||||
|
||||
def write_lock(self, value, motor_idx: int):
|
||||
self.write("Lock", value, motor_idx)
|
||||
|
||||
def read_lock(self, motor_idx: int):
|
||||
return self.read("Lock", motor_idx)
|
||||
|
||||
def sync_read_lock(self, motor_ids: list[int] | None = None):
|
||||
return self.sync_read("Lock", motor_ids)
|
||||
|
||||
def sync_write_lock(self, values: int | list[int], motor_ids: list[int] | None = None):
|
||||
self.sync_write("Lock", values, motor_ids)
|
||||
|
||||
def read_present_position_u32(self, motor_idx: int):
|
||||
return self.read("Present_Position", motor_idx)
|
||||
|
||||
def read_present_position_i32(self, motor_idx: int):
|
||||
present_position_u32 = self.read_present_position_u32(motor_idx)
|
||||
|
||||
return u32_to_i32(present_position_u32)
|
||||
|
||||
def sync_read_present_position_u32(self, motor_ids: list[int] | None = None):
|
||||
return self.sync_read("Present_Position", motor_ids)
|
||||
|
||||
def sync_read_present_position_i32(self, motor_ids: list[int] | None = None):
|
||||
present_position_u32 = self.sync_read_present_position_u32(motor_ids)
|
||||
|
||||
return u32_to_i32(present_position_u32)
|
||||
|
||||
def read_present_speed(self, motor_idx: int):
|
||||
return self.read("Present_Speed", motor_idx)
|
||||
|
||||
def sync_read_present_speed(self, motor_ids: list[int] | None = None):
|
||||
return self.sync_read("Present_Speed", motor_ids)
|
||||
|
||||
def read_present_load(self, motor_idx: int):
|
||||
return self.read("Present_Load", motor_idx)
|
||||
|
||||
def sync_read_present_load(self, motor_ids: list[int] | None = None):
|
||||
return self.sync_read("Present_Load", motor_ids)
|
||||
|
||||
def read_present_voltage(self, motor_idx: int):
|
||||
return self.read("Present_Voltage", motor_idx)
|
||||
|
||||
def sync_read_present_voltage(self, motor_ids: list[int] | None = None):
|
||||
return self.sync_read("Present_Voltage", motor_ids)
|
||||
|
||||
def read_present_temperature(self, motor_idx: int):
|
||||
return self.read("Present_Temperature", motor_idx)
|
||||
|
||||
def sync_read_present_temperature(self, motor_ids: list[int] | None = None):
|
||||
return self.sync_read("Present_Temperature", motor_ids)
|
||||
|
||||
def read_moving(self, motor_idx: int):
|
||||
return self.read("Moving", motor_idx)
|
||||
|
||||
def sync_read_moving(self, motor_ids: list[int] | None = None):
|
||||
return self.sync_read("Moving", motor_ids)
|
||||
|
||||
def read_present_current(self, motor_idx: int):
|
||||
return self.read("Present_Current", motor_idx)
|
||||
|
||||
def sync_read_present_current(self, motor_ids: list[int] | None = None):
|
||||
return self.sync_read("Present_Current", motor_ids)
|
||||
9
lerobot/common/robot_devices/motors/utils.py
Normal file
9
lerobot/common/robot_devices/motors/utils.py
Normal file
@@ -0,0 +1,9 @@
|
||||
from typing import Protocol
|
||||
|
||||
class MotorsBus(Protocol):
|
||||
def motor_names(self): ...
|
||||
def set_calibration(self): ...
|
||||
def apply_calibration(self): ...
|
||||
def revert_calibration(self): ...
|
||||
def read(self): ...
|
||||
def write(self): ...
|
||||
204
lerobot/common/robot_devices/robots/aloha.py
Normal file
204
lerobot/common/robot_devices/robots/aloha.py
Normal file
@@ -0,0 +1,204 @@
|
||||
import copy
|
||||
from dataclasses import dataclass, field, replace
|
||||
import numpy as np
|
||||
import torch
|
||||
from examples.real_robot_example.gym_real_world.robot import Robot
|
||||
from lerobot.common.robot_devices.cameras.opencv import OpenCVCamera
|
||||
from lerobot.common.robot_devices.cameras.utils import Camera
|
||||
|
||||
MAX_LEADER_GRIPPER_RAD = 0.7761942786701344
|
||||
MAX_LEADER_GRIPPER_POS = 2567
|
||||
MAX_FOLLOWER_GRIPPER_RAD = 1.6827769243105486
|
||||
MAX_FOLLOWER_GRIPPER_POS = 3100
|
||||
|
||||
MIN_LEADER_GRIPPER_RAD = -0.12732040539450828
|
||||
MIN_LEADER_GRIPPER_POS = 1984
|
||||
MIN_FOLLOWER_GRIPPER_RAD = 0.6933593161243099
|
||||
MIN_FOLLOWER_GRIPPER_POS = 2512
|
||||
|
||||
GRIPPER_INDEX = -1
|
||||
|
||||
def convert_gripper_range_from_leader_to_follower(leader_pos):
|
||||
follower_goal_pos = copy.copy(leader_pos)
|
||||
follower_goal_pos[GRIPPER_INDEX] = \
|
||||
(leader_pos[GRIPPER_INDEX] - MIN_LEADER_GRIPPER_POS) \
|
||||
/ (MAX_LEADER_GRIPPER_POS - MIN_LEADER_GRIPPER_POS) \
|
||||
* (MAX_FOLLOWER_GRIPPER_POS - MIN_FOLLOWER_GRIPPER_POS) \
|
||||
+ MIN_FOLLOWER_GRIPPER_POS
|
||||
return follower_goal_pos
|
||||
|
||||
|
||||
|
||||
@dataclass
|
||||
class AlohaRobotConfig:
|
||||
"""
|
||||
Example of usage:
|
||||
```python
|
||||
AlohaRobotConfig()
|
||||
```
|
||||
|
||||
Example of only using left arm:
|
||||
```python
|
||||
AlohaRobotConfig(
|
||||
activated_leaders=["left"],
|
||||
activated_followers=["left"],
|
||||
)
|
||||
```
|
||||
"""
|
||||
|
||||
# Define all the components of the robot
|
||||
leader_devices: dict[str, str] = field(
|
||||
default_factory=lambda: {
|
||||
"right": {
|
||||
#"port": "/dev/ttyDXL_master_right",
|
||||
"port": "/dev/ttyDXL_master_left",
|
||||
"servos": [1, 2, 3, 4, 5, 6, 7, 8, 9],
|
||||
},
|
||||
"left": {
|
||||
"port": "/dev/ttyDXL_master_left",
|
||||
"servos": [1, 2, 3, 4, 5, 6, 7, 8, 9],
|
||||
},
|
||||
}
|
||||
)
|
||||
follower_devices: dict[str, str] = field(
|
||||
default_factory=lambda: {
|
||||
"right": {
|
||||
"port": "/dev/ttyDXL_puppet_right",
|
||||
"servos": [1, 2, 3, 4, 5, 6, 7, 8, 9],
|
||||
},
|
||||
"left": {
|
||||
"port": "/dev/ttyDXL_puppet_left",
|
||||
"servos": [1, 2, 3, 4, 5, 6, 7, 8, 9],
|
||||
},
|
||||
}
|
||||
)
|
||||
camera_devices: dict[str, Camera] = field(
|
||||
default_factory=lambda: {
|
||||
# "cam_high": OpenCVCamera(16),
|
||||
# "cam_low": OpenCVCamera(4),
|
||||
# "cam_left_wrist": OpenCVCamera(10),
|
||||
# "cam_right_wrist": OpenCVCamera(22),
|
||||
}
|
||||
)
|
||||
|
||||
# Allows to easily pick a subset of all devices
|
||||
activated_leaders: list[str] | None = field(
|
||||
default_factory=lambda: ["left", "right"]
|
||||
)
|
||||
activated_followers: list[str] | None = field(
|
||||
default_factory=lambda: ["left", "right"]
|
||||
)
|
||||
activated_cameras: list[str] | None = field(
|
||||
default_factory=lambda: ["cam_high", "cam_low", "cam_left_wrist", "cam_right_wrist"]
|
||||
)
|
||||
|
||||
|
||||
class AlohaRobot():
|
||||
""" Trossen Robotics
|
||||
|
||||
Example of usage:
|
||||
```python
|
||||
robot = AlohaRobot()
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(self, config: AlohaRobotConfig | None = None, **kwargs):
|
||||
if config is None:
|
||||
config = AlohaRobotConfig()
|
||||
# Overwrite config arguments using kwargs
|
||||
config = replace(config, **kwargs)
|
||||
self.config = config
|
||||
|
||||
self.leaders = {}
|
||||
self.followers = {}
|
||||
self.cameras = {}
|
||||
|
||||
if config.activated_leaders:
|
||||
for name in config.activated_leaders:
|
||||
info = config.leader_devices[name]
|
||||
self.leaders[name] = Robot(info["port"], servo_ids=info["servos"])
|
||||
|
||||
if config.activated_followers:
|
||||
for name in config.activated_followers:
|
||||
info = config.follower_devices[name]
|
||||
self.followers[name] = Robot(info["port"], servo_ids=info["servos"])
|
||||
|
||||
if config.activated_cameras:
|
||||
for name in config.activated_cameras:
|
||||
self.cameras[name] = config.camera_devices[name]
|
||||
|
||||
def init_teleop(self):
|
||||
for name in self.followers:
|
||||
self.followers[name]._enable_torque()
|
||||
for name in self.cameras:
|
||||
self.cameras[name].connect()
|
||||
|
||||
def teleop_step(self, record_data=False) -> None | tuple[dict[str, torch.Tensor], dict[str, torch.Tensor]]:
|
||||
# Prepare to assign the positions of the leader to the follower
|
||||
leader_pos = {}
|
||||
for name in self.leaders:
|
||||
leader_pos[name] = self.leaders[name].read_position()
|
||||
|
||||
# Update the position of the follower gripper to account for the different minimum and maximum range
|
||||
# position in range [0, 4096[ which corresponds to 4096 bins of 360 degrees
|
||||
# for all our dynamixel servors
|
||||
# gripper id=8 has a different range from leader to follower
|
||||
follower_goal_pos = {}
|
||||
for name in self.leaders:
|
||||
follower_goal_pos[name] = convert_gripper_range_from_leader_to_follower(leader_pos[name])
|
||||
|
||||
# Send action
|
||||
for name in self.followers:
|
||||
self.followers[name].set_goal_pos(follower_goal_pos[name])
|
||||
|
||||
# Early exit when recording data is not requested
|
||||
if not record_data:
|
||||
return
|
||||
|
||||
# Read follower position
|
||||
follower_pos = {}
|
||||
for name in self.followers:
|
||||
follower_pos[name] = self.followers[name].read_position()
|
||||
|
||||
# Create state by concatenating follower current position
|
||||
state = []
|
||||
for name in ["left", "right"]:
|
||||
if name in follower_pos:
|
||||
state.append(follower_pos[name])
|
||||
state = np.concatenate(state)
|
||||
state = pwm2pos(state)
|
||||
|
||||
# Create action by concatenating follower goal position
|
||||
action = []
|
||||
for name in ["left", "right"]:
|
||||
if name in follower_goal_pos:
|
||||
action.append(follower_goal_pos[name])
|
||||
action = np.concatenate(action)
|
||||
action = pwm2pos(action)
|
||||
|
||||
# Capture images from cameras
|
||||
images = {}
|
||||
for name in self.cameras:
|
||||
images[name] = self.cameras[name].read()
|
||||
|
||||
# Populate output dictionnaries and format to pytorch
|
||||
obs_dict, action_dict = {}, {}
|
||||
obs_dict["observation.state"] = torch.from_numpy(state)
|
||||
action_dict["action"] = torch.from_numpy(action)
|
||||
for name in self.cameras:
|
||||
obs_dict[f"observation.images.{name}"] = torch.from_numpy(images[name])
|
||||
|
||||
return obs_dict, action_dict
|
||||
|
||||
def send_action(self, action):
|
||||
from_idx = 0
|
||||
to_idx = 0
|
||||
follower_goal_pos = {}
|
||||
for name in ["left", "right"]:
|
||||
if name in self.followers:
|
||||
to_idx += len(self.config.follower_devices[name]["servos"])
|
||||
follower_goal_pos[name] = pos2pwm(action[from_idx:to_idx].numpy())
|
||||
from_idx = to_idx
|
||||
|
||||
for name in self.followers:
|
||||
self.followers[name].set_goal_pos(follower_goal_pos[name])
|
||||
46
lerobot/common/robot_devices/robots/factory.py
Normal file
46
lerobot/common/robot_devices/robots/factory.py
Normal file
@@ -0,0 +1,46 @@
|
||||
|
||||
|
||||
def make_robot(name):
|
||||
|
||||
if name == "koch":
|
||||
from lerobot.common.robot_devices.robots.koch import KochRobot
|
||||
from lerobot.common.robot_devices.motors.dynamixel import DynamixelMotorsBus
|
||||
from lerobot.common.robot_devices.cameras.opencv import OpenCVCamera
|
||||
|
||||
robot = KochRobot(
|
||||
leader_arms={
|
||||
"main": DynamixelMotorsBus(
|
||||
port="/dev/tty.usbmodem575E0031751",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": (1, "xl330-m077"),
|
||||
"shoulder_lift": (2, "xl330-m077"),
|
||||
"elbow_flex": (3, "xl330-m077"),
|
||||
"wrist_flex": (4, "xl330-m077"),
|
||||
"wrist_roll": (5, "xl330-m077"),
|
||||
"gripper": (6, "xl330-m077"),
|
||||
},
|
||||
),
|
||||
},
|
||||
follower_arms={
|
||||
"main": DynamixelMotorsBus(
|
||||
port="/dev/tty.usbmodem575E0032081",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": (1, "xl430-w250"),
|
||||
"shoulder_lift": (2, "xl430-w250"),
|
||||
"elbow_flex": (3, "xl330-m288"),
|
||||
"wrist_flex": (4, "xl330-m288"),
|
||||
"wrist_roll": (5, "xl330-m288"),
|
||||
"gripper": (6, "xl330-m288"),
|
||||
},
|
||||
),
|
||||
},
|
||||
cameras={
|
||||
"main": OpenCVCamera(1, fps=30, width=640, height=480),
|
||||
}
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Robot '{name}' not found.")
|
||||
|
||||
return robot
|
||||
365
lerobot/common/robot_devices/robots/koch.py
Normal file
365
lerobot/common/robot_devices/robots/koch.py
Normal file
@@ -0,0 +1,365 @@
|
||||
import copy
|
||||
from dataclasses import dataclass, field, replace
|
||||
from pathlib import Path
|
||||
import pickle
|
||||
import numpy as np
|
||||
import torch
|
||||
from lerobot.common.robot_devices.cameras.opencv import OpenCVCamera
|
||||
from lerobot.common.robot_devices.cameras.utils import Camera
|
||||
from lerobot.common.robot_devices.motors.dynamixel import DriveMode, DynamixelMotorsBus, OperatingMode, TorqueMode, motor_position_to_angle
|
||||
from lerobot.common.robot_devices.motors.utils import MotorsBus
|
||||
|
||||
|
||||
########################################################################
|
||||
# Calibration logic
|
||||
########################################################################
|
||||
|
||||
# TARGET_HORIZONTAL_POSITION = motor_position_to_angle(np.array([0, -1024, 1024, 0, -1024, 0]))
|
||||
# TARGET_90_DEGREE_POSITION = motor_position_to_angle(np.array([1024, 0, 0, 1024, 0, -1024]))
|
||||
# GRIPPER_OPEN = motor_position_to_angle(np.array([-400]))
|
||||
|
||||
TARGET_HORIZONTAL_POSITION = np.array([0, -1024, 1024, 0, -1024, 0])
|
||||
TARGET_90_DEGREE_POSITION = np.array([1024, 0, 0, 1024, 0, -1024])
|
||||
GRIPPER_OPEN = np.array([-400])
|
||||
|
||||
def apply_homing_offset(values: np.array, homing_offset: np.array) -> np.array:
|
||||
for i in range(len(values)):
|
||||
if values[i] is not None:
|
||||
values[i] += homing_offset[i]
|
||||
return values
|
||||
|
||||
|
||||
def apply_drive_mode(values: np.array, drive_mode: np.array) -> np.array:
|
||||
for i in range(len(values)):
|
||||
if values[i] is not None and drive_mode[i]:
|
||||
values[i] = -values[i]
|
||||
return values
|
||||
|
||||
def apply_calibration(values: np.array, homing_offset: np.array, drive_mode: np.array) -> np.array:
|
||||
values = apply_drive_mode(values, drive_mode)
|
||||
values = apply_homing_offset(values, homing_offset)
|
||||
return values
|
||||
|
||||
def revert_calibration(values: np.array, homing_offset: np.array, drive_mode: np.array) -> np.array:
|
||||
"""
|
||||
Transform working position into real position for the robot.
|
||||
"""
|
||||
values = apply_homing_offset(values, np.array([
|
||||
-homing_offset if homing_offset is not None else None for homing_offset in homing_offset
|
||||
]))
|
||||
values = apply_drive_mode(values, drive_mode)
|
||||
return values
|
||||
|
||||
|
||||
def revert_appropriate_positions(positions: np.array, drive_mode: list[bool]) -> np.array:
|
||||
for i, revert in enumerate(drive_mode):
|
||||
if not revert and positions[i] is not None:
|
||||
positions[i] = -positions[i]
|
||||
return positions
|
||||
|
||||
|
||||
def compute_corrections(positions: np.array, drive_mode: list[bool], target_position: np.array) -> np.array:
|
||||
correction = revert_appropriate_positions(positions, drive_mode)
|
||||
|
||||
for i in range(len(positions)):
|
||||
if correction[i] is not None:
|
||||
if drive_mode[i]:
|
||||
correction[i] -= target_position[i]
|
||||
else:
|
||||
correction[i] += target_position[i]
|
||||
|
||||
return correction
|
||||
|
||||
|
||||
def compute_nearest_rounded_positions(positions: np.array) -> np.array:
|
||||
return np.array(
|
||||
[round(positions[i] / 1024) * 1024 if positions[i] is not None else None for i in range(len(positions))])
|
||||
|
||||
|
||||
def compute_homing_offset(arm: DynamixelMotorsBus, drive_mode: list[bool], target_position: np.array) -> np.array:
|
||||
# Get the present positions of the servos
|
||||
present_positions = apply_calibration(
|
||||
arm.read("Present_Position"),
|
||||
np.array([0, 0, 0, 0, 0, 0]),
|
||||
drive_mode)
|
||||
|
||||
nearest_positions = compute_nearest_rounded_positions(present_positions)
|
||||
correction = compute_corrections(nearest_positions, drive_mode, target_position)
|
||||
return correction
|
||||
|
||||
|
||||
def compute_drive_mode(arm: DynamixelMotorsBus, offset: np.array):
|
||||
# Get current positions
|
||||
present_positions = apply_calibration(
|
||||
arm.read("Present_Position"),
|
||||
offset,
|
||||
np.array([False, False, False, False, False, False]))
|
||||
|
||||
nearest_positions = compute_nearest_rounded_positions(present_positions)
|
||||
|
||||
# construct 'drive_mode' list comparing nearest_positions and TARGET_90_DEGREE_POSITION
|
||||
drive_mode = []
|
||||
for i in range(len(nearest_positions)):
|
||||
drive_mode.append(nearest_positions[i] != TARGET_90_DEGREE_POSITION[i])
|
||||
return drive_mode
|
||||
|
||||
|
||||
def reset_arm(arm: MotorsBus):
|
||||
# To be configured, all servos must be in "torque disable" mode
|
||||
arm.write("Torque_Enable", TorqueMode.DISABLED.value)
|
||||
|
||||
# Use 'extended position mode' for all motors except gripper, because in joint mode the servos can't
|
||||
# rotate more than 360 degrees (from 0 to 4095) And some mistake can happen while assembling the arm,
|
||||
# you could end up with a servo with a position 0 or 4095 at a crucial point See [
|
||||
# https://emanual.robotis.com/docs/en/dxl/x/x_series/#operating-mode11]
|
||||
all_motors_except_gripper = [name for name in arm.motor_names if name != "gripper"]
|
||||
arm.write("Operating_Mode", OperatingMode.EXTENDED_POSITION.value, all_motors_except_gripper)
|
||||
|
||||
# TODO(rcadene): why?
|
||||
# Use 'position control current based' for gripper
|
||||
arm.write("Operating_Mode", OperatingMode.CURRENT_CONTROLLED_POSITION.value, "gripper")
|
||||
|
||||
# Make sure the native calibration (homing offset abd drive mode) is disabled, since we use our own calibration layer to be more generic
|
||||
arm.write("Homing_Offset", 0)
|
||||
arm.write("Drive_Mode", DriveMode.NON_INVERTED.value)
|
||||
|
||||
|
||||
def run_arm_calibration(arm: MotorsBus, name: str):
|
||||
reset_arm(arm)
|
||||
|
||||
# TODO(rcadene): document what position 1 mean
|
||||
print(f"Please move the '{name}' arm to the horizontal position (gripper fully closed)")
|
||||
input("Press Enter to continue...")
|
||||
|
||||
horizontal_homing_offset = compute_homing_offset(arm, [False, False, False, False, False, False], TARGET_HORIZONTAL_POSITION)
|
||||
|
||||
# TODO(rcadene): document what position 2 mean
|
||||
print(f"Please move the '{name}' arm to the 90 degree position (gripper fully open)")
|
||||
input("Press Enter to continue...")
|
||||
|
||||
drive_mode = compute_drive_mode(arm, horizontal_homing_offset)
|
||||
homing_offset = compute_homing_offset(arm, drive_mode, TARGET_90_DEGREE_POSITION)
|
||||
|
||||
# Invert offset for all drive_mode servos
|
||||
for i in range(len(drive_mode)):
|
||||
if drive_mode[i]:
|
||||
homing_offset[i] = -homing_offset[i]
|
||||
|
||||
print("Calibration is done!")
|
||||
|
||||
print("=====================================")
|
||||
print(" HOMING_OFFSET: ", " ".join([str(i) for i in homing_offset]))
|
||||
print(" DRIVE_MODE: ", " ".join([str(i) for i in drive_mode]))
|
||||
print("=====================================")
|
||||
|
||||
return homing_offset, drive_mode
|
||||
|
||||
|
||||
########################################################################
|
||||
# Alexander Koch robot arm
|
||||
########################################################################
|
||||
|
||||
@dataclass
|
||||
class KochRobotConfig:
|
||||
"""
|
||||
Example of usage:
|
||||
```python
|
||||
KochRobotConfig()
|
||||
```
|
||||
"""
|
||||
|
||||
# Define all the components of the robot
|
||||
leader_arms: dict[str, MotorsBus] = field(
|
||||
default_factory=lambda: {
|
||||
"main": DynamixelMotorsBus(
|
||||
port="/dev/tty.usbmodem575E0031751",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": (1, "xl330-m077"),
|
||||
"shoulder_lift": (2, "xl330-m077"),
|
||||
"elbow_flex": (3, "xl330-m077"),
|
||||
"wrist_flex": (4, "xl330-m077"),
|
||||
"wrist_roll": (5, "xl330-m077"),
|
||||
"gripper": (6, "xl330-m077"),
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
follower_arms: dict[str, MotorsBus] = field(
|
||||
default_factory=lambda: {
|
||||
"main": DynamixelMotorsBus(
|
||||
port="/dev/tty.usbmodem575E0032081",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": (1, "xl430-w250"),
|
||||
"shoulder_lift": (2, "xl430-w250"),
|
||||
"elbow_flex": (3, "xl330-m288"),
|
||||
"wrist_flex": (4, "xl330-m288"),
|
||||
"wrist_roll": (5, "xl330-m288"),
|
||||
"gripper": (6, "xl330-m288"),
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
cameras: dict[str, Camera] = field(
|
||||
default_factory=lambda: {}
|
||||
)
|
||||
|
||||
class KochRobot():
|
||||
""" Tau Robotics: https://tau-robotics.com
|
||||
|
||||
Example of usage:
|
||||
```python
|
||||
robot = KochRobot()
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(self, config: KochRobotConfig | None = None, calibration_path: Path = ".cache/calibration/koch.pkl", **kwargs):
|
||||
if config is None:
|
||||
config = KochRobotConfig()
|
||||
# Overwrite config arguments using kwargs
|
||||
self.config = replace(config, **kwargs)
|
||||
self.calibration_path = Path(calibration_path)
|
||||
|
||||
self.leader_arms = self.config.leader_arms
|
||||
self.follower_arms = self.config.follower_arms
|
||||
self.cameras = self.config.cameras
|
||||
|
||||
def init_teleop(self):
|
||||
if self.calibration_path.exists():
|
||||
# Reset all arms before setting calibration
|
||||
for name in self.follower_arms:
|
||||
reset_arm(self.follower_arms[name])
|
||||
|
||||
for name in self.leader_arms:
|
||||
reset_arm(self.leader_arms[name])
|
||||
|
||||
with open(self.calibration_path, 'rb') as f:
|
||||
calibration = pickle.load(f)
|
||||
else:
|
||||
calibration = self.run_calibration()
|
||||
|
||||
self.calibration_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
with open(self.calibration_path, 'wb') as f:
|
||||
pickle.dump(calibration, f)
|
||||
|
||||
for name in self.follower_arms:
|
||||
self.follower_arms[name].set_calibration(calibration[f"follower_{name}"])
|
||||
self.follower_arms[name].write("Torque_Enable", 1)
|
||||
|
||||
for name in self.leader_arms:
|
||||
self.leader_arms[name].set_calibration(calibration[f"leader_{name}"])
|
||||
# TODO(rcadene): add comments
|
||||
self.leader_arms[name].write("Goal_Position", GRIPPER_OPEN, "gripper")
|
||||
self.leader_arms[name].write("Torque_Enable", 1, "gripper")
|
||||
|
||||
for name in self.cameras:
|
||||
self.cameras[name].connect()
|
||||
|
||||
def run_calibration(self):
|
||||
calibration = {}
|
||||
|
||||
for name in self.follower_arms:
|
||||
homing_offset, drive_mode = run_arm_calibration(self.follower_arms[name], f"{name} follower")
|
||||
|
||||
calibration[f"follower_{name}"] = {}
|
||||
for idx, motor_name in enumerate(self.follower_arms[name].motor_names):
|
||||
calibration[f"follower_{name}"][motor_name] = (homing_offset[idx], drive_mode[idx])
|
||||
|
||||
for name in self.leader_arms:
|
||||
homing_offset, drive_mode = run_arm_calibration(self.leader_arms[name], f"{name} leader")
|
||||
|
||||
calibration[f"leader_{name}"] = {}
|
||||
for idx, motor_name in enumerate(self.leader_arms[name].motor_names):
|
||||
calibration[f"leader_{name}"][motor_name] = (homing_offset[idx], drive_mode[idx])
|
||||
|
||||
return calibration
|
||||
|
||||
def teleop_step(self, record_data=False) -> None | tuple[dict[str, torch.Tensor], dict[str, torch.Tensor]]:
|
||||
# Prepare to assign the positions of the leader to the follower
|
||||
leader_pos = {}
|
||||
for name in self.leader_arms:
|
||||
leader_pos[name] = self.leader_arms[name].read("Present_Position")
|
||||
|
||||
follower_goal_pos = {}
|
||||
for name in self.leader_arms:
|
||||
follower_goal_pos[name] = leader_pos[name]
|
||||
|
||||
# Send action
|
||||
for name in self.follower_arms:
|
||||
self.follower_arms[name].write("Goal_Position", follower_goal_pos[name])
|
||||
|
||||
# Early exit when recording data is not requested
|
||||
if not record_data:
|
||||
return
|
||||
|
||||
# Read follower position
|
||||
follower_pos = {}
|
||||
for name in self.follower_arms:
|
||||
follower_pos[name] = self.follower_arms[name].read("Present_Position")
|
||||
|
||||
# Create state by concatenating follower current position
|
||||
state = []
|
||||
for name in self.follower_arms:
|
||||
if name in follower_pos:
|
||||
state.append(follower_pos[name])
|
||||
state = np.concatenate(state)
|
||||
|
||||
# Create action by concatenating follower goal position
|
||||
action = []
|
||||
for name in self.follower_arms:
|
||||
if name in follower_goal_pos:
|
||||
action.append(follower_goal_pos[name])
|
||||
action = np.concatenate(action)
|
||||
|
||||
# Capture images from cameras
|
||||
images = {}
|
||||
for name in self.cameras:
|
||||
images[name] = self.cameras[name].read()
|
||||
|
||||
# Populate output dictionnaries and format to pytorch
|
||||
obs_dict, action_dict = {}, {}
|
||||
obs_dict["observation.state"] = torch.from_numpy(state)
|
||||
action_dict["action"] = torch.from_numpy(action)
|
||||
for name in self.cameras:
|
||||
obs_dict[f"observation.images.{name}"] = torch.from_numpy(images[name])
|
||||
|
||||
return obs_dict, action_dict
|
||||
|
||||
def capture_observation(self):
|
||||
# Read follower position
|
||||
follower_pos = {}
|
||||
for name in self.follower_arms:
|
||||
follower_pos[name] = self.follower_arms[name].read("Present_Position")
|
||||
|
||||
# Create state by concatenating follower current position
|
||||
state = []
|
||||
for name in self.follower_arms:
|
||||
if name in follower_pos:
|
||||
state.append(follower_pos[name])
|
||||
state = np.concatenate(state)
|
||||
|
||||
# Capture images from cameras
|
||||
images = {}
|
||||
for name in self.cameras:
|
||||
images[name] = self.cameras[name].read()
|
||||
|
||||
# Populate output dictionnaries and format to pytorch
|
||||
obs_dict = {}
|
||||
obs_dict["observation.state"] = torch.from_numpy(state)
|
||||
for name in self.cameras:
|
||||
obs_dict[f"observation.images.{name}"] = torch.from_numpy(images[name])
|
||||
return obs_dict
|
||||
|
||||
def send_action(self, action):
|
||||
from_idx = 0
|
||||
to_idx = 0
|
||||
follower_goal_pos = {}
|
||||
for name in self.follower_arms:
|
||||
if name in self.follower_arms:
|
||||
to_idx += len(self.follower_arms[name].motor_names)
|
||||
follower_goal_pos[name] = action[from_idx:to_idx].numpy()
|
||||
from_idx = to_idx
|
||||
|
||||
for name in self.follower_arms:
|
||||
self.follower_arms[name].write("Goal_Position", follower_goal_pos[name].astype(np.int32))
|
||||
8
lerobot/common/robot_devices/robots/utils.py
Normal file
8
lerobot/common/robot_devices/robots/utils.py
Normal file
@@ -0,0 +1,8 @@
|
||||
from typing import Protocol
|
||||
|
||||
class Robot(Protocol):
|
||||
def init_teleop(self): ...
|
||||
def run_calibration(self): ...
|
||||
def teleop_step(self, record_data=False): ...
|
||||
def capture_observation(self): ...
|
||||
def send_action(self, action): ...
|
||||
@@ -25,3 +25,42 @@ def write_video(video_path, stacked_frames, fps):
|
||||
"ignore", "pkg_resources is deprecated as an API", category=DeprecationWarning
|
||||
)
|
||||
imageio.mimsave(video_path, stacked_frames, fps=fps)
|
||||
|
||||
|
||||
import serial
|
||||
import os
|
||||
import time
|
||||
|
||||
def reset_usb_port(port):
|
||||
try:
|
||||
# Close the serial port if it's open
|
||||
ser = serial.Serial(port)
|
||||
ser.close()
|
||||
except serial.serialutil.SerialException as e:
|
||||
print(f"Exception while closing the port: {e}")
|
||||
|
||||
# Find the USB device path
|
||||
usb_device_path = None
|
||||
for root, dirs, files in os.walk('/sys/bus/usb/drivers/usb'):
|
||||
for dir_name in dirs:
|
||||
if port in dir_name:
|
||||
usb_device_path = os.path.join(root, dir_name)
|
||||
break
|
||||
|
||||
if usb_device_path:
|
||||
# Unbind and rebind the USB device
|
||||
try:
|
||||
unbind_path = os.path.join(usb_device_path, 'unbind')
|
||||
bind_path = os.path.join(usb_device_path, 'bind')
|
||||
usb_id = os.path.basename(usb_device_path)
|
||||
|
||||
with open(unbind_path, 'w') as f:
|
||||
f.write(usb_id)
|
||||
time.sleep(1) # Wait for a second
|
||||
with open(bind_path, 'w') as f:
|
||||
f.write(usb_id)
|
||||
print(f"USB port {port} has been reset.")
|
||||
except Exception as e:
|
||||
print(f"Exception during USB reset: {e}")
|
||||
else:
|
||||
print(f"Could not find USB device path for port: {port}")
|
||||
@@ -120,13 +120,13 @@ def init_logging():
|
||||
logging.getLogger().addHandler(console_handler)
|
||||
|
||||
|
||||
def format_big_number(num):
|
||||
def format_big_number(num, precision=0):
|
||||
suffixes = ["", "K", "M", "B", "T", "Q"]
|
||||
divisor = 1000.0
|
||||
|
||||
for suffix in suffixes:
|
||||
if abs(num) < divisor:
|
||||
return f"{num:.0f}{suffix}"
|
||||
return f"{num:.{precision}f}{suffix}"
|
||||
num /= divisor
|
||||
|
||||
return num
|
||||
|
||||
@@ -23,6 +23,10 @@ use_amp: false
|
||||
# `seed` is used for training (eg: model initialization, dataset shuffling)
|
||||
# AND for the evaluation environments.
|
||||
seed: ???
|
||||
# You may provide a list of datasets here. `train.py` creates them all and concatenates them. Note: only data
|
||||
# keys common between the datasets are kept. Each dataset gets and additional transform that inserts the
|
||||
# "dataset_index" into the returned item. The index mapping is made according to the order in which the
|
||||
# datsets are provided.
|
||||
dataset_repo_id: lerobot/pusht
|
||||
|
||||
training:
|
||||
@@ -46,6 +50,8 @@ eval:
|
||||
batch_size: 1
|
||||
# `use_async_envs` specifies whether to use asynchronous environments (multiprocessing).
|
||||
use_async_envs: false
|
||||
# Specify the number of episodes to render during evaluation.
|
||||
max_episodes_rendered: 10
|
||||
|
||||
wandb:
|
||||
enable: false
|
||||
|
||||
1
lerobot/configs/env/aloha.yaml
vendored
1
lerobot/configs/env/aloha.yaml
vendored
@@ -9,6 +9,7 @@ env:
|
||||
action_dim: 14
|
||||
fps: ${fps}
|
||||
episode_length: 400
|
||||
real_world: false
|
||||
gym:
|
||||
obs_type: pixels_agent_pos
|
||||
render_mode: rgb_array
|
||||
|
||||
14
lerobot/configs/env/dora_aloha_real.yaml
vendored
Normal file
14
lerobot/configs/env/dora_aloha_real.yaml
vendored
Normal file
@@ -0,0 +1,14 @@
|
||||
# @package _global_
|
||||
|
||||
fps: 30
|
||||
|
||||
env:
|
||||
name: dora
|
||||
task: DoraAloha-v0
|
||||
state_dim: 14
|
||||
action_dim: 14
|
||||
fps: ${fps}
|
||||
episode_length: 400
|
||||
real_world: true
|
||||
gym:
|
||||
fps: ${fps}
|
||||
1
lerobot/configs/env/pusht.yaml
vendored
1
lerobot/configs/env/pusht.yaml
vendored
@@ -10,6 +10,7 @@ env:
|
||||
action_dim: 2
|
||||
fps: ${fps}
|
||||
episode_length: 300
|
||||
real_world: false
|
||||
gym:
|
||||
obs_type: pixels_agent_pos
|
||||
render_mode: rgb_array
|
||||
|
||||
1
lerobot/configs/env/xarm.yaml
vendored
1
lerobot/configs/env/xarm.yaml
vendored
@@ -10,6 +10,7 @@ env:
|
||||
action_dim: 4
|
||||
fps: ${fps}
|
||||
episode_length: 25
|
||||
real_world: false
|
||||
gym:
|
||||
obs_type: pixels_agent_pos
|
||||
render_mode: rgb_array
|
||||
|
||||
115
lerobot/configs/policy/act_real.yaml
Normal file
115
lerobot/configs/policy/act_real.yaml
Normal file
@@ -0,0 +1,115 @@
|
||||
# @package _global_
|
||||
|
||||
# Use `act_real.yaml` to train on real-world Aloha/Aloha2 datasets.
|
||||
# Compared to `act.yaml`, it contains 4 cameras (i.e. cam_right_wrist, cam_left_wrist, images,
|
||||
# cam_low) instead of 1 camera (i.e. top). Also, `training.eval_freq` is set to -1. This config is used
|
||||
# to evaluate checkpoints at a certain frequency of training steps. When it is set to -1, it deactivates evaluation.
|
||||
# This is because real-world evaluation is done through [dora-lerobot](https://github.com/dora-rs/dora-lerobot).
|
||||
# Look at its README for more information on how to evaluate a checkpoint in the real-world.
|
||||
#
|
||||
# Example of usage for training:
|
||||
# ```bash
|
||||
# python lerobot/scripts/train.py \
|
||||
# policy=act_real \
|
||||
# env=dora_aloha_real
|
||||
# ```
|
||||
|
||||
seed: 1000
|
||||
dataset_repo_id: lerobot/aloha_static_vinh_cup
|
||||
|
||||
override_dataset_stats:
|
||||
observation.images.cam_right_wrist:
|
||||
# stats from imagenet, since we use a pretrained vision model
|
||||
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
|
||||
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
|
||||
observation.images.cam_left_wrist:
|
||||
# stats from imagenet, since we use a pretrained vision model
|
||||
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
|
||||
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
|
||||
observation.images.cam_high:
|
||||
# stats from imagenet, since we use a pretrained vision model
|
||||
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
|
||||
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
|
||||
observation.images.cam_low:
|
||||
# stats from imagenet, since we use a pretrained vision model
|
||||
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
|
||||
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
|
||||
|
||||
training:
|
||||
offline_steps: 80000
|
||||
online_steps: 0
|
||||
eval_freq: -1
|
||||
save_freq: 10000
|
||||
log_freq: 100
|
||||
save_checkpoint: true
|
||||
|
||||
batch_size: 8
|
||||
lr: 1e-5
|
||||
lr_backbone: 1e-5
|
||||
weight_decay: 1e-4
|
||||
grad_clip_norm: 10
|
||||
online_steps_between_rollouts: 1
|
||||
|
||||
delta_timestamps:
|
||||
action: "[i / ${fps} for i in range(${policy.chunk_size})]"
|
||||
|
||||
eval:
|
||||
n_episodes: 50
|
||||
batch_size: 50
|
||||
|
||||
# See `configuration_act.py` for more details.
|
||||
policy:
|
||||
name: act
|
||||
|
||||
# Input / output structure.
|
||||
n_obs_steps: 1
|
||||
chunk_size: 100 # chunk_size
|
||||
n_action_steps: 100
|
||||
|
||||
input_shapes:
|
||||
# TODO(rcadene, alexander-soare): add variables for height and width from the dataset/env?
|
||||
observation.images.cam_right_wrist: [3, 480, 640]
|
||||
observation.images.cam_left_wrist: [3, 480, 640]
|
||||
observation.images.cam_high: [3, 480, 640]
|
||||
observation.images.cam_low: [3, 480, 640]
|
||||
observation.state: ["${env.state_dim}"]
|
||||
output_shapes:
|
||||
action: ["${env.action_dim}"]
|
||||
|
||||
# Normalization / Unnormalization
|
||||
input_normalization_modes:
|
||||
observation.images.cam_right_wrist: mean_std
|
||||
observation.images.cam_left_wrist: mean_std
|
||||
observation.images.cam_high: mean_std
|
||||
observation.images.cam_low: mean_std
|
||||
observation.state: mean_std
|
||||
output_normalization_modes:
|
||||
action: mean_std
|
||||
|
||||
# Architecture.
|
||||
# Vision backbone.
|
||||
vision_backbone: resnet18
|
||||
pretrained_backbone_weights: ResNet18_Weights.IMAGENET1K_V1
|
||||
replace_final_stride_with_dilation: false
|
||||
# Transformer layers.
|
||||
pre_norm: false
|
||||
dim_model: 512
|
||||
n_heads: 8
|
||||
dim_feedforward: 3200
|
||||
feedforward_activation: relu
|
||||
n_encoder_layers: 4
|
||||
# Note: Although the original ACT implementation has 7 for `n_decoder_layers`, there is a bug in the code
|
||||
# that means only the first layer is used. Here we match the original implementation by setting this to 1.
|
||||
# See this issue https://github.com/tonyzhaozh/act/issues/25#issue-2258740521.
|
||||
n_decoder_layers: 1
|
||||
# VAE.
|
||||
use_vae: true
|
||||
latent_dim: 32
|
||||
n_vae_encoder_layers: 4
|
||||
|
||||
# Inference.
|
||||
temporal_ensemble_momentum: null
|
||||
|
||||
# Training and loss computation.
|
||||
dropout: 0.1
|
||||
kl_weight: 10.0
|
||||
111
lerobot/configs/policy/act_real_no_state.yaml
Normal file
111
lerobot/configs/policy/act_real_no_state.yaml
Normal file
@@ -0,0 +1,111 @@
|
||||
# @package _global_
|
||||
|
||||
# Use `act_real_no_state.yaml` to train on real-world Aloha/Aloha2 datasets when cameras are moving (e.g. wrist cameras)
|
||||
# Compared to `act_real.yaml`, it is camera only and does not use the state as input which is vector of robot joint positions.
|
||||
# We validated experimentaly that not using state reaches better success rate. Our hypothesis is that `act_real.yaml` might
|
||||
# overfits to the state, because the images are more complex to learn from since they are moving.
|
||||
#
|
||||
# Example of usage for training:
|
||||
# ```bash
|
||||
# python lerobot/scripts/train.py \
|
||||
# policy=act_real_no_state \
|
||||
# env=dora_aloha_real
|
||||
# ```
|
||||
|
||||
seed: 1000
|
||||
dataset_repo_id: lerobot/aloha_static_vinh_cup
|
||||
|
||||
override_dataset_stats:
|
||||
observation.images.cam_right_wrist:
|
||||
# stats from imagenet, since we use a pretrained vision model
|
||||
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
|
||||
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
|
||||
observation.images.cam_left_wrist:
|
||||
# stats from imagenet, since we use a pretrained vision model
|
||||
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
|
||||
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
|
||||
observation.images.cam_high:
|
||||
# stats from imagenet, since we use a pretrained vision model
|
||||
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
|
||||
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
|
||||
observation.images.cam_low:
|
||||
# stats from imagenet, since we use a pretrained vision model
|
||||
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
|
||||
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
|
||||
|
||||
training:
|
||||
offline_steps: 80000
|
||||
online_steps: 0
|
||||
eval_freq: -1
|
||||
save_freq: 10000
|
||||
log_freq: 100
|
||||
save_checkpoint: true
|
||||
|
||||
batch_size: 8
|
||||
lr: 1e-5
|
||||
lr_backbone: 1e-5
|
||||
weight_decay: 1e-4
|
||||
grad_clip_norm: 10
|
||||
online_steps_between_rollouts: 1
|
||||
|
||||
delta_timestamps:
|
||||
action: "[i / ${fps} for i in range(${policy.chunk_size})]"
|
||||
|
||||
eval:
|
||||
n_episodes: 50
|
||||
batch_size: 50
|
||||
|
||||
# See `configuration_act.py` for more details.
|
||||
policy:
|
||||
name: act
|
||||
|
||||
# Input / output structure.
|
||||
n_obs_steps: 1
|
||||
chunk_size: 100 # chunk_size
|
||||
n_action_steps: 100
|
||||
|
||||
input_shapes:
|
||||
# TODO(rcadene, alexander-soare): add variables for height and width from the dataset/env?
|
||||
observation.images.cam_right_wrist: [3, 480, 640]
|
||||
observation.images.cam_left_wrist: [3, 480, 640]
|
||||
observation.images.cam_high: [3, 480, 640]
|
||||
observation.images.cam_low: [3, 480, 640]
|
||||
output_shapes:
|
||||
action: ["${env.action_dim}"]
|
||||
|
||||
# Normalization / Unnormalization
|
||||
input_normalization_modes:
|
||||
observation.images.cam_right_wrist: mean_std
|
||||
observation.images.cam_left_wrist: mean_std
|
||||
observation.images.cam_high: mean_std
|
||||
observation.images.cam_low: mean_std
|
||||
output_normalization_modes:
|
||||
action: mean_std
|
||||
|
||||
# Architecture.
|
||||
# Vision backbone.
|
||||
vision_backbone: resnet18
|
||||
pretrained_backbone_weights: ResNet18_Weights.IMAGENET1K_V1
|
||||
replace_final_stride_with_dilation: false
|
||||
# Transformer layers.
|
||||
pre_norm: false
|
||||
dim_model: 512
|
||||
n_heads: 8
|
||||
dim_feedforward: 3200
|
||||
feedforward_activation: relu
|
||||
n_encoder_layers: 4
|
||||
# Note: Although the original ACT implementation has 7 for `n_decoder_layers`, there is a bug in the code
|
||||
# that means only the first layer is used. Here we match the original implementation by setting this to 1.
|
||||
# See this issue https://github.com/tonyzhaozh/act/issues/25#issue-2258740521.
|
||||
n_decoder_layers: 1
|
||||
# VAE.
|
||||
use_vae: true
|
||||
latent_dim: 32
|
||||
n_vae_encoder_layers: 4
|
||||
|
||||
# Inference.
|
||||
temporal_ensemble_momentum: null
|
||||
|
||||
# Training and loss computation.
|
||||
dropout: 0.1
|
||||
kl_weight: 10.0
|
||||
@@ -44,6 +44,10 @@ training:
|
||||
observation.state: "[i / ${fps} for i in range(1 - ${policy.n_obs_steps}, 1)]"
|
||||
action: "[i / ${fps} for i in range(1 - ${policy.n_obs_steps}, 1 - ${policy.n_obs_steps} + ${policy.horizon})]"
|
||||
|
||||
# The original implementation doesn't sample frames for the last 7 steps,
|
||||
# which avoids excessive padding and leads to improved training results.
|
||||
drop_n_last_frames: 7 # ${policy.horizon} - ${policy.n_action_steps} - ${policy.n_obs_steps} + 1
|
||||
|
||||
eval:
|
||||
n_episodes: 50
|
||||
batch_size: 50
|
||||
|
||||
400
lerobot/scripts/control_robot.py
Normal file
400
lerobot/scripts/control_robot.py
Normal file
@@ -0,0 +1,400 @@
|
||||
"""
|
||||
Example of usage:
|
||||
|
||||
- Unlimited teleoperation at highest frequency (~200 Hz is expected), to exit with CTRL+C:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py teleoperate
|
||||
```
|
||||
|
||||
- Unlimited teleoperation at a limited frequency of 30 Hz, to simulate data recording frequency:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py teleoperate \
|
||||
--fps 30
|
||||
```
|
||||
|
||||
- Record one episode in order to test replay:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py record_dataset \
|
||||
--fps 30 \
|
||||
--root tmp/data \
|
||||
--repo-id $USER/koch_test \
|
||||
--num-episodes 1 \
|
||||
--run-compute-stats 0
|
||||
```
|
||||
|
||||
- Visualize dataset:
|
||||
```bash
|
||||
python lerobot/scripts/visualize_dataset.py \
|
||||
--root tmp/data \
|
||||
--repo-id $USER/koch_test \
|
||||
--episode-index 0
|
||||
```
|
||||
|
||||
- Replay this test episode:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py replay_episode \
|
||||
--fps 30 \
|
||||
--root tmp/data \
|
||||
--repo-id $USER/koch_test \
|
||||
--episode 0
|
||||
```
|
||||
|
||||
- Record a full dataset in order to train a policy:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py record_dataset \
|
||||
--fps 30 \
|
||||
--root data \
|
||||
--repo-id $USER/koch_pick_place_lego \
|
||||
--num-episodes 50 \
|
||||
--run-compute-stats 1
|
||||
```
|
||||
|
||||
- Train on this dataset (TODO(rcadene)):
|
||||
```bash
|
||||
python lerobot/scripts/train.py
|
||||
```
|
||||
|
||||
- Run the pretrained policy on the robot:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py run_policy \
|
||||
-p TODO(rcadene)
|
||||
```
|
||||
"""
|
||||
|
||||
import argparse
|
||||
from contextlib import nullcontext
|
||||
import os
|
||||
from pathlib import Path
|
||||
import shutil
|
||||
import time
|
||||
|
||||
from PIL import Image
|
||||
from omegaconf import DictConfig
|
||||
import torch
|
||||
from lerobot.common.datasets.compute_stats import compute_stats
|
||||
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION, LeRobotDataset
|
||||
from lerobot.common.datasets.push_dataset_to_hub.aloha_hdf5_format import to_hf_dataset
|
||||
from lerobot.common.datasets.push_dataset_to_hub.utils import concatenate_episodes
|
||||
from lerobot.common.datasets.utils import calculate_episode_data_index, load_hf_dataset
|
||||
from lerobot.common.datasets.video_utils import encode_video_frames
|
||||
from lerobot.common.policies.factory import make_policy
|
||||
from lerobot.common.robot_devices.robots.factory import make_robot
|
||||
from lerobot.common.robot_devices.robots.utils import Robot
|
||||
from lerobot.common.utils.utils import get_safe_torch_device, init_hydra_config, set_global_seed
|
||||
from lerobot.scripts.eval import get_pretrained_policy_path
|
||||
from lerobot.scripts.push_dataset_to_hub import save_meta_data
|
||||
from lerobot.scripts.robot_controls.record_dataset import record_dataset
|
||||
import concurrent.futures
|
||||
|
||||
|
||||
########################################################################################
|
||||
# Utilities
|
||||
########################################################################################
|
||||
|
||||
def save_image(img_tensor, key, frame_index, episode_index, videos_dir):
|
||||
img = Image.fromarray(img_tensor.numpy())
|
||||
path = videos_dir / f"{key}_episode_{episode_index:06d}" / f"frame_{frame_index:06d}.png"
|
||||
path.parent.mkdir(parents=True, exist_ok=True)
|
||||
img.save(str(path), quality=100)
|
||||
|
||||
|
||||
def busy_wait(seconds):
|
||||
# Significantly more accurate than `time.sleep`, and mendatory for our use case,
|
||||
# but it consumes CPU cycles.
|
||||
# TODO(rcadene): find an alternative
|
||||
end_time = time.perf_counter() + seconds
|
||||
while time.perf_counter() < end_time:
|
||||
pass
|
||||
|
||||
def none_or_int(value):
|
||||
if value == 'None':
|
||||
return None
|
||||
return int(value)
|
||||
|
||||
########################################################################################
|
||||
# Control modes
|
||||
########################################################################################
|
||||
|
||||
def teleoperate(robot: Robot, fps: int | None = None):
|
||||
robot.init_teleop()
|
||||
|
||||
while True:
|
||||
now = time.perf_counter()
|
||||
robot.teleop_step()
|
||||
|
||||
if fps is not None:
|
||||
dt_s = (time.perf_counter() - now)
|
||||
busy_wait(1 / fps - dt_s)
|
||||
|
||||
dt_s = (time.perf_counter() - now)
|
||||
print(f"Latency (ms): {dt_s * 1000:.2f}\tFrequency: {1 / dt_s:.2f}")
|
||||
|
||||
|
||||
def record_dataset(robot: Robot, fps: int | None = None, root="data", repo_id="lerobot/debug", warmup_time_s=2, episode_time_s=10, num_episodes=50, video=True, run_compute_stats=True):
|
||||
if not video:
|
||||
raise NotImplementedError()
|
||||
|
||||
robot.init_teleop()
|
||||
|
||||
local_dir = Path(root) / repo_id
|
||||
if local_dir.exists():
|
||||
shutil.rmtree(local_dir)
|
||||
|
||||
videos_dir = local_dir / "videos"
|
||||
videos_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
|
||||
start_time = time.perf_counter()
|
||||
|
||||
is_warmup_print = False
|
||||
is_record_print = False
|
||||
ep_dicts = []
|
||||
|
||||
# Save images using threads to reach high fps (30 and more)
|
||||
# Using `with` ensures the program exists smoothly if an execption is raised.
|
||||
with concurrent.futures.ThreadPoolExecutor() as executor:
|
||||
for episode_index in range(num_episodes):
|
||||
|
||||
ep_dict = {}
|
||||
frame_index = 0
|
||||
|
||||
while True:
|
||||
if not is_warmup_print:
|
||||
print("Warming up by skipping frames")
|
||||
os.system('say "Warmup"')
|
||||
is_warmup_print = True
|
||||
now = time.perf_counter()
|
||||
|
||||
observation, action = robot.teleop_step(record_data=True)
|
||||
timestamp = time.perf_counter() - start_time
|
||||
|
||||
if timestamp < warmup_time_s:
|
||||
dt_s = (time.perf_counter() - now)
|
||||
busy_wait(1 / fps - dt_s)
|
||||
|
||||
dt_s = (time.perf_counter() - now)
|
||||
print(f"Latency (ms): {dt_s * 1000:.2f}\tFrequency: {1 / dt_s:.2f} (Warmup)")
|
||||
continue
|
||||
|
||||
if not is_record_print:
|
||||
print("Recording")
|
||||
os.system(f'say "Recording episode {episode_index}"')
|
||||
is_record_print = True
|
||||
|
||||
image_keys = [key for key in observation if "image" in key]
|
||||
not_image_keys = [key for key in observation if "image" not in key]
|
||||
|
||||
for key in image_keys:
|
||||
executor.submit(save_image, observation[key], key, frame_index, episode_index, videos_dir)
|
||||
|
||||
for key in not_image_keys:
|
||||
if key not in ep_dict:
|
||||
ep_dict[key] = []
|
||||
ep_dict[key].append(observation[key])
|
||||
|
||||
for key in action:
|
||||
if key not in ep_dict:
|
||||
ep_dict[key] = []
|
||||
ep_dict[key].append(action[key])
|
||||
|
||||
frame_index += 1
|
||||
|
||||
dt_s = (time.perf_counter() - now)
|
||||
busy_wait(1 / fps - dt_s)
|
||||
|
||||
dt_s = (time.perf_counter() - now)
|
||||
print(f"Latency (ms): {dt_s * 1000:.2f}\tFrequency: {1 / dt_s:.2f}")
|
||||
|
||||
if timestamp > episode_time_s - warmup_time_s:
|
||||
break
|
||||
|
||||
print("Encoding to `LeRobotDataset` format")
|
||||
os.system('say "Encoding"')
|
||||
|
||||
num_frames = frame_index
|
||||
|
||||
for key in image_keys:
|
||||
tmp_imgs_dir = videos_dir / f"{key}_episode_{episode_index:06d}"
|
||||
fname = f"{key}_episode_{episode_index:06d}.mp4"
|
||||
video_path = local_dir / "videos" / fname
|
||||
encode_video_frames(tmp_imgs_dir, video_path, fps)
|
||||
|
||||
# clean temporary images directory
|
||||
# shutil.rmtree(tmp_imgs_dir)
|
||||
|
||||
# store the reference to the video frame
|
||||
ep_dict[key] = []
|
||||
for i in range(num_frames):
|
||||
ep_dict[key].append({"path": f"videos/{fname}", "timestamp": i / fps})
|
||||
|
||||
for key in not_image_keys:
|
||||
ep_dict[key] = torch.stack(ep_dict[key])
|
||||
|
||||
for key in action:
|
||||
ep_dict[key] = torch.stack(ep_dict[key])
|
||||
|
||||
ep_dict["episode_index"] = torch.tensor([episode_index] * num_frames)
|
||||
ep_dict["frame_index"] = torch.arange(0, num_frames, 1)
|
||||
ep_dict["timestamp"] = torch.arange(0, num_frames, 1) / fps
|
||||
|
||||
done = torch.zeros(num_frames, dtype=torch.bool)
|
||||
done[-1] = True
|
||||
ep_dict["next.done"] = done
|
||||
|
||||
ep_dicts.append(ep_dict)
|
||||
|
||||
data_dict = concatenate_episodes(ep_dicts)
|
||||
|
||||
total_frames = data_dict["frame_index"].shape[0]
|
||||
data_dict["index"] = torch.arange(0, total_frames, 1)
|
||||
|
||||
hf_dataset = to_hf_dataset(data_dict, video)
|
||||
episode_data_index = calculate_episode_data_index(hf_dataset)
|
||||
info = {
|
||||
"fps": fps,
|
||||
"video": video,
|
||||
}
|
||||
|
||||
meta_data_dir = local_dir / "meta_data"
|
||||
|
||||
for key in image_keys:
|
||||
time.sleep(10)
|
||||
tmp_imgs_dir = videos_dir / f"{key}_episode_{episode_index:06d}"
|
||||
# shutil.rmtree(tmp_imgs_dir)
|
||||
|
||||
lerobot_dataset = LeRobotDataset.from_preloaded(
|
||||
repo_id=repo_id,
|
||||
hf_dataset=hf_dataset,
|
||||
episode_data_index=episode_data_index,
|
||||
info=info,
|
||||
videos_dir=videos_dir,
|
||||
)
|
||||
if run_compute_stats:
|
||||
stats = compute_stats(lerobot_dataset)
|
||||
else:
|
||||
stats = {}
|
||||
|
||||
hf_dataset = hf_dataset.with_format(None) # to remove transforms that cant be saved
|
||||
hf_dataset.save_to_disk(str(local_dir / "train"))
|
||||
|
||||
save_meta_data(info, stats, episode_data_index, meta_data_dir)
|
||||
|
||||
# TODO(rcadene): push to hub
|
||||
|
||||
|
||||
def replay_episode(robot: Robot, episode: int, fps: int | None = None, root="data", repo_id="lerobot/debug"):
|
||||
local_dir = Path(root) / repo_id
|
||||
if not local_dir.exists():
|
||||
raise ValueError(local_dir)
|
||||
|
||||
dataset = LeRobotDataset(repo_id, root=root)
|
||||
items = dataset.hf_dataset.select_columns("action")
|
||||
from_idx = dataset.episode_data_index["from"][episode].item()
|
||||
to_idx = dataset.episode_data_index["to"][episode].item()
|
||||
|
||||
robot.init_teleop()
|
||||
|
||||
print("Replaying episode")
|
||||
os.system('say "Replaying episode"')
|
||||
|
||||
for idx in range(from_idx, to_idx):
|
||||
now = time.perf_counter()
|
||||
|
||||
action = items[idx]["action"]
|
||||
robot.send_action(action)
|
||||
|
||||
dt_s = (time.perf_counter() - now)
|
||||
busy_wait(1 / fps - dt_s)
|
||||
|
||||
dt_s = (time.perf_counter() - now)
|
||||
print(f"Latency (ms): {dt_s * 1000:.2f}\tFrequency: {1 / dt_s:.2f}")
|
||||
|
||||
|
||||
def run_policy(robot: Robot, policy: torch.nn.Module, hydra_cfg: DictConfig):
|
||||
policy.eval()
|
||||
|
||||
# Check device is available
|
||||
device = get_safe_torch_device(hydra_cfg.device, log=True)
|
||||
|
||||
torch.backends.cudnn.benchmark = True
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
set_global_seed(hydra_cfg.seed)
|
||||
|
||||
fps = hydra_cfg.env.fps
|
||||
|
||||
while True:
|
||||
now = time.perf_counter()
|
||||
|
||||
observation = robot.capture_observation()
|
||||
|
||||
with torch.inference_mode(), torch.autocast(device_type=device.type) if hydra_cfg.use_amp else nullcontext():
|
||||
action = policy.select_action(observation)
|
||||
|
||||
robot.send_action(action)
|
||||
|
||||
dt_s = (time.perf_counter() - now)
|
||||
busy_wait(1 / fps - dt_s)
|
||||
|
||||
dt_s = (time.perf_counter() - now)
|
||||
print(f"Latency (ms): {dt_s * 1000:.2f}\tFrequency: {1 / dt_s:.2f}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
subparsers = parser.add_subparsers(dest="mode", required=True)
|
||||
|
||||
# Set common options for all the subparsers
|
||||
base_parser = argparse.ArgumentParser(add_help=False)
|
||||
base_parser.add_argument("--robot", type=str, default="koch", help="Name of the robot provided to the `make_robot(name)` factory function.")
|
||||
|
||||
parser_teleop = subparsers.add_parser("teleoperate", parents=[base_parser])
|
||||
parser_teleop.add_argument('--fps', type=none_or_int, default=None, help='Frames per second (set to None to disable)')
|
||||
|
||||
parser_record = subparsers.add_parser("record_dataset", parents=[base_parser])
|
||||
parser_record.add_argument('--fps', type=none_or_int, default=None, help='Frames per second (set to None to disable)')
|
||||
parser_record.add_argument('--root', type=Path, default="data", help='')
|
||||
parser_record.add_argument('--repo-id', type=str, default="lerobot/test", help='')
|
||||
parser_record.add_argument('--warmup-time-s', type=int, default=2, help='')
|
||||
parser_record.add_argument('--episode-time-s', type=int, default=10, help='')
|
||||
parser_record.add_argument('--num-episodes', type=int, default=50, help='')
|
||||
parser_record.add_argument('--run-compute-stats', type=int, default=1, help='')
|
||||
|
||||
parser_replay = subparsers.add_parser("replay_episode", parents=[base_parser])
|
||||
parser_replay.add_argument('--fps', type=none_or_int, default=None, help='Frames per second (set to None to disable)')
|
||||
parser_replay.add_argument('--root', type=Path, default="data", help='')
|
||||
parser_replay.add_argument('--repo-id', type=str, default="lerobot/test", help='')
|
||||
parser_replay.add_argument('--episode', type=int, default=0, help='')
|
||||
|
||||
parser_policy = subparsers.add_parser("run_policy", parents=[base_parser])
|
||||
parser_policy.add_argument('-p', '--pretrained-policy-name-or-path', type=str,
|
||||
help=(
|
||||
"Either the repo ID of a model hosted on the Hub or a path to a directory containing weights "
|
||||
"saved using `Policy.save_pretrained`."
|
||||
)
|
||||
)
|
||||
parser_policy.add_argument(
|
||||
"overrides",
|
||||
nargs="*",
|
||||
help="Any key=value arguments to override config values (use dots for.nested=overrides)",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
control_mode = args.mode
|
||||
robot_name = args.robot
|
||||
kwargs = vars(args)
|
||||
del kwargs["mode"]
|
||||
del kwargs["robot"]
|
||||
|
||||
robot = make_robot(robot_name)
|
||||
if control_mode == "teleoperate":
|
||||
teleoperate(robot, **kwargs)
|
||||
elif control_mode == "record_dataset":
|
||||
record_dataset(robot, **kwargs)
|
||||
elif control_mode == "replay_episode":
|
||||
replay_episode(robot, **kwargs)
|
||||
|
||||
elif control_mode == "run_policy":
|
||||
pretrained_policy_path = get_pretrained_policy_path(args.pretrained_policy_name_or_path)
|
||||
hydra_cfg = init_hydra_config(pretrained_policy_path / "config.yaml", args.overrides)
|
||||
policy = make_policy(hydra_cfg=hydra_cfg, pretrained_policy_name_or_path=pretrained_policy_path)
|
||||
run_policy(robot, policy, hydra_cfg)
|
||||
@@ -44,6 +44,7 @@ https://huggingface.co/lerobot/diffusion_pusht/tree/main.
|
||||
import argparse
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import threading
|
||||
import time
|
||||
from contextlib import nullcontext
|
||||
@@ -164,7 +165,10 @@ def rollout(
|
||||
# VectorEnv stores is_success in `info["final_info"][env_index]["is_success"]`. "final_info" isn't
|
||||
# available of none of the envs finished.
|
||||
if "final_info" in info:
|
||||
successes = [info["is_success"] if info is not None else False for info in info["final_info"]]
|
||||
successes = [
|
||||
i["is_success"] if (i is not None and "is_success" in i) else False
|
||||
for i in info["final_info"]
|
||||
]
|
||||
else:
|
||||
successes = [False] * env.num_envs
|
||||
|
||||
@@ -516,6 +520,7 @@ def eval(
|
||||
out_dir = (
|
||||
f"outputs/eval/{dt.now().strftime('%Y-%m-%d/%H-%M-%S')}_{hydra_cfg.env.name}_{hydra_cfg.policy.name}"
|
||||
)
|
||||
os.makedirs(out_dir, exist_ok=True)
|
||||
|
||||
if out_dir is None:
|
||||
raise NotImplementedError()
|
||||
@@ -545,7 +550,7 @@ def eval(
|
||||
env,
|
||||
policy,
|
||||
hydra_cfg.eval.n_episodes,
|
||||
max_episodes_rendered=10,
|
||||
max_episodes_rendered=hydra_cfg.eval.max_episodes_rendered,
|
||||
video_dir=Path(out_dir) / "eval",
|
||||
start_seed=hydra_cfg.seed,
|
||||
enable_progbar=True,
|
||||
@@ -562,6 +567,31 @@ def eval(
|
||||
logging.info("End of eval")
|
||||
|
||||
|
||||
def get_pretrained_policy_path(pretrained_policy_name_or_path, revision=None):
|
||||
try:
|
||||
pretrained_policy_path = Path(
|
||||
snapshot_download(pretrained_policy_name_or_path, revision=revision)
|
||||
)
|
||||
except (HFValidationError, RepositoryNotFoundError) as e:
|
||||
if isinstance(e, HFValidationError):
|
||||
error_message = (
|
||||
"The provided pretrained_policy_name_or_path is not a valid Hugging Face Hub repo ID."
|
||||
)
|
||||
else:
|
||||
error_message = (
|
||||
"The provided pretrained_policy_name_or_path was not found on the Hugging Face Hub."
|
||||
)
|
||||
|
||||
logging.warning(f"{error_message} Treating it as a local directory.")
|
||||
pretrained_policy_path = Path(pretrained_policy_name_or_path)
|
||||
if not pretrained_policy_path.is_dir() or not pretrained_policy_path.exists():
|
||||
raise ValueError(
|
||||
"The provided pretrained_policy_name_or_path is not a valid/existing Hugging Face Hub "
|
||||
"repo ID, nor is it an existing local directory."
|
||||
)
|
||||
return pretrained_policy_path
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
init_logging()
|
||||
|
||||
@@ -596,26 +626,6 @@ if __name__ == "__main__":
|
||||
if args.pretrained_policy_name_or_path is None:
|
||||
eval(hydra_cfg_path=args.config, config_overrides=args.overrides)
|
||||
else:
|
||||
try:
|
||||
pretrained_policy_path = Path(
|
||||
snapshot_download(args.pretrained_policy_name_or_path, revision=args.revision)
|
||||
)
|
||||
except (HFValidationError, RepositoryNotFoundError) as e:
|
||||
if isinstance(e, HFValidationError):
|
||||
error_message = (
|
||||
"The provided pretrained_policy_name_or_path is not a valid Hugging Face Hub repo ID."
|
||||
)
|
||||
else:
|
||||
error_message = (
|
||||
"The provided pretrained_policy_name_or_path was not found on the Hugging Face Hub."
|
||||
)
|
||||
|
||||
logging.warning(f"{error_message} Treating it as a local directory.")
|
||||
pretrained_policy_path = Path(args.pretrained_policy_name_or_path)
|
||||
if not pretrained_policy_path.is_dir() or not pretrained_policy_path.exists():
|
||||
raise ValueError(
|
||||
"The provided pretrained_policy_name_or_path is not a valid/existing Hugging Face Hub "
|
||||
"repo ID, nor is it an existing local directory."
|
||||
)
|
||||
pretrained_policy_path = get_pretrained_policy_path(args.pretrained_policy_name_or_path, revision=args.revision)
|
||||
|
||||
eval(pretrained_policy_path=pretrained_policy_path, config_overrides=args.overrides)
|
||||
|
||||
@@ -71,9 +71,9 @@ import torch
|
||||
from huggingface_hub import HfApi
|
||||
from safetensors.torch import save_file
|
||||
|
||||
from lerobot.common.datasets.compute_stats import compute_stats
|
||||
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION, LeRobotDataset
|
||||
from lerobot.common.datasets.push_dataset_to_hub._download_raw import download_raw
|
||||
from lerobot.common.datasets.push_dataset_to_hub.compute_stats import compute_stats
|
||||
from lerobot.common.datasets.utils import flatten_dict
|
||||
|
||||
|
||||
|
||||
211
lerobot/scripts/robot_controls/koch_configure.py
Normal file
211
lerobot/scripts/robot_controls/koch_configure.py
Normal file
@@ -0,0 +1,211 @@
|
||||
"""
|
||||
LCR Auto Configure: This program is used to automatically configure the Low Cost Robot (LCR) for the user.
|
||||
|
||||
The program will:
|
||||
1. Disable all torque motors of provided LCR.
|
||||
2. Ask the user to move the LCR to the position 1 (see CONFIGURING.md for more details).
|
||||
3. Record the position of the LCR.
|
||||
4. Ask the user to move the LCR to the position 2 (see CONFIGURING.md for more details).
|
||||
5. Record the position of the LCR.
|
||||
6. Ask the user to move back the LCR to the position 1.
|
||||
7. Record the position of the LCR.
|
||||
8. Calculate the offset of the LCR and save it to the configuration file.
|
||||
|
||||
It will also enable all appropriate operating modes for the LCR according if the LCR is a puppet or a master.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
|
||||
from lerobot.common.robot_devices.motors.dynamixel import DynamixelBus, OperatingMode, DriveMode, TorqueMode
|
||||
|
||||
|
||||
def pause():
|
||||
"""
|
||||
Pause the program until the user presses the enter key.
|
||||
"""
|
||||
input("Press Enter to continue...")
|
||||
|
||||
|
||||
def prepare_configuration(arm: DynamixelBus):
|
||||
"""
|
||||
Prepare the configuration for the LCR.
|
||||
:param arm: DynamixelBus
|
||||
"""
|
||||
|
||||
# To be configured, all servos must be in "torque disable" mode
|
||||
arm.sync_write_torque_enable(TorqueMode.DISABLED.value)
|
||||
|
||||
# We need to work with 'extended position mode' (4) for all servos, because in joint mode (1) the servos can't
|
||||
# rotate more than 360 degrees (from 0 to 4095) And some mistake can happen while assembling the arm,
|
||||
# you could end up with a servo with a position 0 or 4095 at a crucial point See [
|
||||
# https://emanual.robotis.com/docs/en/dxl/x/x_series/#operating-mode11]
|
||||
arm.sync_write_operating_mode(OperatingMode.EXTENDED_POSITION.value, [1, 2, 3, 4, 5])
|
||||
|
||||
# Gripper is always 'position control current based' (5)
|
||||
arm.write_operating_mode(OperatingMode.CURRENT_CONTROLLED_POSITION.value, 6)
|
||||
|
||||
# We need to reset the homing offset for all servos
|
||||
arm.sync_write_homing_offset(0)
|
||||
|
||||
# We need to work with 'normal drive mode' (0) for all servos
|
||||
arm.sync_write_drive_mode(DriveMode.NON_INVERTED.value)
|
||||
|
||||
|
||||
def invert_appropriate_positions(positions: np.array, inverted: list[bool]) -> np.array:
|
||||
"""
|
||||
Invert the appropriate positions.
|
||||
:param positions: numpy array of positions
|
||||
:param inverted: list of booleans to determine if the position should be inverted
|
||||
:return: numpy array of inverted positions
|
||||
"""
|
||||
for i, invert in enumerate(inverted):
|
||||
if not invert and positions[i] is not None:
|
||||
positions[i] = -positions[i]
|
||||
|
||||
return positions
|
||||
|
||||
|
||||
def calculate_corrections(positions: np.array, inverted: list[bool]) -> np.array:
|
||||
"""
|
||||
Calculate the corrections for the positions.
|
||||
:param positions: numpy array of positions
|
||||
:param inverted: list of booleans to determine if the position should be inverted
|
||||
:return: numpy array of corrections
|
||||
"""
|
||||
|
||||
wanted = wanted_position_1()
|
||||
|
||||
correction = invert_appropriate_positions(positions, inverted)
|
||||
|
||||
for i in range(len(positions)):
|
||||
if correction[i] is not None:
|
||||
if inverted[i]:
|
||||
correction[i] -= wanted[i]
|
||||
else:
|
||||
correction[i] += wanted[i]
|
||||
|
||||
return correction
|
||||
|
||||
|
||||
def calculate_nearest_rounded_positions(positions: np.array) -> np.array:
|
||||
"""
|
||||
Calculate the nearest rounded positions.
|
||||
:param positions: numpy array of positions
|
||||
:return: numpy array of nearest rounded positions
|
||||
"""
|
||||
|
||||
return np.array(
|
||||
[round(positions[i] / 1024) * 1024 if positions[i] is not None else None for i in range(len(positions))])
|
||||
|
||||
|
||||
def configure_homing(arm: DynamixelBus, inverted: list[bool]) -> np.array:
|
||||
"""
|
||||
Configure the homing for the LCR.
|
||||
:param arm: DynamixelBus
|
||||
:param inverted: list of booleans to determine if the position should be inverted
|
||||
"""
|
||||
|
||||
# Reset homing offset for the servos
|
||||
arm.sync_write_homing_offset(0)
|
||||
|
||||
# Get the present positions of the servos
|
||||
present_positions = arm.sync_read_present_position_i32()
|
||||
|
||||
nearest_positions = calculate_nearest_rounded_positions(present_positions)
|
||||
|
||||
correction = calculate_corrections(nearest_positions, inverted)
|
||||
|
||||
# Write the homing offset for the servos
|
||||
arm.sync_write_homing_offset(correction)
|
||||
|
||||
|
||||
def configure_drive_mode(arm: DynamixelBus):
|
||||
"""
|
||||
Configure the drive mode for the LCR.
|
||||
:param arm: DynamixelBus
|
||||
:param homing: numpy array of homing
|
||||
"""
|
||||
|
||||
# Get current positions
|
||||
present_positions = arm.sync_read_present_position_i32()
|
||||
|
||||
nearest_positions = calculate_nearest_rounded_positions(present_positions)
|
||||
|
||||
# construct 'inverted' list comparing nearest_positions and wanted_position_2
|
||||
inverted = []
|
||||
|
||||
for i in range(len(nearest_positions)):
|
||||
inverted.append(nearest_positions[i] != wanted_position_2()[i])
|
||||
|
||||
# Write the drive mode for the servos
|
||||
arm.sync_write_drive_mode(
|
||||
[DriveMode.INVERTED.value if i else DriveMode.NON_INVERTED.value for i in inverted])
|
||||
|
||||
return inverted
|
||||
|
||||
|
||||
def wanted_position_1() -> np.array:
|
||||
"""
|
||||
The present position wanted in position 1 for the arm
|
||||
"""
|
||||
return np.array([0, -1024, 1024, 0, 0, 0])
|
||||
|
||||
|
||||
def wanted_position_2() -> np.array:
|
||||
"""
|
||||
The present position wanted in position 2 for the arm
|
||||
"""
|
||||
return np.array([1024, 0, 0, 1024, 1024, -1024])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="LCR Auto Configure: This program is used to automatically configure the Low Cost Robot (LCR) for "
|
||||
"the user.")
|
||||
|
||||
parser.add_argument("--port", type=str, required=True, help="The port of the LCR.")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
arm = DynamixelBus(
|
||||
args.port, {
|
||||
1: "x_series",
|
||||
2: "x_series",
|
||||
3: "x_series",
|
||||
4: "x_series",
|
||||
5: "x_series",
|
||||
6: "x_series",
|
||||
}
|
||||
)
|
||||
|
||||
prepare_configuration(arm)
|
||||
|
||||
# Ask the user to move the LCR to the position 1
|
||||
print("Please move the LCR to the position 1")
|
||||
pause()
|
||||
|
||||
configure_homing(arm, [False, False, False, False, False, False])
|
||||
|
||||
# Ask the user to move the LCR to the position 2
|
||||
print("Please move the LCR to the position 2")
|
||||
pause()
|
||||
|
||||
inverted = configure_drive_mode(arm)
|
||||
|
||||
# Ask the user to move back the LCR to the position 1
|
||||
print("Please move back the LCR to the position 1")
|
||||
pause()
|
||||
|
||||
configure_homing(arm, inverted)
|
||||
|
||||
print("Configuration done!")
|
||||
print("Make sure everything is working properly:")
|
||||
|
||||
while True:
|
||||
positions = arm.sync_read_present_position_i32()
|
||||
print(positions)
|
||||
|
||||
time.sleep(1)
|
||||
20
lerobot/scripts/robot_controls/record_dataset.py
Normal file
20
lerobot/scripts/robot_controls/record_dataset.py
Normal file
@@ -0,0 +1,20 @@
|
||||
|
||||
|
||||
import time
|
||||
from lerobot.common.robot_devices.robots.aloha import AlohaRobot
|
||||
import torch
|
||||
|
||||
|
||||
def record_dataset():
|
||||
robot = AlohaRobot(use_cameras=True)
|
||||
robot.init_teleop()
|
||||
|
||||
while True:
|
||||
now = time.time()
|
||||
observation, action = robot.teleop_step(record_data=True)
|
||||
|
||||
dt_s = (time.time() - now)
|
||||
print(f"Latency (ms): {dt_s * 1000:.2f}\tFrequency: {1 / dt_s:.2f}")
|
||||
|
||||
if __name__ == "__main__":
|
||||
record_dataset()
|
||||
19
lerobot/scripts/robot_controls/replay_dataset.py
Normal file
19
lerobot/scripts/robot_controls/replay_dataset.py
Normal file
@@ -0,0 +1,19 @@
|
||||
|
||||
import time
|
||||
from lerobot.common.robot_devices.robots.aloha import AlohaRobot
|
||||
import torch
|
||||
|
||||
|
||||
def record_dataset():
|
||||
robot = AlohaRobot(use_cameras=True)
|
||||
robot.init_teleop()
|
||||
|
||||
while True:
|
||||
now = time.time()
|
||||
observation, action = robot.teleop_step(record_data=True)
|
||||
|
||||
dt_s = (time.time() - now)
|
||||
print(f"Latency (ms): {dt_s * 1000:.2f}\tFrequency: {1 / dt_s:.2f}")
|
||||
|
||||
if __name__ == "__main__":
|
||||
record_dataset()
|
||||
47
lerobot/scripts/robot_controls/run_policy.py
Normal file
47
lerobot/scripts/robot_controls/run_policy.py
Normal file
@@ -0,0 +1,47 @@
|
||||
|
||||
|
||||
import time
|
||||
from lerobot.common.robot_devices.robots.aloha import AlohaRobot
|
||||
import torch
|
||||
|
||||
|
||||
|
||||
def teleoperate():
|
||||
robot = AlohaRobot(use_cameras=False)
|
||||
robot.init_teleop()
|
||||
|
||||
while True:
|
||||
now = time.time()
|
||||
robot.teleop_step(record_data=False)
|
||||
|
||||
dt_s = (time.time() - now)
|
||||
print(f"Latency (ms): {dt_s * 1000:.2f}\tFrequency: {1 / dt_s:.2f}")
|
||||
|
||||
|
||||
def record_teleop_data():
|
||||
robot = AlohaRobot(use_cameras=True)
|
||||
robot.init_teleop()
|
||||
|
||||
while True:
|
||||
now = time.time()
|
||||
observation, action = robot.teleop_step(record_data=True)
|
||||
|
||||
dt_s = (time.time() - now)
|
||||
print(f"Latency (ms): {dt_s * 1000:.2f}\tFrequency: {1 / dt_s:.2f}")
|
||||
|
||||
|
||||
|
||||
def evaluate_policy(policy):
|
||||
robot = AlohaRobot(use_cameras=True)
|
||||
observation = robot.init_evaluate()
|
||||
|
||||
while True:
|
||||
now = time.time()
|
||||
with torch.inference_mode():
|
||||
action = policy.select_action(observation)
|
||||
|
||||
observation, action = robot.step(action, record_data=False)
|
||||
|
||||
dt_s = (time.time() - now)
|
||||
print(f"Latency (ms): {dt_s * 1000:.2f}\tFrequency: {1 / dt_s:.2f}")
|
||||
|
||||
20
lerobot/scripts/robot_controls/teleoperate.py
Normal file
20
lerobot/scripts/robot_controls/teleoperate.py
Normal file
@@ -0,0 +1,20 @@
|
||||
|
||||
|
||||
import time
|
||||
from lerobot.common.robot_devices.robots.aloha import AlohaRobot
|
||||
|
||||
|
||||
def teleoperate():
|
||||
robot = AlohaRobot(use_cameras=False)
|
||||
robot.init_teleop()
|
||||
|
||||
while True:
|
||||
now = time.time()
|
||||
robot.teleop_step(record_data=False)
|
||||
|
||||
dt_s = (time.time() - now)
|
||||
print(f"Latency (ms): {dt_s * 1000:.2f}\tFrequency: {1 / dt_s:.2f}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
teleoperate()
|
||||
320
lerobot/scripts/robot_controls/teleoperate_cv2.py
Normal file
320
lerobot/scripts/robot_controls/teleoperate_cv2.py
Normal file
@@ -0,0 +1,320 @@
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
import time
|
||||
import warnings
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from examples.real_robot_example.gym_real_world.robot import Robot
|
||||
import signal
|
||||
import sys
|
||||
# import pyrealsense2 as rs
|
||||
|
||||
MAX_LEADER_GRIPPER_RAD = 0.7761942786701344
|
||||
MAX_LEADER_GRIPPER_POS = 2567
|
||||
MAX_FOLLOWER_GRIPPER_RAD = 1.6827769243105486
|
||||
MAX_FOLLOWER_GRIPPER_POS = 3100
|
||||
|
||||
MIN_LEADER_GRIPPER_RAD = -0.12732040539450828
|
||||
MIN_LEADER_GRIPPER_POS = 1984
|
||||
MIN_FOLLOWER_GRIPPER_RAD = 0.6933593161243099
|
||||
MIN_FOLLOWER_GRIPPER_POS = 2512
|
||||
|
||||
CAMERA_WIDTH = 640
|
||||
CAMERA_HEIGHT = 480
|
||||
|
||||
def convert_gripper_range_from_leader_to_follower(leader_gripper_pos):
|
||||
follower_gripper_pos = \
|
||||
(leader_gripper_pos - MIN_LEADER_GRIPPER_POS) \
|
||||
/ (MAX_LEADER_GRIPPER_POS - MIN_LEADER_GRIPPER_POS) \
|
||||
* (MAX_FOLLOWER_GRIPPER_POS - MIN_FOLLOWER_GRIPPER_POS) \
|
||||
+ MIN_FOLLOWER_GRIPPER_POS
|
||||
return follower_gripper_pos
|
||||
|
||||
# alexander koch
|
||||
# leader_port = "/dev/ttyACM1"
|
||||
# follower_port = "/dev/ttyACM0"
|
||||
|
||||
def disable_torque():
|
||||
leader_right_port = "/dev/ttyDXL_master_right"
|
||||
leader_left_port = "/dev/ttyDXL_master_left"
|
||||
follower_right_port = "/dev/ttyDXL_puppet_right"
|
||||
follower_left_port = "/dev/ttyDXL_puppet_left"
|
||||
# starts at 1
|
||||
all_servo_ids = [1, 2, 3, 4, 5, 6, 7, 8, 9]
|
||||
leader_right = Robot(leader_right_port, servo_ids=all_servo_ids)
|
||||
leader_left = Robot(leader_left_port, servo_ids=all_servo_ids)
|
||||
follower_right = Robot(follower_right_port, servo_ids=all_servo_ids)
|
||||
follower_left = Robot(follower_left_port, servo_ids=all_servo_ids)
|
||||
|
||||
leader_right._disable_torque()
|
||||
leader_left._disable_torque()
|
||||
follower_right._disable_torque()
|
||||
follower_left._disable_torque()
|
||||
|
||||
|
||||
def teleoperate():
|
||||
leader_right_port = "/dev/ttyDXL_master_right"
|
||||
follower_right_port = "/dev/ttyDXL_puppet_right"
|
||||
leader_left_port = "/dev/ttyDXL_master_left"
|
||||
follower_left_port = "/dev/ttyDXL_puppet_left"
|
||||
# starts at 1
|
||||
all_servo_ids = [1, 2, 3, 4, 5, 6, 7, 8, 9]
|
||||
leader_right = Robot(leader_right_port, servo_ids=all_servo_ids)
|
||||
leader_left = Robot(leader_left_port, servo_ids=all_servo_ids)
|
||||
follower_right = Robot(follower_right_port, servo_ids=all_servo_ids)
|
||||
follower_left = Robot(follower_left_port, servo_ids=all_servo_ids)
|
||||
|
||||
follower_right._enable_torque()
|
||||
follower_left._enable_torque()
|
||||
|
||||
while True:
|
||||
now = time.time()
|
||||
# Prepare to assign the positions of the leader to the follower
|
||||
follower_right_pos = leader_right.read_position()
|
||||
follower_left_pos = leader_left.read_position()
|
||||
|
||||
# Update the position of the follower gripper to account for the different minimum and maximum range
|
||||
# position in range [0, 4096[ which corresponds to 4096 bins of 360 degrees
|
||||
# for all our dynamixel servors
|
||||
# gripper id=8 has a different range from leader to follower
|
||||
follower_right_pos[-1] = convert_gripper_range_from_leader_to_follower(follower_right_pos[-1])
|
||||
follower_left_pos[-1] = convert_gripper_range_from_leader_to_follower(follower_left_pos[-1])
|
||||
|
||||
# Assign
|
||||
follower_right.set_goal_pos(follower_right_pos)
|
||||
follower_left.set_goal_pos(follower_left_pos)
|
||||
|
||||
print(f"Time to send pos: {(time.time() - now) * 1000}")
|
||||
|
||||
|
||||
def capture_frame(camera: cv2.VideoCapture, output_color="rgb"):
|
||||
# OpenCV acquires frames in BGR format (blue, green red)
|
||||
ret, frame = camera.read()
|
||||
if not ret:
|
||||
raise OSError(f"Camera not found.")
|
||||
|
||||
if output_color == "rgb":
|
||||
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||||
|
||||
return frame
|
||||
|
||||
def find_camera_ids(out_dir="outputs/find_camera_ids/2024_06_19_cv2_1344"):
|
||||
save_images = True
|
||||
max_index_search_range = 60
|
||||
num_warmup_frames = 4
|
||||
|
||||
# Works well
|
||||
codec = "yuyv"
|
||||
fps = 30
|
||||
width = 640
|
||||
height = 480
|
||||
|
||||
# # Works well
|
||||
# codec = "yuyv"
|
||||
# fps = 60
|
||||
# width = 640
|
||||
# height = 480
|
||||
|
||||
# # Works well
|
||||
# codec = "yuyv"
|
||||
# fps = 90
|
||||
# width = 640
|
||||
# height = 480
|
||||
|
||||
# # Works well
|
||||
# codec = "yuyv"
|
||||
# fps = 30
|
||||
# width = 1280
|
||||
# height = 720
|
||||
|
||||
# Doesn't work well (timeout)
|
||||
# codec = "mjpg"
|
||||
# fps = 30
|
||||
# width = 1280
|
||||
# height = 720
|
||||
|
||||
out_dir += f"_{width}x{height}_{fps}_{codec}"
|
||||
|
||||
camera_ids = []
|
||||
for camera_idx in range(max_index_search_range):
|
||||
camera = cv2.VideoCapture(camera_idx)
|
||||
is_open = camera.isOpened()
|
||||
camera.release()
|
||||
|
||||
if is_open:
|
||||
print(f"Camera found at index {camera_idx}")
|
||||
camera_ids.append(camera_idx)
|
||||
|
||||
if len(camera_ids) == 0:
|
||||
raise OSError("No camera has been found")
|
||||
|
||||
# Change camera settings
|
||||
cameras = []
|
||||
for camera_idx in camera_ids:
|
||||
camera = cv2.VideoCapture(camera_idx)
|
||||
|
||||
camera.set(cv2.CAP_PROP_FPS, fps)
|
||||
camera.set(cv2.CAP_PROP_FRAME_WIDTH, width)
|
||||
camera.set(cv2.CAP_PROP_FRAME_HEIGHT, height)
|
||||
if codec == "mjpg":
|
||||
camera.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*"MJPG"))
|
||||
|
||||
actual_fps = camera.get(cv2.CAP_PROP_FPS)
|
||||
actual_width = camera.get(cv2.CAP_PROP_FRAME_WIDTH)
|
||||
actual_height = camera.get(cv2.CAP_PROP_FRAME_HEIGHT)
|
||||
|
||||
if fps != actual_fps:
|
||||
warnings.warn(f"{fps=} != {actual_fps=}", stacklevel=1)
|
||||
if width != actual_width:
|
||||
warnings.warn(f"{width=} != {actual_width=}", stacklevel=1)
|
||||
if height != actual_height:
|
||||
warnings.warn(f"{height=} != {actual_height=}", stacklevel=1)
|
||||
|
||||
cameras.append(camera)
|
||||
|
||||
out_dir = Path(out_dir)
|
||||
out_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
print("Capturing a few frames to warmup")
|
||||
for _ in range(num_warmup_frames):
|
||||
for camera_idx, camera in zip(camera_ids, cameras):
|
||||
print(f"Capturing camera {camera_idx}")
|
||||
try:
|
||||
frame = capture_frame(camera, output_color="bgr" if save_images else "rgb")
|
||||
time.sleep(0.01)
|
||||
except OSError as e:
|
||||
print(e)
|
||||
time.sleep(0.1)
|
||||
|
||||
print("Capturing frames")
|
||||
try:
|
||||
while True:
|
||||
now = time.time()
|
||||
for camera_idx, camera in zip(camera_ids, cameras):
|
||||
try:
|
||||
frame = capture_frame(camera, output_color="bgr" if save_images else "rgb")
|
||||
except OSError as e:
|
||||
print(e)
|
||||
|
||||
def write_shape(frame):
|
||||
height, width = frame.shape[:2]
|
||||
text = f'Width: {width} Height: {height}'
|
||||
|
||||
# Define the font, scale, color, and thickness
|
||||
font = cv2.FONT_HERSHEY_SIMPLEX
|
||||
font_scale = 1
|
||||
color = (255, 0, 0) # Blue in BGR
|
||||
thickness = 2
|
||||
|
||||
position = (10, height - 10) # 10 pixels from the bottom-left corner
|
||||
cv2.putText(frame, text, position, font, font_scale, color, thickness)
|
||||
|
||||
if save_images:
|
||||
frame_path = out_dir / f"camera_{camera_idx:02}.png"
|
||||
print(f"Write to {frame_path}")
|
||||
write_shape(frame)
|
||||
cv2.imwrite(str(frame_path), frame)
|
||||
time.sleep(0.1)
|
||||
|
||||
dt_s = (time.time() - now)
|
||||
dt_ms = dt_s * 1000
|
||||
freq = 1 / dt_s
|
||||
print(f"Latency (ms): {dt_ms:.2f}\tFrequency: {freq:.2f}")
|
||||
|
||||
if save_images:
|
||||
break
|
||||
if cv2.waitKey(1) & 0xFF == ord("q"):
|
||||
break
|
||||
finally:
|
||||
# Stop streaming
|
||||
for camera in cameras:
|
||||
camera.release()
|
||||
|
||||
return camera_ids
|
||||
|
||||
def record_data():
|
||||
leader_right_port = "/dev/ttyDXL_master_right"
|
||||
follower_right_port = "/dev/ttyDXL_puppet_right"
|
||||
leader_left_port = "/dev/ttyDXL_master_left"
|
||||
follower_left_port = "/dev/ttyDXL_puppet_left"
|
||||
# starts at 1
|
||||
all_servo_ids = [1, 2, 3, 4, 5, 6, 7, 8, 9]
|
||||
leader_right = Robot(leader_right_port, servo_ids=all_servo_ids)
|
||||
leader_left = Robot(leader_left_port, servo_ids=all_servo_ids)
|
||||
follower_right = Robot(follower_right_port, servo_ids=all_servo_ids)
|
||||
follower_left = Robot(follower_left_port, servo_ids=all_servo_ids)
|
||||
|
||||
follower_right._enable_torque()
|
||||
follower_left._enable_torque()
|
||||
|
||||
# To get the camera_ids, run: `find_camera_ids()`
|
||||
camera_high = cv2.VideoCapture(10)
|
||||
camera_low = cv2.VideoCapture(22)
|
||||
camera_right_wrist = cv2.VideoCapture(16)
|
||||
camera_left_wrist = cv2.VideoCapture(4)
|
||||
|
||||
if not camera_high.isOpened():
|
||||
raise OSError("Camera high port can't be accessed.")
|
||||
if not camera_low.isOpened():
|
||||
raise OSError("Camera low port can't be accessed.")
|
||||
if not camera_right_wrist.isOpened():
|
||||
raise OSError("Camera right_wrist port can't be accessed.")
|
||||
if not camera_left_wrist.isOpened():
|
||||
raise OSError("Camera left_wrist port can't be accessed.")
|
||||
|
||||
while True:
|
||||
now = time.time()
|
||||
|
||||
frame_high = capture_frame(camera_high)
|
||||
frame_low = capture_frame(camera_low)
|
||||
frame_right_wrist = capture_frame(camera_right_wrist)
|
||||
frame_left_wrist = capture_frame(camera_left_wrist)
|
||||
|
||||
# cv2.imshow("high", frame_high)
|
||||
# cv2.imshow("low", frame_low)
|
||||
# cv2.imshow("right_wrist", frame_right_wrist)
|
||||
# cv2.imshow("left_wrist", frame_left_wrist)
|
||||
|
||||
# Prepare to assign the positions of the leader to the follower
|
||||
follower_right_pos = leader_right.read_position()
|
||||
follower_left_pos = leader_left.read_position()
|
||||
|
||||
# Update the position of the follower gripper to account for the different minimum and maximum range
|
||||
# position in range [0, 4096[ which corresponds to 4096 bins of 360 degrees
|
||||
# for all our dynamixel servors
|
||||
# gripper id=8 has a different range from leader to follower
|
||||
follower_right_pos[-1] = convert_gripper_range_from_leader_to_follower(follower_right_pos[-1])
|
||||
follower_left_pos[-1] = convert_gripper_range_from_leader_to_follower(follower_left_pos[-1])
|
||||
|
||||
# Assign
|
||||
follower_right.set_goal_pos(follower_right_pos)
|
||||
follower_left.set_goal_pos(follower_left_pos)
|
||||
|
||||
dt_s = (time.time() - now)
|
||||
dt_ms = dt_s * 1000
|
||||
freq = 1 / dt_s
|
||||
print(f"Latency (ms): {dt_ms:.2f}\tFrequency: {freq:.2f}")
|
||||
|
||||
if cv2.waitKey(1) & 0xFF == ord("q"):
|
||||
break
|
||||
|
||||
camera_high.release()
|
||||
camera_low.release()
|
||||
camera_right_wrist.release()
|
||||
camera_left_wrist.release()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--mode", type=str, choices=["teleoperate", "disable_torque", "record_data", "find_camera_ids"], default="teleoperate")
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.mode == "teleoperate":
|
||||
teleoperate()
|
||||
elif args.mode == "disable_torque":
|
||||
disable_torque()
|
||||
elif args.mode == "record_data":
|
||||
record_data()
|
||||
elif args.mode == "find_camera_ids":
|
||||
find_camera_ids()
|
||||
338
lerobot/scripts/robot_controls/teleoperate_intelrealsense.py
Normal file
338
lerobot/scripts/robot_controls/teleoperate_intelrealsense.py
Normal file
@@ -0,0 +1,338 @@
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
import time
|
||||
import traceback
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from examples.real_robot_example.gym_real_world.robot import Robot
|
||||
import signal
|
||||
import sys
|
||||
import pyrealsense2 as rs
|
||||
|
||||
MAX_LEADER_GRIPPER_RAD = 0.7761942786701344
|
||||
MAX_LEADER_GRIPPER_POS = 2567
|
||||
MAX_FOLLOWER_GRIPPER_RAD = 1.6827769243105486
|
||||
MAX_FOLLOWER_GRIPPER_POS = 3100
|
||||
|
||||
MIN_LEADER_GRIPPER_RAD = -0.12732040539450828
|
||||
MIN_LEADER_GRIPPER_POS = 1984
|
||||
MIN_FOLLOWER_GRIPPER_RAD = 0.6933593161243099
|
||||
MIN_FOLLOWER_GRIPPER_POS = 2512
|
||||
|
||||
CAMERA_WIDTH = 640
|
||||
CAMERA_HEIGHT = 480
|
||||
|
||||
def convert_gripper_range_from_leader_to_follower(leader_gripper_pos):
|
||||
follower_gripper_pos = \
|
||||
(leader_gripper_pos - MIN_LEADER_GRIPPER_POS) \
|
||||
/ (MAX_LEADER_GRIPPER_POS - MIN_LEADER_GRIPPER_POS) \
|
||||
* (MAX_FOLLOWER_GRIPPER_POS - MIN_FOLLOWER_GRIPPER_POS) \
|
||||
+ MIN_FOLLOWER_GRIPPER_POS
|
||||
return follower_gripper_pos
|
||||
|
||||
# alexander koch
|
||||
# leader_port = "/dev/ttyACM1"
|
||||
# follower_port = "/dev/ttyACM0"
|
||||
|
||||
def disable_torque():
|
||||
leader_right_port = "/dev/ttyDXL_master_right"
|
||||
leader_left_port = "/dev/ttyDXL_master_left"
|
||||
follower_right_port = "/dev/ttyDXL_puppet_right"
|
||||
follower_left_port = "/dev/ttyDXL_puppet_left"
|
||||
# starts at 1
|
||||
all_servo_ids = [1, 2, 3, 4, 5, 6, 7, 8, 9]
|
||||
leader_right = Robot(leader_right_port, servo_ids=all_servo_ids)
|
||||
leader_left = Robot(leader_left_port, servo_ids=all_servo_ids)
|
||||
follower_right = Robot(follower_right_port, servo_ids=all_servo_ids)
|
||||
follower_left = Robot(follower_left_port, servo_ids=all_servo_ids)
|
||||
|
||||
leader_right._disable_torque()
|
||||
leader_left._disable_torque()
|
||||
follower_right._disable_torque()
|
||||
follower_left._disable_torque()
|
||||
|
||||
|
||||
def teleoperate():
|
||||
leader_right_port = "/dev/ttyDXL_master_right"
|
||||
follower_right_port = "/dev/ttyDXL_puppet_right"
|
||||
leader_left_port = "/dev/ttyDXL_master_left"
|
||||
follower_left_port = "/dev/ttyDXL_puppet_left"
|
||||
# starts at 1
|
||||
all_servo_ids = [1, 2, 3, 4, 5, 6, 7, 8, 9]
|
||||
leader_right = Robot(leader_right_port, servo_ids=all_servo_ids)
|
||||
leader_left = Robot(leader_left_port, servo_ids=all_servo_ids)
|
||||
follower_right = Robot(follower_right_port, servo_ids=all_servo_ids)
|
||||
follower_left = Robot(follower_left_port, servo_ids=all_servo_ids)
|
||||
|
||||
follower_right._enable_torque()
|
||||
follower_left._enable_torque()
|
||||
|
||||
while True:
|
||||
now = time.time()
|
||||
# Prepare to assign the positions of the leader to the follower
|
||||
follower_right_pos = leader_right.read_position()
|
||||
follower_left_pos = leader_left.read_position()
|
||||
|
||||
# Update the position of the follower gripper to account for the different minimum and maximum range
|
||||
# position in range [0, 4096[ which corresponds to 4096 bins of 360 degrees
|
||||
# for all our dynamixel servors
|
||||
# gripper id=8 has a different range from leader to follower
|
||||
follower_right_pos[-1] = convert_gripper_range_from_leader_to_follower(follower_right_pos[-1])
|
||||
follower_left_pos[-1] = convert_gripper_range_from_leader_to_follower(follower_left_pos[-1])
|
||||
|
||||
# Assign
|
||||
follower_right.set_goal_pos(follower_right_pos)
|
||||
follower_left.set_goal_pos(follower_left_pos)
|
||||
|
||||
print(f"Time to send pos: {(time.time() - now) * 1000}")
|
||||
|
||||
|
||||
def capture_frame(camera: cv2.VideoCapture, width=CAMERA_WIDTH, height=CAMERA_HEIGHT, output_color="rgb"):
|
||||
# OpenCV acquires frames in BGR format (blue, green red)
|
||||
ret, frame = camera.read()
|
||||
if not ret:
|
||||
raise OSError(f"Camera not found.")
|
||||
|
||||
if output_color == "rgb":
|
||||
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||||
# # Define your crop coordinates (top left corner and bottom right corner)
|
||||
# x1, y1 = 400, 0 # Example starting coordinates (top left of the crop rectangle)
|
||||
# x2, y2 = 1600, 900 # Example ending coordinates (bottom right of the crop rectangle)
|
||||
# # Crop the image
|
||||
# image = image[y1:y2, x1:x2]
|
||||
# Resize the image
|
||||
frame = cv2.resize(frame, (width, height), interpolation=cv2.INTER_AREA)
|
||||
return frame
|
||||
|
||||
def write_shape(frame):
|
||||
height, width = frame.shape[:2]
|
||||
text = f'Width: {width} Height: {height}'
|
||||
|
||||
# Define the font, scale, color, and thickness
|
||||
font = cv2.FONT_HERSHEY_SIMPLEX
|
||||
font_scale = 1
|
||||
color = (255, 0, 0) # Blue in BGR
|
||||
thickness = 2
|
||||
|
||||
position = (10, height - 10) # 10 pixels from the bottom-left corner
|
||||
cv2.putText(frame, text, position, font, font_scale, color, thickness)
|
||||
|
||||
def find_camera_ids(out_dir="outputs/find_camera_ids/2024_06_19_1039"):
|
||||
"""
|
||||
Install: https://github.com/IntelRealSense/librealsense/blob/master/doc/distribution_linux.md
|
||||
|
||||
List cameras and make sure the firmware is up-to-date: https://dev.intelrealsense.com/docs/firmware-releases-d400
|
||||
```bash
|
||||
rs-fw-update -l
|
||||
|
||||
> Connected devices:
|
||||
> 1) [USB] Intel RealSense D405 s/n 128422270109, update serial number: 133323070634, firmware version: 5.16.0.1
|
||||
> 2) [USB] Intel RealSense D405 s/n 128422271609, update serial number: 130523070758, firmware version: 5.16.0.1
|
||||
> 3) [USB] Intel RealSense D405 s/n 128422271614, update serial number: 133323070576, firmware version: 5.16.0.1
|
||||
> 4) [USB] Intel RealSense D405 s/n 128422271393, update serial number: 133323070271, firmware version: 5.16.0.1
|
||||
```
|
||||
"""
|
||||
save_images = False
|
||||
# enable once, if you reach "Frame didn't arrive" exception
|
||||
force_hardware_reset = False
|
||||
|
||||
# Works well!
|
||||
# use_depth = False
|
||||
# fps = 90
|
||||
# width = 640
|
||||
# height = 480
|
||||
|
||||
# # Works well!
|
||||
# use_depth = True
|
||||
# fps = 90
|
||||
# width = 640
|
||||
# height = 480
|
||||
|
||||
# # Doesn't work well, latency varies too much
|
||||
# use_depth = True
|
||||
# fps = 30
|
||||
# width = 1280
|
||||
# height = 720
|
||||
|
||||
# Works well
|
||||
use_depth = False
|
||||
fps = 30
|
||||
width = 1280
|
||||
height = 720
|
||||
|
||||
out_dir += f"_{width}x{height}_{fps}_depth_{use_depth}"
|
||||
|
||||
ctx = rs.context()
|
||||
|
||||
serials = []
|
||||
cameras = []
|
||||
for device in ctx.query_devices():
|
||||
print(device)
|
||||
if force_hardware_reset:
|
||||
device.hardware_reset()
|
||||
|
||||
SERIAL_NUMBER_INDEX = 1
|
||||
serial_number = device.get_info(rs.camera_info(SERIAL_NUMBER_INDEX))
|
||||
|
||||
config = rs.config()
|
||||
config.enable_device(serial_number)
|
||||
|
||||
config.enable_stream(rs.stream.color, width, height, rs.format.bgr8, fps)
|
||||
|
||||
if use_depth:
|
||||
config.enable_stream(rs.stream.depth, width, height, rs.format.z16, fps)
|
||||
|
||||
pipeline = rs.pipeline()
|
||||
pipeline.start(config)
|
||||
|
||||
serials.append(serial_number)
|
||||
cameras.append(pipeline)
|
||||
|
||||
out_dir = Path(out_dir)
|
||||
out_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
try:
|
||||
while True:
|
||||
now = time.time()
|
||||
for serial, camera in zip(serials, cameras):
|
||||
# Wait for a coherent pair of frames: depth and color
|
||||
try:
|
||||
frames = camera.wait_for_frames()
|
||||
except RuntimeError as e:
|
||||
if "Frame didn't arrive" in str(e):
|
||||
print(f"{e}: Trying hardware_reset. If it still doesn't work, try `force_hardware_reset=True`.")
|
||||
device.hardware_reset()
|
||||
traceback.print_exc()
|
||||
continue
|
||||
|
||||
# acquire color image
|
||||
color_frame = frames.get_color_frame()
|
||||
if not color_frame:
|
||||
print("Empty color frame")
|
||||
continue
|
||||
# to numpy
|
||||
image = np.asanyarray(color_frame.get_data())
|
||||
|
||||
if save_images:
|
||||
image_path = out_dir / f"camera_{serial:02}.png"
|
||||
print(f"Write to {image_path}")
|
||||
write_shape(image)
|
||||
cv2.imwrite(str(image_path), image)
|
||||
|
||||
if use_depth:
|
||||
# acquire depth image
|
||||
depth_frame = frames.get_depth_frame()
|
||||
if not depth_frame:
|
||||
print("Empty depth frame")
|
||||
continue
|
||||
# to numpy
|
||||
depth = np.asanyarray(depth_frame.get_data())
|
||||
|
||||
if save_images:
|
||||
# Apply colormap on depth image (image must be converted to 8-bit per pixel first)
|
||||
depth_image = cv2.applyColorMap(cv2.convertScaleAbs(depth, alpha=0.03), cv2.COLORMAP_JET)
|
||||
depth_image_path = out_dir / f"camera_{serial:02}_depth.png"
|
||||
print(f"Write to {depth_image_path}")
|
||||
write_shape(depth_image)
|
||||
cv2.imwrite(str(depth_image_path), depth_image)
|
||||
|
||||
dt_s = (time.time() - now)
|
||||
dt_ms = dt_s * 1000
|
||||
freq = 1 / dt_s
|
||||
print(f"Latency (ms): {dt_ms:.2f}\tFrequency: {freq:.2f}")
|
||||
|
||||
if save_images:
|
||||
break
|
||||
if cv2.waitKey(1) & 0xFF == ord("q"):
|
||||
break
|
||||
finally:
|
||||
# Stop streaming
|
||||
for camera in cameras:
|
||||
camera.stop()
|
||||
|
||||
return serials
|
||||
|
||||
|
||||
def record_data():
|
||||
leader_right_port = "/dev/ttyDXL_master_right"
|
||||
follower_right_port = "/dev/ttyDXL_puppet_right"
|
||||
leader_left_port = "/dev/ttyDXL_master_left"
|
||||
follower_left_port = "/dev/ttyDXL_puppet_left"
|
||||
# starts at 1
|
||||
all_servo_ids = [1, 2, 3, 4, 5, 6, 7, 8, 9]
|
||||
leader_right = Robot(leader_right_port, servo_ids=all_servo_ids)
|
||||
leader_left = Robot(leader_left_port, servo_ids=all_servo_ids)
|
||||
follower_right = Robot(follower_right_port, servo_ids=all_servo_ids)
|
||||
follower_left = Robot(follower_left_port, servo_ids=all_servo_ids)
|
||||
|
||||
follower_right._enable_torque()
|
||||
follower_left._enable_torque()
|
||||
|
||||
# To get the camera_ids, run: `find_camera_ids()`
|
||||
camera_high = cv2.VideoCapture(10)
|
||||
camera_low = cv2.VideoCapture(22)
|
||||
camera_right_wrist = cv2.VideoCapture(16)
|
||||
camera_left_wrist = cv2.VideoCapture(4)
|
||||
|
||||
if not camera_high.isOpened():
|
||||
raise OSError("Camera high port can't be accessed.")
|
||||
if not camera_low.isOpened():
|
||||
raise OSError("Camera low port can't be accessed.")
|
||||
if not camera_right_wrist.isOpened():
|
||||
raise OSError("Camera right_wrist port can't be accessed.")
|
||||
if not camera_left_wrist.isOpened():
|
||||
raise OSError("Camera left_wrist port can't be accessed.")
|
||||
|
||||
while True:
|
||||
now = time.time()
|
||||
|
||||
frame_high = capture_frame(camera_high)
|
||||
frame_low = capture_frame(camera_low)
|
||||
frame_right_wrist = capture_frame(camera_right_wrist)
|
||||
frame_left_wrist = capture_frame(camera_left_wrist)
|
||||
|
||||
# cv2.imshow("high", frame_high)
|
||||
# cv2.imshow("low", frame_low)
|
||||
# cv2.imshow("right_wrist", frame_right_wrist)
|
||||
# cv2.imshow("left_wrist", frame_left_wrist)
|
||||
|
||||
# Prepare to assign the positions of the leader to the follower
|
||||
follower_right_pos = leader_right.read_position()
|
||||
follower_left_pos = leader_left.read_position()
|
||||
|
||||
# Update the position of the follower gripper to account for the different minimum and maximum range
|
||||
# position in range [0, 4096[ which corresponds to 4096 bins of 360 degrees
|
||||
# for all our dynamixel servors
|
||||
# gripper id=8 has a different range from leader to follower
|
||||
follower_right_pos[-1] = convert_gripper_range_from_leader_to_follower(follower_right_pos[-1])
|
||||
follower_left_pos[-1] = convert_gripper_range_from_leader_to_follower(follower_left_pos[-1])
|
||||
|
||||
# Assign
|
||||
follower_right.set_goal_pos(follower_right_pos)
|
||||
follower_left.set_goal_pos(follower_left_pos)
|
||||
|
||||
print(f"Time to send pos: {(time.time() - now) * 1000}")
|
||||
|
||||
if cv2.waitKey(1) & 0xFF == ord("q"):
|
||||
break
|
||||
|
||||
camera_high.release()
|
||||
camera_low.release()
|
||||
camera_right_wrist.release()
|
||||
camera_left_wrist.release()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--mode", type=str, choices=["teleoperate", "disable_torque", "record_data", "find_camera_ids"], default="teleoperate")
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.mode == "teleoperate":
|
||||
teleoperate()
|
||||
elif args.mode == "disable_torque":
|
||||
disable_torque()
|
||||
elif args.mode == "record_data":
|
||||
record_data()
|
||||
elif args.mode == "find_camera_ids":
|
||||
find_camera_ids()
|
||||
10
lerobot/scripts/test.py
Normal file
10
lerobot/scripts/test.py
Normal file
@@ -0,0 +1,10 @@
|
||||
import pyrealsense2 as rs
|
||||
pipe = rs.pipeline()
|
||||
profile = pipe.start()
|
||||
try:
|
||||
for i in range(0, 100):
|
||||
frames = pipe.wait_for_frames()
|
||||
for f in frames:
|
||||
print(f.profile)
|
||||
finally:
|
||||
pipe.stop()
|
||||
@@ -16,7 +16,6 @@
|
||||
import logging
|
||||
import time
|
||||
from contextlib import nullcontext
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
from pprint import pformat
|
||||
|
||||
@@ -28,6 +27,8 @@ from termcolor import colored
|
||||
from torch.cuda.amp import GradScaler
|
||||
|
||||
from lerobot.common.datasets.factory import make_dataset, resolve_delta_timestamps
|
||||
from lerobot.common.datasets.lerobot_dataset import MultiLeRobotDataset
|
||||
from lerobot.common.datasets.sampler import EpisodeAwareSampler
|
||||
from lerobot.common.datasets.utils import cycle
|
||||
from lerobot.common.envs.factory import make_env
|
||||
from lerobot.common.logger import Logger, log_output_dir
|
||||
@@ -280,6 +281,11 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
|
||||
|
||||
logging.info("make_dataset")
|
||||
offline_dataset = make_dataset(cfg)
|
||||
if isinstance(offline_dataset, MultiLeRobotDataset):
|
||||
logging.info(
|
||||
"Multiple datasets were provided. Applied the following index mapping to the provided datasets: "
|
||||
f"{pformat(offline_dataset.repo_id_to_index , indent=2)}"
|
||||
)
|
||||
|
||||
# Create environment used for evaluating checkpoints during training on simulation data.
|
||||
# On real-world data, no need to create an environment as evaluations are done outside train.py,
|
||||
@@ -330,7 +336,7 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
|
||||
max_episodes_rendered=4,
|
||||
start_seed=cfg.seed,
|
||||
)
|
||||
log_eval_info(logger, eval_info["aggregated"], step, cfg, offline_dataset, is_offline)
|
||||
log_eval_info(logger, eval_info["aggregated"], step, cfg, offline_dataset, is_offline=True)
|
||||
if cfg.wandb.enable:
|
||||
logger.log_video(eval_info["video_paths"][0], step, mode="eval")
|
||||
logging.info("Resume training")
|
||||
@@ -351,18 +357,28 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
|
||||
logging.info("Resume training")
|
||||
|
||||
# create dataloader for offline training
|
||||
if cfg.training.get("drop_n_last_frames"):
|
||||
shuffle = False
|
||||
sampler = EpisodeAwareSampler(
|
||||
offline_dataset.episode_data_index,
|
||||
drop_n_last_frames=cfg.training.drop_n_last_frames,
|
||||
shuffle=True,
|
||||
)
|
||||
else:
|
||||
shuffle = True
|
||||
sampler = None
|
||||
dataloader = torch.utils.data.DataLoader(
|
||||
offline_dataset,
|
||||
num_workers=cfg.training.num_workers,
|
||||
batch_size=cfg.training.batch_size,
|
||||
shuffle=True,
|
||||
shuffle=shuffle,
|
||||
sampler=sampler,
|
||||
pin_memory=device.type != "cpu",
|
||||
drop_last=False,
|
||||
)
|
||||
dl_iter = cycle(dataloader)
|
||||
|
||||
policy.train()
|
||||
is_offline = True
|
||||
for _ in range(step, cfg.training.offline_steps):
|
||||
if step == 0:
|
||||
logging.info("Start offline training on a fixed dataset")
|
||||
@@ -382,7 +398,7 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
|
||||
)
|
||||
|
||||
if step % cfg.training.log_freq == 0:
|
||||
log_train_info(logger, train_info, step, cfg, offline_dataset, is_offline)
|
||||
log_train_info(logger, train_info, step, cfg, offline_dataset, is_offline=True)
|
||||
|
||||
# Note: evaluate_and_checkpoint_if_needed happens **after** the `step`th training update has completed,
|
||||
# so we pass in step + 1.
|
||||
@@ -390,41 +406,9 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
|
||||
|
||||
step += 1
|
||||
|
||||
logging.info("End of offline training")
|
||||
|
||||
if cfg.training.online_steps == 0:
|
||||
if cfg.training.eval_freq > 0:
|
||||
eval_env.close()
|
||||
return
|
||||
|
||||
# create an env dedicated to online episodes collection from policy rollout
|
||||
online_training_env = make_env(cfg, n_envs=1)
|
||||
|
||||
# create an empty online dataset similar to offline dataset
|
||||
online_dataset = deepcopy(offline_dataset)
|
||||
online_dataset.hf_dataset = {}
|
||||
online_dataset.episode_data_index = {}
|
||||
|
||||
# create dataloader for online training
|
||||
concat_dataset = torch.utils.data.ConcatDataset([offline_dataset, online_dataset])
|
||||
weights = [1.0] * len(concat_dataset)
|
||||
sampler = torch.utils.data.WeightedRandomSampler(
|
||||
weights, num_samples=len(concat_dataset), replacement=True
|
||||
)
|
||||
dataloader = torch.utils.data.DataLoader(
|
||||
concat_dataset,
|
||||
num_workers=4,
|
||||
batch_size=cfg.training.batch_size,
|
||||
sampler=sampler,
|
||||
pin_memory=device.type != "cpu",
|
||||
drop_last=False,
|
||||
)
|
||||
|
||||
logging.info("End of online training")
|
||||
|
||||
if cfg.training.eval_freq > 0:
|
||||
eval_env.close()
|
||||
online_training_env.close()
|
||||
logging.info("End of training")
|
||||
|
||||
|
||||
@hydra.main(version_base="1.2", config_name="default", config_path="../configs")
|
||||
|
||||
@@ -224,7 +224,8 @@ def main():
|
||||
help=(
|
||||
"Mode of viewing between 'local' or 'distant'. "
|
||||
"'local' requires data to be on a local machine. It spawns a viewer to visualize the data locally. "
|
||||
"'distant' creates a server on the distant machine where the data is stored. Visualize the data by connecting to the server with `rerun ws://localhost:PORT` on the local machine."
|
||||
"'distant' creates a server on the distant machine where the data is stored. "
|
||||
"Visualize the data by connecting to the server with `rerun ws://localhost:PORT` on the local machine."
|
||||
),
|
||||
)
|
||||
parser.add_argument(
|
||||
@@ -245,8 +246,8 @@ def main():
|
||||
default=0,
|
||||
help=(
|
||||
"Save a .rrd file in the directory provided by `--output-dir`. "
|
||||
"It also deactivates the spawning of a viewer. ",
|
||||
"Visualize the data by running `rerun path/to/file.rrd` on your local machine.",
|
||||
"It also deactivates the spawning of a viewer. "
|
||||
"Visualize the data by running `rerun path/to/file.rrd` on your local machine."
|
||||
),
|
||||
)
|
||||
parser.add_argument(
|
||||
|
||||
235
poetry.lock
generated
235
poetry.lock
generated
@@ -444,63 +444,63 @@ files = [
|
||||
|
||||
[[package]]
|
||||
name = "coverage"
|
||||
version = "7.5.1"
|
||||
version = "7.5.3"
|
||||
description = "Code coverage measurement for Python"
|
||||
optional = true
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "coverage-7.5.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c0884920835a033b78d1c73b6d3bbcda8161a900f38a488829a83982925f6c2e"},
|
||||
{file = "coverage-7.5.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:39afcd3d4339329c5f58de48a52f6e4e50f6578dd6099961cf22228feb25f38f"},
|
||||
{file = "coverage-7.5.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4a7b0ceee8147444347da6a66be737c9d78f3353b0681715b668b72e79203e4a"},
|
||||
{file = "coverage-7.5.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4a9ca3f2fae0088c3c71d743d85404cec8df9be818a005ea065495bedc33da35"},
|
||||
{file = "coverage-7.5.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5fd215c0c7d7aab005221608a3c2b46f58c0285a819565887ee0b718c052aa4e"},
|
||||
{file = "coverage-7.5.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:4bf0655ab60d754491004a5efd7f9cccefcc1081a74c9ef2da4735d6ee4a6223"},
|
||||
{file = "coverage-7.5.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:61c4bf1ba021817de12b813338c9be9f0ad5b1e781b9b340a6d29fc13e7c1b5e"},
|
||||
{file = "coverage-7.5.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:db66fc317a046556a96b453a58eced5024af4582a8dbdc0c23ca4dbc0d5b3146"},
|
||||
{file = "coverage-7.5.1-cp310-cp310-win32.whl", hash = "sha256:b016ea6b959d3b9556cb401c55a37547135a587db0115635a443b2ce8f1c7228"},
|
||||
{file = "coverage-7.5.1-cp310-cp310-win_amd64.whl", hash = "sha256:df4e745a81c110e7446b1cc8131bf986157770fa405fe90e15e850aaf7619bc8"},
|
||||
{file = "coverage-7.5.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:796a79f63eca8814ca3317a1ea443645c9ff0d18b188de470ed7ccd45ae79428"},
|
||||
{file = "coverage-7.5.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:4fc84a37bfd98db31beae3c2748811a3fa72bf2007ff7902f68746d9757f3746"},
|
||||
{file = "coverage-7.5.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6175d1a0559986c6ee3f7fccfc4a90ecd12ba0a383dcc2da30c2b9918d67d8a3"},
|
||||
{file = "coverage-7.5.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1fc81d5878cd6274ce971e0a3a18a8803c3fe25457165314271cf78e3aae3aa2"},
|
||||
{file = "coverage-7.5.1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:556cf1a7cbc8028cb60e1ff0be806be2eded2daf8129b8811c63e2b9a6c43bca"},
|
||||
{file = "coverage-7.5.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:9981706d300c18d8b220995ad22627647be11a4276721c10911e0e9fa44c83e8"},
|
||||
{file = "coverage-7.5.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:d7fed867ee50edf1a0b4a11e8e5d0895150e572af1cd6d315d557758bfa9c057"},
|
||||
{file = "coverage-7.5.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:ef48e2707fb320c8f139424a596f5b69955a85b178f15af261bab871873bb987"},
|
||||
{file = "coverage-7.5.1-cp311-cp311-win32.whl", hash = "sha256:9314d5678dcc665330df5b69c1e726a0e49b27df0461c08ca12674bcc19ef136"},
|
||||
{file = "coverage-7.5.1-cp311-cp311-win_amd64.whl", hash = "sha256:5fa567e99765fe98f4e7d7394ce623e794d7cabb170f2ca2ac5a4174437e90dd"},
|
||||
{file = "coverage-7.5.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b6cf3764c030e5338e7f61f95bd21147963cf6aa16e09d2f74f1fa52013c1206"},
|
||||
{file = "coverage-7.5.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2ec92012fefebee89a6b9c79bc39051a6cb3891d562b9270ab10ecfdadbc0c34"},
|
||||
{file = "coverage-7.5.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:16db7f26000a07efcf6aea00316f6ac57e7d9a96501e990a36f40c965ec7a95d"},
|
||||
{file = "coverage-7.5.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:beccf7b8a10b09c4ae543582c1319c6df47d78fd732f854ac68d518ee1fb97fa"},
|
||||
{file = "coverage-7.5.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8748731ad392d736cc9ccac03c9845b13bb07d020a33423fa5b3a36521ac6e4e"},
|
||||
{file = "coverage-7.5.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7352b9161b33fd0b643ccd1f21f3a3908daaddf414f1c6cb9d3a2fd618bf2572"},
|
||||
{file = "coverage-7.5.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:7a588d39e0925f6a2bff87154752481273cdb1736270642aeb3635cb9b4cad07"},
|
||||
{file = "coverage-7.5.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:68f962d9b72ce69ea8621f57551b2fa9c70509af757ee3b8105d4f51b92b41a7"},
|
||||
{file = "coverage-7.5.1-cp312-cp312-win32.whl", hash = "sha256:f152cbf5b88aaeb836127d920dd0f5e7edff5a66f10c079157306c4343d86c19"},
|
||||
{file = "coverage-7.5.1-cp312-cp312-win_amd64.whl", hash = "sha256:5a5740d1fb60ddf268a3811bcd353de34eb56dc24e8f52a7f05ee513b2d4f596"},
|
||||
{file = "coverage-7.5.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e2213def81a50519d7cc56ed643c9e93e0247f5bbe0d1247d15fa520814a7cd7"},
|
||||
{file = "coverage-7.5.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5037f8fcc2a95b1f0e80585bd9d1ec31068a9bcb157d9750a172836e98bc7a90"},
|
||||
{file = "coverage-7.5.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5c3721c2c9e4c4953a41a26c14f4cef64330392a6d2d675c8b1db3b645e31f0e"},
|
||||
{file = "coverage-7.5.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ca498687ca46a62ae590253fba634a1fe9836bc56f626852fb2720f334c9e4e5"},
|
||||
{file = "coverage-7.5.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0cdcbc320b14c3e5877ee79e649677cb7d89ef588852e9583e6b24c2e5072661"},
|
||||
{file = "coverage-7.5.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:57e0204b5b745594e5bc14b9b50006da722827f0b8c776949f1135677e88d0b8"},
|
||||
{file = "coverage-7.5.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:8fe7502616b67b234482c3ce276ff26f39ffe88adca2acf0261df4b8454668b4"},
|
||||
{file = "coverage-7.5.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:9e78295f4144f9dacfed4f92935fbe1780021247c2fabf73a819b17f0ccfff8d"},
|
||||
{file = "coverage-7.5.1-cp38-cp38-win32.whl", hash = "sha256:1434e088b41594baa71188a17533083eabf5609e8e72f16ce8c186001e6b8c41"},
|
||||
{file = "coverage-7.5.1-cp38-cp38-win_amd64.whl", hash = "sha256:0646599e9b139988b63704d704af8e8df7fa4cbc4a1f33df69d97f36cb0a38de"},
|
||||
{file = "coverage-7.5.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4cc37def103a2725bc672f84bd939a6fe4522310503207aae4d56351644682f1"},
|
||||
{file = "coverage-7.5.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:fc0b4d8bfeabd25ea75e94632f5b6e047eef8adaed0c2161ada1e922e7f7cece"},
|
||||
{file = "coverage-7.5.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0d0a0f5e06881ecedfe6f3dd2f56dcb057b6dbeb3327fd32d4b12854df36bf26"},
|
||||
{file = "coverage-7.5.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9735317685ba6ec7e3754798c8871c2f49aa5e687cc794a0b1d284b2389d1bd5"},
|
||||
{file = "coverage-7.5.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d21918e9ef11edf36764b93101e2ae8cc82aa5efdc7c5a4e9c6c35a48496d601"},
|
||||
{file = "coverage-7.5.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:c3e757949f268364b96ca894b4c342b41dc6f8f8b66c37878aacef5930db61be"},
|
||||
{file = "coverage-7.5.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:79afb6197e2f7f60c4824dd4b2d4c2ec5801ceb6ba9ce5d2c3080e5660d51a4f"},
|
||||
{file = "coverage-7.5.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:d1d0d98d95dd18fe29dc66808e1accf59f037d5716f86a501fc0256455219668"},
|
||||
{file = "coverage-7.5.1-cp39-cp39-win32.whl", hash = "sha256:1cc0fe9b0b3a8364093c53b0b4c0c2dd4bb23acbec4c9240b5f284095ccf7981"},
|
||||
{file = "coverage-7.5.1-cp39-cp39-win_amd64.whl", hash = "sha256:dde0070c40ea8bb3641e811c1cfbf18e265d024deff6de52c5950677a8fb1e0f"},
|
||||
{file = "coverage-7.5.1-pp38.pp39.pp310-none-any.whl", hash = "sha256:6537e7c10cc47c595828b8a8be04c72144725c383c4702703ff4e42e44577312"},
|
||||
{file = "coverage-7.5.1.tar.gz", hash = "sha256:54de9ef3a9da981f7af93eafde4ede199e0846cd819eb27c88e2b712aae9708c"},
|
||||
{file = "coverage-7.5.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a6519d917abb15e12380406d721e37613e2a67d166f9fb7e5a8ce0375744cd45"},
|
||||
{file = "coverage-7.5.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:aea7da970f1feccf48be7335f8b2ca64baf9b589d79e05b9397a06696ce1a1ec"},
|
||||
{file = "coverage-7.5.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:923b7b1c717bd0f0f92d862d1ff51d9b2b55dbbd133e05680204465f454bb286"},
|
||||
{file = "coverage-7.5.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:62bda40da1e68898186f274f832ef3e759ce929da9a9fd9fcf265956de269dbc"},
|
||||
{file = "coverage-7.5.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d8b7339180d00de83e930358223c617cc343dd08e1aa5ec7b06c3a121aec4e1d"},
|
||||
{file = "coverage-7.5.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:25a5caf742c6195e08002d3b6c2dd6947e50efc5fc2c2205f61ecb47592d2d83"},
|
||||
{file = "coverage-7.5.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:05ac5f60faa0c704c0f7e6a5cbfd6f02101ed05e0aee4d2822637a9e672c998d"},
|
||||
{file = "coverage-7.5.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:239a4e75e09c2b12ea478d28815acf83334d32e722e7433471fbf641c606344c"},
|
||||
{file = "coverage-7.5.3-cp310-cp310-win32.whl", hash = "sha256:a5812840d1d00eafae6585aba38021f90a705a25b8216ec7f66aebe5b619fb84"},
|
||||
{file = "coverage-7.5.3-cp310-cp310-win_amd64.whl", hash = "sha256:33ca90a0eb29225f195e30684ba4a6db05dbef03c2ccd50b9077714c48153cac"},
|
||||
{file = "coverage-7.5.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f81bc26d609bf0fbc622c7122ba6307993c83c795d2d6f6f6fd8c000a770d974"},
|
||||
{file = "coverage-7.5.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7cec2af81f9e7569280822be68bd57e51b86d42e59ea30d10ebdbb22d2cb7232"},
|
||||
{file = "coverage-7.5.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:55f689f846661e3f26efa535071775d0483388a1ccfab899df72924805e9e7cd"},
|
||||
{file = "coverage-7.5.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:50084d3516aa263791198913a17354bd1dc627d3c1639209640b9cac3fef5807"},
|
||||
{file = "coverage-7.5.3-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:341dd8f61c26337c37988345ca5c8ccabeff33093a26953a1ac72e7d0103c4fb"},
|
||||
{file = "coverage-7.5.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ab0b028165eea880af12f66086694768f2c3139b2c31ad5e032c8edbafca6ffc"},
|
||||
{file = "coverage-7.5.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:5bc5a8c87714b0c67cfeb4c7caa82b2d71e8864d1a46aa990b5588fa953673b8"},
|
||||
{file = "coverage-7.5.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:38a3b98dae8a7c9057bd91fbf3415c05e700a5114c5f1b5b0ea5f8f429ba6614"},
|
||||
{file = "coverage-7.5.3-cp311-cp311-win32.whl", hash = "sha256:fcf7d1d6f5da887ca04302db8e0e0cf56ce9a5e05f202720e49b3e8157ddb9a9"},
|
||||
{file = "coverage-7.5.3-cp311-cp311-win_amd64.whl", hash = "sha256:8c836309931839cca658a78a888dab9676b5c988d0dd34ca247f5f3e679f4e7a"},
|
||||
{file = "coverage-7.5.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:296a7d9bbc598e8744c00f7a6cecf1da9b30ae9ad51c566291ff1314e6cbbed8"},
|
||||
{file = "coverage-7.5.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:34d6d21d8795a97b14d503dcaf74226ae51eb1f2bd41015d3ef332a24d0a17b3"},
|
||||
{file = "coverage-7.5.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8e317953bb4c074c06c798a11dbdd2cf9979dbcaa8ccc0fa4701d80042d4ebf1"},
|
||||
{file = "coverage-7.5.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:705f3d7c2b098c40f5b81790a5fedb274113373d4d1a69e65f8b68b0cc26f6db"},
|
||||
{file = "coverage-7.5.3-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b1196e13c45e327d6cd0b6e471530a1882f1017eb83c6229fc613cd1a11b53cd"},
|
||||
{file = "coverage-7.5.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:015eddc5ccd5364dcb902eaecf9515636806fa1e0d5bef5769d06d0f31b54523"},
|
||||
{file = "coverage-7.5.3-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:fd27d8b49e574e50caa65196d908f80e4dff64d7e592d0c59788b45aad7e8b35"},
|
||||
{file = "coverage-7.5.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:33fc65740267222fc02975c061eb7167185fef4cc8f2770267ee8bf7d6a42f84"},
|
||||
{file = "coverage-7.5.3-cp312-cp312-win32.whl", hash = "sha256:7b2a19e13dfb5c8e145c7a6ea959485ee8e2204699903c88c7d25283584bfc08"},
|
||||
{file = "coverage-7.5.3-cp312-cp312-win_amd64.whl", hash = "sha256:0bbddc54bbacfc09b3edaec644d4ac90c08ee8ed4844b0f86227dcda2d428fcb"},
|
||||
{file = "coverage-7.5.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:f78300789a708ac1f17e134593f577407d52d0417305435b134805c4fb135adb"},
|
||||
{file = "coverage-7.5.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b368e1aee1b9b75757942d44d7598dcd22a9dbb126affcbba82d15917f0cc155"},
|
||||
{file = "coverage-7.5.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f836c174c3a7f639bded48ec913f348c4761cbf49de4a20a956d3431a7c9cb24"},
|
||||
{file = "coverage-7.5.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:244f509f126dc71369393ce5fea17c0592c40ee44e607b6d855e9c4ac57aac98"},
|
||||
{file = "coverage-7.5.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c4c2872b3c91f9baa836147ca33650dc5c172e9273c808c3c3199c75490e709d"},
|
||||
{file = "coverage-7.5.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:dd4b3355b01273a56b20c219e74e7549e14370b31a4ffe42706a8cda91f19f6d"},
|
||||
{file = "coverage-7.5.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:f542287b1489c7a860d43a7d8883e27ca62ab84ca53c965d11dac1d3a1fab7ce"},
|
||||
{file = "coverage-7.5.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:75e3f4e86804023e991096b29e147e635f5e2568f77883a1e6eed74512659ab0"},
|
||||
{file = "coverage-7.5.3-cp38-cp38-win32.whl", hash = "sha256:c59d2ad092dc0551d9f79d9d44d005c945ba95832a6798f98f9216ede3d5f485"},
|
||||
{file = "coverage-7.5.3-cp38-cp38-win_amd64.whl", hash = "sha256:fa21a04112c59ad54f69d80e376f7f9d0f5f9123ab87ecd18fbb9ec3a2beed56"},
|
||||
{file = "coverage-7.5.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f5102a92855d518b0996eb197772f5ac2a527c0ec617124ad5242a3af5e25f85"},
|
||||
{file = "coverage-7.5.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:d1da0a2e3b37b745a2b2a678a4c796462cf753aebf94edcc87dcc6b8641eae31"},
|
||||
{file = "coverage-7.5.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8383a6c8cefba1b7cecc0149415046b6fc38836295bc4c84e820872eb5478b3d"},
|
||||
{file = "coverage-7.5.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9aad68c3f2566dfae84bf46295a79e79d904e1c21ccfc66de88cd446f8686341"},
|
||||
{file = "coverage-7.5.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2e079c9ec772fedbade9d7ebc36202a1d9ef7291bc9b3a024ca395c4d52853d7"},
|
||||
{file = "coverage-7.5.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:bde997cac85fcac227b27d4fb2c7608a2c5f6558469b0eb704c5726ae49e1c52"},
|
||||
{file = "coverage-7.5.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:990fb20b32990b2ce2c5f974c3e738c9358b2735bc05075d50a6f36721b8f303"},
|
||||
{file = "coverage-7.5.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:3d5a67f0da401e105753d474369ab034c7bae51a4c31c77d94030d59e41df5bd"},
|
||||
{file = "coverage-7.5.3-cp39-cp39-win32.whl", hash = "sha256:e08c470c2eb01977d221fd87495b44867a56d4d594f43739a8028f8646a51e0d"},
|
||||
{file = "coverage-7.5.3-cp39-cp39-win_amd64.whl", hash = "sha256:1d2a830ade66d3563bb61d1e3c77c8def97b30ed91e166c67d0632c018f380f0"},
|
||||
{file = "coverage-7.5.3-pp38.pp39.pp310-none-any.whl", hash = "sha256:3538d8fb1ee9bdd2e2692b3b18c22bb1c19ffbefd06880f5ac496e42d7bb3884"},
|
||||
{file = "coverage-7.5.3.tar.gz", hash = "sha256:04aefca5190d1dc7a53a4c1a5a7f8568811306d7a8ee231c42fb69215571944f"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@@ -785,6 +785,39 @@ files = [
|
||||
[package.dependencies]
|
||||
six = ">=1.4.0"
|
||||
|
||||
[[package]]
|
||||
name = "dora-rs"
|
||||
version = "0.3.4"
|
||||
description = "`dora` goal is to be a low latency, composable, and distributed data flow."
|
||||
optional = true
|
||||
python-versions = "*"
|
||||
files = [
|
||||
{file = "dora_rs-0.3.4-cp37-abi3-macosx_10_12_x86_64.whl", hash = "sha256:d1b738eea5a4966d731c26c6b6a0a50a491a24f7e9e335475f983cfc6f0da19e"},
|
||||
{file = "dora_rs-0.3.4-cp37-abi3-macosx_11_0_arm64.whl", hash = "sha256:80b724871618c78a4e5863938fa66724176cc40352771087aebe1e62a8141157"},
|
||||
{file = "dora_rs-0.3.4-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3a3919e157b47dc1dbc74c040a73087a4485f0d1bee99b6adcdbc36559400fe2"},
|
||||
{file = "dora_rs-0.3.4-cp37-abi3-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f7c95f6e5858fd651d6cd220e4f052e99db2944b9c37fb0b5402d60ac4b41a63"},
|
||||
{file = "dora_rs-0.3.4-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:37d915fbbca282446235c98a9ca08389aa3ef3155d4e88c6c136326e9a830042"},
|
||||
{file = "dora_rs-0.3.4-cp37-abi3-win32.whl", hash = "sha256:c9f7f22f65c884ec9bee0245ce98d0c7fad25dec0f982e566f844b5e8e58818f"},
|
||||
{file = "dora_rs-0.3.4-cp37-abi3-win_amd64.whl", hash = "sha256:0a6a37f96a9f6e13b58b02a6ea75af192af5fbe4f456f6a67b1f239c3cee3276"},
|
||||
{file = "dora_rs-0.3.4.tar.gz", hash = "sha256:05c5d0db0d23d7c4669995ae34db11cd636dbf91f5705d832669bd04e7452903"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
pyarrow = "*"
|
||||
|
||||
[[package]]
|
||||
name = "dynamixel-sdk"
|
||||
version = "3.7.31"
|
||||
description = "Dynamixel SDK 3. python package"
|
||||
optional = true
|
||||
python-versions = "*"
|
||||
files = [
|
||||
{file = "dynamixel_sdk-3.7.31-py3-none-any.whl", hash = "sha256:74e8c112ca6b0b869b196dd8c6a44ffd5dd5c1a3cb9fe2030e9933922406b466"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
pyserial = "*"
|
||||
|
||||
[[package]]
|
||||
name = "einops"
|
||||
version = "0.8.0"
|
||||
@@ -1066,6 +1099,27 @@ mujoco = ">=2.3.7,<3.0.0"
|
||||
dev = ["debugpy (>=1.8.1)", "pre-commit (>=3.7.0)"]
|
||||
test = ["pytest (>=8.1.0)", "pytest-cov (>=5.0.0)"]
|
||||
|
||||
[[package]]
|
||||
name = "gym-dora"
|
||||
version = "0.1.0"
|
||||
description = ""
|
||||
optional = true
|
||||
python-versions = "^3.10"
|
||||
files = []
|
||||
develop = false
|
||||
|
||||
[package.dependencies]
|
||||
dora-rs = ">=0.3.4"
|
||||
gymnasium = ">=0.29.1"
|
||||
pyarrow = ">=12.0.0"
|
||||
|
||||
[package.source]
|
||||
type = "git"
|
||||
url = "https://github.com/dora-rs/dora-lerobot.git"
|
||||
reference = "HEAD"
|
||||
resolved_reference = "ed0c00a4fdc6ec856c9842551acd7dc7ee776f79"
|
||||
subdirectory = "gym_dora"
|
||||
|
||||
[[package]]
|
||||
name = "gym-pusht"
|
||||
version = "0.1.4"
|
||||
@@ -1269,13 +1323,13 @@ files = [
|
||||
|
||||
[[package]]
|
||||
name = "huggingface-hub"
|
||||
version = "0.23.1"
|
||||
version = "0.23.2"
|
||||
description = "Client library to download and publish models, datasets and other repos on the huggingface.co hub"
|
||||
optional = false
|
||||
python-versions = ">=3.8.0"
|
||||
files = [
|
||||
{file = "huggingface_hub-0.23.1-py3-none-any.whl", hash = "sha256:720a5bffd2b1b449deb793da8b0df7a9390a7e238534d5a08c9fbcdecb1dd3cb"},
|
||||
{file = "huggingface_hub-0.23.1.tar.gz", hash = "sha256:4f62dbf6ae94f400c6d3419485e52bce510591432a5248a65d0cb72e4d479eb4"},
|
||||
{file = "huggingface_hub-0.23.2-py3-none-any.whl", hash = "sha256:48727a16e704d409c4bb5913613308499664f22a99743435dc3a13b23c485827"},
|
||||
{file = "huggingface_hub-0.23.2.tar.gz", hash = "sha256:f6829b62d5fdecb452a76fdbec620cba4c1573655a8d710c1df71735fd9edbd2"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@@ -2061,18 +2115,15 @@ test = ["pytest (>=7.2)", "pytest-cov (>=4.0)"]
|
||||
|
||||
[[package]]
|
||||
name = "nodeenv"
|
||||
version = "1.8.0"
|
||||
version = "1.9.0"
|
||||
description = "Node.js virtual environment builder"
|
||||
optional = true
|
||||
python-versions = ">=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*"
|
||||
python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7"
|
||||
files = [
|
||||
{file = "nodeenv-1.8.0-py2.py3-none-any.whl", hash = "sha256:df865724bb3c3adc86b3876fa209771517b0cfe596beff01a92700e0e8be4cec"},
|
||||
{file = "nodeenv-1.8.0.tar.gz", hash = "sha256:d51e0c37e64fbf47d017feac3145cdbb58836d7eee8c6f6d3b6880c5456227d2"},
|
||||
{file = "nodeenv-1.9.0-py2.py3-none-any.whl", hash = "sha256:508ecec98f9f3330b636d4448c0f1a56fc68017c68f1e7857ebc52acf0eb879a"},
|
||||
{file = "nodeenv-1.9.0.tar.gz", hash = "sha256:07f144e90dae547bf0d4ee8da0ee42664a42a04e02ed68e06324348dafe4bdb1"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
setuptools = "*"
|
||||
|
||||
[[package]]
|
||||
name = "numba"
|
||||
version = "0.59.1"
|
||||
@@ -2319,6 +2370,7 @@ description = "Nvidia JIT LTO Library"
|
||||
optional = false
|
||||
python-versions = ">=3"
|
||||
files = [
|
||||
{file = "nvidia_nvjitlink_cu12-12.5.40-py3-none-manylinux2014_aarch64.whl", hash = "sha256:004186d5ea6a57758fd6d57052a123c73a4815adf365eb8dd6a85c9eaa7535ff"},
|
||||
{file = "nvidia_nvjitlink_cu12-12.5.40-py3-none-manylinux2014_x86_64.whl", hash = "sha256:d9714f27c1d0f0895cd8915c07a87a1d0029a0aa36acaf9156952ec2a8a12189"},
|
||||
{file = "nvidia_nvjitlink_cu12-12.5.40-py3-none-win_amd64.whl", hash = "sha256:c3401dc8543b52d3a8158007a0c1ab4e9c768fcbd24153a48c86972102197ddd"},
|
||||
]
|
||||
@@ -2406,6 +2458,7 @@ optional = false
|
||||
python-versions = ">=3.9"
|
||||
files = [
|
||||
{file = "pandas-2.2.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:90c6fca2acf139569e74e8781709dccb6fe25940488755716d1d354d6bc58bce"},
|
||||
{file = "pandas-2.2.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c7adfc142dac335d8c1e0dcbd37eb8617eac386596eb9e1a1b77791cf2498238"},
|
||||
{file = "pandas-2.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4abfe0be0d7221be4f12552995e58723c7422c80a659da13ca382697de830c08"},
|
||||
{file = "pandas-2.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8635c16bf3d99040fdf3ca3db669a7250ddf49c55dc4aa8fe0ae0fa8d6dcc1f0"},
|
||||
{file = "pandas-2.2.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:40ae1dffb3967a52203105a077415a86044a2bea011b5f321c6aa64b379a3f51"},
|
||||
@@ -2426,6 +2479,7 @@ files = [
|
||||
{file = "pandas-2.2.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:43498c0bdb43d55cb162cdc8c06fac328ccb5d2eabe3cadeb3529ae6f0517c32"},
|
||||
{file = "pandas-2.2.2-cp312-cp312-win_amd64.whl", hash = "sha256:d187d355ecec3629624fccb01d104da7d7f391db0311145817525281e2804d23"},
|
||||
{file = "pandas-2.2.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:0ca6377b8fca51815f382bd0b697a0814c8bda55115678cbc94c30aacbb6eff2"},
|
||||
{file = "pandas-2.2.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9057e6aa78a584bc93a13f0a9bf7e753a5e9770a30b4d758b8d5f2a62a9433cd"},
|
||||
{file = "pandas-2.2.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:001910ad31abc7bf06f49dcc903755d2f7f3a9186c0c040b827e522e9cef0863"},
|
||||
{file = "pandas-2.2.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:66b479b0bd07204e37583c191535505410daa8df638fd8e75ae1b383851fe921"},
|
||||
{file = "pandas-2.2.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:a77e9d1c386196879aa5eb712e77461aaee433e54c68cf253053a73b7e49c33a"},
|
||||
@@ -2961,6 +3015,20 @@ files = [
|
||||
[package.extras]
|
||||
diagrams = ["jinja2", "railroad-diagrams"]
|
||||
|
||||
[[package]]
|
||||
name = "pyserial"
|
||||
version = "3.5"
|
||||
description = "Python Serial Port Extension"
|
||||
optional = true
|
||||
python-versions = "*"
|
||||
files = [
|
||||
{file = "pyserial-3.5-py2.py3-none-any.whl", hash = "sha256:c4451db6ba391ca6ca299fb3ec7bae67a5c55dde170964c7a14ceefec02f2cf0"},
|
||||
{file = "pyserial-3.5.tar.gz", hash = "sha256:3c77e014170dfffbd816e6ffc205e9842efb10be9f58ec16d3e8675b4925cddb"},
|
||||
]
|
||||
|
||||
[package.extras]
|
||||
cp2110 = ["hidapi"]
|
||||
|
||||
[[package]]
|
||||
name = "pysocks"
|
||||
version = "1.7.1"
|
||||
@@ -3188,13 +3256,13 @@ files = [
|
||||
|
||||
[[package]]
|
||||
name = "requests"
|
||||
version = "2.32.2"
|
||||
version = "2.32.3"
|
||||
description = "Python HTTP for Humans."
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "requests-2.32.2-py3-none-any.whl", hash = "sha256:fc06670dd0ed212426dfeb94fc1b983d917c4f9847c863f313c9dfaaffb7c23c"},
|
||||
{file = "requests-2.32.2.tar.gz", hash = "sha256:dd951ff5ecf3e3b3aa26b40703ba77495dab41da839ae72ef3c8e5d8e2433289"},
|
||||
{file = "requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6"},
|
||||
{file = "requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@@ -3210,16 +3278,16 @@ use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"]
|
||||
|
||||
[[package]]
|
||||
name = "rerun-sdk"
|
||||
version = "0.16.0"
|
||||
version = "0.16.1"
|
||||
description = "The Rerun Logging SDK"
|
||||
optional = false
|
||||
python-versions = "<3.13,>=3.8"
|
||||
files = [
|
||||
{file = "rerun_sdk-0.16.0-cp38-abi3-macosx_10_12_x86_64.whl", hash = "sha256:1cc6dc66d089e296f945dc238301889efb61dd6d338b5d00f76981cf7aed0a74"},
|
||||
{file = "rerun_sdk-0.16.0-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:faf231897655e46eb975695df2b0ace07db362d697e697f9a3dff52f81c0dc5d"},
|
||||
{file = "rerun_sdk-0.16.0-cp38-abi3-manylinux_2_31_aarch64.whl", hash = "sha256:860a6394380d3e9b9e48bf34423bd56dda54d5b0158d2ae0e433698659b34198"},
|
||||
{file = "rerun_sdk-0.16.0-cp38-abi3-manylinux_2_31_x86_64.whl", hash = "sha256:5b8d1476f73a3ad1a5d3f21b61c633f3ab62aa80fa0b049f5ad10bf1227681ab"},
|
||||
{file = "rerun_sdk-0.16.0-cp38-abi3-win_amd64.whl", hash = "sha256:aff0051a263b8c3067243c0126d319845baf4fe640899f04aeef7daf151f35e4"},
|
||||
{file = "rerun_sdk-0.16.1-cp38-abi3-macosx_10_12_x86_64.whl", hash = "sha256:170c6976634008611753e10dfef8cdc395ce8180e634c169e7c61cef2f89a277"},
|
||||
{file = "rerun_sdk-0.16.1-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:c9a76eab7eb5559276737dad655200e9350df0837158dbc5a896970ab4201454"},
|
||||
{file = "rerun_sdk-0.16.1-cp38-abi3-manylinux_2_31_aarch64.whl", hash = "sha256:4d6436752d57e8b8038489a0e7e37f0c760b088e96db5fb81667d3a376d63fea"},
|
||||
{file = "rerun_sdk-0.16.1-cp38-abi3-manylinux_2_31_x86_64.whl", hash = "sha256:37b7b47948471873e84f224b16f417a94a91c7cbd6c72c68281eeff1ba414b8f"},
|
||||
{file = "rerun_sdk-0.16.1-cp38-abi3-win_amd64.whl", hash = "sha256:be88799c8afdf68eafa99e64e2e4f0a484e187e017a180219abbe6bb988acd4e"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@@ -3696,17 +3764,17 @@ files = [
|
||||
|
||||
[[package]]
|
||||
name = "sympy"
|
||||
version = "1.12"
|
||||
version = "1.12.1"
|
||||
description = "Computer algebra system (CAS) in Python"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "sympy-1.12-py3-none-any.whl", hash = "sha256:c3588cd4295d0c0f603d0f2ae780587e64e2efeedb3521e46b9bb1d08d184fa5"},
|
||||
{file = "sympy-1.12.tar.gz", hash = "sha256:ebf595c8dac3e0fdc4152c51878b498396ec7f30e7a914d6071e674d49420fb8"},
|
||||
{file = "sympy-1.12.1-py3-none-any.whl", hash = "sha256:9b2cbc7f1a640289430e13d2a56f02f867a1da0190f2f99d8968c2f74da0e515"},
|
||||
{file = "sympy-1.12.1.tar.gz", hash = "sha256:2877b03f998cd8c08f07cd0de5b767119cd3ef40d09f41c30d722f6686b0fb88"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
mpmath = ">=0.19"
|
||||
mpmath = ">=1.1.0,<1.4.0"
|
||||
|
||||
[[package]]
|
||||
name = "tbb"
|
||||
@@ -4220,13 +4288,13 @@ multidict = ">=4.0"
|
||||
|
||||
[[package]]
|
||||
name = "zarr"
|
||||
version = "2.18.1"
|
||||
version = "2.18.2"
|
||||
description = "An implementation of chunked, compressed, N-dimensional arrays for Python"
|
||||
optional = false
|
||||
python-versions = ">=3.9"
|
||||
files = [
|
||||
{file = "zarr-2.18.1-py3-none-any.whl", hash = "sha256:a1770d194eec4ec0a41a01295a6f724e1c3471d704d3aca906d3b3a7f8830245"},
|
||||
{file = "zarr-2.18.1.tar.gz", hash = "sha256:28c360ed123e606c425a694a83300227a907cb86a995fc9eef620ecafbe5f92d"},
|
||||
{file = "zarr-2.18.2-py3-none-any.whl", hash = "sha256:a638754902f97efa99b406083fdc807a0e2ccf12a949117389d2a4ba9b05df38"},
|
||||
{file = "zarr-2.18.2.tar.gz", hash = "sha256:9bb393b8a0a38fb121dbb913b047d75db28de9890f6d644a217a73cf4ae74f47"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@@ -4241,13 +4309,13 @@ jupyter = ["ipytree (>=0.2.2)", "ipywidgets (>=8.0.0)", "notebook"]
|
||||
|
||||
[[package]]
|
||||
name = "zipp"
|
||||
version = "3.18.2"
|
||||
version = "3.19.0"
|
||||
description = "Backport of pathlib-compatible object wrapper for zip files"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "zipp-3.18.2-py3-none-any.whl", hash = "sha256:dce197b859eb796242b0622af1b8beb0a722d52aa2f57133ead08edd5bf5374e"},
|
||||
{file = "zipp-3.18.2.tar.gz", hash = "sha256:6278d9ddbcfb1f1089a88fde84481528b07b0e10474e09dcfe53dad4069fa059"},
|
||||
{file = "zipp-3.19.0-py3-none-any.whl", hash = "sha256:96dc6ad62f1441bcaccef23b274ec471518daf4fbbc580341204936a5a3dddec"},
|
||||
{file = "zipp-3.19.0.tar.gz", hash = "sha256:952df858fb3164426c976d9338d3961e8e8b3758e2e059e0f754b8c4262625ee"},
|
||||
]
|
||||
|
||||
[package.extras]
|
||||
@@ -4257,6 +4325,7 @@ testing = ["big-O", "jaraco.functools", "jaraco.itertools", "jaraco.test", "more
|
||||
[extras]
|
||||
aloha = ["gym-aloha"]
|
||||
dev = ["debugpy", "pre-commit"]
|
||||
dora = ["gym-dora"]
|
||||
pusht = ["gym-pusht"]
|
||||
test = ["pytest", "pytest-cov"]
|
||||
umi = ["imagecodecs"]
|
||||
@@ -4265,4 +4334,4 @@ xarm = ["gym-xarm"]
|
||||
[metadata]
|
||||
lock-version = "2.0"
|
||||
python-versions = ">=3.10,<3.13"
|
||||
content-hash = "1ad6ef0f88f0056ab639e60e033e586f7460a9c5fc3676a477bbd47923f41cb6"
|
||||
content-hash = "390d4f67713be47f0d44446d8198e577d28040deddea431937a9eb0fdf40adbd"
|
||||
|
||||
@@ -46,6 +46,7 @@ h5py = ">=3.10.0"
|
||||
huggingface-hub = {extras = ["hf-transfer"], version = "^0.23.0"}
|
||||
gymnasium = ">=0.29.1"
|
||||
cmake = ">=3.29.0.1"
|
||||
gym-dora = { git = "https://github.com/dora-rs/dora-lerobot.git", subdirectory = "gym_dora", optional = true }
|
||||
gym-pusht = { version = ">=0.1.3", optional = true}
|
||||
gym-xarm = { version = ">=0.1.1", optional = true}
|
||||
gym-aloha = { version = ">=0.1.1", optional = true}
|
||||
@@ -59,9 +60,12 @@ pyav = ">=12.0.5"
|
||||
moviepy = ">=1.0.3"
|
||||
rerun-sdk = ">=0.15.1"
|
||||
deepdiff = ">=7.0.1"
|
||||
dynamixel-sdk = {version = "^3.7.31", optional = true}
|
||||
|
||||
|
||||
|
||||
[tool.poetry.extras]
|
||||
dora = ["gym-dora"]
|
||||
pusht = ["gym-pusht"]
|
||||
xarm = ["gym-xarm"]
|
||||
aloha = ["gym-aloha"]
|
||||
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:2fff6294b94cf42d4dd1249dcc5c3b0269d6d9c697f894e61b867d7ab81a94e4
|
||||
size 5104
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:4aa23e51607604a18b70fa42edbbe1af34f119d985628fc27cc1bbb0efbc8901
|
||||
size 31688
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:6fd368406c93cb562a69ff11cf7adf34a4b223507dcb2b9e9b8f44ee1036988a
|
||||
size 68
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:5663ee79a13bb70a1604b887dd21bf89d18482287442419c6cc6c5bf0e753e99
|
||||
size 34928
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:fb1a45463efd860af2ca22c16c77d55a18bd96fef080ae77978845a2f22ef716
|
||||
size 5104
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:aa5a43e22f01d8e2f8d19f31753608794f1edbd74aaf71660091ab80ea58dc9b
|
||||
size 30808
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:97455b4360748c99905cd103473c1a52da6901d0a73ffbc51b5ea3eb250d1386
|
||||
size 68
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:54d1f75cf67a7b1d7a7c6865ecb9b1cc86a2f032d1890245f8996789ab6e0df6
|
||||
size 33608
|
||||
@@ -75,15 +75,16 @@ def get_policy_stats(env_name, policy_name, extra_overrides):
|
||||
# HACK: We reload a batch with no delta_timestamps as `select_action` won't expect a timestamps dimension
|
||||
dataset.delta_timestamps = None
|
||||
batch = next(iter(dataloader))
|
||||
obs = {
|
||||
k: batch[k]
|
||||
for k in batch
|
||||
if k in ["observation.image", "observation.images.top", "observation.state"]
|
||||
}
|
||||
obs = {}
|
||||
for k in batch:
|
||||
if k.startswith("observation"):
|
||||
obs[k] = batch[k]
|
||||
|
||||
if "n_action_steps" in cfg.policy:
|
||||
actions_queue = cfg.policy.n_action_steps
|
||||
else:
|
||||
actions_queue = cfg.policy.n_action_repeats
|
||||
|
||||
actions_queue = (
|
||||
cfg.policy.n_action_steps if "n_action_steps" in cfg.policy else cfg.policy.n_action_repeats
|
||||
)
|
||||
actions = {str(i): policy.select_action(obs).contiguous() for i in range(actions_queue)}
|
||||
return output_dict, grad_stats, param_stats, actions
|
||||
|
||||
@@ -114,6 +115,8 @@ if __name__ == "__main__":
|
||||
["policy.n_action_steps=8", "policy.num_inference_steps=10", "policy.down_dims=[128, 256, 512]"],
|
||||
),
|
||||
("aloha", "act", ["policy.n_action_steps=10"]),
|
||||
("dora_aloha_real", "act_real", ["policy.n_action_steps=10"]),
|
||||
("dora_aloha_real", "act_real_no_state", ["policy.n_action_steps=10"]),
|
||||
]
|
||||
for env, policy, extra_overrides in env_policies:
|
||||
save_policy_to_safetensors("tests/data/save_policy_to_safetensors", env, policy, extra_overrides)
|
||||
@@ -16,6 +16,7 @@
|
||||
import json
|
||||
import logging
|
||||
from copy import deepcopy
|
||||
from itertools import chain
|
||||
from pathlib import Path
|
||||
|
||||
import einops
|
||||
@@ -25,26 +26,34 @@ from datasets import Dataset
|
||||
from safetensors.torch import load_file
|
||||
|
||||
import lerobot
|
||||
from lerobot.common.datasets.factory import make_dataset
|
||||
from lerobot.common.datasets.lerobot_dataset import (
|
||||
LeRobotDataset,
|
||||
)
|
||||
from lerobot.common.datasets.push_dataset_to_hub.compute_stats import (
|
||||
from lerobot.common.datasets.compute_stats import (
|
||||
aggregate_stats,
|
||||
compute_stats,
|
||||
get_stats_einops_patterns,
|
||||
)
|
||||
from lerobot.common.datasets.factory import make_dataset
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset, MultiLeRobotDataset
|
||||
from lerobot.common.datasets.utils import (
|
||||
flatten_dict,
|
||||
hf_transform_to_torch,
|
||||
load_previous_and_future_frames,
|
||||
unflatten_dict,
|
||||
)
|
||||
from lerobot.common.utils.utils import init_hydra_config
|
||||
from lerobot.common.utils.utils import init_hydra_config, seeded_context
|
||||
from tests.utils import DEFAULT_CONFIG_PATH, DEVICE
|
||||
|
||||
|
||||
@pytest.mark.parametrize("env_name, repo_id, policy_name", lerobot.env_dataset_policy_triplets)
|
||||
@pytest.mark.parametrize(
|
||||
"env_name, repo_id, policy_name",
|
||||
lerobot.env_dataset_policy_triplets
|
||||
+ [("aloha", ["lerobot/aloha_sim_insertion_human", "lerobot/aloha_sim_transfer_cube_human"], "act")],
|
||||
)
|
||||
def test_factory(env_name, repo_id, policy_name):
|
||||
"""
|
||||
Tests that:
|
||||
- we can create a dataset with the factory.
|
||||
- for a commonly used set of data keys, the data dimensions are correct.
|
||||
"""
|
||||
cfg = init_hydra_config(
|
||||
DEFAULT_CONFIG_PATH,
|
||||
overrides=[
|
||||
@@ -105,6 +114,39 @@ def test_factory(env_name, repo_id, policy_name):
|
||||
assert key in item, f"{key}"
|
||||
|
||||
|
||||
# TODO(alexander-soare): If you're hunting for savings on testing time, this takes about 5 seconds.
|
||||
def test_multilerobotdataset_frames():
|
||||
"""Check that all dataset frames are incorporated."""
|
||||
# Note: use the image variants of the dataset to make the test approx 3x faster.
|
||||
# Note: We really do need three repo_ids here as at some point this caught an issue with the chaining
|
||||
# logic that wouldn't be caught with two repo IDs.
|
||||
repo_ids = [
|
||||
"lerobot/aloha_sim_insertion_human_image",
|
||||
"lerobot/aloha_sim_transfer_cube_human_image",
|
||||
"lerobot/aloha_sim_insertion_scripted_image",
|
||||
]
|
||||
sub_datasets = [LeRobotDataset(repo_id) for repo_id in repo_ids]
|
||||
dataset = MultiLeRobotDataset(repo_ids)
|
||||
assert len(dataset) == sum(len(d) for d in sub_datasets)
|
||||
assert dataset.num_samples == sum(d.num_samples for d in sub_datasets)
|
||||
assert dataset.num_episodes == sum(d.num_episodes for d in sub_datasets)
|
||||
|
||||
# Run through all items of the LeRobotDatasets in parallel with the items of the MultiLerobotDataset and
|
||||
# check they match.
|
||||
expected_dataset_indices = []
|
||||
for i, sub_dataset in enumerate(sub_datasets):
|
||||
expected_dataset_indices.extend([i] * len(sub_dataset))
|
||||
|
||||
for expected_dataset_index, sub_dataset_item, dataset_item in zip(
|
||||
expected_dataset_indices, chain(*sub_datasets), dataset, strict=True
|
||||
):
|
||||
dataset_index = dataset_item.pop("dataset_index")
|
||||
assert dataset_index == expected_dataset_index
|
||||
assert sub_dataset_item.keys() == dataset_item.keys()
|
||||
for k in sub_dataset_item:
|
||||
assert torch.equal(sub_dataset_item[k], dataset_item[k])
|
||||
|
||||
|
||||
def test_compute_stats_on_xarm():
|
||||
"""Check that the statistics are computed correctly according to the stats_patterns property.
|
||||
|
||||
@@ -315,3 +357,31 @@ def test_backward_compatibility(repo_id):
|
||||
# i = dataset.episode_data_index["to"][-1].item()
|
||||
# load_and_compare(i - 2)
|
||||
# load_and_compare(i - 1)
|
||||
|
||||
|
||||
def test_aggregate_stats():
|
||||
"""Makes 3 basic datasets and checks that aggregate stats are computed correctly."""
|
||||
with seeded_context(0):
|
||||
data_a = torch.rand(30, dtype=torch.float32)
|
||||
data_b = torch.rand(20, dtype=torch.float32)
|
||||
data_c = torch.rand(20, dtype=torch.float32)
|
||||
|
||||
hf_dataset_1 = Dataset.from_dict(
|
||||
{"a": data_a[:10], "b": data_b[:10], "c": data_c[:10], "index": torch.arange(10)}
|
||||
)
|
||||
hf_dataset_1.set_transform(hf_transform_to_torch)
|
||||
hf_dataset_2 = Dataset.from_dict({"a": data_a[10:20], "b": data_b[10:], "index": torch.arange(10)})
|
||||
hf_dataset_2.set_transform(hf_transform_to_torch)
|
||||
hf_dataset_3 = Dataset.from_dict({"a": data_a[20:], "c": data_c[10:], "index": torch.arange(10)})
|
||||
hf_dataset_3.set_transform(hf_transform_to_torch)
|
||||
dataset_1 = LeRobotDataset.from_preloaded("d1", hf_dataset=hf_dataset_1)
|
||||
dataset_1.stats = compute_stats(dataset_1, batch_size=len(hf_dataset_1), num_workers=0)
|
||||
dataset_2 = LeRobotDataset.from_preloaded("d2", hf_dataset=hf_dataset_2)
|
||||
dataset_2.stats = compute_stats(dataset_2, batch_size=len(hf_dataset_2), num_workers=0)
|
||||
dataset_3 = LeRobotDataset.from_preloaded("d3", hf_dataset=hf_dataset_3)
|
||||
dataset_3.stats = compute_stats(dataset_3, batch_size=len(hf_dataset_3), num_workers=0)
|
||||
stats = aggregate_stats([dataset_1, dataset_2, dataset_3])
|
||||
for data_key, data in zip(["a", "b", "c"], [data_a, data_b, data_c], strict=True):
|
||||
for agg_fn in ["mean", "min", "max"]:
|
||||
assert torch.allclose(stats[data_key][agg_fn], einops.reduce(data, "n -> 1", agg_fn))
|
||||
assert torch.allclose(stats[data_key]["std"], torch.std(data, correction=0))
|
||||
|
||||
@@ -29,8 +29,8 @@ def _find_and_replace(text: str, finds_and_replaces: list[tuple[str, str]]) -> s
|
||||
return text
|
||||
|
||||
|
||||
def _run_script(path):
|
||||
subprocess.run([sys.executable, path], check=True)
|
||||
def _run_script(path, args=None):
|
||||
subprocess.run([sys.executable, path] + args if args is not None else [], check=True)
|
||||
|
||||
|
||||
def _read_file(path):
|
||||
@@ -126,3 +126,22 @@ def test_examples_basic2_basic3_advanced1():
|
||||
# Restore stdout to its original state
|
||||
sys.stdout = sys.__stdout__
|
||||
assert "Average loss on validation set" in printed_output
|
||||
|
||||
|
||||
def test_real_world_recording():
|
||||
path = "examples/real_robot_example/record_training_data.py"
|
||||
_run_script(
|
||||
path,
|
||||
[
|
||||
"--data_dir",
|
||||
"outputs/examples",
|
||||
"--repo-id",
|
||||
"real_world_debug",
|
||||
"--num-episodes",
|
||||
"2",
|
||||
"--num-frames",
|
||||
"10",
|
||||
"--mock-robot",
|
||||
],
|
||||
)
|
||||
assert Path("outputs/examples/real_world_debug/video/episode_0.mp4").exists()
|
||||
|
||||
@@ -30,7 +30,7 @@ from lerobot.common.policies.factory import get_policy_and_config_classes, make_
|
||||
from lerobot.common.policies.normalize import Normalize, Unnormalize
|
||||
from lerobot.common.policies.policy_protocol import Policy
|
||||
from lerobot.common.utils.utils import init_hydra_config
|
||||
from tests.scripts.save_policy_to_safetensor import get_policy_stats
|
||||
from tests.scripts.save_policy_to_safetensors import get_policy_stats
|
||||
from tests.utils import DEFAULT_CONFIG_PATH, DEVICE, require_cpu, require_env, require_x86_64_kernel
|
||||
|
||||
|
||||
@@ -72,6 +72,8 @@ def test_get_policy_and_config_classes(policy_name: str):
|
||||
),
|
||||
# Note: these parameters also need custom logic in the test function for overriding the Hydra config.
|
||||
("pusht", "act", ["env.task=PushT-v0", "dataset_repo_id=lerobot/pusht"]),
|
||||
("dora_aloha_real", "act_real", []),
|
||||
("dora_aloha_real", "act_real_no_state", []),
|
||||
],
|
||||
)
|
||||
@require_env
|
||||
@@ -84,6 +86,9 @@ def test_policy(env_name, policy_name, extra_overrides):
|
||||
- Updating the policy.
|
||||
- Using the policy to select actions at inference time.
|
||||
- Test the action can be applied to the policy
|
||||
|
||||
Note: We test various combinations of policy and dataset. The combinations are by no means exhaustive,
|
||||
and for now we add tests as we see fit.
|
||||
"""
|
||||
cfg = init_hydra_config(
|
||||
DEFAULT_CONFIG_PATH,
|
||||
@@ -135,7 +140,7 @@ def test_policy(env_name, policy_name, extra_overrides):
|
||||
|
||||
dataloader = torch.utils.data.DataLoader(
|
||||
dataset,
|
||||
num_workers=4,
|
||||
num_workers=0,
|
||||
batch_size=2,
|
||||
shuffle=True,
|
||||
pin_memory=DEVICE != "cpu",
|
||||
@@ -291,6 +296,8 @@ def test_normalize(insert_temporal_dim):
|
||||
["policy.n_action_steps=8", "policy.num_inference_steps=10", "policy.down_dims=[128, 256, 512]"],
|
||||
),
|
||||
("aloha", "act", ["policy.n_action_steps=10"]),
|
||||
("dora_aloha_real", "act_real", ["policy.n_action_steps=10"]),
|
||||
("dora_aloha_real", "act_real_no_state", ["policy.n_action_steps=10"]),
|
||||
],
|
||||
)
|
||||
# As artifacts have been generated on an x86_64 kernel, this test won't
|
||||
|
||||
90
tests/test_sampler.py
Normal file
90
tests/test_sampler.py
Normal file
@@ -0,0 +1,90 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from datasets import Dataset
|
||||
|
||||
from lerobot.common.datasets.sampler import EpisodeAwareSampler
|
||||
from lerobot.common.datasets.utils import (
|
||||
calculate_episode_data_index,
|
||||
hf_transform_to_torch,
|
||||
)
|
||||
|
||||
|
||||
def test_drop_n_first_frames():
|
||||
dataset = Dataset.from_dict(
|
||||
{
|
||||
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6],
|
||||
"index": [0, 1, 2, 3, 4, 5],
|
||||
"episode_index": [0, 0, 1, 2, 2, 2],
|
||||
},
|
||||
)
|
||||
dataset.set_transform(hf_transform_to_torch)
|
||||
episode_data_index = calculate_episode_data_index(dataset)
|
||||
sampler = EpisodeAwareSampler(episode_data_index, drop_n_first_frames=1)
|
||||
assert sampler.indices == [1, 4, 5]
|
||||
assert len(sampler) == 3
|
||||
assert list(sampler) == [1, 4, 5]
|
||||
|
||||
|
||||
def test_drop_n_last_frames():
|
||||
dataset = Dataset.from_dict(
|
||||
{
|
||||
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6],
|
||||
"index": [0, 1, 2, 3, 4, 5],
|
||||
"episode_index": [0, 0, 1, 2, 2, 2],
|
||||
},
|
||||
)
|
||||
dataset.set_transform(hf_transform_to_torch)
|
||||
episode_data_index = calculate_episode_data_index(dataset)
|
||||
sampler = EpisodeAwareSampler(episode_data_index, drop_n_last_frames=1)
|
||||
assert sampler.indices == [0, 3, 4]
|
||||
assert len(sampler) == 3
|
||||
assert list(sampler) == [0, 3, 4]
|
||||
|
||||
|
||||
def test_episode_indices_to_use():
|
||||
dataset = Dataset.from_dict(
|
||||
{
|
||||
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6],
|
||||
"index": [0, 1, 2, 3, 4, 5],
|
||||
"episode_index": [0, 0, 1, 2, 2, 2],
|
||||
},
|
||||
)
|
||||
dataset.set_transform(hf_transform_to_torch)
|
||||
episode_data_index = calculate_episode_data_index(dataset)
|
||||
sampler = EpisodeAwareSampler(episode_data_index, episode_indices_to_use=[0, 2])
|
||||
assert sampler.indices == [0, 1, 3, 4, 5]
|
||||
assert len(sampler) == 5
|
||||
assert list(sampler) == [0, 1, 3, 4, 5]
|
||||
|
||||
|
||||
def test_shuffle():
|
||||
dataset = Dataset.from_dict(
|
||||
{
|
||||
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6],
|
||||
"index": [0, 1, 2, 3, 4, 5],
|
||||
"episode_index": [0, 0, 1, 2, 2, 2],
|
||||
},
|
||||
)
|
||||
dataset.set_transform(hf_transform_to_torch)
|
||||
episode_data_index = calculate_episode_data_index(dataset)
|
||||
sampler = EpisodeAwareSampler(episode_data_index, shuffle=False)
|
||||
assert sampler.indices == [0, 1, 2, 3, 4, 5]
|
||||
assert len(sampler) == 6
|
||||
assert list(sampler) == [0, 1, 2, 3, 4, 5]
|
||||
sampler = EpisodeAwareSampler(episode_data_index, shuffle=True)
|
||||
assert sampler.indices == [0, 1, 2, 3, 4, 5]
|
||||
assert len(sampler) == 6
|
||||
assert set(sampler) == {0, 1, 2, 3, 4, 5}
|
||||
Reference in New Issue
Block a user