forked from tangger/lerobot
Compare commits
1 Commits
fix_path
...
user/rcade
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
b169f93f3a |
1
.gitattributes
vendored
1
.gitattributes
vendored
@@ -1 +0,0 @@
|
||||
*.memmap filter=lfs diff=lfs merge=lfs -text
|
||||
3126
.github/poetry/cpu/poetry.lock
generated
vendored
3126
.github/poetry/cpu/poetry.lock
generated
vendored
File diff suppressed because it is too large
Load Diff
107
.github/poetry/cpu/pyproject.toml
vendored
107
.github/poetry/cpu/pyproject.toml
vendored
@@ -1,107 +0,0 @@
|
||||
[tool.poetry]
|
||||
name = "lerobot"
|
||||
version = "0.1.0"
|
||||
description = "Le robot is learning"
|
||||
authors = [
|
||||
"Rémi Cadène <re.cadene@gmail.com>",
|
||||
"Simon Alibert <alibert.sim@gmail.com>",
|
||||
]
|
||||
repository = "https://github.com/Cadene/lerobot"
|
||||
readme = "README.md"
|
||||
license = "MIT"
|
||||
classifiers=[
|
||||
"Development Status :: 3 - Alpha",
|
||||
"Intended Audience :: Developers",
|
||||
"Topic :: Software Development :: Build Tools",
|
||||
"License :: OSI Approved :: MIT License",
|
||||
"Programming Language :: Python :: 3.10",
|
||||
]
|
||||
packages = [{include = "lerobot"}]
|
||||
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = "^3.10"
|
||||
cython = "^3.0.8"
|
||||
termcolor = "^2.4.0"
|
||||
omegaconf = "^2.3.0"
|
||||
dm-env = "^1.6"
|
||||
pandas = "^2.2.1"
|
||||
wandb = "^0.16.3"
|
||||
moviepy = "^1.0.3"
|
||||
imageio = {extras = ["pyav"], version = "^2.34.0"}
|
||||
gdown = "^5.1.0"
|
||||
hydra-core = "^1.3.2"
|
||||
einops = "^0.7.0"
|
||||
pygame = "^2.5.2"
|
||||
pymunk = "^6.6.0"
|
||||
zarr = "^2.17.0"
|
||||
shapely = "^2.0.3"
|
||||
scikit-image = "^0.22.0"
|
||||
numba = "^0.59.0"
|
||||
mpmath = "^1.3.0"
|
||||
torch = {version = "^2.2.1", source = "torch-cpu"}
|
||||
tensordict = {git = "https://github.com/pytorch/tensordict"}
|
||||
torchrl = {git = "https://github.com/pytorch/rl", rev = "13bef426dcfa5887c6e5034a6e9697993fa92c37"}
|
||||
mujoco = "^3.1.2"
|
||||
mujoco-py = "^2.1.2.14"
|
||||
gym = "^0.26.2"
|
||||
opencv-python = "^4.9.0.80"
|
||||
diffusers = "^0.26.3"
|
||||
torchvision = {version = "^0.17.1", source = "torch-cpu"}
|
||||
h5py = "^3.10.0"
|
||||
dm = "^1.3"
|
||||
dm-control = "^1.0.16"
|
||||
huggingface-hub = "^0.21.4"
|
||||
|
||||
|
||||
[tool.poetry.group.dev.dependencies]
|
||||
pre-commit = "^3.6.2"
|
||||
debugpy = "^1.8.1"
|
||||
pytest = "^8.1.0"
|
||||
|
||||
|
||||
[[tool.poetry.source]]
|
||||
name = "torch-cpu"
|
||||
url = "https://download.pytorch.org/whl/cpu"
|
||||
priority = "supplemental"
|
||||
|
||||
|
||||
[tool.ruff]
|
||||
line-length = 110
|
||||
target-version = "py310"
|
||||
exclude = [
|
||||
".bzr",
|
||||
".direnv",
|
||||
".eggs",
|
||||
".git",
|
||||
".git-rewrite",
|
||||
".hg",
|
||||
".mypy_cache",
|
||||
".nox",
|
||||
".pants.d",
|
||||
".pytype",
|
||||
".ruff_cache",
|
||||
".svn",
|
||||
".tox",
|
||||
".venv",
|
||||
"__pypackages__",
|
||||
"_build",
|
||||
"buck-out",
|
||||
"build",
|
||||
"dist",
|
||||
"node_modules",
|
||||
"venv",
|
||||
]
|
||||
|
||||
|
||||
[tool.ruff.lint]
|
||||
select = ["E4", "E7", "E9", "F", "I", "N", "B", "C4", "SIM"]
|
||||
|
||||
|
||||
[tool.poetry-dynamic-versioning]
|
||||
enable = true
|
||||
|
||||
|
||||
[build-system]
|
||||
requires = ["poetry-core>=1.0.0", "poetry-dynamic-versioning>=1.0.0,<2.0.0"]
|
||||
build-backend = "poetry_dynamic_versioning.backend"
|
||||
144
.github/workflows/test.yml
vendored
144
.github/workflows/test.yml
vendored
@@ -1,144 +0,0 @@
|
||||
name: Test
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
types: [opened, synchronize, reopened, labeled]
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
|
||||
jobs:
|
||||
test:
|
||||
if: |
|
||||
${{ github.event_name == 'pull_request' && contains(github.event.pull_request.labels.*.name, 'CI') }} ||
|
||||
${{ github.event_name == 'push' }}
|
||||
runs-on: ubuntu-latest
|
||||
env:
|
||||
POETRY_VERSION: 1.8.1
|
||||
DATA_DIR: tests/data
|
||||
TMPDIR: ~/tmp
|
||||
TEMP: ~/tmp
|
||||
TMP: ~/tmp
|
||||
PYOPENGL_PLATFORM: egl
|
||||
MUJOCO_GL: egl
|
||||
LEROBOT_TESTS_DEVICE: cpu
|
||||
steps:
|
||||
#----------------------------------------------
|
||||
# check-out repo and set-up python
|
||||
#----------------------------------------------
|
||||
- name: Check out repository
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
lfs: true
|
||||
|
||||
- name: Set up python
|
||||
id: setup-python
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: '3.10'
|
||||
|
||||
#----------------------------------------------
|
||||
# install & configure poetry
|
||||
#----------------------------------------------
|
||||
- name: Load cached Poetry installation
|
||||
id: restore-poetry-cache
|
||||
uses: actions/cache/restore@v3
|
||||
with:
|
||||
path: ~/.local
|
||||
key: poetry-${{ env.POETRY_VERSION }}
|
||||
|
||||
- name: Install Poetry
|
||||
if: steps.restore-poetry-cache.outputs.cache-hit != 'true'
|
||||
uses: snok/install-poetry@v1
|
||||
with:
|
||||
version: ${{ env.POETRY_VERSION }}
|
||||
virtualenvs-create: true
|
||||
installer-parallel: true
|
||||
|
||||
- name: Save cached Poetry installation
|
||||
if: |
|
||||
steps.restore-poetry-cache.outputs.cache-hit != 'true' &&
|
||||
github.ref_name == 'main'
|
||||
id: save-poetry-cache
|
||||
uses: actions/cache/save@v3
|
||||
with:
|
||||
path: ~/.local
|
||||
key: poetry-${{ env.POETRY_VERSION }}
|
||||
|
||||
- name: Configure Poetry
|
||||
run: poetry config virtualenvs.in-project true
|
||||
|
||||
#----------------------------------------------
|
||||
# install dependencies
|
||||
#----------------------------------------------
|
||||
# TODO(aliberts): move to gpu runners
|
||||
- name: Select cpu dependencies # HACK
|
||||
run: cp -t . .github/poetry/cpu/pyproject.toml .github/poetry/cpu/poetry.lock
|
||||
|
||||
- name: Load cached venv
|
||||
id: restore-dependencies-cache
|
||||
uses: actions/cache/restore@v3
|
||||
with:
|
||||
path: .venv
|
||||
key: venv-${{ steps.setup-python.outputs.python-version }}-${{ env.POETRY_VERSION }}-${{ hashFiles('**/poetry.lock') }}
|
||||
|
||||
- name: Install dependencies
|
||||
if: steps.restore-dependencies-cache.outputs.cache-hit != 'true'
|
||||
run: |
|
||||
mkdir ~/tmp
|
||||
poetry install --no-interaction --no-root
|
||||
|
||||
- name: Save cached venv
|
||||
if: |
|
||||
steps.restore-dependencies-cache.outputs.cache-hit != 'true' &&
|
||||
github.ref_name == 'main'
|
||||
id: save-dependencies-cache
|
||||
uses: actions/cache/save@v3
|
||||
with:
|
||||
path: .venv
|
||||
key: venv-${{ steps.setup-python.outputs.python-version }}-${{ env.POETRY_VERSION }}-${{ hashFiles('**/poetry.lock') }}
|
||||
|
||||
- name: Install libegl1-mesa-dev (to use MUJOCO_GL=egl)
|
||||
run: sudo apt-get update && sudo apt-get install -y libegl1-mesa-dev
|
||||
|
||||
#----------------------------------------------
|
||||
# install project
|
||||
#----------------------------------------------
|
||||
- name: Install project
|
||||
run: poetry install --no-interaction
|
||||
|
||||
#----------------------------------------------
|
||||
# run tests
|
||||
#----------------------------------------------
|
||||
- name: Run tests
|
||||
run: |
|
||||
source .venv/bin/activate
|
||||
pytest tests
|
||||
|
||||
- name: Test train pusht end-to-end
|
||||
run: |
|
||||
source .venv/bin/activate
|
||||
python lerobot/scripts/train.py \
|
||||
hydra.job.name=pusht \
|
||||
env=pusht \
|
||||
wandb.enable=False \
|
||||
offline_steps=2 \
|
||||
online_steps=0 \
|
||||
device=cpu \
|
||||
save_model=true \
|
||||
save_freq=1 \
|
||||
hydra.run.dir=tests/outputs/
|
||||
|
||||
- name: Test eval pusht end-to-end
|
||||
run: |
|
||||
source .venv/bin/activate
|
||||
python lerobot/scripts/eval.py \
|
||||
hydra.job.name=pusht \
|
||||
env=pusht \
|
||||
wandb.enable=False \
|
||||
eval_episodes=1 \
|
||||
env.episode_length=8 \
|
||||
device=cpu \
|
||||
policy.pretrained_model_path=tests/outputs/models/1.pt
|
||||
4
.gitignore
vendored
4
.gitignore
vendored
@@ -1,3 +1,6 @@
|
||||
# Custom
|
||||
diffusion_policy
|
||||
|
||||
# Logging
|
||||
logs
|
||||
tmp
|
||||
@@ -51,7 +54,6 @@ pip-log.txt
|
||||
pip-delete-this-directory.txt
|
||||
|
||||
# Unit test / coverage reports
|
||||
!tests/data
|
||||
htmlcov/
|
||||
.tox/
|
||||
.nox/
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
exclude: ^(data/|tests/)
|
||||
exclude: ^(data/|tests/|diffusion_policy/)
|
||||
default_language_version:
|
||||
python: python3.10
|
||||
repos:
|
||||
|
||||
278
LICENSE
278
LICENSE
@@ -1,278 +0,0 @@
|
||||
Copyright 2024 The Hugging Face team. All rights reserved.
|
||||
|
||||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
APPENDIX: How to apply the Apache License to your work.
|
||||
|
||||
To apply the Apache License to your work, attach the following
|
||||
boilerplate notice, with the fields enclosed by brackets "[]"
|
||||
replaced with your own identifying information. (Don't include
|
||||
the brackets!) The text should be enclosed in the appropriate
|
||||
comment syntax for the file format. We also recommend that a
|
||||
file or class name and description of purpose be included on the
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright [yyyy] [name of copyright owner]
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
|
||||
|
||||
## Some of lerobot's code is derived from Diffusion Policy, which is subject to the following copyright notice:
|
||||
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2023 Columbia Artificial Intelligence and Robotics Lab
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
|
||||
|
||||
## Some of lerobot's code is derived from FOWM, which is subject to the following copyright notice:
|
||||
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2023 Yunhai Feng
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
|
||||
|
||||
## Some of lerobot's code is derived from ALOHA, which is subject to the following copyright notice:
|
||||
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2023 Tony Z. Zhao
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
89
README.md
89
README.md
@@ -2,7 +2,7 @@
|
||||
|
||||
## Installation
|
||||
|
||||
Create a virtual environment with Python 3.10, e.g. using `conda`:
|
||||
Create a virtual environment with python 3.10, e.g. using `conda`:
|
||||
```
|
||||
conda create -y -n lerobot python=3.10
|
||||
conda activate lerobot
|
||||
@@ -24,9 +24,11 @@ mkdir ~/tmp
|
||||
export TMPDIR='~/tmp'
|
||||
```
|
||||
|
||||
To use [Weights and Biases](https://docs.wandb.ai/quickstart) for experiments tracking, log in with
|
||||
Install `diffusion_policy` #HACK
|
||||
```
|
||||
wandb login
|
||||
# from this directory
|
||||
git clone https://github.com/real-stanford/diffusion_policy
|
||||
cp -r diffusion_policy/diffusion_policy $(poetry env info -p)/lib/python3.10/site-packages/
|
||||
```
|
||||
|
||||
## Usage
|
||||
@@ -59,10 +61,19 @@ env=pusht
|
||||
|
||||
## TODO
|
||||
|
||||
If you are not sure how to contribute or want to know the next features we working on, look on this project page: [LeRobot TODO](https://github.com/users/Cadene/projects/1)
|
||||
|
||||
Ask [Remi Cadene](re.cadene@gmail.com) for access if needed.
|
||||
|
||||
- [x] priority update doesnt match FOWM or original paper
|
||||
- [x] self.step=100000 should be updated at every step to adjust to horizon of planner
|
||||
- [ ] prefetch replay buffer to speedup training
|
||||
- [ ] parallelize env to speedup eval
|
||||
- [ ] clean checkpointing / loading
|
||||
- [ ] clean logging
|
||||
- [ ] clean config
|
||||
- [ ] clean hyperparameter tuning
|
||||
- [ ] add pusht
|
||||
- [ ] add aloha
|
||||
- [ ] add act
|
||||
- [ ] add diffusion
|
||||
- [ ] add aloha 2
|
||||
|
||||
## Profile
|
||||
|
||||
@@ -103,69 +114,7 @@ pre-commit install
|
||||
pre-commit run -a
|
||||
```
|
||||
|
||||
**Adding dependencies (temporary)**
|
||||
|
||||
Right now, for the CI to work, whenever a new dependency is added it needs to be also added to the cpu env, eg:
|
||||
|
||||
```
|
||||
# Run in this directory, adds the package to the main env with cuda
|
||||
poetry add some-package
|
||||
|
||||
# Adds the same package to the cpu env
|
||||
cd .github/poetry/cpu && poetry add some-package
|
||||
```
|
||||
|
||||
**Tests**
|
||||
|
||||
Install [git lfs](https://git-lfs.com/) to retrieve test artifacts (if you don't have it already).
|
||||
|
||||
On Mac:
|
||||
```
|
||||
brew install git-lfs
|
||||
git lfs install
|
||||
pytest -sx tests
|
||||
```
|
||||
|
||||
On Ubuntu:
|
||||
```
|
||||
sudo apt-get install git-lfs
|
||||
git lfs install
|
||||
```
|
||||
|
||||
Pull artifacts if they're not in [tests/data](tests/data)
|
||||
```
|
||||
git lfs pull
|
||||
```
|
||||
|
||||
When adding a new dataset, mock it with
|
||||
```
|
||||
python tests/scripts/mock_dataset.py --in-data-dir data/<dataset_id> --out-data-dir tests/data/<dataset_id>
|
||||
```
|
||||
|
||||
Run tests
|
||||
```
|
||||
DATA_DIR="tests/data" pytest -sx tests
|
||||
```
|
||||
|
||||
**Datasets**
|
||||
|
||||
To add a pytorch rl dataset to the hub, first login and use a token generated from [huggingface settings](https://huggingface.co/settings/tokens) with write access:
|
||||
```
|
||||
huggingface-cli login --token $HUGGINGFACE_TOKEN --add-to-git-credential
|
||||
```
|
||||
|
||||
Then you can upload it to the hub with:
|
||||
```
|
||||
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli upload --repo-type dataset $HF_USER/$DATASET data/$DATASET
|
||||
```
|
||||
|
||||
For instance, for [cadene/pusht](https://huggingface.co/datasets/cadene/pusht), we used:
|
||||
```
|
||||
HF_USER=cadene
|
||||
DATASET=pusht
|
||||
```
|
||||
|
||||
|
||||
## Acknowledgment
|
||||
- Our Diffusion policy and Pusht environment are adapted from [Diffusion Policy](https://diffusion-policy.cs.columbia.edu/)
|
||||
- Our TDMPC policy and Simxarm environment are adapted from [FOWM](https://www.yunhaifeng.com/FOWM/)
|
||||
- Our ACT policy and ALOHA environment are adapted from [ALOHA](https://tonyzhaozh.github.io/aloha/)
|
||||
|
||||
23
environment.yaml
Normal file
23
environment.yaml
Normal file
@@ -0,0 +1,23 @@
|
||||
name: lerobot
|
||||
dependencies:
|
||||
- python=3.8.16
|
||||
- pytorch::pytorch=1.13.1
|
||||
- pytorch::torchvision=0.14.1
|
||||
- nvidia::cudatoolkit=11.7
|
||||
- anaconda::pip
|
||||
- pip:
|
||||
- cython==0.29.33
|
||||
- mujoco==2.3.2
|
||||
- mujoco-py==2.1.2.14
|
||||
- termcolor
|
||||
- omegaconf
|
||||
- gym==0.21.0
|
||||
- dm-env==1.6
|
||||
- pandas
|
||||
- wandb
|
||||
- moviepy
|
||||
- imageio
|
||||
- gdown
|
||||
# - -e benchmarks/d4rl
|
||||
# TODO: verify this works
|
||||
- git+https://github.com/nicklashansen/simxarm.git@main#egg=simxarm
|
||||
@@ -1 +0,0 @@
|
||||
from lerobot.__version__ import __version__ # noqa: F401
|
||||
|
||||
@@ -1,8 +1 @@
|
||||
""" To enable `lerobot.__version__` """
|
||||
|
||||
from importlib.metadata import PackageNotFoundError, version
|
||||
|
||||
try:
|
||||
__version__ = version("lerobot")
|
||||
except PackageNotFoundError:
|
||||
__version__ = "unknown"
|
||||
__version__ = "0.0.0"
|
||||
|
||||
0
lerobot/common/__init__.py
Normal file
0
lerobot/common/__init__.py
Normal file
0
lerobot/common/datasets/__init__.py
Normal file
0
lerobot/common/datasets/__init__.py
Normal file
@@ -1,159 +0,0 @@
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Callable
|
||||
|
||||
import einops
|
||||
import torch
|
||||
import torchrl
|
||||
import tqdm
|
||||
from huggingface_hub import snapshot_download
|
||||
from tensordict import TensorDict
|
||||
from torchrl.data.replay_buffers.replay_buffers import TensorDictReplayBuffer
|
||||
from torchrl.data.replay_buffers.samplers import SliceSampler
|
||||
from torchrl.data.replay_buffers.storages import TensorStorage, _collate_id
|
||||
from torchrl.data.replay_buffers.writers import ImmutableDatasetWriter, Writer
|
||||
from torchrl.envs.transforms.transforms import Compose
|
||||
|
||||
|
||||
class AbstractExperienceReplay(TensorDictReplayBuffer):
|
||||
def __init__(
|
||||
self,
|
||||
dataset_id: str,
|
||||
batch_size: int = None,
|
||||
*,
|
||||
shuffle: bool = True,
|
||||
root: Path | None = None,
|
||||
pin_memory: bool = False,
|
||||
prefetch: int = None,
|
||||
sampler: SliceSampler = None,
|
||||
collate_fn: Callable = None,
|
||||
writer: Writer = None,
|
||||
transform: "torchrl.envs.Transform" = None,
|
||||
):
|
||||
self.dataset_id = dataset_id
|
||||
self.shuffle = shuffle
|
||||
self.root = root
|
||||
storage = self._download_or_load_dataset()
|
||||
|
||||
super().__init__(
|
||||
storage=storage,
|
||||
sampler=sampler,
|
||||
writer=ImmutableDatasetWriter() if writer is None else writer,
|
||||
collate_fn=_collate_id if collate_fn is None else collate_fn,
|
||||
pin_memory=pin_memory,
|
||||
prefetch=prefetch,
|
||||
batch_size=batch_size,
|
||||
transform=transform,
|
||||
)
|
||||
|
||||
@property
|
||||
def stats_patterns(self) -> dict:
|
||||
return {
|
||||
("observation", "state"): "b c -> 1 c",
|
||||
("observation", "image"): "b c h w -> 1 c 1 1",
|
||||
("action",): "b c -> 1 c",
|
||||
}
|
||||
|
||||
@property
|
||||
def image_keys(self) -> list:
|
||||
return [("observation", "image")]
|
||||
|
||||
@property
|
||||
def num_cameras(self) -> int:
|
||||
return len(self.image_keys)
|
||||
|
||||
@property
|
||||
def num_samples(self) -> int:
|
||||
return len(self)
|
||||
|
||||
@property
|
||||
def num_episodes(self) -> int:
|
||||
return len(self._storage._storage["episode"].unique())
|
||||
|
||||
@property
|
||||
def transform(self):
|
||||
return self._transform
|
||||
|
||||
def set_transform(self, transform):
|
||||
if not isinstance(transform, Compose):
|
||||
# required since torchrl calls `len(self._transform)` downstream
|
||||
if isinstance(transform, list):
|
||||
self._transform = Compose(*transform)
|
||||
else:
|
||||
self._transform = Compose(transform)
|
||||
else:
|
||||
self._transform = transform
|
||||
|
||||
def compute_or_load_stats(self, num_batch=100, batch_size=32) -> TensorDict:
|
||||
stats_path = Path(self.data_dir) / "stats.pth"
|
||||
if stats_path.exists():
|
||||
stats = torch.load(stats_path)
|
||||
else:
|
||||
logging.info(f"compute_stats and save to {stats_path}")
|
||||
stats = self._compute_stats(num_batch, batch_size)
|
||||
torch.save(stats, stats_path)
|
||||
return stats
|
||||
|
||||
def _download_or_load_dataset(self) -> torch.StorageBase:
|
||||
if self.root is None:
|
||||
self.data_dir = snapshot_download(repo_id=f"cadene/{self.dataset_id}", repo_type="dataset")
|
||||
else:
|
||||
self.data_dir = self.root / self.dataset_id
|
||||
return TensorStorage(TensorDict.load_memmap(self.data_dir))
|
||||
|
||||
def _compute_stats(self, num_batch=100, batch_size=32):
|
||||
rb = TensorDictReplayBuffer(
|
||||
storage=self._storage,
|
||||
batch_size=batch_size,
|
||||
prefetch=True,
|
||||
)
|
||||
|
||||
mean, std, max, min = {}, {}, {}, {}
|
||||
|
||||
# compute mean, min, max
|
||||
for _ in tqdm.tqdm(range(num_batch)):
|
||||
batch = rb.sample()
|
||||
for key, pattern in self.stats_patterns.items():
|
||||
batch[key] = batch[key].float()
|
||||
if key not in mean:
|
||||
# first batch initialize mean, min, max
|
||||
mean[key] = einops.reduce(batch[key], pattern, "mean")
|
||||
max[key] = einops.reduce(batch[key], pattern, "max")
|
||||
min[key] = einops.reduce(batch[key], pattern, "min")
|
||||
else:
|
||||
mean[key] += einops.reduce(batch[key], pattern, "mean")
|
||||
max[key] = torch.maximum(max[key], einops.reduce(batch[key], pattern, "max"))
|
||||
min[key] = torch.minimum(min[key], einops.reduce(batch[key], pattern, "min"))
|
||||
batch = rb.sample()
|
||||
|
||||
for key in self.stats_patterns:
|
||||
mean[key] /= num_batch
|
||||
|
||||
# compute std, min, max
|
||||
for _ in tqdm.tqdm(range(num_batch)):
|
||||
batch = rb.sample()
|
||||
for key, pattern in self.stats_patterns.items():
|
||||
batch[key] = batch[key].float()
|
||||
batch_mean = einops.reduce(batch[key], pattern, "mean")
|
||||
if key not in std:
|
||||
# first batch initialize std
|
||||
std[key] = (batch_mean - mean[key]) ** 2
|
||||
else:
|
||||
std[key] += (batch_mean - mean[key]) ** 2
|
||||
max[key] = torch.maximum(max[key], einops.reduce(batch[key], pattern, "max"))
|
||||
min[key] = torch.minimum(min[key], einops.reduce(batch[key], pattern, "min"))
|
||||
|
||||
for key in self.stats_patterns:
|
||||
std[key] = torch.sqrt(std[key] / num_batch)
|
||||
|
||||
stats = TensorDict({}, batch_size=[])
|
||||
for key in self.stats_patterns:
|
||||
stats[(*key, "mean")] = mean[key]
|
||||
stats[(*key, "std")] = std[key]
|
||||
stats[(*key, "max")] = max[key]
|
||||
stats[(*key, "min")] = min[key]
|
||||
|
||||
if key[0] == "observation":
|
||||
# use same stats for the next observations
|
||||
stats[("next", *key)] = stats[key]
|
||||
return stats
|
||||
@@ -1,183 +0,0 @@
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Callable
|
||||
|
||||
import einops
|
||||
import gdown
|
||||
import h5py
|
||||
import torch
|
||||
import torchrl
|
||||
import tqdm
|
||||
from tensordict import TensorDict
|
||||
from torchrl.data.replay_buffers.samplers import SliceSampler
|
||||
from torchrl.data.replay_buffers.storages import TensorStorage
|
||||
from torchrl.data.replay_buffers.writers import Writer
|
||||
|
||||
from lerobot.common.datasets.abstract import AbstractExperienceReplay
|
||||
|
||||
DATASET_IDS = [
|
||||
"aloha_sim_insertion_human",
|
||||
"aloha_sim_insertion_scripted",
|
||||
"aloha_sim_transfer_cube_human",
|
||||
"aloha_sim_transfer_cube_scripted",
|
||||
]
|
||||
|
||||
FOLDER_URLS = {
|
||||
"aloha_sim_insertion_human": "https://drive.google.com/drive/folders/1RgyD0JgTX30H4IM5XZn8I3zSV_mr8pyF",
|
||||
"aloha_sim_insertion_scripted": "https://drive.google.com/drive/folders/1TsojQQSXtHEoGnqgJ3gmpPQR2DPLtS2N",
|
||||
"aloha_sim_transfer_cube_human": "https://drive.google.com/drive/folders/1sc-E4QYW7A0o23m1u2VWNGVq5smAsfCo",
|
||||
"aloha_sim_transfer_cube_scripted": "https://drive.google.com/drive/folders/1aRyoOhQwxhyt1J8XgEig4s6kzaw__LXj",
|
||||
}
|
||||
|
||||
EP48_URLS = {
|
||||
"aloha_sim_insertion_human": "https://drive.google.com/file/d/18Cudl6nikDtgRolea7je8iF_gGKzynOP/view?usp=drive_link",
|
||||
"aloha_sim_insertion_scripted": "https://drive.google.com/file/d/1wfMSZ24oOh5KR_0aaP3Cnu_c4ZCveduB/view?usp=drive_link",
|
||||
"aloha_sim_transfer_cube_human": "https://drive.google.com/file/d/18smMymtr8tIxaNUQ61gW6dG50pt3MvGq/view?usp=drive_link",
|
||||
"aloha_sim_transfer_cube_scripted": "https://drive.google.com/file/d/1pnGIOd-E4-rhz2P3VxpknMKRZCoKt6eI/view?usp=drive_link",
|
||||
}
|
||||
|
||||
EP49_URLS = {
|
||||
"aloha_sim_insertion_human": "https://drive.google.com/file/d/1C1kZYyROzs-PrLc0SkDgUgMi4-L3lauE/view?usp=drive_link",
|
||||
"aloha_sim_insertion_scripted": "https://drive.google.com/file/d/17EuCUWS6uCCr6yyNzpXdcdE-_TTNCKtf/view?usp=drive_link",
|
||||
"aloha_sim_transfer_cube_human": "https://drive.google.com/file/d/1Nk7l53d9sJoGDBKAOnNrExX5nLacATc6/view?usp=drive_link",
|
||||
"aloha_sim_transfer_cube_scripted": "https://drive.google.com/file/d/1GKReZHrXU73NMiC5zKCq_UtqPVtYq8eo/view?usp=drive_link",
|
||||
}
|
||||
|
||||
NUM_EPISODES = {
|
||||
"aloha_sim_insertion_human": 50,
|
||||
"aloha_sim_insertion_scripted": 50,
|
||||
"aloha_sim_transfer_cube_human": 50,
|
||||
"aloha_sim_transfer_cube_scripted": 50,
|
||||
}
|
||||
|
||||
EPISODE_LEN = {
|
||||
"aloha_sim_insertion_human": 500,
|
||||
"aloha_sim_insertion_scripted": 400,
|
||||
"aloha_sim_transfer_cube_human": 400,
|
||||
"aloha_sim_transfer_cube_scripted": 400,
|
||||
}
|
||||
|
||||
CAMERAS = {
|
||||
"aloha_sim_insertion_human": ["top"],
|
||||
"aloha_sim_insertion_scripted": ["top"],
|
||||
"aloha_sim_transfer_cube_human": ["top"],
|
||||
"aloha_sim_transfer_cube_scripted": ["top"],
|
||||
}
|
||||
|
||||
|
||||
def download(data_dir, dataset_id):
|
||||
assert dataset_id in DATASET_IDS
|
||||
assert dataset_id in FOLDER_URLS
|
||||
assert dataset_id in EP48_URLS
|
||||
assert dataset_id in EP49_URLS
|
||||
|
||||
data_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
gdown.download_folder(FOLDER_URLS[dataset_id], output=str(data_dir))
|
||||
|
||||
# because of the 50 files limit per directory, two files episode 48 and 49 were missing
|
||||
gdown.download(EP48_URLS[dataset_id], output=str(data_dir / "episode_48.hdf5"), fuzzy=True)
|
||||
gdown.download(EP49_URLS[dataset_id], output=str(data_dir / "episode_49.hdf5"), fuzzy=True)
|
||||
|
||||
|
||||
class AlohaExperienceReplay(AbstractExperienceReplay):
|
||||
def __init__(
|
||||
self,
|
||||
dataset_id: str,
|
||||
batch_size: int = None,
|
||||
*,
|
||||
shuffle: bool = True,
|
||||
root: Path | None = None,
|
||||
pin_memory: bool = False,
|
||||
prefetch: int = None,
|
||||
sampler: SliceSampler = None,
|
||||
collate_fn: Callable = None,
|
||||
writer: Writer = None,
|
||||
transform: "torchrl.envs.Transform" = None,
|
||||
):
|
||||
assert dataset_id in DATASET_IDS
|
||||
|
||||
super().__init__(
|
||||
dataset_id,
|
||||
batch_size,
|
||||
shuffle=shuffle,
|
||||
root=root,
|
||||
pin_memory=pin_memory,
|
||||
prefetch=prefetch,
|
||||
sampler=sampler,
|
||||
collate_fn=collate_fn,
|
||||
writer=writer,
|
||||
transform=transform,
|
||||
)
|
||||
|
||||
@property
|
||||
def stats_patterns(self) -> dict:
|
||||
d = {
|
||||
("observation", "state"): "b c -> 1 c",
|
||||
("action",): "b c -> 1 c",
|
||||
}
|
||||
for cam in CAMERAS[self.dataset_id]:
|
||||
d[("observation", "image", cam)] = "b c h w -> 1 c 1 1"
|
||||
return d
|
||||
|
||||
@property
|
||||
def image_keys(self) -> list:
|
||||
return [("observation", "image", cam) for cam in CAMERAS[self.dataset_id]]
|
||||
|
||||
def _download_and_preproc_obsolete(self):
|
||||
assert self.root is not None
|
||||
raw_dir = self.root / f"{self.dataset_id}_raw"
|
||||
if not raw_dir.is_dir():
|
||||
download(raw_dir, self.dataset_id)
|
||||
|
||||
total_num_frames = 0
|
||||
logging.info("Compute total number of frames to initialize offline buffer")
|
||||
for ep_id in range(NUM_EPISODES[self.dataset_id]):
|
||||
ep_path = raw_dir / f"episode_{ep_id}.hdf5"
|
||||
with h5py.File(ep_path, "r") as ep:
|
||||
total_num_frames += ep["/action"].shape[0] - 1
|
||||
logging.info(f"{total_num_frames=}")
|
||||
|
||||
logging.info("Initialize and feed offline buffer")
|
||||
idxtd = 0
|
||||
for ep_id in tqdm.tqdm(range(NUM_EPISODES[self.dataset_id])):
|
||||
ep_path = raw_dir / f"episode_{ep_id}.hdf5"
|
||||
with h5py.File(ep_path, "r") as ep:
|
||||
ep_num_frames = ep["/action"].shape[0]
|
||||
|
||||
# last step of demonstration is considered done
|
||||
done = torch.zeros(ep_num_frames, 1, dtype=torch.bool)
|
||||
done[-1] = True
|
||||
|
||||
state = torch.from_numpy(ep["/observations/qpos"][:])
|
||||
action = torch.from_numpy(ep["/action"][:])
|
||||
|
||||
ep_td = TensorDict(
|
||||
{
|
||||
("observation", "state"): state[:-1],
|
||||
"action": action[:-1],
|
||||
"episode": torch.tensor([ep_id] * (ep_num_frames - 1)),
|
||||
"frame_id": torch.arange(0, ep_num_frames - 1, 1),
|
||||
("next", "observation", "state"): state[1:],
|
||||
# TODO: compute reward and success
|
||||
# ("next", "reward"): reward[1:],
|
||||
("next", "done"): done[1:],
|
||||
# ("next", "success"): success[1:],
|
||||
},
|
||||
batch_size=ep_num_frames - 1,
|
||||
)
|
||||
|
||||
for cam in CAMERAS[self.dataset_id]:
|
||||
image = torch.from_numpy(ep[f"/observations/images/{cam}"][:])
|
||||
image = einops.rearrange(image, "b h w c -> b c h w").contiguous()
|
||||
ep_td["observation", "image", cam] = image[:-1]
|
||||
ep_td["next", "observation", "image", cam] = image[1:]
|
||||
|
||||
if ep_id == 0:
|
||||
# hack to initialize tensordict data structure to store episodes
|
||||
td_data = ep_td[0].expand(total_num_frames).memmap_like(self.root / f"{self.dataset_id}")
|
||||
|
||||
td_data[idxtd : idxtd + len(ep_td)] = ep_td
|
||||
idxtd = idxtd + len(ep_td)
|
||||
|
||||
return TensorStorage(td_data.lock_())
|
||||
@@ -1,21 +1,36 @@
|
||||
import logging
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from torchrl.data.replay_buffers import PrioritizedSliceSampler, SliceSampler
|
||||
from torchrl.data.replay_buffers import PrioritizedSliceSampler
|
||||
|
||||
from lerobot.common.envs.transforms import NormalizeTransform, Prod
|
||||
from lerobot.common.datasets.pusht import PushtExperienceReplay
|
||||
from lerobot.common.datasets.simxarm import SimxarmExperienceReplay
|
||||
|
||||
# DATA_DIR specifies to location where datasets are loaded. By default, DATA_DIR is None and
|
||||
# we load from `$HOME/.cache/huggingface/hub/datasets`. For our unit tests, we set `DATA_DIR=tests/data`
|
||||
# to load a subset of our datasets for faster continuous integration.
|
||||
DATA_DIR = Path(os.environ["DATA_DIR"]) if "DATA_DIR" in os.environ else None
|
||||
DATA_DIR = Path(os.environ.get("DATA_DIR", "data"))
|
||||
|
||||
# TODO(rcadene): implement
|
||||
|
||||
# dataset_d4rl = D4RLExperienceReplay(
|
||||
# dataset_id="maze2d-umaze-v1",
|
||||
# split_trajs=False,
|
||||
# batch_size=1,
|
||||
# sampler=SamplerWithoutReplacement(drop_last=False),
|
||||
# prefetch=4,
|
||||
# direct_download=True,
|
||||
# )
|
||||
|
||||
# dataset_openx = OpenXExperienceReplay(
|
||||
# "cmu_stretch",
|
||||
# batch_size=1,
|
||||
# num_slices=1,
|
||||
# #download="force",
|
||||
# streaming=False,
|
||||
# root="data",
|
||||
# )
|
||||
|
||||
|
||||
def make_offline_buffer(
|
||||
cfg, overwrite_sampler=None, normalize=True, overwrite_batch_size=None, overwrite_prefetch=None
|
||||
):
|
||||
def make_offline_buffer(cfg, sampler=None):
|
||||
if cfg.policy.balanced_sampling:
|
||||
assert cfg.online_steps > 0
|
||||
batch_size = None
|
||||
@@ -28,104 +43,50 @@ def make_offline_buffer(
|
||||
pin_memory = cfg.device == "cuda"
|
||||
prefetch = cfg.prefetch
|
||||
|
||||
if overwrite_batch_size is not None:
|
||||
batch_size = overwrite_batch_size
|
||||
overwrite_sampler = sampler is not None
|
||||
|
||||
if overwrite_prefetch is not None:
|
||||
prefetch = overwrite_prefetch
|
||||
|
||||
if overwrite_sampler is None:
|
||||
if not overwrite_sampler:
|
||||
# TODO(rcadene): move batch_size outside
|
||||
num_traj_per_batch = cfg.policy.batch_size # // cfg.horizon
|
||||
# TODO(rcadene): Sampler outputs a batch_size <= cfg.batch_size.
|
||||
# We would need to add a transform to pad the tensordict to ensure batch_size == cfg.batch_size.
|
||||
|
||||
if cfg.offline_prioritized_sampler:
|
||||
logging.info("use prioritized sampler for offline dataset")
|
||||
sampler = PrioritizedSliceSampler(
|
||||
max_capacity=100_000,
|
||||
alpha=cfg.policy.per_alpha,
|
||||
beta=cfg.policy.per_beta,
|
||||
num_slices=num_traj_per_batch,
|
||||
strict_length=False,
|
||||
)
|
||||
else:
|
||||
logging.info("use simple sampler for offline dataset")
|
||||
sampler = SliceSampler(
|
||||
num_slices=num_traj_per_batch,
|
||||
strict_length=False,
|
||||
)
|
||||
else:
|
||||
sampler = overwrite_sampler
|
||||
sampler = PrioritizedSliceSampler(
|
||||
max_capacity=100_000,
|
||||
alpha=cfg.policy.per_alpha,
|
||||
beta=cfg.policy.per_beta,
|
||||
num_slices=num_traj_per_batch,
|
||||
strict_length=False,
|
||||
)
|
||||
|
||||
if cfg.env.name == "simxarm":
|
||||
from lerobot.common.datasets.simxarm import SimxarmExperienceReplay
|
||||
|
||||
clsfunc = SimxarmExperienceReplay
|
||||
dataset_id = f"xarm_{cfg.env.task}_medium"
|
||||
|
||||
# TODO(rcadene): add PrioritizedSliceSampler inside Simxarm to not have to `sampler.extend(index)` here
|
||||
offline_buffer = SimxarmExperienceReplay(
|
||||
f"xarm_{cfg.env.task}_medium",
|
||||
# download="force",
|
||||
download=True,
|
||||
streaming=False,
|
||||
root=str(DATA_DIR),
|
||||
sampler=sampler,
|
||||
batch_size=batch_size,
|
||||
pin_memory=pin_memory,
|
||||
prefetch=prefetch if isinstance(prefetch, int) else None,
|
||||
)
|
||||
elif cfg.env.name == "pusht":
|
||||
from lerobot.common.datasets.pusht import PushtExperienceReplay
|
||||
|
||||
clsfunc = PushtExperienceReplay
|
||||
dataset_id = "pusht"
|
||||
|
||||
elif cfg.env.name == "aloha":
|
||||
from lerobot.common.datasets.aloha import AlohaExperienceReplay
|
||||
|
||||
clsfunc = AlohaExperienceReplay
|
||||
dataset_id = f"aloha_{cfg.env.task}"
|
||||
offline_buffer = PushtExperienceReplay(
|
||||
"pusht",
|
||||
streaming=False,
|
||||
root=DATA_DIR,
|
||||
sampler=sampler,
|
||||
batch_size=batch_size,
|
||||
pin_memory=pin_memory,
|
||||
prefetch=prefetch if isinstance(prefetch, int) else None,
|
||||
)
|
||||
else:
|
||||
raise ValueError(cfg.env.name)
|
||||
|
||||
offline_buffer = clsfunc(
|
||||
dataset_id=dataset_id,
|
||||
sampler=sampler,
|
||||
batch_size=batch_size,
|
||||
root=DATA_DIR,
|
||||
pin_memory=pin_memory,
|
||||
prefetch=prefetch if isinstance(prefetch, int) else None,
|
||||
)
|
||||
|
||||
if cfg.policy.name == "tdmpc":
|
||||
img_keys = []
|
||||
for key in offline_buffer.image_keys:
|
||||
img_keys.append(("next", *key))
|
||||
img_keys += offline_buffer.image_keys
|
||||
else:
|
||||
img_keys = offline_buffer.image_keys
|
||||
|
||||
transforms = [Prod(in_keys=img_keys, prod=1 / 255)]
|
||||
|
||||
if normalize:
|
||||
# TODO(rcadene): make normalization strategy configurable between mean_std, min_max, manual_min_max, min_max_from_spec
|
||||
stats = offline_buffer.compute_or_load_stats()
|
||||
|
||||
# we only normalize the state and action, since the images are usually normalized inside the model for now (except for tdmpc: see the following)
|
||||
in_keys = [("observation", "state"), ("action")]
|
||||
|
||||
if cfg.policy.name == "tdmpc":
|
||||
# TODO(rcadene): we add img_keys to the keys to normalize for tdmpc only, since diffusion and act policies normalize the image inside the model for now
|
||||
in_keys += img_keys
|
||||
# TODO(racdene): since we use next observations in tdmpc, we also add them to the normalization. We are wasting a bit of compute on this for now.
|
||||
in_keys += [("next", *key) for key in img_keys]
|
||||
in_keys.append(("next", "observation", "state"))
|
||||
|
||||
if cfg.policy.name == "diffusion" and cfg.env.name == "pusht":
|
||||
# TODO(rcadene): we overwrite stats to have the same as pretrained model, but we should remove this
|
||||
stats["observation", "state", "min"] = torch.tensor([13.456424, 32.938293], dtype=torch.float32)
|
||||
stats["observation", "state", "max"] = torch.tensor([496.14618, 510.9579], dtype=torch.float32)
|
||||
stats["action", "min"] = torch.tensor([12.0, 25.0], dtype=torch.float32)
|
||||
stats["action", "max"] = torch.tensor([511.0, 511.0], dtype=torch.float32)
|
||||
|
||||
# TODO(rcadene): remove this and put it in config. Ideally we want to reproduce SOTA results just with mean_std
|
||||
normalization_mode = "mean_std" if cfg.env.name == "aloha" else "min_max"
|
||||
transforms.append(NormalizeTransform(stats, in_keys, mode=normalization_mode))
|
||||
|
||||
offline_buffer.set_transform(transforms)
|
||||
|
||||
if not overwrite_sampler:
|
||||
index = torch.arange(0, offline_buffer.num_samples, 1)
|
||||
num_steps = len(offline_buffer)
|
||||
index = torch.arange(0, num_steps, 1)
|
||||
sampler.extend(index)
|
||||
|
||||
return offline_buffer
|
||||
|
||||
@@ -1,3 +1,6 @@
|
||||
import logging
|
||||
import math
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import Callable
|
||||
|
||||
@@ -9,18 +12,21 @@ import torch
|
||||
import torchrl
|
||||
import tqdm
|
||||
from tensordict import TensorDict
|
||||
from torchrl.data.replay_buffers.samplers import SliceSampler
|
||||
from torchrl.data.replay_buffers.storages import TensorStorage
|
||||
from torchrl.data.replay_buffers.writers import Writer
|
||||
from torchrl.data.datasets.utils import _get_root_dir
|
||||
from torchrl.data.replay_buffers.replay_buffers import TensorDictReplayBuffer
|
||||
from torchrl.data.replay_buffers.samplers import Sampler
|
||||
from torchrl.data.replay_buffers.storages import TensorStorage, _collate_id
|
||||
from torchrl.data.replay_buffers.writers import ImmutableDatasetWriter, Writer
|
||||
|
||||
from lerobot.common.datasets.abstract import AbstractExperienceReplay
|
||||
from diffusion_policy.common.replay_buffer import ReplayBuffer as DiffusionPolicyReplayBuffer
|
||||
from diffusion_policy.env.pusht.pusht_env import pymunk_to_shapely
|
||||
from lerobot.common.datasets.utils import download_and_extract_zip
|
||||
from lerobot.common.envs.pusht.pusht_env import pymunk_to_shapely
|
||||
from lerobot.common.policies.diffusion.replay_buffer import ReplayBuffer as DiffusionPolicyReplayBuffer
|
||||
from lerobot.common.envs.transforms import NormalizeTransform
|
||||
|
||||
# as define in env
|
||||
SUCCESS_THRESHOLD = 0.95 # 95% coverage,
|
||||
|
||||
DEFAULT_TEE_MASK = pymunk.ShapeFilter.ALL_MASKS()
|
||||
PUSHT_URL = "https://diffusion-policy.cs.columbia.edu/data/training/pusht.zip"
|
||||
PUSHT_ZARR = Path("pusht/pusht_cchi_v7_replay.zarr")
|
||||
|
||||
@@ -48,10 +54,8 @@ def add_tee(
|
||||
angle,
|
||||
scale=30,
|
||||
color="LightSlateGray",
|
||||
mask=None,
|
||||
mask=DEFAULT_TEE_MASK,
|
||||
):
|
||||
if mask is None:
|
||||
mask = pymunk.ShapeFilter.ALL_MASKS()
|
||||
mass = 1
|
||||
length = 4
|
||||
vertices1 = [
|
||||
@@ -83,37 +87,114 @@ def add_tee(
|
||||
return body
|
||||
|
||||
|
||||
class PushtExperienceReplay(AbstractExperienceReplay):
|
||||
class PushtExperienceReplay(TensorDictReplayBuffer):
|
||||
def __init__(
|
||||
self,
|
||||
dataset_id: str,
|
||||
batch_size: int = None,
|
||||
*,
|
||||
shuffle: bool = True,
|
||||
root: Path | None = None,
|
||||
num_slices: int = None,
|
||||
slice_len: int = None,
|
||||
pad: float = None,
|
||||
replacement: bool = None,
|
||||
streaming: bool = False,
|
||||
root: Path = None,
|
||||
sampler: Sampler = None,
|
||||
writer: Writer = None,
|
||||
collate_fn: Callable = None,
|
||||
pin_memory: bool = False,
|
||||
prefetch: int = None,
|
||||
sampler: SliceSampler = None,
|
||||
collate_fn: Callable = None,
|
||||
writer: Writer = None,
|
||||
transform: "torchrl.envs.Transform" = None,
|
||||
transform: "torchrl.envs.Transform" = None, # noqa: F821
|
||||
split_trajs: bool = False,
|
||||
strict_length: bool = True,
|
||||
):
|
||||
if streaming:
|
||||
raise NotImplementedError
|
||||
self.streaming = streaming
|
||||
self.dataset_id = dataset_id
|
||||
self.split_trajs = split_trajs
|
||||
self.shuffle = shuffle
|
||||
self.num_slices = num_slices
|
||||
self.slice_len = slice_len
|
||||
self.pad = pad
|
||||
|
||||
self.strict_length = strict_length
|
||||
if (self.num_slices is not None) and (self.slice_len is not None):
|
||||
raise ValueError("num_slices or slice_len can be not None, but not both.")
|
||||
if split_trajs:
|
||||
raise NotImplementedError
|
||||
|
||||
if root is None:
|
||||
root = _get_root_dir("pusht")
|
||||
os.makedirs(root, exist_ok=True)
|
||||
|
||||
self.root = root
|
||||
if not self._is_downloaded():
|
||||
storage = self._download_and_preproc()
|
||||
else:
|
||||
storage = TensorStorage(TensorDict.load_memmap(self.root / dataset_id))
|
||||
|
||||
stats = self._compute_or_load_stats(storage)
|
||||
transform = NormalizeTransform(
|
||||
stats,
|
||||
in_keys=[
|
||||
# TODO(rcadene): imagenet normalization is applied inside diffusion policy
|
||||
# We need to automate this for tdmpc and others
|
||||
# ("observation", "image"),
|
||||
("observation", "state"),
|
||||
# TODO(rcadene): for tdmpc, we might want next image and state
|
||||
# ("next", "observation", "image"),
|
||||
# ("next", "observation", "state"),
|
||||
("action"),
|
||||
],
|
||||
mode="min_max",
|
||||
)
|
||||
|
||||
# TODO(rcadene): make normalization strategy configurable between mean_std, min_max, manual_min_max, min_max_from_spec
|
||||
transform.stats["observation", "state", "min"] = torch.tensor(
|
||||
[13.456424, 32.938293], dtype=torch.float32
|
||||
)
|
||||
transform.stats["observation", "state", "max"] = torch.tensor(
|
||||
[496.14618, 510.9579], dtype=torch.float32
|
||||
)
|
||||
transform.stats["action", "min"] = torch.tensor([12.0, 25.0], dtype=torch.float32)
|
||||
transform.stats["action", "max"] = torch.tensor([511.0, 511.0], dtype=torch.float32)
|
||||
|
||||
if writer is None:
|
||||
writer = ImmutableDatasetWriter()
|
||||
if collate_fn is None:
|
||||
collate_fn = _collate_id
|
||||
|
||||
super().__init__(
|
||||
dataset_id,
|
||||
batch_size,
|
||||
shuffle=shuffle,
|
||||
root=root,
|
||||
storage=storage,
|
||||
sampler=sampler,
|
||||
writer=writer,
|
||||
collate_fn=collate_fn,
|
||||
pin_memory=pin_memory,
|
||||
prefetch=prefetch,
|
||||
sampler=sampler,
|
||||
collate_fn=collate_fn,
|
||||
writer=writer,
|
||||
batch_size=batch_size,
|
||||
transform=transform,
|
||||
)
|
||||
|
||||
def _download_and_preproc_obsolete(self):
|
||||
assert self.root is not None
|
||||
raw_dir = self.root / f"{self.dataset_id}_raw"
|
||||
@property
|
||||
def num_samples(self) -> int:
|
||||
return len(self)
|
||||
|
||||
@property
|
||||
def num_episodes(self) -> int:
|
||||
return len(self._storage._storage["episode"].unique())
|
||||
|
||||
@property
|
||||
def data_path_root(self) -> Path:
|
||||
return None if self.streaming else self.root / self.dataset_id
|
||||
|
||||
def _is_downloaded(self) -> bool:
|
||||
return self.data_path_root.is_dir()
|
||||
|
||||
def _download_and_preproc(self):
|
||||
# download
|
||||
raw_dir = self.root / "raw"
|
||||
zarr_path = (raw_dir / PUSHT_ZARR).resolve()
|
||||
if not zarr_path.is_dir():
|
||||
raw_dir.mkdir(parents=True, exist_ok=True)
|
||||
@@ -127,9 +208,6 @@ class PushtExperienceReplay(AbstractExperienceReplay):
|
||||
episode_ids = torch.from_numpy(dataset_dict.get_episode_idxs())
|
||||
num_episodes = dataset_dict.meta["episode_ends"].shape[0]
|
||||
total_frames = dataset_dict["action"].shape[0]
|
||||
# to create test artifact
|
||||
# num_episodes = 1
|
||||
# total_frames = 50
|
||||
assert len(
|
||||
{dataset_dict[key].shape[0] for key in dataset_dict.keys()} # noqa: SIM118
|
||||
), "Some data type dont have the same number of total frames."
|
||||
@@ -147,8 +225,6 @@ class PushtExperienceReplay(AbstractExperienceReplay):
|
||||
idxtd = 0
|
||||
for episode_id in tqdm.tqdm(range(num_episodes)):
|
||||
idx1 = dataset_dict.meta["episode_ends"][episode_id]
|
||||
# to create test artifact
|
||||
# idx1 = 51
|
||||
|
||||
num_frames = idx1 - idx0
|
||||
|
||||
@@ -190,7 +266,8 @@ class PushtExperienceReplay(AbstractExperienceReplay):
|
||||
# last step of demonstration is considered done
|
||||
done[-1] = True
|
||||
|
||||
ep_td = TensorDict(
|
||||
print("before " + """episode = TensorDict(""")
|
||||
episode = TensorDict(
|
||||
{
|
||||
("observation", "image"): image[:-1],
|
||||
("observation", "state"): agent_pos[:-1],
|
||||
@@ -209,11 +286,120 @@ class PushtExperienceReplay(AbstractExperienceReplay):
|
||||
|
||||
if episode_id == 0:
|
||||
# hack to initialize tensordict data structure to store episodes
|
||||
td_data = ep_td[0].expand(total_frames).memmap_like(self.root / f"{self.dataset_id}")
|
||||
td_data = episode[0].expand(total_frames).memmap_like(self.root / self.dataset_id)
|
||||
|
||||
td_data[idxtd : idxtd + len(ep_td)] = ep_td
|
||||
td_data[idxtd : idxtd + len(episode)] = episode
|
||||
|
||||
idx0 = idx1
|
||||
idxtd = idxtd + len(ep_td)
|
||||
idxtd = idxtd + len(episode)
|
||||
|
||||
return TensorStorage(td_data.lock_())
|
||||
|
||||
def _compute_stats(self, storage, num_batch=100, batch_size=32):
|
||||
rb = TensorDictReplayBuffer(
|
||||
storage=storage,
|
||||
batch_size=batch_size,
|
||||
prefetch=True,
|
||||
)
|
||||
batch = rb.sample()
|
||||
|
||||
image_channels = batch["observation", "image"].shape[1]
|
||||
image_mean = torch.zeros(image_channels)
|
||||
image_std = torch.zeros(image_channels)
|
||||
image_max = torch.tensor([-math.inf] * image_channels)
|
||||
image_min = torch.tensor([math.inf] * image_channels)
|
||||
|
||||
state_channels = batch["observation", "state"].shape[1]
|
||||
state_mean = torch.zeros(state_channels)
|
||||
state_std = torch.zeros(state_channels)
|
||||
state_max = torch.tensor([-math.inf] * state_channels)
|
||||
state_min = torch.tensor([math.inf] * state_channels)
|
||||
|
||||
action_channels = batch["action"].shape[1]
|
||||
action_mean = torch.zeros(action_channels)
|
||||
action_std = torch.zeros(action_channels)
|
||||
action_max = torch.tensor([-math.inf] * action_channels)
|
||||
action_min = torch.tensor([math.inf] * action_channels)
|
||||
|
||||
for _ in tqdm.tqdm(range(num_batch)):
|
||||
image_mean += einops.reduce(batch["observation", "image"], "b c h w -> c", "mean")
|
||||
state_mean += einops.reduce(batch["observation", "state"], "b c -> c", "mean")
|
||||
action_mean += einops.reduce(batch["action"], "b c -> c", "mean")
|
||||
|
||||
b_image_max = einops.reduce(batch["observation", "image"], "b c h w -> c", "max")
|
||||
b_image_min = einops.reduce(batch["observation", "image"], "b c h w -> c", "min")
|
||||
b_state_max = einops.reduce(batch["observation", "state"], "b c -> c", "max")
|
||||
b_state_min = einops.reduce(batch["observation", "state"], "b c -> c", "min")
|
||||
b_action_max = einops.reduce(batch["action"], "b c -> c", "max")
|
||||
b_action_min = einops.reduce(batch["action"], "b c -> c", "min")
|
||||
image_max = torch.maximum(image_max, b_image_max)
|
||||
image_min = torch.maximum(image_min, b_image_min)
|
||||
state_max = torch.maximum(state_max, b_state_max)
|
||||
state_min = torch.maximum(state_min, b_state_min)
|
||||
action_max = torch.maximum(action_max, b_action_max)
|
||||
action_min = torch.maximum(action_min, b_action_min)
|
||||
|
||||
batch = rb.sample()
|
||||
|
||||
image_mean /= num_batch
|
||||
state_mean /= num_batch
|
||||
action_mean /= num_batch
|
||||
|
||||
for i in tqdm.tqdm(range(num_batch)):
|
||||
b_image_mean = einops.reduce(batch["observation", "image"], "b c h w -> c", "mean")
|
||||
b_state_mean = einops.reduce(batch["observation", "state"], "b c -> c", "mean")
|
||||
b_action_mean = einops.reduce(batch["action"], "b c -> c", "mean")
|
||||
image_std += (b_image_mean - image_mean) ** 2
|
||||
state_std += (b_state_mean - state_mean) ** 2
|
||||
action_std += (b_action_mean - action_mean) ** 2
|
||||
|
||||
b_image_max = einops.reduce(batch["observation", "image"], "b c h w -> c", "max")
|
||||
b_image_min = einops.reduce(batch["observation", "image"], "b c h w -> c", "min")
|
||||
b_state_max = einops.reduce(batch["observation", "state"], "b c -> c", "max")
|
||||
b_state_min = einops.reduce(batch["observation", "state"], "b c -> c", "min")
|
||||
b_action_max = einops.reduce(batch["action"], "b c -> c", "max")
|
||||
b_action_min = einops.reduce(batch["action"], "b c -> c", "min")
|
||||
image_max = torch.maximum(image_max, b_image_max)
|
||||
image_min = torch.maximum(image_min, b_image_min)
|
||||
state_max = torch.maximum(state_max, b_state_max)
|
||||
state_min = torch.maximum(state_min, b_state_min)
|
||||
action_max = torch.maximum(action_max, b_action_max)
|
||||
action_min = torch.maximum(action_min, b_action_min)
|
||||
|
||||
if i < num_batch - 1:
|
||||
batch = rb.sample()
|
||||
|
||||
image_std = torch.sqrt(image_std / num_batch)
|
||||
state_std = torch.sqrt(state_std / num_batch)
|
||||
action_std = torch.sqrt(action_std / num_batch)
|
||||
|
||||
stats = TensorDict(
|
||||
{
|
||||
("observation", "image", "mean"): image_mean[None, :, None, None],
|
||||
("observation", "image", "std"): image_std[None, :, None, None],
|
||||
("observation", "image", "max"): image_max[None, :, None, None],
|
||||
("observation", "image", "min"): image_min[None, :, None, None],
|
||||
("observation", "state", "mean"): state_mean[None, :],
|
||||
("observation", "state", "std"): state_std[None, :],
|
||||
("observation", "state", "max"): state_max[None, :],
|
||||
("observation", "state", "min"): state_min[None, :],
|
||||
("action", "mean"): action_mean[None, :],
|
||||
("action", "std"): action_std[None, :],
|
||||
("action", "max"): action_max[None, :],
|
||||
("action", "min"): action_min[None, :],
|
||||
},
|
||||
batch_size=[],
|
||||
)
|
||||
stats["next", "observation", "image"] = stats["observation", "image"]
|
||||
stats["next", "observation", "state"] = stats["observation", "state"]
|
||||
return stats
|
||||
|
||||
def _compute_or_load_stats(self, storage) -> TensorDict:
|
||||
stats_path = self.root / self.dataset_id / "stats.pth"
|
||||
if stats_path.exists():
|
||||
stats = torch.load(stats_path)
|
||||
else:
|
||||
logging.info(f"compute_stats and save to {stats_path}")
|
||||
stats = self._compute_stats(storage)
|
||||
torch.save(stats, stats_path)
|
||||
return stats
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
import os
|
||||
import pickle
|
||||
import zipfile
|
||||
from pathlib import Path
|
||||
from typing import Callable
|
||||
|
||||
@@ -7,69 +7,130 @@ import torch
|
||||
import torchrl
|
||||
import tqdm
|
||||
from tensordict import TensorDict
|
||||
from torchrl.data.datasets.utils import _get_root_dir
|
||||
from torchrl.data.replay_buffers.replay_buffers import TensorDictReplayBuffer
|
||||
from torchrl.data.replay_buffers.samplers import (
|
||||
Sampler,
|
||||
SliceSampler,
|
||||
SliceSamplerWithoutReplacement,
|
||||
)
|
||||
from torchrl.data.replay_buffers.storages import TensorStorage
|
||||
from torchrl.data.replay_buffers.writers import Writer
|
||||
|
||||
from lerobot.common.datasets.abstract import AbstractExperienceReplay
|
||||
from torchrl.data.replay_buffers.storages import TensorStorage, _collate_id
|
||||
from torchrl.data.replay_buffers.writers import ImmutableDatasetWriter, Writer
|
||||
|
||||
|
||||
def download():
|
||||
raise NotImplementedError()
|
||||
import gdown
|
||||
|
||||
url = "https://drive.google.com/uc?id=1nhxpykGtPDhmQKm-_B8zBSywVRdgeVya"
|
||||
download_path = "data.zip"
|
||||
gdown.download(url, download_path, quiet=False)
|
||||
print("Extracting...")
|
||||
with zipfile.ZipFile(download_path, "r") as zip_f:
|
||||
for member in zip_f.namelist():
|
||||
if member.startswith("data/xarm") and member.endswith(".pkl"):
|
||||
print(member)
|
||||
zip_f.extract(member=member)
|
||||
Path(download_path).unlink()
|
||||
|
||||
|
||||
class SimxarmExperienceReplay(AbstractExperienceReplay):
|
||||
class SimxarmExperienceReplay(TensorDictReplayBuffer):
|
||||
available_datasets = [
|
||||
"xarm_lift_medium",
|
||||
]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dataset_id: str,
|
||||
dataset_id,
|
||||
batch_size: int = None,
|
||||
*,
|
||||
shuffle: bool = True,
|
||||
root: Path | None = None,
|
||||
num_slices: int = None,
|
||||
slice_len: int = None,
|
||||
pad: float = None,
|
||||
replacement: bool = None,
|
||||
streaming: bool = False,
|
||||
root: Path = None,
|
||||
download: bool = False,
|
||||
sampler: Sampler = None,
|
||||
writer: Writer = None,
|
||||
collate_fn: Callable = None,
|
||||
pin_memory: bool = False,
|
||||
prefetch: int = None,
|
||||
sampler: SliceSampler = None,
|
||||
collate_fn: Callable = None,
|
||||
writer: Writer = None,
|
||||
transform: "torchrl.envs.Transform" = None,
|
||||
transform: "torchrl.envs.Transform" = None, # noqa-F821
|
||||
split_trajs: bool = False,
|
||||
strict_length: bool = True,
|
||||
):
|
||||
self.download = download
|
||||
if streaming:
|
||||
raise NotImplementedError
|
||||
self.streaming = streaming
|
||||
self.dataset_id = dataset_id
|
||||
self.split_trajs = split_trajs
|
||||
self.shuffle = shuffle
|
||||
self.num_slices = num_slices
|
||||
self.slice_len = slice_len
|
||||
self.pad = pad
|
||||
|
||||
self.strict_length = strict_length
|
||||
if (self.num_slices is not None) and (self.slice_len is not None):
|
||||
raise ValueError("num_slices or slice_len can be not None, but not both.")
|
||||
if split_trajs:
|
||||
raise NotImplementedError
|
||||
|
||||
if root is None:
|
||||
root = _get_root_dir("simxarm")
|
||||
os.makedirs(root, exist_ok=True)
|
||||
self.root = Path(root)
|
||||
if self.download == "force" or (self.download and not self._is_downloaded()):
|
||||
storage = self._download_and_preproc()
|
||||
else:
|
||||
storage = TensorStorage(TensorDict.load_memmap(self.root / dataset_id))
|
||||
|
||||
if num_slices is not None or slice_len is not None:
|
||||
if sampler is not None:
|
||||
raise ValueError("`num_slices` and `slice_len` are exclusive with the `sampler` argument.")
|
||||
|
||||
if replacement:
|
||||
if not self.shuffle:
|
||||
raise RuntimeError("shuffle=False can only be used when replacement=False.")
|
||||
sampler = SliceSampler(
|
||||
num_slices=num_slices,
|
||||
slice_len=slice_len,
|
||||
strict_length=strict_length,
|
||||
)
|
||||
else:
|
||||
sampler = SliceSamplerWithoutReplacement(
|
||||
num_slices=num_slices,
|
||||
slice_len=slice_len,
|
||||
strict_length=strict_length,
|
||||
shuffle=self.shuffle,
|
||||
)
|
||||
|
||||
if writer is None:
|
||||
writer = ImmutableDatasetWriter()
|
||||
if collate_fn is None:
|
||||
collate_fn = _collate_id
|
||||
|
||||
super().__init__(
|
||||
dataset_id,
|
||||
batch_size,
|
||||
shuffle=shuffle,
|
||||
root=root,
|
||||
storage=storage,
|
||||
sampler=sampler,
|
||||
writer=writer,
|
||||
collate_fn=collate_fn,
|
||||
pin_memory=pin_memory,
|
||||
prefetch=prefetch,
|
||||
sampler=sampler,
|
||||
collate_fn=collate_fn,
|
||||
writer=writer,
|
||||
batch_size=batch_size,
|
||||
transform=transform,
|
||||
)
|
||||
|
||||
def _download_and_preproc_obsolete(self):
|
||||
assert self.root is not None
|
||||
# TODO(rcadene): finish download
|
||||
download()
|
||||
@property
|
||||
def num_samples(self):
|
||||
return len(self)
|
||||
|
||||
dataset_path = self.root / f"{self.dataset_id}_raw" / "buffer.pkl"
|
||||
@property
|
||||
def num_episodes(self):
|
||||
return len(self._storage._storage["episode"].unique())
|
||||
|
||||
@property
|
||||
def data_path_root(self):
|
||||
if self.streaming:
|
||||
return None
|
||||
return self.root / self.dataset_id
|
||||
|
||||
def _is_downloaded(self):
|
||||
return os.path.exists(self.data_path_root)
|
||||
|
||||
def _download_and_preproc(self):
|
||||
# download
|
||||
# TODO(rcadene)
|
||||
|
||||
# load
|
||||
dataset_dir = Path("data") / self.dataset_id
|
||||
dataset_path = dataset_dir / "buffer.pkl"
|
||||
print(f"Using offline dataset '{dataset_path}'")
|
||||
with open(dataset_path, "rb") as f:
|
||||
dataset_dict = pickle.load(f)
|
||||
@@ -111,7 +172,7 @@ class SimxarmExperienceReplay(AbstractExperienceReplay):
|
||||
|
||||
if episode_id == 0:
|
||||
# hack to initialize tensordict data structure to store episodes
|
||||
td_data = episode[0].expand(total_frames).memmap_like(self.root / f"{self.dataset_id}")
|
||||
td_data = episode[0].expand(total_frames).memmap_like(self.root / self.dataset_id)
|
||||
|
||||
td_data[idx0:idx1] = episode
|
||||
|
||||
|
||||
0
lerobot/common/envs/__init__.py
Normal file
0
lerobot/common/envs/__init__.py
Normal file
@@ -1,80 +0,0 @@
|
||||
import abc
|
||||
from collections import deque
|
||||
from typing import Optional
|
||||
|
||||
from tensordict import TensorDict
|
||||
from torchrl.envs import EnvBase
|
||||
|
||||
|
||||
class AbstractEnv(EnvBase):
|
||||
def __init__(
|
||||
self,
|
||||
task,
|
||||
frame_skip: int = 1,
|
||||
from_pixels: bool = False,
|
||||
pixels_only: bool = False,
|
||||
image_size=None,
|
||||
seed=1337,
|
||||
device="cpu",
|
||||
num_prev_obs=1,
|
||||
num_prev_action=0,
|
||||
):
|
||||
super().__init__(device=device, batch_size=[])
|
||||
self.task = task
|
||||
self.frame_skip = frame_skip
|
||||
self.from_pixels = from_pixels
|
||||
self.pixels_only = pixels_only
|
||||
self.image_size = image_size
|
||||
self.num_prev_obs = num_prev_obs
|
||||
self.num_prev_action = num_prev_action
|
||||
self._rendering_hooks = []
|
||||
|
||||
if pixels_only:
|
||||
assert from_pixels
|
||||
if from_pixels:
|
||||
assert image_size
|
||||
|
||||
self._make_env()
|
||||
self._make_spec()
|
||||
self._current_seed = self.set_seed(seed)
|
||||
|
||||
if self.num_prev_obs > 0:
|
||||
self._prev_obs_image_queue = deque(maxlen=self.num_prev_obs)
|
||||
self._prev_obs_state_queue = deque(maxlen=self.num_prev_obs)
|
||||
if self.num_prev_action > 0:
|
||||
raise NotImplementedError()
|
||||
# self._prev_action_queue = deque(maxlen=self.num_prev_action)
|
||||
|
||||
def register_rendering_hook(self, func):
|
||||
self._rendering_hooks.append(func)
|
||||
|
||||
def call_rendering_hooks(self):
|
||||
for func in self._rendering_hooks:
|
||||
func(self)
|
||||
|
||||
def reset_rendering_hooks(self):
|
||||
self._rendering_hooks = []
|
||||
|
||||
@abc.abstractmethod
|
||||
def render(self, mode="rgb_array", width=640, height=480):
|
||||
raise NotImplementedError()
|
||||
|
||||
@abc.abstractmethod
|
||||
def _reset(self, tensordict: Optional[TensorDict] = None):
|
||||
raise NotImplementedError()
|
||||
|
||||
@abc.abstractmethod
|
||||
def _step(self, tensordict: TensorDict):
|
||||
raise NotImplementedError()
|
||||
|
||||
@abc.abstractmethod
|
||||
def _make_env(self):
|
||||
raise NotImplementedError()
|
||||
|
||||
@abc.abstractmethod
|
||||
def _make_spec(self):
|
||||
raise NotImplementedError()
|
||||
|
||||
@abc.abstractmethod
|
||||
def _set_seed(self, seed: Optional[int]):
|
||||
raise NotImplementedError()
|
||||
@@ -1,59 +0,0 @@
|
||||
<mujoco>
|
||||
<include file="scene.xml"/>
|
||||
<include file="vx300s_dependencies.xml"/>
|
||||
|
||||
<equality>
|
||||
<weld body1="mocap_left" body2="vx300s_left/gripper_link" solref="0.01 1" solimp=".25 .25 0.001" />
|
||||
<weld body1="mocap_right" body2="vx300s_right/gripper_link" solref="0.01 1" solimp=".25 .25 0.001" />
|
||||
</equality>
|
||||
|
||||
|
||||
<worldbody>
|
||||
<include file="vx300s_left.xml" />
|
||||
<include file="vx300s_right.xml" />
|
||||
|
||||
<body mocap="true" name="mocap_left" pos="0.095 0.50 0.425">
|
||||
<site pos="0 0 0" size="0.003 0.003 0.03" type="box" name="mocap_left_site1" rgba="1 0 0 1"/>
|
||||
<site pos="0 0 0" size="0.003 0.03 0.003" type="box" name="mocap_left_site2" rgba="1 0 0 1"/>
|
||||
<site pos="0 0 0" size="0.03 0.003 0.003" type="box" name="mocap_left_site3" rgba="1 0 0 1"/>
|
||||
</body>
|
||||
<body mocap="true" name="mocap_right" pos="-0.095 0.50 0.425">
|
||||
<site pos="0 0 0" size="0.003 0.003 0.03" type="box" name="mocap_right_site1" rgba="1 0 0 1"/>
|
||||
<site pos="0 0 0" size="0.003 0.03 0.003" type="box" name="mocap_right_site2" rgba="1 0 0 1"/>
|
||||
<site pos="0 0 0" size="0.03 0.003 0.003" type="box" name="mocap_right_site3" rgba="1 0 0 1"/>
|
||||
</body>
|
||||
|
||||
<body name="peg" pos="0.2 0.5 0.05">
|
||||
<joint name="red_peg_joint" type="free" frictionloss="0.01" />
|
||||
<inertial pos="0 0 0" mass="0.05" diaginertia="0.002 0.002 0.002" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.06 0.01 0.01" type="box" name="red_peg" rgba="1 0 0 1" />
|
||||
</body>
|
||||
|
||||
<body name="socket" pos="-0.2 0.5 0.05">
|
||||
<joint name="blue_socket_joint" type="free" frictionloss="0.01" />
|
||||
<inertial pos="0 0 0" mass="0.05" diaginertia="0.002 0.002 0.002" />
|
||||
<!-- <geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.06 0.01 0.01" type="box" name="red_peg_ref" rgba="1 0 0 1" />-->
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 0 -0.02" size="0.06 0.018 0.002" type="box" name="socket-1" rgba="0 0 1 1" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 0 0.02" size="0.06 0.018 0.002" type="box" name="socket-2" rgba="0 0 1 1" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 0.02 0" size="0.06 0.002 0.018" type="box" name="socket-3" rgba="0 0 1 1" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 -0.02 0" size="0.06 0.002 0.018" type="box" name="socket-4" rgba="0 0 1 1" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.04 0.01 0.01" type="box" name="pin" rgba="1 0 0 1" />
|
||||
</body>
|
||||
|
||||
</worldbody>
|
||||
|
||||
<actuator>
|
||||
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_left/left_finger" kp="200" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_left/right_finger" kp="200" user="1"/>
|
||||
|
||||
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_right/left_finger" kp="200" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_right/right_finger" kp="200" user="1"/>
|
||||
|
||||
</actuator>
|
||||
|
||||
<keyframe>
|
||||
<key qpos="0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0.2 0.5 0.05 1 0 0 0 -0.2 0.5 0.05 1 0 0 0"/>
|
||||
</keyframe>
|
||||
|
||||
|
||||
</mujoco>
|
||||
@@ -1,48 +0,0 @@
|
||||
<mujoco>
|
||||
<include file="scene.xml"/>
|
||||
<include file="vx300s_dependencies.xml"/>
|
||||
|
||||
<equality>
|
||||
<weld body1="mocap_left" body2="vx300s_left/gripper_link" solref="0.01 1" solimp=".25 .25 0.001" />
|
||||
<weld body1="mocap_right" body2="vx300s_right/gripper_link" solref="0.01 1" solimp=".25 .25 0.001" />
|
||||
</equality>
|
||||
|
||||
|
||||
<worldbody>
|
||||
<include file="vx300s_left.xml" />
|
||||
<include file="vx300s_right.xml" />
|
||||
|
||||
<body mocap="true" name="mocap_left" pos="0.095 0.50 0.425">
|
||||
<site pos="0 0 0" size="0.003 0.003 0.03" type="box" name="mocap_left_site1" rgba="1 0 0 1"/>
|
||||
<site pos="0 0 0" size="0.003 0.03 0.003" type="box" name="mocap_left_site2" rgba="1 0 0 1"/>
|
||||
<site pos="0 0 0" size="0.03 0.003 0.003" type="box" name="mocap_left_site3" rgba="1 0 0 1"/>
|
||||
</body>
|
||||
<body mocap="true" name="mocap_right" pos="-0.095 0.50 0.425">
|
||||
<site pos="0 0 0" size="0.003 0.003 0.03" type="box" name="mocap_right_site1" rgba="1 0 0 1"/>
|
||||
<site pos="0 0 0" size="0.003 0.03 0.003" type="box" name="mocap_right_site2" rgba="1 0 0 1"/>
|
||||
<site pos="0 0 0" size="0.03 0.003 0.003" type="box" name="mocap_right_site3" rgba="1 0 0 1"/>
|
||||
</body>
|
||||
|
||||
<body name="box" pos="0.2 0.5 0.05">
|
||||
<joint name="red_box_joint" type="free" frictionloss="0.01" />
|
||||
<inertial pos="0 0 0" mass="0.05" diaginertia="0.002 0.002 0.002" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.02 0.02 0.02" type="box" name="red_box" rgba="1 0 0 1" />
|
||||
</body>
|
||||
|
||||
</worldbody>
|
||||
|
||||
<actuator>
|
||||
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_left/left_finger" kp="200" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_left/right_finger" kp="200" user="1"/>
|
||||
|
||||
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_right/left_finger" kp="200" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_right/right_finger" kp="200" user="1"/>
|
||||
|
||||
</actuator>
|
||||
|
||||
<keyframe>
|
||||
<key qpos="0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0.2 0.5 0.05 1 0 0 0"/>
|
||||
</keyframe>
|
||||
|
||||
|
||||
</mujoco>
|
||||
@@ -1,53 +0,0 @@
|
||||
<mujoco>
|
||||
<include file="scene.xml"/>
|
||||
<include file="vx300s_dependencies.xml"/>
|
||||
<worldbody>
|
||||
<include file="vx300s_left.xml" />
|
||||
<include file="vx300s_right.xml" />
|
||||
|
||||
<body name="peg" pos="0.2 0.5 0.05">
|
||||
<joint name="red_peg_joint" type="free" frictionloss="0.01" />
|
||||
<inertial pos="0 0 0" mass="0.05" diaginertia="0.002 0.002 0.002" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.06 0.01 0.01" type="box" name="red_peg" rgba="1 0 0 1" />
|
||||
</body>
|
||||
|
||||
<body name="socket" pos="-0.2 0.5 0.05">
|
||||
<joint name="blue_socket_joint" type="free" frictionloss="0.01" />
|
||||
<inertial pos="0 0 0" mass="0.05" diaginertia="0.002 0.002 0.002" />
|
||||
<!-- <geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.06 0.01 0.01" type="box" name="red_peg_ref" rgba="1 0 0 1" />-->
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 0 -0.02" size="0.06 0.018 0.002" type="box" name="socket-1" rgba="0 0 1 1" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 0 0.02" size="0.06 0.018 0.002" type="box" name="socket-2" rgba="0 0 1 1" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 0.02 0" size="0.06 0.002 0.018" type="box" name="socket-3" rgba="0 0 1 1" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 -0.02 0" size="0.06 0.002 0.018" type="box" name="socket-4" rgba="0 0 1 1" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.04 0.01 0.01" type="box" name="pin" rgba="1 0 0 1" />
|
||||
</body>
|
||||
|
||||
</worldbody>
|
||||
|
||||
<actuator>
|
||||
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_left/waist" kp="800" user="1" forcelimited="true" forcerange="-150 150"/>
|
||||
<position ctrllimited="true" ctrlrange="-1.85005 1.25664" joint="vx300s_left/shoulder" kp="1600" user="1" forcelimited="true" forcerange="-300 300"/>
|
||||
<position ctrllimited="true" ctrlrange="-1.76278 1.6057" joint="vx300s_left/elbow" kp="800" user="1" forcelimited="true" forcerange="-100 100"/>
|
||||
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_left/forearm_roll" kp="10" user="1" forcelimited="true" forcerange="-100 100"/>
|
||||
<position ctrllimited="true" ctrlrange="-1.8675 2.23402" joint="vx300s_left/wrist_angle" kp="50" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_left/wrist_rotate" kp="20" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_left/left_finger" kp="200" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_left/right_finger" kp="200" user="1"/>
|
||||
|
||||
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_right/waist" kp="800" user="1" forcelimited="true" forcerange="-150 150"/>
|
||||
<position ctrllimited="true" ctrlrange="-1.85005 1.25664" joint="vx300s_right/shoulder" kp="1600" user="1" forcelimited="true" forcerange="-300 300"/>
|
||||
<position ctrllimited="true" ctrlrange="-1.76278 1.6057" joint="vx300s_right/elbow" kp="800" user="1" forcelimited="true" forcerange="-100 100"/>
|
||||
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_right/forearm_roll" kp="10" user="1" forcelimited="true" forcerange="-100 100"/>
|
||||
<position ctrllimited="true" ctrlrange="-1.8675 2.23402" joint="vx300s_right/wrist_angle" kp="50" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_right/wrist_rotate" kp="20" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_right/left_finger" kp="200" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_right/right_finger" kp="200" user="1"/>
|
||||
|
||||
</actuator>
|
||||
|
||||
<keyframe>
|
||||
<key qpos="0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0.2 0.5 0.05 1 0 0 0 -0.2 0.5 0.05 1 0 0 0"/>
|
||||
</keyframe>
|
||||
|
||||
|
||||
</mujoco>
|
||||
@@ -1,42 +0,0 @@
|
||||
<mujoco>
|
||||
<include file="scene.xml"/>
|
||||
<include file="vx300s_dependencies.xml"/>
|
||||
<worldbody>
|
||||
<include file="vx300s_left.xml" />
|
||||
<include file="vx300s_right.xml" />
|
||||
|
||||
<body name="box" pos="0.2 0.5 0.05">
|
||||
<joint name="red_box_joint" type="free" frictionloss="0.01" />
|
||||
<inertial pos="0 0 0" mass="0.05" diaginertia="0.002 0.002 0.002" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.02 0.02 0.02" type="box" name="red_box" rgba="1 0 0 1" />
|
||||
</body>
|
||||
|
||||
</worldbody>
|
||||
|
||||
<actuator>
|
||||
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_left/waist" kp="800" user="1" forcelimited="true" forcerange="-150 150"/>
|
||||
<position ctrllimited="true" ctrlrange="-1.85005 1.25664" joint="vx300s_left/shoulder" kp="1600" user="1" forcelimited="true" forcerange="-300 300"/>
|
||||
<position ctrllimited="true" ctrlrange="-1.76278 1.6057" joint="vx300s_left/elbow" kp="800" user="1" forcelimited="true" forcerange="-100 100"/>
|
||||
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_left/forearm_roll" kp="10" user="1" forcelimited="true" forcerange="-100 100"/>
|
||||
<position ctrllimited="true" ctrlrange="-1.8675 2.23402" joint="vx300s_left/wrist_angle" kp="50" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_left/wrist_rotate" kp="20" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_left/left_finger" kp="200" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_left/right_finger" kp="200" user="1"/>
|
||||
|
||||
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_right/waist" kp="800" user="1" forcelimited="true" forcerange="-150 150"/>
|
||||
<position ctrllimited="true" ctrlrange="-1.85005 1.25664" joint="vx300s_right/shoulder" kp="1600" user="1" forcelimited="true" forcerange="-300 300"/>
|
||||
<position ctrllimited="true" ctrlrange="-1.76278 1.6057" joint="vx300s_right/elbow" kp="800" user="1" forcelimited="true" forcerange="-100 100"/>
|
||||
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_right/forearm_roll" kp="10" user="1" forcelimited="true" forcerange="-100 100"/>
|
||||
<position ctrllimited="true" ctrlrange="-1.8675 2.23402" joint="vx300s_right/wrist_angle" kp="50" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_right/wrist_rotate" kp="20" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_right/left_finger" kp="200" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_right/right_finger" kp="200" user="1"/>
|
||||
|
||||
</actuator>
|
||||
|
||||
<keyframe>
|
||||
<key qpos="0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0.2 0.5 0.05 1 0 0 0"/>
|
||||
</keyframe>
|
||||
|
||||
|
||||
</mujoco>
|
||||
@@ -1,38 +0,0 @@
|
||||
<mujocoinclude>
|
||||
<!-- <option timestep='0.0025' iterations="50" tolerance="1e-10" solver="Newton" jacobian="dense" cone="elliptic"/>-->
|
||||
|
||||
<asset>
|
||||
<mesh file="tabletop.stl" name="tabletop" scale="0.001 0.001 0.001"/>
|
||||
</asset>
|
||||
|
||||
<visual>
|
||||
<map fogstart="1.5" fogend="5" force="0.1" znear="0.1"/>
|
||||
<quality shadowsize="4096" offsamples="4"/>
|
||||
<headlight ambient="0.4 0.4 0.4"/>
|
||||
</visual>
|
||||
|
||||
<worldbody>
|
||||
<light castshadow="false" directional='true' diffuse='.3 .3 .3' specular='0.3 0.3 0.3' pos='-1 -1 1'
|
||||
dir='1 1 -1'/>
|
||||
<light directional='true' diffuse='.3 .3 .3' specular='0.3 0.3 0.3' pos='1 -1 1' dir='-1 1 -1'/>
|
||||
<light castshadow="false" directional='true' diffuse='.3 .3 .3' specular='0.3 0.3 0.3' pos='0 1 1'
|
||||
dir='0 -1 -1'/>
|
||||
|
||||
<body name="table" pos="0 .6 0">
|
||||
<geom group="1" mesh="tabletop" pos="0 0 0" type="mesh" conaffinity="1" contype="1" name="table" rgba="0.2 0.2 0.2 1" />
|
||||
</body>
|
||||
<body name="midair" pos="0 .6 0.2">
|
||||
<site pos="0 0 0" size="0.01" type="sphere" name="midair" rgba="1 0 0 0"/>
|
||||
</body>
|
||||
|
||||
<camera name="left_pillar" pos="-0.5 0.2 0.6" fovy="78" mode="targetbody" target="table"/>
|
||||
<camera name="right_pillar" pos="0.5 0.2 0.6" fovy="78" mode="targetbody" target="table"/>
|
||||
<camera name="top" pos="0 0.6 0.8" fovy="78" mode="targetbody" target="table"/>
|
||||
<camera name="angle" pos="0 0 0.6" fovy="78" mode="targetbody" target="table"/>
|
||||
<camera name="front_close" pos="0 0.2 0.4" fovy="78" mode="targetbody" target="vx300s_left/camera_focus"/>
|
||||
|
||||
</worldbody>
|
||||
|
||||
|
||||
|
||||
</mujocoinclude>
|
||||
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@@ -1,17 +0,0 @@
|
||||
<mujocoinclude>
|
||||
<compiler angle="radian" inertiafromgeom="auto" inertiagrouprange="4 5"/>
|
||||
<asset>
|
||||
<mesh name="vx300s_1_base" file="vx300s_1_base.stl" scale="0.001 0.001 0.001" />
|
||||
<mesh name="vx300s_2_shoulder" file="vx300s_2_shoulder.stl" scale="0.001 0.001 0.001" />
|
||||
<mesh name="vx300s_3_upper_arm" file="vx300s_3_upper_arm.stl" scale="0.001 0.001 0.001" />
|
||||
<mesh name="vx300s_4_upper_forearm" file="vx300s_4_upper_forearm.stl" scale="0.001 0.001 0.001" />
|
||||
<mesh name="vx300s_5_lower_forearm" file="vx300s_5_lower_forearm.stl" scale="0.001 0.001 0.001" />
|
||||
<mesh name="vx300s_6_wrist" file="vx300s_6_wrist.stl" scale="0.001 0.001 0.001" />
|
||||
<mesh name="vx300s_7_gripper" file="vx300s_7_gripper.stl" scale="0.001 0.001 0.001" />
|
||||
<mesh name="vx300s_8_gripper_prop" file="vx300s_8_gripper_prop.stl" scale="0.001 0.001 0.001" />
|
||||
<mesh name="vx300s_9_gripper_bar" file="vx300s_9_gripper_bar.stl" scale="0.001 0.001 0.001" />
|
||||
<mesh name="vx300s_10_gripper_finger_left" file="vx300s_10_custom_finger_left.stl" scale="0.001 0.001 0.001" />
|
||||
<mesh name="vx300s_10_gripper_finger_right" file="vx300s_10_custom_finger_right.stl" scale="0.001 0.001 0.001" />
|
||||
</asset>
|
||||
|
||||
</mujocoinclude>
|
||||
@@ -1,59 +0,0 @@
|
||||
|
||||
<mujocoinclude>
|
||||
<body name="vx300s_left" pos="-0.469 0.5 0">
|
||||
<geom quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_1_base" name="vx300s_left/1_base" contype="0" conaffinity="0"/>
|
||||
<body name="vx300s_left/shoulder_link" pos="0 0 0.079">
|
||||
<inertial pos="0.000259233 -3.3552e-06 0.0116129" quat="-0.476119 0.476083 0.52279 0.522826" mass="0.798614" diaginertia="0.00120156 0.00113744 0.0009388" />
|
||||
<joint name="vx300s_left/waist" pos="0 0 0" axis="0 0 1" limited="true" range="-3.14158 3.14158" frictionloss="50" />
|
||||
<geom pos="0 0 -0.003" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_2_shoulder" name="vx300s_left/2_shoulder" />
|
||||
<body name="vx300s_left/upper_arm_link" pos="0 0 0.04805">
|
||||
<inertial pos="0.0206949 4e-10 0.226459" quat="0 0.0728458 0 0.997343" mass="0.792592" diaginertia="0.00911338 0.008925 0.000759317" />
|
||||
<joint name="vx300s_left/shoulder" pos="0 0 0" axis="0 1 0" limited="true" range="-1.85005 1.25664" frictionloss="60" />
|
||||
<geom quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_3_upper_arm" name="vx300s_left/3_upper_arm"/>
|
||||
<body name="vx300s_left/upper_forearm_link" pos="0.05955 0 0.3">
|
||||
<inertial pos="0.105723 0 0" quat="-0.000621631 0.704724 0.0105292 0.709403" mass="0.322228" diaginertia="0.00144107 0.00134228 0.000152047" />
|
||||
<joint name="vx300s_left/elbow" pos="0 0 0" axis="0 1 0" limited="true" range="-1.76278 1.6057" frictionloss="60" />
|
||||
<geom type="mesh" mesh="vx300s_4_upper_forearm" name="vx300s_left/4_upper_forearm" />
|
||||
<body name="vx300s_left/lower_forearm_link" pos="0.2 0 0">
|
||||
<inertial pos="0.0513477 0.00680462 0" quat="-0.702604 -0.0796724 -0.702604 0.0796724" mass="0.414823" diaginertia="0.0005911 0.000546493 0.000155707" />
|
||||
<joint name="vx300s_left/forearm_roll" pos="0 0 0" axis="1 0 0" limited="true" range="-3.14158 3.14158" frictionloss="30" />
|
||||
<geom quat="0 1 0 0" type="mesh" mesh="vx300s_5_lower_forearm" name="vx300s_left/5_lower_forearm"/>
|
||||
<body name="vx300s_left/wrist_link" pos="0.1 0 0">
|
||||
<inertial pos="0.046743 -7.6652e-06 0.010565" quat="-0.00100191 0.544586 0.0026583 0.8387" mass="0.115395" diaginertia="5.45707e-05 4.63101e-05 4.32692e-05" />
|
||||
<joint name="vx300s_left/wrist_angle" pos="0 0 0" axis="0 1 0" limited="true" range="-1.8675 2.23402" frictionloss="30" />
|
||||
<geom quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_6_wrist" name="vx300s_left/6_wrist" />
|
||||
<body name="vx300s_left/gripper_link" pos="0.069744 0 0">
|
||||
<body name="vx300s_left/camera_focus" pos="0.15 0 0.01">
|
||||
<site pos="0 0 0" size="0.01" type="sphere" name="left_cam_focus" rgba="0 0 1 0"/>
|
||||
</body>
|
||||
<site pos="0.15 0 0" size="0.003 0.003 0.03" type="box" name="cali_left_site1" rgba="0 0 1 0"/>
|
||||
<site pos="0.15 0 0" size="0.003 0.03 0.003" type="box" name="cali_left_site2" rgba="0 0 1 0"/>
|
||||
<site pos="0.15 0 0" size="0.03 0.003 0.003" type="box" name="cali_left_site3" rgba="0 0 1 0"/>
|
||||
<camera name="left_wrist" pos="-0.1 0 0.16" fovy="20" mode="targetbody" target="vx300s_left/camera_focus"/>
|
||||
<inertial pos="0.0395662 -2.56311e-07 0.00400649" quat="0.62033 0.619916 -0.339682 0.339869" mass="0.251652" diaginertia="0.000689546 0.000650316 0.000468142" />
|
||||
<joint name="vx300s_left/wrist_rotate" pos="0 0 0" axis="1 0 0" limited="true" range="-3.14158 3.14158" frictionloss="30" />
|
||||
<geom pos="-0.02 0 0" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_7_gripper" name="vx300s_left/7_gripper" />
|
||||
<geom pos="-0.020175 0 0" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_9_gripper_bar" name="vx300s_left/9_gripper_bar" />
|
||||
<body name="vx300s_left/gripper_prop_link" pos="0.0485 0 0">
|
||||
<inertial pos="0.002378 2.85e-08 0" quat="0 0 0.897698 0.440611" mass="0.008009" diaginertia="4.2979e-06 2.8868e-06 1.5314e-06" />
|
||||
<!-- <joint name="vx300s_left/gripper" pos="0 0 0" axis="1 0 0" frictionloss="30" />-->
|
||||
<geom pos="-0.0685 0 0" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_8_gripper_prop" name="vx300s_left/8_gripper_prop" />
|
||||
</body>
|
||||
<body name="vx300s_left/left_finger_link" pos="0.0687 0 0">
|
||||
<inertial pos="0.017344 -0.0060692 0" quat="0.449364 0.449364 -0.54596 -0.54596" mass="0.034796" diaginertia="2.48003e-05 1.417e-05 1.20797e-05" />
|
||||
<joint name="vx300s_left/left_finger" pos="0 0 0" axis="0 1 0" type="slide" limited="true" range="0.021 0.057" frictionloss="30" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0.005 -0.052 0" euler="3.14 1.57 0" type="mesh" mesh="vx300s_10_gripper_finger_left" name="vx300s_left/10_left_gripper_finger"/>
|
||||
</body>
|
||||
<body name="vx300s_left/right_finger_link" pos="0.0687 0 0">
|
||||
<inertial pos="0.017344 0.0060692 0" quat="0.44937 -0.44937 0.545955 -0.545955" mass="0.034796" diaginertia="2.48002e-05 1.417e-05 1.20798e-05" />
|
||||
<joint name="vx300s_left/right_finger" pos="0 0 0" axis="0 1 0" type="slide" limited="true" range="-0.057 -0.021" frictionloss="30" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0.005 0.052 0" euler="3.14 1.57 0" type="mesh" mesh="vx300s_10_gripper_finger_right" name="vx300s_left/10_right_gripper_finger"/>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</mujocoinclude>
|
||||
@@ -1,59 +0,0 @@
|
||||
|
||||
<mujocoinclude>
|
||||
<body name="vx300s_right" pos="0.469 0.5 0" euler="0 0 3.1416">
|
||||
<geom quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_1_base" name="vx300s_right/1_base" contype="0" conaffinity="0"/>
|
||||
<body name="vx300s_right/shoulder_link" pos="0 0 0.079">
|
||||
<inertial pos="0.000259233 -3.3552e-06 0.0116129" quat="-0.476119 0.476083 0.52279 0.522826" mass="0.798614" diaginertia="0.00120156 0.00113744 0.0009388" />
|
||||
<joint name="vx300s_right/waist" pos="0 0 0" axis="0 0 1" limited="true" range="-3.14158 3.14158" frictionloss="50" />
|
||||
<geom pos="0 0 -0.003" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_2_shoulder" name="vx300s_right/2_shoulder" />
|
||||
<body name="vx300s_right/upper_arm_link" pos="0 0 0.04805">
|
||||
<inertial pos="0.0206949 4e-10 0.226459" quat="0 0.0728458 0 0.997343" mass="0.792592" diaginertia="0.00911338 0.008925 0.000759317" />
|
||||
<joint name="vx300s_right/shoulder" pos="0 0 0" axis="0 1 0" limited="true" range="-1.85005 1.25664" frictionloss="60" />
|
||||
<geom quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_3_upper_arm" name="vx300s_right/3_upper_arm"/>
|
||||
<body name="vx300s_right/upper_forearm_link" pos="0.05955 0 0.3">
|
||||
<inertial pos="0.105723 0 0" quat="-0.000621631 0.704724 0.0105292 0.709403" mass="0.322228" diaginertia="0.00144107 0.00134228 0.000152047" />
|
||||
<joint name="vx300s_right/elbow" pos="0 0 0" axis="0 1 0" limited="true" range="-1.76278 1.6057" frictionloss="60" />
|
||||
<geom type="mesh" mesh="vx300s_4_upper_forearm" name="vx300s_right/4_upper_forearm" />
|
||||
<body name="vx300s_right/lower_forearm_link" pos="0.2 0 0">
|
||||
<inertial pos="0.0513477 0.00680462 0" quat="-0.702604 -0.0796724 -0.702604 0.0796724" mass="0.414823" diaginertia="0.0005911 0.000546493 0.000155707" />
|
||||
<joint name="vx300s_right/forearm_roll" pos="0 0 0" axis="1 0 0" limited="true" range="-3.14158 3.14158" frictionloss="30" />
|
||||
<geom quat="0 1 0 0" type="mesh" mesh="vx300s_5_lower_forearm" name="vx300s_right/5_lower_forearm"/>
|
||||
<body name="vx300s_right/wrist_link" pos="0.1 0 0">
|
||||
<inertial pos="0.046743 -7.6652e-06 0.010565" quat="-0.00100191 0.544586 0.0026583 0.8387" mass="0.115395" diaginertia="5.45707e-05 4.63101e-05 4.32692e-05" />
|
||||
<joint name="vx300s_right/wrist_angle" pos="0 0 0" axis="0 1 0" limited="true" range="-1.8675 2.23402" frictionloss="30" />
|
||||
<geom quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_6_wrist" name="vx300s_right/6_wrist" />
|
||||
<body name="vx300s_right/gripper_link" pos="0.069744 0 0">
|
||||
<body name="vx300s_right/camera_focus" pos="0.15 0 0.01">
|
||||
<site pos="0 0 0" size="0.01" type="sphere" name="right_cam_focus" rgba="0 0 1 0"/>
|
||||
</body>
|
||||
<site pos="0.15 0 0" size="0.003 0.003 0.03" type="box" name="cali_right_site1" rgba="0 0 1 0"/>
|
||||
<site pos="0.15 0 0" size="0.003 0.03 0.003" type="box" name="cali_right_site2" rgba="0 0 1 0"/>
|
||||
<site pos="0.15 0 0" size="0.03 0.003 0.003" type="box" name="cali_right_site3" rgba="0 0 1 0"/>
|
||||
<camera name="right_wrist" pos="-0.1 0 0.16" fovy="20" mode="targetbody" target="vx300s_right/camera_focus"/>
|
||||
<inertial pos="0.0395662 -2.56311e-07 0.00400649" quat="0.62033 0.619916 -0.339682 0.339869" mass="0.251652" diaginertia="0.000689546 0.000650316 0.000468142" />
|
||||
<joint name="vx300s_right/wrist_rotate" pos="0 0 0" axis="1 0 0" limited="true" range="-3.14158 3.14158" frictionloss="30" />
|
||||
<geom pos="-0.02 0 0" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_7_gripper" name="vx300s_right/7_gripper" />
|
||||
<geom pos="-0.020175 0 0" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_9_gripper_bar" name="vx300s_right/9_gripper_bar" />
|
||||
<body name="vx300s_right/gripper_prop_link" pos="0.0485 0 0">
|
||||
<inertial pos="0.002378 2.85e-08 0" quat="0 0 0.897698 0.440611" mass="0.008009" diaginertia="4.2979e-06 2.8868e-06 1.5314e-06" />
|
||||
<!-- <joint name="vx300s_right/gripper" pos="0 0 0" axis="1 0 0" frictionloss="30" />-->
|
||||
<geom pos="-0.0685 0 0" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_8_gripper_prop" name="vx300s_right/8_gripper_prop" />
|
||||
</body>
|
||||
<body name="vx300s_right/left_finger_link" pos="0.0687 0 0">
|
||||
<inertial pos="0.017344 -0.0060692 0" quat="0.449364 0.449364 -0.54596 -0.54596" mass="0.034796" diaginertia="2.48003e-05 1.417e-05 1.20797e-05" />
|
||||
<joint name="vx300s_right/left_finger" pos="0 0 0" axis="0 1 0" type="slide" limited="true" range="0.021 0.057" frictionloss="30" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0.005 -0.052 0" euler="3.14 1.57 0" type="mesh" mesh="vx300s_10_gripper_finger_left" name="vx300s_right/10_left_gripper_finger"/>
|
||||
</body>
|
||||
<body name="vx300s_right/right_finger_link" pos="0.0687 0 0">
|
||||
<inertial pos="0.017344 0.0060692 0" quat="0.44937 -0.44937 0.545955 -0.545955" mass="0.034796" diaginertia="2.48002e-05 1.417e-05 1.20798e-05" />
|
||||
<joint name="vx300s_right/right_finger" pos="0 0 0" axis="0 1 0" type="slide" limited="true" range="-0.057 -0.021" frictionloss="30" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0.005 0.052 0" euler="3.14 1.57 0" type="mesh" mesh="vx300s_10_gripper_finger_right" name="vx300s_right/10_right_gripper_finger"/>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</mujocoinclude>
|
||||
@@ -1,163 +0,0 @@
|
||||
from pathlib import Path
|
||||
|
||||
### Simulation envs fixed constants
|
||||
DT = 0.02 # 0.02 ms -> 1/0.2 = 50 hz
|
||||
FPS = 50
|
||||
|
||||
|
||||
JOINTS = [
|
||||
# absolute joint position
|
||||
"left_arm_waist",
|
||||
"left_arm_shoulder",
|
||||
"left_arm_elbow",
|
||||
"left_arm_forearm_roll",
|
||||
"left_arm_wrist_angle",
|
||||
"left_arm_wrist_rotate",
|
||||
# normalized gripper position 0: close, 1: open
|
||||
"left_arm_gripper",
|
||||
# absolute joint position
|
||||
"right_arm_waist",
|
||||
"right_arm_shoulder",
|
||||
"right_arm_elbow",
|
||||
"right_arm_forearm_roll",
|
||||
"right_arm_wrist_angle",
|
||||
"right_arm_wrist_rotate",
|
||||
# normalized gripper position 0: close, 1: open
|
||||
"right_arm_gripper",
|
||||
]
|
||||
|
||||
ACTIONS = [
|
||||
# position and quaternion for end effector
|
||||
"left_arm_waist",
|
||||
"left_arm_shoulder",
|
||||
"left_arm_elbow",
|
||||
"left_arm_forearm_roll",
|
||||
"left_arm_wrist_angle",
|
||||
"left_arm_wrist_rotate",
|
||||
# normalized gripper position (0: close, 1: open)
|
||||
"left_arm_gripper",
|
||||
"right_arm_waist",
|
||||
"right_arm_shoulder",
|
||||
"right_arm_elbow",
|
||||
"right_arm_forearm_roll",
|
||||
"right_arm_wrist_angle",
|
||||
"right_arm_wrist_rotate",
|
||||
# normalized gripper position (0: close, 1: open)
|
||||
"right_arm_gripper",
|
||||
]
|
||||
|
||||
|
||||
START_ARM_POSE = [
|
||||
0,
|
||||
-0.96,
|
||||
1.16,
|
||||
0,
|
||||
-0.3,
|
||||
0,
|
||||
0.02239,
|
||||
-0.02239,
|
||||
0,
|
||||
-0.96,
|
||||
1.16,
|
||||
0,
|
||||
-0.3,
|
||||
0,
|
||||
0.02239,
|
||||
-0.02239,
|
||||
]
|
||||
|
||||
ASSETS_DIR = Path(__file__).parent.resolve() / "assets" # note: absolute path
|
||||
|
||||
# Left finger position limits (qpos[7]), right_finger = -1 * left_finger
|
||||
MASTER_GRIPPER_POSITION_OPEN = 0.02417
|
||||
MASTER_GRIPPER_POSITION_CLOSE = 0.01244
|
||||
PUPPET_GRIPPER_POSITION_OPEN = 0.05800
|
||||
PUPPET_GRIPPER_POSITION_CLOSE = 0.01844
|
||||
|
||||
# Gripper joint limits (qpos[6])
|
||||
MASTER_GRIPPER_JOINT_OPEN = 0.3083
|
||||
MASTER_GRIPPER_JOINT_CLOSE = -0.6842
|
||||
PUPPET_GRIPPER_JOINT_OPEN = 1.4910
|
||||
PUPPET_GRIPPER_JOINT_CLOSE = -0.6213
|
||||
|
||||
MASTER_GRIPPER_JOINT_MID = (MASTER_GRIPPER_JOINT_OPEN + MASTER_GRIPPER_JOINT_CLOSE) / 2
|
||||
|
||||
############################ Helper functions ############################
|
||||
|
||||
|
||||
def normalize_master_gripper_position(x):
|
||||
return (x - MASTER_GRIPPER_POSITION_CLOSE) / (
|
||||
MASTER_GRIPPER_POSITION_OPEN - MASTER_GRIPPER_POSITION_CLOSE
|
||||
)
|
||||
|
||||
|
||||
def normalize_puppet_gripper_position(x):
|
||||
return (x - PUPPET_GRIPPER_POSITION_CLOSE) / (
|
||||
PUPPET_GRIPPER_POSITION_OPEN - PUPPET_GRIPPER_POSITION_CLOSE
|
||||
)
|
||||
|
||||
|
||||
def unnormalize_master_gripper_position(x):
|
||||
return x * (MASTER_GRIPPER_POSITION_OPEN - MASTER_GRIPPER_POSITION_CLOSE) + MASTER_GRIPPER_POSITION_CLOSE
|
||||
|
||||
|
||||
def unnormalize_puppet_gripper_position(x):
|
||||
return x * (PUPPET_GRIPPER_POSITION_OPEN - PUPPET_GRIPPER_POSITION_CLOSE) + PUPPET_GRIPPER_POSITION_CLOSE
|
||||
|
||||
|
||||
def convert_position_from_master_to_puppet(x):
|
||||
return unnormalize_puppet_gripper_position(normalize_master_gripper_position(x))
|
||||
|
||||
|
||||
def normalizer_master_gripper_joint(x):
|
||||
return (x - MASTER_GRIPPER_JOINT_CLOSE) / (MASTER_GRIPPER_JOINT_OPEN - MASTER_GRIPPER_JOINT_CLOSE)
|
||||
|
||||
|
||||
def normalize_puppet_gripper_joint(x):
|
||||
return (x - PUPPET_GRIPPER_JOINT_CLOSE) / (PUPPET_GRIPPER_JOINT_OPEN - PUPPET_GRIPPER_JOINT_CLOSE)
|
||||
|
||||
|
||||
def unnormalize_master_gripper_joint(x):
|
||||
return x * (MASTER_GRIPPER_JOINT_OPEN - MASTER_GRIPPER_JOINT_CLOSE) + MASTER_GRIPPER_JOINT_CLOSE
|
||||
|
||||
|
||||
def unnormalize_puppet_gripper_joint(x):
|
||||
return x * (PUPPET_GRIPPER_JOINT_OPEN - PUPPET_GRIPPER_JOINT_CLOSE) + PUPPET_GRIPPER_JOINT_CLOSE
|
||||
|
||||
|
||||
def convert_join_from_master_to_puppet(x):
|
||||
return unnormalize_puppet_gripper_joint(normalizer_master_gripper_joint(x))
|
||||
|
||||
|
||||
def normalize_master_gripper_velocity(x):
|
||||
return x / (MASTER_GRIPPER_POSITION_OPEN - MASTER_GRIPPER_POSITION_CLOSE)
|
||||
|
||||
|
||||
def normalize_puppet_gripper_velocity(x):
|
||||
return x / (PUPPET_GRIPPER_POSITION_OPEN - PUPPET_GRIPPER_POSITION_CLOSE)
|
||||
|
||||
|
||||
def convert_master_from_position_to_joint(x):
|
||||
return (
|
||||
normalize_master_gripper_position(x) * (MASTER_GRIPPER_JOINT_OPEN - MASTER_GRIPPER_JOINT_CLOSE)
|
||||
+ MASTER_GRIPPER_JOINT_CLOSE
|
||||
)
|
||||
|
||||
|
||||
def convert_master_from_joint_to_position(x):
|
||||
return unnormalize_master_gripper_position(
|
||||
(x - MASTER_GRIPPER_JOINT_CLOSE) / (MASTER_GRIPPER_JOINT_OPEN - MASTER_GRIPPER_JOINT_CLOSE)
|
||||
)
|
||||
|
||||
|
||||
def convert_puppet_from_position_to_join(x):
|
||||
return (
|
||||
normalize_puppet_gripper_position(x) * (PUPPET_GRIPPER_JOINT_OPEN - PUPPET_GRIPPER_JOINT_CLOSE)
|
||||
+ PUPPET_GRIPPER_JOINT_CLOSE
|
||||
)
|
||||
|
||||
|
||||
def convert_puppet_from_joint_to_position(x):
|
||||
return unnormalize_puppet_gripper_position(
|
||||
(x - PUPPET_GRIPPER_JOINT_CLOSE) / (PUPPET_GRIPPER_JOINT_OPEN - PUPPET_GRIPPER_JOINT_CLOSE)
|
||||
)
|
||||
@@ -1,311 +0,0 @@
|
||||
import importlib
|
||||
import logging
|
||||
from collections import deque
|
||||
from typing import Optional
|
||||
|
||||
import einops
|
||||
import numpy as np
|
||||
import torch
|
||||
from dm_control import mujoco
|
||||
from dm_control.rl import control
|
||||
from tensordict import TensorDict
|
||||
from torchrl.data.tensor_specs import (
|
||||
BoundedTensorSpec,
|
||||
CompositeSpec,
|
||||
DiscreteTensorSpec,
|
||||
UnboundedContinuousTensorSpec,
|
||||
)
|
||||
|
||||
from lerobot.common.envs.abstract import AbstractEnv
|
||||
from lerobot.common.envs.aloha.constants import (
|
||||
ACTIONS,
|
||||
ASSETS_DIR,
|
||||
DT,
|
||||
JOINTS,
|
||||
)
|
||||
from lerobot.common.envs.aloha.tasks.sim import BOX_POSE, InsertionTask, TransferCubeTask
|
||||
from lerobot.common.envs.aloha.tasks.sim_end_effector import (
|
||||
InsertionEndEffectorTask,
|
||||
TransferCubeEndEffectorTask,
|
||||
)
|
||||
from lerobot.common.envs.aloha.utils import sample_box_pose, sample_insertion_pose
|
||||
from lerobot.common.utils import set_seed
|
||||
|
||||
_has_gym = importlib.util.find_spec("gym") is not None
|
||||
|
||||
|
||||
class AlohaEnv(AbstractEnv):
|
||||
def __init__(
|
||||
self,
|
||||
task,
|
||||
frame_skip: int = 1,
|
||||
from_pixels: bool = False,
|
||||
pixels_only: bool = False,
|
||||
image_size=None,
|
||||
seed=1337,
|
||||
device="cpu",
|
||||
num_prev_obs=1,
|
||||
num_prev_action=0,
|
||||
):
|
||||
super().__init__(
|
||||
task=task,
|
||||
frame_skip=frame_skip,
|
||||
from_pixels=from_pixels,
|
||||
pixels_only=pixels_only,
|
||||
image_size=image_size,
|
||||
seed=seed,
|
||||
device=device,
|
||||
num_prev_obs=num_prev_obs,
|
||||
num_prev_action=num_prev_action,
|
||||
)
|
||||
|
||||
def _make_env(self):
|
||||
if not _has_gym:
|
||||
raise ImportError("Cannot import gym.")
|
||||
|
||||
if not self.from_pixels:
|
||||
raise NotImplementedError()
|
||||
|
||||
self._env = self._make_env_task(self.task)
|
||||
|
||||
def render(self, mode="rgb_array", width=640, height=480):
|
||||
# TODO(rcadene): render and visualizer several cameras (e.g. angle, front_close)
|
||||
image = self._env.physics.render(height=height, width=width, camera_id="top")
|
||||
return image
|
||||
|
||||
def _make_env_task(self, task_name):
|
||||
# time limit is controlled by StepCounter in env factory
|
||||
time_limit = float("inf")
|
||||
|
||||
if "sim_transfer_cube" in task_name:
|
||||
xml_path = ASSETS_DIR / "bimanual_viperx_transfer_cube.xml"
|
||||
physics = mujoco.Physics.from_xml_path(str(xml_path))
|
||||
task = TransferCubeTask(random=False)
|
||||
elif "sim_insertion" in task_name:
|
||||
xml_path = ASSETS_DIR / "bimanual_viperx_insertion.xml"
|
||||
physics = mujoco.Physics.from_xml_path(str(xml_path))
|
||||
task = InsertionTask(random=False)
|
||||
elif "sim_end_effector_transfer_cube" in task_name:
|
||||
raise NotImplementedError()
|
||||
xml_path = ASSETS_DIR / "bimanual_viperx_end_effector_transfer_cube.xml"
|
||||
physics = mujoco.Physics.from_xml_path(str(xml_path))
|
||||
task = TransferCubeEndEffectorTask(random=False)
|
||||
elif "sim_end_effector_insertion" in task_name:
|
||||
raise NotImplementedError()
|
||||
xml_path = ASSETS_DIR / "bimanual_viperx_end_effector_insertion.xml"
|
||||
physics = mujoco.Physics.from_xml_path(str(xml_path))
|
||||
task = InsertionEndEffectorTask(random=False)
|
||||
else:
|
||||
raise NotImplementedError(task_name)
|
||||
|
||||
env = control.Environment(
|
||||
physics, task, time_limit, control_timestep=DT, n_sub_steps=None, flat_observation=False
|
||||
)
|
||||
return env
|
||||
|
||||
def _format_raw_obs(self, raw_obs):
|
||||
if self.from_pixels:
|
||||
image = torch.from_numpy(raw_obs["images"]["top"].copy())
|
||||
image = einops.rearrange(image, "h w c -> c h w")
|
||||
assert image.dtype == torch.uint8
|
||||
obs = {"image": {"top": image}}
|
||||
|
||||
if not self.pixels_only:
|
||||
obs["state"] = torch.from_numpy(raw_obs["qpos"]).type(torch.float32)
|
||||
else:
|
||||
# TODO(rcadene):
|
||||
raise NotImplementedError()
|
||||
# obs = {"state": torch.from_numpy(raw_obs["observation"]).type(torch.float32)}
|
||||
|
||||
return obs
|
||||
|
||||
def _reset(self, tensordict: Optional[TensorDict] = None):
|
||||
td = tensordict
|
||||
if td is None or td.is_empty():
|
||||
# we need to handle seed iteration, since self._env.reset() rely an internal _seed.
|
||||
self._current_seed += 1
|
||||
self.set_seed(self._current_seed)
|
||||
|
||||
# TODO(rcadene): do not use global variable for this
|
||||
if "sim_transfer_cube" in self.task:
|
||||
BOX_POSE[0] = sample_box_pose() # used in sim reset
|
||||
elif "sim_insertion" in self.task:
|
||||
BOX_POSE[0] = np.concatenate(sample_insertion_pose()) # used in sim reset
|
||||
|
||||
raw_obs = self._env.reset()
|
||||
# TODO(rcadene): add assert
|
||||
# assert self._current_seed == self._env._seed
|
||||
|
||||
obs = self._format_raw_obs(raw_obs.observation)
|
||||
|
||||
if self.num_prev_obs > 0:
|
||||
stacked_obs = {}
|
||||
if "image" in obs:
|
||||
self._prev_obs_image_queue = deque(
|
||||
[obs["image"]["top"]] * (self.num_prev_obs + 1), maxlen=(self.num_prev_obs + 1)
|
||||
)
|
||||
stacked_obs["image"] = {"top": torch.stack(list(self._prev_obs_image_queue))}
|
||||
if "state" in obs:
|
||||
self._prev_obs_state_queue = deque(
|
||||
[obs["state"]] * (self.num_prev_obs + 1), maxlen=(self.num_prev_obs + 1)
|
||||
)
|
||||
stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue))
|
||||
obs = stacked_obs
|
||||
|
||||
td = TensorDict(
|
||||
{
|
||||
"observation": TensorDict(obs, batch_size=[]),
|
||||
"done": torch.tensor([False], dtype=torch.bool),
|
||||
},
|
||||
batch_size=[],
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
|
||||
self.call_rendering_hooks()
|
||||
return td
|
||||
|
||||
def _step(self, tensordict: TensorDict):
|
||||
td = tensordict
|
||||
action = td["action"].numpy()
|
||||
# step expects shape=(4,) so we pad if necessary
|
||||
# TODO(rcadene): add info["is_success"] and info["success"] ?
|
||||
sum_reward = 0
|
||||
|
||||
if action.ndim == 1:
|
||||
action = einops.repeat(action, "c -> t c", t=self.frame_skip)
|
||||
else:
|
||||
if self.frame_skip > 1:
|
||||
raise NotImplementedError()
|
||||
|
||||
num_action_steps = action.shape[0]
|
||||
for i in range(num_action_steps):
|
||||
_, reward, discount, raw_obs = self._env.step(action[i])
|
||||
del discount # not used
|
||||
|
||||
# TOOD(rcadene): add an enum
|
||||
success = done = reward == 4
|
||||
sum_reward += reward
|
||||
obs = self._format_raw_obs(raw_obs)
|
||||
|
||||
if self.num_prev_obs > 0:
|
||||
stacked_obs = {}
|
||||
if "image" in obs:
|
||||
self._prev_obs_image_queue.append(obs["image"]["top"])
|
||||
stacked_obs["image"] = {"top": torch.stack(list(self._prev_obs_image_queue))}
|
||||
if "state" in obs:
|
||||
self._prev_obs_state_queue.append(obs["state"])
|
||||
stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue))
|
||||
obs = stacked_obs
|
||||
|
||||
self.call_rendering_hooks()
|
||||
|
||||
td = TensorDict(
|
||||
{
|
||||
"observation": TensorDict(obs, batch_size=[]),
|
||||
"reward": torch.tensor([sum_reward], dtype=torch.float32),
|
||||
# succes and done are true when coverage > self.success_threshold in env
|
||||
"done": torch.tensor([done], dtype=torch.bool),
|
||||
"success": torch.tensor([success], dtype=torch.bool),
|
||||
},
|
||||
batch_size=[],
|
||||
)
|
||||
return td
|
||||
|
||||
def _make_spec(self):
|
||||
obs = {}
|
||||
from omegaconf import OmegaConf
|
||||
|
||||
if self.from_pixels:
|
||||
if isinstance(self.image_size, int):
|
||||
image_shape = (3, self.image_size, self.image_size)
|
||||
elif OmegaConf.is_list(self.image_size):
|
||||
assert len(self.image_size) == 3 # c h w
|
||||
assert self.image_size[0] == 3 # c is RGB
|
||||
image_shape = tuple(self.image_size)
|
||||
else:
|
||||
raise ValueError(self.image_size)
|
||||
if self.num_prev_obs > 0:
|
||||
image_shape = (self.num_prev_obs + 1, *image_shape)
|
||||
|
||||
obs["image"] = {
|
||||
"top": BoundedTensorSpec(
|
||||
low=0,
|
||||
high=255,
|
||||
shape=image_shape,
|
||||
dtype=torch.uint8,
|
||||
device=self.device,
|
||||
)
|
||||
}
|
||||
if not self.pixels_only:
|
||||
state_shape = (len(JOINTS),)
|
||||
if self.num_prev_obs > 0:
|
||||
state_shape = (self.num_prev_obs + 1, *state_shape)
|
||||
|
||||
obs["state"] = UnboundedContinuousTensorSpec(
|
||||
# TODO: add low and high bounds
|
||||
shape=state_shape,
|
||||
dtype=torch.float32,
|
||||
device=self.device,
|
||||
)
|
||||
else:
|
||||
# TODO(rcadene): add observation_space achieved_goal and desired_goal?
|
||||
state_shape = (len(JOINTS),)
|
||||
if self.num_prev_obs > 0:
|
||||
state_shape = (self.num_prev_obs + 1, *state_shape)
|
||||
|
||||
obs["state"] = UnboundedContinuousTensorSpec(
|
||||
# TODO: add low and high bounds
|
||||
shape=state_shape,
|
||||
dtype=torch.float32,
|
||||
device=self.device,
|
||||
)
|
||||
self.observation_spec = CompositeSpec({"observation": obs})
|
||||
|
||||
# TODO(rcadene): valid when controling end effector?
|
||||
# action_space = self._env.action_spec()
|
||||
# self.action_spec = BoundedTensorSpec(
|
||||
# low=action_space.minimum,
|
||||
# high=action_space.maximum,
|
||||
# shape=action_space.shape,
|
||||
# dtype=torch.float32,
|
||||
# device=self.device,
|
||||
# )
|
||||
|
||||
# TODO(rcaene): add bounds (where are they????)
|
||||
self.action_spec = BoundedTensorSpec(
|
||||
shape=(len(ACTIONS)),
|
||||
low=-1,
|
||||
high=1,
|
||||
dtype=torch.float32,
|
||||
device=self.device,
|
||||
)
|
||||
|
||||
self.reward_spec = UnboundedContinuousTensorSpec(
|
||||
shape=(1,),
|
||||
dtype=torch.float32,
|
||||
device=self.device,
|
||||
)
|
||||
|
||||
self.done_spec = CompositeSpec(
|
||||
{
|
||||
"done": DiscreteTensorSpec(
|
||||
2,
|
||||
shape=(1,),
|
||||
dtype=torch.bool,
|
||||
device=self.device,
|
||||
),
|
||||
"success": DiscreteTensorSpec(
|
||||
2,
|
||||
shape=(1,),
|
||||
dtype=torch.bool,
|
||||
device=self.device,
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
def _set_seed(self, seed: Optional[int]):
|
||||
set_seed(seed)
|
||||
# TODO(rcadene): seed the env
|
||||
# self._env.seed(seed)
|
||||
logging.warning("Aloha env is not seeded")
|
||||
@@ -1,219 +0,0 @@
|
||||
import collections
|
||||
|
||||
import numpy as np
|
||||
from dm_control.suite import base
|
||||
|
||||
from lerobot.common.envs.aloha.constants import (
|
||||
START_ARM_POSE,
|
||||
normalize_puppet_gripper_position,
|
||||
normalize_puppet_gripper_velocity,
|
||||
unnormalize_puppet_gripper_position,
|
||||
)
|
||||
|
||||
BOX_POSE = [None] # to be changed from outside
|
||||
|
||||
"""
|
||||
Environment for simulated robot bi-manual manipulation, with joint position control
|
||||
Action space: [left_arm_qpos (6), # absolute joint position
|
||||
left_gripper_positions (1), # normalized gripper position (0: close, 1: open)
|
||||
right_arm_qpos (6), # absolute joint position
|
||||
right_gripper_positions (1),] # normalized gripper position (0: close, 1: open)
|
||||
|
||||
Observation space: {"qpos": Concat[ left_arm_qpos (6), # absolute joint position
|
||||
left_gripper_position (1), # normalized gripper position (0: close, 1: open)
|
||||
right_arm_qpos (6), # absolute joint position
|
||||
right_gripper_qpos (1)] # normalized gripper position (0: close, 1: open)
|
||||
"qvel": Concat[ left_arm_qvel (6), # absolute joint velocity (rad)
|
||||
left_gripper_velocity (1), # normalized gripper velocity (pos: opening, neg: closing)
|
||||
right_arm_qvel (6), # absolute joint velocity (rad)
|
||||
right_gripper_qvel (1)] # normalized gripper velocity (pos: opening, neg: closing)
|
||||
"images": {"main": (480x640x3)} # h, w, c, dtype='uint8'
|
||||
"""
|
||||
|
||||
|
||||
class BimanualViperXTask(base.Task):
|
||||
def __init__(self, random=None):
|
||||
super().__init__(random=random)
|
||||
|
||||
def before_step(self, action, physics):
|
||||
left_arm_action = action[:6]
|
||||
right_arm_action = action[7 : 7 + 6]
|
||||
normalized_left_gripper_action = action[6]
|
||||
normalized_right_gripper_action = action[7 + 6]
|
||||
|
||||
left_gripper_action = unnormalize_puppet_gripper_position(normalized_left_gripper_action)
|
||||
right_gripper_action = unnormalize_puppet_gripper_position(normalized_right_gripper_action)
|
||||
|
||||
full_left_gripper_action = [left_gripper_action, -left_gripper_action]
|
||||
full_right_gripper_action = [right_gripper_action, -right_gripper_action]
|
||||
|
||||
env_action = np.concatenate(
|
||||
[left_arm_action, full_left_gripper_action, right_arm_action, full_right_gripper_action]
|
||||
)
|
||||
super().before_step(env_action, physics)
|
||||
return
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Sets the state of the environment at the start of each episode."""
|
||||
super().initialize_episode(physics)
|
||||
|
||||
@staticmethod
|
||||
def get_qpos(physics):
|
||||
qpos_raw = physics.data.qpos.copy()
|
||||
left_qpos_raw = qpos_raw[:8]
|
||||
right_qpos_raw = qpos_raw[8:16]
|
||||
left_arm_qpos = left_qpos_raw[:6]
|
||||
right_arm_qpos = right_qpos_raw[:6]
|
||||
left_gripper_qpos = [normalize_puppet_gripper_position(left_qpos_raw[6])]
|
||||
right_gripper_qpos = [normalize_puppet_gripper_position(right_qpos_raw[6])]
|
||||
return np.concatenate([left_arm_qpos, left_gripper_qpos, right_arm_qpos, right_gripper_qpos])
|
||||
|
||||
@staticmethod
|
||||
def get_qvel(physics):
|
||||
qvel_raw = physics.data.qvel.copy()
|
||||
left_qvel_raw = qvel_raw[:8]
|
||||
right_qvel_raw = qvel_raw[8:16]
|
||||
left_arm_qvel = left_qvel_raw[:6]
|
||||
right_arm_qvel = right_qvel_raw[:6]
|
||||
left_gripper_qvel = [normalize_puppet_gripper_velocity(left_qvel_raw[6])]
|
||||
right_gripper_qvel = [normalize_puppet_gripper_velocity(right_qvel_raw[6])]
|
||||
return np.concatenate([left_arm_qvel, left_gripper_qvel, right_arm_qvel, right_gripper_qvel])
|
||||
|
||||
@staticmethod
|
||||
def get_env_state(physics):
|
||||
raise NotImplementedError
|
||||
|
||||
def get_observation(self, physics):
|
||||
obs = collections.OrderedDict()
|
||||
obs["qpos"] = self.get_qpos(physics)
|
||||
obs["qvel"] = self.get_qvel(physics)
|
||||
obs["env_state"] = self.get_env_state(physics)
|
||||
obs["images"] = {}
|
||||
obs["images"]["top"] = physics.render(height=480, width=640, camera_id="top")
|
||||
obs["images"]["angle"] = physics.render(height=480, width=640, camera_id="angle")
|
||||
obs["images"]["vis"] = physics.render(height=480, width=640, camera_id="front_close")
|
||||
|
||||
return obs
|
||||
|
||||
def get_reward(self, physics):
|
||||
# return whether left gripper is holding the box
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class TransferCubeTask(BimanualViperXTask):
|
||||
def __init__(self, random=None):
|
||||
super().__init__(random=random)
|
||||
self.max_reward = 4
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Sets the state of the environment at the start of each episode."""
|
||||
# TODO Notice: this function does not randomize the env configuration. Instead, set BOX_POSE from outside
|
||||
# reset qpos, control and box position
|
||||
with physics.reset_context():
|
||||
physics.named.data.qpos[:16] = START_ARM_POSE
|
||||
np.copyto(physics.data.ctrl, START_ARM_POSE)
|
||||
assert BOX_POSE[0] is not None
|
||||
physics.named.data.qpos[-7:] = BOX_POSE[0]
|
||||
# print(f"{BOX_POSE=}")
|
||||
super().initialize_episode(physics)
|
||||
|
||||
@staticmethod
|
||||
def get_env_state(physics):
|
||||
env_state = physics.data.qpos.copy()[16:]
|
||||
return env_state
|
||||
|
||||
def get_reward(self, physics):
|
||||
# return whether left gripper is holding the box
|
||||
all_contact_pairs = []
|
||||
for i_contact in range(physics.data.ncon):
|
||||
id_geom_1 = physics.data.contact[i_contact].geom1
|
||||
id_geom_2 = physics.data.contact[i_contact].geom2
|
||||
name_geom_1 = physics.model.id2name(id_geom_1, "geom")
|
||||
name_geom_2 = physics.model.id2name(id_geom_2, "geom")
|
||||
contact_pair = (name_geom_1, name_geom_2)
|
||||
all_contact_pairs.append(contact_pair)
|
||||
|
||||
touch_left_gripper = ("red_box", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
|
||||
touch_right_gripper = ("red_box", "vx300s_right/10_right_gripper_finger") in all_contact_pairs
|
||||
touch_table = ("red_box", "table") in all_contact_pairs
|
||||
|
||||
reward = 0
|
||||
if touch_right_gripper:
|
||||
reward = 1
|
||||
if touch_right_gripper and not touch_table: # lifted
|
||||
reward = 2
|
||||
if touch_left_gripper: # attempted transfer
|
||||
reward = 3
|
||||
if touch_left_gripper and not touch_table: # successful transfer
|
||||
reward = 4
|
||||
return reward
|
||||
|
||||
|
||||
class InsertionTask(BimanualViperXTask):
|
||||
def __init__(self, random=None):
|
||||
super().__init__(random=random)
|
||||
self.max_reward = 4
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Sets the state of the environment at the start of each episode."""
|
||||
# TODO Notice: this function does not randomize the env configuration. Instead, set BOX_POSE from outside
|
||||
# reset qpos, control and box position
|
||||
with physics.reset_context():
|
||||
physics.named.data.qpos[:16] = START_ARM_POSE
|
||||
np.copyto(physics.data.ctrl, START_ARM_POSE)
|
||||
assert BOX_POSE[0] is not None
|
||||
physics.named.data.qpos[-7 * 2 :] = BOX_POSE[0] # two objects
|
||||
# print(f"{BOX_POSE=}")
|
||||
super().initialize_episode(physics)
|
||||
|
||||
@staticmethod
|
||||
def get_env_state(physics):
|
||||
env_state = physics.data.qpos.copy()[16:]
|
||||
return env_state
|
||||
|
||||
def get_reward(self, physics):
|
||||
# return whether peg touches the pin
|
||||
all_contact_pairs = []
|
||||
for i_contact in range(physics.data.ncon):
|
||||
id_geom_1 = physics.data.contact[i_contact].geom1
|
||||
id_geom_2 = physics.data.contact[i_contact].geom2
|
||||
name_geom_1 = physics.model.id2name(id_geom_1, "geom")
|
||||
name_geom_2 = physics.model.id2name(id_geom_2, "geom")
|
||||
contact_pair = (name_geom_1, name_geom_2)
|
||||
all_contact_pairs.append(contact_pair)
|
||||
|
||||
touch_right_gripper = ("red_peg", "vx300s_right/10_right_gripper_finger") in all_contact_pairs
|
||||
touch_left_gripper = (
|
||||
("socket-1", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
|
||||
or ("socket-2", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
|
||||
or ("socket-3", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
|
||||
or ("socket-4", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
|
||||
)
|
||||
|
||||
peg_touch_table = ("red_peg", "table") in all_contact_pairs
|
||||
socket_touch_table = (
|
||||
("socket-1", "table") in all_contact_pairs
|
||||
or ("socket-2", "table") in all_contact_pairs
|
||||
or ("socket-3", "table") in all_contact_pairs
|
||||
or ("socket-4", "table") in all_contact_pairs
|
||||
)
|
||||
peg_touch_socket = (
|
||||
("red_peg", "socket-1") in all_contact_pairs
|
||||
or ("red_peg", "socket-2") in all_contact_pairs
|
||||
or ("red_peg", "socket-3") in all_contact_pairs
|
||||
or ("red_peg", "socket-4") in all_contact_pairs
|
||||
)
|
||||
pin_touched = ("red_peg", "pin") in all_contact_pairs
|
||||
|
||||
reward = 0
|
||||
if touch_left_gripper and touch_right_gripper: # touch both
|
||||
reward = 1
|
||||
if (
|
||||
touch_left_gripper and touch_right_gripper and (not peg_touch_table) and (not socket_touch_table)
|
||||
): # grasp both
|
||||
reward = 2
|
||||
if peg_touch_socket and (not peg_touch_table) and (not socket_touch_table): # peg and socket touching
|
||||
reward = 3
|
||||
if pin_touched: # successful insertion
|
||||
reward = 4
|
||||
return reward
|
||||
@@ -1,263 +0,0 @@
|
||||
import collections
|
||||
|
||||
import numpy as np
|
||||
from dm_control.suite import base
|
||||
|
||||
from lerobot.common.envs.aloha.constants import (
|
||||
PUPPET_GRIPPER_POSITION_CLOSE,
|
||||
START_ARM_POSE,
|
||||
normalize_puppet_gripper_position,
|
||||
normalize_puppet_gripper_velocity,
|
||||
unnormalize_puppet_gripper_position,
|
||||
)
|
||||
from lerobot.common.envs.aloha.utils import sample_box_pose, sample_insertion_pose
|
||||
|
||||
"""
|
||||
Environment for simulated robot bi-manual manipulation, with end-effector control.
|
||||
Action space: [left_arm_pose (7), # position and quaternion for end effector
|
||||
left_gripper_positions (1), # normalized gripper position (0: close, 1: open)
|
||||
right_arm_pose (7), # position and quaternion for end effector
|
||||
right_gripper_positions (1),] # normalized gripper position (0: close, 1: open)
|
||||
|
||||
Observation space: {"qpos": Concat[ left_arm_qpos (6), # absolute joint position
|
||||
left_gripper_position (1), # normalized gripper position (0: close, 1: open)
|
||||
right_arm_qpos (6), # absolute joint position
|
||||
right_gripper_qpos (1)] # normalized gripper position (0: close, 1: open)
|
||||
"qvel": Concat[ left_arm_qvel (6), # absolute joint velocity (rad)
|
||||
left_gripper_velocity (1), # normalized gripper velocity (pos: opening, neg: closing)
|
||||
right_arm_qvel (6), # absolute joint velocity (rad)
|
||||
right_gripper_qvel (1)] # normalized gripper velocity (pos: opening, neg: closing)
|
||||
"images": {"main": (480x640x3)} # h, w, c, dtype='uint8'
|
||||
"""
|
||||
|
||||
|
||||
class BimanualViperXEndEffectorTask(base.Task):
|
||||
def __init__(self, random=None):
|
||||
super().__init__(random=random)
|
||||
|
||||
def before_step(self, action, physics):
|
||||
a_len = len(action) // 2
|
||||
action_left = action[:a_len]
|
||||
action_right = action[a_len:]
|
||||
|
||||
# set mocap position and quat
|
||||
# left
|
||||
np.copyto(physics.data.mocap_pos[0], action_left[:3])
|
||||
np.copyto(physics.data.mocap_quat[0], action_left[3:7])
|
||||
# right
|
||||
np.copyto(physics.data.mocap_pos[1], action_right[:3])
|
||||
np.copyto(physics.data.mocap_quat[1], action_right[3:7])
|
||||
|
||||
# set gripper
|
||||
g_left_ctrl = unnormalize_puppet_gripper_position(action_left[7])
|
||||
g_right_ctrl = unnormalize_puppet_gripper_position(action_right[7])
|
||||
np.copyto(physics.data.ctrl, np.array([g_left_ctrl, -g_left_ctrl, g_right_ctrl, -g_right_ctrl]))
|
||||
|
||||
def initialize_robots(self, physics):
|
||||
# reset joint position
|
||||
physics.named.data.qpos[:16] = START_ARM_POSE
|
||||
|
||||
# reset mocap to align with end effector
|
||||
# to obtain these numbers:
|
||||
# (1) make an ee_sim env and reset to the same start_pose
|
||||
# (2) get env._physics.named.data.xpos['vx300s_left/gripper_link']
|
||||
# get env._physics.named.data.xquat['vx300s_left/gripper_link']
|
||||
# repeat the same for right side
|
||||
np.copyto(physics.data.mocap_pos[0], [-0.31718881, 0.5, 0.29525084])
|
||||
np.copyto(physics.data.mocap_quat[0], [1, 0, 0, 0])
|
||||
# right
|
||||
np.copyto(physics.data.mocap_pos[1], np.array([0.31718881, 0.49999888, 0.29525084]))
|
||||
np.copyto(physics.data.mocap_quat[1], [1, 0, 0, 0])
|
||||
|
||||
# reset gripper control
|
||||
close_gripper_control = np.array(
|
||||
[
|
||||
PUPPET_GRIPPER_POSITION_CLOSE,
|
||||
-PUPPET_GRIPPER_POSITION_CLOSE,
|
||||
PUPPET_GRIPPER_POSITION_CLOSE,
|
||||
-PUPPET_GRIPPER_POSITION_CLOSE,
|
||||
]
|
||||
)
|
||||
np.copyto(physics.data.ctrl, close_gripper_control)
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Sets the state of the environment at the start of each episode."""
|
||||
super().initialize_episode(physics)
|
||||
|
||||
@staticmethod
|
||||
def get_qpos(physics):
|
||||
qpos_raw = physics.data.qpos.copy()
|
||||
left_qpos_raw = qpos_raw[:8]
|
||||
right_qpos_raw = qpos_raw[8:16]
|
||||
left_arm_qpos = left_qpos_raw[:6]
|
||||
right_arm_qpos = right_qpos_raw[:6]
|
||||
left_gripper_qpos = [normalize_puppet_gripper_position(left_qpos_raw[6])]
|
||||
right_gripper_qpos = [normalize_puppet_gripper_position(right_qpos_raw[6])]
|
||||
return np.concatenate([left_arm_qpos, left_gripper_qpos, right_arm_qpos, right_gripper_qpos])
|
||||
|
||||
@staticmethod
|
||||
def get_qvel(physics):
|
||||
qvel_raw = physics.data.qvel.copy()
|
||||
left_qvel_raw = qvel_raw[:8]
|
||||
right_qvel_raw = qvel_raw[8:16]
|
||||
left_arm_qvel = left_qvel_raw[:6]
|
||||
right_arm_qvel = right_qvel_raw[:6]
|
||||
left_gripper_qvel = [normalize_puppet_gripper_velocity(left_qvel_raw[6])]
|
||||
right_gripper_qvel = [normalize_puppet_gripper_velocity(right_qvel_raw[6])]
|
||||
return np.concatenate([left_arm_qvel, left_gripper_qvel, right_arm_qvel, right_gripper_qvel])
|
||||
|
||||
@staticmethod
|
||||
def get_env_state(physics):
|
||||
raise NotImplementedError
|
||||
|
||||
def get_observation(self, physics):
|
||||
# note: it is important to do .copy()
|
||||
obs = collections.OrderedDict()
|
||||
obs["qpos"] = self.get_qpos(physics)
|
||||
obs["qvel"] = self.get_qvel(physics)
|
||||
obs["env_state"] = self.get_env_state(physics)
|
||||
obs["images"] = {}
|
||||
obs["images"]["top"] = physics.render(height=480, width=640, camera_id="top")
|
||||
obs["images"]["angle"] = physics.render(height=480, width=640, camera_id="angle")
|
||||
obs["images"]["vis"] = physics.render(height=480, width=640, camera_id="front_close")
|
||||
# used in scripted policy to obtain starting pose
|
||||
obs["mocap_pose_left"] = np.concatenate(
|
||||
[physics.data.mocap_pos[0], physics.data.mocap_quat[0]]
|
||||
).copy()
|
||||
obs["mocap_pose_right"] = np.concatenate(
|
||||
[physics.data.mocap_pos[1], physics.data.mocap_quat[1]]
|
||||
).copy()
|
||||
|
||||
# used when replaying joint trajectory
|
||||
obs["gripper_ctrl"] = physics.data.ctrl.copy()
|
||||
return obs
|
||||
|
||||
def get_reward(self, physics):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class TransferCubeEndEffectorTask(BimanualViperXEndEffectorTask):
|
||||
def __init__(self, random=None):
|
||||
super().__init__(random=random)
|
||||
self.max_reward = 4
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Sets the state of the environment at the start of each episode."""
|
||||
self.initialize_robots(physics)
|
||||
# randomize box position
|
||||
cube_pose = sample_box_pose()
|
||||
box_start_idx = physics.model.name2id("red_box_joint", "joint")
|
||||
np.copyto(physics.data.qpos[box_start_idx : box_start_idx + 7], cube_pose)
|
||||
# print(f"randomized cube position to {cube_position}")
|
||||
|
||||
super().initialize_episode(physics)
|
||||
|
||||
@staticmethod
|
||||
def get_env_state(physics):
|
||||
env_state = physics.data.qpos.copy()[16:]
|
||||
return env_state
|
||||
|
||||
def get_reward(self, physics):
|
||||
# return whether left gripper is holding the box
|
||||
all_contact_pairs = []
|
||||
for i_contact in range(physics.data.ncon):
|
||||
id_geom_1 = physics.data.contact[i_contact].geom1
|
||||
id_geom_2 = physics.data.contact[i_contact].geom2
|
||||
name_geom_1 = physics.model.id2name(id_geom_1, "geom")
|
||||
name_geom_2 = physics.model.id2name(id_geom_2, "geom")
|
||||
contact_pair = (name_geom_1, name_geom_2)
|
||||
all_contact_pairs.append(contact_pair)
|
||||
|
||||
touch_left_gripper = ("red_box", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
|
||||
touch_right_gripper = ("red_box", "vx300s_right/10_right_gripper_finger") in all_contact_pairs
|
||||
touch_table = ("red_box", "table") in all_contact_pairs
|
||||
|
||||
reward = 0
|
||||
if touch_right_gripper:
|
||||
reward = 1
|
||||
if touch_right_gripper and not touch_table: # lifted
|
||||
reward = 2
|
||||
if touch_left_gripper: # attempted transfer
|
||||
reward = 3
|
||||
if touch_left_gripper and not touch_table: # successful transfer
|
||||
reward = 4
|
||||
return reward
|
||||
|
||||
|
||||
class InsertionEndEffectorTask(BimanualViperXEndEffectorTask):
|
||||
def __init__(self, random=None):
|
||||
super().__init__(random=random)
|
||||
self.max_reward = 4
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Sets the state of the environment at the start of each episode."""
|
||||
self.initialize_robots(physics)
|
||||
# randomize peg and socket position
|
||||
peg_pose, socket_pose = sample_insertion_pose()
|
||||
|
||||
def id2index(j_id):
|
||||
return 16 + (j_id - 16) * 7 # first 16 is robot qpos, 7 is pose dim # hacky
|
||||
|
||||
peg_start_id = physics.model.name2id("red_peg_joint", "joint")
|
||||
peg_start_idx = id2index(peg_start_id)
|
||||
np.copyto(physics.data.qpos[peg_start_idx : peg_start_idx + 7], peg_pose)
|
||||
# print(f"randomized cube position to {cube_position}")
|
||||
|
||||
socket_start_id = physics.model.name2id("blue_socket_joint", "joint")
|
||||
socket_start_idx = id2index(socket_start_id)
|
||||
np.copyto(physics.data.qpos[socket_start_idx : socket_start_idx + 7], socket_pose)
|
||||
# print(f"randomized cube position to {cube_position}")
|
||||
|
||||
super().initialize_episode(physics)
|
||||
|
||||
@staticmethod
|
||||
def get_env_state(physics):
|
||||
env_state = physics.data.qpos.copy()[16:]
|
||||
return env_state
|
||||
|
||||
def get_reward(self, physics):
|
||||
# return whether peg touches the pin
|
||||
all_contact_pairs = []
|
||||
for i_contact in range(physics.data.ncon):
|
||||
id_geom_1 = physics.data.contact[i_contact].geom1
|
||||
id_geom_2 = physics.data.contact[i_contact].geom2
|
||||
name_geom_1 = physics.model.id2name(id_geom_1, "geom")
|
||||
name_geom_2 = physics.model.id2name(id_geom_2, "geom")
|
||||
contact_pair = (name_geom_1, name_geom_2)
|
||||
all_contact_pairs.append(contact_pair)
|
||||
|
||||
touch_right_gripper = ("red_peg", "vx300s_right/10_right_gripper_finger") in all_contact_pairs
|
||||
touch_left_gripper = (
|
||||
("socket-1", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
|
||||
or ("socket-2", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
|
||||
or ("socket-3", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
|
||||
or ("socket-4", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
|
||||
)
|
||||
|
||||
peg_touch_table = ("red_peg", "table") in all_contact_pairs
|
||||
socket_touch_table = (
|
||||
("socket-1", "table") in all_contact_pairs
|
||||
or ("socket-2", "table") in all_contact_pairs
|
||||
or ("socket-3", "table") in all_contact_pairs
|
||||
or ("socket-4", "table") in all_contact_pairs
|
||||
)
|
||||
peg_touch_socket = (
|
||||
("red_peg", "socket-1") in all_contact_pairs
|
||||
or ("red_peg", "socket-2") in all_contact_pairs
|
||||
or ("red_peg", "socket-3") in all_contact_pairs
|
||||
or ("red_peg", "socket-4") in all_contact_pairs
|
||||
)
|
||||
pin_touched = ("red_peg", "pin") in all_contact_pairs
|
||||
|
||||
reward = 0
|
||||
if touch_left_gripper and touch_right_gripper: # touch both
|
||||
reward = 1
|
||||
if (
|
||||
touch_left_gripper and touch_right_gripper and (not peg_touch_table) and (not socket_touch_table)
|
||||
): # grasp both
|
||||
reward = 2
|
||||
if peg_touch_socket and (not peg_touch_table) and (not socket_touch_table): # peg and socket touching
|
||||
reward = 3
|
||||
if pin_touched: # successful insertion
|
||||
reward = 4
|
||||
return reward
|
||||
@@ -1,39 +0,0 @@
|
||||
import numpy as np
|
||||
|
||||
|
||||
def sample_box_pose():
|
||||
x_range = [0.0, 0.2]
|
||||
y_range = [0.4, 0.6]
|
||||
z_range = [0.05, 0.05]
|
||||
|
||||
ranges = np.vstack([x_range, y_range, z_range])
|
||||
cube_position = np.random.uniform(ranges[:, 0], ranges[:, 1])
|
||||
|
||||
cube_quat = np.array([1, 0, 0, 0])
|
||||
return np.concatenate([cube_position, cube_quat])
|
||||
|
||||
|
||||
def sample_insertion_pose():
|
||||
# Peg
|
||||
x_range = [0.1, 0.2]
|
||||
y_range = [0.4, 0.6]
|
||||
z_range = [0.05, 0.05]
|
||||
|
||||
ranges = np.vstack([x_range, y_range, z_range])
|
||||
peg_position = np.random.uniform(ranges[:, 0], ranges[:, 1])
|
||||
|
||||
peg_quat = np.array([1, 0, 0, 0])
|
||||
peg_pose = np.concatenate([peg_position, peg_quat])
|
||||
|
||||
# Socket
|
||||
x_range = [-0.2, -0.1]
|
||||
y_range = [0.4, 0.6]
|
||||
z_range = [0.05, 0.05]
|
||||
|
||||
ranges = np.vstack([x_range, y_range, z_range])
|
||||
socket_position = np.random.uniform(ranges[:, 0], ranges[:, 1])
|
||||
|
||||
socket_quat = np.array([1, 0, 0, 0])
|
||||
socket_pose = np.concatenate([socket_position, socket_quat])
|
||||
|
||||
return peg_pose, socket_pose
|
||||
@@ -1,4 +1,4 @@
|
||||
from torchrl.envs.transforms import Compose, StepCounter, Transform, TransformedEnv
|
||||
from torchrl.envs.transforms import StepCounter, TransformedEnv
|
||||
|
||||
|
||||
def make_env(cfg, transform=None):
|
||||
@@ -9,7 +9,6 @@ def make_env(cfg, transform=None):
|
||||
"image_size": cfg.env.image_size,
|
||||
# TODO(rcadene): do we want a specific eval_env_seed?
|
||||
"seed": cfg.seed,
|
||||
"num_prev_obs": cfg.n_obs_steps - 1,
|
||||
}
|
||||
|
||||
if cfg.env.name == "simxarm":
|
||||
@@ -18,16 +17,11 @@ def make_env(cfg, transform=None):
|
||||
kwargs["task"] = cfg.env.task
|
||||
clsfunc = SimxarmEnv
|
||||
elif cfg.env.name == "pusht":
|
||||
from lerobot.common.envs.pusht.env import PushtEnv
|
||||
from lerobot.common.envs.pusht import PushtEnv
|
||||
|
||||
# assert kwargs["seed"] > 200, "Seed 0-200 are used for the demonstration dataset, so we don't want to seed the eval env with this range."
|
||||
|
||||
clsfunc = PushtEnv
|
||||
elif cfg.env.name == "aloha":
|
||||
from lerobot.common.envs.aloha.env import AlohaEnv
|
||||
|
||||
kwargs["task"] = cfg.env.task
|
||||
clsfunc = AlohaEnv
|
||||
else:
|
||||
raise ValueError(cfg.env.name)
|
||||
|
||||
@@ -38,13 +32,7 @@ def make_env(cfg, transform=None):
|
||||
|
||||
if transform is not None:
|
||||
# useful to add normalization
|
||||
if isinstance(transform, Compose):
|
||||
for tf in transform:
|
||||
env.append_transform(tf.clone())
|
||||
elif isinstance(transform, Transform):
|
||||
env.append_transform(transform.clone())
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
env.append_transform(transform)
|
||||
|
||||
return env
|
||||
|
||||
|
||||
@@ -2,7 +2,6 @@ import importlib
|
||||
from collections import deque
|
||||
from typing import Optional
|
||||
|
||||
import einops
|
||||
import torch
|
||||
from tensordict import TensorDict
|
||||
from torchrl.data.tensor_specs import (
|
||||
@@ -11,18 +10,18 @@ from torchrl.data.tensor_specs import (
|
||||
DiscreteTensorSpec,
|
||||
UnboundedContinuousTensorSpec,
|
||||
)
|
||||
from torchrl.envs import EnvBase
|
||||
from torchrl.envs.libs.gym import _gym_to_torchrl_spec_transform
|
||||
|
||||
from lerobot.common.envs.abstract import AbstractEnv
|
||||
from lerobot.common.utils import set_seed
|
||||
|
||||
_has_gym = importlib.util.find_spec("gym") is not None
|
||||
_has_diffpolicy = importlib.util.find_spec("diffusion_policy") is not None and _has_gym
|
||||
|
||||
|
||||
class PushtEnv(AbstractEnv):
|
||||
class PushtEnv(EnvBase):
|
||||
def __init__(
|
||||
self,
|
||||
task="pusht",
|
||||
frame_skip: int = 1,
|
||||
from_pixels: bool = False,
|
||||
pixels_only: bool = False,
|
||||
@@ -32,31 +31,42 @@ class PushtEnv(AbstractEnv):
|
||||
num_prev_obs=1,
|
||||
num_prev_action=0,
|
||||
):
|
||||
super().__init__(
|
||||
task=task,
|
||||
frame_skip=frame_skip,
|
||||
from_pixels=from_pixels,
|
||||
pixels_only=pixels_only,
|
||||
image_size=image_size,
|
||||
seed=seed,
|
||||
device=device,
|
||||
num_prev_obs=num_prev_obs,
|
||||
num_prev_action=num_prev_action,
|
||||
)
|
||||
super().__init__(device=device, batch_size=[])
|
||||
self.frame_skip = frame_skip
|
||||
self.from_pixels = from_pixels
|
||||
self.pixels_only = pixels_only
|
||||
self.image_size = image_size
|
||||
self.num_prev_obs = num_prev_obs
|
||||
self.num_prev_action = num_prev_action
|
||||
|
||||
def _make_env(self):
|
||||
if pixels_only:
|
||||
assert from_pixels
|
||||
if from_pixels:
|
||||
assert image_size
|
||||
|
||||
if not _has_diffpolicy:
|
||||
raise ImportError("Cannot import diffusion_policy.")
|
||||
if not _has_gym:
|
||||
raise ImportError("Cannot import gym.")
|
||||
|
||||
# TODO(rcadene) (PushTEnv is similar to PushTImageEnv, but without the image rendering, it's faster to iterate on)
|
||||
# from lerobot.common.envs.pusht.pusht_env import PushTEnv
|
||||
# from diffusion_policy.env.pusht.pusht_env import PushTEnv
|
||||
|
||||
if not self.from_pixels:
|
||||
if not from_pixels:
|
||||
raise NotImplementedError("Use PushTEnv, instead of PushTImageEnv")
|
||||
from lerobot.common.envs.pusht.pusht_image_env import PushTImageEnv
|
||||
from diffusion_policy.env.pusht.pusht_image_env import PushTImageEnv
|
||||
|
||||
self._env = PushTImageEnv(render_size=self.image_size)
|
||||
|
||||
self._make_spec()
|
||||
self._current_seed = self.set_seed(seed)
|
||||
|
||||
if self.num_prev_obs > 0:
|
||||
self._prev_obs_image_queue = deque(maxlen=self.num_prev_obs)
|
||||
self._prev_obs_state_queue = deque(maxlen=self.num_prev_obs)
|
||||
if self.num_prev_action > 0:
|
||||
self._prev_action_queue = deque(maxlen=self.num_prev_action)
|
||||
|
||||
def render(self, mode="rgb_array", width=384, height=384):
|
||||
if width != height:
|
||||
raise NotImplementedError()
|
||||
@@ -113,8 +123,6 @@ class PushtEnv(AbstractEnv):
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
|
||||
self.call_rendering_hooks()
|
||||
return td
|
||||
|
||||
def _step(self, tensordict: TensorDict):
|
||||
@@ -125,7 +133,7 @@ class PushtEnv(AbstractEnv):
|
||||
sum_reward = 0
|
||||
|
||||
if action.ndim == 1:
|
||||
action = einops.repeat(action, "c -> t c", t=self.frame_skip)
|
||||
action = action.repeat(self.frame_skip, 1)
|
||||
else:
|
||||
if self.frame_skip > 1:
|
||||
raise NotImplementedError()
|
||||
@@ -147,8 +155,6 @@ class PushtEnv(AbstractEnv):
|
||||
stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue))
|
||||
obs = stacked_obs
|
||||
|
||||
self.call_rendering_hooks()
|
||||
|
||||
td = TensorDict(
|
||||
{
|
||||
"observation": TensorDict(obs, batch_size=[]),
|
||||
@@ -166,24 +172,24 @@ class PushtEnv(AbstractEnv):
|
||||
if self.from_pixels:
|
||||
image_shape = (3, self.image_size, self.image_size)
|
||||
if self.num_prev_obs > 0:
|
||||
image_shape = (self.num_prev_obs + 1, *image_shape)
|
||||
image_shape = (self.num_prev_obs, *image_shape)
|
||||
|
||||
obs["image"] = BoundedTensorSpec(
|
||||
low=0,
|
||||
high=255,
|
||||
high=1,
|
||||
shape=image_shape,
|
||||
dtype=torch.uint8,
|
||||
dtype=torch.float32,
|
||||
device=self.device,
|
||||
)
|
||||
if not self.pixels_only:
|
||||
state_shape = self._env.observation_space["agent_pos"].shape
|
||||
if self.num_prev_obs > 0:
|
||||
state_shape = (self.num_prev_obs + 1, *state_shape)
|
||||
state_shape = (self.num_prev_obs, *state_shape)
|
||||
|
||||
obs["state"] = BoundedTensorSpec(
|
||||
low=0,
|
||||
high=512,
|
||||
shape=state_shape,
|
||||
shape=self._env.observation_space["agent_pos"].shape,
|
||||
dtype=torch.float32,
|
||||
device=self.device,
|
||||
)
|
||||
@@ -191,11 +197,11 @@ class PushtEnv(AbstractEnv):
|
||||
# TODO(rcadene): add observation_space achieved_goal and desired_goal?
|
||||
state_shape = self._env.observation_space["observation"].shape
|
||||
if self.num_prev_obs > 0:
|
||||
state_shape = (self.num_prev_obs + 1, *state_shape)
|
||||
state_shape = (self.num_prev_obs, *state_shape)
|
||||
|
||||
obs["state"] = UnboundedContinuousTensorSpec(
|
||||
# TODO:
|
||||
shape=state_shape,
|
||||
shape=self._env.observation_space["observation"].shape,
|
||||
dtype=torch.float32,
|
||||
device=self.device,
|
||||
)
|
||||
@@ -1,378 +0,0 @@
|
||||
import collections
|
||||
|
||||
import cv2
|
||||
import gym
|
||||
import numpy as np
|
||||
import pygame
|
||||
import pymunk
|
||||
import pymunk.pygame_util
|
||||
import shapely.geometry as sg
|
||||
import skimage.transform as st
|
||||
from gym import spaces
|
||||
from pymunk.vec2d import Vec2d
|
||||
|
||||
from lerobot.common.envs.pusht.pymunk_override import DrawOptions
|
||||
|
||||
|
||||
def pymunk_to_shapely(body, shapes):
|
||||
geoms = []
|
||||
for shape in shapes:
|
||||
if isinstance(shape, pymunk.shapes.Poly):
|
||||
verts = [body.local_to_world(v) for v in shape.get_vertices()]
|
||||
verts += [verts[0]]
|
||||
geoms.append(sg.Polygon(verts))
|
||||
else:
|
||||
raise RuntimeError(f"Unsupported shape type {type(shape)}")
|
||||
geom = sg.MultiPolygon(geoms)
|
||||
return geom
|
||||
|
||||
|
||||
class PushTEnv(gym.Env):
|
||||
metadata = {"render.modes": ["human", "rgb_array"], "video.frames_per_second": 10}
|
||||
reward_range = (0.0, 1.0)
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
legacy=False,
|
||||
block_cog=None,
|
||||
damping=None,
|
||||
render_action=True,
|
||||
render_size=96,
|
||||
reset_to_state=None,
|
||||
):
|
||||
self._seed = None
|
||||
self.seed()
|
||||
self.window_size = ws = 512 # The size of the PyGame window
|
||||
self.render_size = render_size
|
||||
self.sim_hz = 100
|
||||
# Local controller params.
|
||||
self.k_p, self.k_v = 100, 20 # PD control.z
|
||||
self.control_hz = self.metadata["video.frames_per_second"]
|
||||
# legcay set_state for data compatibility
|
||||
self.legacy = legacy
|
||||
|
||||
# agent_pos, block_pos, block_angle
|
||||
self.observation_space = spaces.Box(
|
||||
low=np.array([0, 0, 0, 0, 0], dtype=np.float64),
|
||||
high=np.array([ws, ws, ws, ws, np.pi * 2], dtype=np.float64),
|
||||
shape=(5,),
|
||||
dtype=np.float64,
|
||||
)
|
||||
|
||||
# positional goal for agent
|
||||
self.action_space = spaces.Box(
|
||||
low=np.array([0, 0], dtype=np.float64),
|
||||
high=np.array([ws, ws], dtype=np.float64),
|
||||
shape=(2,),
|
||||
dtype=np.float64,
|
||||
)
|
||||
|
||||
self.block_cog = block_cog
|
||||
self.damping = damping
|
||||
self.render_action = render_action
|
||||
|
||||
"""
|
||||
If human-rendering is used, `self.window` will be a reference
|
||||
to the window that we draw to. `self.clock` will be a clock that is used
|
||||
to ensure that the environment is rendered at the correct framerate in
|
||||
human-mode. They will remain `None` until human-mode is used for the
|
||||
first time.
|
||||
"""
|
||||
self.window = None
|
||||
self.clock = None
|
||||
self.screen = None
|
||||
|
||||
self.space = None
|
||||
self.teleop = None
|
||||
self.render_buffer = None
|
||||
self.latest_action = None
|
||||
self.reset_to_state = reset_to_state
|
||||
|
||||
def reset(self):
|
||||
seed = self._seed
|
||||
self._setup()
|
||||
if self.block_cog is not None:
|
||||
self.block.center_of_gravity = self.block_cog
|
||||
if self.damping is not None:
|
||||
self.space.damping = self.damping
|
||||
|
||||
# use legacy RandomState for compatibility
|
||||
state = self.reset_to_state
|
||||
if state is None:
|
||||
rs = np.random.RandomState(seed=seed)
|
||||
state = np.array(
|
||||
[
|
||||
rs.randint(50, 450),
|
||||
rs.randint(50, 450),
|
||||
rs.randint(100, 400),
|
||||
rs.randint(100, 400),
|
||||
rs.randn() * 2 * np.pi - np.pi,
|
||||
]
|
||||
)
|
||||
self._set_state(state)
|
||||
|
||||
observation = self._get_obs()
|
||||
return observation
|
||||
|
||||
def step(self, action):
|
||||
dt = 1.0 / self.sim_hz
|
||||
self.n_contact_points = 0
|
||||
n_steps = self.sim_hz // self.control_hz
|
||||
if action is not None:
|
||||
self.latest_action = action
|
||||
for _ in range(n_steps):
|
||||
# Step PD control.
|
||||
# self.agent.velocity = self.k_p * (act - self.agent.position) # P control works too.
|
||||
acceleration = self.k_p * (action - self.agent.position) + self.k_v * (
|
||||
Vec2d(0, 0) - self.agent.velocity
|
||||
)
|
||||
self.agent.velocity += acceleration * dt
|
||||
|
||||
# Step physics.
|
||||
self.space.step(dt)
|
||||
|
||||
# compute reward
|
||||
goal_body = self._get_goal_pose_body(self.goal_pose)
|
||||
goal_geom = pymunk_to_shapely(goal_body, self.block.shapes)
|
||||
block_geom = pymunk_to_shapely(self.block, self.block.shapes)
|
||||
|
||||
intersection_area = goal_geom.intersection(block_geom).area
|
||||
goal_area = goal_geom.area
|
||||
coverage = intersection_area / goal_area
|
||||
reward = np.clip(coverage / self.success_threshold, 0, 1)
|
||||
done = coverage > self.success_threshold
|
||||
|
||||
observation = self._get_obs()
|
||||
info = self._get_info()
|
||||
|
||||
return observation, reward, done, info
|
||||
|
||||
def render(self, mode):
|
||||
return self._render_frame(mode)
|
||||
|
||||
def teleop_agent(self):
|
||||
TeleopAgent = collections.namedtuple("TeleopAgent", ["act"])
|
||||
|
||||
def act(obs):
|
||||
act = None
|
||||
mouse_position = pymunk.pygame_util.from_pygame(Vec2d(*pygame.mouse.get_pos()), self.screen)
|
||||
if self.teleop or (mouse_position - self.agent.position).length < 30:
|
||||
self.teleop = True
|
||||
act = mouse_position
|
||||
return act
|
||||
|
||||
return TeleopAgent(act)
|
||||
|
||||
def _get_obs(self):
|
||||
obs = np.array(
|
||||
tuple(self.agent.position) + tuple(self.block.position) + (self.block.angle % (2 * np.pi),)
|
||||
)
|
||||
return obs
|
||||
|
||||
def _get_goal_pose_body(self, pose):
|
||||
mass = 1
|
||||
inertia = pymunk.moment_for_box(mass, (50, 100))
|
||||
body = pymunk.Body(mass, inertia)
|
||||
# preserving the legacy assignment order for compatibility
|
||||
# the order here doesn't matter somehow, maybe because CoM is aligned with body origin
|
||||
body.position = pose[:2].tolist()
|
||||
body.angle = pose[2]
|
||||
return body
|
||||
|
||||
def _get_info(self):
|
||||
n_steps = self.sim_hz // self.control_hz
|
||||
n_contact_points_per_step = int(np.ceil(self.n_contact_points / n_steps))
|
||||
info = {
|
||||
"pos_agent": np.array(self.agent.position),
|
||||
"vel_agent": np.array(self.agent.velocity),
|
||||
"block_pose": np.array(list(self.block.position) + [self.block.angle]),
|
||||
"goal_pose": self.goal_pose,
|
||||
"n_contacts": n_contact_points_per_step,
|
||||
}
|
||||
return info
|
||||
|
||||
def _render_frame(self, mode):
|
||||
if self.window is None and mode == "human":
|
||||
pygame.init()
|
||||
pygame.display.init()
|
||||
self.window = pygame.display.set_mode((self.window_size, self.window_size))
|
||||
if self.clock is None and mode == "human":
|
||||
self.clock = pygame.time.Clock()
|
||||
|
||||
canvas = pygame.Surface((self.window_size, self.window_size))
|
||||
canvas.fill((255, 255, 255))
|
||||
self.screen = canvas
|
||||
|
||||
draw_options = DrawOptions(canvas)
|
||||
|
||||
# Draw goal pose.
|
||||
goal_body = self._get_goal_pose_body(self.goal_pose)
|
||||
for shape in self.block.shapes:
|
||||
goal_points = [
|
||||
pymunk.pygame_util.to_pygame(goal_body.local_to_world(v), draw_options.surface)
|
||||
for v in shape.get_vertices()
|
||||
]
|
||||
goal_points += [goal_points[0]]
|
||||
pygame.draw.polygon(canvas, self.goal_color, goal_points)
|
||||
|
||||
# Draw agent and block.
|
||||
self.space.debug_draw(draw_options)
|
||||
|
||||
if mode == "human":
|
||||
# The following line copies our drawings from `canvas` to the visible window
|
||||
self.window.blit(canvas, canvas.get_rect())
|
||||
pygame.event.pump()
|
||||
pygame.display.update()
|
||||
|
||||
# the clock is already ticked during in step for "human"
|
||||
|
||||
img = np.transpose(np.array(pygame.surfarray.pixels3d(canvas)), axes=(1, 0, 2))
|
||||
img = cv2.resize(img, (self.render_size, self.render_size))
|
||||
if self.render_action and self.latest_action is not None:
|
||||
action = np.array(self.latest_action)
|
||||
coord = (action / 512 * 96).astype(np.int32)
|
||||
marker_size = int(8 / 96 * self.render_size)
|
||||
thickness = int(1 / 96 * self.render_size)
|
||||
cv2.drawMarker(
|
||||
img,
|
||||
coord,
|
||||
color=(255, 0, 0),
|
||||
markerType=cv2.MARKER_CROSS,
|
||||
markerSize=marker_size,
|
||||
thickness=thickness,
|
||||
)
|
||||
return img
|
||||
|
||||
def close(self):
|
||||
if self.window is not None:
|
||||
pygame.display.quit()
|
||||
pygame.quit()
|
||||
|
||||
def seed(self, seed=None):
|
||||
if seed is None:
|
||||
seed = np.random.randint(0, 25536)
|
||||
self._seed = seed
|
||||
self.np_random = np.random.default_rng(seed)
|
||||
|
||||
def _handle_collision(self, arbiter, space, data):
|
||||
self.n_contact_points += len(arbiter.contact_point_set.points)
|
||||
|
||||
def _set_state(self, state):
|
||||
if isinstance(state, np.ndarray):
|
||||
state = state.tolist()
|
||||
pos_agent = state[:2]
|
||||
pos_block = state[2:4]
|
||||
rot_block = state[4]
|
||||
self.agent.position = pos_agent
|
||||
# setting angle rotates with respect to center of mass
|
||||
# therefore will modify the geometric position
|
||||
# if not the same as CoM
|
||||
# therefore should be modified first.
|
||||
if self.legacy:
|
||||
# for compatibility with legacy data
|
||||
self.block.position = pos_block
|
||||
self.block.angle = rot_block
|
||||
else:
|
||||
self.block.angle = rot_block
|
||||
self.block.position = pos_block
|
||||
|
||||
# Run physics to take effect
|
||||
self.space.step(1.0 / self.sim_hz)
|
||||
|
||||
def _set_state_local(self, state_local):
|
||||
agent_pos_local = state_local[:2]
|
||||
block_pose_local = state_local[2:]
|
||||
tf_img_obj = st.AffineTransform(translation=self.goal_pose[:2], rotation=self.goal_pose[2])
|
||||
tf_obj_new = st.AffineTransform(translation=block_pose_local[:2], rotation=block_pose_local[2])
|
||||
tf_img_new = st.AffineTransform(matrix=tf_img_obj.params @ tf_obj_new.params)
|
||||
agent_pos_new = tf_img_new(agent_pos_local)
|
||||
new_state = np.array(list(agent_pos_new[0]) + list(tf_img_new.translation) + [tf_img_new.rotation])
|
||||
self._set_state(new_state)
|
||||
return new_state
|
||||
|
||||
def _setup(self):
|
||||
self.space = pymunk.Space()
|
||||
self.space.gravity = 0, 0
|
||||
self.space.damping = 0
|
||||
self.teleop = False
|
||||
self.render_buffer = []
|
||||
|
||||
# Add walls.
|
||||
walls = [
|
||||
self._add_segment((5, 506), (5, 5), 2),
|
||||
self._add_segment((5, 5), (506, 5), 2),
|
||||
self._add_segment((506, 5), (506, 506), 2),
|
||||
self._add_segment((5, 506), (506, 506), 2),
|
||||
]
|
||||
self.space.add(*walls)
|
||||
|
||||
# Add agent, block, and goal zone.
|
||||
self.agent = self.add_circle((256, 400), 15)
|
||||
self.block = self.add_tee((256, 300), 0)
|
||||
self.goal_color = pygame.Color("LightGreen")
|
||||
self.goal_pose = np.array([256, 256, np.pi / 4]) # x, y, theta (in radians)
|
||||
|
||||
# Add collision handling
|
||||
self.collision_handeler = self.space.add_collision_handler(0, 0)
|
||||
self.collision_handeler.post_solve = self._handle_collision
|
||||
self.n_contact_points = 0
|
||||
|
||||
self.max_score = 50 * 100
|
||||
self.success_threshold = 0.95 # 95% coverage.
|
||||
|
||||
def _add_segment(self, a, b, radius):
|
||||
shape = pymunk.Segment(self.space.static_body, a, b, radius)
|
||||
shape.color = pygame.Color("LightGray") # https://htmlcolorcodes.com/color-names
|
||||
return shape
|
||||
|
||||
def add_circle(self, position, radius):
|
||||
body = pymunk.Body(body_type=pymunk.Body.KINEMATIC)
|
||||
body.position = position
|
||||
body.friction = 1
|
||||
shape = pymunk.Circle(body, radius)
|
||||
shape.color = pygame.Color("RoyalBlue")
|
||||
self.space.add(body, shape)
|
||||
return body
|
||||
|
||||
def add_box(self, position, height, width):
|
||||
mass = 1
|
||||
inertia = pymunk.moment_for_box(mass, (height, width))
|
||||
body = pymunk.Body(mass, inertia)
|
||||
body.position = position
|
||||
shape = pymunk.Poly.create_box(body, (height, width))
|
||||
shape.color = pygame.Color("LightSlateGray")
|
||||
self.space.add(body, shape)
|
||||
return body
|
||||
|
||||
def add_tee(self, position, angle, scale=30, color="LightSlateGray", mask=None):
|
||||
if mask is None:
|
||||
mask = pymunk.ShapeFilter.ALL_MASKS()
|
||||
mass = 1
|
||||
length = 4
|
||||
vertices1 = [
|
||||
(-length * scale / 2, scale),
|
||||
(length * scale / 2, scale),
|
||||
(length * scale / 2, 0),
|
||||
(-length * scale / 2, 0),
|
||||
]
|
||||
inertia1 = pymunk.moment_for_poly(mass, vertices=vertices1)
|
||||
vertices2 = [
|
||||
(-scale / 2, scale),
|
||||
(-scale / 2, length * scale),
|
||||
(scale / 2, length * scale),
|
||||
(scale / 2, scale),
|
||||
]
|
||||
inertia2 = pymunk.moment_for_poly(mass, vertices=vertices1)
|
||||
body = pymunk.Body(mass, inertia1 + inertia2)
|
||||
shape1 = pymunk.Poly(body, vertices1)
|
||||
shape2 = pymunk.Poly(body, vertices2)
|
||||
shape1.color = pygame.Color(color)
|
||||
shape2.color = pygame.Color(color)
|
||||
shape1.filter = pymunk.ShapeFilter(mask=mask)
|
||||
shape2.filter = pymunk.ShapeFilter(mask=mask)
|
||||
body.center_of_gravity = (shape1.center_of_gravity + shape2.center_of_gravity) / 2
|
||||
body.position = position
|
||||
body.angle = angle
|
||||
body.friction = 1
|
||||
self.space.add(body, shape1, shape2)
|
||||
return body
|
||||
@@ -1,55 +0,0 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
from gym import spaces
|
||||
|
||||
from lerobot.common.envs.pusht.pusht_env import PushTEnv
|
||||
|
||||
|
||||
class PushTImageEnv(PushTEnv):
|
||||
metadata = {"render.modes": ["rgb_array"], "video.frames_per_second": 10}
|
||||
|
||||
def __init__(self, legacy=False, block_cog=None, damping=None, render_size=96):
|
||||
super().__init__(
|
||||
legacy=legacy, block_cog=block_cog, damping=damping, render_size=render_size, render_action=False
|
||||
)
|
||||
ws = self.window_size
|
||||
self.observation_space = spaces.Dict(
|
||||
{
|
||||
"image": spaces.Box(low=0, high=1, shape=(3, render_size, render_size), dtype=np.float32),
|
||||
"agent_pos": spaces.Box(low=0, high=ws, shape=(2,), dtype=np.float32),
|
||||
}
|
||||
)
|
||||
self.render_cache = None
|
||||
|
||||
def _get_obs(self):
|
||||
img = super()._render_frame(mode="rgb_array")
|
||||
|
||||
agent_pos = np.array(self.agent.position)
|
||||
img_obs = np.moveaxis(img, -1, 0)
|
||||
obs = {"image": img_obs, "agent_pos": agent_pos}
|
||||
|
||||
# draw action
|
||||
if self.latest_action is not None:
|
||||
action = np.array(self.latest_action)
|
||||
coord = (action / 512 * 96).astype(np.int32)
|
||||
marker_size = int(8 / 96 * self.render_size)
|
||||
thickness = int(1 / 96 * self.render_size)
|
||||
cv2.drawMarker(
|
||||
img,
|
||||
coord,
|
||||
color=(255, 0, 0),
|
||||
markerType=cv2.MARKER_CROSS,
|
||||
markerSize=marker_size,
|
||||
thickness=thickness,
|
||||
)
|
||||
self.render_cache = img
|
||||
|
||||
return obs
|
||||
|
||||
def render(self, mode):
|
||||
assert mode == "rgb_array"
|
||||
|
||||
if self.render_cache is None:
|
||||
self._get_obs()
|
||||
|
||||
return self.render_cache
|
||||
@@ -1,244 +0,0 @@
|
||||
# ----------------------------------------------------------------------------
|
||||
# pymunk
|
||||
# Copyright (c) 2007-2016 Victor Blomqvist
|
||||
#
|
||||
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
# of this software and associated documentation files (the "Software"), to deal
|
||||
# in the Software without restriction, including without limitation the rights
|
||||
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
# copies of the Software, and to permit persons to whom the Software is
|
||||
# furnished to do so, subject to the following conditions:
|
||||
#
|
||||
# The above copyright notice and this permission notice shall be included in
|
||||
# all copies or substantial portions of the Software.
|
||||
#
|
||||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
# SOFTWARE.
|
||||
# ----------------------------------------------------------------------------
|
||||
|
||||
"""This submodule contains helper functions to help with quick prototyping
|
||||
using pymunk together with pygame.
|
||||
|
||||
Intended to help with debugging and prototyping, not for actual production use
|
||||
in a full application. The methods contained in this module is opinionated
|
||||
about your coordinate system and not in any way optimized.
|
||||
"""
|
||||
|
||||
__docformat__ = "reStructuredText"
|
||||
|
||||
__all__ = [
|
||||
"DrawOptions",
|
||||
"get_mouse_pos",
|
||||
"to_pygame",
|
||||
"from_pygame",
|
||||
# "lighten",
|
||||
"positive_y_is_up",
|
||||
]
|
||||
|
||||
from typing import Sequence, Tuple
|
||||
|
||||
import numpy as np
|
||||
import pygame
|
||||
import pymunk
|
||||
from pymunk.space_debug_draw_options import SpaceDebugColor
|
||||
from pymunk.vec2d import Vec2d
|
||||
|
||||
positive_y_is_up: bool = False
|
||||
"""Make increasing values of y point upwards.
|
||||
|
||||
When True::
|
||||
|
||||
y
|
||||
^
|
||||
| . (3, 3)
|
||||
|
|
||||
| . (2, 2)
|
||||
|
|
||||
+------ > x
|
||||
|
||||
When False::
|
||||
|
||||
+------ > x
|
||||
|
|
||||
| . (2, 2)
|
||||
|
|
||||
| . (3, 3)
|
||||
v
|
||||
y
|
||||
|
||||
"""
|
||||
|
||||
|
||||
class DrawOptions(pymunk.SpaceDebugDrawOptions):
|
||||
def __init__(self, surface: pygame.Surface) -> None:
|
||||
"""Draw a pymunk.Space on a pygame.Surface object.
|
||||
|
||||
Typical usage::
|
||||
|
||||
>>> import pymunk
|
||||
>>> surface = pygame.Surface((10,10))
|
||||
>>> space = pymunk.Space()
|
||||
>>> options = pymunk.pygame_util.DrawOptions(surface)
|
||||
>>> space.debug_draw(options)
|
||||
|
||||
You can control the color of a shape by setting shape.color to the color
|
||||
you want it drawn in::
|
||||
|
||||
>>> c = pymunk.Circle(None, 10)
|
||||
>>> c.color = pygame.Color("pink")
|
||||
|
||||
See pygame_util.demo.py for a full example
|
||||
|
||||
Since pygame uses a coordinate system where y points down (in contrast
|
||||
to many other cases), you either have to make the physics simulation
|
||||
with Pymunk also behave in that way, or flip everything when you draw.
|
||||
|
||||
The easiest is probably to just make the simulation behave the same
|
||||
way as Pygame does. In that way all coordinates used are in the same
|
||||
orientation and easy to reason about::
|
||||
|
||||
>>> space = pymunk.Space()
|
||||
>>> space.gravity = (0, -1000)
|
||||
>>> body = pymunk.Body()
|
||||
>>> body.position = (0, 0) # will be positioned in the top left corner
|
||||
>>> space.debug_draw(options)
|
||||
|
||||
To flip the drawing its possible to set the module property
|
||||
:py:data:`positive_y_is_up` to True. Then the pygame drawing will flip
|
||||
the simulation upside down before drawing::
|
||||
|
||||
>>> positive_y_is_up = True
|
||||
>>> body = pymunk.Body()
|
||||
>>> body.position = (0, 0)
|
||||
>>> # Body will be position in bottom left corner
|
||||
|
||||
:Parameters:
|
||||
surface : pygame.Surface
|
||||
Surface that the objects will be drawn on
|
||||
"""
|
||||
self.surface = surface
|
||||
super().__init__()
|
||||
|
||||
def draw_circle(
|
||||
self,
|
||||
pos: Vec2d,
|
||||
angle: float,
|
||||
radius: float,
|
||||
outline_color: SpaceDebugColor,
|
||||
fill_color: SpaceDebugColor,
|
||||
) -> None:
|
||||
p = to_pygame(pos, self.surface)
|
||||
|
||||
pygame.draw.circle(self.surface, fill_color.as_int(), p, round(radius), 0)
|
||||
pygame.draw.circle(self.surface, light_color(fill_color).as_int(), p, round(radius - 4), 0)
|
||||
|
||||
# circle_edge = pos + Vec2d(radius, 0).rotated(angle)
|
||||
# p2 = to_pygame(circle_edge, self.surface)
|
||||
# line_r = 2 if radius > 20 else 1
|
||||
# pygame.draw.lines(self.surface, outline_color.as_int(), False, [p, p2], line_r)
|
||||
|
||||
def draw_segment(self, a: Vec2d, b: Vec2d, color: SpaceDebugColor) -> None:
|
||||
p1 = to_pygame(a, self.surface)
|
||||
p2 = to_pygame(b, self.surface)
|
||||
|
||||
pygame.draw.aalines(self.surface, color.as_int(), False, [p1, p2])
|
||||
|
||||
def draw_fat_segment(
|
||||
self,
|
||||
a: Tuple[float, float],
|
||||
b: Tuple[float, float],
|
||||
radius: float,
|
||||
outline_color: SpaceDebugColor,
|
||||
fill_color: SpaceDebugColor,
|
||||
) -> None:
|
||||
p1 = to_pygame(a, self.surface)
|
||||
p2 = to_pygame(b, self.surface)
|
||||
|
||||
r = round(max(1, radius * 2))
|
||||
pygame.draw.lines(self.surface, fill_color.as_int(), False, [p1, p2], r)
|
||||
if r > 2:
|
||||
orthog = [abs(p2[1] - p1[1]), abs(p2[0] - p1[0])]
|
||||
if orthog[0] == 0 and orthog[1] == 0:
|
||||
return
|
||||
scale = radius / (orthog[0] * orthog[0] + orthog[1] * orthog[1]) ** 0.5
|
||||
orthog[0] = round(orthog[0] * scale)
|
||||
orthog[1] = round(orthog[1] * scale)
|
||||
points = [
|
||||
(p1[0] - orthog[0], p1[1] - orthog[1]),
|
||||
(p1[0] + orthog[0], p1[1] + orthog[1]),
|
||||
(p2[0] + orthog[0], p2[1] + orthog[1]),
|
||||
(p2[0] - orthog[0], p2[1] - orthog[1]),
|
||||
]
|
||||
pygame.draw.polygon(self.surface, fill_color.as_int(), points)
|
||||
pygame.draw.circle(
|
||||
self.surface,
|
||||
fill_color.as_int(),
|
||||
(round(p1[0]), round(p1[1])),
|
||||
round(radius),
|
||||
)
|
||||
pygame.draw.circle(
|
||||
self.surface,
|
||||
fill_color.as_int(),
|
||||
(round(p2[0]), round(p2[1])),
|
||||
round(radius),
|
||||
)
|
||||
|
||||
def draw_polygon(
|
||||
self,
|
||||
verts: Sequence[Tuple[float, float]],
|
||||
radius: float,
|
||||
outline_color: SpaceDebugColor,
|
||||
fill_color: SpaceDebugColor,
|
||||
) -> None:
|
||||
ps = [to_pygame(v, self.surface) for v in verts]
|
||||
ps += [ps[0]]
|
||||
|
||||
radius = 2
|
||||
pygame.draw.polygon(self.surface, light_color(fill_color).as_int(), ps)
|
||||
|
||||
if radius > 0:
|
||||
for i in range(len(verts)):
|
||||
a = verts[i]
|
||||
b = verts[(i + 1) % len(verts)]
|
||||
self.draw_fat_segment(a, b, radius, fill_color, fill_color)
|
||||
|
||||
def draw_dot(self, size: float, pos: Tuple[float, float], color: SpaceDebugColor) -> None:
|
||||
p = to_pygame(pos, self.surface)
|
||||
pygame.draw.circle(self.surface, color.as_int(), p, round(size), 0)
|
||||
|
||||
|
||||
def get_mouse_pos(surface: pygame.Surface) -> Tuple[int, int]:
|
||||
"""Get position of the mouse pointer in pymunk coordinates."""
|
||||
p = pygame.mouse.get_pos()
|
||||
return from_pygame(p, surface)
|
||||
|
||||
|
||||
def to_pygame(p: Tuple[float, float], surface: pygame.Surface) -> Tuple[int, int]:
|
||||
"""Convenience method to convert pymunk coordinates to pygame surface
|
||||
local coordinates.
|
||||
|
||||
Note that in case positive_y_is_up is False, this function won't actually do
|
||||
anything except converting the point to integers.
|
||||
"""
|
||||
if positive_y_is_up:
|
||||
return round(p[0]), surface.get_height() - round(p[1])
|
||||
else:
|
||||
return round(p[0]), round(p[1])
|
||||
|
||||
|
||||
def from_pygame(p: Tuple[float, float], surface: pygame.Surface) -> Tuple[int, int]:
|
||||
"""Convenience method to convert pygame surface local coordinates to
|
||||
pymunk coordinates
|
||||
"""
|
||||
return to_pygame(p, surface)
|
||||
|
||||
|
||||
def light_color(color: SpaceDebugColor):
|
||||
color = np.minimum(1.2 * np.float32([color.r, color.g, color.b, color.a]), np.float32([255]))
|
||||
color = SpaceDebugColor(r=color[0], g=color[1], b=color[2], a=color[3])
|
||||
return color
|
||||
@@ -1,8 +1,6 @@
|
||||
import importlib
|
||||
from collections import deque
|
||||
from typing import Optional
|
||||
|
||||
import einops
|
||||
import numpy as np
|
||||
import torch
|
||||
from tensordict import TensorDict
|
||||
@@ -12,9 +10,9 @@ from torchrl.data.tensor_specs import (
|
||||
DiscreteTensorSpec,
|
||||
UnboundedContinuousTensorSpec,
|
||||
)
|
||||
from torchrl.envs import EnvBase
|
||||
from torchrl.envs.libs.gym import _gym_to_torchrl_spec_transform
|
||||
|
||||
from lerobot.common.envs.abstract import AbstractEnv
|
||||
from lerobot.common.utils import set_seed
|
||||
|
||||
MAX_NUM_ACTIONS = 4
|
||||
@@ -23,7 +21,7 @@ _has_gym = importlib.util.find_spec("gym") is not None
|
||||
_has_simxarm = importlib.util.find_spec("simxarm") is not None and _has_gym
|
||||
|
||||
|
||||
class SimxarmEnv(AbstractEnv):
|
||||
class SimxarmEnv(EnvBase):
|
||||
def __init__(
|
||||
self,
|
||||
task,
|
||||
@@ -33,22 +31,19 @@ class SimxarmEnv(AbstractEnv):
|
||||
image_size=None,
|
||||
seed=1337,
|
||||
device="cpu",
|
||||
num_prev_obs=0,
|
||||
num_prev_action=0,
|
||||
):
|
||||
super().__init__(
|
||||
task=task,
|
||||
frame_skip=frame_skip,
|
||||
from_pixels=from_pixels,
|
||||
pixels_only=pixels_only,
|
||||
image_size=image_size,
|
||||
seed=seed,
|
||||
device=device,
|
||||
num_prev_obs=num_prev_obs,
|
||||
num_prev_action=num_prev_action,
|
||||
)
|
||||
super().__init__(device=device, batch_size=[])
|
||||
self.task = task
|
||||
self.frame_skip = frame_skip
|
||||
self.from_pixels = from_pixels
|
||||
self.pixels_only = pixels_only
|
||||
self.image_size = image_size
|
||||
|
||||
if pixels_only:
|
||||
assert from_pixels
|
||||
if from_pixels:
|
||||
assert image_size
|
||||
|
||||
def _make_env(self):
|
||||
if not _has_simxarm:
|
||||
raise ImportError("Cannot import simxarm.")
|
||||
if not _has_gym:
|
||||
@@ -68,6 +63,9 @@ class SimxarmEnv(AbstractEnv):
|
||||
if "w" not in TASKS[self.task]["action_space"]:
|
||||
self._action_padding[-1] = 1.0
|
||||
|
||||
self._make_spec()
|
||||
self.set_seed(seed)
|
||||
|
||||
def render(self, mode="rgb_array", width=384, height=384):
|
||||
return self._env.render(mode, width=width, height=height)
|
||||
|
||||
@@ -92,33 +90,15 @@ class SimxarmEnv(AbstractEnv):
|
||||
if td is None or td.is_empty():
|
||||
raw_obs = self._env.reset()
|
||||
|
||||
obs = self._format_raw_obs(raw_obs)
|
||||
|
||||
if self.num_prev_obs > 0:
|
||||
stacked_obs = {}
|
||||
if "image" in obs:
|
||||
self._prev_obs_image_queue = deque(
|
||||
[obs["image"]] * (self.num_prev_obs + 1), maxlen=(self.num_prev_obs + 1)
|
||||
)
|
||||
stacked_obs["image"] = torch.stack(list(self._prev_obs_image_queue))
|
||||
if "state" in obs:
|
||||
self._prev_obs_state_queue = deque(
|
||||
[obs["state"]] * (self.num_prev_obs + 1), maxlen=(self.num_prev_obs + 1)
|
||||
)
|
||||
stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue))
|
||||
obs = stacked_obs
|
||||
|
||||
td = TensorDict(
|
||||
{
|
||||
"observation": TensorDict(obs, batch_size=[]),
|
||||
"observation": self._format_raw_obs(raw_obs),
|
||||
"done": torch.tensor([False], dtype=torch.bool),
|
||||
},
|
||||
batch_size=[],
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
|
||||
self.call_rendering_hooks()
|
||||
return td
|
||||
|
||||
def _step(self, tensordict: TensorDict):
|
||||
@@ -128,32 +108,10 @@ class SimxarmEnv(AbstractEnv):
|
||||
action = np.concatenate([action, self._action_padding])
|
||||
# TODO(rcadene): add info["is_success"] and info["success"] ?
|
||||
sum_reward = 0
|
||||
|
||||
if action.ndim == 1:
|
||||
action = einops.repeat(action, "c -> t c", t=self.frame_skip)
|
||||
else:
|
||||
if self.frame_skip > 1:
|
||||
raise NotImplementedError()
|
||||
|
||||
num_action_steps = action.shape[0]
|
||||
for i in range(num_action_steps):
|
||||
raw_obs, reward, done, info = self._env.step(action[i])
|
||||
for _ in range(self.frame_skip):
|
||||
raw_obs, reward, done, info = self._env.step(action)
|
||||
sum_reward += reward
|
||||
|
||||
obs = self._format_raw_obs(raw_obs)
|
||||
|
||||
if self.num_prev_obs > 0:
|
||||
stacked_obs = {}
|
||||
if "image" in obs:
|
||||
self._prev_obs_image_queue.append(obs["image"])
|
||||
stacked_obs["image"] = torch.stack(list(self._prev_obs_image_queue))
|
||||
if "state" in obs:
|
||||
self._prev_obs_state_queue.append(obs["state"])
|
||||
stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue))
|
||||
obs = stacked_obs
|
||||
|
||||
self.call_rendering_hooks()
|
||||
|
||||
td = TensorDict(
|
||||
{
|
||||
"observation": self._format_raw_obs(raw_obs),
|
||||
@@ -168,36 +126,23 @@ class SimxarmEnv(AbstractEnv):
|
||||
def _make_spec(self):
|
||||
obs = {}
|
||||
if self.from_pixels:
|
||||
image_shape = (3, self.image_size, self.image_size)
|
||||
if self.num_prev_obs > 0:
|
||||
image_shape = (self.num_prev_obs + 1, *image_shape)
|
||||
|
||||
obs["image"] = BoundedTensorSpec(
|
||||
low=0,
|
||||
high=255,
|
||||
shape=image_shape,
|
||||
shape=(3, self.image_size, self.image_size),
|
||||
dtype=torch.uint8,
|
||||
device=self.device,
|
||||
)
|
||||
if not self.pixels_only:
|
||||
state_shape = (len(self._env.robot_state),)
|
||||
if self.num_prev_obs > 0:
|
||||
state_shape = (self.num_prev_obs + 1, *state_shape)
|
||||
|
||||
obs["state"] = UnboundedContinuousTensorSpec(
|
||||
shape=state_shape,
|
||||
shape=(len(self._env.robot_state),),
|
||||
dtype=torch.float32,
|
||||
device=self.device,
|
||||
)
|
||||
else:
|
||||
# TODO(rcadene): add observation_space achieved_goal and desired_goal?
|
||||
state_shape = self._env.observation_space["observation"].shape
|
||||
if self.num_prev_obs > 0:
|
||||
state_shape = (self.num_prev_obs + 1, *state_shape)
|
||||
|
||||
obs["state"] = UnboundedContinuousTensorSpec(
|
||||
# TODO:
|
||||
shape=state_shape,
|
||||
shape=self._env.observation_space["observation"].shape,
|
||||
dtype=torch.float32,
|
||||
device=self.device,
|
||||
)
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
from typing import Sequence
|
||||
|
||||
import torch
|
||||
from tensordict import TensorDictBase
|
||||
from tensordict.nn import dispatch
|
||||
from tensordict.utils import NestedKey
|
||||
@@ -8,45 +7,19 @@ from torchrl.envs.transforms import ObservationTransform, Transform
|
||||
|
||||
|
||||
class Prod(ObservationTransform):
|
||||
invertible = True
|
||||
|
||||
def __init__(self, in_keys: Sequence[NestedKey], prod: float):
|
||||
super().__init__()
|
||||
self.in_keys = in_keys
|
||||
self.prod = prod
|
||||
self.original_dtypes = {}
|
||||
|
||||
def _reset(self, tensordict: TensorDictBase, tensordict_reset: TensorDictBase) -> TensorDictBase:
|
||||
# _reset is called once when the environment reset to normalize the first observation
|
||||
tensordict_reset = self._call(tensordict_reset)
|
||||
return tensordict_reset
|
||||
|
||||
@dispatch(source="in_keys", dest="out_keys")
|
||||
def forward(self, tensordict: TensorDictBase) -> TensorDictBase:
|
||||
return self._call(tensordict)
|
||||
|
||||
def _call(self, td):
|
||||
for key in self.in_keys:
|
||||
if td.get(key, None) is None:
|
||||
continue
|
||||
self.original_dtypes[key] = td[key].dtype
|
||||
td[key] = td[key].type(torch.float32) * self.prod
|
||||
return td
|
||||
|
||||
def _inv_call(self, td: TensorDictBase) -> TensorDictBase:
|
||||
for key in self.in_keys:
|
||||
if td.get(key, None) is None:
|
||||
continue
|
||||
td[key] = (td[key] / self.prod).type(self.original_dtypes[key])
|
||||
td[key] *= self.prod
|
||||
return td
|
||||
|
||||
def transform_observation_spec(self, obs_spec):
|
||||
for key in self.in_keys:
|
||||
if obs_spec.get(key, None) is None:
|
||||
continue
|
||||
obs_spec[key].space.high = obs_spec[key].space.high.type(torch.float32) * self.prod
|
||||
obs_spec[key].space.low = obs_spec[key].space.low.type(torch.float32) * self.prod
|
||||
obs_spec[key].dtype = torch.float32
|
||||
obs_spec[key].space.high *= self.prod
|
||||
return obs_spec
|
||||
|
||||
|
||||
|
||||
@@ -6,10 +6,6 @@ from omegaconf import OmegaConf
|
||||
from termcolor import colored
|
||||
|
||||
|
||||
def log_output_dir(out_dir):
|
||||
logging.info(colored("Output dir:", "yellow", attrs=["bold"]) + f" {out_dir}")
|
||||
|
||||
|
||||
def cfg_to_group(cfg, return_list=False):
|
||||
"""Return a wandb-safe group name for logging. Optionally returns group name as list."""
|
||||
# lst = [cfg.task, cfg.modality, re.sub("[^0-9a-zA-Z]+", "-", cfg.exp_name)]
|
||||
@@ -38,7 +34,7 @@ class Logger:
|
||||
project = cfg.get("wandb", {}).get("project")
|
||||
entity = cfg.get("wandb", {}).get("entity")
|
||||
enable_wandb = cfg.get("wandb", {}).get("enable", False)
|
||||
run_offline = not enable_wandb or not project
|
||||
run_offline = not enable_wandb or not project or not entity
|
||||
if run_offline:
|
||||
logging.info(colored("Logs will be saved locally.", "yellow", attrs=["bold"]))
|
||||
self._wandb = None
|
||||
@@ -63,7 +59,6 @@ class Logger:
|
||||
resume=None,
|
||||
)
|
||||
print(colored("Logs will be synced with wandb.", "blue", attrs=["bold"]))
|
||||
logging.info(f"Track this run --> {colored(wandb.run.get_url(), 'yellow', attrs=['bold'])}")
|
||||
self._wandb = wandb
|
||||
|
||||
def save_model(self, policy, identifier):
|
||||
|
||||
0
lerobot/common/policies/__init__.py
Normal file
0
lerobot/common/policies/__init__.py
Normal file
@@ -1,115 +0,0 @@
|
||||
from typing import List
|
||||
|
||||
import torch
|
||||
import torchvision
|
||||
from torch import nn
|
||||
from torchvision.models._utils import IntermediateLayerGetter
|
||||
|
||||
from .position_encoding import build_position_encoding
|
||||
from .utils import NestedTensor, is_main_process
|
||||
|
||||
|
||||
class FrozenBatchNorm2d(torch.nn.Module):
|
||||
"""
|
||||
BatchNorm2d where the batch statistics and the affine parameters are fixed.
|
||||
|
||||
Copy-paste from torchvision.misc.ops with added eps before rqsrt,
|
||||
without which any other policy_models than torchvision.policy_models.resnet[18,34,50,101]
|
||||
produce nans.
|
||||
"""
|
||||
|
||||
def __init__(self, n):
|
||||
super().__init__()
|
||||
self.register_buffer("weight", torch.ones(n))
|
||||
self.register_buffer("bias", torch.zeros(n))
|
||||
self.register_buffer("running_mean", torch.zeros(n))
|
||||
self.register_buffer("running_var", torch.ones(n))
|
||||
|
||||
def _load_from_state_dict(
|
||||
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
||||
):
|
||||
num_batches_tracked_key = prefix + "num_batches_tracked"
|
||||
if num_batches_tracked_key in state_dict:
|
||||
del state_dict[num_batches_tracked_key]
|
||||
|
||||
super()._load_from_state_dict(
|
||||
state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
# move reshapes to the beginning
|
||||
# to make it fuser-friendly
|
||||
w = self.weight.reshape(1, -1, 1, 1)
|
||||
b = self.bias.reshape(1, -1, 1, 1)
|
||||
rv = self.running_var.reshape(1, -1, 1, 1)
|
||||
rm = self.running_mean.reshape(1, -1, 1, 1)
|
||||
eps = 1e-5
|
||||
scale = w * (rv + eps).rsqrt()
|
||||
bias = b - rm * scale
|
||||
return x * scale + bias
|
||||
|
||||
|
||||
class BackboneBase(nn.Module):
|
||||
def __init__(
|
||||
self, backbone: nn.Module, train_backbone: bool, num_channels: int, return_interm_layers: bool
|
||||
):
|
||||
super().__init__()
|
||||
# for name, parameter in backbone.named_parameters(): # only train later layers # TODO do we want this?
|
||||
# if not train_backbone or 'layer2' not in name and 'layer3' not in name and 'layer4' not in name:
|
||||
# parameter.requires_grad_(False)
|
||||
if return_interm_layers:
|
||||
return_layers = {"layer1": "0", "layer2": "1", "layer3": "2", "layer4": "3"}
|
||||
else:
|
||||
return_layers = {"layer4": "0"}
|
||||
self.body = IntermediateLayerGetter(backbone, return_layers=return_layers)
|
||||
self.num_channels = num_channels
|
||||
|
||||
def forward(self, tensor):
|
||||
xs = self.body(tensor)
|
||||
return xs
|
||||
# out: Dict[str, NestedTensor] = {}
|
||||
# for name, x in xs.items():
|
||||
# m = tensor_list.mask
|
||||
# assert m is not None
|
||||
# mask = F.interpolate(m[None].float(), size=x.shape[-2:]).to(torch.bool)[0]
|
||||
# out[name] = NestedTensor(x, mask)
|
||||
# return out
|
||||
|
||||
|
||||
class Backbone(BackboneBase):
|
||||
"""ResNet backbone with frozen BatchNorm."""
|
||||
|
||||
def __init__(self, name: str, train_backbone: bool, return_interm_layers: bool, dilation: bool):
|
||||
backbone = getattr(torchvision.models, name)(
|
||||
replace_stride_with_dilation=[False, False, dilation],
|
||||
pretrained=is_main_process(),
|
||||
norm_layer=FrozenBatchNorm2d,
|
||||
) # pretrained # TODO do we want frozen batch_norm??
|
||||
num_channels = 512 if name in ("resnet18", "resnet34") else 2048
|
||||
super().__init__(backbone, train_backbone, num_channels, return_interm_layers)
|
||||
|
||||
|
||||
class Joiner(nn.Sequential):
|
||||
def __init__(self, backbone, position_embedding):
|
||||
super().__init__(backbone, position_embedding)
|
||||
|
||||
def forward(self, tensor_list: NestedTensor):
|
||||
xs = self[0](tensor_list)
|
||||
out: List[NestedTensor] = []
|
||||
pos = []
|
||||
for _, x in xs.items():
|
||||
out.append(x)
|
||||
# position encoding
|
||||
pos.append(self[1](x).to(x.dtype))
|
||||
|
||||
return out, pos
|
||||
|
||||
|
||||
def build_backbone(args):
|
||||
position_embedding = build_position_encoding(args)
|
||||
train_backbone = args.lr_backbone > 0
|
||||
return_interm_layers = args.masks
|
||||
backbone = Backbone(args.backbone, train_backbone, return_interm_layers, args.dilation)
|
||||
model = Joiner(backbone, position_embedding)
|
||||
model.num_channels = backbone.num_channels
|
||||
return model
|
||||
@@ -1,212 +0,0 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.autograd import Variable
|
||||
|
||||
from .backbone import build_backbone
|
||||
from .transformer import TransformerEncoder, TransformerEncoderLayer, build_transformer
|
||||
|
||||
|
||||
def reparametrize(mu, logvar):
|
||||
std = logvar.div(2).exp()
|
||||
eps = Variable(std.data.new(std.size()).normal_())
|
||||
return mu + std * eps
|
||||
|
||||
|
||||
def get_sinusoid_encoding_table(n_position, d_hid):
|
||||
def get_position_angle_vec(position):
|
||||
return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)]
|
||||
|
||||
sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)])
|
||||
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
|
||||
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
|
||||
|
||||
return torch.FloatTensor(sinusoid_table).unsqueeze(0)
|
||||
|
||||
|
||||
class DETRVAE(nn.Module):
|
||||
"""This is the DETR module that performs object detection"""
|
||||
|
||||
def __init__(
|
||||
self, backbones, transformer, encoder, state_dim, action_dim, num_queries, camera_names, vae
|
||||
):
|
||||
"""Initializes the model.
|
||||
Parameters:
|
||||
backbones: torch module of the backbone to be used. See backbone.py
|
||||
transformer: torch module of the transformer architecture. See transformer.py
|
||||
state_dim: robot state dimension of the environment
|
||||
num_queries: number of object queries, ie detection slot. This is the maximal number of objects
|
||||
DETR can detect in a single image. For COCO, we recommend 100 queries.
|
||||
aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used.
|
||||
"""
|
||||
super().__init__()
|
||||
self.num_queries = num_queries
|
||||
self.camera_names = camera_names
|
||||
self.transformer = transformer
|
||||
self.encoder = encoder
|
||||
self.vae = vae
|
||||
hidden_dim = transformer.d_model
|
||||
self.action_head = nn.Linear(hidden_dim, action_dim)
|
||||
self.is_pad_head = nn.Linear(hidden_dim, 1)
|
||||
self.query_embed = nn.Embedding(num_queries, hidden_dim)
|
||||
if backbones is not None:
|
||||
self.input_proj = nn.Conv2d(backbones[0].num_channels, hidden_dim, kernel_size=1)
|
||||
self.backbones = nn.ModuleList(backbones)
|
||||
self.input_proj_robot_state = nn.Linear(state_dim, hidden_dim)
|
||||
else:
|
||||
# input_dim = 14 + 7 # robot_state + env_state
|
||||
self.input_proj_robot_state = nn.Linear(state_dim, hidden_dim)
|
||||
# TODO(rcadene): understand what is env_state, and why it needs to be 7
|
||||
self.input_proj_env_state = nn.Linear(state_dim // 2, hidden_dim)
|
||||
self.pos = torch.nn.Embedding(2, hidden_dim)
|
||||
self.backbones = None
|
||||
|
||||
# encoder extra parameters
|
||||
self.latent_dim = 32 # final size of latent z # TODO tune
|
||||
self.cls_embed = nn.Embedding(1, hidden_dim) # extra cls token embedding
|
||||
self.encoder_action_proj = nn.Linear(14, hidden_dim) # project action to embedding
|
||||
self.encoder_joint_proj = nn.Linear(14, hidden_dim) # project qpos to embedding
|
||||
self.latent_proj = nn.Linear(
|
||||
hidden_dim, self.latent_dim * 2
|
||||
) # project hidden state to latent std, var
|
||||
self.register_buffer(
|
||||
"pos_table", get_sinusoid_encoding_table(1 + 1 + num_queries, hidden_dim)
|
||||
) # [CLS], qpos, a_seq
|
||||
|
||||
# decoder extra parameters
|
||||
self.latent_out_proj = nn.Linear(self.latent_dim, hidden_dim) # project latent sample to embedding
|
||||
self.additional_pos_embed = nn.Embedding(
|
||||
2, hidden_dim
|
||||
) # learned position embedding for proprio and latent
|
||||
|
||||
def forward(self, qpos, image, env_state, actions=None, is_pad=None):
|
||||
"""
|
||||
qpos: batch, qpos_dim
|
||||
image: batch, num_cam, channel, height, width
|
||||
env_state: None
|
||||
actions: batch, seq, action_dim
|
||||
"""
|
||||
is_training = actions is not None # train or val
|
||||
bs, _ = qpos.shape
|
||||
### Obtain latent z from action sequence
|
||||
if self.vae and is_training:
|
||||
# project action sequence to embedding dim, and concat with a CLS token
|
||||
action_embed = self.encoder_action_proj(actions) # (bs, seq, hidden_dim)
|
||||
qpos_embed = self.encoder_joint_proj(qpos) # (bs, hidden_dim)
|
||||
qpos_embed = torch.unsqueeze(qpos_embed, axis=1) # (bs, 1, hidden_dim)
|
||||
cls_embed = self.cls_embed.weight # (1, hidden_dim)
|
||||
cls_embed = torch.unsqueeze(cls_embed, axis=0).repeat(bs, 1, 1) # (bs, 1, hidden_dim)
|
||||
encoder_input = torch.cat(
|
||||
[cls_embed, qpos_embed, action_embed], axis=1
|
||||
) # (bs, seq+1, hidden_dim)
|
||||
encoder_input = encoder_input.permute(1, 0, 2) # (seq+1, bs, hidden_dim)
|
||||
# do not mask cls token
|
||||
# cls_joint_is_pad = torch.full((bs, 2), False).to(qpos.device) # False: not a padding
|
||||
# is_pad = torch.cat([cls_joint_is_pad, is_pad], axis=1) # (bs, seq+1)
|
||||
# obtain position embedding
|
||||
pos_embed = self.pos_table.clone().detach()
|
||||
pos_embed = pos_embed.permute(1, 0, 2) # (seq+1, 1, hidden_dim)
|
||||
# query model
|
||||
encoder_output = self.encoder(encoder_input, pos=pos_embed) # , src_key_padding_mask=is_pad)
|
||||
encoder_output = encoder_output[0] # take cls output only
|
||||
latent_info = self.latent_proj(encoder_output)
|
||||
mu = latent_info[:, : self.latent_dim]
|
||||
logvar = latent_info[:, self.latent_dim :]
|
||||
latent_sample = reparametrize(mu, logvar)
|
||||
latent_input = self.latent_out_proj(latent_sample)
|
||||
else:
|
||||
mu = logvar = None
|
||||
latent_sample = torch.zeros([bs, self.latent_dim], dtype=torch.float32).to(qpos.device)
|
||||
latent_input = self.latent_out_proj(latent_sample)
|
||||
|
||||
if self.backbones is not None:
|
||||
# Image observation features and position embeddings
|
||||
all_cam_features = []
|
||||
all_cam_pos = []
|
||||
for cam_id, _ in enumerate(self.camera_names):
|
||||
features, pos = self.backbones[0](image[:, cam_id]) # HARDCODED
|
||||
features = features[0] # take the last layer feature
|
||||
pos = pos[0]
|
||||
all_cam_features.append(self.input_proj(features))
|
||||
all_cam_pos.append(pos)
|
||||
# proprioception features
|
||||
proprio_input = self.input_proj_robot_state(qpos)
|
||||
# fold camera dimension into width dimension
|
||||
src = torch.cat(all_cam_features, axis=3)
|
||||
pos = torch.cat(all_cam_pos, axis=3)
|
||||
hs = self.transformer(
|
||||
src,
|
||||
None,
|
||||
self.query_embed.weight,
|
||||
pos,
|
||||
latent_input,
|
||||
proprio_input,
|
||||
self.additional_pos_embed.weight,
|
||||
)[0]
|
||||
else:
|
||||
qpos = self.input_proj_robot_state(qpos)
|
||||
env_state = self.input_proj_env_state(env_state)
|
||||
transformer_input = torch.cat([qpos, env_state], axis=1) # seq length = 2
|
||||
hs = self.transformer(transformer_input, None, self.query_embed.weight, self.pos.weight)[0]
|
||||
a_hat = self.action_head(hs)
|
||||
is_pad_hat = self.is_pad_head(hs)
|
||||
return a_hat, is_pad_hat, [mu, logvar]
|
||||
|
||||
|
||||
def mlp(input_dim, hidden_dim, output_dim, hidden_depth):
|
||||
if hidden_depth == 0:
|
||||
mods = [nn.Linear(input_dim, output_dim)]
|
||||
else:
|
||||
mods = [nn.Linear(input_dim, hidden_dim), nn.ReLU(inplace=True)]
|
||||
for _ in range(hidden_depth - 1):
|
||||
mods += [nn.Linear(hidden_dim, hidden_dim), nn.ReLU(inplace=True)]
|
||||
mods.append(nn.Linear(hidden_dim, output_dim))
|
||||
trunk = nn.Sequential(*mods)
|
||||
return trunk
|
||||
|
||||
|
||||
def build_encoder(args):
|
||||
d_model = args.hidden_dim # 256
|
||||
dropout = args.dropout # 0.1
|
||||
nhead = args.nheads # 8
|
||||
dim_feedforward = args.dim_feedforward # 2048
|
||||
num_encoder_layers = args.enc_layers # 4 # TODO shared with VAE decoder
|
||||
normalize_before = args.pre_norm # False
|
||||
activation = "relu"
|
||||
|
||||
encoder_layer = TransformerEncoderLayer(
|
||||
d_model, nhead, dim_feedforward, dropout, activation, normalize_before
|
||||
)
|
||||
encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
|
||||
encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)
|
||||
|
||||
return encoder
|
||||
|
||||
|
||||
def build(args):
|
||||
# From state
|
||||
# backbone = None # from state for now, no need for conv nets
|
||||
# From image
|
||||
backbones = []
|
||||
backbone = build_backbone(args)
|
||||
backbones.append(backbone)
|
||||
|
||||
transformer = build_transformer(args)
|
||||
|
||||
encoder = build_encoder(args)
|
||||
|
||||
model = DETRVAE(
|
||||
backbones,
|
||||
transformer,
|
||||
encoder,
|
||||
state_dim=args.state_dim,
|
||||
action_dim=args.action_dim,
|
||||
num_queries=args.num_queries,
|
||||
camera_names=args.camera_names,
|
||||
vae=args.vae,
|
||||
)
|
||||
|
||||
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
||||
print("number of parameters: {:.2f}M".format(n_parameters / 1e6))
|
||||
|
||||
return model
|
||||
@@ -1,217 +0,0 @@
|
||||
import logging
|
||||
import time
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F # noqa: N812
|
||||
import torchvision.transforms as transforms
|
||||
|
||||
from lerobot.common.policies.act.detr_vae import build
|
||||
|
||||
|
||||
def build_act_model_and_optimizer(cfg):
|
||||
model = build(cfg)
|
||||
|
||||
param_dicts = [
|
||||
{"params": [p for n, p in model.named_parameters() if "backbone" not in n and p.requires_grad]},
|
||||
{
|
||||
"params": [p for n, p in model.named_parameters() if "backbone" in n and p.requires_grad],
|
||||
"lr": cfg.lr_backbone,
|
||||
},
|
||||
]
|
||||
optimizer = torch.optim.AdamW(param_dicts, lr=cfg.lr, weight_decay=cfg.weight_decay)
|
||||
|
||||
return model, optimizer
|
||||
|
||||
|
||||
def kl_divergence(mu, logvar):
|
||||
batch_size = mu.size(0)
|
||||
assert batch_size != 0
|
||||
if mu.data.ndimension() == 4:
|
||||
mu = mu.view(mu.size(0), mu.size(1))
|
||||
if logvar.data.ndimension() == 4:
|
||||
logvar = logvar.view(logvar.size(0), logvar.size(1))
|
||||
|
||||
klds = -0.5 * (1 + logvar - mu.pow(2) - logvar.exp())
|
||||
total_kld = klds.sum(1).mean(0, True)
|
||||
dimension_wise_kld = klds.mean(0)
|
||||
mean_kld = klds.mean(1).mean(0, True)
|
||||
|
||||
return total_kld, dimension_wise_kld, mean_kld
|
||||
|
||||
|
||||
class ActionChunkingTransformerPolicy(nn.Module):
|
||||
def __init__(self, cfg, device, n_action_steps=1):
|
||||
super().__init__()
|
||||
self.cfg = cfg
|
||||
self.n_action_steps = n_action_steps
|
||||
self.device = device
|
||||
self.model, self.optimizer = build_act_model_and_optimizer(cfg)
|
||||
self.kl_weight = self.cfg.kl_weight
|
||||
logging.info(f"KL Weight {self.kl_weight}")
|
||||
self.to(self.device)
|
||||
|
||||
def update(self, replay_buffer, step):
|
||||
del step
|
||||
|
||||
start_time = time.time()
|
||||
|
||||
self.train()
|
||||
|
||||
num_slices = self.cfg.batch_size
|
||||
batch_size = self.cfg.horizon * num_slices
|
||||
|
||||
assert batch_size % self.cfg.horizon == 0
|
||||
assert batch_size % num_slices == 0
|
||||
|
||||
def process_batch(batch, horizon, num_slices):
|
||||
# trajectory t = 64, horizon h = 16
|
||||
# (t h) ... -> t h ...
|
||||
batch = batch.reshape(num_slices, horizon)
|
||||
|
||||
image = batch["observation", "image", "top"]
|
||||
image = image[:, 0] # first observation t=0
|
||||
# batch, num_cam, channel, height, width
|
||||
image = image.unsqueeze(1)
|
||||
assert image.ndim == 5
|
||||
image = image.float()
|
||||
|
||||
state = batch["observation", "state"]
|
||||
state = state[:, 0] # first observation t=0
|
||||
# batch, qpos_dim
|
||||
assert state.ndim == 2
|
||||
|
||||
action = batch["action"]
|
||||
# batch, seq, action_dim
|
||||
assert action.ndim == 3
|
||||
assert action.shape[1] == horizon
|
||||
|
||||
if self.cfg.n_obs_steps > 1:
|
||||
raise NotImplementedError()
|
||||
# # keep first n observations of the slice corresponding to t=[-1,0]
|
||||
# image = image[:, : self.cfg.n_obs_steps]
|
||||
# state = state[:, : self.cfg.n_obs_steps]
|
||||
|
||||
out = {
|
||||
"obs": {
|
||||
"image": image.to(self.device, non_blocking=True),
|
||||
"agent_pos": state.to(self.device, non_blocking=True),
|
||||
},
|
||||
"action": action.to(self.device, non_blocking=True),
|
||||
}
|
||||
return out
|
||||
|
||||
batch = replay_buffer.sample(batch_size)
|
||||
batch = process_batch(batch, self.cfg.horizon, num_slices)
|
||||
|
||||
data_s = time.time() - start_time
|
||||
|
||||
loss = self.compute_loss(batch)
|
||||
loss.backward()
|
||||
|
||||
grad_norm = torch.nn.utils.clip_grad_norm_(
|
||||
self.model.parameters(),
|
||||
self.cfg.grad_clip_norm,
|
||||
error_if_nonfinite=False,
|
||||
)
|
||||
|
||||
self.optimizer.step()
|
||||
self.optimizer.zero_grad()
|
||||
# self.lr_scheduler.step()
|
||||
|
||||
info = {
|
||||
"loss": loss.item(),
|
||||
"grad_norm": float(grad_norm),
|
||||
# "lr": self.lr_scheduler.get_last_lr()[0],
|
||||
"lr": self.cfg.lr,
|
||||
"data_s": data_s,
|
||||
"update_s": time.time() - start_time,
|
||||
}
|
||||
|
||||
return info
|
||||
|
||||
def save(self, fp):
|
||||
torch.save(self.state_dict(), fp)
|
||||
|
||||
def load(self, fp):
|
||||
d = torch.load(fp)
|
||||
self.load_state_dict(d)
|
||||
|
||||
def compute_loss(self, batch):
|
||||
loss_dict = self._forward(
|
||||
qpos=batch["obs"]["agent_pos"],
|
||||
image=batch["obs"]["image"],
|
||||
actions=batch["action"],
|
||||
)
|
||||
loss = loss_dict["loss"]
|
||||
return loss
|
||||
|
||||
@torch.no_grad()
|
||||
def forward(self, observation, step_count):
|
||||
# TODO(rcadene): remove unused step_count
|
||||
del step_count
|
||||
|
||||
self.eval()
|
||||
|
||||
# TODO(rcadene): remove unsqueeze hack to add bsize=1
|
||||
observation["image", "top"] = observation["image", "top"].unsqueeze(0)
|
||||
# observation["state"] = observation["state"].unsqueeze(0)
|
||||
|
||||
# TODO(rcadene): remove hack
|
||||
# add 1 camera dimension
|
||||
observation["image", "top"] = observation["image", "top"].unsqueeze(1)
|
||||
|
||||
obs_dict = {
|
||||
"image": observation["image", "top"],
|
||||
"agent_pos": observation["state"],
|
||||
}
|
||||
action = self._forward(qpos=obs_dict["agent_pos"], image=obs_dict["image"])
|
||||
|
||||
if self.cfg.temporal_agg:
|
||||
# TODO(rcadene): implement temporal aggregation
|
||||
raise NotImplementedError()
|
||||
# all_time_actions[[t], t:t+num_queries] = action
|
||||
# actions_for_curr_step = all_time_actions[:, t]
|
||||
# actions_populated = torch.all(actions_for_curr_step != 0, axis=1)
|
||||
# actions_for_curr_step = actions_for_curr_step[actions_populated]
|
||||
# k = 0.01
|
||||
# exp_weights = np.exp(-k * np.arange(len(actions_for_curr_step)))
|
||||
# exp_weights = exp_weights / exp_weights.sum()
|
||||
# exp_weights = torch.from_numpy(exp_weights).cuda().unsqueeze(dim=1)
|
||||
# raw_action = (actions_for_curr_step * exp_weights).sum(dim=0, keepdim=True)
|
||||
|
||||
# remove bsize=1
|
||||
action = action.squeeze(0)
|
||||
|
||||
# take first predicted action or n first actions
|
||||
action = action[0] if self.n_action_steps == 1 else action[: self.n_action_steps]
|
||||
return action
|
||||
|
||||
def _forward(self, qpos, image, actions=None, is_pad=None):
|
||||
env_state = None
|
||||
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
||||
image = normalize(image)
|
||||
|
||||
is_training = actions is not None
|
||||
if is_training: # training time
|
||||
actions = actions[:, : self.model.num_queries]
|
||||
if is_pad is not None:
|
||||
is_pad = is_pad[:, : self.model.num_queries]
|
||||
|
||||
a_hat, is_pad_hat, (mu, logvar) = self.model(qpos, image, env_state, actions, is_pad)
|
||||
|
||||
all_l1 = F.l1_loss(actions, a_hat, reduction="none")
|
||||
l1 = all_l1.mean() if is_pad is None else (all_l1 * ~is_pad.unsqueeze(-1)).mean()
|
||||
|
||||
loss_dict = {}
|
||||
loss_dict["l1"] = l1
|
||||
if self.cfg.vae:
|
||||
total_kld, dim_wise_kld, mean_kld = kl_divergence(mu, logvar)
|
||||
loss_dict["kl"] = total_kld[0]
|
||||
loss_dict["loss"] = loss_dict["l1"] + loss_dict["kl"] * self.kl_weight
|
||||
else:
|
||||
loss_dict["loss"] = loss_dict["l1"]
|
||||
return loss_dict
|
||||
else:
|
||||
action, _, (_, _) = self.model(qpos, image, env_state) # no action, sample from prior
|
||||
return action
|
||||
@@ -1,101 +0,0 @@
|
||||
"""
|
||||
Various positional encodings for the transformer.
|
||||
"""
|
||||
import math
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from .utils import NestedTensor
|
||||
|
||||
|
||||
class PositionEmbeddingSine(nn.Module):
|
||||
"""
|
||||
This is a more standard version of the position embedding, very similar to the one
|
||||
used by the Attention is all you need paper, generalized to work on images.
|
||||
"""
|
||||
|
||||
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
|
||||
super().__init__()
|
||||
self.num_pos_feats = num_pos_feats
|
||||
self.temperature = temperature
|
||||
self.normalize = normalize
|
||||
if scale is not None and normalize is False:
|
||||
raise ValueError("normalize should be True if scale is passed")
|
||||
if scale is None:
|
||||
scale = 2 * math.pi
|
||||
self.scale = scale
|
||||
|
||||
def forward(self, tensor):
|
||||
x = tensor
|
||||
# mask = tensor_list.mask
|
||||
# assert mask is not None
|
||||
# not_mask = ~mask
|
||||
|
||||
not_mask = torch.ones_like(x[0, [0]])
|
||||
y_embed = not_mask.cumsum(1, dtype=torch.float32)
|
||||
x_embed = not_mask.cumsum(2, dtype=torch.float32)
|
||||
if self.normalize:
|
||||
eps = 1e-6
|
||||
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
|
||||
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
|
||||
|
||||
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
||||
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
|
||||
|
||||
pos_x = x_embed[:, :, :, None] / dim_t
|
||||
pos_y = y_embed[:, :, :, None] / dim_t
|
||||
pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
|
||||
pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
|
||||
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
|
||||
return pos
|
||||
|
||||
|
||||
class PositionEmbeddingLearned(nn.Module):
|
||||
"""
|
||||
Absolute pos embedding, learned.
|
||||
"""
|
||||
|
||||
def __init__(self, num_pos_feats=256):
|
||||
super().__init__()
|
||||
self.row_embed = nn.Embedding(50, num_pos_feats)
|
||||
self.col_embed = nn.Embedding(50, num_pos_feats)
|
||||
self.reset_parameters()
|
||||
|
||||
def reset_parameters(self):
|
||||
nn.init.uniform_(self.row_embed.weight)
|
||||
nn.init.uniform_(self.col_embed.weight)
|
||||
|
||||
def forward(self, tensor_list: NestedTensor):
|
||||
x = tensor_list.tensors
|
||||
h, w = x.shape[-2:]
|
||||
i = torch.arange(w, device=x.device)
|
||||
j = torch.arange(h, device=x.device)
|
||||
x_emb = self.col_embed(i)
|
||||
y_emb = self.row_embed(j)
|
||||
pos = (
|
||||
torch.cat(
|
||||
[
|
||||
x_emb.unsqueeze(0).repeat(h, 1, 1),
|
||||
y_emb.unsqueeze(1).repeat(1, w, 1),
|
||||
],
|
||||
dim=-1,
|
||||
)
|
||||
.permute(2, 0, 1)
|
||||
.unsqueeze(0)
|
||||
.repeat(x.shape[0], 1, 1, 1)
|
||||
)
|
||||
return pos
|
||||
|
||||
|
||||
def build_position_encoding(args):
|
||||
n_steps = args.hidden_dim // 2
|
||||
if args.position_embedding in ("v2", "sine"):
|
||||
# TODO find a better way of exposing other arguments
|
||||
position_embedding = PositionEmbeddingSine(n_steps, normalize=True)
|
||||
elif args.position_embedding in ("v3", "learned"):
|
||||
position_embedding = PositionEmbeddingLearned(n_steps)
|
||||
else:
|
||||
raise ValueError(f"not supported {args.position_embedding}")
|
||||
|
||||
return position_embedding
|
||||
@@ -1,370 +0,0 @@
|
||||
"""
|
||||
DETR Transformer class.
|
||||
|
||||
Copy-paste from torch.nn.Transformer with modifications:
|
||||
* positional encodings are passed in MHattention
|
||||
* extra LN at the end of encoder is removed
|
||||
* decoder returns a stack of activations from all decoding layers
|
||||
"""
|
||||
import copy
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F # noqa: N812
|
||||
from torch import Tensor, nn
|
||||
|
||||
|
||||
class Transformer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
d_model=512,
|
||||
nhead=8,
|
||||
num_encoder_layers=6,
|
||||
num_decoder_layers=6,
|
||||
dim_feedforward=2048,
|
||||
dropout=0.1,
|
||||
activation="relu",
|
||||
normalize_before=False,
|
||||
return_intermediate_dec=False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
encoder_layer = TransformerEncoderLayer(
|
||||
d_model, nhead, dim_feedforward, dropout, activation, normalize_before
|
||||
)
|
||||
encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
|
||||
self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)
|
||||
|
||||
decoder_layer = TransformerDecoderLayer(
|
||||
d_model, nhead, dim_feedforward, dropout, activation, normalize_before
|
||||
)
|
||||
decoder_norm = nn.LayerNorm(d_model)
|
||||
self.decoder = TransformerDecoder(
|
||||
decoder_layer, num_decoder_layers, decoder_norm, return_intermediate=return_intermediate_dec
|
||||
)
|
||||
|
||||
self._reset_parameters()
|
||||
|
||||
self.d_model = d_model
|
||||
self.nhead = nhead
|
||||
|
||||
def _reset_parameters(self):
|
||||
for p in self.parameters():
|
||||
if p.dim() > 1:
|
||||
nn.init.xavier_uniform_(p)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
src,
|
||||
mask,
|
||||
query_embed,
|
||||
pos_embed,
|
||||
latent_input=None,
|
||||
proprio_input=None,
|
||||
additional_pos_embed=None,
|
||||
):
|
||||
# TODO flatten only when input has H and W
|
||||
if len(src.shape) == 4: # has H and W
|
||||
# flatten NxCxHxW to HWxNxC
|
||||
bs, c, h, w = src.shape
|
||||
src = src.flatten(2).permute(2, 0, 1)
|
||||
pos_embed = pos_embed.flatten(2).permute(2, 0, 1).repeat(1, bs, 1)
|
||||
query_embed = query_embed.unsqueeze(1).repeat(1, bs, 1)
|
||||
# mask = mask.flatten(1)
|
||||
|
||||
additional_pos_embed = additional_pos_embed.unsqueeze(1).repeat(1, bs, 1) # seq, bs, dim
|
||||
pos_embed = torch.cat([additional_pos_embed, pos_embed], axis=0)
|
||||
|
||||
addition_input = torch.stack([latent_input, proprio_input], axis=0)
|
||||
src = torch.cat([addition_input, src], axis=0)
|
||||
else:
|
||||
assert len(src.shape) == 3
|
||||
# flatten NxHWxC to HWxNxC
|
||||
bs, hw, c = src.shape
|
||||
src = src.permute(1, 0, 2)
|
||||
pos_embed = pos_embed.unsqueeze(1).repeat(1, bs, 1)
|
||||
query_embed = query_embed.unsqueeze(1).repeat(1, bs, 1)
|
||||
|
||||
tgt = torch.zeros_like(query_embed)
|
||||
memory = self.encoder(src, src_key_padding_mask=mask, pos=pos_embed)
|
||||
hs = self.decoder(tgt, memory, memory_key_padding_mask=mask, pos=pos_embed, query_pos=query_embed)
|
||||
hs = hs.transpose(1, 2)
|
||||
return hs
|
||||
|
||||
|
||||
class TransformerEncoder(nn.Module):
|
||||
def __init__(self, encoder_layer, num_layers, norm=None):
|
||||
super().__init__()
|
||||
self.layers = _get_clones(encoder_layer, num_layers)
|
||||
self.num_layers = num_layers
|
||||
self.norm = norm
|
||||
|
||||
def forward(
|
||||
self,
|
||||
src,
|
||||
mask: Optional[Tensor] = None,
|
||||
src_key_padding_mask: Optional[Tensor] = None,
|
||||
pos: Optional[Tensor] = None,
|
||||
):
|
||||
output = src
|
||||
|
||||
for layer in self.layers:
|
||||
output = layer(output, src_mask=mask, src_key_padding_mask=src_key_padding_mask, pos=pos)
|
||||
|
||||
if self.norm is not None:
|
||||
output = self.norm(output)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
class TransformerDecoder(nn.Module):
|
||||
def __init__(self, decoder_layer, num_layers, norm=None, return_intermediate=False):
|
||||
super().__init__()
|
||||
self.layers = _get_clones(decoder_layer, num_layers)
|
||||
self.num_layers = num_layers
|
||||
self.norm = norm
|
||||
self.return_intermediate = return_intermediate
|
||||
|
||||
def forward(
|
||||
self,
|
||||
tgt,
|
||||
memory,
|
||||
tgt_mask: Optional[Tensor] = None,
|
||||
memory_mask: Optional[Tensor] = None,
|
||||
tgt_key_padding_mask: Optional[Tensor] = None,
|
||||
memory_key_padding_mask: Optional[Tensor] = None,
|
||||
pos: Optional[Tensor] = None,
|
||||
query_pos: Optional[Tensor] = None,
|
||||
):
|
||||
output = tgt
|
||||
|
||||
intermediate = []
|
||||
|
||||
for layer in self.layers:
|
||||
output = layer(
|
||||
output,
|
||||
memory,
|
||||
tgt_mask=tgt_mask,
|
||||
memory_mask=memory_mask,
|
||||
tgt_key_padding_mask=tgt_key_padding_mask,
|
||||
memory_key_padding_mask=memory_key_padding_mask,
|
||||
pos=pos,
|
||||
query_pos=query_pos,
|
||||
)
|
||||
if self.return_intermediate:
|
||||
intermediate.append(self.norm(output))
|
||||
|
||||
if self.norm is not None:
|
||||
output = self.norm(output)
|
||||
if self.return_intermediate:
|
||||
intermediate.pop()
|
||||
intermediate.append(output)
|
||||
|
||||
if self.return_intermediate:
|
||||
return torch.stack(intermediate)
|
||||
|
||||
return output.unsqueeze(0)
|
||||
|
||||
|
||||
class TransformerEncoderLayer(nn.Module):
|
||||
def __init__(
|
||||
self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False
|
||||
):
|
||||
super().__init__()
|
||||
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
||||
# Implementation of Feedforward model
|
||||
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
||||
|
||||
self.norm1 = nn.LayerNorm(d_model)
|
||||
self.norm2 = nn.LayerNorm(d_model)
|
||||
self.dropout1 = nn.Dropout(dropout)
|
||||
self.dropout2 = nn.Dropout(dropout)
|
||||
|
||||
self.activation = _get_activation_fn(activation)
|
||||
self.normalize_before = normalize_before
|
||||
|
||||
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
||||
return tensor if pos is None else tensor + pos
|
||||
|
||||
def forward_post(
|
||||
self,
|
||||
src,
|
||||
src_mask: Optional[Tensor] = None,
|
||||
src_key_padding_mask: Optional[Tensor] = None,
|
||||
pos: Optional[Tensor] = None,
|
||||
):
|
||||
q = k = self.with_pos_embed(src, pos)
|
||||
src2 = self.self_attn(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
|
||||
src = src + self.dropout1(src2)
|
||||
src = self.norm1(src)
|
||||
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
|
||||
src = src + self.dropout2(src2)
|
||||
src = self.norm2(src)
|
||||
return src
|
||||
|
||||
def forward_pre(
|
||||
self,
|
||||
src,
|
||||
src_mask: Optional[Tensor] = None,
|
||||
src_key_padding_mask: Optional[Tensor] = None,
|
||||
pos: Optional[Tensor] = None,
|
||||
):
|
||||
src2 = self.norm1(src)
|
||||
q = k = self.with_pos_embed(src2, pos)
|
||||
src2 = self.self_attn(q, k, value=src2, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
|
||||
src = src + self.dropout1(src2)
|
||||
src2 = self.norm2(src)
|
||||
src2 = self.linear2(self.dropout(self.activation(self.linear1(src2))))
|
||||
src = src + self.dropout2(src2)
|
||||
return src
|
||||
|
||||
def forward(
|
||||
self,
|
||||
src,
|
||||
src_mask: Optional[Tensor] = None,
|
||||
src_key_padding_mask: Optional[Tensor] = None,
|
||||
pos: Optional[Tensor] = None,
|
||||
):
|
||||
if self.normalize_before:
|
||||
return self.forward_pre(src, src_mask, src_key_padding_mask, pos)
|
||||
return self.forward_post(src, src_mask, src_key_padding_mask, pos)
|
||||
|
||||
|
||||
class TransformerDecoderLayer(nn.Module):
|
||||
def __init__(
|
||||
self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False
|
||||
):
|
||||
super().__init__()
|
||||
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
||||
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
||||
# Implementation of Feedforward model
|
||||
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
||||
|
||||
self.norm1 = nn.LayerNorm(d_model)
|
||||
self.norm2 = nn.LayerNorm(d_model)
|
||||
self.norm3 = nn.LayerNorm(d_model)
|
||||
self.dropout1 = nn.Dropout(dropout)
|
||||
self.dropout2 = nn.Dropout(dropout)
|
||||
self.dropout3 = nn.Dropout(dropout)
|
||||
|
||||
self.activation = _get_activation_fn(activation)
|
||||
self.normalize_before = normalize_before
|
||||
|
||||
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
||||
return tensor if pos is None else tensor + pos
|
||||
|
||||
def forward_post(
|
||||
self,
|
||||
tgt,
|
||||
memory,
|
||||
tgt_mask: Optional[Tensor] = None,
|
||||
memory_mask: Optional[Tensor] = None,
|
||||
tgt_key_padding_mask: Optional[Tensor] = None,
|
||||
memory_key_padding_mask: Optional[Tensor] = None,
|
||||
pos: Optional[Tensor] = None,
|
||||
query_pos: Optional[Tensor] = None,
|
||||
):
|
||||
q = k = self.with_pos_embed(tgt, query_pos)
|
||||
tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0]
|
||||
tgt = tgt + self.dropout1(tgt2)
|
||||
tgt = self.norm1(tgt)
|
||||
tgt2 = self.multihead_attn(
|
||||
query=self.with_pos_embed(tgt, query_pos),
|
||||
key=self.with_pos_embed(memory, pos),
|
||||
value=memory,
|
||||
attn_mask=memory_mask,
|
||||
key_padding_mask=memory_key_padding_mask,
|
||||
)[0]
|
||||
tgt = tgt + self.dropout2(tgt2)
|
||||
tgt = self.norm2(tgt)
|
||||
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
|
||||
tgt = tgt + self.dropout3(tgt2)
|
||||
tgt = self.norm3(tgt)
|
||||
return tgt
|
||||
|
||||
def forward_pre(
|
||||
self,
|
||||
tgt,
|
||||
memory,
|
||||
tgt_mask: Optional[Tensor] = None,
|
||||
memory_mask: Optional[Tensor] = None,
|
||||
tgt_key_padding_mask: Optional[Tensor] = None,
|
||||
memory_key_padding_mask: Optional[Tensor] = None,
|
||||
pos: Optional[Tensor] = None,
|
||||
query_pos: Optional[Tensor] = None,
|
||||
):
|
||||
tgt2 = self.norm1(tgt)
|
||||
q = k = self.with_pos_embed(tgt2, query_pos)
|
||||
tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0]
|
||||
tgt = tgt + self.dropout1(tgt2)
|
||||
tgt2 = self.norm2(tgt)
|
||||
tgt2 = self.multihead_attn(
|
||||
query=self.with_pos_embed(tgt2, query_pos),
|
||||
key=self.with_pos_embed(memory, pos),
|
||||
value=memory,
|
||||
attn_mask=memory_mask,
|
||||
key_padding_mask=memory_key_padding_mask,
|
||||
)[0]
|
||||
tgt = tgt + self.dropout2(tgt2)
|
||||
tgt2 = self.norm3(tgt)
|
||||
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
|
||||
tgt = tgt + self.dropout3(tgt2)
|
||||
return tgt
|
||||
|
||||
def forward(
|
||||
self,
|
||||
tgt,
|
||||
memory,
|
||||
tgt_mask: Optional[Tensor] = None,
|
||||
memory_mask: Optional[Tensor] = None,
|
||||
tgt_key_padding_mask: Optional[Tensor] = None,
|
||||
memory_key_padding_mask: Optional[Tensor] = None,
|
||||
pos: Optional[Tensor] = None,
|
||||
query_pos: Optional[Tensor] = None,
|
||||
):
|
||||
if self.normalize_before:
|
||||
return self.forward_pre(
|
||||
tgt,
|
||||
memory,
|
||||
tgt_mask,
|
||||
memory_mask,
|
||||
tgt_key_padding_mask,
|
||||
memory_key_padding_mask,
|
||||
pos,
|
||||
query_pos,
|
||||
)
|
||||
return self.forward_post(
|
||||
tgt, memory, tgt_mask, memory_mask, tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos
|
||||
)
|
||||
|
||||
|
||||
def _get_clones(module, n):
|
||||
return nn.ModuleList([copy.deepcopy(module) for _ in range(n)])
|
||||
|
||||
|
||||
def build_transformer(args):
|
||||
return Transformer(
|
||||
d_model=args.hidden_dim,
|
||||
dropout=args.dropout,
|
||||
nhead=args.nheads,
|
||||
dim_feedforward=args.dim_feedforward,
|
||||
num_encoder_layers=args.enc_layers,
|
||||
num_decoder_layers=args.dec_layers,
|
||||
normalize_before=args.pre_norm,
|
||||
return_intermediate_dec=True,
|
||||
)
|
||||
|
||||
|
||||
def _get_activation_fn(activation):
|
||||
"""Return an activation function given a string"""
|
||||
if activation == "relu":
|
||||
return F.relu
|
||||
if activation == "gelu":
|
||||
return F.gelu
|
||||
if activation == "glu":
|
||||
return F.glu
|
||||
raise RuntimeError(f"activation should be relu/gelu, not {activation}.")
|
||||
@@ -1,477 +0,0 @@
|
||||
"""
|
||||
Misc functions, including distributed helpers.
|
||||
|
||||
Mostly copy-paste from torchvision references.
|
||||
"""
|
||||
import datetime
|
||||
import os
|
||||
import pickle
|
||||
import subprocess
|
||||
import time
|
||||
from collections import defaultdict, deque
|
||||
from typing import List, Optional
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
|
||||
# needed due to empty tensor bug in pytorch and torchvision 0.5
|
||||
import torchvision
|
||||
from packaging import version
|
||||
from torch import Tensor
|
||||
|
||||
if version.parse(torchvision.__version__) < version.parse("0.7"):
|
||||
from torchvision.ops import _new_empty_tensor
|
||||
from torchvision.ops.misc import _output_size
|
||||
|
||||
|
||||
class SmoothedValue:
|
||||
"""Track a series of values and provide access to smoothed values over a
|
||||
window or the global series average.
|
||||
"""
|
||||
|
||||
def __init__(self, window_size=20, fmt=None):
|
||||
if fmt is None:
|
||||
fmt = "{median:.4f} ({global_avg:.4f})"
|
||||
self.deque = deque(maxlen=window_size)
|
||||
self.total = 0.0
|
||||
self.count = 0
|
||||
self.fmt = fmt
|
||||
|
||||
def update(self, value, n=1):
|
||||
self.deque.append(value)
|
||||
self.count += n
|
||||
self.total += value * n
|
||||
|
||||
def synchronize_between_processes(self):
|
||||
"""
|
||||
Warning: does not synchronize the deque!
|
||||
"""
|
||||
if not is_dist_avail_and_initialized():
|
||||
return
|
||||
t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda")
|
||||
dist.barrier()
|
||||
dist.all_reduce(t)
|
||||
t = t.tolist()
|
||||
self.count = int(t[0])
|
||||
self.total = t[1]
|
||||
|
||||
@property
|
||||
def median(self):
|
||||
d = torch.tensor(list(self.deque))
|
||||
return d.median().item()
|
||||
|
||||
@property
|
||||
def avg(self):
|
||||
d = torch.tensor(list(self.deque), dtype=torch.float32)
|
||||
return d.mean().item()
|
||||
|
||||
@property
|
||||
def global_avg(self):
|
||||
return self.total / self.count
|
||||
|
||||
@property
|
||||
def max(self):
|
||||
return max(self.deque)
|
||||
|
||||
@property
|
||||
def value(self):
|
||||
return self.deque[-1]
|
||||
|
||||
def __str__(self):
|
||||
return self.fmt.format(
|
||||
median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value
|
||||
)
|
||||
|
||||
|
||||
def all_gather(data):
|
||||
"""
|
||||
Run all_gather on arbitrary picklable data (not necessarily tensors)
|
||||
Args:
|
||||
data: any picklable object
|
||||
Returns:
|
||||
list[data]: list of data gathered from each rank
|
||||
"""
|
||||
world_size = get_world_size()
|
||||
if world_size == 1:
|
||||
return [data]
|
||||
|
||||
# serialized to a Tensor
|
||||
buffer = pickle.dumps(data)
|
||||
storage = torch.ByteStorage.from_buffer(buffer)
|
||||
tensor = torch.ByteTensor(storage).to("cuda")
|
||||
|
||||
# obtain Tensor size of each rank
|
||||
local_size = torch.tensor([tensor.numel()], device="cuda")
|
||||
size_list = [torch.tensor([0], device="cuda") for _ in range(world_size)]
|
||||
dist.all_gather(size_list, local_size)
|
||||
size_list = [int(size.item()) for size in size_list]
|
||||
max_size = max(size_list)
|
||||
|
||||
# receiving Tensor from all ranks
|
||||
# we pad the tensor because torch all_gather does not support
|
||||
# gathering tensors of different shapes
|
||||
tensor_list = []
|
||||
for _ in size_list:
|
||||
tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device="cuda"))
|
||||
if local_size != max_size:
|
||||
padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device="cuda")
|
||||
tensor = torch.cat((tensor, padding), dim=0)
|
||||
dist.all_gather(tensor_list, tensor)
|
||||
|
||||
data_list = []
|
||||
for size, tensor in zip(size_list, tensor_list, strict=False):
|
||||
buffer = tensor.cpu().numpy().tobytes()[:size]
|
||||
data_list.append(pickle.loads(buffer))
|
||||
|
||||
return data_list
|
||||
|
||||
|
||||
def reduce_dict(input_dict, average=True):
|
||||
"""
|
||||
Args:
|
||||
input_dict (dict): all the values will be reduced
|
||||
average (bool): whether to do average or sum
|
||||
Reduce the values in the dictionary from all processes so that all processes
|
||||
have the averaged results. Returns a dict with the same fields as
|
||||
input_dict, after reduction.
|
||||
"""
|
||||
world_size = get_world_size()
|
||||
if world_size < 2:
|
||||
return input_dict
|
||||
with torch.no_grad():
|
||||
names = []
|
||||
values = []
|
||||
# sort the keys so that they are consistent across processes
|
||||
for k in sorted(input_dict.keys()):
|
||||
names.append(k)
|
||||
values.append(input_dict[k])
|
||||
values = torch.stack(values, dim=0)
|
||||
dist.all_reduce(values)
|
||||
if average:
|
||||
values /= world_size
|
||||
reduced_dict = {k: v for k, v in zip(names, values, strict=False)} # noqa: C416
|
||||
return reduced_dict
|
||||
|
||||
|
||||
class MetricLogger:
|
||||
def __init__(self, delimiter="\t"):
|
||||
self.meters = defaultdict(SmoothedValue)
|
||||
self.delimiter = delimiter
|
||||
|
||||
def update(self, **kwargs):
|
||||
for k, v in kwargs.items():
|
||||
if isinstance(v, torch.Tensor):
|
||||
v = v.item()
|
||||
assert isinstance(v, (float, int))
|
||||
self.meters[k].update(v)
|
||||
|
||||
def __getattr__(self, attr):
|
||||
if attr in self.meters:
|
||||
return self.meters[attr]
|
||||
if attr in self.__dict__:
|
||||
return self.__dict__[attr]
|
||||
raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, attr))
|
||||
|
||||
def __str__(self):
|
||||
loss_str = []
|
||||
for name, meter in self.meters.items():
|
||||
loss_str.append("{}: {}".format(name, str(meter)))
|
||||
return self.delimiter.join(loss_str)
|
||||
|
||||
def synchronize_between_processes(self):
|
||||
for meter in self.meters.values():
|
||||
meter.synchronize_between_processes()
|
||||
|
||||
def add_meter(self, name, meter):
|
||||
self.meters[name] = meter
|
||||
|
||||
def log_every(self, iterable, print_freq, header=None):
|
||||
if not header:
|
||||
header = ""
|
||||
start_time = time.time()
|
||||
end = time.time()
|
||||
iter_time = SmoothedValue(fmt="{avg:.4f}")
|
||||
data_time = SmoothedValue(fmt="{avg:.4f}")
|
||||
space_fmt = ":" + str(len(str(len(iterable)))) + "d"
|
||||
if torch.cuda.is_available():
|
||||
log_msg = self.delimiter.join(
|
||||
[
|
||||
header,
|
||||
"[{0" + space_fmt + "}/{1}]",
|
||||
"eta: {eta}",
|
||||
"{meters}",
|
||||
"time: {time}",
|
||||
"data: {data}",
|
||||
"max mem: {memory:.0f}",
|
||||
]
|
||||
)
|
||||
else:
|
||||
log_msg = self.delimiter.join(
|
||||
[
|
||||
header,
|
||||
"[{0" + space_fmt + "}/{1}]",
|
||||
"eta: {eta}",
|
||||
"{meters}",
|
||||
"time: {time}",
|
||||
"data: {data}",
|
||||
]
|
||||
)
|
||||
mega_b = 1024.0 * 1024.0
|
||||
for i, obj in enumerate(iterable):
|
||||
data_time.update(time.time() - end)
|
||||
yield obj
|
||||
iter_time.update(time.time() - end)
|
||||
if i % print_freq == 0 or i == len(iterable) - 1:
|
||||
eta_seconds = iter_time.global_avg * (len(iterable) - i)
|
||||
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
|
||||
if torch.cuda.is_available():
|
||||
print(
|
||||
log_msg.format(
|
||||
i,
|
||||
len(iterable),
|
||||
eta=eta_string,
|
||||
meters=str(self),
|
||||
time=str(iter_time),
|
||||
data=str(data_time),
|
||||
memory=torch.cuda.max_memory_allocated() / mega_b,
|
||||
)
|
||||
)
|
||||
else:
|
||||
print(
|
||||
log_msg.format(
|
||||
i,
|
||||
len(iterable),
|
||||
eta=eta_string,
|
||||
meters=str(self),
|
||||
time=str(iter_time),
|
||||
data=str(data_time),
|
||||
)
|
||||
)
|
||||
end = time.time()
|
||||
total_time = time.time() - start_time
|
||||
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
|
||||
print("{} Total time: {} ({:.4f} s / it)".format(header, total_time_str, total_time / len(iterable)))
|
||||
|
||||
|
||||
def get_sha():
|
||||
cwd = os.path.dirname(os.path.abspath(__file__))
|
||||
|
||||
def _run(command):
|
||||
return subprocess.check_output(command, cwd=cwd).decode("ascii").strip()
|
||||
|
||||
sha = "N/A"
|
||||
diff = "clean"
|
||||
branch = "N/A"
|
||||
try:
|
||||
sha = _run(["git", "rev-parse", "HEAD"])
|
||||
subprocess.check_output(["git", "diff"], cwd=cwd)
|
||||
diff = _run(["git", "diff-index", "HEAD"])
|
||||
diff = "has uncommited changes" if diff else "clean"
|
||||
branch = _run(["git", "rev-parse", "--abbrev-ref", "HEAD"])
|
||||
except Exception:
|
||||
pass
|
||||
message = f"sha: {sha}, status: {diff}, branch: {branch}"
|
||||
return message
|
||||
|
||||
|
||||
def collate_fn(batch):
|
||||
batch = list(zip(*batch, strict=False))
|
||||
batch[0] = nested_tensor_from_tensor_list(batch[0])
|
||||
return tuple(batch)
|
||||
|
||||
|
||||
def _max_by_axis(the_list):
|
||||
# type: (List[List[int]]) -> List[int]
|
||||
maxes = the_list[0]
|
||||
for sublist in the_list[1:]:
|
||||
for index, item in enumerate(sublist):
|
||||
maxes[index] = max(maxes[index], item)
|
||||
return maxes
|
||||
|
||||
|
||||
class NestedTensor:
|
||||
def __init__(self, tensors, mask: Optional[Tensor]):
|
||||
self.tensors = tensors
|
||||
self.mask = mask
|
||||
|
||||
def to(self, device):
|
||||
# type: (Device) -> NestedTensor # noqa
|
||||
cast_tensor = self.tensors.to(device)
|
||||
mask = self.mask
|
||||
if mask is not None:
|
||||
assert mask is not None
|
||||
cast_mask = mask.to(device)
|
||||
else:
|
||||
cast_mask = None
|
||||
return NestedTensor(cast_tensor, cast_mask)
|
||||
|
||||
def decompose(self):
|
||||
return self.tensors, self.mask
|
||||
|
||||
def __repr__(self):
|
||||
return str(self.tensors)
|
||||
|
||||
|
||||
def nested_tensor_from_tensor_list(tensor_list: List[Tensor]):
|
||||
# TODO make this more general
|
||||
if tensor_list[0].ndim == 3:
|
||||
if torchvision._is_tracing():
|
||||
# nested_tensor_from_tensor_list() does not export well to ONNX
|
||||
# call _onnx_nested_tensor_from_tensor_list() instead
|
||||
return _onnx_nested_tensor_from_tensor_list(tensor_list)
|
||||
|
||||
# TODO make it support different-sized images
|
||||
max_size = _max_by_axis([list(img.shape) for img in tensor_list])
|
||||
# min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list]))
|
||||
batch_shape = [len(tensor_list)] + max_size
|
||||
b, c, h, w = batch_shape
|
||||
dtype = tensor_list[0].dtype
|
||||
device = tensor_list[0].device
|
||||
tensor = torch.zeros(batch_shape, dtype=dtype, device=device)
|
||||
mask = torch.ones((b, h, w), dtype=torch.bool, device=device)
|
||||
for img, pad_img, m in zip(tensor_list, tensor, mask, strict=False):
|
||||
pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
|
||||
m[: img.shape[1], : img.shape[2]] = False
|
||||
else:
|
||||
raise ValueError("not supported")
|
||||
return NestedTensor(tensor, mask)
|
||||
|
||||
|
||||
# _onnx_nested_tensor_from_tensor_list() is an implementation of
|
||||
# nested_tensor_from_tensor_list() that is supported by ONNX tracing.
|
||||
@torch.jit.unused
|
||||
def _onnx_nested_tensor_from_tensor_list(tensor_list: List[Tensor]) -> NestedTensor:
|
||||
max_size = []
|
||||
for i in range(tensor_list[0].dim()):
|
||||
max_size_i = torch.max(torch.stack([img.shape[i] for img in tensor_list]).to(torch.float32)).to(
|
||||
torch.int64
|
||||
)
|
||||
max_size.append(max_size_i)
|
||||
max_size = tuple(max_size)
|
||||
|
||||
# work around for
|
||||
# pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
|
||||
# m[: img.shape[1], :img.shape[2]] = False
|
||||
# which is not yet supported in onnx
|
||||
padded_imgs = []
|
||||
padded_masks = []
|
||||
for img in tensor_list:
|
||||
padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape), strict=False)]
|
||||
padded_img = torch.nn.functional.pad(img, (0, padding[2], 0, padding[1], 0, padding[0]))
|
||||
padded_imgs.append(padded_img)
|
||||
|
||||
m = torch.zeros_like(img[0], dtype=torch.int, device=img.device)
|
||||
padded_mask = torch.nn.functional.pad(m, (0, padding[2], 0, padding[1]), "constant", 1)
|
||||
padded_masks.append(padded_mask.to(torch.bool))
|
||||
|
||||
tensor = torch.stack(padded_imgs)
|
||||
mask = torch.stack(padded_masks)
|
||||
|
||||
return NestedTensor(tensor, mask=mask)
|
||||
|
||||
|
||||
def setup_for_distributed(is_master):
|
||||
"""
|
||||
This function disables printing when not in master process
|
||||
"""
|
||||
import builtins as __builtin__
|
||||
|
||||
builtin_print = __builtin__.print
|
||||
|
||||
def print(*args, **kwargs):
|
||||
force = kwargs.pop("force", False)
|
||||
if is_master or force:
|
||||
builtin_print(*args, **kwargs)
|
||||
|
||||
__builtin__.print = print
|
||||
|
||||
|
||||
def is_dist_avail_and_initialized():
|
||||
if not dist.is_available():
|
||||
return False
|
||||
if not dist.is_initialized():
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def get_world_size():
|
||||
if not is_dist_avail_and_initialized():
|
||||
return 1
|
||||
return dist.get_world_size()
|
||||
|
||||
|
||||
def get_rank():
|
||||
if not is_dist_avail_and_initialized():
|
||||
return 0
|
||||
return dist.get_rank()
|
||||
|
||||
|
||||
def is_main_process():
|
||||
return get_rank() == 0
|
||||
|
||||
|
||||
def save_on_master(*args, **kwargs):
|
||||
if is_main_process():
|
||||
torch.save(*args, **kwargs)
|
||||
|
||||
|
||||
def init_distributed_mode(args):
|
||||
if "RANK" in os.environ and "WORLD_SIZE" in os.environ:
|
||||
args.rank = int(os.environ["RANK"])
|
||||
args.world_size = int(os.environ["WORLD_SIZE"])
|
||||
args.gpu = int(os.environ["LOCAL_RANK"])
|
||||
elif "SLURM_PROCID" in os.environ:
|
||||
args.rank = int(os.environ["SLURM_PROCID"])
|
||||
args.gpu = args.rank % torch.cuda.device_count()
|
||||
else:
|
||||
print("Not using distributed mode")
|
||||
args.distributed = False
|
||||
return
|
||||
|
||||
args.distributed = True
|
||||
|
||||
torch.cuda.set_device(args.gpu)
|
||||
args.dist_backend = "nccl"
|
||||
print("| distributed init (rank {}): {}".format(args.rank, args.dist_url), flush=True)
|
||||
torch.distributed.init_process_group(
|
||||
backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank
|
||||
)
|
||||
torch.distributed.barrier()
|
||||
setup_for_distributed(args.rank == 0)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def accuracy(output, target, topk=(1,)):
|
||||
"""Computes the precision@k for the specified values of k"""
|
||||
if target.numel() == 0:
|
||||
return [torch.zeros([], device=output.device)]
|
||||
maxk = max(topk)
|
||||
batch_size = target.size(0)
|
||||
|
||||
_, pred = output.topk(maxk, 1, True, True)
|
||||
pred = pred.t()
|
||||
correct = pred.eq(target.view(1, -1).expand_as(pred))
|
||||
|
||||
res = []
|
||||
for k in topk:
|
||||
correct_k = correct[:k].view(-1).float().sum(0)
|
||||
res.append(correct_k.mul_(100.0 / batch_size))
|
||||
return res
|
||||
|
||||
|
||||
def interpolate(input, size=None, scale_factor=None, mode="nearest", align_corners=None):
|
||||
# type: (Tensor, Optional[List[int]], Optional[float], str, Optional[bool]) -> Tensor
|
||||
"""
|
||||
Equivalent to nn.functional.interpolate, but with support for empty batch sizes.
|
||||
This will eventually be supported natively by PyTorch, and this
|
||||
class can go away.
|
||||
"""
|
||||
if version.parse(torchvision.__version__) < version.parse("0.7"):
|
||||
if input.numel() > 0:
|
||||
return torch.nn.functional.interpolate(input, size, scale_factor, mode, align_corners)
|
||||
|
||||
output_shape = _output_size(2, input, size, scale_factor)
|
||||
output_shape = list(input.shape[:-2]) + list(output_shape)
|
||||
return _new_empty_tensor(input, output_shape)
|
||||
else:
|
||||
return torchvision.ops.misc.interpolate(input, size, scale_factor, mode, align_corners)
|
||||
@@ -5,33 +5,11 @@ import torch.nn.functional as F # noqa: N812
|
||||
from diffusers.schedulers.scheduling_ddpm import DDPMScheduler
|
||||
from einops import reduce
|
||||
|
||||
from lerobot.common.policies.diffusion.model.conditional_unet1d import ConditionalUnet1D
|
||||
from lerobot.common.policies.diffusion.model.mask_generator import LowdimMaskGenerator
|
||||
from lerobot.common.policies.diffusion.model.module_attr_mixin import ModuleAttrMixin
|
||||
from lerobot.common.policies.diffusion.model.multi_image_obs_encoder import MultiImageObsEncoder
|
||||
from lerobot.common.policies.diffusion.model.normalizer import LinearNormalizer
|
||||
from lerobot.common.policies.diffusion.pytorch_utils import dict_apply
|
||||
|
||||
|
||||
class BaseImagePolicy(ModuleAttrMixin):
|
||||
# init accepts keyword argument shape_meta, see config/task/*_image.yaml
|
||||
|
||||
def predict_action(self, obs_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
||||
"""
|
||||
obs_dict:
|
||||
str: B,To,*
|
||||
return: B,Ta,Da
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
# reset state for stateful policies
|
||||
def reset(self):
|
||||
pass
|
||||
|
||||
# ========== training ===========
|
||||
# no standard training interface except setting normalizer
|
||||
def set_normalizer(self, normalizer: LinearNormalizer):
|
||||
raise NotImplementedError()
|
||||
from diffusion_policy.common.pytorch_util import dict_apply
|
||||
from diffusion_policy.model.diffusion.conditional_unet1d import ConditionalUnet1D
|
||||
from diffusion_policy.model.diffusion.mask_generator import LowdimMaskGenerator
|
||||
from diffusion_policy.model.vision.multi_image_obs_encoder import MultiImageObsEncoder
|
||||
from diffusion_policy.policy.base_image_policy import BaseImagePolicy
|
||||
|
||||
|
||||
class DiffusionUnetImagePolicy(BaseImagePolicy):
|
||||
|
||||
@@ -1,286 +0,0 @@
|
||||
import logging
|
||||
from typing import Union
|
||||
|
||||
import einops
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from einops.layers.torch import Rearrange
|
||||
|
||||
from lerobot.common.policies.diffusion.model.conv1d_components import Conv1dBlock, Downsample1d, Upsample1d
|
||||
from lerobot.common.policies.diffusion.model.positional_embedding import SinusoidalPosEmb
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ConditionalResidualBlock1D(nn.Module):
|
||||
def __init__(
|
||||
self, in_channels, out_channels, cond_dim, kernel_size=3, n_groups=8, cond_predict_scale=False
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.blocks = nn.ModuleList(
|
||||
[
|
||||
Conv1dBlock(in_channels, out_channels, kernel_size, n_groups=n_groups),
|
||||
Conv1dBlock(out_channels, out_channels, kernel_size, n_groups=n_groups),
|
||||
]
|
||||
)
|
||||
|
||||
# FiLM modulation https://arxiv.org/abs/1709.07871
|
||||
# predicts per-channel scale and bias
|
||||
cond_channels = out_channels
|
||||
if cond_predict_scale:
|
||||
cond_channels = out_channels * 2
|
||||
self.cond_predict_scale = cond_predict_scale
|
||||
self.out_channels = out_channels
|
||||
self.cond_encoder = nn.Sequential(
|
||||
nn.Mish(),
|
||||
nn.Linear(cond_dim, cond_channels),
|
||||
Rearrange("batch t -> batch t 1"),
|
||||
)
|
||||
|
||||
# make sure dimensions compatible
|
||||
self.residual_conv = (
|
||||
nn.Conv1d(in_channels, out_channels, 1) if in_channels != out_channels else nn.Identity()
|
||||
)
|
||||
|
||||
def forward(self, x, cond):
|
||||
"""
|
||||
x : [ batch_size x in_channels x horizon ]
|
||||
cond : [ batch_size x cond_dim]
|
||||
|
||||
returns:
|
||||
out : [ batch_size x out_channels x horizon ]
|
||||
"""
|
||||
out = self.blocks[0](x)
|
||||
embed = self.cond_encoder(cond)
|
||||
if self.cond_predict_scale:
|
||||
embed = embed.reshape(embed.shape[0], 2, self.out_channels, 1)
|
||||
scale = embed[:, 0, ...]
|
||||
bias = embed[:, 1, ...]
|
||||
out = scale * out + bias
|
||||
else:
|
||||
out = out + embed
|
||||
out = self.blocks[1](out)
|
||||
out = out + self.residual_conv(x)
|
||||
return out
|
||||
|
||||
|
||||
class ConditionalUnet1D(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
input_dim,
|
||||
local_cond_dim=None,
|
||||
global_cond_dim=None,
|
||||
diffusion_step_embed_dim=256,
|
||||
down_dims=None,
|
||||
kernel_size=3,
|
||||
n_groups=8,
|
||||
cond_predict_scale=False,
|
||||
):
|
||||
super().__init__()
|
||||
if down_dims is None:
|
||||
down_dims = [256, 512, 1024]
|
||||
|
||||
all_dims = [input_dim] + list(down_dims)
|
||||
start_dim = down_dims[0]
|
||||
|
||||
dsed = diffusion_step_embed_dim
|
||||
diffusion_step_encoder = nn.Sequential(
|
||||
SinusoidalPosEmb(dsed),
|
||||
nn.Linear(dsed, dsed * 4),
|
||||
nn.Mish(),
|
||||
nn.Linear(dsed * 4, dsed),
|
||||
)
|
||||
cond_dim = dsed
|
||||
if global_cond_dim is not None:
|
||||
cond_dim += global_cond_dim
|
||||
|
||||
in_out = list(zip(all_dims[:-1], all_dims[1:], strict=False))
|
||||
|
||||
local_cond_encoder = None
|
||||
if local_cond_dim is not None:
|
||||
_, dim_out = in_out[0]
|
||||
dim_in = local_cond_dim
|
||||
local_cond_encoder = nn.ModuleList(
|
||||
[
|
||||
# down encoder
|
||||
ConditionalResidualBlock1D(
|
||||
dim_in,
|
||||
dim_out,
|
||||
cond_dim=cond_dim,
|
||||
kernel_size=kernel_size,
|
||||
n_groups=n_groups,
|
||||
cond_predict_scale=cond_predict_scale,
|
||||
),
|
||||
# up encoder
|
||||
ConditionalResidualBlock1D(
|
||||
dim_in,
|
||||
dim_out,
|
||||
cond_dim=cond_dim,
|
||||
kernel_size=kernel_size,
|
||||
n_groups=n_groups,
|
||||
cond_predict_scale=cond_predict_scale,
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
mid_dim = all_dims[-1]
|
||||
self.mid_modules = nn.ModuleList(
|
||||
[
|
||||
ConditionalResidualBlock1D(
|
||||
mid_dim,
|
||||
mid_dim,
|
||||
cond_dim=cond_dim,
|
||||
kernel_size=kernel_size,
|
||||
n_groups=n_groups,
|
||||
cond_predict_scale=cond_predict_scale,
|
||||
),
|
||||
ConditionalResidualBlock1D(
|
||||
mid_dim,
|
||||
mid_dim,
|
||||
cond_dim=cond_dim,
|
||||
kernel_size=kernel_size,
|
||||
n_groups=n_groups,
|
||||
cond_predict_scale=cond_predict_scale,
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
down_modules = nn.ModuleList([])
|
||||
for ind, (dim_in, dim_out) in enumerate(in_out):
|
||||
is_last = ind >= (len(in_out) - 1)
|
||||
down_modules.append(
|
||||
nn.ModuleList(
|
||||
[
|
||||
ConditionalResidualBlock1D(
|
||||
dim_in,
|
||||
dim_out,
|
||||
cond_dim=cond_dim,
|
||||
kernel_size=kernel_size,
|
||||
n_groups=n_groups,
|
||||
cond_predict_scale=cond_predict_scale,
|
||||
),
|
||||
ConditionalResidualBlock1D(
|
||||
dim_out,
|
||||
dim_out,
|
||||
cond_dim=cond_dim,
|
||||
kernel_size=kernel_size,
|
||||
n_groups=n_groups,
|
||||
cond_predict_scale=cond_predict_scale,
|
||||
),
|
||||
Downsample1d(dim_out) if not is_last else nn.Identity(),
|
||||
]
|
||||
)
|
||||
)
|
||||
|
||||
up_modules = nn.ModuleList([])
|
||||
for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])):
|
||||
is_last = ind >= (len(in_out) - 1)
|
||||
up_modules.append(
|
||||
nn.ModuleList(
|
||||
[
|
||||
ConditionalResidualBlock1D(
|
||||
dim_out * 2,
|
||||
dim_in,
|
||||
cond_dim=cond_dim,
|
||||
kernel_size=kernel_size,
|
||||
n_groups=n_groups,
|
||||
cond_predict_scale=cond_predict_scale,
|
||||
),
|
||||
ConditionalResidualBlock1D(
|
||||
dim_in,
|
||||
dim_in,
|
||||
cond_dim=cond_dim,
|
||||
kernel_size=kernel_size,
|
||||
n_groups=n_groups,
|
||||
cond_predict_scale=cond_predict_scale,
|
||||
),
|
||||
Upsample1d(dim_in) if not is_last else nn.Identity(),
|
||||
]
|
||||
)
|
||||
)
|
||||
|
||||
final_conv = nn.Sequential(
|
||||
Conv1dBlock(start_dim, start_dim, kernel_size=kernel_size),
|
||||
nn.Conv1d(start_dim, input_dim, 1),
|
||||
)
|
||||
|
||||
self.diffusion_step_encoder = diffusion_step_encoder
|
||||
self.local_cond_encoder = local_cond_encoder
|
||||
self.up_modules = up_modules
|
||||
self.down_modules = down_modules
|
||||
self.final_conv = final_conv
|
||||
|
||||
logger.info("number of parameters: %e", sum(p.numel() for p in self.parameters()))
|
||||
|
||||
def forward(
|
||||
self,
|
||||
sample: torch.Tensor,
|
||||
timestep: Union[torch.Tensor, float, int],
|
||||
local_cond=None,
|
||||
global_cond=None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
x: (B,T,input_dim)
|
||||
timestep: (B,) or int, diffusion step
|
||||
local_cond: (B,T,local_cond_dim)
|
||||
global_cond: (B,global_cond_dim)
|
||||
output: (B,T,input_dim)
|
||||
"""
|
||||
sample = einops.rearrange(sample, "b h t -> b t h")
|
||||
|
||||
# 1. time
|
||||
timesteps = timestep
|
||||
if not torch.is_tensor(timesteps):
|
||||
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
||||
timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device)
|
||||
elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
|
||||
timesteps = timesteps[None].to(sample.device)
|
||||
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
||||
timesteps = timesteps.expand(sample.shape[0])
|
||||
|
||||
global_feature = self.diffusion_step_encoder(timesteps)
|
||||
|
||||
if global_cond is not None:
|
||||
global_feature = torch.cat([global_feature, global_cond], axis=-1)
|
||||
|
||||
# encode local features
|
||||
h_local = []
|
||||
if local_cond is not None:
|
||||
local_cond = einops.rearrange(local_cond, "b h t -> b t h")
|
||||
resnet, resnet2 = self.local_cond_encoder
|
||||
x = resnet(local_cond, global_feature)
|
||||
h_local.append(x)
|
||||
x = resnet2(local_cond, global_feature)
|
||||
h_local.append(x)
|
||||
|
||||
x = sample
|
||||
h = []
|
||||
for idx, (resnet, resnet2, downsample) in enumerate(self.down_modules):
|
||||
x = resnet(x, global_feature)
|
||||
if idx == 0 and len(h_local) > 0:
|
||||
x = x + h_local[0]
|
||||
x = resnet2(x, global_feature)
|
||||
h.append(x)
|
||||
x = downsample(x)
|
||||
|
||||
for mid_module in self.mid_modules:
|
||||
x = mid_module(x, global_feature)
|
||||
|
||||
for idx, (resnet, resnet2, upsample) in enumerate(self.up_modules):
|
||||
x = torch.cat((x, h.pop()), dim=1)
|
||||
x = resnet(x, global_feature)
|
||||
# The correct condition should be:
|
||||
# if idx == (len(self.up_modules)-1) and len(h_local) > 0:
|
||||
# However this change will break compatibility with published checkpoints.
|
||||
# Therefore it is left as a comment.
|
||||
if idx == len(self.up_modules) and len(h_local) > 0:
|
||||
x = x + h_local[1]
|
||||
x = resnet2(x, global_feature)
|
||||
x = upsample(x)
|
||||
|
||||
x = self.final_conv(x)
|
||||
|
||||
x = einops.rearrange(x, "b t h -> b h t")
|
||||
return x
|
||||
@@ -1,47 +0,0 @@
|
||||
import torch.nn as nn
|
||||
|
||||
# from einops.layers.torch import Rearrange
|
||||
|
||||
|
||||
class Downsample1d(nn.Module):
|
||||
def __init__(self, dim):
|
||||
super().__init__()
|
||||
self.conv = nn.Conv1d(dim, dim, 3, 2, 1)
|
||||
|
||||
def forward(self, x):
|
||||
return self.conv(x)
|
||||
|
||||
|
||||
class Upsample1d(nn.Module):
|
||||
def __init__(self, dim):
|
||||
super().__init__()
|
||||
self.conv = nn.ConvTranspose1d(dim, dim, 4, 2, 1)
|
||||
|
||||
def forward(self, x):
|
||||
return self.conv(x)
|
||||
|
||||
|
||||
class Conv1dBlock(nn.Module):
|
||||
"""
|
||||
Conv1d --> GroupNorm --> Mish
|
||||
"""
|
||||
|
||||
def __init__(self, inp_channels, out_channels, kernel_size, n_groups=8):
|
||||
super().__init__()
|
||||
|
||||
self.block = nn.Sequential(
|
||||
nn.Conv1d(inp_channels, out_channels, kernel_size, padding=kernel_size // 2),
|
||||
# Rearrange('batch channels horizon -> batch channels 1 horizon'),
|
||||
nn.GroupNorm(n_groups, out_channels),
|
||||
# Rearrange('batch channels 1 horizon -> batch channels horizon'),
|
||||
nn.Mish(),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.block(x)
|
||||
|
||||
|
||||
# def test():
|
||||
# cb = Conv1dBlock(256, 128, kernel_size=3)
|
||||
# x = torch.zeros((1,256,16))
|
||||
# o = cb(x)
|
||||
@@ -1,294 +0,0 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torchvision.transforms.functional as ttf
|
||||
|
||||
import lerobot.common.policies.diffusion.model.tensor_utils as tu
|
||||
|
||||
|
||||
class CropRandomizer(nn.Module):
|
||||
"""
|
||||
Randomly sample crops at input, and then average across crop features at output.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_shape,
|
||||
crop_height,
|
||||
crop_width,
|
||||
num_crops=1,
|
||||
pos_enc=False,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
input_shape (tuple, list): shape of input (not including batch dimension)
|
||||
crop_height (int): crop height
|
||||
crop_width (int): crop width
|
||||
num_crops (int): number of random crops to take
|
||||
pos_enc (bool): if True, add 2 channels to the output to encode the spatial
|
||||
location of the cropped pixels in the source image
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
assert len(input_shape) == 3 # (C, H, W)
|
||||
assert crop_height < input_shape[1]
|
||||
assert crop_width < input_shape[2]
|
||||
|
||||
self.input_shape = input_shape
|
||||
self.crop_height = crop_height
|
||||
self.crop_width = crop_width
|
||||
self.num_crops = num_crops
|
||||
self.pos_enc = pos_enc
|
||||
|
||||
def output_shape_in(self, input_shape=None):
|
||||
"""
|
||||
Function to compute output shape from inputs to this module. Corresponds to
|
||||
the @forward_in operation, where raw inputs (usually observation modalities)
|
||||
are passed in.
|
||||
|
||||
Args:
|
||||
input_shape (iterable of int): shape of input. Does not include batch dimension.
|
||||
Some modules may not need this argument, if their output does not depend
|
||||
on the size of the input, or if they assume fixed size input.
|
||||
|
||||
Returns:
|
||||
out_shape ([int]): list of integers corresponding to output shape
|
||||
"""
|
||||
|
||||
# outputs are shape (C, CH, CW), or maybe C + 2 if using position encoding, because
|
||||
# the number of crops are reshaped into the batch dimension, increasing the batch
|
||||
# size from B to B * N
|
||||
out_c = self.input_shape[0] + 2 if self.pos_enc else self.input_shape[0]
|
||||
return [out_c, self.crop_height, self.crop_width]
|
||||
|
||||
def output_shape_out(self, input_shape=None):
|
||||
"""
|
||||
Function to compute output shape from inputs to this module. Corresponds to
|
||||
the @forward_out operation, where processed inputs (usually encoded observation
|
||||
modalities) are passed in.
|
||||
|
||||
Args:
|
||||
input_shape (iterable of int): shape of input. Does not include batch dimension.
|
||||
Some modules may not need this argument, if their output does not depend
|
||||
on the size of the input, or if they assume fixed size input.
|
||||
|
||||
Returns:
|
||||
out_shape ([int]): list of integers corresponding to output shape
|
||||
"""
|
||||
|
||||
# since the forward_out operation splits [B * N, ...] -> [B, N, ...]
|
||||
# and then pools to result in [B, ...], only the batch dimension changes,
|
||||
# and so the other dimensions retain their shape.
|
||||
return list(input_shape)
|
||||
|
||||
def forward_in(self, inputs):
|
||||
"""
|
||||
Samples N random crops for each input in the batch, and then reshapes
|
||||
inputs to [B * N, ...].
|
||||
"""
|
||||
assert len(inputs.shape) >= 3 # must have at least (C, H, W) dimensions
|
||||
if self.training:
|
||||
# generate random crops
|
||||
out, _ = sample_random_image_crops(
|
||||
images=inputs,
|
||||
crop_height=self.crop_height,
|
||||
crop_width=self.crop_width,
|
||||
num_crops=self.num_crops,
|
||||
pos_enc=self.pos_enc,
|
||||
)
|
||||
# [B, N, ...] -> [B * N, ...]
|
||||
return tu.join_dimensions(out, 0, 1)
|
||||
else:
|
||||
# take center crop during eval
|
||||
out = ttf.center_crop(img=inputs, output_size=(self.crop_height, self.crop_width))
|
||||
if self.num_crops > 1:
|
||||
B, C, H, W = out.shape # noqa: N806
|
||||
out = out.unsqueeze(1).expand(B, self.num_crops, C, H, W).reshape(-1, C, H, W)
|
||||
# [B * N, ...]
|
||||
return out
|
||||
|
||||
def forward_out(self, inputs):
|
||||
"""
|
||||
Splits the outputs from shape [B * N, ...] -> [B, N, ...] and then average across N
|
||||
to result in shape [B, ...] to make sure the network output is consistent with
|
||||
what would have happened if there were no randomization.
|
||||
"""
|
||||
if self.num_crops <= 1:
|
||||
return inputs
|
||||
else:
|
||||
batch_size = inputs.shape[0] // self.num_crops
|
||||
out = tu.reshape_dimensions(
|
||||
inputs, begin_axis=0, end_axis=0, target_dims=(batch_size, self.num_crops)
|
||||
)
|
||||
return out.mean(dim=1)
|
||||
|
||||
def forward(self, inputs):
|
||||
return self.forward_in(inputs)
|
||||
|
||||
def __repr__(self):
|
||||
"""Pretty print network."""
|
||||
header = "{}".format(str(self.__class__.__name__))
|
||||
msg = header + "(input_shape={}, crop_size=[{}, {}], num_crops={})".format(
|
||||
self.input_shape, self.crop_height, self.crop_width, self.num_crops
|
||||
)
|
||||
return msg
|
||||
|
||||
|
||||
def crop_image_from_indices(images, crop_indices, crop_height, crop_width):
|
||||
"""
|
||||
Crops images at the locations specified by @crop_indices. Crops will be
|
||||
taken across all channels.
|
||||
|
||||
Args:
|
||||
images (torch.Tensor): batch of images of shape [..., C, H, W]
|
||||
|
||||
crop_indices (torch.Tensor): batch of indices of shape [..., N, 2] where
|
||||
N is the number of crops to take per image and each entry corresponds
|
||||
to the pixel height and width of where to take the crop. Note that
|
||||
the indices can also be of shape [..., 2] if only 1 crop should
|
||||
be taken per image. Leading dimensions must be consistent with
|
||||
@images argument. Each index specifies the top left of the crop.
|
||||
Values must be in range [0, H - CH - 1] x [0, W - CW - 1] where
|
||||
H and W are the height and width of @images and CH and CW are
|
||||
@crop_height and @crop_width.
|
||||
|
||||
crop_height (int): height of crop to take
|
||||
|
||||
crop_width (int): width of crop to take
|
||||
|
||||
Returns:
|
||||
crops (torch.Tesnor): cropped images of shape [..., C, @crop_height, @crop_width]
|
||||
"""
|
||||
|
||||
# make sure length of input shapes is consistent
|
||||
assert crop_indices.shape[-1] == 2
|
||||
ndim_im_shape = len(images.shape)
|
||||
ndim_indices_shape = len(crop_indices.shape)
|
||||
assert (ndim_im_shape == ndim_indices_shape + 1) or (ndim_im_shape == ndim_indices_shape + 2)
|
||||
|
||||
# maybe pad so that @crop_indices is shape [..., N, 2]
|
||||
is_padded = False
|
||||
if ndim_im_shape == ndim_indices_shape + 2:
|
||||
crop_indices = crop_indices.unsqueeze(-2)
|
||||
is_padded = True
|
||||
|
||||
# make sure leading dimensions between images and indices are consistent
|
||||
assert images.shape[:-3] == crop_indices.shape[:-2]
|
||||
|
||||
device = images.device
|
||||
image_c, image_h, image_w = images.shape[-3:]
|
||||
num_crops = crop_indices.shape[-2]
|
||||
|
||||
# make sure @crop_indices are in valid range
|
||||
assert (crop_indices[..., 0] >= 0).all().item()
|
||||
assert (crop_indices[..., 0] < (image_h - crop_height)).all().item()
|
||||
assert (crop_indices[..., 1] >= 0).all().item()
|
||||
assert (crop_indices[..., 1] < (image_w - crop_width)).all().item()
|
||||
|
||||
# convert each crop index (ch, cw) into a list of pixel indices that correspond to the entire window.
|
||||
|
||||
# 2D index array with columns [0, 1, ..., CH - 1] and shape [CH, CW]
|
||||
crop_ind_grid_h = torch.arange(crop_height).to(device)
|
||||
crop_ind_grid_h = tu.unsqueeze_expand_at(crop_ind_grid_h, size=crop_width, dim=-1)
|
||||
# 2D index array with rows [0, 1, ..., CW - 1] and shape [CH, CW]
|
||||
crop_ind_grid_w = torch.arange(crop_width).to(device)
|
||||
crop_ind_grid_w = tu.unsqueeze_expand_at(crop_ind_grid_w, size=crop_height, dim=0)
|
||||
# combine into shape [CH, CW, 2]
|
||||
crop_in_grid = torch.cat((crop_ind_grid_h.unsqueeze(-1), crop_ind_grid_w.unsqueeze(-1)), dim=-1)
|
||||
|
||||
# Add above grid with the offset index of each sampled crop to get 2d indices for each crop.
|
||||
# After broadcasting, this will be shape [..., N, CH, CW, 2] and each crop has a [CH, CW, 2]
|
||||
# shape array that tells us which pixels from the corresponding source image to grab.
|
||||
grid_reshape = [1] * len(crop_indices.shape[:-1]) + [crop_height, crop_width, 2]
|
||||
all_crop_inds = crop_indices.unsqueeze(-2).unsqueeze(-2) + crop_in_grid.reshape(grid_reshape)
|
||||
|
||||
# For using @torch.gather, convert to flat indices from 2D indices, and also
|
||||
# repeat across the channel dimension. To get flat index of each pixel to grab for
|
||||
# each sampled crop, we just use the mapping: ind = h_ind * @image_w + w_ind
|
||||
all_crop_inds = all_crop_inds[..., 0] * image_w + all_crop_inds[..., 1] # shape [..., N, CH, CW]
|
||||
all_crop_inds = tu.unsqueeze_expand_at(all_crop_inds, size=image_c, dim=-3) # shape [..., N, C, CH, CW]
|
||||
all_crop_inds = tu.flatten(all_crop_inds, begin_axis=-2) # shape [..., N, C, CH * CW]
|
||||
|
||||
# Repeat and flatten the source images -> [..., N, C, H * W] and then use gather to index with crop pixel inds
|
||||
images_to_crop = tu.unsqueeze_expand_at(images, size=num_crops, dim=-4)
|
||||
images_to_crop = tu.flatten(images_to_crop, begin_axis=-2)
|
||||
crops = torch.gather(images_to_crop, dim=-1, index=all_crop_inds)
|
||||
# [..., N, C, CH * CW] -> [..., N, C, CH, CW]
|
||||
reshape_axis = len(crops.shape) - 1
|
||||
crops = tu.reshape_dimensions(
|
||||
crops, begin_axis=reshape_axis, end_axis=reshape_axis, target_dims=(crop_height, crop_width)
|
||||
)
|
||||
|
||||
if is_padded:
|
||||
# undo padding -> [..., C, CH, CW]
|
||||
crops = crops.squeeze(-4)
|
||||
return crops
|
||||
|
||||
|
||||
def sample_random_image_crops(images, crop_height, crop_width, num_crops, pos_enc=False):
|
||||
"""
|
||||
For each image, randomly sample @num_crops crops of size (@crop_height, @crop_width), from
|
||||
@images.
|
||||
|
||||
Args:
|
||||
images (torch.Tensor): batch of images of shape [..., C, H, W]
|
||||
|
||||
crop_height (int): height of crop to take
|
||||
|
||||
crop_width (int): width of crop to take
|
||||
|
||||
num_crops (n): number of crops to sample
|
||||
|
||||
pos_enc (bool): if True, also add 2 channels to the outputs that gives a spatial
|
||||
encoding of the original source pixel locations. This means that the
|
||||
output crops will contain information about where in the source image
|
||||
it was sampled from.
|
||||
|
||||
Returns:
|
||||
crops (torch.Tensor): crops of shape (..., @num_crops, C, @crop_height, @crop_width)
|
||||
if @pos_enc is False, otherwise (..., @num_crops, C + 2, @crop_height, @crop_width)
|
||||
|
||||
crop_inds (torch.Tensor): sampled crop indices of shape (..., N, 2)
|
||||
"""
|
||||
device = images.device
|
||||
|
||||
# maybe add 2 channels of spatial encoding to the source image
|
||||
source_im = images
|
||||
if pos_enc:
|
||||
# spatial encoding [y, x] in [0, 1]
|
||||
h, w = source_im.shape[-2:]
|
||||
pos_y, pos_x = torch.meshgrid(torch.arange(h), torch.arange(w))
|
||||
pos_y = pos_y.float().to(device) / float(h)
|
||||
pos_x = pos_x.float().to(device) / float(w)
|
||||
position_enc = torch.stack((pos_y, pos_x)) # shape [C, H, W]
|
||||
|
||||
# unsqueeze and expand to match leading dimensions -> shape [..., C, H, W]
|
||||
leading_shape = source_im.shape[:-3]
|
||||
position_enc = position_enc[(None,) * len(leading_shape)]
|
||||
position_enc = position_enc.expand(*leading_shape, -1, -1, -1)
|
||||
|
||||
# concat across channel dimension with input
|
||||
source_im = torch.cat((source_im, position_enc), dim=-3)
|
||||
|
||||
# make sure sample boundaries ensure crops are fully within the images
|
||||
image_c, image_h, image_w = source_im.shape[-3:]
|
||||
max_sample_h = image_h - crop_height
|
||||
max_sample_w = image_w - crop_width
|
||||
|
||||
# Sample crop locations for all tensor dimensions up to the last 3, which are [C, H, W].
|
||||
# Each gets @num_crops samples - typically this will just be the batch dimension (B), so
|
||||
# we will sample [B, N] indices, but this supports having more than one leading dimension,
|
||||
# or possibly no leading dimension.
|
||||
#
|
||||
# Trick: sample in [0, 1) with rand, then re-scale to [0, M) and convert to long to get sampled ints
|
||||
crop_inds_h = (max_sample_h * torch.rand(*source_im.shape[:-3], num_crops).to(device)).long()
|
||||
crop_inds_w = (max_sample_w * torch.rand(*source_im.shape[:-3], num_crops).to(device)).long()
|
||||
crop_inds = torch.cat((crop_inds_h.unsqueeze(-1), crop_inds_w.unsqueeze(-1)), dim=-1) # shape [..., N, 2]
|
||||
|
||||
crops = crop_image_from_indices(
|
||||
images=source_im,
|
||||
crop_indices=crop_inds,
|
||||
crop_height=crop_height,
|
||||
crop_width=crop_width,
|
||||
)
|
||||
|
||||
return crops, crop_inds
|
||||
@@ -1,41 +0,0 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
class DictOfTensorMixin(nn.Module):
|
||||
def __init__(self, params_dict=None):
|
||||
super().__init__()
|
||||
if params_dict is None:
|
||||
params_dict = nn.ParameterDict()
|
||||
self.params_dict = params_dict
|
||||
|
||||
@property
|
||||
def device(self):
|
||||
return next(iter(self.parameters())).device
|
||||
|
||||
def _load_from_state_dict(
|
||||
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
||||
):
|
||||
def dfs_add(dest, keys, value: torch.Tensor):
|
||||
if len(keys) == 1:
|
||||
dest[keys[0]] = value
|
||||
return
|
||||
|
||||
if keys[0] not in dest:
|
||||
dest[keys[0]] = nn.ParameterDict()
|
||||
dfs_add(dest[keys[0]], keys[1:], value)
|
||||
|
||||
def load_dict(state_dict, prefix):
|
||||
out_dict = nn.ParameterDict()
|
||||
for key, value in state_dict.items():
|
||||
value: torch.Tensor
|
||||
if key.startswith(prefix):
|
||||
param_keys = key[len(prefix) :].split(".")[1:]
|
||||
# if len(param_keys) == 0:
|
||||
# import pdb; pdb.set_trace()
|
||||
dfs_add(out_dict, param_keys, value.clone())
|
||||
return out_dict
|
||||
|
||||
self.params_dict = load_dict(state_dict, prefix + "params_dict")
|
||||
self.params_dict.requires_grad_(False)
|
||||
return
|
||||
@@ -1,84 +0,0 @@
|
||||
import torch
|
||||
from torch.nn.modules.batchnorm import _BatchNorm
|
||||
|
||||
|
||||
class EMAModel:
|
||||
"""
|
||||
Exponential Moving Average of models weights
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, model, update_after_step=0, inv_gamma=1.0, power=2 / 3, min_value=0.0, max_value=0.9999
|
||||
):
|
||||
"""
|
||||
@crowsonkb's notes on EMA Warmup:
|
||||
If gamma=1 and power=1, implements a simple average. gamma=1, power=2/3 are good values for models you plan
|
||||
to train for a million or more steps (reaches decay factor 0.999 at 31.6K steps, 0.9999 at 1M steps),
|
||||
gamma=1, power=3/4 for models you plan to train for less (reaches decay factor 0.999 at 10K steps, 0.9999
|
||||
at 215.4k steps).
|
||||
Args:
|
||||
inv_gamma (float): Inverse multiplicative factor of EMA warmup. Default: 1.
|
||||
power (float): Exponential factor of EMA warmup. Default: 2/3.
|
||||
min_value (float): The minimum EMA decay rate. Default: 0.
|
||||
"""
|
||||
|
||||
self.averaged_model = model
|
||||
self.averaged_model.eval()
|
||||
self.averaged_model.requires_grad_(False)
|
||||
|
||||
self.update_after_step = update_after_step
|
||||
self.inv_gamma = inv_gamma
|
||||
self.power = power
|
||||
self.min_value = min_value
|
||||
self.max_value = max_value
|
||||
|
||||
self.decay = 0.0
|
||||
self.optimization_step = 0
|
||||
|
||||
def get_decay(self, optimization_step):
|
||||
"""
|
||||
Compute the decay factor for the exponential moving average.
|
||||
"""
|
||||
step = max(0, optimization_step - self.update_after_step - 1)
|
||||
value = 1 - (1 + step / self.inv_gamma) ** -self.power
|
||||
|
||||
if step <= 0:
|
||||
return 0.0
|
||||
|
||||
return max(self.min_value, min(value, self.max_value))
|
||||
|
||||
@torch.no_grad()
|
||||
def step(self, new_model):
|
||||
self.decay = self.get_decay(self.optimization_step)
|
||||
|
||||
# old_all_dataptrs = set()
|
||||
# for param in new_model.parameters():
|
||||
# data_ptr = param.data_ptr()
|
||||
# if data_ptr != 0:
|
||||
# old_all_dataptrs.add(data_ptr)
|
||||
|
||||
# all_dataptrs = set()
|
||||
for module, ema_module in zip(new_model.modules(), self.averaged_model.modules(), strict=False):
|
||||
for param, ema_param in zip(
|
||||
module.parameters(recurse=False), ema_module.parameters(recurse=False), strict=False
|
||||
):
|
||||
# iterative over immediate parameters only.
|
||||
if isinstance(param, dict):
|
||||
raise RuntimeError("Dict parameter not supported")
|
||||
|
||||
# data_ptr = param.data_ptr()
|
||||
# if data_ptr != 0:
|
||||
# all_dataptrs.add(data_ptr)
|
||||
|
||||
if isinstance(module, _BatchNorm):
|
||||
# skip batchnorms
|
||||
ema_param.copy_(param.to(dtype=ema_param.dtype).data)
|
||||
elif not param.requires_grad:
|
||||
ema_param.copy_(param.to(dtype=ema_param.dtype).data)
|
||||
else:
|
||||
ema_param.mul_(self.decay)
|
||||
ema_param.add_(param.data.to(dtype=ema_param.dtype), alpha=1 - self.decay)
|
||||
|
||||
# verify that iterating over module and then parameters is identical to parameters recursively.
|
||||
# assert old_all_dataptrs == all_dataptrs
|
||||
self.optimization_step += 1
|
||||
@@ -1,46 +0,0 @@
|
||||
from diffusers.optimization import TYPE_TO_SCHEDULER_FUNCTION, Optimizer, Optional, SchedulerType, Union
|
||||
|
||||
|
||||
def get_scheduler(
|
||||
name: Union[str, SchedulerType],
|
||||
optimizer: Optimizer,
|
||||
num_warmup_steps: Optional[int] = None,
|
||||
num_training_steps: Optional[int] = None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Added kwargs vs diffuser's original implementation
|
||||
|
||||
Unified API to get any scheduler from its name.
|
||||
|
||||
Args:
|
||||
name (`str` or `SchedulerType`):
|
||||
The name of the scheduler to use.
|
||||
optimizer (`torch.optim.Optimizer`):
|
||||
The optimizer that will be used during training.
|
||||
num_warmup_steps (`int`, *optional*):
|
||||
The number of warmup steps to do. This is not required by all schedulers (hence the argument being
|
||||
optional), the function will raise an error if it's unset and the scheduler type requires it.
|
||||
num_training_steps (`int``, *optional*):
|
||||
The number of training steps to do. This is not required by all schedulers (hence the argument being
|
||||
optional), the function will raise an error if it's unset and the scheduler type requires it.
|
||||
"""
|
||||
name = SchedulerType(name)
|
||||
schedule_func = TYPE_TO_SCHEDULER_FUNCTION[name]
|
||||
if name == SchedulerType.CONSTANT:
|
||||
return schedule_func(optimizer, **kwargs)
|
||||
|
||||
# All other schedulers require `num_warmup_steps`
|
||||
if num_warmup_steps is None:
|
||||
raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument.")
|
||||
|
||||
if name == SchedulerType.CONSTANT_WITH_WARMUP:
|
||||
return schedule_func(optimizer, num_warmup_steps=num_warmup_steps, **kwargs)
|
||||
|
||||
# All other schedulers require `num_training_steps`
|
||||
if num_training_steps is None:
|
||||
raise ValueError(f"{name} requires `num_training_steps`, please provide that argument.")
|
||||
|
||||
return schedule_func(
|
||||
optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps, **kwargs
|
||||
)
|
||||
@@ -1,65 +0,0 @@
|
||||
import torch
|
||||
|
||||
from lerobot.common.policies.diffusion.model.module_attr_mixin import ModuleAttrMixin
|
||||
|
||||
|
||||
class LowdimMaskGenerator(ModuleAttrMixin):
|
||||
def __init__(
|
||||
self,
|
||||
action_dim,
|
||||
obs_dim,
|
||||
# obs mask setup
|
||||
max_n_obs_steps=2,
|
||||
fix_obs_steps=True,
|
||||
# action mask
|
||||
action_visible=False,
|
||||
):
|
||||
super().__init__()
|
||||
self.action_dim = action_dim
|
||||
self.obs_dim = obs_dim
|
||||
self.max_n_obs_steps = max_n_obs_steps
|
||||
self.fix_obs_steps = fix_obs_steps
|
||||
self.action_visible = action_visible
|
||||
|
||||
@torch.no_grad()
|
||||
def forward(self, shape, seed=None):
|
||||
device = self.device
|
||||
B, T, D = shape # noqa: N806
|
||||
assert (self.action_dim + self.obs_dim) == D
|
||||
|
||||
# create all tensors on this device
|
||||
rng = torch.Generator(device=device)
|
||||
if seed is not None:
|
||||
rng = rng.manual_seed(seed)
|
||||
|
||||
# generate dim mask
|
||||
dim_mask = torch.zeros(size=shape, dtype=torch.bool, device=device)
|
||||
is_action_dim = dim_mask.clone()
|
||||
is_action_dim[..., : self.action_dim] = True
|
||||
is_obs_dim = ~is_action_dim
|
||||
|
||||
# generate obs mask
|
||||
if self.fix_obs_steps:
|
||||
obs_steps = torch.full((B,), fill_value=self.max_n_obs_steps, device=device)
|
||||
else:
|
||||
obs_steps = torch.randint(
|
||||
low=1, high=self.max_n_obs_steps + 1, size=(B,), generator=rng, device=device
|
||||
)
|
||||
|
||||
steps = torch.arange(0, T, device=device).reshape(1, T).expand(B, T)
|
||||
obs_mask = (obs_steps > steps.T).T.reshape(B, T, 1).expand(B, T, D)
|
||||
obs_mask = obs_mask & is_obs_dim
|
||||
|
||||
# generate action mask
|
||||
if self.action_visible:
|
||||
action_steps = torch.maximum(
|
||||
obs_steps - 1, torch.tensor(0, dtype=obs_steps.dtype, device=obs_steps.device)
|
||||
)
|
||||
action_mask = (action_steps > steps.T).T.reshape(B, T, 1).expand(B, T, D)
|
||||
action_mask = action_mask & is_action_dim
|
||||
|
||||
mask = obs_mask
|
||||
if self.action_visible:
|
||||
mask = mask | action_mask
|
||||
|
||||
return mask
|
||||
@@ -1,15 +0,0 @@
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
class ModuleAttrMixin(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self._dummy_variable = nn.Parameter()
|
||||
|
||||
@property
|
||||
def device(self):
|
||||
return next(iter(self.parameters())).device
|
||||
|
||||
@property
|
||||
def dtype(self):
|
||||
return next(iter(self.parameters())).dtype
|
||||
@@ -1,358 +0,0 @@
|
||||
from typing import Dict, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import zarr
|
||||
|
||||
from lerobot.common.policies.diffusion.model.dict_of_tensor_mixin import DictOfTensorMixin
|
||||
from lerobot.common.policies.diffusion.pytorch_utils import dict_apply
|
||||
|
||||
|
||||
class LinearNormalizer(DictOfTensorMixin):
|
||||
avaliable_modes = ["limits", "gaussian"]
|
||||
|
||||
@torch.no_grad()
|
||||
def fit(
|
||||
self,
|
||||
data: Union[Dict, torch.Tensor, np.ndarray, zarr.Array],
|
||||
last_n_dims=1,
|
||||
dtype=torch.float32,
|
||||
mode="limits",
|
||||
output_max=1.0,
|
||||
output_min=-1.0,
|
||||
range_eps=1e-4,
|
||||
fit_offset=True,
|
||||
):
|
||||
if isinstance(data, dict):
|
||||
for key, value in data.items():
|
||||
self.params_dict[key] = _fit(
|
||||
value,
|
||||
last_n_dims=last_n_dims,
|
||||
dtype=dtype,
|
||||
mode=mode,
|
||||
output_max=output_max,
|
||||
output_min=output_min,
|
||||
range_eps=range_eps,
|
||||
fit_offset=fit_offset,
|
||||
)
|
||||
else:
|
||||
self.params_dict["_default"] = _fit(
|
||||
data,
|
||||
last_n_dims=last_n_dims,
|
||||
dtype=dtype,
|
||||
mode=mode,
|
||||
output_max=output_max,
|
||||
output_min=output_min,
|
||||
range_eps=range_eps,
|
||||
fit_offset=fit_offset,
|
||||
)
|
||||
|
||||
def __call__(self, x: Union[Dict, torch.Tensor, np.ndarray]) -> torch.Tensor:
|
||||
return self.normalize(x)
|
||||
|
||||
def __getitem__(self, key: str):
|
||||
return SingleFieldLinearNormalizer(self.params_dict[key])
|
||||
|
||||
def __setitem__(self, key: str, value: "SingleFieldLinearNormalizer"):
|
||||
self.params_dict[key] = value.params_dict
|
||||
|
||||
def _normalize_impl(self, x, forward=True):
|
||||
if isinstance(x, dict):
|
||||
result = {}
|
||||
for key, value in x.items():
|
||||
params = self.params_dict[key]
|
||||
result[key] = _normalize(value, params, forward=forward)
|
||||
return result
|
||||
else:
|
||||
if "_default" not in self.params_dict:
|
||||
raise RuntimeError("Not initialized")
|
||||
params = self.params_dict["_default"]
|
||||
return _normalize(x, params, forward=forward)
|
||||
|
||||
def normalize(self, x: Union[Dict, torch.Tensor, np.ndarray]) -> torch.Tensor:
|
||||
return self._normalize_impl(x, forward=True)
|
||||
|
||||
def unnormalize(self, x: Union[Dict, torch.Tensor, np.ndarray]) -> torch.Tensor:
|
||||
return self._normalize_impl(x, forward=False)
|
||||
|
||||
def get_input_stats(self) -> Dict:
|
||||
if len(self.params_dict) == 0:
|
||||
raise RuntimeError("Not initialized")
|
||||
if len(self.params_dict) == 1 and "_default" in self.params_dict:
|
||||
return self.params_dict["_default"]["input_stats"]
|
||||
|
||||
result = {}
|
||||
for key, value in self.params_dict.items():
|
||||
if key != "_default":
|
||||
result[key] = value["input_stats"]
|
||||
return result
|
||||
|
||||
def get_output_stats(self, key="_default"):
|
||||
input_stats = self.get_input_stats()
|
||||
if "min" in input_stats:
|
||||
# no dict
|
||||
return dict_apply(input_stats, self.normalize)
|
||||
|
||||
result = {}
|
||||
for key, group in input_stats.items():
|
||||
this_dict = {}
|
||||
for name, value in group.items():
|
||||
this_dict[name] = self.normalize({key: value})[key]
|
||||
result[key] = this_dict
|
||||
return result
|
||||
|
||||
|
||||
class SingleFieldLinearNormalizer(DictOfTensorMixin):
|
||||
avaliable_modes = ["limits", "gaussian"]
|
||||
|
||||
@torch.no_grad()
|
||||
def fit(
|
||||
self,
|
||||
data: Union[torch.Tensor, np.ndarray, zarr.Array],
|
||||
last_n_dims=1,
|
||||
dtype=torch.float32,
|
||||
mode="limits",
|
||||
output_max=1.0,
|
||||
output_min=-1.0,
|
||||
range_eps=1e-4,
|
||||
fit_offset=True,
|
||||
):
|
||||
self.params_dict = _fit(
|
||||
data,
|
||||
last_n_dims=last_n_dims,
|
||||
dtype=dtype,
|
||||
mode=mode,
|
||||
output_max=output_max,
|
||||
output_min=output_min,
|
||||
range_eps=range_eps,
|
||||
fit_offset=fit_offset,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def create_fit(cls, data: Union[torch.Tensor, np.ndarray, zarr.Array], **kwargs):
|
||||
obj = cls()
|
||||
obj.fit(data, **kwargs)
|
||||
return obj
|
||||
|
||||
@classmethod
|
||||
def create_manual(
|
||||
cls,
|
||||
scale: Union[torch.Tensor, np.ndarray],
|
||||
offset: Union[torch.Tensor, np.ndarray],
|
||||
input_stats_dict: Dict[str, Union[torch.Tensor, np.ndarray]],
|
||||
):
|
||||
def to_tensor(x):
|
||||
if not isinstance(x, torch.Tensor):
|
||||
x = torch.from_numpy(x)
|
||||
x = x.flatten()
|
||||
return x
|
||||
|
||||
# check
|
||||
for x in [offset] + list(input_stats_dict.values()):
|
||||
assert x.shape == scale.shape
|
||||
assert x.dtype == scale.dtype
|
||||
|
||||
params_dict = nn.ParameterDict(
|
||||
{
|
||||
"scale": to_tensor(scale),
|
||||
"offset": to_tensor(offset),
|
||||
"input_stats": nn.ParameterDict(dict_apply(input_stats_dict, to_tensor)),
|
||||
}
|
||||
)
|
||||
return cls(params_dict)
|
||||
|
||||
@classmethod
|
||||
def create_identity(cls, dtype=torch.float32):
|
||||
scale = torch.tensor([1], dtype=dtype)
|
||||
offset = torch.tensor([0], dtype=dtype)
|
||||
input_stats_dict = {
|
||||
"min": torch.tensor([-1], dtype=dtype),
|
||||
"max": torch.tensor([1], dtype=dtype),
|
||||
"mean": torch.tensor([0], dtype=dtype),
|
||||
"std": torch.tensor([1], dtype=dtype),
|
||||
}
|
||||
return cls.create_manual(scale, offset, input_stats_dict)
|
||||
|
||||
def normalize(self, x: Union[torch.Tensor, np.ndarray]) -> torch.Tensor:
|
||||
return _normalize(x, self.params_dict, forward=True)
|
||||
|
||||
def unnormalize(self, x: Union[torch.Tensor, np.ndarray]) -> torch.Tensor:
|
||||
return _normalize(x, self.params_dict, forward=False)
|
||||
|
||||
def get_input_stats(self):
|
||||
return self.params_dict["input_stats"]
|
||||
|
||||
def get_output_stats(self):
|
||||
return dict_apply(self.params_dict["input_stats"], self.normalize)
|
||||
|
||||
def __call__(self, x: Union[torch.Tensor, np.ndarray]) -> torch.Tensor:
|
||||
return self.normalize(x)
|
||||
|
||||
|
||||
def _fit(
|
||||
data: Union[torch.Tensor, np.ndarray, zarr.Array],
|
||||
last_n_dims=1,
|
||||
dtype=torch.float32,
|
||||
mode="limits",
|
||||
output_max=1.0,
|
||||
output_min=-1.0,
|
||||
range_eps=1e-4,
|
||||
fit_offset=True,
|
||||
):
|
||||
assert mode in ["limits", "gaussian"]
|
||||
assert last_n_dims >= 0
|
||||
assert output_max > output_min
|
||||
|
||||
# convert data to torch and type
|
||||
if isinstance(data, zarr.Array):
|
||||
data = data[:]
|
||||
if isinstance(data, np.ndarray):
|
||||
data = torch.from_numpy(data)
|
||||
if dtype is not None:
|
||||
data = data.type(dtype)
|
||||
|
||||
# convert shape
|
||||
dim = 1
|
||||
if last_n_dims > 0:
|
||||
dim = np.prod(data.shape[-last_n_dims:])
|
||||
data = data.reshape(-1, dim)
|
||||
|
||||
# compute input stats min max mean std
|
||||
input_min, _ = data.min(axis=0)
|
||||
input_max, _ = data.max(axis=0)
|
||||
input_mean = data.mean(axis=0)
|
||||
input_std = data.std(axis=0)
|
||||
|
||||
# compute scale and offset
|
||||
if mode == "limits":
|
||||
if fit_offset:
|
||||
# unit scale
|
||||
input_range = input_max - input_min
|
||||
ignore_dim = input_range < range_eps
|
||||
input_range[ignore_dim] = output_max - output_min
|
||||
scale = (output_max - output_min) / input_range
|
||||
offset = output_min - scale * input_min
|
||||
offset[ignore_dim] = (output_max + output_min) / 2 - input_min[ignore_dim]
|
||||
# ignore dims scaled to mean of output max and min
|
||||
else:
|
||||
# use this when data is pre-zero-centered.
|
||||
assert output_max > 0
|
||||
assert output_min < 0
|
||||
# unit abs
|
||||
output_abs = min(abs(output_min), abs(output_max))
|
||||
input_abs = torch.maximum(torch.abs(input_min), torch.abs(input_max))
|
||||
ignore_dim = input_abs < range_eps
|
||||
input_abs[ignore_dim] = output_abs
|
||||
# don't scale constant channels
|
||||
scale = output_abs / input_abs
|
||||
offset = torch.zeros_like(input_mean)
|
||||
elif mode == "gaussian":
|
||||
ignore_dim = input_std < range_eps
|
||||
scale = input_std.clone()
|
||||
scale[ignore_dim] = 1
|
||||
scale = 1 / scale
|
||||
|
||||
offset = -input_mean * scale if fit_offset else torch.zeros_like(input_mean)
|
||||
|
||||
# save
|
||||
this_params = nn.ParameterDict(
|
||||
{
|
||||
"scale": scale,
|
||||
"offset": offset,
|
||||
"input_stats": nn.ParameterDict(
|
||||
{"min": input_min, "max": input_max, "mean": input_mean, "std": input_std}
|
||||
),
|
||||
}
|
||||
)
|
||||
for p in this_params.parameters():
|
||||
p.requires_grad_(False)
|
||||
return this_params
|
||||
|
||||
|
||||
def _normalize(x, params, forward=True):
|
||||
assert "scale" in params
|
||||
if isinstance(x, np.ndarray):
|
||||
x = torch.from_numpy(x)
|
||||
scale = params["scale"]
|
||||
offset = params["offset"]
|
||||
x = x.to(device=scale.device, dtype=scale.dtype)
|
||||
src_shape = x.shape
|
||||
x = x.reshape(-1, scale.shape[0])
|
||||
x = x * scale + offset if forward else (x - offset) / scale
|
||||
x = x.reshape(src_shape)
|
||||
return x
|
||||
|
||||
|
||||
def test():
|
||||
data = torch.zeros((100, 10, 9, 2)).uniform_()
|
||||
data[..., 0, 0] = 0
|
||||
|
||||
normalizer = SingleFieldLinearNormalizer()
|
||||
normalizer.fit(data, mode="limits", last_n_dims=2)
|
||||
datan = normalizer.normalize(data)
|
||||
assert datan.shape == data.shape
|
||||
assert np.allclose(datan.max(), 1.0)
|
||||
assert np.allclose(datan.min(), -1.0)
|
||||
dataun = normalizer.unnormalize(datan)
|
||||
assert torch.allclose(data, dataun, atol=1e-7)
|
||||
|
||||
_ = normalizer.get_input_stats()
|
||||
_ = normalizer.get_output_stats()
|
||||
|
||||
normalizer = SingleFieldLinearNormalizer()
|
||||
normalizer.fit(data, mode="limits", last_n_dims=1, fit_offset=False)
|
||||
datan = normalizer.normalize(data)
|
||||
assert datan.shape == data.shape
|
||||
assert np.allclose(datan.max(), 1.0, atol=1e-3)
|
||||
assert np.allclose(datan.min(), 0.0, atol=1e-3)
|
||||
dataun = normalizer.unnormalize(datan)
|
||||
assert torch.allclose(data, dataun, atol=1e-7)
|
||||
|
||||
data = torch.zeros((100, 10, 9, 2)).uniform_()
|
||||
normalizer = SingleFieldLinearNormalizer()
|
||||
normalizer.fit(data, mode="gaussian", last_n_dims=0)
|
||||
datan = normalizer.normalize(data)
|
||||
assert datan.shape == data.shape
|
||||
assert np.allclose(datan.mean(), 0.0, atol=1e-3)
|
||||
assert np.allclose(datan.std(), 1.0, atol=1e-3)
|
||||
dataun = normalizer.unnormalize(datan)
|
||||
assert torch.allclose(data, dataun, atol=1e-7)
|
||||
|
||||
# dict
|
||||
data = torch.zeros((100, 10, 9, 2)).uniform_()
|
||||
data[..., 0, 0] = 0
|
||||
|
||||
normalizer = LinearNormalizer()
|
||||
normalizer.fit(data, mode="limits", last_n_dims=2)
|
||||
datan = normalizer.normalize(data)
|
||||
assert datan.shape == data.shape
|
||||
assert np.allclose(datan.max(), 1.0)
|
||||
assert np.allclose(datan.min(), -1.0)
|
||||
dataun = normalizer.unnormalize(datan)
|
||||
assert torch.allclose(data, dataun, atol=1e-7)
|
||||
|
||||
_ = normalizer.get_input_stats()
|
||||
_ = normalizer.get_output_stats()
|
||||
|
||||
data = {
|
||||
"obs": torch.zeros((1000, 128, 9, 2)).uniform_() * 512,
|
||||
"action": torch.zeros((1000, 128, 2)).uniform_() * 512,
|
||||
}
|
||||
normalizer = LinearNormalizer()
|
||||
normalizer.fit(data)
|
||||
datan = normalizer.normalize(data)
|
||||
dataun = normalizer.unnormalize(datan)
|
||||
for key in data:
|
||||
assert torch.allclose(data[key], dataun[key], atol=1e-4)
|
||||
|
||||
_ = normalizer.get_input_stats()
|
||||
_ = normalizer.get_output_stats()
|
||||
|
||||
state_dict = normalizer.state_dict()
|
||||
n = LinearNormalizer()
|
||||
n.load_state_dict(state_dict)
|
||||
datan = n.normalize(data)
|
||||
dataun = n.unnormalize(datan)
|
||||
for key in data:
|
||||
assert torch.allclose(data[key], dataun[key], atol=1e-4)
|
||||
@@ -1,19 +0,0 @@
|
||||
import math
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
class SinusoidalPosEmb(nn.Module):
|
||||
def __init__(self, dim):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
|
||||
def forward(self, x):
|
||||
device = x.device
|
||||
half_dim = self.dim // 2
|
||||
emb = math.log(10000) / (half_dim - 1)
|
||||
emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
|
||||
emb = x[:, None] * emb[None, :]
|
||||
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
|
||||
return emb
|
||||
@@ -1,971 +0,0 @@
|
||||
"""
|
||||
A collection of utilities for working with nested tensor structures consisting
|
||||
of numpy arrays and torch tensors.
|
||||
"""
|
||||
import collections
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
|
||||
def recursive_dict_list_tuple_apply(x, type_func_dict):
|
||||
"""
|
||||
Recursively apply functions to a nested dictionary or list or tuple, given a dictionary of
|
||||
{data_type: function_to_apply}.
|
||||
|
||||
Args:
|
||||
x (dict or list or tuple): a possibly nested dictionary or list or tuple
|
||||
type_func_dict (dict): a mapping from data types to the functions to be
|
||||
applied for each data type.
|
||||
|
||||
Returns:
|
||||
y (dict or list or tuple): new nested dict-list-tuple
|
||||
"""
|
||||
assert list not in type_func_dict
|
||||
assert tuple not in type_func_dict
|
||||
assert dict not in type_func_dict
|
||||
|
||||
if isinstance(x, (dict, collections.OrderedDict)):
|
||||
new_x = collections.OrderedDict() if isinstance(x, collections.OrderedDict) else {}
|
||||
for k, v in x.items():
|
||||
new_x[k] = recursive_dict_list_tuple_apply(v, type_func_dict)
|
||||
return new_x
|
||||
elif isinstance(x, (list, tuple)):
|
||||
ret = [recursive_dict_list_tuple_apply(v, type_func_dict) for v in x]
|
||||
if isinstance(x, tuple):
|
||||
ret = tuple(ret)
|
||||
return ret
|
||||
else:
|
||||
for t, f in type_func_dict.items():
|
||||
if isinstance(x, t):
|
||||
return f(x)
|
||||
else:
|
||||
raise NotImplementedError("Cannot handle data type %s" % str(type(x)))
|
||||
|
||||
|
||||
def map_tensor(x, func):
|
||||
"""
|
||||
Apply function @func to torch.Tensor objects in a nested dictionary or
|
||||
list or tuple.
|
||||
|
||||
Args:
|
||||
x (dict or list or tuple): a possibly nested dictionary or list or tuple
|
||||
func (function): function to apply to each tensor
|
||||
|
||||
Returns:
|
||||
y (dict or list or tuple): new nested dict-list-tuple
|
||||
"""
|
||||
return recursive_dict_list_tuple_apply(
|
||||
x,
|
||||
{
|
||||
torch.Tensor: func,
|
||||
type(None): lambda x: x,
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
def map_ndarray(x, func):
|
||||
"""
|
||||
Apply function @func to np.ndarray objects in a nested dictionary or
|
||||
list or tuple.
|
||||
|
||||
Args:
|
||||
x (dict or list or tuple): a possibly nested dictionary or list or tuple
|
||||
func (function): function to apply to each array
|
||||
|
||||
Returns:
|
||||
y (dict or list or tuple): new nested dict-list-tuple
|
||||
"""
|
||||
return recursive_dict_list_tuple_apply(
|
||||
x,
|
||||
{
|
||||
np.ndarray: func,
|
||||
type(None): lambda x: x,
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
def map_tensor_ndarray(x, tensor_func, ndarray_func):
|
||||
"""
|
||||
Apply function @tensor_func to torch.Tensor objects and @ndarray_func to
|
||||
np.ndarray objects in a nested dictionary or list or tuple.
|
||||
|
||||
Args:
|
||||
x (dict or list or tuple): a possibly nested dictionary or list or tuple
|
||||
tensor_func (function): function to apply to each tensor
|
||||
ndarray_Func (function): function to apply to each array
|
||||
|
||||
Returns:
|
||||
y (dict or list or tuple): new nested dict-list-tuple
|
||||
"""
|
||||
return recursive_dict_list_tuple_apply(
|
||||
x,
|
||||
{
|
||||
torch.Tensor: tensor_func,
|
||||
np.ndarray: ndarray_func,
|
||||
type(None): lambda x: x,
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
def clone(x):
|
||||
"""
|
||||
Clones all torch tensors and numpy arrays in nested dictionary or list
|
||||
or tuple and returns a new nested structure.
|
||||
|
||||
Args:
|
||||
x (dict or list or tuple): a possibly nested dictionary or list or tuple
|
||||
|
||||
Returns:
|
||||
y (dict or list or tuple): new nested dict-list-tuple
|
||||
"""
|
||||
return recursive_dict_list_tuple_apply(
|
||||
x,
|
||||
{
|
||||
torch.Tensor: lambda x: x.clone(),
|
||||
np.ndarray: lambda x: x.copy(),
|
||||
type(None): lambda x: x,
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
def detach(x):
|
||||
"""
|
||||
Detaches all torch tensors in nested dictionary or list
|
||||
or tuple and returns a new nested structure.
|
||||
|
||||
Args:
|
||||
x (dict or list or tuple): a possibly nested dictionary or list or tuple
|
||||
|
||||
Returns:
|
||||
y (dict or list or tuple): new nested dict-list-tuple
|
||||
"""
|
||||
return recursive_dict_list_tuple_apply(
|
||||
x,
|
||||
{
|
||||
torch.Tensor: lambda x: x.detach(),
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
def to_batch(x):
|
||||
"""
|
||||
Introduces a leading batch dimension of 1 for all torch tensors and numpy
|
||||
arrays in nested dictionary or list or tuple and returns a new nested structure.
|
||||
|
||||
Args:
|
||||
x (dict or list or tuple): a possibly nested dictionary or list or tuple
|
||||
|
||||
Returns:
|
||||
y (dict or list or tuple): new nested dict-list-tuple
|
||||
"""
|
||||
return recursive_dict_list_tuple_apply(
|
||||
x,
|
||||
{
|
||||
torch.Tensor: lambda x: x[None, ...],
|
||||
np.ndarray: lambda x: x[None, ...],
|
||||
type(None): lambda x: x,
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
def to_sequence(x):
|
||||
"""
|
||||
Introduces a time dimension of 1 at dimension 1 for all torch tensors and numpy
|
||||
arrays in nested dictionary or list or tuple and returns a new nested structure.
|
||||
|
||||
Args:
|
||||
x (dict or list or tuple): a possibly nested dictionary or list or tuple
|
||||
|
||||
Returns:
|
||||
y (dict or list or tuple): new nested dict-list-tuple
|
||||
"""
|
||||
return recursive_dict_list_tuple_apply(
|
||||
x,
|
||||
{
|
||||
torch.Tensor: lambda x: x[:, None, ...],
|
||||
np.ndarray: lambda x: x[:, None, ...],
|
||||
type(None): lambda x: x,
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
def index_at_time(x, ind):
|
||||
"""
|
||||
Indexes all torch tensors and numpy arrays in dimension 1 with index @ind in
|
||||
nested dictionary or list or tuple and returns a new nested structure.
|
||||
|
||||
Args:
|
||||
x (dict or list or tuple): a possibly nested dictionary or list or tuple
|
||||
ind (int): index
|
||||
|
||||
Returns:
|
||||
y (dict or list or tuple): new nested dict-list-tuple
|
||||
"""
|
||||
return recursive_dict_list_tuple_apply(
|
||||
x,
|
||||
{
|
||||
torch.Tensor: lambda x: x[:, ind, ...],
|
||||
np.ndarray: lambda x: x[:, ind, ...],
|
||||
type(None): lambda x: x,
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
def unsqueeze(x, dim):
|
||||
"""
|
||||
Adds dimension of size 1 at dimension @dim in all torch tensors and numpy arrays
|
||||
in nested dictionary or list or tuple and returns a new nested structure.
|
||||
|
||||
Args:
|
||||
x (dict or list or tuple): a possibly nested dictionary or list or tuple
|
||||
dim (int): dimension
|
||||
|
||||
Returns:
|
||||
y (dict or list or tuple): new nested dict-list-tuple
|
||||
"""
|
||||
return recursive_dict_list_tuple_apply(
|
||||
x,
|
||||
{
|
||||
torch.Tensor: lambda x: x.unsqueeze(dim=dim),
|
||||
np.ndarray: lambda x: np.expand_dims(x, axis=dim),
|
||||
type(None): lambda x: x,
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
def contiguous(x):
|
||||
"""
|
||||
Makes all torch tensors and numpy arrays contiguous in nested dictionary or
|
||||
list or tuple and returns a new nested structure.
|
||||
|
||||
Args:
|
||||
x (dict or list or tuple): a possibly nested dictionary or list or tuple
|
||||
|
||||
Returns:
|
||||
y (dict or list or tuple): new nested dict-list-tuple
|
||||
"""
|
||||
return recursive_dict_list_tuple_apply(
|
||||
x,
|
||||
{
|
||||
torch.Tensor: lambda x: x.contiguous(),
|
||||
np.ndarray: lambda x: np.ascontiguousarray(x),
|
||||
type(None): lambda x: x,
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
def to_device(x, device):
|
||||
"""
|
||||
Sends all torch tensors in nested dictionary or list or tuple to device
|
||||
@device, and returns a new nested structure.
|
||||
|
||||
Args:
|
||||
x (dict or list or tuple): a possibly nested dictionary or list or tuple
|
||||
device (torch.Device): device to send tensors to
|
||||
|
||||
Returns:
|
||||
y (dict or list or tuple): new nested dict-list-tuple
|
||||
"""
|
||||
return recursive_dict_list_tuple_apply(
|
||||
x,
|
||||
{
|
||||
torch.Tensor: lambda x, d=device: x.to(d),
|
||||
type(None): lambda x: x,
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
def to_tensor(x):
|
||||
"""
|
||||
Converts all numpy arrays in nested dictionary or list or tuple to
|
||||
torch tensors (and leaves existing torch Tensors as-is), and returns
|
||||
a new nested structure.
|
||||
|
||||
Args:
|
||||
x (dict or list or tuple): a possibly nested dictionary or list or tuple
|
||||
|
||||
Returns:
|
||||
y (dict or list or tuple): new nested dict-list-tuple
|
||||
"""
|
||||
return recursive_dict_list_tuple_apply(
|
||||
x,
|
||||
{
|
||||
torch.Tensor: lambda x: x,
|
||||
np.ndarray: lambda x: torch.from_numpy(x),
|
||||
type(None): lambda x: x,
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
def to_numpy(x):
|
||||
"""
|
||||
Converts all torch tensors in nested dictionary or list or tuple to
|
||||
numpy (and leaves existing numpy arrays as-is), and returns
|
||||
a new nested structure.
|
||||
|
||||
Args:
|
||||
x (dict or list or tuple): a possibly nested dictionary or list or tuple
|
||||
|
||||
Returns:
|
||||
y (dict or list or tuple): new nested dict-list-tuple
|
||||
"""
|
||||
|
||||
def f(tensor):
|
||||
if tensor.is_cuda:
|
||||
return tensor.detach().cpu().numpy()
|
||||
else:
|
||||
return tensor.detach().numpy()
|
||||
|
||||
return recursive_dict_list_tuple_apply(
|
||||
x,
|
||||
{
|
||||
torch.Tensor: f,
|
||||
np.ndarray: lambda x: x,
|
||||
type(None): lambda x: x,
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
def to_list(x):
|
||||
"""
|
||||
Converts all torch tensors and numpy arrays in nested dictionary or list
|
||||
or tuple to a list, and returns a new nested structure. Useful for
|
||||
json encoding.
|
||||
|
||||
Args:
|
||||
x (dict or list or tuple): a possibly nested dictionary or list or tuple
|
||||
|
||||
Returns:
|
||||
y (dict or list or tuple): new nested dict-list-tuple
|
||||
"""
|
||||
|
||||
def f(tensor):
|
||||
if tensor.is_cuda:
|
||||
return tensor.detach().cpu().numpy().tolist()
|
||||
else:
|
||||
return tensor.detach().numpy().tolist()
|
||||
|
||||
return recursive_dict_list_tuple_apply(
|
||||
x,
|
||||
{
|
||||
torch.Tensor: f,
|
||||
np.ndarray: lambda x: x.tolist(),
|
||||
type(None): lambda x: x,
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
def to_float(x):
|
||||
"""
|
||||
Converts all torch tensors and numpy arrays in nested dictionary or list
|
||||
or tuple to float type entries, and returns a new nested structure.
|
||||
|
||||
Args:
|
||||
x (dict or list or tuple): a possibly nested dictionary or list or tuple
|
||||
|
||||
Returns:
|
||||
y (dict or list or tuple): new nested dict-list-tuple
|
||||
"""
|
||||
return recursive_dict_list_tuple_apply(
|
||||
x,
|
||||
{
|
||||
torch.Tensor: lambda x: x.float(),
|
||||
np.ndarray: lambda x: x.astype(np.float32),
|
||||
type(None): lambda x: x,
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
def to_uint8(x):
|
||||
"""
|
||||
Converts all torch tensors and numpy arrays in nested dictionary or list
|
||||
or tuple to uint8 type entries, and returns a new nested structure.
|
||||
|
||||
Args:
|
||||
x (dict or list or tuple): a possibly nested dictionary or list or tuple
|
||||
|
||||
Returns:
|
||||
y (dict or list or tuple): new nested dict-list-tuple
|
||||
"""
|
||||
return recursive_dict_list_tuple_apply(
|
||||
x,
|
||||
{
|
||||
torch.Tensor: lambda x: x.byte(),
|
||||
np.ndarray: lambda x: x.astype(np.uint8),
|
||||
type(None): lambda x: x,
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
def to_torch(x, device):
|
||||
"""
|
||||
Converts all numpy arrays and torch tensors in nested dictionary or list or tuple to
|
||||
torch tensors on device @device and returns a new nested structure.
|
||||
|
||||
Args:
|
||||
x (dict or list or tuple): a possibly nested dictionary or list or tuple
|
||||
device (torch.Device): device to send tensors to
|
||||
|
||||
Returns:
|
||||
y (dict or list or tuple): new nested dict-list-tuple
|
||||
"""
|
||||
return to_device(to_float(to_tensor(x)), device)
|
||||
|
||||
|
||||
def to_one_hot_single(tensor, num_class):
|
||||
"""
|
||||
Convert tensor to one-hot representation, assuming a certain number of total class labels.
|
||||
|
||||
Args:
|
||||
tensor (torch.Tensor): tensor containing integer labels
|
||||
num_class (int): number of classes
|
||||
|
||||
Returns:
|
||||
x (torch.Tensor): tensor containing one-hot representation of labels
|
||||
"""
|
||||
x = torch.zeros(tensor.size() + (num_class,)).to(tensor.device)
|
||||
x.scatter_(-1, tensor.unsqueeze(-1), 1)
|
||||
return x
|
||||
|
||||
|
||||
def to_one_hot(tensor, num_class):
|
||||
"""
|
||||
Convert all tensors in nested dictionary or list or tuple to one-hot representation,
|
||||
assuming a certain number of total class labels.
|
||||
|
||||
Args:
|
||||
tensor (dict or list or tuple): a possibly nested dictionary or list or tuple
|
||||
num_class (int): number of classes
|
||||
|
||||
Returns:
|
||||
y (dict or list or tuple): new nested dict-list-tuple
|
||||
"""
|
||||
return map_tensor(tensor, func=lambda x, nc=num_class: to_one_hot_single(x, nc))
|
||||
|
||||
|
||||
def flatten_single(x, begin_axis=1):
|
||||
"""
|
||||
Flatten a tensor in all dimensions from @begin_axis onwards.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): tensor to flatten
|
||||
begin_axis (int): which axis to flatten from
|
||||
|
||||
Returns:
|
||||
y (torch.Tensor): flattened tensor
|
||||
"""
|
||||
fixed_size = x.size()[:begin_axis]
|
||||
_s = list(fixed_size) + [-1]
|
||||
return x.reshape(*_s)
|
||||
|
||||
|
||||
def flatten(x, begin_axis=1):
|
||||
"""
|
||||
Flatten all tensors in nested dictionary or list or tuple, from @begin_axis onwards.
|
||||
|
||||
Args:
|
||||
x (dict or list or tuple): a possibly nested dictionary or list or tuple
|
||||
begin_axis (int): which axis to flatten from
|
||||
|
||||
Returns:
|
||||
y (dict or list or tuple): new nested dict-list-tuple
|
||||
"""
|
||||
return recursive_dict_list_tuple_apply(
|
||||
x,
|
||||
{
|
||||
torch.Tensor: lambda x, b=begin_axis: flatten_single(x, begin_axis=b),
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
def reshape_dimensions_single(x, begin_axis, end_axis, target_dims):
|
||||
"""
|
||||
Reshape selected dimensions in a tensor to a target dimension.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): tensor to reshape
|
||||
begin_axis (int): begin dimension
|
||||
end_axis (int): end dimension
|
||||
target_dims (tuple or list): target shape for the range of dimensions
|
||||
(@begin_axis, @end_axis)
|
||||
|
||||
Returns:
|
||||
y (torch.Tensor): reshaped tensor
|
||||
"""
|
||||
assert begin_axis <= end_axis
|
||||
assert begin_axis >= 0
|
||||
assert end_axis < len(x.shape)
|
||||
assert isinstance(target_dims, (tuple, list))
|
||||
s = x.shape
|
||||
final_s = []
|
||||
for i in range(len(s)):
|
||||
if i == begin_axis:
|
||||
final_s.extend(target_dims)
|
||||
elif i < begin_axis or i > end_axis:
|
||||
final_s.append(s[i])
|
||||
return x.reshape(*final_s)
|
||||
|
||||
|
||||
def reshape_dimensions(x, begin_axis, end_axis, target_dims):
|
||||
"""
|
||||
Reshape selected dimensions for all tensors in nested dictionary or list or tuple
|
||||
to a target dimension.
|
||||
|
||||
Args:
|
||||
x (dict or list or tuple): a possibly nested dictionary or list or tuple
|
||||
begin_axis (int): begin dimension
|
||||
end_axis (int): end dimension
|
||||
target_dims (tuple or list): target shape for the range of dimensions
|
||||
(@begin_axis, @end_axis)
|
||||
|
||||
Returns:
|
||||
y (dict or list or tuple): new nested dict-list-tuple
|
||||
"""
|
||||
return recursive_dict_list_tuple_apply(
|
||||
x,
|
||||
{
|
||||
torch.Tensor: lambda x, b=begin_axis, e=end_axis, t=target_dims: reshape_dimensions_single(
|
||||
x, begin_axis=b, end_axis=e, target_dims=t
|
||||
),
|
||||
np.ndarray: lambda x, b=begin_axis, e=end_axis, t=target_dims: reshape_dimensions_single(
|
||||
x, begin_axis=b, end_axis=e, target_dims=t
|
||||
),
|
||||
type(None): lambda x: x,
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
def join_dimensions(x, begin_axis, end_axis):
|
||||
"""
|
||||
Joins all dimensions between dimensions (@begin_axis, @end_axis) into a flat dimension, for
|
||||
all tensors in nested dictionary or list or tuple.
|
||||
|
||||
Args:
|
||||
x (dict or list or tuple): a possibly nested dictionary or list or tuple
|
||||
begin_axis (int): begin dimension
|
||||
end_axis (int): end dimension
|
||||
|
||||
Returns:
|
||||
y (dict or list or tuple): new nested dict-list-tuple
|
||||
"""
|
||||
return recursive_dict_list_tuple_apply(
|
||||
x,
|
||||
{
|
||||
torch.Tensor: lambda x, b=begin_axis, e=end_axis: reshape_dimensions_single(
|
||||
x, begin_axis=b, end_axis=e, target_dims=[-1]
|
||||
),
|
||||
np.ndarray: lambda x, b=begin_axis, e=end_axis: reshape_dimensions_single(
|
||||
x, begin_axis=b, end_axis=e, target_dims=[-1]
|
||||
),
|
||||
type(None): lambda x: x,
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
def expand_at_single(x, size, dim):
|
||||
"""
|
||||
Expand a tensor at a single dimension @dim by @size
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): input tensor
|
||||
size (int): size to expand
|
||||
dim (int): dimension to expand
|
||||
|
||||
Returns:
|
||||
y (torch.Tensor): expanded tensor
|
||||
"""
|
||||
assert dim < x.ndimension()
|
||||
assert x.shape[dim] == 1
|
||||
expand_dims = [-1] * x.ndimension()
|
||||
expand_dims[dim] = size
|
||||
return x.expand(*expand_dims)
|
||||
|
||||
|
||||
def expand_at(x, size, dim):
|
||||
"""
|
||||
Expand all tensors in nested dictionary or list or tuple at a single
|
||||
dimension @dim by @size.
|
||||
|
||||
Args:
|
||||
x (dict or list or tuple): a possibly nested dictionary or list or tuple
|
||||
size (int): size to expand
|
||||
dim (int): dimension to expand
|
||||
|
||||
Returns:
|
||||
y (dict or list or tuple): new nested dict-list-tuple
|
||||
"""
|
||||
return map_tensor(x, lambda t, s=size, d=dim: expand_at_single(t, s, d))
|
||||
|
||||
|
||||
def unsqueeze_expand_at(x, size, dim):
|
||||
"""
|
||||
Unsqueeze and expand a tensor at a dimension @dim by @size.
|
||||
|
||||
Args:
|
||||
x (dict or list or tuple): a possibly nested dictionary or list or tuple
|
||||
size (int): size to expand
|
||||
dim (int): dimension to unsqueeze and expand
|
||||
|
||||
Returns:
|
||||
y (dict or list or tuple): new nested dict-list-tuple
|
||||
"""
|
||||
x = unsqueeze(x, dim)
|
||||
return expand_at(x, size, dim)
|
||||
|
||||
|
||||
def repeat_by_expand_at(x, repeats, dim):
|
||||
"""
|
||||
Repeat a dimension by combining expand and reshape operations.
|
||||
|
||||
Args:
|
||||
x (dict or list or tuple): a possibly nested dictionary or list or tuple
|
||||
repeats (int): number of times to repeat the target dimension
|
||||
dim (int): dimension to repeat on
|
||||
|
||||
Returns:
|
||||
y (dict or list or tuple): new nested dict-list-tuple
|
||||
"""
|
||||
x = unsqueeze_expand_at(x, repeats, dim + 1)
|
||||
return join_dimensions(x, dim, dim + 1)
|
||||
|
||||
|
||||
def named_reduce_single(x, reduction, dim):
|
||||
"""
|
||||
Reduce tensor at a dimension by named reduction functions.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): tensor to be reduced
|
||||
reduction (str): one of ["sum", "max", "mean", "flatten"]
|
||||
dim (int): dimension to be reduced (or begin axis for flatten)
|
||||
|
||||
Returns:
|
||||
y (torch.Tensor): reduced tensor
|
||||
"""
|
||||
assert x.ndimension() > dim
|
||||
assert reduction in ["sum", "max", "mean", "flatten"]
|
||||
if reduction == "flatten":
|
||||
x = flatten(x, begin_axis=dim)
|
||||
elif reduction == "max":
|
||||
x = torch.max(x, dim=dim)[0] # [B, D]
|
||||
elif reduction == "sum":
|
||||
x = torch.sum(x, dim=dim)
|
||||
else:
|
||||
x = torch.mean(x, dim=dim)
|
||||
return x
|
||||
|
||||
|
||||
def named_reduce(x, reduction, dim):
|
||||
"""
|
||||
Reduces all tensors in nested dictionary or list or tuple at a dimension
|
||||
using a named reduction function.
|
||||
|
||||
Args:
|
||||
x (dict or list or tuple): a possibly nested dictionary or list or tuple
|
||||
reduction (str): one of ["sum", "max", "mean", "flatten"]
|
||||
dim (int): dimension to be reduced (or begin axis for flatten)
|
||||
|
||||
Returns:
|
||||
y (dict or list or tuple): new nested dict-list-tuple
|
||||
"""
|
||||
return map_tensor(x, func=lambda t, r=reduction, d=dim: named_reduce_single(t, r, d))
|
||||
|
||||
|
||||
def gather_along_dim_with_dim_single(x, target_dim, source_dim, indices):
|
||||
"""
|
||||
This function indexes out a target dimension of a tensor in a structured way,
|
||||
by allowing a different value to be selected for each member of a flat index
|
||||
tensor (@indices) corresponding to a source dimension. This can be interpreted
|
||||
as moving along the source dimension, using the corresponding index value
|
||||
in @indices to select values for all other dimensions outside of the
|
||||
source and target dimensions. A common use case is to gather values
|
||||
in target dimension 1 for each batch member (target dimension 0).
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): tensor to gather values for
|
||||
target_dim (int): dimension to gather values along
|
||||
source_dim (int): dimension to hold constant and use for gathering values
|
||||
from the other dimensions
|
||||
indices (torch.Tensor): flat index tensor with same shape as tensor @x along
|
||||
@source_dim
|
||||
|
||||
Returns:
|
||||
y (torch.Tensor): gathered tensor, with dimension @target_dim indexed out
|
||||
"""
|
||||
assert len(indices.shape) == 1
|
||||
assert x.shape[source_dim] == indices.shape[0]
|
||||
|
||||
# unsqueeze in all dimensions except the source dimension
|
||||
new_shape = [1] * x.ndimension()
|
||||
new_shape[source_dim] = -1
|
||||
indices = indices.reshape(*new_shape)
|
||||
|
||||
# repeat in all dimensions - but preserve shape of source dimension,
|
||||
# and make sure target_dimension has singleton dimension
|
||||
expand_shape = list(x.shape)
|
||||
expand_shape[source_dim] = -1
|
||||
expand_shape[target_dim] = 1
|
||||
indices = indices.expand(*expand_shape)
|
||||
|
||||
out = x.gather(dim=target_dim, index=indices)
|
||||
return out.squeeze(target_dim)
|
||||
|
||||
|
||||
def gather_along_dim_with_dim(x, target_dim, source_dim, indices):
|
||||
"""
|
||||
Apply @gather_along_dim_with_dim_single to all tensors in a nested
|
||||
dictionary or list or tuple.
|
||||
|
||||
Args:
|
||||
x (dict or list or tuple): a possibly nested dictionary or list or tuple
|
||||
target_dim (int): dimension to gather values along
|
||||
source_dim (int): dimension to hold constant and use for gathering values
|
||||
from the other dimensions
|
||||
indices (torch.Tensor): flat index tensor with same shape as tensor @x along
|
||||
@source_dim
|
||||
|
||||
Returns:
|
||||
y (dict or list or tuple): new nested dict-list-tuple
|
||||
"""
|
||||
return map_tensor(
|
||||
x, lambda y, t=target_dim, s=source_dim, i=indices: gather_along_dim_with_dim_single(y, t, s, i)
|
||||
)
|
||||
|
||||
|
||||
def gather_sequence_single(seq, indices):
|
||||
"""
|
||||
Given a tensor with leading dimensions [B, T, ...], gather an element from each sequence in
|
||||
the batch given an index for each sequence.
|
||||
|
||||
Args:
|
||||
seq (torch.Tensor): tensor with leading dimensions [B, T, ...]
|
||||
indices (torch.Tensor): tensor indices of shape [B]
|
||||
|
||||
Return:
|
||||
y (torch.Tensor): indexed tensor of shape [B, ....]
|
||||
"""
|
||||
return gather_along_dim_with_dim_single(seq, target_dim=1, source_dim=0, indices=indices)
|
||||
|
||||
|
||||
def gather_sequence(seq, indices):
|
||||
"""
|
||||
Given a nested dictionary or list or tuple, gathers an element from each sequence of the batch
|
||||
for tensors with leading dimensions [B, T, ...].
|
||||
|
||||
Args:
|
||||
seq (dict or list or tuple): a possibly nested dictionary or list or tuple with tensors
|
||||
of leading dimensions [B, T, ...]
|
||||
indices (torch.Tensor): tensor indices of shape [B]
|
||||
|
||||
Returns:
|
||||
y (dict or list or tuple): new nested dict-list-tuple with tensors of shape [B, ...]
|
||||
"""
|
||||
return gather_along_dim_with_dim(seq, target_dim=1, source_dim=0, indices=indices)
|
||||
|
||||
|
||||
def pad_sequence_single(seq, padding, batched=False, pad_same=True, pad_values=None):
|
||||
"""
|
||||
Pad input tensor or array @seq in the time dimension (dimension 1).
|
||||
|
||||
Args:
|
||||
seq (np.ndarray or torch.Tensor): sequence to be padded
|
||||
padding (tuple): begin and end padding, e.g. [1, 1] pads both begin and end of the sequence by 1
|
||||
batched (bool): if sequence has the batch dimension
|
||||
pad_same (bool): if pad by duplicating
|
||||
pad_values (scalar or (ndarray, Tensor)): values to be padded if not pad_same
|
||||
|
||||
Returns:
|
||||
padded sequence (np.ndarray or torch.Tensor)
|
||||
"""
|
||||
assert isinstance(seq, (np.ndarray, torch.Tensor))
|
||||
assert pad_same or pad_values is not None
|
||||
if pad_values is not None:
|
||||
assert isinstance(pad_values, float)
|
||||
repeat_func = np.repeat if isinstance(seq, np.ndarray) else torch.repeat_interleave
|
||||
concat_func = np.concatenate if isinstance(seq, np.ndarray) else torch.cat
|
||||
ones_like_func = np.ones_like if isinstance(seq, np.ndarray) else torch.ones_like
|
||||
seq_dim = 1 if batched else 0
|
||||
|
||||
begin_pad = []
|
||||
end_pad = []
|
||||
|
||||
if padding[0] > 0:
|
||||
pad = seq[[0]] if pad_same else ones_like_func(seq[[0]]) * pad_values
|
||||
begin_pad.append(repeat_func(pad, padding[0], seq_dim))
|
||||
if padding[1] > 0:
|
||||
pad = seq[[-1]] if pad_same else ones_like_func(seq[[-1]]) * pad_values
|
||||
end_pad.append(repeat_func(pad, padding[1], seq_dim))
|
||||
|
||||
return concat_func(begin_pad + [seq] + end_pad, seq_dim)
|
||||
|
||||
|
||||
def pad_sequence(seq, padding, batched=False, pad_same=True, pad_values=None):
|
||||
"""
|
||||
Pad a nested dictionary or list or tuple of sequence tensors in the time dimension (dimension 1).
|
||||
|
||||
Args:
|
||||
seq (dict or list or tuple): a possibly nested dictionary or list or tuple with tensors
|
||||
of leading dimensions [B, T, ...]
|
||||
padding (tuple): begin and end padding, e.g. [1, 1] pads both begin and end of the sequence by 1
|
||||
batched (bool): if sequence has the batch dimension
|
||||
pad_same (bool): if pad by duplicating
|
||||
pad_values (scalar or (ndarray, Tensor)): values to be padded if not pad_same
|
||||
|
||||
Returns:
|
||||
padded sequence (dict or list or tuple)
|
||||
"""
|
||||
return recursive_dict_list_tuple_apply(
|
||||
seq,
|
||||
{
|
||||
torch.Tensor: lambda x, p=padding, b=batched, ps=pad_same, pv=pad_values: pad_sequence_single(
|
||||
x, p, b, ps, pv
|
||||
),
|
||||
np.ndarray: lambda x, p=padding, b=batched, ps=pad_same, pv=pad_values: pad_sequence_single(
|
||||
x, p, b, ps, pv
|
||||
),
|
||||
type(None): lambda x: x,
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
def assert_size_at_dim_single(x, size, dim, msg):
|
||||
"""
|
||||
Ensure that array or tensor @x has size @size in dim @dim.
|
||||
|
||||
Args:
|
||||
x (np.ndarray or torch.Tensor): input array or tensor
|
||||
size (int): size that tensors should have at @dim
|
||||
dim (int): dimension to check
|
||||
msg (str): text to display if assertion fails
|
||||
"""
|
||||
assert x.shape[dim] == size, msg
|
||||
|
||||
|
||||
def assert_size_at_dim(x, size, dim, msg):
|
||||
"""
|
||||
Ensure that arrays and tensors in nested dictionary or list or tuple have
|
||||
size @size in dim @dim.
|
||||
|
||||
Args:
|
||||
x (dict or list or tuple): a possibly nested dictionary or list or tuple
|
||||
size (int): size that tensors should have at @dim
|
||||
dim (int): dimension to check
|
||||
"""
|
||||
map_tensor(x, lambda t, s=size, d=dim, m=msg: assert_size_at_dim_single(t, s, d, m))
|
||||
|
||||
|
||||
def get_shape(x):
|
||||
"""
|
||||
Get all shapes of arrays and tensors in nested dictionary or list or tuple.
|
||||
|
||||
Args:
|
||||
x (dict or list or tuple): a possibly nested dictionary or list or tuple
|
||||
|
||||
Returns:
|
||||
y (dict or list or tuple): new nested dict-list-tuple that contains each array or
|
||||
tensor's shape
|
||||
"""
|
||||
return recursive_dict_list_tuple_apply(
|
||||
x,
|
||||
{
|
||||
torch.Tensor: lambda x: x.shape,
|
||||
np.ndarray: lambda x: x.shape,
|
||||
type(None): lambda x: x,
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
def list_of_flat_dict_to_dict_of_list(list_of_dict):
|
||||
"""
|
||||
Helper function to go from a list of flat dictionaries to a dictionary of lists.
|
||||
By "flat" we mean that none of the values are dictionaries, but are numpy arrays,
|
||||
floats, etc.
|
||||
|
||||
Args:
|
||||
list_of_dict (list): list of flat dictionaries
|
||||
|
||||
Returns:
|
||||
dict_of_list (dict): dictionary of lists
|
||||
"""
|
||||
assert isinstance(list_of_dict, list)
|
||||
dic = collections.OrderedDict()
|
||||
for i in range(len(list_of_dict)):
|
||||
for k in list_of_dict[i]:
|
||||
if k not in dic:
|
||||
dic[k] = []
|
||||
dic[k].append(list_of_dict[i][k])
|
||||
return dic
|
||||
|
||||
|
||||
def flatten_nested_dict_list(d, parent_key="", sep="_", item_key=""):
|
||||
"""
|
||||
Flatten a nested dict or list to a list.
|
||||
|
||||
For example, given a dict
|
||||
{
|
||||
a: 1
|
||||
b: {
|
||||
c: 2
|
||||
}
|
||||
c: 3
|
||||
}
|
||||
|
||||
the function would return [(a, 1), (b_c, 2), (c, 3)]
|
||||
|
||||
Args:
|
||||
d (dict, list): a nested dict or list to be flattened
|
||||
parent_key (str): recursion helper
|
||||
sep (str): separator for nesting keys
|
||||
item_key (str): recursion helper
|
||||
Returns:
|
||||
list: a list of (key, value) tuples
|
||||
"""
|
||||
items = []
|
||||
if isinstance(d, (tuple, list)):
|
||||
new_key = parent_key + sep + item_key if len(parent_key) > 0 else item_key
|
||||
for i, v in enumerate(d):
|
||||
items.extend(flatten_nested_dict_list(v, new_key, sep=sep, item_key=str(i)))
|
||||
return items
|
||||
elif isinstance(d, dict):
|
||||
new_key = parent_key + sep + item_key if len(parent_key) > 0 else item_key
|
||||
for k, v in d.items():
|
||||
assert isinstance(k, str)
|
||||
items.extend(flatten_nested_dict_list(v, new_key, sep=sep, item_key=k))
|
||||
return items
|
||||
else:
|
||||
new_key = parent_key + sep + item_key if len(parent_key) > 0 else item_key
|
||||
return [(new_key, d)]
|
||||
|
||||
|
||||
def time_distributed(inputs, op, activation=None, inputs_as_kwargs=False, inputs_as_args=False, **kwargs):
|
||||
"""
|
||||
Apply function @op to all tensors in nested dictionary or list or tuple @inputs in both the
|
||||
batch (B) and time (T) dimension, where the tensors are expected to have shape [B, T, ...].
|
||||
Will do this by reshaping tensors to [B * T, ...], passing through the op, and then reshaping
|
||||
outputs to [B, T, ...].
|
||||
|
||||
Args:
|
||||
inputs (list or tuple or dict): a possibly nested dictionary or list or tuple with tensors
|
||||
of leading dimensions [B, T, ...]
|
||||
op: a layer op that accepts inputs
|
||||
activation: activation to apply at the output
|
||||
inputs_as_kwargs (bool): whether to feed input as a kwargs dict to the op
|
||||
inputs_as_args (bool) whether to feed input as a args list to the op
|
||||
kwargs (dict): other kwargs to supply to the op
|
||||
|
||||
Returns:
|
||||
outputs (dict or list or tuple): new nested dict-list-tuple with tensors of leading dimension [B, T].
|
||||
"""
|
||||
batch_size, seq_len = flatten_nested_dict_list(inputs)[0][1].shape[:2]
|
||||
inputs = join_dimensions(inputs, 0, 1)
|
||||
if inputs_as_kwargs:
|
||||
outputs = op(**inputs, **kwargs)
|
||||
elif inputs_as_args:
|
||||
outputs = op(*inputs, **kwargs)
|
||||
else:
|
||||
outputs = op(inputs, **kwargs)
|
||||
|
||||
if activation is not None:
|
||||
outputs = map_tensor(outputs, activation)
|
||||
outputs = reshape_dimensions(outputs, begin_axis=0, end_axis=0, target_dims=(batch_size, seq_len))
|
||||
return outputs
|
||||
@@ -5,9 +5,9 @@ import torch
|
||||
import torch.nn as nn
|
||||
import torchvision
|
||||
|
||||
from lerobot.common.policies.diffusion.model.crop_randomizer import CropRandomizer
|
||||
from lerobot.common.policies.diffusion.model.module_attr_mixin import ModuleAttrMixin
|
||||
from lerobot.common.policies.diffusion.pytorch_utils import replace_submodules
|
||||
from diffusion_policy.common.pytorch_util import replace_submodules
|
||||
from diffusion_policy.model.common.module_attr_mixin import ModuleAttrMixin
|
||||
from diffusion_policy.model.vision.crop_randomizer import CropRandomizer
|
||||
|
||||
|
||||
class MultiImageObsEncoder(ModuleAttrMixin):
|
||||
@@ -5,16 +5,16 @@ import hydra
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from lerobot.common.policies.diffusion.diffusion_unet_image_policy import DiffusionUnetImagePolicy
|
||||
from lerobot.common.policies.diffusion.model.lr_scheduler import get_scheduler
|
||||
from lerobot.common.policies.diffusion.model.multi_image_obs_encoder import MultiImageObsEncoder
|
||||
from diffusion_policy.model.common.lr_scheduler import get_scheduler
|
||||
|
||||
from .diffusion_unet_image_policy import DiffusionUnetImagePolicy
|
||||
from .multi_image_obs_encoder import MultiImageObsEncoder
|
||||
|
||||
|
||||
class DiffusionPolicy(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
cfg,
|
||||
cfg_device,
|
||||
cfg_noise_scheduler,
|
||||
cfg_rgb_model,
|
||||
cfg_obs_encoder,
|
||||
@@ -62,9 +62,8 @@ class DiffusionPolicy(nn.Module):
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
self.device = torch.device(cfg_device)
|
||||
if torch.cuda.is_available() and cfg_device == "cuda":
|
||||
self.diffusion.cuda()
|
||||
self.device = torch.device("cuda")
|
||||
self.diffusion.cuda()
|
||||
|
||||
self.ema = None
|
||||
if self.cfg.use_ema:
|
||||
|
||||
@@ -1,76 +0,0 @@
|
||||
from typing import Callable, Dict
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torchvision
|
||||
|
||||
|
||||
def get_resnet(name, weights=None, **kwargs):
|
||||
"""
|
||||
name: resnet18, resnet34, resnet50
|
||||
weights: "IMAGENET1K_V1", "r3m"
|
||||
"""
|
||||
# load r3m weights
|
||||
if (weights == "r3m") or (weights == "R3M"):
|
||||
return get_r3m(name=name, **kwargs)
|
||||
|
||||
func = getattr(torchvision.models, name)
|
||||
resnet = func(weights=weights, **kwargs)
|
||||
resnet.fc = torch.nn.Identity()
|
||||
return resnet
|
||||
|
||||
|
||||
def get_r3m(name, **kwargs):
|
||||
"""
|
||||
name: resnet18, resnet34, resnet50
|
||||
"""
|
||||
import r3m
|
||||
|
||||
r3m.device = "cpu"
|
||||
model = r3m.load_r3m(name)
|
||||
r3m_model = model.module
|
||||
resnet_model = r3m_model.convnet
|
||||
resnet_model = resnet_model.to("cpu")
|
||||
return resnet_model
|
||||
|
||||
|
||||
def dict_apply(
|
||||
x: Dict[str, torch.Tensor], func: Callable[[torch.Tensor], torch.Tensor]
|
||||
) -> Dict[str, torch.Tensor]:
|
||||
result = {}
|
||||
for key, value in x.items():
|
||||
if isinstance(value, dict):
|
||||
result[key] = dict_apply(value, func)
|
||||
else:
|
||||
result[key] = func(value)
|
||||
return result
|
||||
|
||||
|
||||
def replace_submodules(
|
||||
root_module: nn.Module, predicate: Callable[[nn.Module], bool], func: Callable[[nn.Module], nn.Module]
|
||||
) -> nn.Module:
|
||||
"""
|
||||
predicate: Return true if the module is to be replaced.
|
||||
func: Return new module to use.
|
||||
"""
|
||||
if predicate(root_module):
|
||||
return func(root_module)
|
||||
|
||||
bn_list = [k.split(".") for k, m in root_module.named_modules(remove_duplicate=True) if predicate(m)]
|
||||
for *parent, k in bn_list:
|
||||
parent_module = root_module
|
||||
if len(parent) > 0:
|
||||
parent_module = root_module.get_submodule(".".join(parent))
|
||||
if isinstance(parent_module, nn.Sequential):
|
||||
src_module = parent_module[int(k)]
|
||||
else:
|
||||
src_module = getattr(parent_module, k)
|
||||
tgt_module = func(src_module)
|
||||
if isinstance(parent_module, nn.Sequential):
|
||||
parent_module[int(k)] = tgt_module
|
||||
else:
|
||||
setattr(parent_module, k, tgt_module)
|
||||
# verify that all BN are replaced
|
||||
bn_list = [k.split(".") for k, m in root_module.named_modules(remove_duplicate=True) if predicate(m)]
|
||||
assert len(bn_list) == 0
|
||||
return root_module
|
||||
@@ -1,614 +0,0 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import math
|
||||
import numbers
|
||||
import os
|
||||
from functools import cached_property
|
||||
|
||||
import numcodecs
|
||||
import numpy as np
|
||||
import zarr
|
||||
|
||||
|
||||
def check_chunks_compatible(chunks: tuple, shape: tuple):
|
||||
assert len(shape) == len(chunks)
|
||||
for c in chunks:
|
||||
assert isinstance(c, numbers.Integral)
|
||||
assert c > 0
|
||||
|
||||
|
||||
def rechunk_recompress_array(group, name, chunks=None, chunk_length=None, compressor=None, tmp_key="_temp"):
|
||||
old_arr = group[name]
|
||||
if chunks is None:
|
||||
chunks = (chunk_length,) + old_arr.chunks[1:] if chunk_length is not None else old_arr.chunks
|
||||
check_chunks_compatible(chunks, old_arr.shape)
|
||||
|
||||
if compressor is None:
|
||||
compressor = old_arr.compressor
|
||||
|
||||
if (chunks == old_arr.chunks) and (compressor == old_arr.compressor):
|
||||
# no change
|
||||
return old_arr
|
||||
|
||||
# rechunk recompress
|
||||
group.move(name, tmp_key)
|
||||
old_arr = group[tmp_key]
|
||||
n_copied, n_skipped, n_bytes_copied = zarr.copy(
|
||||
source=old_arr,
|
||||
dest=group,
|
||||
name=name,
|
||||
chunks=chunks,
|
||||
compressor=compressor,
|
||||
)
|
||||
del group[tmp_key]
|
||||
arr = group[name]
|
||||
return arr
|
||||
|
||||
|
||||
def get_optimal_chunks(shape, dtype, target_chunk_bytes=2e6, max_chunk_length=None):
|
||||
"""
|
||||
Common shapes
|
||||
T,D
|
||||
T,N,D
|
||||
T,H,W,C
|
||||
T,N,H,W,C
|
||||
"""
|
||||
itemsize = np.dtype(dtype).itemsize
|
||||
# reversed
|
||||
rshape = list(shape[::-1])
|
||||
if max_chunk_length is not None:
|
||||
rshape[-1] = int(max_chunk_length)
|
||||
split_idx = len(shape) - 1
|
||||
for i in range(len(shape) - 1):
|
||||
this_chunk_bytes = itemsize * np.prod(rshape[:i])
|
||||
next_chunk_bytes = itemsize * np.prod(rshape[: i + 1])
|
||||
if this_chunk_bytes <= target_chunk_bytes and next_chunk_bytes > target_chunk_bytes:
|
||||
split_idx = i
|
||||
|
||||
rchunks = rshape[:split_idx]
|
||||
item_chunk_bytes = itemsize * np.prod(rshape[:split_idx])
|
||||
this_max_chunk_length = rshape[split_idx]
|
||||
next_chunk_length = min(this_max_chunk_length, math.ceil(target_chunk_bytes / item_chunk_bytes))
|
||||
rchunks.append(next_chunk_length)
|
||||
len_diff = len(shape) - len(rchunks)
|
||||
rchunks.extend([1] * len_diff)
|
||||
chunks = tuple(rchunks[::-1])
|
||||
# print(np.prod(chunks) * itemsize / target_chunk_bytes)
|
||||
return chunks
|
||||
|
||||
|
||||
class ReplayBuffer:
|
||||
"""
|
||||
Zarr-based temporal datastructure.
|
||||
Assumes first dimension to be time. Only chunk in time dimension.
|
||||
"""
|
||||
|
||||
def __init__(self, root: zarr.Group | dict[str, dict]):
|
||||
"""
|
||||
Dummy constructor. Use copy_from* and create_from* class methods instead.
|
||||
"""
|
||||
assert "data" in root
|
||||
assert "meta" in root
|
||||
assert "episode_ends" in root["meta"]
|
||||
for value in root["data"].values():
|
||||
assert value.shape[0] == root["meta"]["episode_ends"][-1]
|
||||
self.root = root
|
||||
|
||||
# ============= create constructors ===============
|
||||
@classmethod
|
||||
def create_empty_zarr(cls, storage=None, root=None):
|
||||
if root is None:
|
||||
if storage is None:
|
||||
storage = zarr.MemoryStore()
|
||||
root = zarr.group(store=storage)
|
||||
root.require_group("data", overwrite=False)
|
||||
meta = root.require_group("meta", overwrite=False)
|
||||
if "episode_ends" not in meta:
|
||||
meta.zeros("episode_ends", shape=(0,), dtype=np.int64, compressor=None, overwrite=False)
|
||||
return cls(root=root)
|
||||
|
||||
@classmethod
|
||||
def create_empty_numpy(cls):
|
||||
root = {"data": {}, "meta": {"episode_ends": np.zeros((0,), dtype=np.int64)}}
|
||||
return cls(root=root)
|
||||
|
||||
@classmethod
|
||||
def create_from_group(cls, group, **kwargs):
|
||||
if "data" not in group:
|
||||
# create from stratch
|
||||
buffer = cls.create_empty_zarr(root=group, **kwargs)
|
||||
else:
|
||||
# already exist
|
||||
buffer = cls(root=group, **kwargs)
|
||||
return buffer
|
||||
|
||||
@classmethod
|
||||
def create_from_path(cls, zarr_path, mode="r", **kwargs):
|
||||
"""
|
||||
Open a on-disk zarr directly (for dataset larger than memory).
|
||||
Slower.
|
||||
"""
|
||||
group = zarr.open(os.path.expanduser(zarr_path), mode)
|
||||
return cls.create_from_group(group, **kwargs)
|
||||
|
||||
# ============= copy constructors ===============
|
||||
@classmethod
|
||||
def copy_from_store(
|
||||
cls,
|
||||
src_store,
|
||||
store=None,
|
||||
keys=None,
|
||||
chunks: dict[str, tuple] | None = None,
|
||||
compressors: dict | str | numcodecs.abc.Codec | None = None,
|
||||
if_exists="replace",
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Load to memory.
|
||||
"""
|
||||
src_root = zarr.group(src_store)
|
||||
if chunks is None:
|
||||
chunks = {}
|
||||
if compressors is None:
|
||||
compressors = {}
|
||||
root = None
|
||||
if store is None:
|
||||
# numpy backend
|
||||
meta = {}
|
||||
for key, value in src_root["meta"].items():
|
||||
if len(value.shape) == 0:
|
||||
meta[key] = np.array(value)
|
||||
else:
|
||||
meta[key] = value[:]
|
||||
|
||||
if keys is None:
|
||||
keys = src_root["data"].keys()
|
||||
data = {}
|
||||
for key in keys:
|
||||
arr = src_root["data"][key]
|
||||
data[key] = arr[:]
|
||||
|
||||
root = {"meta": meta, "data": data}
|
||||
else:
|
||||
root = zarr.group(store=store)
|
||||
# copy without recompression
|
||||
n_copied, n_skipped, n_bytes_copied = zarr.copy_store(
|
||||
source=src_store, dest=store, source_path="/meta", dest_path="/meta", if_exists=if_exists
|
||||
)
|
||||
data_group = root.create_group("data", overwrite=True)
|
||||
if keys is None:
|
||||
keys = src_root["data"].keys()
|
||||
for key in keys:
|
||||
value = src_root["data"][key]
|
||||
cks = cls._resolve_array_chunks(chunks=chunks, key=key, array=value)
|
||||
cpr = cls._resolve_array_compressor(compressors=compressors, key=key, array=value)
|
||||
if cks == value.chunks and cpr == value.compressor:
|
||||
# copy without recompression
|
||||
this_path = "/data/" + key
|
||||
n_copied, n_skipped, n_bytes_copied = zarr.copy_store(
|
||||
source=src_store,
|
||||
dest=store,
|
||||
source_path=this_path,
|
||||
dest_path=this_path,
|
||||
if_exists=if_exists,
|
||||
)
|
||||
else:
|
||||
# copy with recompression
|
||||
n_copied, n_skipped, n_bytes_copied = zarr.copy(
|
||||
source=value,
|
||||
dest=data_group,
|
||||
name=key,
|
||||
chunks=cks,
|
||||
compressor=cpr,
|
||||
if_exists=if_exists,
|
||||
)
|
||||
buffer = cls(root=root)
|
||||
return buffer
|
||||
|
||||
@classmethod
|
||||
def copy_from_path(
|
||||
cls,
|
||||
zarr_path,
|
||||
backend=None,
|
||||
store=None,
|
||||
keys=None,
|
||||
chunks: dict[str, tuple] | None = None,
|
||||
compressors: dict | str | numcodecs.abc.Codec | None = None,
|
||||
if_exists="replace",
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Copy a on-disk zarr to in-memory compressed.
|
||||
Recommended
|
||||
"""
|
||||
if chunks is None:
|
||||
chunks = {}
|
||||
if compressors is None:
|
||||
compressors = {}
|
||||
if backend == "numpy":
|
||||
print("backend argument is deprecated!")
|
||||
store = None
|
||||
group = zarr.open(os.path.expanduser(zarr_path), "r")
|
||||
return cls.copy_from_store(
|
||||
src_store=group.store,
|
||||
store=store,
|
||||
keys=keys,
|
||||
chunks=chunks,
|
||||
compressors=compressors,
|
||||
if_exists=if_exists,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
# ============= save methods ===============
|
||||
def save_to_store(
|
||||
self,
|
||||
store,
|
||||
chunks: dict[str, tuple] | None = None,
|
||||
compressors: str | numcodecs.abc.Codec | dict | None = None,
|
||||
if_exists="replace",
|
||||
**kwargs,
|
||||
):
|
||||
root = zarr.group(store)
|
||||
if chunks is None:
|
||||
chunks = {}
|
||||
if compressors is None:
|
||||
compressors = {}
|
||||
if self.backend == "zarr":
|
||||
# recompression free copy
|
||||
n_copied, n_skipped, n_bytes_copied = zarr.copy_store(
|
||||
source=self.root.store,
|
||||
dest=store,
|
||||
source_path="/meta",
|
||||
dest_path="/meta",
|
||||
if_exists=if_exists,
|
||||
)
|
||||
else:
|
||||
meta_group = root.create_group("meta", overwrite=True)
|
||||
# save meta, no chunking
|
||||
for key, value in self.root["meta"].items():
|
||||
_ = meta_group.array(name=key, data=value, shape=value.shape, chunks=value.shape)
|
||||
|
||||
# save data, chunk
|
||||
data_group = root.create_group("data", overwrite=True)
|
||||
for key, value in self.root["data"].items():
|
||||
cks = self._resolve_array_chunks(chunks=chunks, key=key, array=value)
|
||||
cpr = self._resolve_array_compressor(compressors=compressors, key=key, array=value)
|
||||
if isinstance(value, zarr.Array):
|
||||
if cks == value.chunks and cpr == value.compressor:
|
||||
# copy without recompression
|
||||
this_path = "/data/" + key
|
||||
n_copied, n_skipped, n_bytes_copied = zarr.copy_store(
|
||||
source=self.root.store,
|
||||
dest=store,
|
||||
source_path=this_path,
|
||||
dest_path=this_path,
|
||||
if_exists=if_exists,
|
||||
)
|
||||
else:
|
||||
# copy with recompression
|
||||
n_copied, n_skipped, n_bytes_copied = zarr.copy(
|
||||
source=value,
|
||||
dest=data_group,
|
||||
name=key,
|
||||
chunks=cks,
|
||||
compressor=cpr,
|
||||
if_exists=if_exists,
|
||||
)
|
||||
else:
|
||||
# numpy
|
||||
_ = data_group.array(name=key, data=value, chunks=cks, compressor=cpr)
|
||||
return store
|
||||
|
||||
def save_to_path(
|
||||
self,
|
||||
zarr_path,
|
||||
chunks: dict[str, tuple] | None = None,
|
||||
compressors: str | numcodecs.abc.Codec | dict | None = None,
|
||||
if_exists="replace",
|
||||
**kwargs,
|
||||
):
|
||||
if chunks is None:
|
||||
chunks = {}
|
||||
if compressors is None:
|
||||
compressors = {}
|
||||
store = zarr.DirectoryStore(os.path.expanduser(zarr_path))
|
||||
return self.save_to_store(
|
||||
store, chunks=chunks, compressors=compressors, if_exists=if_exists, **kwargs
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def resolve_compressor(compressor="default"):
|
||||
if compressor == "default":
|
||||
compressor = numcodecs.Blosc(cname="lz4", clevel=5, shuffle=numcodecs.Blosc.NOSHUFFLE)
|
||||
elif compressor == "disk":
|
||||
compressor = numcodecs.Blosc("zstd", clevel=5, shuffle=numcodecs.Blosc.BITSHUFFLE)
|
||||
return compressor
|
||||
|
||||
@classmethod
|
||||
def _resolve_array_compressor(cls, compressors: dict | str | numcodecs.abc.Codec, key, array):
|
||||
# allows compressor to be explicitly set to None
|
||||
cpr = "nil"
|
||||
if isinstance(compressors, dict):
|
||||
if key in compressors:
|
||||
cpr = cls.resolve_compressor(compressors[key])
|
||||
elif isinstance(array, zarr.Array):
|
||||
cpr = array.compressor
|
||||
else:
|
||||
cpr = cls.resolve_compressor(compressors)
|
||||
# backup default
|
||||
if cpr == "nil":
|
||||
cpr = cls.resolve_compressor("default")
|
||||
return cpr
|
||||
|
||||
@classmethod
|
||||
def _resolve_array_chunks(cls, chunks: dict | tuple, key, array):
|
||||
cks = None
|
||||
if isinstance(chunks, dict):
|
||||
if key in chunks:
|
||||
cks = chunks[key]
|
||||
elif isinstance(array, zarr.Array):
|
||||
cks = array.chunks
|
||||
elif isinstance(chunks, tuple):
|
||||
cks = chunks
|
||||
else:
|
||||
raise TypeError(f"Unsupported chunks type {type(chunks)}")
|
||||
# backup default
|
||||
if cks is None:
|
||||
cks = get_optimal_chunks(shape=array.shape, dtype=array.dtype)
|
||||
# check
|
||||
check_chunks_compatible(chunks=cks, shape=array.shape)
|
||||
return cks
|
||||
|
||||
# ============= properties =================
|
||||
@cached_property
|
||||
def data(self):
|
||||
return self.root["data"]
|
||||
|
||||
@cached_property
|
||||
def meta(self):
|
||||
return self.root["meta"]
|
||||
|
||||
def update_meta(self, data):
|
||||
# sanitize data
|
||||
np_data = {}
|
||||
for key, value in data.items():
|
||||
if isinstance(value, np.ndarray):
|
||||
np_data[key] = value
|
||||
else:
|
||||
arr = np.array(value)
|
||||
if arr.dtype == object:
|
||||
raise TypeError(f"Invalid value type {type(value)}")
|
||||
np_data[key] = arr
|
||||
|
||||
meta_group = self.meta
|
||||
if self.backend == "zarr":
|
||||
for key, value in np_data.items():
|
||||
_ = meta_group.array(
|
||||
name=key, data=value, shape=value.shape, chunks=value.shape, overwrite=True
|
||||
)
|
||||
else:
|
||||
meta_group.update(np_data)
|
||||
|
||||
return meta_group
|
||||
|
||||
@property
|
||||
def episode_ends(self):
|
||||
return self.meta["episode_ends"]
|
||||
|
||||
def get_episode_idxs(self):
|
||||
import numba
|
||||
|
||||
numba.jit(nopython=True)
|
||||
|
||||
def _get_episode_idxs(episode_ends):
|
||||
result = np.zeros((episode_ends[-1],), dtype=np.int64)
|
||||
for i in range(len(episode_ends)):
|
||||
start = 0
|
||||
if i > 0:
|
||||
start = episode_ends[i - 1]
|
||||
end = episode_ends[i]
|
||||
for idx in range(start, end):
|
||||
result[idx] = i
|
||||
return result
|
||||
|
||||
return _get_episode_idxs(self.episode_ends)
|
||||
|
||||
@property
|
||||
def backend(self):
|
||||
backend = "numpy"
|
||||
if isinstance(self.root, zarr.Group):
|
||||
backend = "zarr"
|
||||
return backend
|
||||
|
||||
# =========== dict-like API ==============
|
||||
def __repr__(self) -> str:
|
||||
if self.backend == "zarr":
|
||||
return str(self.root.tree())
|
||||
else:
|
||||
return super().__repr__()
|
||||
|
||||
def keys(self):
|
||||
return self.data.keys()
|
||||
|
||||
def values(self):
|
||||
return self.data.values()
|
||||
|
||||
def items(self):
|
||||
return self.data.items()
|
||||
|
||||
def __getitem__(self, key):
|
||||
return self.data[key]
|
||||
|
||||
def __contains__(self, key):
|
||||
return key in self.data
|
||||
|
||||
# =========== our API ==============
|
||||
@property
|
||||
def n_steps(self):
|
||||
if len(self.episode_ends) == 0:
|
||||
return 0
|
||||
return self.episode_ends[-1]
|
||||
|
||||
@property
|
||||
def n_episodes(self):
|
||||
return len(self.episode_ends)
|
||||
|
||||
@property
|
||||
def chunk_size(self):
|
||||
if self.backend == "zarr":
|
||||
return next(iter(self.data.arrays()))[-1].chunks[0]
|
||||
return None
|
||||
|
||||
@property
|
||||
def episode_lengths(self):
|
||||
ends = self.episode_ends[:]
|
||||
ends = np.insert(ends, 0, 0)
|
||||
lengths = np.diff(ends)
|
||||
return lengths
|
||||
|
||||
def add_episode(
|
||||
self,
|
||||
data: dict[str, np.ndarray],
|
||||
chunks: dict[str, tuple] | None = None,
|
||||
compressors: str | numcodecs.abc.Codec | dict | None = None,
|
||||
):
|
||||
if chunks is None:
|
||||
chunks = {}
|
||||
if compressors is None:
|
||||
compressors = {}
|
||||
assert len(data) > 0
|
||||
is_zarr = self.backend == "zarr"
|
||||
|
||||
curr_len = self.n_steps
|
||||
episode_length = None
|
||||
for value in data.values():
|
||||
assert len(value.shape) >= 1
|
||||
if episode_length is None:
|
||||
episode_length = len(value)
|
||||
else:
|
||||
assert episode_length == len(value)
|
||||
new_len = curr_len + episode_length
|
||||
|
||||
for key, value in data.items():
|
||||
new_shape = (new_len,) + value.shape[1:]
|
||||
# create array
|
||||
if key not in self.data:
|
||||
if is_zarr:
|
||||
cks = self._resolve_array_chunks(chunks=chunks, key=key, array=value)
|
||||
cpr = self._resolve_array_compressor(compressors=compressors, key=key, array=value)
|
||||
arr = self.data.zeros(
|
||||
name=key, shape=new_shape, chunks=cks, dtype=value.dtype, compressor=cpr
|
||||
)
|
||||
else:
|
||||
# copy data to prevent modify
|
||||
arr = np.zeros(shape=new_shape, dtype=value.dtype)
|
||||
self.data[key] = arr
|
||||
else:
|
||||
arr = self.data[key]
|
||||
assert value.shape[1:] == arr.shape[1:]
|
||||
# same method for both zarr and numpy
|
||||
if is_zarr:
|
||||
arr.resize(new_shape)
|
||||
else:
|
||||
arr.resize(new_shape, refcheck=False)
|
||||
# copy data
|
||||
arr[-value.shape[0] :] = value
|
||||
|
||||
# append to episode ends
|
||||
episode_ends = self.episode_ends
|
||||
if is_zarr:
|
||||
episode_ends.resize(episode_ends.shape[0] + 1)
|
||||
else:
|
||||
episode_ends.resize(episode_ends.shape[0] + 1, refcheck=False)
|
||||
episode_ends[-1] = new_len
|
||||
|
||||
# rechunk
|
||||
if is_zarr and episode_ends.chunks[0] < episode_ends.shape[0]:
|
||||
rechunk_recompress_array(self.meta, "episode_ends", chunk_length=int(episode_ends.shape[0] * 1.5))
|
||||
|
||||
def drop_episode(self):
|
||||
is_zarr = self.backend == "zarr"
|
||||
episode_ends = self.episode_ends[:].copy()
|
||||
assert len(episode_ends) > 0
|
||||
start_idx = 0
|
||||
if len(episode_ends) > 1:
|
||||
start_idx = episode_ends[-2]
|
||||
for value in self.data.values():
|
||||
new_shape = (start_idx,) + value.shape[1:]
|
||||
if is_zarr:
|
||||
value.resize(new_shape)
|
||||
else:
|
||||
value.resize(new_shape, refcheck=False)
|
||||
if is_zarr:
|
||||
self.episode_ends.resize(len(episode_ends) - 1)
|
||||
else:
|
||||
self.episode_ends.resize(len(episode_ends) - 1, refcheck=False)
|
||||
|
||||
def pop_episode(self):
|
||||
assert self.n_episodes > 0
|
||||
episode = self.get_episode(self.n_episodes - 1, copy=True)
|
||||
self.drop_episode()
|
||||
return episode
|
||||
|
||||
def extend(self, data):
|
||||
self.add_episode(data)
|
||||
|
||||
def get_episode(self, idx, copy=False):
|
||||
idx = list(range(len(self.episode_ends)))[idx]
|
||||
start_idx = 0
|
||||
if idx > 0:
|
||||
start_idx = self.episode_ends[idx - 1]
|
||||
end_idx = self.episode_ends[idx]
|
||||
result = self.get_steps_slice(start_idx, end_idx, copy=copy)
|
||||
return result
|
||||
|
||||
def get_episode_slice(self, idx):
|
||||
start_idx = 0
|
||||
if idx > 0:
|
||||
start_idx = self.episode_ends[idx - 1]
|
||||
end_idx = self.episode_ends[idx]
|
||||
return slice(start_idx, end_idx)
|
||||
|
||||
def get_steps_slice(self, start, stop, step=None, copy=False):
|
||||
_slice = slice(start, stop, step)
|
||||
|
||||
result = {}
|
||||
for key, value in self.data.items():
|
||||
x = value[_slice]
|
||||
if copy and isinstance(value, np.ndarray):
|
||||
x = x.copy()
|
||||
result[key] = x
|
||||
return result
|
||||
|
||||
# =========== chunking =============
|
||||
def get_chunks(self) -> dict:
|
||||
assert self.backend == "zarr"
|
||||
chunks = {}
|
||||
for key, value in self.data.items():
|
||||
chunks[key] = value.chunks
|
||||
return chunks
|
||||
|
||||
def set_chunks(self, chunks: dict):
|
||||
assert self.backend == "zarr"
|
||||
for key, value in chunks.items():
|
||||
if key in self.data:
|
||||
arr = self.data[key]
|
||||
if value != arr.chunks:
|
||||
check_chunks_compatible(chunks=value, shape=arr.shape)
|
||||
rechunk_recompress_array(self.data, key, chunks=value)
|
||||
|
||||
def get_compressors(self) -> dict:
|
||||
assert self.backend == "zarr"
|
||||
compressors = {}
|
||||
for key, value in self.data.items():
|
||||
compressors[key] = value.compressor
|
||||
return compressors
|
||||
|
||||
def set_compressors(self, compressors: dict):
|
||||
assert self.backend == "zarr"
|
||||
for key, value in compressors.items():
|
||||
if key in self.data:
|
||||
arr = self.data[key]
|
||||
compressor = self.resolve_compressor(value)
|
||||
if compressor != arr.compressor:
|
||||
rechunk_recompress_array(self.data, key, compressor=compressor)
|
||||
@@ -1,6 +1,6 @@
|
||||
def make_policy(cfg):
|
||||
if cfg.policy.name == "tdmpc":
|
||||
from lerobot.common.policies.tdmpc.policy import TDMPC
|
||||
from lerobot.common.policies.tdmpc import TDMPC
|
||||
|
||||
policy = TDMPC(cfg.policy, cfg.device)
|
||||
elif cfg.policy.name == "diffusion":
|
||||
@@ -8,7 +8,6 @@ def make_policy(cfg):
|
||||
|
||||
policy = DiffusionPolicy(
|
||||
cfg=cfg.policy,
|
||||
cfg_device=cfg.device,
|
||||
cfg_noise_scheduler=cfg.noise_scheduler,
|
||||
cfg_rgb_model=cfg.rgb_model,
|
||||
cfg_obs_encoder=cfg.obs_encoder,
|
||||
@@ -17,12 +16,6 @@ def make_policy(cfg):
|
||||
n_action_steps=cfg.n_action_steps + cfg.n_latency_steps,
|
||||
**cfg.policy,
|
||||
)
|
||||
elif cfg.policy.name == "act":
|
||||
from lerobot.common.policies.act.policy import ActionChunkingTransformerPolicy
|
||||
|
||||
policy = ActionChunkingTransformerPolicy(
|
||||
cfg.policy, cfg.device, n_action_steps=cfg.n_action_steps + cfg.n_latency_steps
|
||||
)
|
||||
else:
|
||||
raise ValueError(cfg.policy.name)
|
||||
|
||||
|
||||
@@ -8,7 +8,7 @@ import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
import lerobot.common.policies.tdmpc.helper as h
|
||||
import lerobot.common.policies.tdmpc_helper as h
|
||||
|
||||
FIRST_FRAME = 0
|
||||
|
||||
@@ -21,8 +21,6 @@ save_buffer: false
|
||||
train_steps: ???
|
||||
fps: ???
|
||||
|
||||
offline_prioritized_sampler: true
|
||||
|
||||
n_action_steps: ???
|
||||
env: ???
|
||||
|
||||
@@ -31,4 +29,5 @@ policy: ???
|
||||
wandb:
|
||||
enable: true
|
||||
project: lerobot
|
||||
entity: rcadene # insert your own
|
||||
notes: ""
|
||||
|
||||
25
lerobot/configs/env/aloha.yaml
vendored
25
lerobot/configs/env/aloha.yaml
vendored
@@ -1,25 +0,0 @@
|
||||
# @package _global_
|
||||
|
||||
eval_episodes: 50
|
||||
eval_freq: 7500
|
||||
save_freq: 75000
|
||||
log_freq: 250
|
||||
# TODO: same as simxarm, need to adjust
|
||||
offline_steps: 25000
|
||||
online_steps: 25000
|
||||
|
||||
fps: 50
|
||||
|
||||
env:
|
||||
name: aloha
|
||||
task: sim_insertion_human
|
||||
from_pixels: True
|
||||
pixels_only: False
|
||||
image_size: [3, 480, 640]
|
||||
action_repeat: 1
|
||||
episode_length: 400
|
||||
fps: ${fps}
|
||||
|
||||
policy:
|
||||
state_dim: 14
|
||||
action_dim: 14
|
||||
@@ -1,58 +0,0 @@
|
||||
# @package _global_
|
||||
|
||||
offline_steps: 1344000
|
||||
online_steps: 0
|
||||
|
||||
eval_episodes: 1
|
||||
eval_freq: 10000
|
||||
save_freq: 100000
|
||||
log_freq: 250
|
||||
|
||||
horizon: 100
|
||||
n_obs_steps: 1
|
||||
n_latency_steps: 0
|
||||
# when temporal_agg=False, n_action_steps=horizon
|
||||
n_action_steps: ${horizon}
|
||||
|
||||
policy:
|
||||
name: act
|
||||
|
||||
pretrained_model_path:
|
||||
|
||||
lr: 1e-5
|
||||
lr_backbone: 1e-5
|
||||
weight_decay: 1e-4
|
||||
grad_clip_norm: 10
|
||||
backbone: resnet18
|
||||
num_queries: ${horizon} # chunk_size
|
||||
horizon: ${horizon} # chunk_size
|
||||
kl_weight: 10
|
||||
hidden_dim: 512
|
||||
dim_feedforward: 3200
|
||||
enc_layers: 4
|
||||
dec_layers: 7
|
||||
nheads: 8
|
||||
#camera_names: [top, front_close, left_pillar, right_pillar]
|
||||
camera_names: [top]
|
||||
position_embedding: sine
|
||||
masks: false
|
||||
dilation: false
|
||||
dropout: 0.1
|
||||
pre_norm: false
|
||||
|
||||
vae: true
|
||||
|
||||
batch_size: 8
|
||||
|
||||
per_alpha: 0.6
|
||||
per_beta: 0.4
|
||||
|
||||
balanced_sampling: false
|
||||
utd: 1
|
||||
|
||||
n_obs_steps: ${n_obs_steps}
|
||||
|
||||
temporal_agg: false
|
||||
|
||||
state_dim: ???
|
||||
action_dim: ???
|
||||
@@ -29,8 +29,6 @@ log_freq: 250
|
||||
offline_steps: 1344000
|
||||
online_steps: 0
|
||||
|
||||
offline_prioritized_sampler: true
|
||||
|
||||
policy:
|
||||
name: diffusion
|
||||
|
||||
@@ -74,6 +72,7 @@ noise_scheduler:
|
||||
prediction_type: epsilon # or sample
|
||||
|
||||
obs_encoder:
|
||||
# _target_: diffusion_policy.model.vision.multi_image_obs_encoder.MultiImageObsEncoder
|
||||
shape_meta: ${shape_meta}
|
||||
# resize_shape: null
|
||||
# crop_shape: [76, 76]
|
||||
@@ -84,12 +83,12 @@ obs_encoder:
|
||||
imagenet_norm: True
|
||||
|
||||
rgb_model:
|
||||
_target_: lerobot.common.policies.diffusion.pytorch_utils.get_resnet
|
||||
_target_: diffusion_policy.model.vision.model_getter.get_resnet
|
||||
name: resnet18
|
||||
weights: null
|
||||
|
||||
ema:
|
||||
_target_: lerobot.common.policies.diffusion.model.ema_model.EMAModel
|
||||
_target_: diffusion_policy.model.diffusion.ema_model.EMAModel
|
||||
update_after_step: 0
|
||||
inv_gamma: 1.0
|
||||
power: 0.75
|
||||
|
||||
22
lerobot/scripts/download.py
Normal file
22
lerobot/scripts/download.py
Normal file
@@ -0,0 +1,22 @@
|
||||
# TODO(rcadene): obsolete remove
|
||||
import os
|
||||
import zipfile
|
||||
|
||||
import gdown
|
||||
|
||||
|
||||
def download():
|
||||
url = "https://drive.google.com/uc?id=1nhxpykGtPDhmQKm-_B8zBSywVRdgeVya"
|
||||
download_path = "data.zip"
|
||||
gdown.download(url, download_path, quiet=False)
|
||||
print("Extracting...")
|
||||
with zipfile.ZipFile(download_path, "r") as zip_f:
|
||||
for member in zip_f.namelist():
|
||||
if member.startswith("data/xarm") and member.endswith(".pkl"):
|
||||
print(member)
|
||||
zip_f.extract(member=member)
|
||||
os.remove(download_path)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
download()
|
||||
@@ -9,13 +9,13 @@ import numpy as np
|
||||
import torch
|
||||
import tqdm
|
||||
from tensordict.nn import TensorDictModule
|
||||
from termcolor import colored
|
||||
from torchrl.envs import EnvBase
|
||||
|
||||
from lerobot.common.datasets.factory import make_offline_buffer
|
||||
from lerobot.common.envs.factory import make_env
|
||||
from lerobot.common.logger import log_output_dir
|
||||
from lerobot.common.policies.factory import make_policy
|
||||
from lerobot.common.utils import init_logging, set_seed
|
||||
from lerobot.common.utils import set_seed
|
||||
|
||||
|
||||
def write_video(video_path, stacked_frames, fps):
|
||||
@@ -38,18 +38,27 @@ def eval_policy(
|
||||
successes = []
|
||||
threads = []
|
||||
for i in tqdm.tqdm(range(num_episodes)):
|
||||
tensordict = env.reset()
|
||||
|
||||
ep_frames = []
|
||||
|
||||
if save_video or (return_first_video and i == 0):
|
||||
|
||||
def render_frame(env):
|
||||
def rendering_callback(env, td=None):
|
||||
ep_frames.append(env.render()) # noqa: B023
|
||||
|
||||
env.register_rendering_hook(render_frame)
|
||||
# render first frame before rollout
|
||||
rendering_callback(env)
|
||||
else:
|
||||
rendering_callback = None
|
||||
|
||||
with torch.inference_mode():
|
||||
rollout = env.rollout(
|
||||
max_steps=max_steps,
|
||||
policy=policy,
|
||||
callback=rendering_callback,
|
||||
auto_reset=False,
|
||||
tensordict=tensordict,
|
||||
auto_cast_to_device=True,
|
||||
)
|
||||
# print(", ".join([f"{x:.3f}" for x in rollout["next", "reward"][:,0].tolist()]))
|
||||
@@ -76,8 +85,6 @@ def eval_policy(
|
||||
if return_first_video and i == 0:
|
||||
first_video = stacked_frames.transpose(0, 3, 1, 2)
|
||||
|
||||
env.reset_rendering_hooks()
|
||||
|
||||
for thread in threads:
|
||||
thread.join()
|
||||
|
||||
@@ -102,24 +109,16 @@ def eval(cfg: dict, out_dir=None):
|
||||
if out_dir is None:
|
||||
raise NotImplementedError()
|
||||
|
||||
init_logging()
|
||||
|
||||
if cfg.device == "cuda":
|
||||
assert torch.cuda.is_available()
|
||||
else:
|
||||
logging.warning("Using CPU, this will be slow.")
|
||||
|
||||
assert torch.cuda.is_available()
|
||||
torch.backends.cudnn.benchmark = True
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
set_seed(cfg.seed)
|
||||
|
||||
log_output_dir(out_dir)
|
||||
print(colored("Log dir:", "yellow", attrs=["bold"]), out_dir)
|
||||
|
||||
logging.info("make_offline_buffer")
|
||||
offline_buffer = make_offline_buffer(cfg)
|
||||
|
||||
logging.info("make_env")
|
||||
env = make_env(cfg, transform=offline_buffer.transform)
|
||||
env = make_env(cfg, transform=offline_buffer._transform)
|
||||
|
||||
if cfg.policy.pretrained_model_path:
|
||||
policy = make_policy(cfg)
|
||||
@@ -143,8 +142,6 @@ def eval(cfg: dict, out_dir=None):
|
||||
)
|
||||
print(metrics)
|
||||
|
||||
logging.info("End of eval")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
eval_cli()
|
||||
|
||||
@@ -1,16 +1,16 @@
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import hydra
|
||||
import numpy as np
|
||||
import torch
|
||||
from tensordict.nn import TensorDictModule
|
||||
from termcolor import colored
|
||||
from torchrl.data import LazyMemmapStorage, TensorDictReplayBuffer
|
||||
from torchrl.data.replay_buffers import PrioritizedSliceSampler
|
||||
|
||||
from lerobot.common.datasets.factory import make_offline_buffer
|
||||
from lerobot.common.envs.factory import make_env
|
||||
from lerobot.common.logger import Logger, log_output_dir
|
||||
from lerobot.common.logger import Logger
|
||||
from lerobot.common.policies.factory import make_policy
|
||||
from lerobot.common.utils import format_big_number, init_logging, set_seed
|
||||
from lerobot.scripts.eval import eval_policy
|
||||
@@ -143,11 +143,11 @@ def train(cfg: dict, out_dir=None, job_name=None):
|
||||
online_buffer = TensorDictReplayBuffer(
|
||||
storage=LazyMemmapStorage(100_000),
|
||||
sampler=online_sampler,
|
||||
transform=offline_buffer.transform,
|
||||
transform=offline_buffer._transform,
|
||||
)
|
||||
|
||||
logging.info("make_env")
|
||||
env = make_env(cfg, transform=offline_buffer.transform)
|
||||
env = make_env(cfg, transform=offline_buffer._transform)
|
||||
|
||||
logging.info("make_policy")
|
||||
policy = make_policy(cfg)
|
||||
@@ -164,7 +164,7 @@ def train(cfg: dict, out_dir=None, job_name=None):
|
||||
# log metrics to terminal and wandb
|
||||
logger = Logger(out_dir, job_name, cfg)
|
||||
|
||||
log_output_dir(out_dir)
|
||||
logging.info(colored("Work dir:", "yellow", attrs=["bold"]) + f" {out_dir}")
|
||||
logging.info(f"{cfg.env.task=}")
|
||||
logging.info(f"{cfg.offline_steps=} ({format_big_number(cfg.offline_steps)})")
|
||||
logging.info(f"{cfg.online_steps=}")
|
||||
@@ -174,7 +174,7 @@ def train(cfg: dict, out_dir=None, job_name=None):
|
||||
logging.info(f"{num_learnable_params=} ({format_big_number(num_learnable_params)})")
|
||||
logging.info(f"{num_total_params=} ({format_big_number(num_total_params)})")
|
||||
|
||||
step = 0 # number of policy update (forward + backward + optim)
|
||||
step = 0 # number of policy update
|
||||
|
||||
is_offline = True
|
||||
for offline_step in range(cfg.offline_steps):
|
||||
@@ -193,8 +193,6 @@ def train(cfg: dict, out_dir=None, job_name=None):
|
||||
num_episodes=cfg.eval_episodes,
|
||||
max_steps=cfg.env.episode_length // cfg.n_action_steps,
|
||||
return_first_video=True,
|
||||
video_dir=Path(out_dir) / "eval",
|
||||
save_video=True,
|
||||
)
|
||||
log_eval_info(logger, eval_info, step, cfg, offline_buffer, is_offline)
|
||||
if cfg.wandb.enable:
|
||||
@@ -214,6 +212,7 @@ def train(cfg: dict, out_dir=None, job_name=None):
|
||||
for env_step in range(cfg.online_steps):
|
||||
if env_step == 0:
|
||||
logging.info("Start online training by interacting with environment")
|
||||
# TODO: use SyncDataCollector for that?
|
||||
# TODO: add configurable number of rollout? (default=1)
|
||||
with torch.no_grad():
|
||||
rollout = env.rollout(
|
||||
@@ -269,8 +268,6 @@ def train(cfg: dict, out_dir=None, job_name=None):
|
||||
step += 1
|
||||
online_step += 1
|
||||
|
||||
logging.info("End of training")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
train_cli()
|
||||
|
||||
@@ -1,20 +1,13 @@
|
||||
import logging
|
||||
import threading
|
||||
from pathlib import Path
|
||||
|
||||
import einops
|
||||
import hydra
|
||||
import imageio
|
||||
import torch
|
||||
from torchrl.data.replay_buffers import (
|
||||
SamplerWithoutReplacement,
|
||||
)
|
||||
from torchrl.data.replay_buffers import SliceSamplerWithoutReplacement
|
||||
|
||||
from lerobot.common.datasets.factory import make_offline_buffer
|
||||
from lerobot.common.logger import log_output_dir
|
||||
from lerobot.common.utils import init_logging
|
||||
|
||||
NUM_EPISODES_TO_RENDER = 50
|
||||
NUM_EPISODES_TO_RENDER = 10
|
||||
MAX_NUM_STEPS = 1000
|
||||
FIRST_FRAME = 0
|
||||
|
||||
@@ -24,88 +17,45 @@ def visualize_dataset_cli(cfg: dict):
|
||||
visualize_dataset(cfg, out_dir=hydra.core.hydra_config.HydraConfig.get().runtime.output_dir)
|
||||
|
||||
|
||||
def cat_and_write_video(video_path, frames, fps):
|
||||
frames = torch.cat(frames)
|
||||
assert frames.dtype == torch.uint8
|
||||
frames = einops.rearrange(frames, "b c h w -> b h w c").numpy()
|
||||
imageio.mimsave(video_path, frames, fps=fps)
|
||||
|
||||
|
||||
def visualize_dataset(cfg: dict, out_dir=None):
|
||||
if out_dir is None:
|
||||
raise NotImplementedError()
|
||||
|
||||
init_logging()
|
||||
log_output_dir(out_dir)
|
||||
|
||||
# we expect frames of each episode to be stored next to each others sequentially
|
||||
sampler = SamplerWithoutReplacement(
|
||||
sampler = SliceSamplerWithoutReplacement(
|
||||
num_slices=1,
|
||||
strict_length=False,
|
||||
shuffle=False,
|
||||
)
|
||||
|
||||
logging.info("make_offline_buffer")
|
||||
offline_buffer = make_offline_buffer(
|
||||
cfg, overwrite_sampler=sampler, normalize=False, overwrite_batch_size=1, overwrite_prefetch=12
|
||||
)
|
||||
offline_buffer = make_offline_buffer(cfg, sampler)
|
||||
|
||||
logging.info("Start rendering episodes from offline buffer")
|
||||
for _ in range(NUM_EPISODES_TO_RENDER):
|
||||
episode = offline_buffer.sample(MAX_NUM_STEPS)
|
||||
|
||||
threads = []
|
||||
frames = {}
|
||||
current_ep_idx = 0
|
||||
logging.info(f"Visualizing episode {current_ep_idx}")
|
||||
for _ in range(MAX_NUM_STEPS * NUM_EPISODES_TO_RENDER):
|
||||
# TODO(rcadene): make it work with bsize > 1
|
||||
ep_td = offline_buffer.sample(1)
|
||||
ep_idx = ep_td["episode"][FIRST_FRAME].item()
|
||||
ep_idx = episode["episode"][FIRST_FRAME].item()
|
||||
ep_frames = torch.cat(
|
||||
[
|
||||
episode["observation"]["image"][FIRST_FRAME][None, ...],
|
||||
episode["next", "observation"]["image"],
|
||||
],
|
||||
dim=0,
|
||||
)
|
||||
|
||||
# TODO(rcaene): modify offline_buffer._sampler._sample_list or sampler to randomly sample an episode, but sequentially sample frames
|
||||
no_more_frames = offline_buffer._sampler._sample_list.numel() == 0
|
||||
new_episode = ep_idx != current_ep_idx
|
||||
video_dir = Path(out_dir) / "visualize_dataset"
|
||||
video_dir.mkdir(parents=True, exist_ok=True)
|
||||
# TODO(rcadene): make fps configurable
|
||||
video_path = video_dir / f"episode_{ep_idx}.mp4"
|
||||
|
||||
if new_episode:
|
||||
logging.info(f"Visualizing episode {current_ep_idx}")
|
||||
assert ep_frames.min().item() >= 0
|
||||
assert ep_frames.max().item() > 1, "Not mendatory, but sanity check"
|
||||
assert ep_frames.max().item() <= 255
|
||||
ep_frames = ep_frames.type(torch.uint8)
|
||||
imageio.mimsave(video_path, ep_frames.numpy().transpose(0, 2, 3, 1), fps=cfg.fps)
|
||||
|
||||
for im_key in offline_buffer.image_keys:
|
||||
if new_episode or no_more_frames:
|
||||
# append last observed frames (the ones after last action taken)
|
||||
frames[im_key].append(ep_td[("next", *im_key)])
|
||||
|
||||
video_dir = Path(out_dir) / "visualize_dataset"
|
||||
video_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
if len(offline_buffer.image_keys) > 1:
|
||||
camera = im_key[-1]
|
||||
video_path = video_dir / f"episode_{current_ep_idx}_{camera}.mp4"
|
||||
else:
|
||||
video_path = video_dir / f"episode_{current_ep_idx}.mp4"
|
||||
|
||||
thread = threading.Thread(
|
||||
target=cat_and_write_video,
|
||||
args=(str(video_path), frames[im_key], cfg.fps),
|
||||
)
|
||||
thread.start()
|
||||
threads.append(thread)
|
||||
|
||||
current_ep_idx = ep_idx
|
||||
|
||||
# reset list of frames
|
||||
del frames[im_key]
|
||||
|
||||
# append current cameras images to list of frames
|
||||
if im_key not in frames:
|
||||
frames[im_key] = []
|
||||
frames[im_key].append(ep_td[im_key])
|
||||
|
||||
if no_more_frames:
|
||||
logging.info("Ran out of frames")
|
||||
# ran out of episodes
|
||||
if offline_buffer._sampler._sample_list.numel() == 0:
|
||||
break
|
||||
|
||||
for thread in threads:
|
||||
thread.join()
|
||||
|
||||
logging.info("End of visualize_dataset")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
visualize_dataset_cli()
|
||||
|
||||
1006
poetry.lock
generated
1006
poetry.lock
generated
File diff suppressed because it is too large
Load Diff
@@ -14,11 +14,10 @@ classifiers=[
|
||||
"Intended Audience :: Developers",
|
||||
"Topic :: Software Development :: Build Tools",
|
||||
"License :: OSI Approved :: MIT License",
|
||||
"Programming Language :: Python :: 3.10",
|
||||
"Programming Language :: Python :: 3.8",
|
||||
]
|
||||
packages = [{include = "lerobot"}]
|
||||
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = "^3.10"
|
||||
cython = "^3.0.8"
|
||||
@@ -42,22 +41,19 @@ mpmath = "^1.3.0"
|
||||
torch = "^2.2.1"
|
||||
tensordict = {git = "https://github.com/pytorch/tensordict"}
|
||||
torchrl = {git = "https://github.com/pytorch/rl", rev = "13bef426dcfa5887c6e5034a6e9697993fa92c37"}
|
||||
mujoco = "2.3.7"
|
||||
mujoco = "^3.1.2"
|
||||
mujoco-py = "^2.1.2.14"
|
||||
gym = "^0.26.2"
|
||||
opencv-python = "^4.9.0.80"
|
||||
diffusers = "^0.26.3"
|
||||
torchvision = "^0.17.1"
|
||||
h5py = "^3.10.0"
|
||||
dm-control = "1.0.14"
|
||||
huggingface-hub = {extras = ["hf-transfer"], version = "^0.21.4"}
|
||||
diffusion-policy = {git = "https://github.com/real-stanford/diffusion_policy"}
|
||||
|
||||
|
||||
[tool.poetry.group.dev.dependencies]
|
||||
pre-commit = "^3.6.2"
|
||||
debugpy = "^1.8.1"
|
||||
pytest = "^8.1.0"
|
||||
|
||||
[build-system]
|
||||
requires = ["poetry-core"]
|
||||
build-backend = "poetry.core.masonry.api"
|
||||
|
||||
[tool.ruff]
|
||||
line-length = 110
|
||||
@@ -86,15 +82,5 @@ exclude = [
|
||||
"venv",
|
||||
]
|
||||
|
||||
|
||||
[tool.ruff.lint]
|
||||
select = ["E4", "E7", "E9", "F", "I", "N", "B", "C4", "SIM"]
|
||||
|
||||
|
||||
[tool.poetry-dynamic-versioning]
|
||||
enable = true
|
||||
|
||||
|
||||
[build-system]
|
||||
requires = ["poetry-core>=1.0.0", "poetry-dynamic-versioning>=1.0.0,<2.0.0"]
|
||||
build-backend = "poetry_dynamic_versioning.backend"
|
||||
|
||||
21
sbatch.sh
21
sbatch.sh
@@ -1,23 +1,24 @@
|
||||
#!/bin/bash
|
||||
#SBATCH --nodes=1 # total number of nodes (N to be defined)
|
||||
#SBATCH --ntasks-per-node=1 # number of tasks per node (here 8 tasks, or 1 task per GPU)
|
||||
#SBATCH --qos=normal # number of GPUs reserved per node (here 8, or all the GPUs)
|
||||
#SBATCH --partition=hopper-prod
|
||||
#SBATCH --gres=gpu:1 # number of GPUs reserved per node (here 8, or all the GPUs)
|
||||
#SBATCH --cpus-per-task=8 # number of cores per task (8x8 = 64 cores, or all the cores)
|
||||
#SBATCH --time=2-00:00:00
|
||||
#SBATCH --output=/home/rcadene/slurm/%j.out
|
||||
#SBATCH --error=/home/rcadene/slurm/%j.err
|
||||
#SBATCH --qos=medium
|
||||
#SBATCH --mail-user=re.cadene@gmail.com
|
||||
#SBATCH --cpus-per-task=12 # number of cores per task
|
||||
#SBATCH --mem-per-cpu=11G
|
||||
#SBATCH --time=12:00:00
|
||||
#SBATCH --output=/admin/home/remi_cadene/slurm/%j.out
|
||||
#SBATCH --error=/admin/home/remi_cadene/slurm/%j.err
|
||||
#SBATCH --mail-user=remi_cadene@huggingface.co
|
||||
#SBATCH --mail-type=ALL
|
||||
|
||||
CMD=$@
|
||||
echo "command: $CMD"
|
||||
|
||||
apptainer exec --nv \
|
||||
~/apptainer/nvidia_cuda:12.2.2-devel-ubuntu22.04.sif $SHELL
|
||||
# apptainer exec --nv \
|
||||
# ~/apptainer/nvidia_cuda:12.2.2-devel-ubuntu22.04.sif $SHELL
|
||||
|
||||
source ~/.bashrc
|
||||
#source ~/.bashrc
|
||||
#conda activate fowm
|
||||
conda activate lerobot
|
||||
|
||||
srun $CMD
|
||||
|
||||
@@ -1,17 +0,0 @@
|
||||
#!/bin/bash
|
||||
#SBATCH --nodes=1 # total number of nodes (N to be defined)
|
||||
#SBATCH --ntasks-per-node=1 # number of tasks per node (here 8 tasks, or 1 task per GPU)
|
||||
#SBATCH --qos=normal # number of GPUs reserved per node (here 8, or all the GPUs)
|
||||
#SBATCH --partition=hopper-prod
|
||||
#SBATCH --gres=gpu:1 # number of GPUs reserved per node (here 8, or all the GPUs)
|
||||
#SBATCH --cpus-per-task=12 # number of cores per task
|
||||
#SBATCH --mem-per-cpu=11G
|
||||
#SBATCH --time=12:00:00
|
||||
#SBATCH --output=/admin/home/remi_cadene/slurm/%j.out
|
||||
#SBATCH --error=/admin/home/remi_cadene/slurm/%j.err
|
||||
#SBATCH --mail-user=remi_cadene@huggingface.co
|
||||
#SBATCH --mail-type=ALL
|
||||
|
||||
CMD=$@
|
||||
echo "command: $CMD"
|
||||
srun $CMD
|
||||
159
setup.py
Normal file
159
setup.py
Normal file
@@ -0,0 +1,159 @@
|
||||
"""A setuptools based setup module.
|
||||
|
||||
See:
|
||||
https://packaging.python.org/en/latest/distributing.html
|
||||
https://github.com/pypa/sampleproject
|
||||
"""
|
||||
|
||||
# To use a consistent encoding
|
||||
from codecs import open
|
||||
from os import path
|
||||
|
||||
# Always prefer setuptools over distutils
|
||||
from setuptools import find_packages, setup
|
||||
|
||||
here = path.abspath(path.dirname(__file__))
|
||||
|
||||
# Get the long description from the README file
|
||||
with open(path.join(here, "README.md"), encoding="utf-8") as f:
|
||||
long_description = f.read()
|
||||
|
||||
# Arguments marked as "Required" below must be included for upload to PyPI.
|
||||
# Fields marked as "Optional" may be commented out.
|
||||
|
||||
# https://stackoverflow.com/questions/458550/standard-way-to-embed-version-into-python-package/16084844#16084844
|
||||
exec(open(path.join(here, "lerobot", "__version__.py")).read())
|
||||
setup(
|
||||
# This is the name of your project. The first time you publish this
|
||||
# package, this name will be registered for you. It will determine how
|
||||
# users can install this project, e.g.:
|
||||
#
|
||||
# $ pip install sampleproject
|
||||
#
|
||||
# And where it will live on PyPI: https://pypi.org/project/sampleproject/
|
||||
#
|
||||
# There are some restrictions on what makes a valid project name
|
||||
# specification here:
|
||||
# https://packaging.python.org/specifications/core-metadata/#name
|
||||
name="lerobot", # Required
|
||||
# Versions should comply with PEP 440:
|
||||
# https://www.python.org/dev/peps/pep-0440/
|
||||
#
|
||||
# For a discussion on single-sourcing the version across setup.py and the
|
||||
# project code, see
|
||||
# https://packaging.python.org/en/latest/single_source_version.html
|
||||
version=__version__, # noqa: F821 # Required
|
||||
# This is a one-line description or tagline of what your project does. This
|
||||
# corresponds to the "Summary" metadata field:
|
||||
# https://packaging.python.org/specifications/core-metadata/#summary
|
||||
description="Le robot is learning", # Required
|
||||
# This is an optional longer description of your project that represents
|
||||
# the body of text which users will see when they visit PyPI.
|
||||
#
|
||||
# Often, this is the same as your README, so you can just read it in from
|
||||
# that file directly (as we have already done above)
|
||||
#
|
||||
# This field corresponds to the "Description" metadata field:
|
||||
# https://packaging.python.org/specifications/core-metadata/#description-optional
|
||||
long_description=long_description, # Optional
|
||||
# This should be a valid link to your project's main homepage.
|
||||
#
|
||||
# This field corresponds to the "Home-Page" metadata field:
|
||||
# https://packaging.python.org/specifications/core-metadata/#home-page-optional
|
||||
url="https://github.com/cadene/lerobot", # Optional
|
||||
# This should be your name or the name of the organization which owns the
|
||||
# project.
|
||||
author="Remi Cadene", # Optional
|
||||
# This should be a valid email address corresponding to the author listed
|
||||
# above.
|
||||
author_email="re.cadene@gmail.com", # Optional
|
||||
# Classifiers help users find your project by categorizing it.
|
||||
#
|
||||
# For a list of valid classifiers, see
|
||||
# https://pypi.python.org/pypi?%3Aaction=list_classifiers
|
||||
classifiers=[ # Optional
|
||||
# How mature is this project? Common values are
|
||||
# 3 - Alpha
|
||||
# 4 - Beta
|
||||
# 5 - Production/Stable
|
||||
"Development Status :: 3 - Alpha",
|
||||
# Indicate who your project is intended for
|
||||
"Intended Audience :: Developers",
|
||||
"Topic :: Software Development :: Build Tools",
|
||||
# Pick your license as you wish
|
||||
"License :: OSI Approved :: MIT License",
|
||||
# Specify the Python versions you support here. In particular, ensure
|
||||
# that you indicate whether you support Python 2, Python 3 or both.
|
||||
"Programming Language :: Python :: 3.7",
|
||||
],
|
||||
# This field adds keywords for your project which will appear on the
|
||||
# project page. What does your project relate to?
|
||||
#
|
||||
# Note that this is a string of words separated by whitespace, not a list.
|
||||
keywords="pytorch framework bootstrap deep learning scaffolding", # Optional
|
||||
# You can just specify package directories manually here if your project is
|
||||
# simple. Or you can use find_packages().
|
||||
#
|
||||
# Alternatively, if you just want to distribute a single Python file, use
|
||||
# the `py_modules` argument instead as follows, which will expect a file
|
||||
# called `my_module.py` to exist:
|
||||
#
|
||||
# py_modules=["my_module"],
|
||||
#
|
||||
packages=find_packages(
|
||||
exclude=[
|
||||
"data",
|
||||
"logs",
|
||||
]
|
||||
),
|
||||
# This field lists other packages that your project depends on to run.
|
||||
# Any package you put here will be installed by pip when your project is
|
||||
# installed, so they must be valid existing projects.
|
||||
#
|
||||
# For an analysis of "install_requires" vs pip's requirements files see:
|
||||
# https://packaging.python.org/en/latest/requirements.html
|
||||
install_requires=[
|
||||
"torch",
|
||||
"numpy",
|
||||
"argparse",
|
||||
],
|
||||
# List additional groups of dependencies here (e.g. development
|
||||
# dependencies). Users will be able to install these using the "extras"
|
||||
# syntax, for example:
|
||||
#
|
||||
# $ pip install sampleproject[dev]
|
||||
#
|
||||
# Similar to `install_requires` above, these must be valid existing
|
||||
# projects.
|
||||
# extras_require={ # Optional
|
||||
# 'dev': ['check-manifest'],
|
||||
# 'test': ['coverage'],
|
||||
# },
|
||||
# If there are data files included in your packages that need to be
|
||||
# installed, specify them here.
|
||||
#
|
||||
# If using Python 2.6 or earlier, then these have to be included in
|
||||
# MANIFEST.in as well.
|
||||
# package_data={ # Optional
|
||||
# 'sample': ['package_data.dat'],
|
||||
# },
|
||||
include_package_data=True,
|
||||
# Although 'package_data' is the preferred approach, in some case you may
|
||||
# need to place data files outside of your packages. See:
|
||||
# http://docs.python.org/3.4/distutils/setupscript.html#installing-additional-files
|
||||
#
|
||||
# In this case, 'data_file' will be installed into '<sys.prefix>/my_data'
|
||||
# data_files=[('my_data', ['data/data_file'])], # Optional
|
||||
# To provide executable scripts, use entry points in preference to the
|
||||
# "scripts" keyword. Entry points provide cross-platform support and allow
|
||||
# `pip` to create the appropriate form of executable for the target
|
||||
# platform.
|
||||
#
|
||||
# For example, the following would provide a command called `sample` which
|
||||
# executes the function `main` from this package when invoked:
|
||||
# entry_points={ # Optional
|
||||
# 'console_scripts': [
|
||||
# 'sample=sample:main',
|
||||
# ],
|
||||
# },
|
||||
)
|
||||
@@ -1,3 +0,0 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:d789deddb081a9f4b626342391de8f48949d38fb5fdead87b5c0737b46c0877a
|
||||
size 2800
|
||||
@@ -1,3 +0,0 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:7a12e561363385e9dfeeab326368731c030ed4b374e7f5897ac819159d2884c5
|
||||
size 400
|
||||
@@ -1,3 +0,0 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:c202d9cfc7858fd49d522047e16948359bbbb2eda2d3825d552e45a78d5f8585
|
||||
size 400
|
||||
@@ -1 +0,0 @@
|
||||
{"action": {"device": "cpu", "shape": [50, 14], "dtype": "torch.float32"}, "episode": {"device": "cpu", "shape": [50], "dtype": "torch.int64"}, "frame_id": {"device": "cpu", "shape": [50], "dtype": "torch.int64"}, "shape": [50], "device": "cpu", "_type": "<class 'tensordict._td.TensorDict'>"}
|
||||
@@ -1,3 +0,0 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:cc2786e1f9910a9d811400edcddaf7075195f7a16b216dcbefba3bc7c4f2ae51
|
||||
size 50
|
||||
@@ -1 +0,0 @@
|
||||
{"done": {"device": "cpu", "shape": [50, 1], "dtype": "torch.bool"}, "shape": [50], "device": "cpu", "_type": "<class 'tensordict._td.TensorDict'>"}
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user