forked from tangger/lerobot
Compare commits
112 Commits
pre-commit
...
user/miche
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
36714a14a7 | ||
|
|
68b8e274dd | ||
|
|
1a7b4ec890 | ||
|
|
1c9eccd279 | ||
|
|
7551260104 | ||
|
|
95758cb867 | ||
|
|
2ecc34ceb9 | ||
|
|
8598e80718 | ||
|
|
6fa3e5f9ad | ||
|
|
b7bd13570f | ||
|
|
f899edb57f | ||
|
|
17ec837a7a | ||
|
|
9e3c8461ca | ||
|
|
1f23ef7889 | ||
|
|
41219fe81e | ||
|
|
5081c145dc | ||
|
|
25b88f3b86 | ||
|
|
d711e20b5f | ||
|
|
700f00c014 | ||
|
|
584cad808e | ||
|
|
d8a1758122 | ||
|
|
1df9ee4f2d | ||
|
|
5b4a7aa81d | ||
|
|
ef8d943e54 | ||
|
|
42a038173f | ||
|
|
546719137a | ||
|
|
3ffe0cf0f4 | ||
|
|
ff82367c62 | ||
|
|
ff47c0b0d3 | ||
|
|
befa1fe9af | ||
|
|
446f434a8e | ||
|
|
2f3370e42f | ||
|
|
7ae368e983 | ||
|
|
36711d766a | ||
|
|
c9e50bb9b1 | ||
|
|
95de8e273d | ||
|
|
b07d95f0dd | ||
|
|
d9a70376d8 | ||
|
|
0c32008466 | ||
|
|
c462a478c7 | ||
|
|
459f22ed30 | ||
|
|
dc086dc21f | ||
|
|
b9217b06db | ||
|
|
6868c88ef1 | ||
|
|
a1d16fb400 | ||
|
|
a7db3959f5 | ||
|
|
b5f89439ff | ||
|
|
d51374ce12 | ||
|
|
b63738674c | ||
|
|
12525242ce | ||
|
|
7d5a9530f7 | ||
|
|
e0527b4a6b | ||
|
|
efb1982eec | ||
|
|
2211209be5 | ||
|
|
506821c7df | ||
|
|
f1c8bfe01e | ||
|
|
7c89bd1018 | ||
|
|
367dfe51c6 | ||
|
|
e856ffc91e | ||
|
|
9aabe212ea | ||
|
|
42618f4bd6 | ||
|
|
36576c958f | ||
|
|
322a78a378 | ||
|
|
d75b44f89f | ||
|
|
1fb03d4cf2 | ||
|
|
7d2970fdfe | ||
|
|
8105efb338 | ||
|
|
c1d4bf4b63 | ||
|
|
86df8a433d | ||
|
|
956c547254 | ||
|
|
be965019bd | ||
|
|
a0a50de8c9 | ||
|
|
c86dace4c2 | ||
|
|
472a7f58ad | ||
|
|
068efce3f8 | ||
|
|
df7310ea40 | ||
|
|
100f54ee07 | ||
|
|
c2f7af3339 | ||
|
|
a1b5d0faf2 | ||
|
|
d6498150bf | ||
|
|
31c34a4a49 | ||
|
|
b1cfb6a710 | ||
|
|
4a43c83522 | ||
|
|
0a4e9e25d0 | ||
|
|
3bb5ed5e91 | ||
|
|
c5bca1cf0f | ||
|
|
35de91ef2b | ||
|
|
ee306e2f9b | ||
|
|
bae3b02928 | ||
|
|
5b4adc00bb | ||
|
|
22fbc9ea4a | ||
|
|
ca74a13d61 | ||
|
|
18a4598986 | ||
|
|
dc54d357ca | ||
|
|
08ec971086 | ||
|
|
b53d6e0ff2 | ||
|
|
70b652f791 | ||
|
|
7b68bfb73b | ||
|
|
7e0f20fbf2 | ||
|
|
def42ff487 | ||
|
|
c9af8e36a7 | ||
|
|
ed66c92383 | ||
|
|
668d493bf9 | ||
|
|
67f4d7ea7a | ||
|
|
4b0c88ff8e | ||
|
|
b19fef9d18 | ||
|
|
1612e00e63 | ||
|
|
c3bc136420 | ||
|
|
1020bc3108 | ||
|
|
7fcf638c0d | ||
|
|
e35546f58e | ||
|
|
1aa8d4ac91 |
4
.github/workflows/quality.yml
vendored
4
.github/workflows/quality.yml
vendored
@@ -50,7 +50,7 @@ jobs:
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Install poetry
|
||||
run: pipx install poetry
|
||||
run: pipx install "poetry<2.0.0"
|
||||
|
||||
- name: Poetry check
|
||||
run: poetry check
|
||||
@@ -64,7 +64,7 @@ jobs:
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Install poetry
|
||||
run: pipx install poetry
|
||||
run: pipx install "poetry<2.0.0"
|
||||
|
||||
- name: Install poetry-relax
|
||||
run: poetry self add poetry-relax
|
||||
|
||||
@@ -17,6 +17,7 @@ repos:
|
||||
rev: v3.19.0
|
||||
hooks:
|
||||
- id: pyupgrade
|
||||
exclude: '^(.*_pb2_grpc\.py|.*_pb2\.py$)'
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
rev: v0.8.2
|
||||
hooks:
|
||||
|
||||
@@ -68,7 +68,7 @@
|
||||
|
||||
### Acknowledgment
|
||||
|
||||
- Thanks to Tony Zaho, Zipeng Fu and colleagues for open sourcing ACT policy, ALOHA environments and datasets. Ours are adapted from [ALOHA](https://tonyzhaozh.github.io/aloha) and [Mobile ALOHA](https://mobile-aloha.github.io).
|
||||
- Thanks to Tony Zhao, Zipeng Fu and colleagues for open sourcing ACT policy, ALOHA environments and datasets. Ours are adapted from [ALOHA](https://tonyzhaozh.github.io/aloha) and [Mobile ALOHA](https://mobile-aloha.github.io).
|
||||
- Thanks to Cheng Chi, Zhenjia Xu and colleagues for open sourcing Diffusion policy, Pusht environment and datasets, as well as UMI datasets. Ours are adapted from [Diffusion Policy](https://diffusion-policy.cs.columbia.edu) and [UMI Gripper](https://umi-gripper.github.io).
|
||||
- Thanks to Nicklas Hansen, Yunhai Feng and colleagues for open sourcing TDMPC policy, Simxarm environments and datasets. Ours are adapted from [TDMPC](https://github.com/nicklashansen/tdmpc) and [FOWM](https://www.yunhaifeng.com/FOWM).
|
||||
- Thanks to Antonio Loquercio and Ashish Kumar for their early support.
|
||||
|
||||
@@ -21,7 +21,7 @@ How to decode videos?
|
||||
|
||||
## Variables
|
||||
**Image content & size**
|
||||
We don't expect the same optimal settings for a dataset of images from a simulation, or from real-world in an appartment, or in a factory, or outdoor, or with lots of moving objects in the scene, etc. Similarly, loading times might not vary linearly with the image size (resolution).
|
||||
We don't expect the same optimal settings for a dataset of images from a simulation, or from real-world in an apartment, or in a factory, or outdoor, or with lots of moving objects in the scene, etc. Similarly, loading times might not vary linearly with the image size (resolution).
|
||||
For these reasons, we run this benchmark on four representative datasets:
|
||||
- `lerobot/pusht_image`: (96 x 96 pixels) simulation with simple geometric shapes, fixed camera.
|
||||
- `aliberts/aloha_mobile_shrimp_image`: (480 x 640 pixels) real-world indoor, moving camera.
|
||||
@@ -63,7 +63,7 @@ This of course is affected by the `-g` parameter during encoding, which specifie
|
||||
|
||||
Note that this differs significantly from a typical use case like watching a movie, in which every frame is loaded sequentially from the beginning to the end and it's acceptable to have big values for `-g`.
|
||||
|
||||
Additionally, because some policies might request single timestamps that are a few frames appart, we also have the following scenario:
|
||||
Additionally, because some policies might request single timestamps that are a few frames apart, we also have the following scenario:
|
||||
- `2_frames_4_space`: 2 frames with 4 consecutive frames of spacing in between (e.g `[t, t + 5 / fps]`),
|
||||
|
||||
However, due to how video decoding is implemented with `pyav`, we don't have access to an accurate seek so in practice this scenario is essentially the same as `6_frames` since all 6 frames between `t` and `t + 5 / fps` will be decoded.
|
||||
@@ -85,8 +85,8 @@ However, due to how video decoding is implemented with `pyav`, we don't have acc
|
||||
**Average Structural Similarity Index Measure (higher is better)**
|
||||
`avg_ssim` evaluates the perceived quality of images by comparing luminance, contrast, and structure. SSIM values range from -1 to 1, where 1 indicates perfect similarity.
|
||||
|
||||
One aspect that can't be measured here with those metrics is the compatibility of the encoding accross platforms, in particular on web browser, for visualization purposes.
|
||||
h264, h265 and AV1 are all commonly used codecs and should not be pose an issue. However, the chroma subsampling (`pix_fmt`) format might affect compatibility:
|
||||
One aspect that can't be measured here with those metrics is the compatibility of the encoding across platforms, in particular on web browser, for visualization purposes.
|
||||
h264, h265 and AV1 are all commonly used codecs and should not pose an issue. However, the chroma subsampling (`pix_fmt`) format might affect compatibility:
|
||||
- `yuv420p` is more widely supported across various platforms, including web browsers.
|
||||
- `yuv444p` offers higher color fidelity but might not be supported as broadly.
|
||||
|
||||
@@ -116,7 +116,7 @@ Additional encoding parameters exist that are not included in this benchmark. In
|
||||
- `-preset` which allows for selecting encoding presets. This represents a collection of options that will provide a certain encoding speed to compression ratio. By leaving this parameter unspecified, it is considered to be `medium` for libx264 and libx265 and `8` for libsvtav1.
|
||||
- `-tune` which allows to optimize the encoding for certains aspects (e.g. film quality, fast decoding, etc.).
|
||||
|
||||
See the documentation mentioned above for more detailled info on these settings and for a more comprehensive list of other parameters.
|
||||
See the documentation mentioned above for more detailed info on these settings and for a more comprehensive list of other parameters.
|
||||
|
||||
Similarly on the decoding side, other decoders exist but are not implemented in our current benchmark. To name a few:
|
||||
- `torchaudio`
|
||||
|
||||
@@ -32,7 +32,11 @@ import numpy as np
|
||||
import pandas as pd
|
||||
import PIL
|
||||
import torch
|
||||
from skimage.metrics import mean_squared_error, peak_signal_noise_ratio, structural_similarity
|
||||
from skimage.metrics import (
|
||||
mean_squared_error,
|
||||
peak_signal_noise_ratio,
|
||||
structural_similarity,
|
||||
)
|
||||
from tqdm import tqdm
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
||||
@@ -81,7 +85,9 @@ def get_directory_size(directory: Path) -> int:
|
||||
return total_size
|
||||
|
||||
|
||||
def load_original_frames(imgs_dir: Path, timestamps: list[float], fps: int) -> torch.Tensor:
|
||||
def load_original_frames(
|
||||
imgs_dir: Path, timestamps: list[float], fps: int
|
||||
) -> torch.Tensor:
|
||||
frames = []
|
||||
for ts in timestamps:
|
||||
idx = int(ts * fps)
|
||||
@@ -94,7 +100,11 @@ def load_original_frames(imgs_dir: Path, timestamps: list[float], fps: int) -> t
|
||||
|
||||
|
||||
def save_decoded_frames(
|
||||
imgs_dir: Path, save_dir: Path, frames: torch.Tensor, timestamps: list[float], fps: int
|
||||
imgs_dir: Path,
|
||||
save_dir: Path,
|
||||
frames: torch.Tensor,
|
||||
timestamps: list[float],
|
||||
fps: int,
|
||||
) -> None:
|
||||
if save_dir.exists() and len(list(save_dir.glob("frame_*.png"))) == len(timestamps):
|
||||
return
|
||||
@@ -104,7 +114,10 @@ def save_decoded_frames(
|
||||
idx = int(ts * fps)
|
||||
frame_hwc = (frames[i].permute((1, 2, 0)) * 255).type(torch.uint8).cpu().numpy()
|
||||
PIL.Image.fromarray(frame_hwc).save(save_dir / f"frame_{idx:06d}_decoded.png")
|
||||
shutil.copyfile(imgs_dir / f"frame_{idx:06d}.png", save_dir / f"frame_{idx:06d}_original.png")
|
||||
shutil.copyfile(
|
||||
imgs_dir / f"frame_{idx:06d}.png",
|
||||
save_dir / f"frame_{idx:06d}_original.png",
|
||||
)
|
||||
|
||||
|
||||
def save_first_episode(imgs_dir: Path, dataset: LeRobotDataset) -> None:
|
||||
@@ -116,11 +129,17 @@ def save_first_episode(imgs_dir: Path, dataset: LeRobotDataset) -> None:
|
||||
hf_dataset = dataset.hf_dataset.with_format(None)
|
||||
|
||||
# We only save images from the first camera
|
||||
img_keys = [key for key in hf_dataset.features if key.startswith("observation.image")]
|
||||
img_keys = [
|
||||
key for key in hf_dataset.features if key.startswith("observation.image")
|
||||
]
|
||||
imgs_dataset = hf_dataset.select_columns(img_keys[0])
|
||||
|
||||
for i, item in enumerate(
|
||||
tqdm(imgs_dataset, desc=f"saving {dataset.repo_id} first episode images", leave=False)
|
||||
tqdm(
|
||||
imgs_dataset,
|
||||
desc=f"saving {dataset.repo_id} first episode images",
|
||||
leave=False,
|
||||
)
|
||||
):
|
||||
img = item[img_keys[0]]
|
||||
img.save(str(imgs_dir / f"frame_{i:06d}.png"), quality=100)
|
||||
@@ -129,7 +148,9 @@ def save_first_episode(imgs_dir: Path, dataset: LeRobotDataset) -> None:
|
||||
break
|
||||
|
||||
|
||||
def sample_timestamps(timestamps_mode: str, ep_num_images: int, fps: int) -> list[float]:
|
||||
def sample_timestamps(
|
||||
timestamps_mode: str, ep_num_images: int, fps: int
|
||||
) -> list[float]:
|
||||
# Start at 5 to allow for 2_frames_4_space and 6_frames
|
||||
idx = random.randint(5, ep_num_images - 1)
|
||||
match timestamps_mode:
|
||||
@@ -154,7 +175,9 @@ def decode_video_frames(
|
||||
backend: str,
|
||||
) -> torch.Tensor:
|
||||
if backend in ["pyav", "video_reader"]:
|
||||
return decode_video_frames_torchvision(video_path, timestamps, tolerance_s, backend)
|
||||
return decode_video_frames_torchvision(
|
||||
video_path, timestamps, tolerance_s, backend
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError(backend)
|
||||
|
||||
@@ -181,7 +204,9 @@ def benchmark_decoding(
|
||||
}
|
||||
|
||||
with time_benchmark:
|
||||
frames = decode_video_frames(video_path, timestamps=timestamps, tolerance_s=5e-1, backend=backend)
|
||||
frames = decode_video_frames(
|
||||
video_path, timestamps=timestamps, tolerance_s=5e-1, backend=backend
|
||||
)
|
||||
result["load_time_video_ms"] = time_benchmark.result_ms / num_frames
|
||||
|
||||
with time_benchmark:
|
||||
@@ -190,12 +215,18 @@ def benchmark_decoding(
|
||||
|
||||
frames_np, original_frames_np = frames.numpy(), original_frames.numpy()
|
||||
for i in range(num_frames):
|
||||
result["mse_values"].append(mean_squared_error(original_frames_np[i], frames_np[i]))
|
||||
result["mse_values"].append(
|
||||
mean_squared_error(original_frames_np[i], frames_np[i])
|
||||
)
|
||||
result["psnr_values"].append(
|
||||
peak_signal_noise_ratio(original_frames_np[i], frames_np[i], data_range=1.0)
|
||||
peak_signal_noise_ratio(
|
||||
original_frames_np[i], frames_np[i], data_range=1.0
|
||||
)
|
||||
)
|
||||
result["ssim_values"].append(
|
||||
structural_similarity(original_frames_np[i], frames_np[i], data_range=1.0, channel_axis=0)
|
||||
structural_similarity(
|
||||
original_frames_np[i], frames_np[i], data_range=1.0, channel_axis=0
|
||||
)
|
||||
)
|
||||
|
||||
if save_frames and sample == 0:
|
||||
@@ -215,7 +246,9 @@ def benchmark_decoding(
|
||||
# As these samples are independent, we run them in parallel threads to speed up the benchmark.
|
||||
with ThreadPoolExecutor(max_workers=num_workers) as executor:
|
||||
futures = [executor.submit(process_sample, i) for i in range(num_samples)]
|
||||
for future in tqdm(as_completed(futures), total=num_samples, desc="samples", leave=False):
|
||||
for future in tqdm(
|
||||
as_completed(futures), total=num_samples, desc="samples", leave=False
|
||||
):
|
||||
result = future.result()
|
||||
load_times_video_ms.append(result["load_time_video_ms"])
|
||||
load_times_images_ms.append(result["load_time_images_ms"])
|
||||
@@ -275,9 +308,13 @@ def benchmark_encoding_decoding(
|
||||
random.seed(seed)
|
||||
benchmark_table = []
|
||||
for timestamps_mode in tqdm(
|
||||
decoding_cfg["timestamps_modes"], desc="decodings (timestamps_modes)", leave=False
|
||||
decoding_cfg["timestamps_modes"],
|
||||
desc="decodings (timestamps_modes)",
|
||||
leave=False,
|
||||
):
|
||||
for backend in tqdm(decoding_cfg["backends"], desc="decodings (backends)", leave=False):
|
||||
for backend in tqdm(
|
||||
decoding_cfg["backends"], desc="decodings (backends)", leave=False
|
||||
):
|
||||
benchmark_row = benchmark_decoding(
|
||||
imgs_dir,
|
||||
video_path,
|
||||
@@ -355,14 +392,23 @@ def main(
|
||||
imgs_dir = output_dir / "images" / dataset.repo_id.replace("/", "_")
|
||||
# We only use the first episode
|
||||
save_first_episode(imgs_dir, dataset)
|
||||
for key, values in tqdm(encoding_benchmarks.items(), desc="encodings (g, crf)", leave=False):
|
||||
for key, values in tqdm(
|
||||
encoding_benchmarks.items(), desc="encodings (g, crf)", leave=False
|
||||
):
|
||||
for value in tqdm(values, desc=f"encodings ({key})", leave=False):
|
||||
encoding_cfg = BASE_ENCODING.copy()
|
||||
encoding_cfg["vcodec"] = video_codec
|
||||
encoding_cfg["pix_fmt"] = pixel_format
|
||||
encoding_cfg[key] = value
|
||||
args_path = Path("_".join(str(value) for value in encoding_cfg.values()))
|
||||
video_path = output_dir / "videos" / args_path / f"{repo_id.replace('/', '_')}.mp4"
|
||||
args_path = Path(
|
||||
"_".join(str(value) for value in encoding_cfg.values())
|
||||
)
|
||||
video_path = (
|
||||
output_dir
|
||||
/ "videos"
|
||||
/ args_path
|
||||
/ f"{repo_id.replace('/', '_')}.mp4"
|
||||
)
|
||||
benchmark_table += benchmark_encoding_decoding(
|
||||
dataset,
|
||||
video_path,
|
||||
@@ -388,7 +434,9 @@ def main(
|
||||
# Concatenate all results
|
||||
df_list = [pd.read_csv(csv_path) for csv_path in file_paths]
|
||||
concatenated_df = pd.concat(df_list, ignore_index=True)
|
||||
concatenated_path = output_dir / f"{now:%Y-%m-%d}_{now:%H-%M-%S}_all_{num_samples}-samples.csv"
|
||||
concatenated_path = (
|
||||
output_dir / f"{now:%Y-%m-%d}_{now:%H-%M-%S}_all_{num_samples}-samples.csv"
|
||||
)
|
||||
concatenated_df.to_csv(concatenated_path, header=True, index=False)
|
||||
|
||||
|
||||
|
||||
18
checkport.py
Normal file
18
checkport.py
Normal file
@@ -0,0 +1,18 @@
|
||||
import socket
|
||||
|
||||
|
||||
def check_port(host, port):
|
||||
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
||||
try:
|
||||
s.connect((host, port))
|
||||
print(f"Connection successful to {host}:{port}!")
|
||||
except Exception as e:
|
||||
print(f"Connection failed to {host}:{port}: {e}")
|
||||
finally:
|
||||
s.close()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
host = "127.0.0.1" # or "localhost"
|
||||
port = 51350
|
||||
check_port(host, port)
|
||||
11
docker/lerobot-gpu-mani-skill/Dockerfile
Normal file
11
docker/lerobot-gpu-mani-skill/Dockerfile
Normal file
@@ -0,0 +1,11 @@
|
||||
FROM huggingface/lerobot-gpu:latest
|
||||
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends \
|
||||
libvulkan1 vulkan-tools \
|
||||
&& apt-get clean && rm -rf /var/lib/apt/lists/*
|
||||
|
||||
RUN pip install --upgrade --no-cache-dir pip
|
||||
RUN pip install --no-cache-dir ".[mani-skill]"
|
||||
|
||||
# Set EGL as the rendering backend for MuJoCo
|
||||
ENV MUJOCO_GL="egl"
|
||||
@@ -1,25 +1,31 @@
|
||||
This tutorial explains how to use [SO-100](https://github.com/TheRobotStudio/SO-ARM100) with LeRobot.
|
||||
# Using the [SO-100](https://github.com/TheRobotStudio/SO-ARM100) with LeRobot
|
||||
|
||||
## Source the parts
|
||||
|
||||
## A. Source the parts
|
||||
|
||||
Follow this [README](https://github.com/TheRobotStudio/SO-ARM100). It contains the bill of materials, with link to source the parts, as well as the instructions to 3D print the parts, and advices if it's your first time printing or if you don't own a 3D printer already.
|
||||
|
||||
**Important**: Before assembling, you will first need to configure your motors. To this end, we provide a nice script, so let's first install LeRobot. After configuration, we will also guide you through assembly.
|
||||
|
||||
## Install LeRobot
|
||||
## B. Install LeRobot
|
||||
|
||||
On your computer:
|
||||
|
||||
1. [Install Miniconda](https://docs.anaconda.com/miniconda/#quick-command-line-install):
|
||||
```bash
|
||||
mkdir -p ~/miniconda3
|
||||
# Linux:
|
||||
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh
|
||||
# Mac M-series:
|
||||
# curl https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-arm64.sh -o ~/miniconda3/miniconda.sh
|
||||
# Mac Intel:
|
||||
# curl https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh -o ~/miniconda3/miniconda.sh
|
||||
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
|
||||
rm ~/miniconda3/miniconda.sh
|
||||
~/miniconda3/bin/conda init bash
|
||||
```
|
||||
|
||||
2. Restart shell or `source ~/.bashrc`
|
||||
2. Restart shell or `source ~/.bashrc` (*Mac*: `source ~/.bash_profile`) or `source ~/.zshrc` if you're using zshell
|
||||
|
||||
3. Create and activate a fresh conda environment for lerobot
|
||||
```bash
|
||||
@@ -36,23 +42,30 @@ git clone https://github.com/huggingface/lerobot.git ~/lerobot
|
||||
cd ~/lerobot && pip install -e ".[feetech]"
|
||||
```
|
||||
|
||||
For Linux only (not Mac), install extra dependencies for recording datasets:
|
||||
*For Linux only (not Mac)*: install extra dependencies for recording datasets:
|
||||
```bash
|
||||
conda install -y -c conda-forge ffmpeg
|
||||
pip uninstall -y opencv-python
|
||||
conda install -y -c conda-forge "opencv>=4.10.0"
|
||||
```
|
||||
|
||||
## Configure the motors
|
||||
## C. Configure the motors
|
||||
|
||||
Follow steps 1 of the [assembly video](https://www.youtube.com/watch?v=FioA2oeFZ5I) which illustrates the use of our scripts below.
|
||||
### 1. Find the USB ports associated to each arm
|
||||
|
||||
**Find USB ports associated to your arms**
|
||||
To find the correct ports for each arm, run the utility script twice:
|
||||
Designate one bus servo adapter and 6 motors for your leader arm, and similarly the other bus servo adapter and 6 motors for the follower arm.
|
||||
|
||||
#### a. Run the script to find ports
|
||||
|
||||
Follow Step 1 of the [assembly video](https://www.youtube.com/watch?v=FioA2oeFZ5I), which illustrates the use of our scripts below.
|
||||
|
||||
To find the port for each bus servo adapter, run the utility script:
|
||||
```bash
|
||||
python lerobot/scripts/find_motors_bus_port.py
|
||||
```
|
||||
|
||||
#### b. Example outputs
|
||||
|
||||
Example output when identifying the leader arm's port (e.g., `/dev/tty.usbmodem575E0031751` on Mac, or possibly `/dev/ttyACM0` on Linux):
|
||||
```
|
||||
Finding all available ports for the MotorBus.
|
||||
@@ -64,7 +77,6 @@ Remove the usb cable from your DynamixelMotorsBus and press Enter when done.
|
||||
The port of this DynamixelMotorsBus is /dev/tty.usbmodem575E0031751
|
||||
Reconnect the usb cable.
|
||||
```
|
||||
|
||||
Example output when identifying the follower arm's port (e.g., `/dev/tty.usbmodem575E0032081`, or possibly `/dev/ttyACM1` on Linux):
|
||||
```
|
||||
Finding all available ports for the MotorBus.
|
||||
@@ -77,13 +89,20 @@ The port of this DynamixelMotorsBus is /dev/tty.usbmodem575E0032081
|
||||
Reconnect the usb cable.
|
||||
```
|
||||
|
||||
Troubleshooting: On Linux, you might need to give access to the USB ports by running:
|
||||
#### c. Troubleshooting
|
||||
On Linux, you might need to give access to the USB ports by running:
|
||||
```bash
|
||||
sudo chmod 666 /dev/ttyACM0
|
||||
sudo chmod 666 /dev/ttyACM1
|
||||
```
|
||||
|
||||
**Configure your motors**
|
||||
#### d. Update YAML file
|
||||
|
||||
Now that you have the ports, modify the *port* sections in `so100.yaml`
|
||||
|
||||
### 2. Configure the motors
|
||||
|
||||
#### a. Set IDs for all 12 motors
|
||||
Plug your first motor and run this script to set its ID to 1. It will also set its present position to 2048, so expect your motor to rotate:
|
||||
```bash
|
||||
python lerobot/scripts/configure_motor.py \
|
||||
@@ -94,7 +113,7 @@ python lerobot/scripts/configure_motor.py \
|
||||
--ID 1
|
||||
```
|
||||
|
||||
Note: These motors are currently limitated. They can take values between 0 and 4096 only, which corresponds to a full turn. They can't turn more than that. 2048 is at the middle of this range, so we can take -2048 steps (180 degrees anticlockwise) and reach the maximum range, or take +2048 steps (180 degrees clockwise) and reach the maximum range. The configuration step also sets the homing offset to 0, so that if you misassembled the arm, you can always update the homing offset to account for a shift up to ± 2048 steps (± 180 degrees).
|
||||
*Note: These motors are currently limitated. They can take values between 0 and 4096 only, which corresponds to a full turn. They can't turn more than that. 2048 is at the middle of this range, so we can take -2048 steps (180 degrees anticlockwise) and reach the maximum range, or take +2048 steps (180 degrees clockwise) and reach the maximum range. The configuration step also sets the homing offset to 0, so that if you misassembled the arm, you can always update the homing offset to account for a shift up to ± 2048 steps (± 180 degrees).*
|
||||
|
||||
Then unplug your motor and plug the second motor and set its ID to 2.
|
||||
```bash
|
||||
@@ -108,23 +127,25 @@ python lerobot/scripts/configure_motor.py \
|
||||
|
||||
Redo the process for all your motors until ID 6. Do the same for the 6 motors of the leader arm.
|
||||
|
||||
**Remove the gears of the 6 leader motors**
|
||||
Follow step 2 of the [assembly video](https://www.youtube.com/watch?v=FioA2oeFZ5I). You need to remove the gear for the motors of the leader arm. As a result, you will only use the position encoding of the motor and reduce friction to more easily operate the leader arm.
|
||||
|
||||
**Add motor horn to the motors**
|
||||
Follow step 3 of the [assembly video](https://www.youtube.com/watch?v=FioA2oeFZ5I). For SO-100, you need to align the holes on the motor horn to the motor spline to be approximately 1:30, 4:30, 7:30 and 10:30.
|
||||
#### b. Remove the gears of the 6 leader motors
|
||||
|
||||
Follow step 2 of the [assembly video](https://youtu.be/FioA2oeFZ5I?t=248). You need to remove the gear for the motors of the leader arm. As a result, you will only use the position encoding of the motor and reduce friction to more easily operate the leader arm.
|
||||
|
||||
#### c. Add motor horn to all 12 motors
|
||||
Follow step 3 of the [assembly video](https://youtu.be/FioA2oeFZ5I?t=569). For SO-100, you need to align the holes on the motor horn to the motor spline to be approximately 1:30, 4:30, 7:30 and 10:30.
|
||||
Try to avoid rotating the motor while doing so to keep position 2048 set during configuration. It is especially tricky for the leader motors as it is more sensible without the gears, but it's ok if it's a bit rotated.
|
||||
|
||||
## Assemble the arms
|
||||
## D. Assemble the arms
|
||||
|
||||
Follow step 4 of the [assembly video](https://www.youtube.com/watch?v=FioA2oeFZ5I). The first arm should take a bit more than 1 hour to assemble, but once you get use to it, you can do it under 1 hour for the second arm.
|
||||
Follow step 4 of the [assembly video](https://youtu.be/FioA2oeFZ5I?t=610). The first arm should take a bit more than 1 hour to assemble, but once you get use to it, you can do it under 1 hour for the second arm.
|
||||
|
||||
## Calibrate
|
||||
## E. Calibrate
|
||||
|
||||
Next, you'll need to calibrate your SO-100 robot to ensure that the leader and follower arms have the same position values when they are in the same physical position. This calibration is essential because it allows a neural network trained on one SO-100 robot to work on another.
|
||||
|
||||
**Manual calibration of follower arm**
|
||||
/!\ Contrarily to step 6 of the [assembly video](https://www.youtube.com/watch?v=FioA2oeFZ5I) which illustrates the auto calibration, we will actually do manual calibration of follower for now.
|
||||
#### a. Manual calibration of follower arm
|
||||
/!\ Contrarily to step 6 of the [assembly video](https://youtu.be/FioA2oeFZ5I?t=724) which illustrates the auto calibration, we will actually do manual calibration of follower for now.
|
||||
|
||||
You will need to move the follower arm to these positions sequentially:
|
||||
|
||||
@@ -139,8 +160,8 @@ python lerobot/scripts/control_robot.py calibrate \
|
||||
--robot-overrides '~cameras' --arms main_follower
|
||||
```
|
||||
|
||||
**Manual calibration of leader arm**
|
||||
Follow step 6 of the [assembly video](https://www.youtube.com/watch?v=FioA2oeFZ5I) which illustrates the manual calibration. You will need to move the leader arm to these positions sequentially:
|
||||
#### b. Manual calibration of leader arm
|
||||
Follow step 6 of the [assembly video](https://youtu.be/FioA2oeFZ5I?t=724) which illustrates the manual calibration. You will need to move the leader arm to these positions sequentially:
|
||||
|
||||
| 1. Zero position | 2. Rotated position | 3. Rest position |
|
||||
|---|---|---|
|
||||
@@ -153,7 +174,7 @@ python lerobot/scripts/control_robot.py calibrate \
|
||||
--robot-overrides '~cameras' --arms main_leader
|
||||
```
|
||||
|
||||
## Teleoperate
|
||||
## F. Teleoperate
|
||||
|
||||
**Simple teleop**
|
||||
Then you are ready to teleoperate your robot! Run this simple script (it won't connect and display the cameras):
|
||||
@@ -165,14 +186,14 @@ python lerobot/scripts/control_robot.py teleoperate \
|
||||
```
|
||||
|
||||
|
||||
**Teleop with displaying cameras**
|
||||
#### a. Teleop with displaying cameras
|
||||
Follow [this guide to setup your cameras](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#c-add-your-cameras-with-opencvcamera). Then you will be able to display the cameras on your computer while you are teleoperating by running the following code. This is useful to prepare your setup before recording your first dataset.
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py teleoperate \
|
||||
--robot-path lerobot/configs/robot/so100.yaml
|
||||
```
|
||||
|
||||
## Record a dataset
|
||||
## G. Record a dataset
|
||||
|
||||
Once you're familiar with teleoperation, you can record your first dataset with SO-100.
|
||||
|
||||
@@ -201,7 +222,7 @@ python lerobot/scripts/control_robot.py record \
|
||||
--push-to-hub 1
|
||||
```
|
||||
|
||||
## Visualize a dataset
|
||||
## H. Visualize a dataset
|
||||
|
||||
If you uploaded your dataset to the hub with `--push-to-hub 1`, you can [visualize your dataset online](https://huggingface.co/spaces/lerobot/visualize_dataset) by copy pasting your repo id given by:
|
||||
```bash
|
||||
@@ -214,7 +235,7 @@ python lerobot/scripts/visualize_dataset_html.py \
|
||||
--repo-id ${HF_USER}/so100_test
|
||||
```
|
||||
|
||||
## Replay an episode
|
||||
## I. Replay an episode
|
||||
|
||||
Now try to replay the first episode on your robot:
|
||||
```bash
|
||||
@@ -225,7 +246,7 @@ python lerobot/scripts/control_robot.py replay \
|
||||
--episode 0
|
||||
```
|
||||
|
||||
## Train a policy
|
||||
## J. Train a policy
|
||||
|
||||
To train a policy to control your robot, use the [`python lerobot/scripts/train.py`](../lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
|
||||
```bash
|
||||
@@ -248,7 +269,7 @@ Let's explain it:
|
||||
|
||||
Training should take several hours. You will find checkpoints in `outputs/train/act_so100_test/checkpoints`.
|
||||
|
||||
## Evaluate your policy
|
||||
## K. Evaluate your policy
|
||||
|
||||
You can use the `record` function from [`lerobot/scripts/control_robot.py`](../lerobot/scripts/control_robot.py) but with a policy checkpoint as input. For instance, run this command to record 10 evaluation episodes:
|
||||
```bash
|
||||
@@ -268,7 +289,7 @@ As you can see, it's almost the same command as previously used to record your t
|
||||
1. There is an additional `-p` argument which indicates the path to your policy checkpoint with (e.g. `-p outputs/train/eval_so100_test/checkpoints/last/pretrained_model`). You can also use the model repository if you uploaded a model checkpoint to the hub (e.g. `-p ${HF_USER}/act_so100_test`).
|
||||
2. The name of dataset begins by `eval` to reflect that you are running inference (e.g. `--repo-id ${HF_USER}/eval_act_so100_test`).
|
||||
|
||||
## More
|
||||
## L. More Information
|
||||
|
||||
Follow this [previous tutorial](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#4-train-a-policy-on-your-data) for a more in-depth tutorial on controlling real robots with LeRobot.
|
||||
|
||||
|
||||
94
examples/12_train_hilserl_classifier.md
Normal file
94
examples/12_train_hilserl_classifier.md
Normal file
@@ -0,0 +1,94 @@
|
||||
# Training a HIL-SERL Reward Classifier with LeRobot
|
||||
|
||||
This tutorial provides step-by-step instructions for training a reward classifier using LeRobot.
|
||||
|
||||
---
|
||||
|
||||
## Training Script Overview
|
||||
|
||||
LeRobot includes a ready-to-use training script located at [`lerobot/scripts/train_hilserl_classifier.py`](../../lerobot/scripts/train_hilserl_classifier.py). Here's an outline of its workflow:
|
||||
|
||||
1. **Configuration Loading**
|
||||
The script uses Hydra to load a configuration file for subsequent steps. (Details on Hydra follow below.)
|
||||
|
||||
2. **Dataset Initialization**
|
||||
It loads a `LeRobotDataset` containing images and rewards. To optimize performance, a weighted random sampler is used to balance class sampling.
|
||||
|
||||
3. **Classifier Initialization**
|
||||
A lightweight classification head is built on top of a frozen, pretrained image encoder from HuggingFace. The classifier outputs either:
|
||||
- A single probability (binary classification), or
|
||||
- Logits (multi-class classification).
|
||||
|
||||
4. **Training Loop Execution**
|
||||
The script performs:
|
||||
- Forward and backward passes,
|
||||
- Optimization steps,
|
||||
- Periodic logging, evaluation, and checkpoint saving.
|
||||
|
||||
---
|
||||
|
||||
## Configuring with Hydra
|
||||
|
||||
For detailed information about Hydra usage, refer to [`examples/4_train_policy_with_script.md`](../examples/4_train_policy_with_script.md). However, note that training the reward classifier differs slightly and requires a separate configuration file.
|
||||
|
||||
### Config File Setup
|
||||
|
||||
The default `default.yaml` cannot launch the reward classifier training directly. Instead, you need a configuration file like [`lerobot/configs/policy/hilserl_classifier.yaml`](../../lerobot/configs/policy/hilserl_classifier.yaml), with the following adjustment:
|
||||
|
||||
Replace the `dataset_repo_id` field with the identifier for your dataset, which contains images and sparse rewards:
|
||||
|
||||
```yaml
|
||||
# Example: lerobot/configs/policy/reward_classifier.yaml
|
||||
dataset_repo_id: "my_dataset_repo_id"
|
||||
## Typical logs and metrics
|
||||
```
|
||||
When you start the training process, you will first see your full configuration being printed in the terminal. You can check it to make sure that you config it correctly and your config is not overrided by other files. The final configuration will also be saved with the checkpoint.
|
||||
|
||||
After that, you will see training log like this one:
|
||||
|
||||
```
|
||||
[2024-11-29 18:26:36,999][root][INFO] -
|
||||
Epoch 5/5
|
||||
Training: 82%|██████████████████████████████████████████████████████████████████████████████▋ | 91/111 [00:50<00:09, 2.04it/s, loss=0.2999, acc=69.99%]
|
||||
```
|
||||
|
||||
or evaluation log like:
|
||||
|
||||
```
|
||||
Validation: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 28/28 [00:20<00:00, 1.37it/s]
|
||||
```
|
||||
|
||||
### Metrics Tracking with Weights & Biases (WandB)
|
||||
|
||||
If `wandb.enable` is set to `true`, the training and evaluation logs will also be saved in WandB. This allows you to track key metrics in real-time, including:
|
||||
|
||||
- **Training Metrics**:
|
||||
- `train/accuracy`
|
||||
- `train/loss`
|
||||
- `train/dataloading_s`
|
||||
- **Evaluation Metrics**:
|
||||
- `eval/accuracy`
|
||||
- `eval/loss`
|
||||
- `eval/eval_s`
|
||||
|
||||
#### Additional Features
|
||||
|
||||
You can also log sample predictions during evaluation. Each logged sample will include:
|
||||
|
||||
- The **input image**.
|
||||
- The **predicted label**.
|
||||
- The **true label**.
|
||||
- The **classifier's "confidence" (logits/probability)**.
|
||||
|
||||
These logs can be useful for diagnosing and debugging performance issues.
|
||||
|
||||
|
||||
#### Generate protobuf files
|
||||
|
||||
```bash
|
||||
python -m grpc_tools.protoc \
|
||||
-I lerobot/scripts/server \
|
||||
--python_out=lerobot/scripts/server \
|
||||
--grpc_python_out=lerobot/scripts/server \
|
||||
lerobot/scripts/server/hilserl.proto
|
||||
```
|
||||
@@ -18,7 +18,10 @@ import torch
|
||||
from huggingface_hub import HfApi
|
||||
|
||||
import lerobot
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset, LeRobotDatasetMetadata
|
||||
from lerobot.common.datasets.lerobot_dataset import (
|
||||
LeRobotDataset,
|
||||
LeRobotDatasetMetadata,
|
||||
)
|
||||
|
||||
# We ported a number of existing datasets ourselves, use this to see the list:
|
||||
print("List of available datasets:")
|
||||
@@ -26,7 +29,10 @@ pprint(lerobot.available_datasets)
|
||||
|
||||
# You can also browse through the datasets created/ported by the community on the hub using the hub api:
|
||||
hub_api = HfApi()
|
||||
repo_ids = [info.id for info in hub_api.list_datasets(task_categories="robotics", tags=["LeRobot"])]
|
||||
repo_ids = [
|
||||
info.id
|
||||
for info in hub_api.list_datasets(task_categories="robotics", tags=["LeRobot"])
|
||||
]
|
||||
pprint(repo_ids)
|
||||
|
||||
# Or simply explore them in your web browser directly at:
|
||||
@@ -41,7 +47,9 @@ ds_meta = LeRobotDatasetMetadata(repo_id)
|
||||
# structure of the dataset without downloading the actual data yet (only metadata files — which are
|
||||
# lightweight).
|
||||
print(f"Total number of episodes: {ds_meta.total_episodes}")
|
||||
print(f"Average number of frames per episode: {ds_meta.total_frames / ds_meta.total_episodes:.3f}")
|
||||
print(
|
||||
f"Average number of frames per episode: {ds_meta.total_frames / ds_meta.total_episodes:.3f}"
|
||||
)
|
||||
print(f"Frames per second used during data collection: {ds_meta.fps}")
|
||||
print(f"Robot type: {ds_meta.robot_type}")
|
||||
print(f"keys to access images from cameras: {ds_meta.camera_keys=}\n")
|
||||
|
||||
@@ -32,7 +32,9 @@ if torch.cuda.is_available():
|
||||
print("GPU is available. Device set to:", device)
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
print(f"GPU is not available. Device set to: {device}. Inference will be slower than on GPU.")
|
||||
print(
|
||||
f"GPU is not available. Device set to: {device}. Inference will be slower than on GPU."
|
||||
)
|
||||
# Decrease the number of reverse-diffusion steps (trades off a bit of quality for 10x speed)
|
||||
policy.diffusion.num_inference_steps = 10
|
||||
|
||||
|
||||
@@ -31,7 +31,24 @@ delta_timestamps = {
|
||||
# Load the previous action (-0.1), the next action to be executed (0.0),
|
||||
# and 14 future actions with a 0.1 seconds spacing. All these actions will be
|
||||
# used to supervise the policy.
|
||||
"action": [-0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4],
|
||||
"action": [
|
||||
-0.1,
|
||||
0.0,
|
||||
0.1,
|
||||
0.2,
|
||||
0.3,
|
||||
0.4,
|
||||
0.5,
|
||||
0.6,
|
||||
0.7,
|
||||
0.8,
|
||||
0.9,
|
||||
1.0,
|
||||
1.1,
|
||||
1.2,
|
||||
1.3,
|
||||
1.4,
|
||||
],
|
||||
}
|
||||
dataset = LeRobotDataset("lerobot/pusht", delta_timestamps=delta_timestamps)
|
||||
|
||||
|
||||
@@ -34,10 +34,14 @@ transforms = v2.Compose(
|
||||
)
|
||||
|
||||
# Create another LeRobotDataset with the defined transformations
|
||||
transformed_dataset = LeRobotDataset(dataset_repo_id, episodes=[0], image_transforms=transforms)
|
||||
transformed_dataset = LeRobotDataset(
|
||||
dataset_repo_id, episodes=[0], image_transforms=transforms
|
||||
)
|
||||
|
||||
# Get a frame from the transformed dataset
|
||||
transformed_frame = transformed_dataset[first_idx][transformed_dataset.meta.camera_keys[0]]
|
||||
transformed_frame = transformed_dataset[first_idx][
|
||||
transformed_dataset.meta.camera_keys[0]
|
||||
]
|
||||
|
||||
# Create a directory to store output images
|
||||
output_dir = Path("outputs/image_transforms")
|
||||
|
||||
@@ -14,7 +14,10 @@ from pathlib import Path
|
||||
import torch
|
||||
from huggingface_hub import snapshot_download
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset, LeRobotDatasetMetadata
|
||||
from lerobot.common.datasets.lerobot_dataset import (
|
||||
LeRobotDataset,
|
||||
LeRobotDatasetMetadata,
|
||||
)
|
||||
from lerobot.common.policies.diffusion.modeling_diffusion import DiffusionPolicy
|
||||
|
||||
device = torch.device("cuda")
|
||||
@@ -37,7 +40,24 @@ delta_timestamps = {
|
||||
# Load the previous action (-0.1), the next action to be executed (0.0),
|
||||
# and 14 future actions with a 0.1 seconds spacing. All these actions will be
|
||||
# used to calculate the loss.
|
||||
"action": [-0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4],
|
||||
"action": [
|
||||
-0.1,
|
||||
0.0,
|
||||
0.1,
|
||||
0.2,
|
||||
0.3,
|
||||
0.4,
|
||||
0.5,
|
||||
0.6,
|
||||
0.7,
|
||||
0.8,
|
||||
0.9,
|
||||
1.0,
|
||||
1.1,
|
||||
1.2,
|
||||
1.3,
|
||||
1.4,
|
||||
],
|
||||
}
|
||||
|
||||
# Load the last 10% of episodes of the dataset as a validation set.
|
||||
@@ -53,8 +73,12 @@ print(f"Number of episodes in full dataset: {total_episodes}")
|
||||
print(f"Number of episodes in training dataset (90% subset): {len(train_episodes)}")
|
||||
print(f"Number of episodes in validation dataset (10% subset): {len(val_episodes)}")
|
||||
# - Load train an val datasets
|
||||
train_dataset = LeRobotDataset("lerobot/pusht", episodes=train_episodes, delta_timestamps=delta_timestamps)
|
||||
val_dataset = LeRobotDataset("lerobot/pusht", episodes=val_episodes, delta_timestamps=delta_timestamps)
|
||||
train_dataset = LeRobotDataset(
|
||||
"lerobot/pusht", episodes=train_episodes, delta_timestamps=delta_timestamps
|
||||
)
|
||||
val_dataset = LeRobotDataset(
|
||||
"lerobot/pusht", episodes=val_episodes, delta_timestamps=delta_timestamps
|
||||
)
|
||||
print(f"Number of frames in training dataset (90% subset): {len(train_dataset)}")
|
||||
print(f"Number of frames in validation dataset (10% subset): {len(val_dataset)}")
|
||||
|
||||
|
||||
@@ -69,7 +69,9 @@ def load_raw_dataset(zarr_path: Path):
|
||||
ReplayBuffer as DiffusionPolicyReplayBuffer,
|
||||
)
|
||||
except ModuleNotFoundError as e:
|
||||
print("`gym_pusht` is not installed. Please install it with `pip install 'lerobot[gym_pusht]'`")
|
||||
print(
|
||||
"`gym_pusht` is not installed. Please install it with `pip install 'lerobot[gym_pusht]'`"
|
||||
)
|
||||
raise e
|
||||
|
||||
zarr_data = DiffusionPolicyReplayBuffer.copy_from_path(zarr_path)
|
||||
@@ -81,7 +83,9 @@ def calculate_coverage(zarr_data):
|
||||
import pymunk
|
||||
from gym_pusht.envs.pusht import PushTEnv, pymunk_to_shapely
|
||||
except ModuleNotFoundError as e:
|
||||
print("`gym_pusht` is not installed. Please install it with `pip install 'lerobot[gym_pusht]'`")
|
||||
print(
|
||||
"`gym_pusht` is not installed. Please install it with `pip install 'lerobot[gym_pusht]'`"
|
||||
)
|
||||
raise e
|
||||
|
||||
block_pos = zarr_data["state"][:, 2:4]
|
||||
@@ -111,7 +115,9 @@ def calculate_coverage(zarr_data):
|
||||
]
|
||||
space.add(*walls)
|
||||
|
||||
block_body, block_shapes = PushTEnv.add_tee(space, block_pos[i].tolist(), block_angle[i].item())
|
||||
block_body, block_shapes = PushTEnv.add_tee(
|
||||
space, block_pos[i].tolist(), block_angle[i].item()
|
||||
)
|
||||
goal_geom = pymunk_to_shapely(goal_body, block_body.shapes)
|
||||
block_geom = pymunk_to_shapely(block_body, block_body.shapes)
|
||||
intersection_area = goal_geom.intersection(block_geom).area
|
||||
|
||||
@@ -182,7 +182,11 @@ available_real_world_datasets = [
|
||||
]
|
||||
|
||||
available_datasets = sorted(
|
||||
set(itertools.chain(*available_datasets_per_env.values(), available_real_world_datasets))
|
||||
set(
|
||||
itertools.chain(
|
||||
*available_datasets_per_env.values(), available_real_world_datasets
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
# lists all available policies from `lerobot/common/policies`
|
||||
@@ -224,9 +228,13 @@ available_policies_per_env = {
|
||||
"dora_aloha_real": ["act_aloha_real"],
|
||||
}
|
||||
|
||||
env_task_pairs = [(env, task) for env, tasks in available_tasks_per_env.items() for task in tasks]
|
||||
env_task_pairs = [
|
||||
(env, task) for env, tasks in available_tasks_per_env.items() for task in tasks
|
||||
]
|
||||
env_dataset_pairs = [
|
||||
(env, dataset) for env, datasets in available_datasets_per_env.items() for dataset in datasets
|
||||
(env, dataset)
|
||||
for env, datasets in available_datasets_per_env.items()
|
||||
for dataset in datasets
|
||||
]
|
||||
env_dataset_policy_triplets = [
|
||||
(env, dataset, policy)
|
||||
|
||||
@@ -45,12 +45,20 @@ def get_stats_einops_patterns(dataset, num_workers=0):
|
||||
if key in dataset.meta.camera_keys:
|
||||
# sanity check that images are channel first
|
||||
_, c, h, w = batch[key].shape
|
||||
assert c < h and c < w, f"expect channel first images, but instead {batch[key].shape}"
|
||||
assert (
|
||||
c < h and c < w
|
||||
), f"expect channel first images, but instead {batch[key].shape}"
|
||||
|
||||
# sanity check that images are float32 in range [0,1]
|
||||
assert batch[key].dtype == torch.float32, f"expect torch.float32, but instead {batch[key].dtype=}"
|
||||
assert batch[key].max() <= 1, f"expect pixels lower than 1, but instead {batch[key].max()=}"
|
||||
assert batch[key].min() >= 0, f"expect pixels greater than 1, but instead {batch[key].min()=}"
|
||||
assert (
|
||||
batch[key].dtype == torch.float32
|
||||
), f"expect torch.float32, but instead {batch[key].dtype=}"
|
||||
assert (
|
||||
batch[key].max() <= 1
|
||||
), f"expect pixels lower than 1, but instead {batch[key].max()=}"
|
||||
assert (
|
||||
batch[key].min() >= 0
|
||||
), f"expect pixels greater than 1, but instead {batch[key].min()=}"
|
||||
|
||||
stats_patterns[key] = "b c h w -> c 1 1"
|
||||
elif batch[key].ndim == 2:
|
||||
@@ -98,7 +106,11 @@ def compute_stats(dataset, batch_size=8, num_workers=8, max_num_samples=None):
|
||||
running_item_count = 0 # for online mean computation
|
||||
dataloader = create_seeded_dataloader(dataset, batch_size, seed=1337)
|
||||
for i, batch in enumerate(
|
||||
tqdm.tqdm(dataloader, total=ceil(max_num_samples / batch_size), desc="Compute mean, min, max")
|
||||
tqdm.tqdm(
|
||||
dataloader,
|
||||
total=ceil(max_num_samples / batch_size),
|
||||
desc="Compute mean, min, max",
|
||||
)
|
||||
):
|
||||
this_batch_size = len(batch["index"])
|
||||
running_item_count += this_batch_size
|
||||
@@ -113,9 +125,16 @@ def compute_stats(dataset, batch_size=8, num_workers=8, max_num_samples=None):
|
||||
# and x is the current batch mean. Some rearrangement is then required to avoid risking
|
||||
# numerical overflow. Another hint: Nₙ₋₁ = Nₙ - Bₙ. Rearrangement yields
|
||||
# x̄ₙ = x̄ₙ₋₁ + Bₙ * (xₙ - x̄ₙ₋₁) / Nₙ
|
||||
mean[key] = mean[key] + this_batch_size * (batch_mean - mean[key]) / running_item_count
|
||||
max[key] = torch.maximum(max[key], einops.reduce(batch[key], pattern, "max"))
|
||||
min[key] = torch.minimum(min[key], einops.reduce(batch[key], pattern, "min"))
|
||||
mean[key] = (
|
||||
mean[key]
|
||||
+ this_batch_size * (batch_mean - mean[key]) / running_item_count
|
||||
)
|
||||
max[key] = torch.maximum(
|
||||
max[key], einops.reduce(batch[key], pattern, "max")
|
||||
)
|
||||
min[key] = torch.minimum(
|
||||
min[key], einops.reduce(batch[key], pattern, "min")
|
||||
)
|
||||
|
||||
if i == ceil(max_num_samples / batch_size) - 1:
|
||||
break
|
||||
@@ -124,7 +143,9 @@ def compute_stats(dataset, batch_size=8, num_workers=8, max_num_samples=None):
|
||||
running_item_count = 0 # for online std computation
|
||||
dataloader = create_seeded_dataloader(dataset, batch_size, seed=1337)
|
||||
for i, batch in enumerate(
|
||||
tqdm.tqdm(dataloader, total=ceil(max_num_samples / batch_size), desc="Compute std")
|
||||
tqdm.tqdm(
|
||||
dataloader, total=ceil(max_num_samples / batch_size), desc="Compute std"
|
||||
)
|
||||
):
|
||||
this_batch_size = len(batch["index"])
|
||||
running_item_count += this_batch_size
|
||||
@@ -138,7 +159,9 @@ def compute_stats(dataset, batch_size=8, num_workers=8, max_num_samples=None):
|
||||
# Numerically stable update step for mean computation (where the mean is over squared
|
||||
# residuals).See notes in the mean computation loop above.
|
||||
batch_std = einops.reduce((batch[key] - mean[key]) ** 2, pattern, "mean")
|
||||
std[key] = std[key] + this_batch_size * (batch_std - std[key]) / running_item_count
|
||||
std[key] = (
|
||||
std[key] + this_batch_size * (batch_std - std[key]) / running_item_count
|
||||
)
|
||||
|
||||
if i == ceil(max_num_samples / batch_size) - 1:
|
||||
break
|
||||
@@ -177,13 +200,19 @@ def aggregate_stats(ls_datasets) -> dict[str, torch.Tensor]:
|
||||
# compute `max(dataset_0["max"], dataset_1["max"], ...)`
|
||||
stats[data_key][stat_key] = einops.reduce(
|
||||
torch.stack(
|
||||
[ds.meta.stats[data_key][stat_key] for ds in ls_datasets if data_key in ds.meta.stats],
|
||||
[
|
||||
ds.meta.stats[data_key][stat_key]
|
||||
for ds in ls_datasets
|
||||
if data_key in ds.meta.stats
|
||||
],
|
||||
dim=0,
|
||||
),
|
||||
"n ... -> ...",
|
||||
stat_key,
|
||||
)
|
||||
total_samples = sum(d.num_frames for d in ls_datasets if data_key in d.meta.stats)
|
||||
total_samples = sum(
|
||||
d.num_frames for d in ls_datasets if data_key in d.meta.stats
|
||||
)
|
||||
# Compute the "sum" statistic by multiplying each mean by the number of samples in the respective
|
||||
# dataset, then divide by total_samples to get the overall "mean".
|
||||
# NOTE: the brackets around (d.num_frames / total_samples) are needed tor minimize the risk of
|
||||
|
||||
@@ -74,7 +74,25 @@ def make_dataset(cfg, split: str = "train") -> LeRobotDataset | MultiLeRobotData
|
||||
|
||||
image_transforms = None
|
||||
if cfg.training.image_transforms.enable:
|
||||
cfg_tf = cfg.training.image_transforms
|
||||
default_tf = OmegaConf.create(
|
||||
{
|
||||
"brightness": {"weight": 0.0, "min_max": None},
|
||||
"contrast": {"weight": 0.0, "min_max": None},
|
||||
"saturation": {"weight": 0.0, "min_max": None},
|
||||
"hue": {"weight": 0.0, "min_max": None},
|
||||
"sharpness": {"weight": 0.0, "min_max": None},
|
||||
"max_num_transforms": None,
|
||||
"random_order": False,
|
||||
"image_size": None,
|
||||
"interpolation": None,
|
||||
"image_mean": None,
|
||||
"image_std": None,
|
||||
}
|
||||
)
|
||||
cfg_tf = OmegaConf.merge(
|
||||
OmegaConf.create(default_tf), cfg.training.image_transforms
|
||||
)
|
||||
|
||||
image_transforms = get_image_transforms(
|
||||
brightness_weight=cfg_tf.brightness.weight,
|
||||
brightness_min_max=cfg_tf.brightness.min_max,
|
||||
@@ -88,6 +106,12 @@ def make_dataset(cfg, split: str = "train") -> LeRobotDataset | MultiLeRobotData
|
||||
sharpness_min_max=cfg_tf.sharpness.min_max,
|
||||
max_num_transforms=cfg_tf.max_num_transforms,
|
||||
random_order=cfg_tf.random_order,
|
||||
image_size=(cfg_tf.image_size.height, cfg_tf.image_size.width)
|
||||
if cfg_tf.image_size
|
||||
else None,
|
||||
interpolation=cfg_tf.interpolation,
|
||||
image_mean=cfg_tf.image_mean,
|
||||
image_std=cfg_tf.image_std,
|
||||
)
|
||||
|
||||
if isinstance(cfg.dataset_repo_id, str):
|
||||
@@ -111,6 +135,8 @@ def make_dataset(cfg, split: str = "train") -> LeRobotDataset | MultiLeRobotData
|
||||
for stats_type, listconfig in stats_dict.items():
|
||||
# example of stats_type: min, max, mean, std
|
||||
stats = OmegaConf.to_container(listconfig, resolve=True)
|
||||
dataset.meta.stats[key][stats_type] = torch.tensor(stats, dtype=torch.float32)
|
||||
dataset.meta.stats[key][stats_type] = torch.tensor(
|
||||
stats, dtype=torch.float32
|
||||
)
|
||||
|
||||
return dataset
|
||||
|
||||
@@ -109,7 +109,9 @@ class AsyncImageWriter:
|
||||
self._stopped = False
|
||||
|
||||
if num_threads <= 0 and num_processes <= 0:
|
||||
raise ValueError("Number of threads and processes must be greater than zero.")
|
||||
raise ValueError(
|
||||
"Number of threads and processes must be greater than zero."
|
||||
)
|
||||
|
||||
if self.num_processes == 0:
|
||||
# Use threading
|
||||
@@ -123,12 +125,16 @@ class AsyncImageWriter:
|
||||
# Use multiprocessing
|
||||
self.queue = multiprocessing.JoinableQueue()
|
||||
for _ in range(self.num_processes):
|
||||
p = multiprocessing.Process(target=worker_process, args=(self.queue, self.num_threads))
|
||||
p = multiprocessing.Process(
|
||||
target=worker_process, args=(self.queue, self.num_threads)
|
||||
)
|
||||
p.daemon = True
|
||||
p.start()
|
||||
self.processes.append(p)
|
||||
|
||||
def save_image(self, image: torch.Tensor | np.ndarray | PIL.Image.Image, fpath: Path):
|
||||
def save_image(
|
||||
self, image: torch.Tensor | np.ndarray | PIL.Image.Image, fpath: Path
|
||||
):
|
||||
if isinstance(image, torch.Tensor):
|
||||
# Convert tensor to numpy array to minimize main process time
|
||||
image = image.cpu().numpy()
|
||||
|
||||
@@ -68,7 +68,9 @@ from lerobot.common.robot_devices.robots.utils import Robot
|
||||
|
||||
# For maintainers, see lerobot/common/datasets/push_dataset_to_hub/CODEBASE_VERSION.md
|
||||
CODEBASE_VERSION = "v2.0"
|
||||
LEROBOT_HOME = Path(os.getenv("LEROBOT_HOME", "~/.cache/huggingface/lerobot")).expanduser()
|
||||
LEROBOT_HOME = Path(
|
||||
os.getenv("LEROBOT_HOME", "~/.cache/huggingface/lerobot")
|
||||
).expanduser()
|
||||
|
||||
|
||||
class LeRobotDatasetMetadata:
|
||||
@@ -84,7 +86,8 @@ class LeRobotDatasetMetadata:
|
||||
|
||||
# Load metadata
|
||||
(self.root / "meta").mkdir(exist_ok=True, parents=True)
|
||||
self.pull_from_repo(allow_patterns="meta/")
|
||||
if not self.local_files_only:
|
||||
self.pull_from_repo(allow_patterns="meta/")
|
||||
self.info = load_info(self.root)
|
||||
self.stats = load_stats(self.root)
|
||||
self.tasks = load_tasks(self.root)
|
||||
@@ -107,7 +110,11 @@ class LeRobotDatasetMetadata:
|
||||
|
||||
@cached_property
|
||||
def _hub_version(self) -> str | None:
|
||||
return None if self.local_files_only else get_hub_safe_version(self.repo_id, CODEBASE_VERSION)
|
||||
return (
|
||||
None
|
||||
if self.local_files_only
|
||||
else get_hub_safe_version(self.repo_id, CODEBASE_VERSION)
|
||||
)
|
||||
|
||||
@property
|
||||
def _version(self) -> str:
|
||||
@@ -121,7 +128,9 @@ class LeRobotDatasetMetadata:
|
||||
|
||||
def get_video_file_path(self, ep_index: int, vid_key: str) -> Path:
|
||||
ep_chunk = self.get_episode_chunk(ep_index)
|
||||
fpath = self.video_path.format(episode_chunk=ep_chunk, video_key=vid_key, episode_index=ep_index)
|
||||
fpath = self.video_path.format(
|
||||
episode_chunk=ep_chunk, video_key=vid_key, episode_index=ep_index
|
||||
)
|
||||
return Path(fpath)
|
||||
|
||||
def get_episode_chunk(self, ep_index: int) -> int:
|
||||
@@ -165,7 +174,11 @@ class LeRobotDatasetMetadata:
|
||||
@property
|
||||
def camera_keys(self) -> list[str]:
|
||||
"""Keys to access visual modalities (regardless of their storage method)."""
|
||||
return [key for key, ft in self.features.items() if ft["dtype"] in ["video", "image"]]
|
||||
return [
|
||||
key
|
||||
for key, ft in self.features.items()
|
||||
if ft["dtype"] in ["video", "image"]
|
||||
]
|
||||
|
||||
@property
|
||||
def names(self) -> dict[str, list | dict]:
|
||||
@@ -214,7 +227,9 @@ class LeRobotDatasetMetadata:
|
||||
task_index = self.task_to_task_index.get(task, None)
|
||||
return task_index if task_index is not None else self.total_tasks
|
||||
|
||||
def save_episode(self, episode_index: int, episode_length: int, task: str, task_index: int) -> None:
|
||||
def save_episode(
|
||||
self, episode_index: int, episode_length: int, task: str, task_index: int
|
||||
) -> None:
|
||||
self.info["total_episodes"] += 1
|
||||
self.info["total_frames"] += episode_length
|
||||
|
||||
@@ -256,7 +271,9 @@ class LeRobotDatasetMetadata:
|
||||
"""
|
||||
for key in self.video_keys:
|
||||
if not self.features[key].get("info", None):
|
||||
video_path = self.root / self.get_video_file_path(ep_index=0, vid_key=key)
|
||||
video_path = self.root / self.get_video_file_path(
|
||||
ep_index=0, vid_key=key
|
||||
)
|
||||
self.info["features"][key]["info"] = get_video_info(video_path)
|
||||
|
||||
write_json(self.info, self.root / INFO_PATH)
|
||||
@@ -291,7 +308,7 @@ class LeRobotDatasetMetadata:
|
||||
obj.root.mkdir(parents=True, exist_ok=False)
|
||||
|
||||
if robot is not None:
|
||||
features = get_features_from_robot(robot, use_videos)
|
||||
features = {**(features or {}), **get_features_from_robot(robot)}
|
||||
robot_type = robot.robot_type
|
||||
if not all(cam.fps == fps for cam in robot.cameras.values()):
|
||||
logging.warning(
|
||||
@@ -307,7 +324,9 @@ class LeRobotDatasetMetadata:
|
||||
features = {**features, **DEFAULT_FEATURES}
|
||||
|
||||
obj.tasks, obj.stats, obj.episodes = {}, {}, []
|
||||
obj.info = create_empty_dataset_info(CODEBASE_VERSION, fps, robot_type, features, use_videos)
|
||||
obj.info = create_empty_dataset_info(
|
||||
CODEBASE_VERSION, fps, robot_type, features, use_videos
|
||||
)
|
||||
if len(obj.video_keys) > 0 and not use_videos:
|
||||
raise ValueError()
|
||||
write_json(obj.info, obj.root / INFO_PATH)
|
||||
@@ -443,7 +462,9 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
self.root.mkdir(exist_ok=True, parents=True)
|
||||
|
||||
# Load metadata
|
||||
self.meta = LeRobotDatasetMetadata(self.repo_id, self.root, self.local_files_only)
|
||||
self.meta = LeRobotDatasetMetadata(
|
||||
self.repo_id, self.root, self.local_files_only
|
||||
)
|
||||
|
||||
# Check version
|
||||
check_version_compatibility(self.repo_id, self.meta._version, CODEBASE_VERSION)
|
||||
@@ -451,10 +472,14 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
# Load actual data
|
||||
self.download_episodes(download_videos)
|
||||
self.hf_dataset = self.load_hf_dataset()
|
||||
self.episode_data_index = get_episode_data_index(self.meta.episodes, self.episodes)
|
||||
self.episode_data_index = get_episode_data_index(
|
||||
self.meta.episodes, self.episodes
|
||||
)
|
||||
|
||||
# Check timestamps
|
||||
check_timestamps_sync(self.hf_dataset, self.episode_data_index, self.fps, self.tolerance_s)
|
||||
check_timestamps_sync(
|
||||
self.hf_dataset, self.episode_data_index, self.fps, self.tolerance_s
|
||||
)
|
||||
|
||||
# Setup delta_indices
|
||||
if self.delta_timestamps is not None:
|
||||
@@ -500,7 +525,9 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
tags=tags, dataset_info=self.meta.info, license=license, **card_kwargs
|
||||
)
|
||||
card.push_to_hub(repo_id=self.repo_id, repo_type="dataset")
|
||||
create_branch(repo_id=self.repo_id, branch=CODEBASE_VERSION, repo_type="dataset")
|
||||
create_branch(
|
||||
repo_id=self.repo_id, branch=CODEBASE_VERSION, repo_type="dataset"
|
||||
)
|
||||
|
||||
def pull_from_repo(
|
||||
self,
|
||||
@@ -528,7 +555,9 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
files = None
|
||||
ignore_patterns = None if download_videos else "videos/"
|
||||
if self.episodes is not None:
|
||||
files = [str(self.meta.get_data_file_path(ep_idx)) for ep_idx in self.episodes]
|
||||
files = [
|
||||
str(self.meta.get_data_file_path(ep_idx)) for ep_idx in self.episodes
|
||||
]
|
||||
if len(self.meta.video_keys) > 0 and download_videos:
|
||||
video_files = [
|
||||
str(self.meta.get_video_file_path(ep_idx, vid_key))
|
||||
@@ -537,7 +566,8 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
]
|
||||
files += video_files
|
||||
|
||||
self.pull_from_repo(allow_patterns=files, ignore_patterns=ignore_patterns)
|
||||
if not self.local_files_only:
|
||||
self.pull_from_repo(allow_patterns=files, ignore_patterns=ignore_patterns)
|
||||
|
||||
def load_hf_dataset(self) -> datasets.Dataset:
|
||||
"""hf_dataset contains all the observations, states, actions, rewards, etc."""
|
||||
@@ -545,7 +575,10 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
path = str(self.root / "data")
|
||||
hf_dataset = load_dataset("parquet", data_dir=path, split="train")
|
||||
else:
|
||||
files = [str(self.root / self.meta.get_data_file_path(ep_idx)) for ep_idx in self.episodes]
|
||||
files = [
|
||||
str(self.root / self.meta.get_data_file_path(ep_idx))
|
||||
for ep_idx in self.episodes
|
||||
]
|
||||
hf_dataset = load_dataset("parquet", data_files=files, split="train")
|
||||
|
||||
# TODO(aliberts): hf_dataset.set_format("torch")
|
||||
@@ -561,12 +594,20 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
@property
|
||||
def num_frames(self) -> int:
|
||||
"""Number of frames in selected episodes."""
|
||||
return len(self.hf_dataset) if self.hf_dataset is not None else self.meta.total_frames
|
||||
return (
|
||||
len(self.hf_dataset)
|
||||
if self.hf_dataset is not None
|
||||
else self.meta.total_frames
|
||||
)
|
||||
|
||||
@property
|
||||
def num_episodes(self) -> int:
|
||||
"""Number of episodes selected."""
|
||||
return len(self.episodes) if self.episodes is not None else self.meta.total_episodes
|
||||
return (
|
||||
len(self.episodes)
|
||||
if self.episodes is not None
|
||||
else self.meta.total_episodes
|
||||
)
|
||||
|
||||
@property
|
||||
def features(self) -> dict[str, dict]:
|
||||
@@ -580,16 +621,24 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
else:
|
||||
return get_hf_features_from_features(self.features)
|
||||
|
||||
def _get_query_indices(self, idx: int, ep_idx: int) -> tuple[dict[str, list[int | bool]]]:
|
||||
def _get_query_indices(
|
||||
self, idx: int, ep_idx: int
|
||||
) -> tuple[dict[str, list[int | bool]]]:
|
||||
ep_start = self.episode_data_index["from"][ep_idx]
|
||||
ep_end = self.episode_data_index["to"][ep_idx]
|
||||
query_indices = {
|
||||
key: [max(ep_start.item(), min(ep_end.item() - 1, idx + delta)) for delta in delta_idx]
|
||||
key: [
|
||||
max(ep_start.item(), min(ep_end.item() - 1, idx + delta))
|
||||
for delta in delta_idx
|
||||
]
|
||||
for key, delta_idx in self.delta_indices.items()
|
||||
}
|
||||
padding = { # Pad values outside of current episode range
|
||||
f"{key}_is_pad": torch.BoolTensor(
|
||||
[(idx + delta < ep_start.item()) | (idx + delta >= ep_end.item()) for delta in delta_idx]
|
||||
[
|
||||
(idx + delta < ep_start.item()) | (idx + delta >= ep_end.item())
|
||||
for delta in delta_idx
|
||||
]
|
||||
)
|
||||
for key, delta_idx in self.delta_indices.items()
|
||||
}
|
||||
@@ -617,7 +666,9 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
if key not in self.meta.video_keys
|
||||
}
|
||||
|
||||
def _query_videos(self, query_timestamps: dict[str, list[float]], ep_idx: int) -> dict:
|
||||
def _query_videos(
|
||||
self, query_timestamps: dict[str, list[float]], ep_idx: int
|
||||
) -> dict:
|
||||
"""Note: When using data workers (e.g. DataLoader with num_workers>0), do not call this function
|
||||
in the main process (e.g. by using a second Dataloader with num_workers=0). It will result in a
|
||||
Segmentation Fault. This probably happens because a memory reference to the video loader is created in
|
||||
@@ -647,7 +698,9 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
|
||||
query_indices = None
|
||||
if self.delta_indices is not None:
|
||||
current_ep_idx = self.episodes.index(ep_idx) if self.episodes is not None else ep_idx
|
||||
current_ep_idx = (
|
||||
self.episodes.index(ep_idx) if self.episodes is not None else ep_idx
|
||||
)
|
||||
query_indices, padding = self._get_query_indices(idx, current_ep_idx)
|
||||
query_result = self._query_hf_dataset(query_indices)
|
||||
item = {**item, **padding}
|
||||
@@ -679,19 +732,28 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
)
|
||||
|
||||
def create_episode_buffer(self, episode_index: int | None = None) -> dict:
|
||||
current_ep_idx = self.meta.total_episodes if episode_index is None else episode_index
|
||||
current_ep_idx = (
|
||||
self.meta.total_episodes if episode_index is None else episode_index
|
||||
)
|
||||
return {
|
||||
"size": 0,
|
||||
**{key: current_ep_idx if key == "episode_index" else [] for key in self.features},
|
||||
**{
|
||||
key: current_ep_idx if key == "episode_index" else []
|
||||
for key in self.features
|
||||
},
|
||||
}
|
||||
|
||||
def _get_image_file_path(self, episode_index: int, image_key: str, frame_index: int) -> Path:
|
||||
def _get_image_file_path(
|
||||
self, episode_index: int, image_key: str, frame_index: int
|
||||
) -> Path:
|
||||
fpath = DEFAULT_IMAGE_PATH.format(
|
||||
image_key=image_key, episode_index=episode_index, frame_index=frame_index
|
||||
)
|
||||
return self.root / fpath
|
||||
|
||||
def _save_image(self, image: torch.Tensor | np.ndarray | PIL.Image.Image, fpath: Path) -> None:
|
||||
def _save_image(
|
||||
self, image: torch.Tensor | np.ndarray | PIL.Image.Image, fpath: Path
|
||||
) -> None:
|
||||
if self.image_writer is None:
|
||||
if isinstance(image, torch.Tensor):
|
||||
image = image.cpu().numpy()
|
||||
@@ -712,7 +774,9 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
self.episode_buffer = self.create_episode_buffer()
|
||||
|
||||
frame_index = self.episode_buffer["size"]
|
||||
timestamp = frame.pop("timestamp") if "timestamp" in frame else frame_index / self.fps
|
||||
timestamp = (
|
||||
frame.pop("timestamp") if "timestamp" in frame else frame_index / self.fps
|
||||
)
|
||||
self.episode_buffer["frame_index"].append(frame_index)
|
||||
self.episode_buffer["timestamp"].append(timestamp)
|
||||
|
||||
@@ -721,11 +785,17 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
raise ValueError(key)
|
||||
|
||||
if self.features[key]["dtype"] not in ["image", "video"]:
|
||||
item = frame[key].numpy() if isinstance(frame[key], torch.Tensor) else frame[key]
|
||||
item = (
|
||||
frame[key].numpy()
|
||||
if isinstance(frame[key], torch.Tensor)
|
||||
else frame[key]
|
||||
)
|
||||
self.episode_buffer[key].append(item)
|
||||
elif self.features[key]["dtype"] in ["image", "video"]:
|
||||
img_path = self._get_image_file_path(
|
||||
episode_index=self.episode_buffer["episode_index"], image_key=key, frame_index=frame_index
|
||||
episode_index=self.episode_buffer["episode_index"],
|
||||
image_key=key,
|
||||
frame_index=frame_index,
|
||||
)
|
||||
if frame_index == 0:
|
||||
img_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
@@ -734,7 +804,9 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
|
||||
self.episode_buffer["size"] += 1
|
||||
|
||||
def save_episode(self, task: str, encode_videos: bool = True, episode_data: dict | None = None) -> None:
|
||||
def save_episode(
|
||||
self, task: str, encode_videos: bool = True, episode_data: dict | None = None
|
||||
) -> None:
|
||||
"""
|
||||
This will save to disk the current episode in self.episode_buffer. Note that since it affects files on
|
||||
disk, it sets self.consolidated to False to ensure proper consolidation later on before uploading to
|
||||
@@ -801,7 +873,9 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
|
||||
def _save_episode_table(self, episode_buffer: dict, episode_index: int) -> None:
|
||||
episode_dict = {key: episode_buffer[key] for key in self.hf_features}
|
||||
ep_dataset = datasets.Dataset.from_dict(episode_dict, features=self.hf_features, split="train")
|
||||
ep_dataset = datasets.Dataset.from_dict(
|
||||
episode_dict, features=self.hf_features, split="train"
|
||||
)
|
||||
ep_data_path = self.root / self.meta.get_data_file_path(ep_index=episode_index)
|
||||
ep_data_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
write_parquet(ep_dataset, ep_data_path)
|
||||
@@ -873,10 +947,16 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
|
||||
return video_paths
|
||||
|
||||
def consolidate(self, run_compute_stats: bool = True, keep_image_files: bool = False) -> None:
|
||||
def consolidate(
|
||||
self, run_compute_stats: bool = True, keep_image_files: bool = False
|
||||
) -> None:
|
||||
self.hf_dataset = self.load_hf_dataset()
|
||||
self.episode_data_index = get_episode_data_index(self.meta.episodes, self.episodes)
|
||||
check_timestamps_sync(self.hf_dataset, self.episode_data_index, self.fps, self.tolerance_s)
|
||||
self.episode_data_index = get_episode_data_index(
|
||||
self.meta.episodes, self.episodes
|
||||
)
|
||||
check_timestamps_sync(
|
||||
self.hf_dataset, self.episode_data_index, self.fps, self.tolerance_s
|
||||
)
|
||||
|
||||
if len(self.meta.video_keys) > 0:
|
||||
self.encode_videos()
|
||||
@@ -981,7 +1061,9 @@ class MultiLeRobotDataset(torch.utils.data.Dataset):
|
||||
super().__init__()
|
||||
self.repo_ids = repo_ids
|
||||
self.root = Path(root) if root else LEROBOT_HOME
|
||||
self.tolerances_s = tolerances_s if tolerances_s else {repo_id: 1e-4 for repo_id in repo_ids}
|
||||
self.tolerances_s = (
|
||||
tolerances_s if tolerances_s else {repo_id: 1e-4 for repo_id in repo_ids}
|
||||
)
|
||||
# Construct the underlying datasets passing everything but `transform` and `delta_timestamps` which
|
||||
# are handled by this class.
|
||||
self._datasets = [
|
||||
@@ -1058,7 +1140,13 @@ class MultiLeRobotDataset(torch.utils.data.Dataset):
|
||||
def features(self) -> datasets.Features:
|
||||
features = {}
|
||||
for dataset in self._datasets:
|
||||
features.update({k: v for k, v in dataset.hf_features.items() if k not in self.disabled_features})
|
||||
features.update(
|
||||
{
|
||||
k: v
|
||||
for k, v in dataset.hf_features.items()
|
||||
if k not in self.disabled_features
|
||||
}
|
||||
)
|
||||
return features
|
||||
|
||||
@property
|
||||
@@ -1119,7 +1207,9 @@ class MultiLeRobotDataset(torch.utils.data.Dataset):
|
||||
continue
|
||||
break
|
||||
else:
|
||||
raise AssertionError("We expect the loop to break out as long as the index is within bounds.")
|
||||
raise AssertionError(
|
||||
"We expect the loop to break out as long as the index is within bounds."
|
||||
)
|
||||
item = self._datasets[dataset_idx][idx - start_idx]
|
||||
item["dataset_index"] = torch.tensor(dataset_idx)
|
||||
for data_key in self.disabled_features:
|
||||
|
||||
@@ -131,7 +131,9 @@ class OnlineBuffer(torch.utils.data.Dataset):
|
||||
else:
|
||||
self._delta_timestamps = None
|
||||
|
||||
def _make_data_spec(self, data_spec: dict[str, Any], buffer_capacity: int) -> dict[str, dict[str, Any]]:
|
||||
def _make_data_spec(
|
||||
self, data_spec: dict[str, Any], buffer_capacity: int
|
||||
) -> dict[str, dict[str, Any]]:
|
||||
"""Makes the data spec for np.memmap."""
|
||||
if any(k.startswith("_") for k in data_spec):
|
||||
raise ValueError(
|
||||
@@ -154,14 +156,32 @@ class OnlineBuffer(torch.utils.data.Dataset):
|
||||
OnlineBuffer.NEXT_INDEX_KEY: {"dtype": np.dtype("int64"), "shape": ()},
|
||||
# Since the memmap is initialized with all-zeros, this keeps track of which indices are occupied
|
||||
# with real data rather than the dummy initialization.
|
||||
OnlineBuffer.OCCUPANCY_MASK_KEY: {"dtype": np.dtype("?"), "shape": (buffer_capacity,)},
|
||||
OnlineBuffer.INDEX_KEY: {"dtype": np.dtype("int64"), "shape": (buffer_capacity,)},
|
||||
OnlineBuffer.FRAME_INDEX_KEY: {"dtype": np.dtype("int64"), "shape": (buffer_capacity,)},
|
||||
OnlineBuffer.EPISODE_INDEX_KEY: {"dtype": np.dtype("int64"), "shape": (buffer_capacity,)},
|
||||
OnlineBuffer.TIMESTAMP_KEY: {"dtype": np.dtype("float64"), "shape": (buffer_capacity,)},
|
||||
OnlineBuffer.OCCUPANCY_MASK_KEY: {
|
||||
"dtype": np.dtype("?"),
|
||||
"shape": (buffer_capacity,),
|
||||
},
|
||||
OnlineBuffer.INDEX_KEY: {
|
||||
"dtype": np.dtype("int64"),
|
||||
"shape": (buffer_capacity,),
|
||||
},
|
||||
OnlineBuffer.FRAME_INDEX_KEY: {
|
||||
"dtype": np.dtype("int64"),
|
||||
"shape": (buffer_capacity,),
|
||||
},
|
||||
OnlineBuffer.EPISODE_INDEX_KEY: {
|
||||
"dtype": np.dtype("int64"),
|
||||
"shape": (buffer_capacity,),
|
||||
},
|
||||
OnlineBuffer.TIMESTAMP_KEY: {
|
||||
"dtype": np.dtype("float64"),
|
||||
"shape": (buffer_capacity,),
|
||||
},
|
||||
}
|
||||
for k, v in data_spec.items():
|
||||
complete_data_spec[k] = {"dtype": v["dtype"], "shape": (buffer_capacity, *v["shape"])}
|
||||
complete_data_spec[k] = {
|
||||
"dtype": v["dtype"],
|
||||
"shape": (buffer_capacity, *v["shape"]),
|
||||
}
|
||||
return complete_data_spec
|
||||
|
||||
def add_data(self, data: dict[str, np.ndarray]):
|
||||
@@ -188,7 +208,9 @@ class OnlineBuffer(torch.utils.data.Dataset):
|
||||
|
||||
# Shift the incoming indices if necessary.
|
||||
if self.num_frames > 0:
|
||||
last_episode_index = self._data[OnlineBuffer.EPISODE_INDEX_KEY][next_index - 1]
|
||||
last_episode_index = self._data[OnlineBuffer.EPISODE_INDEX_KEY][
|
||||
next_index - 1
|
||||
]
|
||||
last_data_index = self._data[OnlineBuffer.INDEX_KEY][next_index - 1]
|
||||
data[OnlineBuffer.EPISODE_INDEX_KEY] += last_episode_index + 1
|
||||
data[OnlineBuffer.INDEX_KEY] += last_data_index + 1
|
||||
@@ -223,7 +245,11 @@ class OnlineBuffer(torch.utils.data.Dataset):
|
||||
@property
|
||||
def num_episodes(self) -> int:
|
||||
return len(
|
||||
np.unique(self._data[OnlineBuffer.EPISODE_INDEX_KEY][self._data[OnlineBuffer.OCCUPANCY_MASK_KEY]])
|
||||
np.unique(
|
||||
self._data[OnlineBuffer.EPISODE_INDEX_KEY][
|
||||
self._data[OnlineBuffer.OCCUPANCY_MASK_KEY]
|
||||
]
|
||||
)
|
||||
)
|
||||
|
||||
@property
|
||||
@@ -261,7 +287,9 @@ class OnlineBuffer(torch.utils.data.Dataset):
|
||||
self._data[OnlineBuffer.OCCUPANCY_MASK_KEY],
|
||||
)
|
||||
)[0]
|
||||
episode_timestamps = self._data[OnlineBuffer.TIMESTAMP_KEY][episode_data_indices]
|
||||
episode_timestamps = self._data[OnlineBuffer.TIMESTAMP_KEY][
|
||||
episode_data_indices
|
||||
]
|
||||
|
||||
for data_key in self.delta_timestamps:
|
||||
# Note: The logic in this loop is copied from `load_previous_and_future_frames`.
|
||||
@@ -278,7 +306,8 @@ class OnlineBuffer(torch.utils.data.Dataset):
|
||||
|
||||
# Check violated query timestamps are all outside the episode range.
|
||||
assert (
|
||||
(query_ts[is_pad] < episode_timestamps[0]) | (episode_timestamps[-1] < query_ts[is_pad])
|
||||
(query_ts[is_pad] < episode_timestamps[0])
|
||||
| (episode_timestamps[-1] < query_ts[is_pad])
|
||||
).all(), (
|
||||
f"One or several timestamps unexpectedly violate the tolerance ({min_} > {self.tolerance_s=}"
|
||||
") inside the episode range."
|
||||
@@ -293,7 +322,9 @@ class OnlineBuffer(torch.utils.data.Dataset):
|
||||
|
||||
def get_data_by_key(self, key: str) -> torch.Tensor:
|
||||
"""Returns all data for a given data key as a Tensor."""
|
||||
return torch.from_numpy(self._data[key][self._data[OnlineBuffer.OCCUPANCY_MASK_KEY]])
|
||||
return torch.from_numpy(
|
||||
self._data[key][self._data[OnlineBuffer.OCCUPANCY_MASK_KEY]]
|
||||
)
|
||||
|
||||
|
||||
def compute_sampler_weights(
|
||||
@@ -324,13 +355,19 @@ def compute_sampler_weights(
|
||||
- Options `drop_first_n_frames` and `episode_indices_to_use` can be added easily. They were not
|
||||
included here to avoid adding complexity.
|
||||
"""
|
||||
if len(offline_dataset) == 0 and (online_dataset is None or len(online_dataset) == 0):
|
||||
raise ValueError("At least one of `offline_dataset` or `online_dataset` should be contain data.")
|
||||
if len(offline_dataset) == 0 and (
|
||||
online_dataset is None or len(online_dataset) == 0
|
||||
):
|
||||
raise ValueError(
|
||||
"At least one of `offline_dataset` or `online_dataset` should be contain data."
|
||||
)
|
||||
if (online_dataset is None) ^ (online_sampling_ratio is None):
|
||||
raise ValueError(
|
||||
"`online_dataset` and `online_sampling_ratio` must be provided together or not at all."
|
||||
)
|
||||
offline_sampling_ratio = 0 if online_sampling_ratio is None else 1 - online_sampling_ratio
|
||||
offline_sampling_ratio = (
|
||||
0 if online_sampling_ratio is None else 1 - online_sampling_ratio
|
||||
)
|
||||
|
||||
weights = []
|
||||
|
||||
|
||||
@@ -37,10 +37,16 @@ def check_chunks_compatible(chunks: tuple, shape: tuple):
|
||||
assert c > 0
|
||||
|
||||
|
||||
def rechunk_recompress_array(group, name, chunks=None, chunk_length=None, compressor=None, tmp_key="_temp"):
|
||||
def rechunk_recompress_array(
|
||||
group, name, chunks=None, chunk_length=None, compressor=None, tmp_key="_temp"
|
||||
):
|
||||
old_arr = group[name]
|
||||
if chunks is None:
|
||||
chunks = (chunk_length,) + old_arr.chunks[1:] if chunk_length is not None else old_arr.chunks
|
||||
chunks = (
|
||||
(chunk_length,) + old_arr.chunks[1:]
|
||||
if chunk_length is not None
|
||||
else old_arr.chunks
|
||||
)
|
||||
check_chunks_compatible(chunks, old_arr.shape)
|
||||
|
||||
if compressor is None:
|
||||
@@ -82,13 +88,18 @@ def get_optimal_chunks(shape, dtype, target_chunk_bytes=2e6, max_chunk_length=No
|
||||
for i in range(len(shape) - 1):
|
||||
this_chunk_bytes = itemsize * np.prod(rshape[:i])
|
||||
next_chunk_bytes = itemsize * np.prod(rshape[: i + 1])
|
||||
if this_chunk_bytes <= target_chunk_bytes and next_chunk_bytes > target_chunk_bytes:
|
||||
if (
|
||||
this_chunk_bytes <= target_chunk_bytes
|
||||
and next_chunk_bytes > target_chunk_bytes
|
||||
):
|
||||
split_idx = i
|
||||
|
||||
rchunks = rshape[:split_idx]
|
||||
item_chunk_bytes = itemsize * np.prod(rshape[:split_idx])
|
||||
this_max_chunk_length = rshape[split_idx]
|
||||
next_chunk_length = min(this_max_chunk_length, math.ceil(target_chunk_bytes / item_chunk_bytes))
|
||||
next_chunk_length = min(
|
||||
this_max_chunk_length, math.ceil(target_chunk_bytes / item_chunk_bytes)
|
||||
)
|
||||
rchunks.append(next_chunk_length)
|
||||
len_diff = len(shape) - len(rchunks)
|
||||
rchunks.extend([1] * len_diff)
|
||||
@@ -124,7 +135,13 @@ class ReplayBuffer:
|
||||
root.require_group("data", overwrite=False)
|
||||
meta = root.require_group("meta", overwrite=False)
|
||||
if "episode_ends" not in meta:
|
||||
meta.zeros("episode_ends", shape=(0,), dtype=np.int64, compressor=None, overwrite=False)
|
||||
meta.zeros(
|
||||
"episode_ends",
|
||||
shape=(0,),
|
||||
dtype=np.int64,
|
||||
compressor=None,
|
||||
overwrite=False,
|
||||
)
|
||||
return cls(root=root)
|
||||
|
||||
@classmethod
|
||||
@@ -193,7 +210,11 @@ class ReplayBuffer:
|
||||
root = zarr.group(store=store)
|
||||
# copy without recompression
|
||||
n_copied, n_skipped, n_bytes_copied = zarr.copy_store(
|
||||
source=src_store, dest=store, source_path="/meta", dest_path="/meta", if_exists=if_exists
|
||||
source=src_store,
|
||||
dest=store,
|
||||
source_path="/meta",
|
||||
dest_path="/meta",
|
||||
if_exists=if_exists,
|
||||
)
|
||||
data_group = root.create_group("data", overwrite=True)
|
||||
if keys is None:
|
||||
@@ -201,7 +222,9 @@ class ReplayBuffer:
|
||||
for key in keys:
|
||||
value = src_root["data"][key]
|
||||
cks = cls._resolve_array_chunks(chunks=chunks, key=key, array=value)
|
||||
cpr = cls._resolve_array_compressor(compressors=compressors, key=key, array=value)
|
||||
cpr = cls._resolve_array_compressor(
|
||||
compressors=compressors, key=key, array=value
|
||||
)
|
||||
if cks == value.chunks and cpr == value.compressor:
|
||||
# copy without recompression
|
||||
this_path = "/data/" + key
|
||||
@@ -286,13 +309,17 @@ class ReplayBuffer:
|
||||
meta_group = root.create_group("meta", overwrite=True)
|
||||
# save meta, no chunking
|
||||
for key, value in self.root["meta"].items():
|
||||
_ = meta_group.array(name=key, data=value, shape=value.shape, chunks=value.shape)
|
||||
_ = meta_group.array(
|
||||
name=key, data=value, shape=value.shape, chunks=value.shape
|
||||
)
|
||||
|
||||
# save data, chunk
|
||||
data_group = root.create_group("data", overwrite=True)
|
||||
for key, value in self.root["data"].items():
|
||||
cks = self._resolve_array_chunks(chunks=chunks, key=key, array=value)
|
||||
cpr = self._resolve_array_compressor(compressors=compressors, key=key, array=value)
|
||||
cpr = self._resolve_array_compressor(
|
||||
compressors=compressors, key=key, array=value
|
||||
)
|
||||
if isinstance(value, zarr.Array):
|
||||
if cks == value.chunks and cpr == value.compressor:
|
||||
# copy without recompression
|
||||
@@ -339,13 +366,19 @@ class ReplayBuffer:
|
||||
@staticmethod
|
||||
def resolve_compressor(compressor="default"):
|
||||
if compressor == "default":
|
||||
compressor = numcodecs.Blosc(cname="lz4", clevel=5, shuffle=numcodecs.Blosc.NOSHUFFLE)
|
||||
compressor = numcodecs.Blosc(
|
||||
cname="lz4", clevel=5, shuffle=numcodecs.Blosc.NOSHUFFLE
|
||||
)
|
||||
elif compressor == "disk":
|
||||
compressor = numcodecs.Blosc("zstd", clevel=5, shuffle=numcodecs.Blosc.BITSHUFFLE)
|
||||
compressor = numcodecs.Blosc(
|
||||
"zstd", clevel=5, shuffle=numcodecs.Blosc.BITSHUFFLE
|
||||
)
|
||||
return compressor
|
||||
|
||||
@classmethod
|
||||
def _resolve_array_compressor(cls, compressors: dict | str | numcodecs.abc.Codec, key, array):
|
||||
def _resolve_array_compressor(
|
||||
cls, compressors: dict | str | numcodecs.abc.Codec, key, array
|
||||
):
|
||||
# allows compressor to be explicitly set to None
|
||||
cpr = "nil"
|
||||
if isinstance(compressors, dict):
|
||||
@@ -404,7 +437,11 @@ class ReplayBuffer:
|
||||
if self.backend == "zarr":
|
||||
for key, value in np_data.items():
|
||||
_ = meta_group.array(
|
||||
name=key, data=value, shape=value.shape, chunks=value.shape, overwrite=True
|
||||
name=key,
|
||||
data=value,
|
||||
shape=value.shape,
|
||||
chunks=value.shape,
|
||||
overwrite=True,
|
||||
)
|
||||
else:
|
||||
meta_group.update(np_data)
|
||||
@@ -514,10 +551,18 @@ class ReplayBuffer:
|
||||
# create array
|
||||
if key not in self.data:
|
||||
if is_zarr:
|
||||
cks = self._resolve_array_chunks(chunks=chunks, key=key, array=value)
|
||||
cpr = self._resolve_array_compressor(compressors=compressors, key=key, array=value)
|
||||
cks = self._resolve_array_chunks(
|
||||
chunks=chunks, key=key, array=value
|
||||
)
|
||||
cpr = self._resolve_array_compressor(
|
||||
compressors=compressors, key=key, array=value
|
||||
)
|
||||
arr = self.data.zeros(
|
||||
name=key, shape=new_shape, chunks=cks, dtype=value.dtype, compressor=cpr
|
||||
name=key,
|
||||
shape=new_shape,
|
||||
chunks=cks,
|
||||
dtype=value.dtype,
|
||||
compressor=cpr,
|
||||
)
|
||||
else:
|
||||
# copy data to prevent modify
|
||||
@@ -544,7 +589,9 @@ class ReplayBuffer:
|
||||
|
||||
# rechunk
|
||||
if is_zarr and episode_ends.chunks[0] < episode_ends.shape[0]:
|
||||
rechunk_recompress_array(self.meta, "episode_ends", chunk_length=int(episode_ends.shape[0] * 1.5))
|
||||
rechunk_recompress_array(
|
||||
self.meta, "episode_ends", chunk_length=int(episode_ends.shape[0] * 1.5)
|
||||
)
|
||||
|
||||
def drop_episode(self):
|
||||
is_zarr = self.backend == "zarr"
|
||||
|
||||
@@ -38,7 +38,9 @@ import argparse
|
||||
from pathlib import Path
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
|
||||
from lerobot.common.datasets.push_dataset_to_hub._download_raw import AVAILABLE_RAW_REPO_IDS
|
||||
from lerobot.common.datasets.push_dataset_to_hub._download_raw import (
|
||||
AVAILABLE_RAW_REPO_IDS,
|
||||
)
|
||||
from lerobot.common.datasets.push_dataset_to_hub.utils import check_repo_id
|
||||
from lerobot.scripts.push_dataset_to_hub import push_dataset_to_hub
|
||||
|
||||
@@ -73,7 +75,9 @@ def encode_datasets(
|
||||
check_repo_id(raw_repo_id)
|
||||
dataset_repo_id_push = get_push_repo_id_from_raw(raw_repo_id, push_repo)
|
||||
dataset_raw_dir = raw_dir / raw_repo_id
|
||||
dataset_dir = local_dir / dataset_repo_id_push if local_dir is not None else None
|
||||
dataset_dir = (
|
||||
local_dir / dataset_repo_id_push if local_dir is not None else None
|
||||
)
|
||||
encoding = {
|
||||
"vcodec": vcodec,
|
||||
"pix_fmt": pix_fmt,
|
||||
|
||||
@@ -133,7 +133,9 @@ class Jpeg2k(Codec):
|
||||
)
|
||||
|
||||
def decode(self, buf, out=None):
|
||||
return imagecodecs.jpeg2k_decode(buf, verbose=self.verbose, numthreads=self.numthreads, out=out)
|
||||
return imagecodecs.jpeg2k_decode(
|
||||
buf, verbose=self.verbose, numthreads=self.numthreads, out=out
|
||||
)
|
||||
|
||||
|
||||
class JpegXl(Codec):
|
||||
|
||||
@@ -44,7 +44,9 @@ from lerobot.common.datasets.video_utils import VideoFrame, encode_video_frames
|
||||
def get_cameras(hdf5_data):
|
||||
# ignore depth channel, not currently handled
|
||||
# TODO(rcadene): add depth
|
||||
rgb_cameras = [key for key in hdf5_data["/observations/images"].keys() if "depth" not in key] # noqa: SIM118
|
||||
rgb_cameras = [
|
||||
key for key in hdf5_data["/observations/images"].keys() if "depth" not in key
|
||||
] # noqa: SIM118
|
||||
return rgb_cameras
|
||||
|
||||
|
||||
@@ -73,7 +75,9 @@ def check_format(raw_dir) -> bool:
|
||||
else:
|
||||
assert data[f"/observations/images/{camera}"].ndim == 4
|
||||
b, h, w, c = data[f"/observations/images/{camera}"].shape
|
||||
assert c < h and c < w, f"Expect (h,w,c) image format but ({h=},{w=},{c=}) provided."
|
||||
assert (
|
||||
c < h and c < w
|
||||
), f"Expect (h,w,c) image format but ({h=},{w=},{c=}) provided."
|
||||
|
||||
|
||||
def load_from_raw(
|
||||
@@ -134,14 +138,17 @@ def load_from_raw(
|
||||
# encode images to a mp4 video
|
||||
fname = f"{img_key}_episode_{ep_idx:06d}.mp4"
|
||||
video_path = videos_dir / fname
|
||||
encode_video_frames(tmp_imgs_dir, video_path, fps, **(encoding or {}))
|
||||
encode_video_frames(
|
||||
tmp_imgs_dir, video_path, fps, **(encoding or {})
|
||||
)
|
||||
|
||||
# clean temporary images directory
|
||||
shutil.rmtree(tmp_imgs_dir)
|
||||
|
||||
# store the reference to the video frame
|
||||
ep_dict[img_key] = [
|
||||
{"path": f"videos/{fname}", "timestamp": i / fps} for i in range(num_frames)
|
||||
{"path": f"videos/{fname}", "timestamp": i / fps}
|
||||
for i in range(num_frames)
|
||||
]
|
||||
else:
|
||||
ep_dict[img_key] = [PILImage.fromarray(x) for x in imgs_array]
|
||||
@@ -181,15 +188,18 @@ def to_hf_dataset(data_dict, video) -> Dataset:
|
||||
features[key] = Image()
|
||||
|
||||
features["observation.state"] = Sequence(
|
||||
length=data_dict["observation.state"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
length=data_dict["observation.state"].shape[1],
|
||||
feature=Value(dtype="float32", id=None),
|
||||
)
|
||||
if "observation.velocity" in data_dict:
|
||||
features["observation.velocity"] = Sequence(
|
||||
length=data_dict["observation.velocity"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
length=data_dict["observation.velocity"].shape[1],
|
||||
feature=Value(dtype="float32", id=None),
|
||||
)
|
||||
if "observation.effort" in data_dict:
|
||||
features["observation.effort"] = Sequence(
|
||||
length=data_dict["observation.effort"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
length=data_dict["observation.effort"].shape[1],
|
||||
feature=Value(dtype="float32", id=None),
|
||||
)
|
||||
features["action"] = Sequence(
|
||||
length=data_dict["action"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
|
||||
@@ -26,7 +26,9 @@ import torch
|
||||
from datasets import Dataset, Features, Image, Sequence, Value
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
|
||||
from lerobot.common.datasets.push_dataset_to_hub.utils import calculate_episode_data_index
|
||||
from lerobot.common.datasets.push_dataset_to_hub.utils import (
|
||||
calculate_episode_data_index,
|
||||
)
|
||||
from lerobot.common.datasets.utils import (
|
||||
hf_transform_to_torch,
|
||||
)
|
||||
@@ -42,11 +44,19 @@ def check_format(raw_dir) -> bool:
|
||||
return True
|
||||
|
||||
|
||||
def load_from_raw(raw_dir: Path, videos_dir: Path, fps: int, video: bool, episodes: list[int] | None = None):
|
||||
def load_from_raw(
|
||||
raw_dir: Path,
|
||||
videos_dir: Path,
|
||||
fps: int,
|
||||
video: bool,
|
||||
episodes: list[int] | None = None,
|
||||
):
|
||||
# Load data stream that will be used as reference for the timestamps synchronization
|
||||
reference_files = list(raw_dir.glob("observation.images.cam_*.parquet"))
|
||||
if len(reference_files) == 0:
|
||||
raise ValueError(f"Missing reference files for camera, starting with in '{raw_dir}'")
|
||||
raise ValueError(
|
||||
f"Missing reference files for camera, starting with in '{raw_dir}'"
|
||||
)
|
||||
# select first camera in alphanumeric order
|
||||
reference_key = sorted(reference_files)[0].stem
|
||||
reference_df = pd.read_parquet(raw_dir / f"{reference_key}.parquet")
|
||||
@@ -107,7 +117,9 @@ def load_from_raw(raw_dir: Path, videos_dir: Path, fps: int, video: bool, episod
|
||||
|
||||
df["timestamp"] = df["timestamp_utc"].map(lambda x: x.timestamp())
|
||||
# each episode starts with timestamp 0 to match the ones from the video
|
||||
df["timestamp"] = df.groupby("episode_index")["timestamp"].transform(lambda x: x - x.iloc[0])
|
||||
df["timestamp"] = df.groupby("episode_index")["timestamp"].transform(
|
||||
lambda x: x - x.iloc[0]
|
||||
)
|
||||
|
||||
del df["timestamp_utc"]
|
||||
|
||||
@@ -120,7 +132,9 @@ def load_from_raw(raw_dir: Path, videos_dir: Path, fps: int, video: bool, episod
|
||||
ep_ids = [ep_idx for ep_idx, _ in df.groupby("episode_index")]
|
||||
expected_ep_ids = list(range(df["episode_index"].max() + 1))
|
||||
if ep_ids != expected_ep_ids:
|
||||
raise ValueError(f"Episodes indices go from {ep_ids} instead of {expected_ep_ids}")
|
||||
raise ValueError(
|
||||
f"Episodes indices go from {ep_ids} instead of {expected_ep_ids}"
|
||||
)
|
||||
|
||||
# Create symlink to raw videos directory (that needs to be absolute not relative)
|
||||
videos_dir.parent.mkdir(parents=True, exist_ok=True)
|
||||
@@ -152,7 +166,9 @@ def load_from_raw(raw_dir: Path, videos_dir: Path, fps: int, video: bool, episod
|
||||
data_dict[key] = torch.from_numpy(df[key].values)
|
||||
# is vector
|
||||
elif df[key].iloc[0].shape[0] > 1:
|
||||
data_dict[key] = torch.stack([torch.from_numpy(x.copy()) for x in df[key].values])
|
||||
data_dict[key] = torch.stack(
|
||||
[torch.from_numpy(x.copy()) for x in df[key].values]
|
||||
)
|
||||
else:
|
||||
raise ValueError(key)
|
||||
|
||||
@@ -170,15 +186,18 @@ def to_hf_dataset(data_dict, video) -> Dataset:
|
||||
features[key] = Image()
|
||||
|
||||
features["observation.state"] = Sequence(
|
||||
length=data_dict["observation.state"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
length=data_dict["observation.state"].shape[1],
|
||||
feature=Value(dtype="float32", id=None),
|
||||
)
|
||||
if "observation.velocity" in data_dict:
|
||||
features["observation.velocity"] = Sequence(
|
||||
length=data_dict["observation.velocity"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
length=data_dict["observation.velocity"].shape[1],
|
||||
feature=Value(dtype="float32", id=None),
|
||||
)
|
||||
if "observation.effort" in data_dict:
|
||||
features["observation.effort"] = Sequence(
|
||||
length=data_dict["observation.effort"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
length=data_dict["observation.effort"].shape[1],
|
||||
feature=Value(dtype="float32", id=None),
|
||||
)
|
||||
features["action"] = Sequence(
|
||||
length=data_dict["action"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
|
||||
@@ -143,7 +143,11 @@ def load_from_raw(
|
||||
else:
|
||||
state_keys.append(key)
|
||||
|
||||
lang_key = "language_instruction" if "language_instruction" in dataset.element_spec else None
|
||||
lang_key = (
|
||||
"language_instruction"
|
||||
if "language_instruction" in dataset.element_spec
|
||||
else None
|
||||
)
|
||||
|
||||
print(" - image_keys: ", image_keys)
|
||||
print(" - lang_key: ", lang_key)
|
||||
@@ -202,7 +206,9 @@ def load_from_raw(
|
||||
|
||||
# If lang_key is present, convert the entire tensor at once
|
||||
if lang_key is not None:
|
||||
ep_dict["language_instruction"] = [x.numpy().decode("utf-8") for x in episode[lang_key]]
|
||||
ep_dict["language_instruction"] = [
|
||||
x.numpy().decode("utf-8") for x in episode[lang_key]
|
||||
]
|
||||
|
||||
ep_dict["timestamp"] = torch.arange(0, num_frames, 1) / fps
|
||||
ep_dict["episode_index"] = torch.tensor([ep_idx] * num_frames)
|
||||
@@ -234,7 +240,8 @@ def load_from_raw(
|
||||
|
||||
# store the reference to the video frame
|
||||
ep_dict[img_key] = [
|
||||
{"path": f"videos/{fname}", "timestamp": i / fps} for i in range(num_frames)
|
||||
{"path": f"videos/{fname}", "timestamp": i / fps}
|
||||
for i in range(num_frames)
|
||||
]
|
||||
else:
|
||||
ep_dict[img_key] = [PILImage.fromarray(x) for x in imgs_array]
|
||||
@@ -259,7 +266,9 @@ def to_hf_dataset(data_dict, video) -> Dataset:
|
||||
for key in data_dict:
|
||||
# check if vector state obs
|
||||
if key.startswith("observation.") and "observation.images." not in key:
|
||||
features[key] = Sequence(length=data_dict[key].shape[1], feature=Value(dtype="float32", id=None))
|
||||
features[key] = Sequence(
|
||||
length=data_dict[key].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
# check if image obs
|
||||
elif "observation.images." in key:
|
||||
if video:
|
||||
|
||||
@@ -56,7 +56,9 @@ def check_format(raw_dir):
|
||||
|
||||
required_datasets.remove("meta/episode_ends")
|
||||
|
||||
assert all(nb_frames == zarr_data[dataset].shape[0] for dataset in required_datasets)
|
||||
assert all(
|
||||
nb_frames == zarr_data[dataset].shape[0] for dataset in required_datasets
|
||||
)
|
||||
|
||||
|
||||
def load_from_raw(
|
||||
@@ -76,7 +78,9 @@ def load_from_raw(
|
||||
ReplayBuffer as DiffusionPolicyReplayBuffer,
|
||||
)
|
||||
except ModuleNotFoundError as e:
|
||||
print("`gym_pusht` is not installed. Please install it with `pip install 'lerobot[gym_pusht]'`")
|
||||
print(
|
||||
"`gym_pusht` is not installed. Please install it with `pip install 'lerobot[gym_pusht]'`"
|
||||
)
|
||||
raise e
|
||||
# as define in gmy-pusht env: https://github.com/huggingface/gym-pusht/blob/e0684ff988d223808c0a9dcfaba9dc4991791370/gym_pusht/envs/pusht.py#L174
|
||||
success_threshold = 0.95 # 95% coverage,
|
||||
@@ -150,7 +154,9 @@ def load_from_raw(
|
||||
]
|
||||
space.add(*walls)
|
||||
|
||||
block_body, block_shapes = PushTEnv.add_tee(space, block_pos[i].tolist(), block_angle[i].item())
|
||||
block_body, block_shapes = PushTEnv.add_tee(
|
||||
space, block_pos[i].tolist(), block_angle[i].item()
|
||||
)
|
||||
goal_geom = pymunk_to_shapely(goal_body, block_body.shapes)
|
||||
block_geom = pymunk_to_shapely(block_body, block_body.shapes)
|
||||
intersection_area = goal_geom.intersection(block_geom).area
|
||||
@@ -159,7 +165,9 @@ def load_from_raw(
|
||||
reward[i] = np.clip(coverage / success_threshold, 0, 1)
|
||||
success[i] = coverage > success_threshold
|
||||
if keypoints_instead_of_image:
|
||||
keypoints[i] = torch.from_numpy(PushTEnv.get_keypoints(block_shapes).flatten())
|
||||
keypoints[i] = torch.from_numpy(
|
||||
PushTEnv.get_keypoints(block_shapes).flatten()
|
||||
)
|
||||
|
||||
# last step of demonstration is considered done
|
||||
done[-1] = True
|
||||
@@ -184,7 +192,8 @@ def load_from_raw(
|
||||
|
||||
# store the reference to the video frame
|
||||
ep_dict[img_key] = [
|
||||
{"path": f"videos/{fname}", "timestamp": i / fps} for i in range(num_frames)
|
||||
{"path": f"videos/{fname}", "timestamp": i / fps}
|
||||
for i in range(num_frames)
|
||||
]
|
||||
else:
|
||||
ep_dict[img_key] = [PILImage.fromarray(x) for x in imgs_array]
|
||||
@@ -193,7 +202,9 @@ def load_from_raw(
|
||||
if keypoints_instead_of_image:
|
||||
ep_dict["observation.environment_state"] = keypoints
|
||||
ep_dict["action"] = actions[from_idx:to_idx]
|
||||
ep_dict["episode_index"] = torch.tensor([ep_idx] * num_frames, dtype=torch.int64)
|
||||
ep_dict["episode_index"] = torch.tensor(
|
||||
[ep_idx] * num_frames, dtype=torch.int64
|
||||
)
|
||||
ep_dict["frame_index"] = torch.arange(0, num_frames, 1)
|
||||
ep_dict["timestamp"] = torch.arange(0, num_frames, 1) / fps
|
||||
# ep_dict["next.observation.image"] = image[1:],
|
||||
@@ -220,7 +231,8 @@ def to_hf_dataset(data_dict, video, keypoints_instead_of_image: bool = False):
|
||||
features["observation.image"] = Image()
|
||||
|
||||
features["observation.state"] = Sequence(
|
||||
length=data_dict["observation.state"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
length=data_dict["observation.state"].shape[1],
|
||||
feature=Value(dtype="float32", id=None),
|
||||
)
|
||||
if keypoints_instead_of_image:
|
||||
features["observation.environment_state"] = Sequence(
|
||||
@@ -261,7 +273,9 @@ def from_raw_to_lerobot_format(
|
||||
if fps is None:
|
||||
fps = 10
|
||||
|
||||
data_dict = load_from_raw(raw_dir, videos_dir, fps, video, episodes, keypoints_instead_of_image, encoding)
|
||||
data_dict = load_from_raw(
|
||||
raw_dir, videos_dir, fps, video, episodes, keypoints_instead_of_image, encoding
|
||||
)
|
||||
hf_dataset = to_hf_dataset(data_dict, video, keypoints_instead_of_image)
|
||||
episode_data_index = calculate_episode_data_index(hf_dataset)
|
||||
info = {
|
||||
|
||||
@@ -26,7 +26,9 @@ from datasets import Dataset, Features, Image, Sequence, Value
|
||||
from PIL import Image as PILImage
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
|
||||
from lerobot.common.datasets.push_dataset_to_hub._umi_imagecodecs_numcodecs import register_codecs
|
||||
from lerobot.common.datasets.push_dataset_to_hub._umi_imagecodecs_numcodecs import (
|
||||
register_codecs,
|
||||
)
|
||||
from lerobot.common.datasets.push_dataset_to_hub.utils import (
|
||||
calculate_episode_data_index,
|
||||
concatenate_episodes,
|
||||
@@ -61,7 +63,9 @@ def check_format(raw_dir) -> bool:
|
||||
nb_frames = zarr_data["data/camera0_rgb"].shape[0]
|
||||
|
||||
required_datasets.remove("meta/episode_ends")
|
||||
assert all(nb_frames == zarr_data[dataset].shape[0] for dataset in required_datasets)
|
||||
assert all(
|
||||
nb_frames == zarr_data[dataset].shape[0] for dataset in required_datasets
|
||||
)
|
||||
|
||||
|
||||
def load_from_raw(
|
||||
@@ -79,7 +83,9 @@ def load_from_raw(
|
||||
end_pose = torch.from_numpy(zarr_data["data/robot0_demo_end_pose"][:])
|
||||
start_pos = torch.from_numpy(zarr_data["data/robot0_demo_start_pose"][:])
|
||||
eff_pos = torch.from_numpy(zarr_data["data/robot0_eef_pos"][:])
|
||||
eff_rot_axis_angle = torch.from_numpy(zarr_data["data/robot0_eef_rot_axis_angle"][:])
|
||||
eff_rot_axis_angle = torch.from_numpy(
|
||||
zarr_data["data/robot0_eef_rot_axis_angle"][:]
|
||||
)
|
||||
gripper_width = torch.from_numpy(zarr_data["data/robot0_gripper_width"][:])
|
||||
|
||||
states_pos = torch.cat([eff_pos, eff_rot_axis_angle], dim=1)
|
||||
@@ -129,24 +135,31 @@ def load_from_raw(
|
||||
save_images_concurrently(imgs_array, tmp_imgs_dir)
|
||||
|
||||
# encode images to a mp4 video
|
||||
encode_video_frames(tmp_imgs_dir, video_path, fps, **(encoding or {}))
|
||||
encode_video_frames(
|
||||
tmp_imgs_dir, video_path, fps, **(encoding or {})
|
||||
)
|
||||
|
||||
# clean temporary images directory
|
||||
shutil.rmtree(tmp_imgs_dir)
|
||||
|
||||
# store the reference to the video frame
|
||||
ep_dict[img_key] = [
|
||||
{"path": f"videos/{fname}", "timestamp": i / fps} for i in range(num_frames)
|
||||
{"path": f"videos/{fname}", "timestamp": i / fps}
|
||||
for i in range(num_frames)
|
||||
]
|
||||
else:
|
||||
ep_dict[img_key] = [PILImage.fromarray(x) for x in imgs_array]
|
||||
|
||||
ep_dict["observation.state"] = state
|
||||
ep_dict["episode_index"] = torch.tensor([ep_idx] * num_frames, dtype=torch.int64)
|
||||
ep_dict["episode_index"] = torch.tensor(
|
||||
[ep_idx] * num_frames, dtype=torch.int64
|
||||
)
|
||||
ep_dict["frame_index"] = torch.arange(0, num_frames, 1)
|
||||
ep_dict["timestamp"] = torch.arange(0, num_frames, 1) / fps
|
||||
ep_dict["episode_data_index_from"] = torch.tensor([from_idx] * num_frames)
|
||||
ep_dict["episode_data_index_to"] = torch.tensor([from_idx + num_frames] * num_frames)
|
||||
ep_dict["episode_data_index_to"] = torch.tensor(
|
||||
[from_idx + num_frames] * num_frames
|
||||
)
|
||||
ep_dict["end_pose"] = end_pose[from_idx:to_idx]
|
||||
ep_dict["start_pos"] = start_pos[from_idx:to_idx]
|
||||
ep_dict["gripper_width"] = gripper_width[from_idx:to_idx]
|
||||
@@ -172,7 +185,8 @@ def to_hf_dataset(data_dict, video):
|
||||
features["observation.image"] = Image()
|
||||
|
||||
features["observation.state"] = Sequence(
|
||||
length=data_dict["observation.state"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
length=data_dict["observation.state"].shape[1],
|
||||
feature=Value(dtype="float32", id=None),
|
||||
)
|
||||
features["episode_index"] = Value(dtype="int64", id=None)
|
||||
features["frame_index"] = Value(dtype="int64", id=None)
|
||||
@@ -192,7 +206,8 @@ def to_hf_dataset(data_dict, video):
|
||||
length=data_dict["start_pos"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
features["gripper_width"] = Sequence(
|
||||
length=data_dict["gripper_width"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
length=data_dict["gripper_width"].shape[1],
|
||||
feature=Value(dtype="float32", id=None),
|
||||
)
|
||||
|
||||
hf_dataset = Dataset.from_dict(data_dict, features=Features(features))
|
||||
|
||||
@@ -45,7 +45,9 @@ def concatenate_episodes(ep_dicts):
|
||||
return data_dict
|
||||
|
||||
|
||||
def save_images_concurrently(imgs_array: numpy.array, out_dir: Path, max_workers: int = 4):
|
||||
def save_images_concurrently(
|
||||
imgs_array: numpy.array, out_dir: Path, max_workers: int = 4
|
||||
):
|
||||
out_dir = Path(out_dir)
|
||||
out_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
@@ -55,7 +57,10 @@ def save_images_concurrently(imgs_array: numpy.array, out_dir: Path, max_workers
|
||||
|
||||
num_images = len(imgs_array)
|
||||
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
||||
[executor.submit(save_image, imgs_array[i], i, out_dir) for i in range(num_images)]
|
||||
[
|
||||
executor.submit(save_image, imgs_array[i], i, out_dir)
|
||||
for i in range(num_images)
|
||||
]
|
||||
|
||||
|
||||
def get_default_encoding() -> dict:
|
||||
@@ -64,7 +69,8 @@ def get_default_encoding() -> dict:
|
||||
return {
|
||||
k: v.default
|
||||
for k, v in signature.parameters.items()
|
||||
if v.default is not inspect.Parameter.empty and k in ["vcodec", "pix_fmt", "g", "crf"]
|
||||
if v.default is not inspect.Parameter.empty
|
||||
and k in ["vcodec", "pix_fmt", "g", "crf"]
|
||||
}
|
||||
|
||||
|
||||
@@ -77,7 +83,9 @@ def check_repo_id(repo_id: str) -> None:
|
||||
|
||||
|
||||
# TODO(aliberts): remove
|
||||
def calculate_episode_data_index(hf_dataset: datasets.Dataset) -> Dict[str, torch.Tensor]:
|
||||
def calculate_episode_data_index(
|
||||
hf_dataset: datasets.Dataset,
|
||||
) -> Dict[str, torch.Tensor]:
|
||||
"""
|
||||
Calculate episode data index for the provided HuggingFace Dataset. Relies on episode_index column of hf_dataset.
|
||||
|
||||
|
||||
@@ -40,7 +40,10 @@ from lerobot.common.datasets.video_utils import VideoFrame, encode_video_frames
|
||||
|
||||
def check_format(raw_dir):
|
||||
keys = {"actions", "rewards", "dones"}
|
||||
nested_keys = {"observations": {"rgb", "state"}, "next_observations": {"rgb", "state"}}
|
||||
nested_keys = {
|
||||
"observations": {"rgb", "state"},
|
||||
"next_observations": {"rgb", "state"},
|
||||
}
|
||||
|
||||
xarm_files = list(raw_dir.glob("*.pkl"))
|
||||
assert len(xarm_files) > 0
|
||||
@@ -53,11 +56,17 @@ def check_format(raw_dir):
|
||||
|
||||
# Check for consistent lengths in nested keys
|
||||
expected_len = len(dataset_dict["actions"])
|
||||
assert all(len(dataset_dict[key]) == expected_len for key in keys if key in dataset_dict)
|
||||
assert all(
|
||||
len(dataset_dict[key]) == expected_len for key in keys if key in dataset_dict
|
||||
)
|
||||
|
||||
for key, subkeys in nested_keys.items():
|
||||
nested_dict = dataset_dict.get(key, {})
|
||||
assert all(len(nested_dict[subkey]) == expected_len for subkey in subkeys if subkey in nested_dict)
|
||||
assert all(
|
||||
len(nested_dict[subkey]) == expected_len
|
||||
for subkey in subkeys
|
||||
if subkey in nested_dict
|
||||
)
|
||||
|
||||
|
||||
def load_from_raw(
|
||||
@@ -122,13 +131,18 @@ def load_from_raw(
|
||||
shutil.rmtree(tmp_imgs_dir)
|
||||
|
||||
# store the reference to the video frame
|
||||
ep_dict[img_key] = [{"path": f"videos/{fname}", "timestamp": i / fps} for i in range(num_frames)]
|
||||
ep_dict[img_key] = [
|
||||
{"path": f"videos/{fname}", "timestamp": i / fps}
|
||||
for i in range(num_frames)
|
||||
]
|
||||
else:
|
||||
ep_dict[img_key] = [PILImage.fromarray(x) for x in imgs_array]
|
||||
|
||||
ep_dict["observation.state"] = state
|
||||
ep_dict["action"] = action
|
||||
ep_dict["episode_index"] = torch.tensor([ep_idx] * num_frames, dtype=torch.int64)
|
||||
ep_dict["episode_index"] = torch.tensor(
|
||||
[ep_idx] * num_frames, dtype=torch.int64
|
||||
)
|
||||
ep_dict["frame_index"] = torch.arange(0, num_frames, 1)
|
||||
ep_dict["timestamp"] = torch.arange(0, num_frames, 1) / fps
|
||||
# ep_dict["next.observation.image"] = next_image
|
||||
@@ -153,7 +167,8 @@ def to_hf_dataset(data_dict, video):
|
||||
features["observation.image"] = Image()
|
||||
|
||||
features["observation.state"] = Sequence(
|
||||
length=data_dict["observation.state"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
length=data_dict["observation.state"].shape[1],
|
||||
feature=Value(dtype="float32", id=None),
|
||||
)
|
||||
features["action"] = Sequence(
|
||||
length=data_dict["action"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
|
||||
@@ -43,7 +43,10 @@ class EpisodeAwareSampler:
|
||||
):
|
||||
if episode_indices_to_use is None or episode_idx in episode_indices_to_use:
|
||||
indices.extend(
|
||||
range(start_index.item() + drop_n_first_frames, end_index.item() - drop_n_last_frames)
|
||||
range(
|
||||
start_index.item() + drop_n_first_frames,
|
||||
end_index.item() - drop_n_last_frames,
|
||||
)
|
||||
)
|
||||
|
||||
self.indices = indices
|
||||
|
||||
@@ -57,7 +57,9 @@ class RandomSubsetApply(Transform):
|
||||
elif not isinstance(n_subset, int):
|
||||
raise TypeError("n_subset should be an int or None")
|
||||
elif not (1 <= n_subset <= len(transforms)):
|
||||
raise ValueError(f"n_subset should be in the interval [1, {len(transforms)}]")
|
||||
raise ValueError(
|
||||
f"n_subset should be in the interval [1, {len(transforms)}]"
|
||||
)
|
||||
|
||||
self.transforms = transforms
|
||||
total = sum(p)
|
||||
@@ -116,16 +118,22 @@ class SharpnessJitter(Transform):
|
||||
def _check_input(self, sharpness):
|
||||
if isinstance(sharpness, (int, float)):
|
||||
if sharpness < 0:
|
||||
raise ValueError("If sharpness is a single number, it must be non negative.")
|
||||
raise ValueError(
|
||||
"If sharpness is a single number, it must be non negative."
|
||||
)
|
||||
sharpness = [1.0 - sharpness, 1.0 + sharpness]
|
||||
sharpness[0] = max(sharpness[0], 0.0)
|
||||
elif isinstance(sharpness, collections.abc.Sequence) and len(sharpness) == 2:
|
||||
sharpness = [float(v) for v in sharpness]
|
||||
else:
|
||||
raise TypeError(f"{sharpness=} should be a single number or a sequence with length 2.")
|
||||
raise TypeError(
|
||||
f"{sharpness=} should be a single number or a sequence with length 2."
|
||||
)
|
||||
|
||||
if not 0.0 <= sharpness[0] <= sharpness[1]:
|
||||
raise ValueError(f"sharpnesss values should be between (0., inf), but got {sharpness}.")
|
||||
raise ValueError(
|
||||
f"sharpnesss values should be between (0., inf), but got {sharpness}."
|
||||
)
|
||||
|
||||
return float(sharpness[0]), float(sharpness[1])
|
||||
|
||||
@@ -134,7 +142,9 @@ class SharpnessJitter(Transform):
|
||||
|
||||
def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
|
||||
sharpness_factor = self._generate_value(self.sharpness[0], self.sharpness[1])
|
||||
return self._call_kernel(F.adjust_sharpness, inpt, sharpness_factor=sharpness_factor)
|
||||
return self._call_kernel(
|
||||
F.adjust_sharpness, inpt, sharpness_factor=sharpness_factor
|
||||
)
|
||||
|
||||
|
||||
def get_image_transforms(
|
||||
@@ -150,6 +160,10 @@ def get_image_transforms(
|
||||
sharpness_min_max: tuple[float, float] | None = None,
|
||||
max_num_transforms: int | None = None,
|
||||
random_order: bool = False,
|
||||
interpolation: str | None = None,
|
||||
image_size: tuple[int, int] | None = None,
|
||||
image_mean: list[float] | None = None,
|
||||
image_std: list[float] | None = None,
|
||||
):
|
||||
def check_value(name, weight, min_max):
|
||||
if min_max is not None:
|
||||
@@ -170,6 +184,22 @@ def get_image_transforms(
|
||||
|
||||
weights = []
|
||||
transforms = []
|
||||
if image_size is not None:
|
||||
interpolations = [interpolation.value for interpolation in v2.InterpolationMode]
|
||||
if interpolation is None:
|
||||
# Use BICUBIC as default interpolation
|
||||
interpolation_mode = v2.InterpolationMode.BICUBIC
|
||||
elif interpolation in interpolations:
|
||||
interpolation_mode = v2.InterpolationMode(interpolation)
|
||||
else:
|
||||
raise ValueError("The interpolation passed is not supported")
|
||||
# Weight for resizing is always 1
|
||||
weights.append(1.0)
|
||||
transforms.append(
|
||||
v2.Resize(
|
||||
size=(image_size[0], image_size[1]), interpolation=interpolation_mode
|
||||
)
|
||||
)
|
||||
if brightness_min_max is not None and brightness_weight > 0.0:
|
||||
weights.append(brightness_weight)
|
||||
transforms.append(v2.ColorJitter(brightness=brightness_min_max))
|
||||
@@ -185,6 +215,15 @@ def get_image_transforms(
|
||||
if sharpness_min_max is not None and sharpness_weight > 0.0:
|
||||
weights.append(sharpness_weight)
|
||||
transforms.append(SharpnessJitter(sharpness=sharpness_min_max))
|
||||
if image_mean is not None and image_std is not None:
|
||||
# Weight for normalization is always 1
|
||||
weights.append(1.0)
|
||||
transforms.append(
|
||||
v2.Normalize(
|
||||
mean=image_mean,
|
||||
std=image_std,
|
||||
)
|
||||
)
|
||||
|
||||
n_subset = len(transforms)
|
||||
if max_num_transforms is not None:
|
||||
@@ -194,4 +233,6 @@ def get_image_transforms(
|
||||
return v2.Identity()
|
||||
else:
|
||||
# TODO(rcadene, aliberts): add v2.ToDtype float16?
|
||||
return RandomSubsetApply(transforms, p=weights, n_subset=n_subset, random_order=random_order)
|
||||
return RandomSubsetApply(
|
||||
transforms, p=weights, n_subset=n_subset, random_order=random_order
|
||||
)
|
||||
|
||||
@@ -17,9 +17,11 @@ import importlib.resources
|
||||
import json
|
||||
import logging
|
||||
import textwrap
|
||||
from collections.abc import Iterator
|
||||
from itertools import accumulate
|
||||
from pathlib import Path
|
||||
from pprint import pformat
|
||||
from types import SimpleNamespace
|
||||
from typing import Any
|
||||
|
||||
import datasets
|
||||
@@ -41,9 +43,15 @@ EPISODES_PATH = "meta/episodes.jsonl"
|
||||
STATS_PATH = "meta/stats.json"
|
||||
TASKS_PATH = "meta/tasks.jsonl"
|
||||
|
||||
DEFAULT_VIDEO_PATH = "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4"
|
||||
DEFAULT_PARQUET_PATH = "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet"
|
||||
DEFAULT_IMAGE_PATH = "images/{image_key}/episode_{episode_index:06d}/frame_{frame_index:06d}.png"
|
||||
DEFAULT_VIDEO_PATH = (
|
||||
"videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4"
|
||||
)
|
||||
DEFAULT_PARQUET_PATH = (
|
||||
"data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet"
|
||||
)
|
||||
DEFAULT_IMAGE_PATH = (
|
||||
"images/{image_key}/episode_{episode_index:06d}/frame_{frame_index:06d}.png"
|
||||
)
|
||||
|
||||
DATASET_CARD_TEMPLATE = """
|
||||
---
|
||||
@@ -97,7 +105,9 @@ def unflatten_dict(d: dict, sep: str = "/") -> dict:
|
||||
|
||||
|
||||
def serialize_dict(stats: dict[str, torch.Tensor | np.ndarray | dict]) -> dict:
|
||||
serialized_dict = {key: value.tolist() for key, value in flatten_dict(stats).items()}
|
||||
serialized_dict = {
|
||||
key: value.tolist() for key, value in flatten_dict(stats).items()
|
||||
}
|
||||
return unflatten_dict(serialized_dict)
|
||||
|
||||
|
||||
@@ -155,14 +165,19 @@ def load_stats(local_dir: Path) -> dict:
|
||||
|
||||
def load_tasks(local_dir: Path) -> dict:
|
||||
tasks = load_jsonlines(local_dir / TASKS_PATH)
|
||||
return {item["task_index"]: item["task"] for item in sorted(tasks, key=lambda x: x["task_index"])}
|
||||
return {
|
||||
item["task_index"]: item["task"]
|
||||
for item in sorted(tasks, key=lambda x: x["task_index"])
|
||||
}
|
||||
|
||||
|
||||
def load_episodes(local_dir: Path) -> dict:
|
||||
return load_jsonlines(local_dir / EPISODES_PATH)
|
||||
|
||||
|
||||
def load_image_as_numpy(fpath: str | Path, dtype="float32", channel_first: bool = True) -> np.ndarray:
|
||||
def load_image_as_numpy(
|
||||
fpath: str | Path, dtype="float32", channel_first: bool = True
|
||||
) -> np.ndarray:
|
||||
img = PILImage.open(fpath).convert("RGB")
|
||||
img_array = np.array(img, dtype=dtype)
|
||||
if channel_first: # (H, W, C) -> (C, H, W)
|
||||
@@ -220,7 +235,10 @@ class BackwardCompatibilityError(Exception):
|
||||
|
||||
|
||||
def check_version_compatibility(
|
||||
repo_id: str, version_to_check: str, current_version: str, enforce_breaking_major: bool = True
|
||||
repo_id: str,
|
||||
version_to_check: str,
|
||||
current_version: str,
|
||||
enforce_breaking_major: bool = True,
|
||||
) -> None:
|
||||
current_major, _ = _get_major_minor(current_version)
|
||||
major_to_check, _ = _get_major_minor(version_to_check)
|
||||
@@ -273,6 +291,7 @@ def get_hf_features_from_features(features: dict) -> datasets.Features:
|
||||
hf_features[key] = datasets.Sequence(
|
||||
length=ft["shape"][0], feature=datasets.Value(dtype=ft["dtype"])
|
||||
)
|
||||
# TODO: (alibers, azouitine) Add support for ft["shap"] == 0 as Value
|
||||
|
||||
return datasets.Features(hf_features)
|
||||
|
||||
@@ -314,7 +333,9 @@ def create_empty_dataset_info(
|
||||
def get_episode_data_index(
|
||||
episode_dicts: list[dict], episodes: list[int] | None = None
|
||||
) -> dict[str, torch.Tensor]:
|
||||
episode_lengths = {ep_idx: ep_dict["length"] for ep_idx, ep_dict in enumerate(episode_dicts)}
|
||||
episode_lengths = {
|
||||
ep_idx: ep_dict["length"] for ep_idx, ep_dict in enumerate(episode_dicts)
|
||||
}
|
||||
if episodes is not None:
|
||||
episode_lengths = {ep_idx: episode_lengths[ep_idx] for ep_idx in episodes}
|
||||
|
||||
@@ -335,7 +356,9 @@ def calculate_total_episode(
|
||||
return total_episodes
|
||||
|
||||
|
||||
def calculate_episode_data_index(hf_dataset: datasets.Dataset) -> dict[str, torch.Tensor]:
|
||||
def calculate_episode_data_index(
|
||||
hf_dataset: datasets.Dataset,
|
||||
) -> dict[str, torch.Tensor]:
|
||||
episode_lengths = []
|
||||
table = hf_dataset.data.table
|
||||
total_episodes = calculate_total_episode(hf_dataset)
|
||||
@@ -377,7 +400,9 @@ def check_timestamps_sync(
|
||||
# Track original indices before masking
|
||||
original_indices = torch.arange(len(diffs))
|
||||
filtered_indices = original_indices[mask]
|
||||
outside_tolerance_filtered_indices = torch.nonzero(~filtered_within_tolerance) # .squeeze()
|
||||
outside_tolerance_filtered_indices = torch.nonzero(
|
||||
~filtered_within_tolerance
|
||||
) # .squeeze()
|
||||
outside_tolerance_indices = filtered_indices[outside_tolerance_filtered_indices]
|
||||
episode_indices = torch.stack(hf_dataset["episode_index"])
|
||||
|
||||
@@ -402,7 +427,10 @@ def check_timestamps_sync(
|
||||
|
||||
|
||||
def check_delta_timestamps(
|
||||
delta_timestamps: dict[str, list[float]], fps: int, tolerance_s: float, raise_value_error: bool = True
|
||||
delta_timestamps: dict[str, list[float]],
|
||||
fps: int,
|
||||
tolerance_s: float,
|
||||
raise_value_error: bool = True,
|
||||
) -> bool:
|
||||
"""This will check if all the values in delta_timestamps are multiples of 1/fps +/- tolerance.
|
||||
This is to ensure that these delta_timestamps added to any timestamp from a dataset will themselves be
|
||||
@@ -410,10 +438,14 @@ def check_delta_timestamps(
|
||||
"""
|
||||
outside_tolerance = {}
|
||||
for key, delta_ts in delta_timestamps.items():
|
||||
within_tolerance = [abs(ts * fps - round(ts * fps)) / fps <= tolerance_s for ts in delta_ts]
|
||||
within_tolerance = [
|
||||
abs(ts * fps - round(ts * fps)) / fps <= tolerance_s for ts in delta_ts
|
||||
]
|
||||
if not all(within_tolerance):
|
||||
outside_tolerance[key] = [
|
||||
ts for ts, is_within in zip(delta_ts, within_tolerance, strict=True) if not is_within
|
||||
ts
|
||||
for ts, is_within in zip(delta_ts, within_tolerance, strict=True)
|
||||
if not is_within
|
||||
]
|
||||
|
||||
if len(outside_tolerance) > 0:
|
||||
@@ -431,7 +463,9 @@ def check_delta_timestamps(
|
||||
return True
|
||||
|
||||
|
||||
def get_delta_indices(delta_timestamps: dict[str, list[float]], fps: int) -> dict[str, list[int]]:
|
||||
def get_delta_indices(
|
||||
delta_timestamps: dict[str, list[float]], fps: int
|
||||
) -> dict[str, list[int]]:
|
||||
delta_indices = {}
|
||||
for key, delta_ts in delta_timestamps.items():
|
||||
delta_indices[key] = (torch.tensor(delta_ts) * fps).long().tolist()
|
||||
@@ -477,7 +511,6 @@ def create_lerobot_dataset_card(
|
||||
Note: If specified, license must be one of https://huggingface.co/docs/hub/repositories-licenses.
|
||||
"""
|
||||
card_tags = ["LeRobot"]
|
||||
card_template_path = importlib.resources.path("lerobot.common.datasets", "card_template.md")
|
||||
|
||||
if tags:
|
||||
card_tags += tags
|
||||
@@ -497,8 +530,67 @@ def create_lerobot_dataset_card(
|
||||
],
|
||||
)
|
||||
|
||||
card_template = (
|
||||
importlib.resources.files("lerobot.common.datasets") / "card_template.md"
|
||||
).read_text()
|
||||
|
||||
return DatasetCard.from_template(
|
||||
card_data=card_data,
|
||||
template_path=str(card_template_path),
|
||||
template_str=card_template,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
class IterableNamespace(SimpleNamespace):
|
||||
"""
|
||||
A namespace object that supports both dictionary-like iteration and dot notation access.
|
||||
Automatically converts nested dictionaries into IterableNamespaces.
|
||||
|
||||
This class extends SimpleNamespace to provide:
|
||||
- Dictionary-style iteration over keys
|
||||
- Access to items via both dot notation (obj.key) and brackets (obj["key"])
|
||||
- Dictionary-like methods: items(), keys(), values()
|
||||
- Recursive conversion of nested dictionaries
|
||||
|
||||
Args:
|
||||
dictionary: Optional dictionary to initialize the namespace
|
||||
**kwargs: Additional keyword arguments passed to SimpleNamespace
|
||||
|
||||
Examples:
|
||||
>>> data = {"name": "Alice", "details": {"age": 25}}
|
||||
>>> ns = IterableNamespace(data)
|
||||
>>> ns.name
|
||||
'Alice'
|
||||
>>> ns.details.age
|
||||
25
|
||||
>>> list(ns.keys())
|
||||
['name', 'details']
|
||||
>>> for key, value in ns.items():
|
||||
... print(f"{key}: {value}")
|
||||
name: Alice
|
||||
details: IterableNamespace(age=25)
|
||||
"""
|
||||
|
||||
def __init__(self, dictionary: dict[str, Any] = None, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
if dictionary is not None:
|
||||
for key, value in dictionary.items():
|
||||
if isinstance(value, dict):
|
||||
setattr(self, key, IterableNamespace(value))
|
||||
else:
|
||||
setattr(self, key, value)
|
||||
|
||||
def __iter__(self) -> Iterator[str]:
|
||||
return iter(vars(self))
|
||||
|
||||
def __getitem__(self, key: str) -> Any:
|
||||
return vars(self)[key]
|
||||
|
||||
def items(self):
|
||||
return vars(self).items()
|
||||
|
||||
def values(self):
|
||||
return vars(self).values()
|
||||
|
||||
def keys(self):
|
||||
return vars(self).keys()
|
||||
|
||||
@@ -26,7 +26,10 @@ from pathlib import Path
|
||||
from textwrap import dedent
|
||||
|
||||
from lerobot import available_datasets
|
||||
from lerobot.common.datasets.v2.convert_dataset_v1_to_v2 import convert_dataset, parse_robot_config
|
||||
from lerobot.common.datasets.v2.convert_dataset_v1_to_v2 import (
|
||||
convert_dataset,
|
||||
parse_robot_config,
|
||||
)
|
||||
|
||||
LOCAL_DIR = Path("data/")
|
||||
|
||||
@@ -117,7 +120,10 @@ DATASETS = {
|
||||
"single_task": "Place the battery into the slot of the remote controller.",
|
||||
**ALOHA_STATIC_INFO,
|
||||
},
|
||||
"aloha_static_candy": {"single_task": "Pick up the candy and unwrap it.", **ALOHA_STATIC_INFO},
|
||||
"aloha_static_candy": {
|
||||
"single_task": "Pick up the candy and unwrap it.",
|
||||
**ALOHA_STATIC_INFO,
|
||||
},
|
||||
"aloha_static_coffee": {
|
||||
"single_task": "Place the coffee capsule inside the capsule container, then place the cup onto the center of the cup tray, then push the 'Hot Water' and 'Travel Mug' buttons.",
|
||||
**ALOHA_STATIC_INFO,
|
||||
@@ -159,20 +165,29 @@ DATASETS = {
|
||||
**ALOHA_STATIC_INFO,
|
||||
},
|
||||
"aloha_static_vinh_cup": {
|
||||
"single_task": "Pick up the platic cup with the right arm, then pop its lid open with the left arm.",
|
||||
"single_task": "Pick up the plastic cup with the right arm, then pop its lid open with the left arm.",
|
||||
**ALOHA_STATIC_INFO,
|
||||
},
|
||||
"aloha_static_vinh_cup_left": {
|
||||
"single_task": "Pick up the platic cup with the left arm, then pop its lid open with the right arm.",
|
||||
"single_task": "Pick up the plastic cup with the left arm, then pop its lid open with the right arm.",
|
||||
**ALOHA_STATIC_INFO,
|
||||
},
|
||||
"aloha_static_ziploc_slide": {
|
||||
"single_task": "Slide open the ziploc bag.",
|
||||
**ALOHA_STATIC_INFO,
|
||||
},
|
||||
"aloha_sim_insertion_scripted": {
|
||||
"single_task": "Insert the peg into the socket.",
|
||||
**ALOHA_STATIC_INFO,
|
||||
},
|
||||
"aloha_static_ziploc_slide": {"single_task": "Slide open the ziploc bag.", **ALOHA_STATIC_INFO},
|
||||
"aloha_sim_insertion_scripted": {"single_task": "Insert the peg into the socket.", **ALOHA_STATIC_INFO},
|
||||
"aloha_sim_insertion_scripted_image": {
|
||||
"single_task": "Insert the peg into the socket.",
|
||||
**ALOHA_STATIC_INFO,
|
||||
},
|
||||
"aloha_sim_insertion_human": {"single_task": "Insert the peg into the socket.", **ALOHA_STATIC_INFO},
|
||||
"aloha_sim_insertion_human": {
|
||||
"single_task": "Insert the peg into the socket.",
|
||||
**ALOHA_STATIC_INFO,
|
||||
},
|
||||
"aloha_sim_insertion_human_image": {
|
||||
"single_task": "Insert the peg into the socket.",
|
||||
**ALOHA_STATIC_INFO,
|
||||
@@ -193,10 +208,19 @@ DATASETS = {
|
||||
"single_task": "Pick up the cube with the right arm and transfer it to the left arm.",
|
||||
**ALOHA_STATIC_INFO,
|
||||
},
|
||||
"pusht": {"single_task": "Push the T-shaped block onto the T-shaped target.", **PUSHT_INFO},
|
||||
"pusht_image": {"single_task": "Push the T-shaped block onto the T-shaped target.", **PUSHT_INFO},
|
||||
"pusht": {
|
||||
"single_task": "Push the T-shaped block onto the T-shaped target.",
|
||||
**PUSHT_INFO,
|
||||
},
|
||||
"pusht_image": {
|
||||
"single_task": "Push the T-shaped block onto the T-shaped target.",
|
||||
**PUSHT_INFO,
|
||||
},
|
||||
"unitreeh1_fold_clothes": {"single_task": "Fold the sweatshirt.", **UNITREEH_INFO},
|
||||
"unitreeh1_rearrange_objects": {"single_task": "Put the object into the bin.", **UNITREEH_INFO},
|
||||
"unitreeh1_rearrange_objects": {
|
||||
"single_task": "Put the object into the bin.",
|
||||
**UNITREEH_INFO,
|
||||
},
|
||||
"unitreeh1_two_robot_greeting": {
|
||||
"single_task": "Greet the other robot with a high five.",
|
||||
**UNITREEH_INFO,
|
||||
@@ -206,13 +230,31 @@ DATASETS = {
|
||||
**UNITREEH_INFO,
|
||||
},
|
||||
"xarm_lift_medium": {"single_task": "Pick up the cube and lift it.", **XARM_INFO},
|
||||
"xarm_lift_medium_image": {"single_task": "Pick up the cube and lift it.", **XARM_INFO},
|
||||
"xarm_lift_medium_replay": {"single_task": "Pick up the cube and lift it.", **XARM_INFO},
|
||||
"xarm_lift_medium_replay_image": {"single_task": "Pick up the cube and lift it.", **XARM_INFO},
|
||||
"xarm_lift_medium_image": {
|
||||
"single_task": "Pick up the cube and lift it.",
|
||||
**XARM_INFO,
|
||||
},
|
||||
"xarm_lift_medium_replay": {
|
||||
"single_task": "Pick up the cube and lift it.",
|
||||
**XARM_INFO,
|
||||
},
|
||||
"xarm_lift_medium_replay_image": {
|
||||
"single_task": "Pick up the cube and lift it.",
|
||||
**XARM_INFO,
|
||||
},
|
||||
"xarm_push_medium": {"single_task": "Push the cube onto the target.", **XARM_INFO},
|
||||
"xarm_push_medium_image": {"single_task": "Push the cube onto the target.", **XARM_INFO},
|
||||
"xarm_push_medium_replay": {"single_task": "Push the cube onto the target.", **XARM_INFO},
|
||||
"xarm_push_medium_replay_image": {"single_task": "Push the cube onto the target.", **XARM_INFO},
|
||||
"xarm_push_medium_image": {
|
||||
"single_task": "Push the cube onto the target.",
|
||||
**XARM_INFO,
|
||||
},
|
||||
"xarm_push_medium_replay": {
|
||||
"single_task": "Push the cube onto the target.",
|
||||
**XARM_INFO,
|
||||
},
|
||||
"xarm_push_medium_replay_image": {
|
||||
"single_task": "Push the cube onto the target.",
|
||||
**XARM_INFO,
|
||||
},
|
||||
"umi_cup_in_the_wild": {
|
||||
"single_task": "Put the cup on the plate.",
|
||||
"license": "apache-2.0",
|
||||
|
||||
@@ -152,7 +152,9 @@ V1_INFO_PATH = "meta_data/info.json"
|
||||
V1_STATS_PATH = "meta_data/stats.safetensors"
|
||||
|
||||
|
||||
def parse_robot_config(config_path: Path, config_overrides: list[str] | None = None) -> tuple[str, dict]:
|
||||
def parse_robot_config(
|
||||
config_path: Path, config_overrides: list[str] | None = None
|
||||
) -> tuple[str, dict]:
|
||||
robot_cfg = init_hydra_config(config_path, config_overrides)
|
||||
if robot_cfg["robot_type"] in ["aloha", "koch"]:
|
||||
state_names = [
|
||||
@@ -203,7 +205,9 @@ def convert_stats_to_json(v1_dir: Path, v2_dir: Path) -> None:
|
||||
torch.testing.assert_close(stats_json[key], stats[key])
|
||||
|
||||
|
||||
def get_features_from_hf_dataset(dataset: Dataset, robot_config: dict | None = None) -> dict[str, list]:
|
||||
def get_features_from_hf_dataset(
|
||||
dataset: Dataset, robot_config: dict | None = None
|
||||
) -> dict[str, list]:
|
||||
features = {}
|
||||
for key, ft in dataset.features.items():
|
||||
if isinstance(ft, datasets.Value):
|
||||
@@ -215,7 +219,9 @@ def get_features_from_hf_dataset(dataset: Dataset, robot_config: dict | None = N
|
||||
dtype = ft.feature.dtype
|
||||
shape = (ft.length,)
|
||||
motor_names = (
|
||||
robot_config["names"][key] if robot_config else [f"motor_{i}" for i in range(ft.length)]
|
||||
robot_config["names"][key]
|
||||
if robot_config
|
||||
else [f"motor_{i}" for i in range(ft.length)]
|
||||
)
|
||||
assert len(motor_names) == shape[0]
|
||||
names = {"motors": motor_names}
|
||||
@@ -239,11 +245,15 @@ def get_features_from_hf_dataset(dataset: Dataset, robot_config: dict | None = N
|
||||
return features
|
||||
|
||||
|
||||
def add_task_index_by_episodes(dataset: Dataset, tasks_by_episodes: dict) -> tuple[Dataset, list[str]]:
|
||||
def add_task_index_by_episodes(
|
||||
dataset: Dataset, tasks_by_episodes: dict
|
||||
) -> tuple[Dataset, list[str]]:
|
||||
df = dataset.to_pandas()
|
||||
tasks = list(set(tasks_by_episodes.values()))
|
||||
tasks_to_task_index = {task: task_idx for task_idx, task in enumerate(tasks)}
|
||||
episodes_to_task_index = {ep_idx: tasks_to_task_index[task] for ep_idx, task in tasks_by_episodes.items()}
|
||||
episodes_to_task_index = {
|
||||
ep_idx: tasks_to_task_index[task] for ep_idx, task in tasks_by_episodes.items()
|
||||
}
|
||||
df["task_index"] = df["episode_index"].map(episodes_to_task_index).astype(int)
|
||||
|
||||
features = dataset.features
|
||||
@@ -260,10 +270,19 @@ def add_task_index_from_tasks_col(
|
||||
# HACK: This is to clean some of the instructions in our version of Open X datasets
|
||||
prefix_to_clean = "tf.Tensor(b'"
|
||||
suffix_to_clean = "', shape=(), dtype=string)"
|
||||
df[tasks_col] = df[tasks_col].str.removeprefix(prefix_to_clean).str.removesuffix(suffix_to_clean)
|
||||
df[tasks_col] = (
|
||||
df[tasks_col]
|
||||
.str.removeprefix(prefix_to_clean)
|
||||
.str.removesuffix(suffix_to_clean)
|
||||
)
|
||||
|
||||
# Create task_index col
|
||||
tasks_by_episode = df.groupby("episode_index")[tasks_col].unique().apply(lambda x: x.tolist()).to_dict()
|
||||
tasks_by_episode = (
|
||||
df.groupby("episode_index")[tasks_col]
|
||||
.unique()
|
||||
.apply(lambda x: x.tolist())
|
||||
.to_dict()
|
||||
)
|
||||
tasks = df[tasks_col].unique().tolist()
|
||||
tasks_to_task_index = {task: idx for idx, task in enumerate(tasks)}
|
||||
df["task_index"] = df[tasks_col].map(tasks_to_task_index).astype(int)
|
||||
@@ -288,7 +307,9 @@ def split_parquet_by_episodes(
|
||||
for ep_chunk in range(total_chunks):
|
||||
ep_chunk_start = DEFAULT_CHUNK_SIZE * ep_chunk
|
||||
ep_chunk_end = min(DEFAULT_CHUNK_SIZE * (ep_chunk + 1), total_episodes)
|
||||
chunk_dir = "/".join(DEFAULT_PARQUET_PATH.split("/")[:-1]).format(episode_chunk=ep_chunk)
|
||||
chunk_dir = "/".join(DEFAULT_PARQUET_PATH.split("/")[:-1]).format(
|
||||
episode_chunk=ep_chunk
|
||||
)
|
||||
(output_dir / chunk_dir).mkdir(parents=True, exist_ok=True)
|
||||
for ep_idx in range(ep_chunk_start, ep_chunk_end):
|
||||
ep_table = table.filter(pc.equal(table["episode_index"], ep_idx))
|
||||
@@ -320,7 +341,9 @@ def move_videos(
|
||||
videos_moved = False
|
||||
video_files = [str(f.relative_to(work_dir)) for f in work_dir.glob("videos*/*.mp4")]
|
||||
if len(video_files) == 0:
|
||||
video_files = [str(f.relative_to(work_dir)) for f in work_dir.glob("videos*/*/*/*.mp4")]
|
||||
video_files = [
|
||||
str(f.relative_to(work_dir)) for f in work_dir.glob("videos*/*/*/*.mp4")
|
||||
]
|
||||
videos_moved = True # Videos have already been moved
|
||||
|
||||
assert len(video_files) == total_episodes * len(video_keys)
|
||||
@@ -351,7 +374,9 @@ def move_videos(
|
||||
target_path = DEFAULT_VIDEO_PATH.format(
|
||||
episode_chunk=ep_chunk, video_key=vid_key, episode_index=ep_idx
|
||||
)
|
||||
video_file = V1_VIDEO_FILE.format(video_key=vid_key, episode_index=ep_idx)
|
||||
video_file = V1_VIDEO_FILE.format(
|
||||
video_key=vid_key, episode_index=ep_idx
|
||||
)
|
||||
if len(video_dirs) == 1:
|
||||
video_path = video_dirs[0] / video_file
|
||||
else:
|
||||
@@ -368,7 +393,9 @@ def move_videos(
|
||||
subprocess.run(["git", "push"], cwd=work_dir, check=True)
|
||||
|
||||
|
||||
def fix_lfs_video_files_tracking(work_dir: Path, lfs_untracked_videos: list[str]) -> None:
|
||||
def fix_lfs_video_files_tracking(
|
||||
work_dir: Path, lfs_untracked_videos: list[str]
|
||||
) -> None:
|
||||
"""
|
||||
HACK: This function fixes the tracking by git lfs which was not properly set on some repos. In that case,
|
||||
there's no other option than to download the actual files and reupload them with lfs tracking.
|
||||
@@ -376,7 +403,12 @@ def fix_lfs_video_files_tracking(work_dir: Path, lfs_untracked_videos: list[str]
|
||||
for i in range(0, len(lfs_untracked_videos), 100):
|
||||
files = lfs_untracked_videos[i : i + 100]
|
||||
try:
|
||||
subprocess.run(["git", "rm", "--cached", *files], cwd=work_dir, capture_output=True, check=True)
|
||||
subprocess.run(
|
||||
["git", "rm", "--cached", *files],
|
||||
cwd=work_dir,
|
||||
capture_output=True,
|
||||
check=True,
|
||||
)
|
||||
except subprocess.CalledProcessError as e:
|
||||
print("git rm --cached ERROR:")
|
||||
print(e.stderr)
|
||||
@@ -387,10 +419,14 @@ def fix_lfs_video_files_tracking(work_dir: Path, lfs_untracked_videos: list[str]
|
||||
subprocess.run(["git", "push"], cwd=work_dir, check=True)
|
||||
|
||||
|
||||
def fix_gitattributes(work_dir: Path, current_gittatributes: Path, clean_gittatributes: Path) -> None:
|
||||
def fix_gitattributes(
|
||||
work_dir: Path, current_gittatributes: Path, clean_gittatributes: Path
|
||||
) -> None:
|
||||
shutil.copyfile(clean_gittatributes, current_gittatributes)
|
||||
subprocess.run(["git", "add", ".gitattributes"], cwd=work_dir, check=True)
|
||||
subprocess.run(["git", "commit", "-m", "Fix .gitattributes"], cwd=work_dir, check=True)
|
||||
subprocess.run(
|
||||
["git", "commit", "-m", "Fix .gitattributes"], cwd=work_dir, check=True
|
||||
)
|
||||
subprocess.run(["git", "push"], cwd=work_dir, check=True)
|
||||
|
||||
|
||||
@@ -399,7 +435,17 @@ def _lfs_clone(repo_id: str, work_dir: Path, branch: str) -> None:
|
||||
repo_url = f"https://huggingface.co/datasets/{repo_id}"
|
||||
env = {"GIT_LFS_SKIP_SMUDGE": "1"} # Prevent downloading LFS files
|
||||
subprocess.run(
|
||||
["git", "clone", "--branch", branch, "--single-branch", "--depth", "1", repo_url, str(work_dir)],
|
||||
[
|
||||
"git",
|
||||
"clone",
|
||||
"--branch",
|
||||
branch,
|
||||
"--single-branch",
|
||||
"--depth",
|
||||
"1",
|
||||
repo_url,
|
||||
str(work_dir),
|
||||
],
|
||||
check=True,
|
||||
env=env,
|
||||
)
|
||||
@@ -407,13 +453,19 @@ def _lfs_clone(repo_id: str, work_dir: Path, branch: str) -> None:
|
||||
|
||||
def _get_lfs_untracked_videos(work_dir: Path, video_files: list[str]) -> list[str]:
|
||||
lfs_tracked_files = subprocess.run(
|
||||
["git", "lfs", "ls-files", "-n"], cwd=work_dir, capture_output=True, text=True, check=True
|
||||
["git", "lfs", "ls-files", "-n"],
|
||||
cwd=work_dir,
|
||||
capture_output=True,
|
||||
text=True,
|
||||
check=True,
|
||||
)
|
||||
lfs_tracked_files = set(lfs_tracked_files.stdout.splitlines())
|
||||
return [f for f in video_files if f not in lfs_tracked_files]
|
||||
|
||||
|
||||
def get_videos_info(repo_id: str, local_dir: Path, video_keys: list[str], branch: str) -> dict:
|
||||
def get_videos_info(
|
||||
repo_id: str, local_dir: Path, video_keys: list[str], branch: str
|
||||
) -> dict:
|
||||
# Assumes first episode
|
||||
video_files = [
|
||||
DEFAULT_VIDEO_PATH.format(episode_chunk=0, video_key=vid_key, episode_index=0)
|
||||
@@ -421,7 +473,11 @@ def get_videos_info(repo_id: str, local_dir: Path, video_keys: list[str], branch
|
||||
]
|
||||
hub_api = HfApi()
|
||||
hub_api.snapshot_download(
|
||||
repo_id=repo_id, repo_type="dataset", local_dir=local_dir, revision=branch, allow_patterns=video_files
|
||||
repo_id=repo_id,
|
||||
repo_type="dataset",
|
||||
local_dir=local_dir,
|
||||
revision=branch,
|
||||
allow_patterns=video_files,
|
||||
)
|
||||
videos_info_dict = {}
|
||||
for vid_key, vid_path in zip(video_keys, video_files, strict=True):
|
||||
@@ -448,7 +504,11 @@ def convert_dataset(
|
||||
|
||||
hub_api = HfApi()
|
||||
hub_api.snapshot_download(
|
||||
repo_id=repo_id, repo_type="dataset", revision=v1, local_dir=v1x_dir, ignore_patterns="videos*/"
|
||||
repo_id=repo_id,
|
||||
repo_type="dataset",
|
||||
revision=v1,
|
||||
local_dir=v1x_dir,
|
||||
ignore_patterns="videos*/",
|
||||
)
|
||||
branch = "main"
|
||||
if test_branch:
|
||||
@@ -480,19 +540,31 @@ def convert_dataset(
|
||||
if single_task:
|
||||
tasks_by_episodes = {ep_idx: single_task for ep_idx in episode_indices}
|
||||
dataset, tasks = add_task_index_by_episodes(dataset, tasks_by_episodes)
|
||||
tasks_by_episodes = {ep_idx: [task] for ep_idx, task in tasks_by_episodes.items()}
|
||||
tasks_by_episodes = {
|
||||
ep_idx: [task] for ep_idx, task in tasks_by_episodes.items()
|
||||
}
|
||||
elif tasks_path:
|
||||
tasks_by_episodes = load_json(tasks_path)
|
||||
tasks_by_episodes = {int(ep_idx): task for ep_idx, task in tasks_by_episodes.items()}
|
||||
tasks_by_episodes = {
|
||||
int(ep_idx): task for ep_idx, task in tasks_by_episodes.items()
|
||||
}
|
||||
dataset, tasks = add_task_index_by_episodes(dataset, tasks_by_episodes)
|
||||
tasks_by_episodes = {ep_idx: [task] for ep_idx, task in tasks_by_episodes.items()}
|
||||
tasks_by_episodes = {
|
||||
ep_idx: [task] for ep_idx, task in tasks_by_episodes.items()
|
||||
}
|
||||
elif tasks_col:
|
||||
dataset, tasks, tasks_by_episodes = add_task_index_from_tasks_col(dataset, tasks_col)
|
||||
dataset, tasks, tasks_by_episodes = add_task_index_from_tasks_col(
|
||||
dataset, tasks_col
|
||||
)
|
||||
else:
|
||||
raise ValueError
|
||||
|
||||
assert set(tasks) == {task for ep_tasks in tasks_by_episodes.values() for task in ep_tasks}
|
||||
tasks = [{"task_index": task_idx, "task": task} for task_idx, task in enumerate(tasks)]
|
||||
assert set(tasks) == {
|
||||
task for ep_tasks in tasks_by_episodes.values() for task in ep_tasks
|
||||
}
|
||||
tasks = [
|
||||
{"task_index": task_idx, "task": task} for task_idx, task in enumerate(tasks)
|
||||
]
|
||||
write_jsonlines(tasks, v20_dir / TASKS_PATH)
|
||||
features["task_index"] = {
|
||||
"dtype": "int64",
|
||||
@@ -506,14 +578,25 @@ def convert_dataset(
|
||||
dataset = dataset.remove_columns(video_keys)
|
||||
clean_gitattr = Path(
|
||||
hub_api.hf_hub_download(
|
||||
repo_id=GITATTRIBUTES_REF, repo_type="dataset", local_dir=local_dir, filename=".gitattributes"
|
||||
repo_id=GITATTRIBUTES_REF,
|
||||
repo_type="dataset",
|
||||
local_dir=local_dir,
|
||||
filename=".gitattributes",
|
||||
)
|
||||
).absolute()
|
||||
with tempfile.TemporaryDirectory() as tmp_video_dir:
|
||||
move_videos(
|
||||
repo_id, video_keys, total_episodes, total_chunks, Path(tmp_video_dir), clean_gitattr, branch
|
||||
repo_id,
|
||||
video_keys,
|
||||
total_episodes,
|
||||
total_chunks,
|
||||
Path(tmp_video_dir),
|
||||
clean_gitattr,
|
||||
branch,
|
||||
)
|
||||
videos_info = get_videos_info(repo_id, v1x_dir, video_keys=video_keys, branch=branch)
|
||||
videos_info = get_videos_info(
|
||||
repo_id, v1x_dir, video_keys=video_keys, branch=branch
|
||||
)
|
||||
for key in video_keys:
|
||||
features[key]["shape"] = (
|
||||
videos_info[key].pop("video.height"),
|
||||
@@ -521,15 +604,22 @@ def convert_dataset(
|
||||
videos_info[key].pop("video.channels"),
|
||||
)
|
||||
features[key]["video_info"] = videos_info[key]
|
||||
assert math.isclose(videos_info[key]["video.fps"], metadata_v1["fps"], rel_tol=1e-3)
|
||||
assert math.isclose(
|
||||
videos_info[key]["video.fps"], metadata_v1["fps"], rel_tol=1e-3
|
||||
)
|
||||
if "encoding" in metadata_v1:
|
||||
assert videos_info[key]["video.pix_fmt"] == metadata_v1["encoding"]["pix_fmt"]
|
||||
assert (
|
||||
videos_info[key]["video.pix_fmt"]
|
||||
== metadata_v1["encoding"]["pix_fmt"]
|
||||
)
|
||||
else:
|
||||
assert metadata_v1.get("video", 0) == 0
|
||||
videos_info = None
|
||||
|
||||
# Split data into 1 parquet file by episode
|
||||
episode_lengths = split_parquet_by_episodes(dataset, total_episodes, total_chunks, v20_dir)
|
||||
episode_lengths = split_parquet_by_episodes(
|
||||
dataset, total_episodes, total_chunks, v20_dir
|
||||
)
|
||||
|
||||
if robot_config is not None:
|
||||
robot_type = robot_config["robot_type"]
|
||||
@@ -540,7 +630,11 @@ def convert_dataset(
|
||||
|
||||
# Episodes
|
||||
episodes = [
|
||||
{"episode_index": ep_idx, "tasks": tasks_by_episodes[ep_idx], "length": episode_lengths[ep_idx]}
|
||||
{
|
||||
"episode_index": ep_idx,
|
||||
"tasks": tasks_by_episodes[ep_idx],
|
||||
"length": episode_lengths[ep_idx],
|
||||
}
|
||||
for ep_idx in episode_indices
|
||||
]
|
||||
write_jsonlines(episodes, v20_dir / EPISODES_PATH)
|
||||
@@ -563,16 +657,27 @@ def convert_dataset(
|
||||
}
|
||||
write_json(metadata_v2_0, v20_dir / INFO_PATH)
|
||||
convert_stats_to_json(v1x_dir, v20_dir)
|
||||
card = create_lerobot_dataset_card(tags=repo_tags, dataset_info=metadata_v2_0, **card_kwargs)
|
||||
card = create_lerobot_dataset_card(
|
||||
tags=repo_tags, dataset_info=metadata_v2_0, **card_kwargs
|
||||
)
|
||||
|
||||
with contextlib.suppress(EntryNotFoundError, HfHubHTTPError):
|
||||
hub_api.delete_folder(repo_id=repo_id, path_in_repo="data", repo_type="dataset", revision=branch)
|
||||
hub_api.delete_folder(
|
||||
repo_id=repo_id, path_in_repo="data", repo_type="dataset", revision=branch
|
||||
)
|
||||
|
||||
with contextlib.suppress(EntryNotFoundError, HfHubHTTPError):
|
||||
hub_api.delete_folder(repo_id=repo_id, path_in_repo="meta_data", repo_type="dataset", revision=branch)
|
||||
hub_api.delete_folder(
|
||||
repo_id=repo_id,
|
||||
path_in_repo="meta_data",
|
||||
repo_type="dataset",
|
||||
revision=branch,
|
||||
)
|
||||
|
||||
with contextlib.suppress(EntryNotFoundError, HfHubHTTPError):
|
||||
hub_api.delete_folder(repo_id=repo_id, path_in_repo="meta", repo_type="dataset", revision=branch)
|
||||
hub_api.delete_folder(
|
||||
repo_id=repo_id, path_in_repo="meta", repo_type="dataset", revision=branch
|
||||
)
|
||||
|
||||
hub_api.upload_folder(
|
||||
repo_id=repo_id,
|
||||
@@ -655,7 +760,11 @@ def main():
|
||||
if not args.local_dir:
|
||||
args.local_dir = Path("/tmp/lerobot_dataset_v2")
|
||||
|
||||
robot_config = parse_robot_config(args.robot_config, args.robot_overrides) if args.robot_config else None
|
||||
robot_config = (
|
||||
parse_robot_config(args.robot_config, args.robot_overrides)
|
||||
if args.robot_config
|
||||
else None
|
||||
)
|
||||
del args.robot_config, args.robot_overrides
|
||||
|
||||
convert_dataset(**vars(args), robot_config=robot_config)
|
||||
|
||||
@@ -227,7 +227,9 @@ def get_audio_info(video_path: Path | str) -> dict:
|
||||
"json",
|
||||
str(video_path),
|
||||
]
|
||||
result = subprocess.run(ffprobe_audio_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
|
||||
result = subprocess.run(
|
||||
ffprobe_audio_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True
|
||||
)
|
||||
if result.returncode != 0:
|
||||
raise RuntimeError(f"Error running ffprobe: {result.stderr}")
|
||||
|
||||
@@ -241,7 +243,9 @@ def get_audio_info(video_path: Path | str) -> dict:
|
||||
"has_audio": True,
|
||||
"audio.channels": audio_stream_info.get("channels", None),
|
||||
"audio.codec": audio_stream_info.get("codec_name", None),
|
||||
"audio.bit_rate": int(audio_stream_info["bit_rate"]) if audio_stream_info.get("bit_rate") else None,
|
||||
"audio.bit_rate": int(audio_stream_info["bit_rate"])
|
||||
if audio_stream_info.get("bit_rate")
|
||||
else None,
|
||||
"audio.sample_rate": int(audio_stream_info["sample_rate"])
|
||||
if audio_stream_info.get("sample_rate")
|
||||
else None,
|
||||
@@ -263,7 +267,9 @@ def get_video_info(video_path: Path | str) -> dict:
|
||||
"json",
|
||||
str(video_path),
|
||||
]
|
||||
result = subprocess.run(ffprobe_video_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
|
||||
result = subprocess.run(
|
||||
ffprobe_video_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True
|
||||
)
|
||||
if result.returncode != 0:
|
||||
raise RuntimeError(f"Error running ffprobe: {result.stderr}")
|
||||
|
||||
|
||||
@@ -14,9 +14,13 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import importlib
|
||||
from collections import deque
|
||||
|
||||
import gymnasium as gym
|
||||
import numpy as np
|
||||
import torch
|
||||
from omegaconf import DictConfig
|
||||
# from mani_skill.utils import common
|
||||
|
||||
|
||||
def make_env(cfg: DictConfig, n_envs: int | None = None) -> gym.vector.VectorEnv | None:
|
||||
@@ -30,6 +34,12 @@ def make_env(cfg: DictConfig, n_envs: int | None = None) -> gym.vector.VectorEnv
|
||||
if cfg.env.name == "real_world":
|
||||
return
|
||||
|
||||
if "maniskill" in cfg.env.name:
|
||||
env = make_maniskill_env(
|
||||
cfg, n_envs if n_envs is not None else cfg.eval.batch_size
|
||||
)
|
||||
return env
|
||||
|
||||
package_name = f"gym_{cfg.env.name}"
|
||||
|
||||
try:
|
||||
@@ -47,7 +57,11 @@ def make_env(cfg: DictConfig, n_envs: int | None = None) -> gym.vector.VectorEnv
|
||||
gym_kwgs["max_episode_steps"] = cfg.env.episode_length
|
||||
|
||||
# batched version of the env that returns an observation of shape (b, c)
|
||||
env_cls = gym.vector.AsyncVectorEnv if cfg.eval.use_async_envs else gym.vector.SyncVectorEnv
|
||||
env_cls = (
|
||||
gym.vector.AsyncVectorEnv
|
||||
if cfg.eval.use_async_envs
|
||||
else gym.vector.SyncVectorEnv
|
||||
)
|
||||
env = env_cls(
|
||||
[
|
||||
lambda: gym.make(gym_handle, disable_env_checker=True, **gym_kwgs)
|
||||
@@ -56,3 +70,99 @@ def make_env(cfg: DictConfig, n_envs: int | None = None) -> gym.vector.VectorEnv
|
||||
)
|
||||
|
||||
return env
|
||||
|
||||
|
||||
def make_maniskill_env(
|
||||
cfg: DictConfig, n_envs: int | None = None
|
||||
) -> gym.vector.VectorEnv | None:
|
||||
"""Make ManiSkill3 gym environment"""
|
||||
from mani_skill.vector.wrappers.gymnasium import ManiSkillVectorEnv
|
||||
|
||||
env = gym.make(
|
||||
cfg.env.task,
|
||||
obs_mode=cfg.env.obs,
|
||||
control_mode=cfg.env.control_mode,
|
||||
render_mode=cfg.env.render_mode,
|
||||
sensor_configs=dict(width=cfg.env.image_size, height=cfg.env.image_size),
|
||||
num_envs=n_envs,
|
||||
)
|
||||
# cfg.env_cfg.control_mode = cfg.eval_env_cfg.control_mode = env.control_mode
|
||||
env = ManiSkillVectorEnv(env, ignore_terminations=True)
|
||||
# state should have the size of 25
|
||||
# env = ConvertToLeRobotEnv(env, n_envs)
|
||||
# env = PixelWrapper(cfg, env, n_envs)
|
||||
env._max_episode_steps = env.max_episode_steps = (
|
||||
50 # gym_utils.find_max_episode_steps_value(env)
|
||||
)
|
||||
env.unwrapped.metadata["render_fps"] = 20
|
||||
|
||||
return env
|
||||
|
||||
|
||||
class PixelWrapper(gym.Wrapper):
|
||||
"""
|
||||
Wrapper for pixel observations. Works with Maniskill vectorized environments
|
||||
"""
|
||||
|
||||
def __init__(self, cfg, env, num_envs, num_frames=3):
|
||||
super().__init__(env)
|
||||
self.cfg = cfg
|
||||
self.env = env
|
||||
self.observation_space = gym.spaces.Box(
|
||||
low=0,
|
||||
high=255,
|
||||
shape=(num_envs, num_frames * 3, cfg.env.render_size, cfg.env.render_size),
|
||||
dtype=np.uint8,
|
||||
)
|
||||
self._frames = deque([], maxlen=num_frames)
|
||||
self._render_size = cfg.env.render_size
|
||||
|
||||
def _get_obs(self, obs):
|
||||
frame = obs["sensor_data"]["base_camera"]["rgb"].cpu().permute(0, 3, 1, 2)
|
||||
self._frames.append(frame)
|
||||
return {
|
||||
"pixels": torch.from_numpy(np.concatenate(self._frames, axis=1)).to(
|
||||
self.env.device
|
||||
)
|
||||
}
|
||||
|
||||
def reset(self, seed):
|
||||
obs, info = self.env.reset() # (seed=seed)
|
||||
for _ in range(self._frames.maxlen):
|
||||
obs_frames = self._get_obs(obs)
|
||||
return obs_frames, info
|
||||
|
||||
def step(self, action):
|
||||
obs, reward, terminated, truncated, info = self.env.step(action)
|
||||
return self._get_obs(obs), reward, terminated, truncated, info
|
||||
|
||||
|
||||
# TODO: Remove this
|
||||
class ConvertToLeRobotEnv(gym.Wrapper):
|
||||
def __init__(self, env, num_envs):
|
||||
super().__init__(env)
|
||||
|
||||
def reset(self, seed=None, options=None):
|
||||
obs, info = self.env.reset(seed=seed, options={})
|
||||
return self._get_obs(obs), info
|
||||
|
||||
def step(self, action):
|
||||
obs, reward, terminated, truncated, info = self.env.step(action)
|
||||
return self._get_obs(obs), reward, terminated, truncated, info
|
||||
|
||||
def _get_obs(self, observation):
|
||||
sensor_data = observation.pop("sensor_data")
|
||||
del observation["sensor_param"]
|
||||
images = []
|
||||
for cam_data in sensor_data.values():
|
||||
images.append(cam_data["rgb"])
|
||||
|
||||
images = torch.concat(images, axis=-1)
|
||||
# flatten the rest of the data which should just be state data
|
||||
observation = common.flatten_state_dict(
|
||||
observation, use_torch=True, device=self.base_env.device
|
||||
)
|
||||
ret = dict()
|
||||
ret["state"] = observation
|
||||
ret["pixels"] = images
|
||||
return ret
|
||||
|
||||
@@ -28,28 +28,32 @@ def preprocess_observation(observations: dict[str, np.ndarray]) -> dict[str, Ten
|
||||
"""
|
||||
# map to expected inputs for the policy
|
||||
return_observations = {}
|
||||
if "pixels" in observations:
|
||||
if isinstance(observations["pixels"], dict):
|
||||
imgs = {f"observation.images.{key}": img for key, img in observations["pixels"].items()}
|
||||
else:
|
||||
imgs = {"observation.image": observations["pixels"]}
|
||||
# TODO: You have to merge all tensors from agent key and extra key
|
||||
# You don't keep sensor param key in the observation
|
||||
# And you keep sensor data rgb
|
||||
for key, img in observations.items():
|
||||
if "images" not in key:
|
||||
continue
|
||||
|
||||
for imgkey, img in imgs.items():
|
||||
img = torch.from_numpy(img)
|
||||
if img.ndim == 3:
|
||||
img = img.unsqueeze(0)
|
||||
# sanity check that images are channel last
|
||||
_, h, w, c = img.shape
|
||||
assert (
|
||||
c < h and c < w
|
||||
), f"expect channel last images, but instead got {img.shape=}"
|
||||
|
||||
# sanity check that images are channel last
|
||||
_, h, w, c = img.shape
|
||||
assert c < h and c < w, f"expect channel last images, but instead got {img.shape=}"
|
||||
# sanity check that images are uint8
|
||||
assert img.dtype == torch.uint8, f"expect torch.uint8, but instead {img.dtype=}"
|
||||
|
||||
# sanity check that images are uint8
|
||||
assert img.dtype == torch.uint8, f"expect torch.uint8, but instead {img.dtype=}"
|
||||
# convert to channel first of type float32 in range [0,1]
|
||||
img = einops.rearrange(img, "b h w c -> b c h w").contiguous()
|
||||
img = img.type(torch.float32)
|
||||
img /= 255
|
||||
|
||||
# convert to channel first of type float32 in range [0,1]
|
||||
img = einops.rearrange(img, "b h w c -> b c h w").contiguous()
|
||||
img = img.type(torch.float32)
|
||||
img /= 255
|
||||
|
||||
return_observations[imgkey] = img
|
||||
return_observations[key] = img
|
||||
# obs state agent qpos and qvel
|
||||
# image
|
||||
|
||||
if "environment_state" in observations:
|
||||
return_observations["observation.environment_state"] = torch.from_numpy(
|
||||
@@ -58,5 +62,43 @@ def preprocess_observation(observations: dict[str, np.ndarray]) -> dict[str, Ten
|
||||
|
||||
# TODO(rcadene): enable pixels only baseline with `obs_type="pixels"` in environment by removing
|
||||
# requirement for "agent_pos"
|
||||
return_observations["observation.state"] = torch.from_numpy(observations["agent_pos"]).float()
|
||||
# return_observations["observation.state"] = torch.from_numpy(observations["agent_pos"]).float()
|
||||
return_observations["observation.state"] = observations["observation.state"].float()
|
||||
return return_observations
|
||||
|
||||
|
||||
def preprocess_maniskill_observation(
|
||||
observations: dict[str, np.ndarray],
|
||||
) -> dict[str, Tensor]:
|
||||
"""Convert environment observation to LeRobot format observation.
|
||||
Args:
|
||||
observation: Dictionary of observation batches from a Gym vector environment.
|
||||
Returns:
|
||||
Dictionary of observation batches with keys renamed to LeRobot format and values as tensors.
|
||||
"""
|
||||
# map to expected inputs for the policy
|
||||
return_observations = {}
|
||||
# TODO: You have to merge all tensors from agent key and extra key
|
||||
# You don't keep sensor param key in the observation
|
||||
# And you keep sensor data rgb
|
||||
q_pos = observations["agent"]["qpos"]
|
||||
q_vel = observations["agent"]["qvel"]
|
||||
tcp_pos = observations["extra"]["tcp_pose"]
|
||||
img = observations["sensor_data"]["base_camera"]["rgb"]
|
||||
|
||||
_, h, w, c = img.shape
|
||||
assert c < h and c < w, f"expect channel last images, but instead got {img.shape=}"
|
||||
|
||||
# sanity check that images are uint8
|
||||
assert img.dtype == torch.uint8, f"expect torch.uint8, but instead {img.dtype=}"
|
||||
|
||||
# convert to channel first of type float32 in range [0,1]
|
||||
img = einops.rearrange(img, "b h w c -> b c h w").contiguous()
|
||||
img = img.type(torch.float32)
|
||||
img /= 255
|
||||
|
||||
state = torch.cat([q_pos, q_vel, tcp_pos], dim=-1)
|
||||
|
||||
return_observations["observation.image"] = img
|
||||
return_observations["observation.state"] = state
|
||||
return return_observations
|
||||
|
||||
@@ -25,6 +25,7 @@ from glob import glob
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
import wandb
|
||||
from huggingface_hub.constants import SAFETENSORS_SINGLE_FILE
|
||||
from omegaconf import DictConfig, OmegaConf
|
||||
from termcolor import colored
|
||||
@@ -83,7 +84,9 @@ class Logger:
|
||||
pretrained_model_dir_name = "pretrained_model"
|
||||
training_state_file_name = "training_state.pth"
|
||||
|
||||
def __init__(self, cfg: DictConfig, log_dir: str, wandb_job_name: str | None = None):
|
||||
def __init__(
|
||||
self, cfg: DictConfig, log_dir: str, wandb_job_name: str | None = None
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
log_dir: The directory to save all logs and training outputs to.
|
||||
@@ -103,12 +106,12 @@ class Logger:
|
||||
enable_wandb = cfg.get("wandb", {}).get("enable", False)
|
||||
run_offline = not enable_wandb or not project
|
||||
if run_offline:
|
||||
logging.info(colored("Logs will be saved locally.", "yellow", attrs=["bold"]))
|
||||
logging.info(
|
||||
colored("Logs will be saved locally.", "yellow", attrs=["bold"])
|
||||
)
|
||||
self._wandb = None
|
||||
else:
|
||||
os.environ["WANDB_SILENT"] = "true"
|
||||
import wandb
|
||||
|
||||
wandb_run_id = None
|
||||
if cfg.resume:
|
||||
wandb_run_id = get_wandb_run_id_from_filesystem(self.checkpoints_dir)
|
||||
@@ -128,8 +131,12 @@ class Logger:
|
||||
job_type="train_eval",
|
||||
resume="must" if cfg.resume else None,
|
||||
)
|
||||
# Handle custom step key for rl asynchronous training.
|
||||
self._wandb_custom_step_key: set[str] | None = None
|
||||
print(colored("Logs will be synced with wandb.", "blue", attrs=["bold"]))
|
||||
logging.info(f"Track this run --> {colored(wandb.run.get_url(), 'yellow', attrs=['bold'])}")
|
||||
logging.info(
|
||||
f"Track this run --> {colored(wandb.run.get_url(), 'yellow', attrs=['bold'])}"
|
||||
)
|
||||
self._wandb = wandb
|
||||
|
||||
@classmethod
|
||||
@@ -150,7 +157,9 @@ class Logger:
|
||||
"""
|
||||
return cls.get_last_checkpoint_dir(log_dir) / cls.pretrained_model_dir_name
|
||||
|
||||
def save_model(self, save_dir: Path, policy: Policy, wandb_artifact_name: str | None = None):
|
||||
def save_model(
|
||||
self, save_dir: Path, policy: Policy, wandb_artifact_name: str | None = None
|
||||
):
|
||||
"""Save the weights of the Policy model using PyTorchModelHubMixin.
|
||||
|
||||
The weights are saved in a folder called "pretrained_model" under the checkpoint directory.
|
||||
@@ -173,18 +182,32 @@ class Logger:
|
||||
self,
|
||||
save_dir: Path,
|
||||
train_step: int,
|
||||
optimizer: Optimizer,
|
||||
optimizer: Optimizer | dict,
|
||||
scheduler: LRScheduler | None,
|
||||
interaction_step: int | None = None,
|
||||
):
|
||||
"""Checkpoint the global training_step, optimizer state, scheduler state, and random state.
|
||||
|
||||
All of these are saved as "training_state.pth" under the checkpoint directory.
|
||||
"""
|
||||
# In Sac, for example, we have a dictionary of torch.optim.Optimizer
|
||||
if type(optimizer) is dict:
|
||||
optimizer_state_dict = {}
|
||||
for k in optimizer:
|
||||
optimizer_state_dict[k] = optimizer[k].state_dict()
|
||||
else:
|
||||
optimizer_state_dict = optimizer.state_dict()
|
||||
|
||||
training_state = {
|
||||
"step": train_step,
|
||||
"optimizer": optimizer.state_dict(),
|
||||
"optimizer": optimizer_state_dict,
|
||||
**get_global_random_state(),
|
||||
}
|
||||
# Interaction step is related to the distributed training code
|
||||
# In that setup, we have two kinds of steps, the online step of the env and the optimization step
|
||||
# We need to save both in order to resume the optimization properly and not break the logs dependant on the interaction step
|
||||
if interaction_step is not None:
|
||||
training_state["interaction_step"] = interaction_step
|
||||
if scheduler is not None:
|
||||
training_state["scheduler"] = scheduler.state_dict()
|
||||
torch.save(training_state, save_dir / self.training_state_file_name)
|
||||
@@ -196,6 +219,7 @@ class Logger:
|
||||
optimizer: Optimizer,
|
||||
scheduler: LRScheduler | None,
|
||||
identifier: str,
|
||||
interaction_step: int | None = None,
|
||||
):
|
||||
"""Checkpoint the model weights and the training state."""
|
||||
checkpoint_dir = self.checkpoints_dir / str(identifier)
|
||||
@@ -205,18 +229,34 @@ class Logger:
|
||||
else f"{self._group.replace(':', '_').replace('/', '_')}-{self._cfg.seed}-{identifier}"
|
||||
)
|
||||
self.save_model(
|
||||
checkpoint_dir / self.pretrained_model_dir_name, policy, wandb_artifact_name=wandb_artifact_name
|
||||
checkpoint_dir / self.pretrained_model_dir_name,
|
||||
policy,
|
||||
wandb_artifact_name=wandb_artifact_name,
|
||||
)
|
||||
self.save_training_state(
|
||||
checkpoint_dir, train_step, optimizer, scheduler, interaction_step
|
||||
)
|
||||
self.save_training_state(checkpoint_dir, train_step, optimizer, scheduler)
|
||||
os.symlink(checkpoint_dir.absolute(), self.last_checkpoint_dir)
|
||||
|
||||
def load_last_training_state(self, optimizer: Optimizer, scheduler: LRScheduler | None) -> int:
|
||||
def load_last_training_state(
|
||||
self, optimizer: Optimizer | dict, scheduler: LRScheduler | None
|
||||
) -> int:
|
||||
"""
|
||||
Given the last checkpoint in the logging directory, load the optimizer state, scheduler state, and
|
||||
random state, and return the global training step.
|
||||
"""
|
||||
training_state = torch.load(self.last_checkpoint_dir / self.training_state_file_name)
|
||||
optimizer.load_state_dict(training_state["optimizer"])
|
||||
training_state = torch.load(
|
||||
self.last_checkpoint_dir / self.training_state_file_name
|
||||
)
|
||||
# For the case where the optimizer is a dictionary of optimizers (e.g., sac)
|
||||
if type(training_state["optimizer"]) is dict:
|
||||
assert set(training_state["optimizer"].keys()) == set(
|
||||
optimizer.keys()
|
||||
), "Optimizer dictionaries do not have the same keys during resume!"
|
||||
for k, v in training_state["optimizer"].items():
|
||||
optimizer[k].load_state_dict(v)
|
||||
else:
|
||||
optimizer.load_state_dict(training_state["optimizer"])
|
||||
if scheduler is not None:
|
||||
scheduler.load_state_dict(training_state["scheduler"])
|
||||
elif "scheduler" in training_state:
|
||||
@@ -224,20 +264,63 @@ class Logger:
|
||||
"The checkpoint contains a scheduler state_dict, but no LRScheduler was provided."
|
||||
)
|
||||
# Small hack to get the expected keys: use `get_global_random_state`.
|
||||
set_global_random_state({k: training_state[k] for k in get_global_random_state()})
|
||||
set_global_random_state(
|
||||
{k: training_state[k] for k in get_global_random_state()}
|
||||
)
|
||||
return training_state["step"]
|
||||
|
||||
def log_dict(self, d, step, mode="train"):
|
||||
def log_dict(
|
||||
self,
|
||||
d,
|
||||
step: int | None = None,
|
||||
mode="train",
|
||||
custom_step_key: str | None = None,
|
||||
):
|
||||
"""Log a dictionary of metrics to WandB."""
|
||||
assert mode in {"train", "eval"}
|
||||
# TODO(alexander-soare): Add local text log.
|
||||
if step is None and custom_step_key is None:
|
||||
raise ValueError("Either step or custom_step_key must be provided.")
|
||||
|
||||
if self._wandb is not None:
|
||||
# NOTE: This is not simple. Wandb step is it must always monotonically increase and it
|
||||
# increases with each wandb.log call, but in the case of asynchronous RL for example,
|
||||
# multiple time steps is possible for example, the interaction step with the environment,
|
||||
# the training step, the evaluation step, etc. So we need to define a custom step key
|
||||
# to log the correct step for each metric.
|
||||
if custom_step_key is not None:
|
||||
if self._wandb_custom_step_key is None:
|
||||
self._wandb_custom_step_key = set()
|
||||
new_custom_key = f"{mode}/{custom_step_key}"
|
||||
if new_custom_key not in self._wandb_custom_step_key:
|
||||
self._wandb_custom_step_key.add(new_custom_key)
|
||||
self._wandb.define_metric(new_custom_key, hidden=True)
|
||||
|
||||
for k, v in d.items():
|
||||
if not isinstance(v, (int, float, str)):
|
||||
if not isinstance(v, (int, float, str, wandb.Table)):
|
||||
logging.warning(
|
||||
f'WandB logging of key "{k}" was ignored as its type is not handled by this wrapper.'
|
||||
)
|
||||
continue
|
||||
self._wandb.log({f"{mode}/{k}": v}, step=step)
|
||||
|
||||
# Do not log the custom step key itself.
|
||||
if (
|
||||
self._wandb_custom_step_key is not None
|
||||
and k in self._wandb_custom_step_key
|
||||
):
|
||||
continue
|
||||
|
||||
if custom_step_key is not None:
|
||||
value_custom_step = d[custom_step_key]
|
||||
self._wandb.log(
|
||||
{
|
||||
f"{mode}/{k}": v,
|
||||
f"{mode}/{custom_step_key}": value_custom_step,
|
||||
}
|
||||
)
|
||||
continue
|
||||
|
||||
self._wandb.log(data={f"{mode}/{k}": v}, step=step)
|
||||
|
||||
def log_video(self, video_path: str, step: int, mode: str = "train"):
|
||||
assert mode in {"train", "eval"}
|
||||
|
||||
@@ -168,4 +168,6 @@ class ACTConfig:
|
||||
not any(k.startswith("observation.image") for k in self.input_shapes)
|
||||
and "observation.environment_state" not in self.input_shapes
|
||||
):
|
||||
raise ValueError("You must provide at least one image or the environment state among the inputs.")
|
||||
raise ValueError(
|
||||
"You must provide at least one image or the environment state among the inputs."
|
||||
)
|
||||
|
||||
@@ -81,10 +81,14 @@ class ACTPolicy(
|
||||
|
||||
self.model = ACT(config)
|
||||
|
||||
self.expected_image_keys = [k for k in config.input_shapes if k.startswith("observation.image")]
|
||||
self.expected_image_keys = [
|
||||
k for k in config.input_shapes if k.startswith("observation.image")
|
||||
]
|
||||
|
||||
if config.temporal_ensemble_coeff is not None:
|
||||
self.temporal_ensembler = ACTTemporalEnsembler(config.temporal_ensemble_coeff, config.chunk_size)
|
||||
self.temporal_ensembler = ACTTemporalEnsembler(
|
||||
config.temporal_ensemble_coeff, config.chunk_size
|
||||
)
|
||||
|
||||
self.reset()
|
||||
|
||||
@@ -107,8 +111,12 @@ class ACTPolicy(
|
||||
|
||||
batch = self.normalize_inputs(batch)
|
||||
if len(self.expected_image_keys) > 0:
|
||||
batch = dict(batch) # shallow copy so that adding a key doesn't modify the original
|
||||
batch["observation.images"] = torch.stack([batch[k] for k in self.expected_image_keys], dim=-4)
|
||||
batch = dict(
|
||||
batch
|
||||
) # shallow copy so that adding a key doesn't modify the original
|
||||
batch["observation.images"] = torch.stack(
|
||||
[batch[k] for k in self.expected_image_keys], dim=-4
|
||||
)
|
||||
|
||||
# If we are doing temporal ensembling, do online updates where we keep track of the number of actions
|
||||
# we are ensembling over.
|
||||
@@ -135,13 +143,18 @@ class ACTPolicy(
|
||||
"""Run the batch through the model and compute the loss for training or validation."""
|
||||
batch = self.normalize_inputs(batch)
|
||||
if len(self.expected_image_keys) > 0:
|
||||
batch = dict(batch) # shallow copy so that adding a key doesn't modify the original
|
||||
batch["observation.images"] = torch.stack([batch[k] for k in self.expected_image_keys], dim=-4)
|
||||
batch = dict(
|
||||
batch
|
||||
) # shallow copy so that adding a key doesn't modify the original
|
||||
batch["observation.images"] = torch.stack(
|
||||
[batch[k] for k in self.expected_image_keys], dim=-4
|
||||
)
|
||||
batch = self.normalize_targets(batch)
|
||||
actions_hat, (mu_hat, log_sigma_x2_hat) = self.model(batch)
|
||||
|
||||
l1_loss = (
|
||||
F.l1_loss(batch["action"], actions_hat, reduction="none") * ~batch["action_is_pad"].unsqueeze(-1)
|
||||
F.l1_loss(batch["action"], actions_hat, reduction="none")
|
||||
* ~batch["action_is_pad"].unsqueeze(-1)
|
||||
).mean()
|
||||
|
||||
loss_dict = {"l1_loss": l1_loss.item()}
|
||||
@@ -151,7 +164,12 @@ class ACTPolicy(
|
||||
# KL-divergence per batch element, then take the mean over the batch.
|
||||
# (See App. B of https://arxiv.org/abs/1312.6114 for more details).
|
||||
mean_kld = (
|
||||
(-0.5 * (1 + log_sigma_x2_hat - mu_hat.pow(2) - (log_sigma_x2_hat).exp())).sum(-1).mean()
|
||||
(
|
||||
-0.5
|
||||
* (1 + log_sigma_x2_hat - mu_hat.pow(2) - (log_sigma_x2_hat).exp())
|
||||
)
|
||||
.sum(-1)
|
||||
.mean()
|
||||
)
|
||||
loss_dict["kld_loss"] = mean_kld.item()
|
||||
loss_dict["loss"] = l1_loss + mean_kld * self.config.kl_weight
|
||||
@@ -205,7 +223,9 @@ class ACTTemporalEnsembler:
|
||||
```
|
||||
"""
|
||||
self.chunk_size = chunk_size
|
||||
self.ensemble_weights = torch.exp(-temporal_ensemble_coeff * torch.arange(chunk_size))
|
||||
self.ensemble_weights = torch.exp(
|
||||
-temporal_ensemble_coeff * torch.arange(chunk_size)
|
||||
)
|
||||
self.ensemble_weights_cumsum = torch.cumsum(self.ensemble_weights, dim=0)
|
||||
self.reset()
|
||||
|
||||
@@ -221,7 +241,9 @@ class ACTTemporalEnsembler:
|
||||
time steps, and pop/return the next batch of actions in the sequence.
|
||||
"""
|
||||
self.ensemble_weights = self.ensemble_weights.to(device=actions.device)
|
||||
self.ensemble_weights_cumsum = self.ensemble_weights_cumsum.to(device=actions.device)
|
||||
self.ensemble_weights_cumsum = self.ensemble_weights_cumsum.to(
|
||||
device=actions.device
|
||||
)
|
||||
if self.ensembled_actions is None:
|
||||
# Initializes `self._ensembled_action` to the sequence of actions predicted during the first
|
||||
# time step of the episode.
|
||||
@@ -229,19 +251,34 @@ class ACTTemporalEnsembler:
|
||||
# Note: The last dimension is unsqueeze to make sure we can broadcast properly for tensor
|
||||
# operations later.
|
||||
self.ensembled_actions_count = torch.ones(
|
||||
(self.chunk_size, 1), dtype=torch.long, device=self.ensembled_actions.device
|
||||
(self.chunk_size, 1),
|
||||
dtype=torch.long,
|
||||
device=self.ensembled_actions.device,
|
||||
)
|
||||
else:
|
||||
# self.ensembled_actions will have shape (batch_size, chunk_size - 1, action_dim). Compute
|
||||
# the online update for those entries.
|
||||
self.ensembled_actions *= self.ensemble_weights_cumsum[self.ensembled_actions_count - 1]
|
||||
self.ensembled_actions += actions[:, :-1] * self.ensemble_weights[self.ensembled_actions_count]
|
||||
self.ensembled_actions /= self.ensemble_weights_cumsum[self.ensembled_actions_count]
|
||||
self.ensembled_actions_count = torch.clamp(self.ensembled_actions_count + 1, max=self.chunk_size)
|
||||
self.ensembled_actions *= self.ensemble_weights_cumsum[
|
||||
self.ensembled_actions_count - 1
|
||||
]
|
||||
self.ensembled_actions += (
|
||||
actions[:, :-1] * self.ensemble_weights[self.ensembled_actions_count]
|
||||
)
|
||||
self.ensembled_actions /= self.ensemble_weights_cumsum[
|
||||
self.ensembled_actions_count
|
||||
]
|
||||
self.ensembled_actions_count = torch.clamp(
|
||||
self.ensembled_actions_count + 1, max=self.chunk_size
|
||||
)
|
||||
# The last action, which has no prior online average, needs to get concatenated onto the end.
|
||||
self.ensembled_actions = torch.cat([self.ensembled_actions, actions[:, -1:]], dim=1)
|
||||
self.ensembled_actions = torch.cat(
|
||||
[self.ensembled_actions, actions[:, -1:]], dim=1
|
||||
)
|
||||
self.ensembled_actions_count = torch.cat(
|
||||
[self.ensembled_actions_count, torch.ones_like(self.ensembled_actions_count[-1:])]
|
||||
[
|
||||
self.ensembled_actions_count,
|
||||
torch.ones_like(self.ensembled_actions_count[-1:]),
|
||||
]
|
||||
)
|
||||
# "Consume" the first action.
|
||||
action, self.ensembled_actions, self.ensembled_actions_count = (
|
||||
@@ -293,7 +330,9 @@ class ACT(nn.Module):
|
||||
# BERT style VAE encoder with input tokens [cls, robot_state, *action_sequence].
|
||||
# The cls token forms parameters of the latent's distribution (like this [*means, *log_variances]).
|
||||
self.use_robot_state = "observation.state" in config.input_shapes
|
||||
self.use_images = any(k.startswith("observation.image") for k in config.input_shapes)
|
||||
self.use_images = any(
|
||||
k.startswith("observation.image") for k in config.input_shapes
|
||||
)
|
||||
self.use_env_state = "observation.environment_state" in config.input_shapes
|
||||
if self.config.use_vae:
|
||||
self.vae_encoder = ACTEncoder(config, is_vae_encoder=True)
|
||||
@@ -308,7 +347,9 @@ class ACT(nn.Module):
|
||||
config.output_shapes["action"][0], config.dim_model
|
||||
)
|
||||
# Projection layer from the VAE encoder's output to the latent distribution's parameter space.
|
||||
self.vae_encoder_latent_output_proj = nn.Linear(config.dim_model, config.latent_dim * 2)
|
||||
self.vae_encoder_latent_output_proj = nn.Linear(
|
||||
config.dim_model, config.latent_dim * 2
|
||||
)
|
||||
# Fixed sinusoidal positional embedding for the input to the VAE encoder. Unsqueeze for batch
|
||||
# dimension.
|
||||
num_input_token_encoder = 1 + config.chunk_size
|
||||
@@ -316,20 +357,28 @@ class ACT(nn.Module):
|
||||
num_input_token_encoder += 1
|
||||
self.register_buffer(
|
||||
"vae_encoder_pos_enc",
|
||||
create_sinusoidal_pos_embedding(num_input_token_encoder, config.dim_model).unsqueeze(0),
|
||||
create_sinusoidal_pos_embedding(
|
||||
num_input_token_encoder, config.dim_model
|
||||
).unsqueeze(0),
|
||||
)
|
||||
|
||||
# Backbone for image feature extraction.
|
||||
if self.use_images:
|
||||
backbone_model = getattr(torchvision.models, config.vision_backbone)(
|
||||
replace_stride_with_dilation=[False, False, config.replace_final_stride_with_dilation],
|
||||
replace_stride_with_dilation=[
|
||||
False,
|
||||
False,
|
||||
config.replace_final_stride_with_dilation,
|
||||
],
|
||||
weights=config.pretrained_backbone_weights,
|
||||
norm_layer=FrozenBatchNorm2d,
|
||||
)
|
||||
# Note: The assumption here is that we are using a ResNet model (and hence layer4 is the final
|
||||
# feature map).
|
||||
# Note: The forward method of this returns a dict: {"feature_map": output}.
|
||||
self.backbone = IntermediateLayerGetter(backbone_model, return_layers={"layer4": "feature_map"})
|
||||
self.backbone = IntermediateLayerGetter(
|
||||
backbone_model, return_layers={"layer4": "feature_map"}
|
||||
)
|
||||
|
||||
# Transformer (acts as VAE decoder when training with the variational objective).
|
||||
self.encoder = ACTEncoder(config)
|
||||
@@ -343,7 +392,8 @@ class ACT(nn.Module):
|
||||
)
|
||||
if self.use_env_state:
|
||||
self.encoder_env_state_input_proj = nn.Linear(
|
||||
config.input_shapes["observation.environment_state"][0], config.dim_model
|
||||
config.input_shapes["observation.environment_state"][0],
|
||||
config.dim_model,
|
||||
)
|
||||
self.encoder_latent_input_proj = nn.Linear(config.latent_dim, config.dim_model)
|
||||
if self.use_images:
|
||||
@@ -358,14 +408,18 @@ class ACT(nn.Module):
|
||||
n_1d_tokens += 1
|
||||
self.encoder_1d_feature_pos_embed = nn.Embedding(n_1d_tokens, config.dim_model)
|
||||
if self.use_images:
|
||||
self.encoder_cam_feat_pos_embed = ACTSinusoidalPositionEmbedding2d(config.dim_model // 2)
|
||||
self.encoder_cam_feat_pos_embed = ACTSinusoidalPositionEmbedding2d(
|
||||
config.dim_model // 2
|
||||
)
|
||||
|
||||
# Transformer decoder.
|
||||
# Learnable positional embedding for the transformer's decoder (in the style of DETR object queries).
|
||||
self.decoder_pos_embed = nn.Embedding(config.chunk_size, config.dim_model)
|
||||
|
||||
# Final action regression head on the output of the transformer's decoder.
|
||||
self.action_head = nn.Linear(config.dim_model, config.output_shapes["action"][0])
|
||||
self.action_head = nn.Linear(
|
||||
config.dim_model, config.output_shapes["action"][0]
|
||||
)
|
||||
|
||||
self._reset_parameters()
|
||||
|
||||
@@ -375,7 +429,9 @@ class ACT(nn.Module):
|
||||
if p.dim() > 1:
|
||||
nn.init.xavier_uniform_(p)
|
||||
|
||||
def forward(self, batch: dict[str, Tensor]) -> tuple[Tensor, tuple[Tensor, Tensor] | tuple[None, None]]:
|
||||
def forward(
|
||||
self, batch: dict[str, Tensor]
|
||||
) -> tuple[Tensor, tuple[Tensor, Tensor] | tuple[None, None]]:
|
||||
"""A forward pass through the Action Chunking Transformer (with optional VAE encoder).
|
||||
|
||||
`batch` should have the following structure:
|
||||
@@ -412,12 +468,20 @@ class ACT(nn.Module):
|
||||
self.vae_encoder_cls_embed.weight, "1 d -> b 1 d", b=batch_size
|
||||
) # (B, 1, D)
|
||||
if self.use_robot_state:
|
||||
robot_state_embed = self.vae_encoder_robot_state_input_proj(batch["observation.state"])
|
||||
robot_state_embed = self.vae_encoder_robot_state_input_proj(
|
||||
batch["observation.state"]
|
||||
)
|
||||
robot_state_embed = robot_state_embed.unsqueeze(1) # (B, 1, D)
|
||||
action_embed = self.vae_encoder_action_input_proj(batch["action"]) # (B, S, D)
|
||||
action_embed = self.vae_encoder_action_input_proj(
|
||||
batch["action"]
|
||||
) # (B, S, D)
|
||||
|
||||
if self.use_robot_state:
|
||||
vae_encoder_input = [cls_embed, robot_state_embed, action_embed] # (B, S+2, D)
|
||||
vae_encoder_input = [
|
||||
cls_embed,
|
||||
robot_state_embed,
|
||||
action_embed,
|
||||
] # (B, S+2, D)
|
||||
else:
|
||||
vae_encoder_input = [cls_embed, action_embed]
|
||||
vae_encoder_input = torch.cat(vae_encoder_input, axis=1)
|
||||
@@ -455,20 +519,26 @@ class ACT(nn.Module):
|
||||
# When not using the VAE encoder, we set the latent to be all zeros.
|
||||
mu = log_sigma_x2 = None
|
||||
# TODO(rcadene, alexander-soare): remove call to `.to` to speedup forward ; precompute and use buffer
|
||||
latent_sample = torch.zeros([batch_size, self.config.latent_dim], dtype=torch.float32).to(
|
||||
batch["observation.state"].device
|
||||
)
|
||||
latent_sample = torch.zeros(
|
||||
[batch_size, self.config.latent_dim], dtype=torch.float32
|
||||
).to(batch["observation.state"].device)
|
||||
|
||||
# Prepare transformer encoder inputs.
|
||||
encoder_in_tokens = [self.encoder_latent_input_proj(latent_sample)]
|
||||
encoder_in_pos_embed = list(self.encoder_1d_feature_pos_embed.weight.unsqueeze(1))
|
||||
encoder_in_pos_embed = list(
|
||||
self.encoder_1d_feature_pos_embed.weight.unsqueeze(1)
|
||||
)
|
||||
# Robot state token.
|
||||
if self.use_robot_state:
|
||||
encoder_in_tokens.append(self.encoder_robot_state_input_proj(batch["observation.state"]))
|
||||
encoder_in_tokens.append(
|
||||
self.encoder_robot_state_input_proj(batch["observation.state"])
|
||||
)
|
||||
# Environment state token.
|
||||
if self.use_env_state:
|
||||
encoder_in_tokens.append(
|
||||
self.encoder_env_state_input_proj(batch["observation.environment_state"])
|
||||
self.encoder_env_state_input_proj(
|
||||
batch["observation.environment_state"]
|
||||
)
|
||||
)
|
||||
|
||||
# Camera observation features and positional embeddings.
|
||||
@@ -477,19 +547,29 @@ class ACT(nn.Module):
|
||||
all_cam_pos_embeds = []
|
||||
|
||||
for cam_index in range(batch["observation.images"].shape[-4]):
|
||||
cam_features = self.backbone(batch["observation.images"][:, cam_index])["feature_map"]
|
||||
cam_features = self.backbone(batch["observation.images"][:, cam_index])[
|
||||
"feature_map"
|
||||
]
|
||||
# TODO(rcadene, alexander-soare): remove call to `.to` to speedup forward ; precompute and use
|
||||
# buffer
|
||||
cam_pos_embed = self.encoder_cam_feat_pos_embed(cam_features).to(dtype=cam_features.dtype)
|
||||
cam_features = self.encoder_img_feat_input_proj(cam_features) # (B, C, h, w)
|
||||
cam_pos_embed = self.encoder_cam_feat_pos_embed(cam_features).to(
|
||||
dtype=cam_features.dtype
|
||||
)
|
||||
cam_features = self.encoder_img_feat_input_proj(
|
||||
cam_features
|
||||
) # (B, C, h, w)
|
||||
all_cam_features.append(cam_features)
|
||||
all_cam_pos_embeds.append(cam_pos_embed)
|
||||
# Concatenate camera observation feature maps and positional embeddings along the width dimension,
|
||||
# and move to (sequence, batch, dim).
|
||||
all_cam_features = torch.cat(all_cam_features, axis=-1)
|
||||
encoder_in_tokens.extend(einops.rearrange(all_cam_features, "b c h w -> (h w) b c"))
|
||||
encoder_in_tokens.extend(
|
||||
einops.rearrange(all_cam_features, "b c h w -> (h w) b c")
|
||||
)
|
||||
all_cam_pos_embeds = torch.cat(all_cam_pos_embeds, axis=-1)
|
||||
encoder_in_pos_embed.extend(einops.rearrange(all_cam_pos_embeds, "b c h w -> (h w) b c"))
|
||||
encoder_in_pos_embed.extend(
|
||||
einops.rearrange(all_cam_pos_embeds, "b c h w -> (h w) b c")
|
||||
)
|
||||
|
||||
# Stack all tokens along the sequence dimension.
|
||||
encoder_in_tokens = torch.stack(encoder_in_tokens, axis=0)
|
||||
@@ -524,12 +604,21 @@ class ACTEncoder(nn.Module):
|
||||
def __init__(self, config: ACTConfig, is_vae_encoder: bool = False):
|
||||
super().__init__()
|
||||
self.is_vae_encoder = is_vae_encoder
|
||||
num_layers = config.n_vae_encoder_layers if self.is_vae_encoder else config.n_encoder_layers
|
||||
self.layers = nn.ModuleList([ACTEncoderLayer(config) for _ in range(num_layers)])
|
||||
num_layers = (
|
||||
config.n_vae_encoder_layers
|
||||
if self.is_vae_encoder
|
||||
else config.n_encoder_layers
|
||||
)
|
||||
self.layers = nn.ModuleList(
|
||||
[ACTEncoderLayer(config) for _ in range(num_layers)]
|
||||
)
|
||||
self.norm = nn.LayerNorm(config.dim_model) if config.pre_norm else nn.Identity()
|
||||
|
||||
def forward(
|
||||
self, x: Tensor, pos_embed: Tensor | None = None, key_padding_mask: Tensor | None = None
|
||||
self,
|
||||
x: Tensor,
|
||||
pos_embed: Tensor | None = None,
|
||||
key_padding_mask: Tensor | None = None,
|
||||
) -> Tensor:
|
||||
for layer in self.layers:
|
||||
x = layer(x, pos_embed=pos_embed, key_padding_mask=key_padding_mask)
|
||||
@@ -540,7 +629,9 @@ class ACTEncoder(nn.Module):
|
||||
class ACTEncoderLayer(nn.Module):
|
||||
def __init__(self, config: ACTConfig):
|
||||
super().__init__()
|
||||
self.self_attn = nn.MultiheadAttention(config.dim_model, config.n_heads, dropout=config.dropout)
|
||||
self.self_attn = nn.MultiheadAttention(
|
||||
config.dim_model, config.n_heads, dropout=config.dropout
|
||||
)
|
||||
|
||||
# Feed forward layers.
|
||||
self.linear1 = nn.Linear(config.dim_model, config.dim_feedforward)
|
||||
@@ -555,7 +646,9 @@ class ACTEncoderLayer(nn.Module):
|
||||
self.activation = get_activation_fn(config.feedforward_activation)
|
||||
self.pre_norm = config.pre_norm
|
||||
|
||||
def forward(self, x, pos_embed: Tensor | None = None, key_padding_mask: Tensor | None = None) -> Tensor:
|
||||
def forward(
|
||||
self, x, pos_embed: Tensor | None = None, key_padding_mask: Tensor | None = None
|
||||
) -> Tensor:
|
||||
skip = x
|
||||
if self.pre_norm:
|
||||
x = self.norm1(x)
|
||||
@@ -580,7 +673,9 @@ class ACTDecoder(nn.Module):
|
||||
def __init__(self, config: ACTConfig):
|
||||
"""Convenience module for running multiple decoder layers followed by normalization."""
|
||||
super().__init__()
|
||||
self.layers = nn.ModuleList([ACTDecoderLayer(config) for _ in range(config.n_decoder_layers)])
|
||||
self.layers = nn.ModuleList(
|
||||
[ACTDecoderLayer(config) for _ in range(config.n_decoder_layers)]
|
||||
)
|
||||
self.norm = nn.LayerNorm(config.dim_model)
|
||||
|
||||
def forward(
|
||||
@@ -592,7 +687,10 @@ class ACTDecoder(nn.Module):
|
||||
) -> Tensor:
|
||||
for layer in self.layers:
|
||||
x = layer(
|
||||
x, encoder_out, decoder_pos_embed=decoder_pos_embed, encoder_pos_embed=encoder_pos_embed
|
||||
x,
|
||||
encoder_out,
|
||||
decoder_pos_embed=decoder_pos_embed,
|
||||
encoder_pos_embed=encoder_pos_embed,
|
||||
)
|
||||
if self.norm is not None:
|
||||
x = self.norm(x)
|
||||
@@ -602,8 +700,12 @@ class ACTDecoder(nn.Module):
|
||||
class ACTDecoderLayer(nn.Module):
|
||||
def __init__(self, config: ACTConfig):
|
||||
super().__init__()
|
||||
self.self_attn = nn.MultiheadAttention(config.dim_model, config.n_heads, dropout=config.dropout)
|
||||
self.multihead_attn = nn.MultiheadAttention(config.dim_model, config.n_heads, dropout=config.dropout)
|
||||
self.self_attn = nn.MultiheadAttention(
|
||||
config.dim_model, config.n_heads, dropout=config.dropout
|
||||
)
|
||||
self.multihead_attn = nn.MultiheadAttention(
|
||||
config.dim_model, config.n_heads, dropout=config.dropout
|
||||
)
|
||||
|
||||
# Feed forward layers.
|
||||
self.linear1 = nn.Linear(config.dim_model, config.dim_feedforward)
|
||||
@@ -644,7 +746,9 @@ class ACTDecoderLayer(nn.Module):
|
||||
if self.pre_norm:
|
||||
x = self.norm1(x)
|
||||
q = k = self.maybe_add_pos_embed(x, decoder_pos_embed)
|
||||
x = self.self_attn(q, k, value=x)[0] # select just the output, not the attention weights
|
||||
x = self.self_attn(q, k, value=x)[
|
||||
0
|
||||
] # select just the output, not the attention weights
|
||||
x = skip + self.dropout1(x)
|
||||
if self.pre_norm:
|
||||
skip = x
|
||||
@@ -681,9 +785,14 @@ def create_sinusoidal_pos_embedding(num_positions: int, dimension: int) -> Tenso
|
||||
"""
|
||||
|
||||
def get_position_angle_vec(position):
|
||||
return [position / np.power(10000, 2 * (hid_j // 2) / dimension) for hid_j in range(dimension)]
|
||||
return [
|
||||
position / np.power(10000, 2 * (hid_j // 2) / dimension)
|
||||
for hid_j in range(dimension)
|
||||
]
|
||||
|
||||
sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(num_positions)])
|
||||
sinusoid_table = np.array(
|
||||
[get_position_angle_vec(pos_i) for pos_i in range(num_positions)]
|
||||
)
|
||||
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
|
||||
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
|
||||
return torch.from_numpy(sinusoid_table).float()
|
||||
@@ -728,7 +837,9 @@ class ACTSinusoidalPositionEmbedding2d(nn.Module):
|
||||
x_range = x_range / (x_range[:, :, -1:] + self._eps) * self._two_pi
|
||||
|
||||
inverse_frequency = self._temperature ** (
|
||||
2 * (torch.arange(self.dimension, dtype=torch.float32, device=x.device) // 2) / self.dimension
|
||||
2
|
||||
* (torch.arange(self.dimension, dtype=torch.float32, device=x.device) // 2)
|
||||
/ self.dimension
|
||||
)
|
||||
|
||||
x_range = x_range.unsqueeze(-1) / inverse_frequency # (1, H, W, 1)
|
||||
@@ -736,9 +847,15 @@ class ACTSinusoidalPositionEmbedding2d(nn.Module):
|
||||
|
||||
# Note: this stack then flatten operation results in interleaved sine and cosine terms.
|
||||
# pos_embed_x and pos_embed_y are (1, H, W, C // 2).
|
||||
pos_embed_x = torch.stack((x_range[..., 0::2].sin(), x_range[..., 1::2].cos()), dim=-1).flatten(3)
|
||||
pos_embed_y = torch.stack((y_range[..., 0::2].sin(), y_range[..., 1::2].cos()), dim=-1).flatten(3)
|
||||
pos_embed = torch.cat((pos_embed_y, pos_embed_x), dim=3).permute(0, 3, 1, 2) # (1, C, H, W)
|
||||
pos_embed_x = torch.stack(
|
||||
(x_range[..., 0::2].sin(), x_range[..., 1::2].cos()), dim=-1
|
||||
).flatten(3)
|
||||
pos_embed_y = torch.stack(
|
||||
(y_range[..., 0::2].sin(), y_range[..., 1::2].cos()), dim=-1
|
||||
).flatten(3)
|
||||
pos_embed = torch.cat((pos_embed_y, pos_embed_x), dim=3).permute(
|
||||
0, 3, 1, 2
|
||||
) # (1, C, H, W)
|
||||
|
||||
return pos_embed
|
||||
|
||||
|
||||
@@ -121,7 +121,9 @@ class DiffusionConfig:
|
||||
"observation.state": "min_max",
|
||||
}
|
||||
)
|
||||
output_normalization_modes: dict[str, str] = field(default_factory=lambda: {"action": "min_max"})
|
||||
output_normalization_modes: dict[str, str] = field(
|
||||
default_factory=lambda: {"action": "min_max"}
|
||||
)
|
||||
|
||||
# Architecture / modeling.
|
||||
# Vision backbone.
|
||||
@@ -163,8 +165,13 @@ class DiffusionConfig:
|
||||
|
||||
image_keys = {k for k in self.input_shapes if k.startswith("observation.image")}
|
||||
|
||||
if len(image_keys) == 0 and "observation.environment_state" not in self.input_shapes:
|
||||
raise ValueError("You must provide at least one image or the environment state among the inputs.")
|
||||
if (
|
||||
len(image_keys) == 0
|
||||
and "observation.environment_state" not in self.input_shapes
|
||||
):
|
||||
raise ValueError(
|
||||
"You must provide at least one image or the environment state among the inputs."
|
||||
)
|
||||
|
||||
if len(image_keys) > 0:
|
||||
if self.crop_shape is not None:
|
||||
|
||||
@@ -88,7 +88,9 @@ class DiffusionPolicy(
|
||||
|
||||
self.diffusion = DiffusionModel(config)
|
||||
|
||||
self.expected_image_keys = [k for k in config.input_shapes if k.startswith("observation.image")]
|
||||
self.expected_image_keys = [
|
||||
k for k in config.input_shapes if k.startswith("observation.image")
|
||||
]
|
||||
self.use_env_state = "observation.environment_state" in config.input_shapes
|
||||
|
||||
self.reset()
|
||||
@@ -102,7 +104,9 @@ class DiffusionPolicy(
|
||||
if len(self.expected_image_keys) > 0:
|
||||
self._queues["observation.images"] = deque(maxlen=self.config.n_obs_steps)
|
||||
if self.use_env_state:
|
||||
self._queues["observation.environment_state"] = deque(maxlen=self.config.n_obs_steps)
|
||||
self._queues["observation.environment_state"] = deque(
|
||||
maxlen=self.config.n_obs_steps
|
||||
)
|
||||
|
||||
@torch.no_grad
|
||||
def select_action(self, batch: dict[str, Tensor]) -> Tensor:
|
||||
@@ -128,14 +132,22 @@ class DiffusionPolicy(
|
||||
"""
|
||||
batch = self.normalize_inputs(batch)
|
||||
if len(self.expected_image_keys) > 0:
|
||||
batch = dict(batch) # shallow copy so that adding a key doesn't modify the original
|
||||
batch["observation.images"] = torch.stack([batch[k] for k in self.expected_image_keys], dim=-4)
|
||||
batch = dict(
|
||||
batch
|
||||
) # shallow copy so that adding a key doesn't modify the original
|
||||
batch["observation.images"] = torch.stack(
|
||||
[batch[k] for k in self.expected_image_keys], dim=-4
|
||||
)
|
||||
# Note: It's important that this happens after stacking the images into a single key.
|
||||
self._queues = populate_queues(self._queues, batch)
|
||||
|
||||
if len(self._queues["action"]) == 0:
|
||||
# stack n latest observations from the queue
|
||||
batch = {k: torch.stack(list(self._queues[k]), dim=1) for k in batch if k in self._queues}
|
||||
batch = {
|
||||
k: torch.stack(list(self._queues[k]), dim=1)
|
||||
for k in batch
|
||||
if k in self._queues
|
||||
}
|
||||
actions = self.diffusion.generate_actions(batch)
|
||||
|
||||
# TODO(rcadene): make above methods return output dictionary?
|
||||
@@ -150,8 +162,12 @@ class DiffusionPolicy(
|
||||
"""Run the batch through the model and compute the loss for training or validation."""
|
||||
batch = self.normalize_inputs(batch)
|
||||
if len(self.expected_image_keys) > 0:
|
||||
batch = dict(batch) # shallow copy so that adding a key doesn't modify the original
|
||||
batch["observation.images"] = torch.stack([batch[k] for k in self.expected_image_keys], dim=-4)
|
||||
batch = dict(
|
||||
batch
|
||||
) # shallow copy so that adding a key doesn't modify the original
|
||||
batch["observation.images"] = torch.stack(
|
||||
[batch[k] for k in self.expected_image_keys], dim=-4
|
||||
)
|
||||
batch = self.normalize_targets(batch)
|
||||
loss = self.diffusion.compute_loss(batch)
|
||||
return {"loss": loss}
|
||||
@@ -177,7 +193,9 @@ class DiffusionModel(nn.Module):
|
||||
|
||||
# Build observation encoders (depending on which observations are provided).
|
||||
global_cond_dim = config.input_shapes["observation.state"][0]
|
||||
num_images = len([k for k in config.input_shapes if k.startswith("observation.image")])
|
||||
num_images = len(
|
||||
[k for k in config.input_shapes if k.startswith("observation.image")]
|
||||
)
|
||||
self._use_images = False
|
||||
self._use_env_state = False
|
||||
if num_images > 0:
|
||||
@@ -193,7 +211,9 @@ class DiffusionModel(nn.Module):
|
||||
self._use_env_state = True
|
||||
global_cond_dim += config.input_shapes["observation.environment_state"][0]
|
||||
|
||||
self.unet = DiffusionConditionalUnet1d(config, global_cond_dim=global_cond_dim * config.n_obs_steps)
|
||||
self.unet = DiffusionConditionalUnet1d(
|
||||
config, global_cond_dim=global_cond_dim * config.n_obs_steps
|
||||
)
|
||||
|
||||
self.noise_scheduler = _make_noise_scheduler(
|
||||
config.noise_scheduler_type,
|
||||
@@ -213,14 +233,21 @@ class DiffusionModel(nn.Module):
|
||||
|
||||
# ========= inference ============
|
||||
def conditional_sample(
|
||||
self, batch_size: int, global_cond: Tensor | None = None, generator: torch.Generator | None = None
|
||||
self,
|
||||
batch_size: int,
|
||||
global_cond: Tensor | None = None,
|
||||
generator: torch.Generator | None = None,
|
||||
) -> Tensor:
|
||||
device = get_device_from_parameters(self)
|
||||
dtype = get_dtype_from_parameters(self)
|
||||
|
||||
# Sample prior.
|
||||
sample = torch.randn(
|
||||
size=(batch_size, self.config.horizon, self.config.output_shapes["action"][0]),
|
||||
size=(
|
||||
batch_size,
|
||||
self.config.horizon,
|
||||
self.config.output_shapes["action"][0],
|
||||
),
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
generator=generator,
|
||||
@@ -236,7 +263,9 @@ class DiffusionModel(nn.Module):
|
||||
global_cond=global_cond,
|
||||
)
|
||||
# Compute previous image: x_t -> x_t-1
|
||||
sample = self.noise_scheduler.step(model_output, t, sample, generator=generator).prev_sample
|
||||
sample = self.noise_scheduler.step(
|
||||
model_output, t, sample, generator=generator
|
||||
).prev_sample
|
||||
|
||||
return sample
|
||||
|
||||
@@ -248,27 +277,39 @@ class DiffusionModel(nn.Module):
|
||||
if self._use_images:
|
||||
if self.config.use_separate_rgb_encoder_per_camera:
|
||||
# Combine batch and sequence dims while rearranging to make the camera index dimension first.
|
||||
images_per_camera = einops.rearrange(batch["observation.images"], "b s n ... -> n (b s) ...")
|
||||
images_per_camera = einops.rearrange(
|
||||
batch["observation.images"], "b s n ... -> n (b s) ..."
|
||||
)
|
||||
img_features_list = torch.cat(
|
||||
[
|
||||
encoder(images)
|
||||
for encoder, images in zip(self.rgb_encoder, images_per_camera, strict=True)
|
||||
for encoder, images in zip(
|
||||
self.rgb_encoder, images_per_camera, strict=True
|
||||
)
|
||||
]
|
||||
)
|
||||
# Separate batch and sequence dims back out. The camera index dim gets absorbed into the
|
||||
# feature dim (effectively concatenating the camera features).
|
||||
img_features = einops.rearrange(
|
||||
img_features_list, "(n b s) ... -> b s (n ...)", b=batch_size, s=n_obs_steps
|
||||
img_features_list,
|
||||
"(n b s) ... -> b s (n ...)",
|
||||
b=batch_size,
|
||||
s=n_obs_steps,
|
||||
)
|
||||
else:
|
||||
# Combine batch, sequence, and "which camera" dims before passing to shared encoder.
|
||||
img_features = self.rgb_encoder(
|
||||
einops.rearrange(batch["observation.images"], "b s n ... -> (b s n) ...")
|
||||
einops.rearrange(
|
||||
batch["observation.images"], "b s n ... -> (b s n) ..."
|
||||
)
|
||||
)
|
||||
# Separate batch dim and sequence dim back out. The camera index dim gets absorbed into the
|
||||
# feature dim (effectively concatenating the camera features).
|
||||
img_features = einops.rearrange(
|
||||
img_features, "(b s n) ... -> b s (n ...)", b=batch_size, s=n_obs_steps
|
||||
img_features,
|
||||
"(b s n) ... -> b s (n ...)",
|
||||
b=batch_size,
|
||||
s=n_obs_steps,
|
||||
)
|
||||
global_cond_feats.append(img_features)
|
||||
|
||||
@@ -354,7 +395,9 @@ class DiffusionModel(nn.Module):
|
||||
elif self.config.prediction_type == "sample":
|
||||
target = batch["action"]
|
||||
else:
|
||||
raise ValueError(f"Unsupported prediction type {self.config.prediction_type}")
|
||||
raise ValueError(
|
||||
f"Unsupported prediction type {self.config.prediction_type}"
|
||||
)
|
||||
|
||||
loss = F.mse_loss(pred, target, reduction="none")
|
||||
|
||||
@@ -414,7 +457,9 @@ class SpatialSoftmax(nn.Module):
|
||||
|
||||
# we could use torch.linspace directly but that seems to behave slightly differently than numpy
|
||||
# and causes a small degradation in pc_success of pre-trained models.
|
||||
pos_x, pos_y = np.meshgrid(np.linspace(-1.0, 1.0, self._in_w), np.linspace(-1.0, 1.0, self._in_h))
|
||||
pos_x, pos_y = np.meshgrid(
|
||||
np.linspace(-1.0, 1.0, self._in_w), np.linspace(-1.0, 1.0, self._in_h)
|
||||
)
|
||||
pos_x = torch.from_numpy(pos_x.reshape(self._in_h * self._in_w, 1)).float()
|
||||
pos_y = torch.from_numpy(pos_y.reshape(self._in_h * self._in_w, 1)).float()
|
||||
# register as buffer so it's moved to the correct device.
|
||||
@@ -456,7 +501,9 @@ class DiffusionRgbEncoder(nn.Module):
|
||||
# Always use center crop for eval
|
||||
self.center_crop = torchvision.transforms.CenterCrop(config.crop_shape)
|
||||
if config.crop_is_random:
|
||||
self.maybe_random_crop = torchvision.transforms.RandomCrop(config.crop_shape)
|
||||
self.maybe_random_crop = torchvision.transforms.RandomCrop(
|
||||
config.crop_shape
|
||||
)
|
||||
else:
|
||||
self.maybe_random_crop = self.center_crop
|
||||
else:
|
||||
@@ -477,7 +524,9 @@ class DiffusionRgbEncoder(nn.Module):
|
||||
self.backbone = _replace_submodules(
|
||||
root_module=self.backbone,
|
||||
predicate=lambda x: isinstance(x, nn.BatchNorm2d),
|
||||
func=lambda x: nn.GroupNorm(num_groups=x.num_features // 16, num_channels=x.num_features),
|
||||
func=lambda x: nn.GroupNorm(
|
||||
num_groups=x.num_features // 16, num_channels=x.num_features
|
||||
),
|
||||
)
|
||||
|
||||
# Set up pooling and final layers.
|
||||
@@ -485,17 +534,25 @@ class DiffusionRgbEncoder(nn.Module):
|
||||
# The dummy input should take the number of image channels from `config.input_shapes` and it should
|
||||
# use the height and width from `config.crop_shape` if it is provided, otherwise it should use the
|
||||
# height and width from `config.input_shapes`.
|
||||
image_keys = [k for k in config.input_shapes if k.startswith("observation.image")]
|
||||
image_keys = [
|
||||
k for k in config.input_shapes if k.startswith("observation.image")
|
||||
]
|
||||
# Note: we have a check in the config class to make sure all images have the same shape.
|
||||
image_key = image_keys[0]
|
||||
dummy_input_h_w = (
|
||||
config.crop_shape if config.crop_shape is not None else config.input_shapes[image_key][1:]
|
||||
config.crop_shape
|
||||
if config.crop_shape is not None
|
||||
else config.input_shapes[image_key][1:]
|
||||
)
|
||||
dummy_input = torch.zeros(
|
||||
size=(1, config.input_shapes[image_key][0], *dummy_input_h_w)
|
||||
)
|
||||
dummy_input = torch.zeros(size=(1, config.input_shapes[image_key][0], *dummy_input_h_w))
|
||||
with torch.inference_mode():
|
||||
dummy_feature_map = self.backbone(dummy_input)
|
||||
feature_map_shape = tuple(dummy_feature_map.shape[1:])
|
||||
self.pool = SpatialSoftmax(feature_map_shape, num_kp=config.spatial_softmax_num_keypoints)
|
||||
self.pool = SpatialSoftmax(
|
||||
feature_map_shape, num_kp=config.spatial_softmax_num_keypoints
|
||||
)
|
||||
self.feature_dim = config.spatial_softmax_num_keypoints * 2
|
||||
self.out = nn.Linear(config.spatial_softmax_num_keypoints * 2, self.feature_dim)
|
||||
self.relu = nn.ReLU()
|
||||
@@ -522,7 +579,9 @@ class DiffusionRgbEncoder(nn.Module):
|
||||
|
||||
|
||||
def _replace_submodules(
|
||||
root_module: nn.Module, predicate: Callable[[nn.Module], bool], func: Callable[[nn.Module], nn.Module]
|
||||
root_module: nn.Module,
|
||||
predicate: Callable[[nn.Module], bool],
|
||||
func: Callable[[nn.Module], nn.Module],
|
||||
) -> nn.Module:
|
||||
"""
|
||||
Args:
|
||||
@@ -535,7 +594,11 @@ def _replace_submodules(
|
||||
if predicate(root_module):
|
||||
return func(root_module)
|
||||
|
||||
replace_list = [k.split(".") for k, m in root_module.named_modules(remove_duplicate=True) if predicate(m)]
|
||||
replace_list = [
|
||||
k.split(".")
|
||||
for k, m in root_module.named_modules(remove_duplicate=True)
|
||||
if predicate(m)
|
||||
]
|
||||
for *parents, k in replace_list:
|
||||
parent_module = root_module
|
||||
if len(parents) > 0:
|
||||
@@ -550,7 +613,9 @@ def _replace_submodules(
|
||||
else:
|
||||
setattr(parent_module, k, tgt_module)
|
||||
# verify that all BN are replaced
|
||||
assert not any(predicate(m) for _, m in root_module.named_modules(remove_duplicate=True))
|
||||
assert not any(
|
||||
predicate(m) for _, m in root_module.named_modules(remove_duplicate=True)
|
||||
)
|
||||
return root_module
|
||||
|
||||
|
||||
@@ -578,7 +643,9 @@ class DiffusionConv1dBlock(nn.Module):
|
||||
super().__init__()
|
||||
|
||||
self.block = nn.Sequential(
|
||||
nn.Conv1d(inp_channels, out_channels, kernel_size, padding=kernel_size // 2),
|
||||
nn.Conv1d(
|
||||
inp_channels, out_channels, kernel_size, padding=kernel_size // 2
|
||||
),
|
||||
nn.GroupNorm(n_groups, out_channels),
|
||||
nn.Mish(),
|
||||
)
|
||||
@@ -601,9 +668,13 @@ class DiffusionConditionalUnet1d(nn.Module):
|
||||
# Encoder for the diffusion timestep.
|
||||
self.diffusion_step_encoder = nn.Sequential(
|
||||
DiffusionSinusoidalPosEmb(config.diffusion_step_embed_dim),
|
||||
nn.Linear(config.diffusion_step_embed_dim, config.diffusion_step_embed_dim * 4),
|
||||
nn.Linear(
|
||||
config.diffusion_step_embed_dim, config.diffusion_step_embed_dim * 4
|
||||
),
|
||||
nn.Mish(),
|
||||
nn.Linear(config.diffusion_step_embed_dim * 4, config.diffusion_step_embed_dim),
|
||||
nn.Linear(
|
||||
config.diffusion_step_embed_dim * 4, config.diffusion_step_embed_dim
|
||||
),
|
||||
)
|
||||
|
||||
# The FiLM conditioning dimension.
|
||||
@@ -628,10 +699,16 @@ class DiffusionConditionalUnet1d(nn.Module):
|
||||
self.down_modules.append(
|
||||
nn.ModuleList(
|
||||
[
|
||||
DiffusionConditionalResidualBlock1d(dim_in, dim_out, **common_res_block_kwargs),
|
||||
DiffusionConditionalResidualBlock1d(dim_out, dim_out, **common_res_block_kwargs),
|
||||
DiffusionConditionalResidualBlock1d(
|
||||
dim_in, dim_out, **common_res_block_kwargs
|
||||
),
|
||||
DiffusionConditionalResidualBlock1d(
|
||||
dim_out, dim_out, **common_res_block_kwargs
|
||||
),
|
||||
# Downsample as long as it is not the last block.
|
||||
nn.Conv1d(dim_out, dim_out, 3, 2, 1) if not is_last else nn.Identity(),
|
||||
nn.Conv1d(dim_out, dim_out, 3, 2, 1)
|
||||
if not is_last
|
||||
else nn.Identity(),
|
||||
]
|
||||
)
|
||||
)
|
||||
@@ -640,10 +717,14 @@ class DiffusionConditionalUnet1d(nn.Module):
|
||||
self.mid_modules = nn.ModuleList(
|
||||
[
|
||||
DiffusionConditionalResidualBlock1d(
|
||||
config.down_dims[-1], config.down_dims[-1], **common_res_block_kwargs
|
||||
config.down_dims[-1],
|
||||
config.down_dims[-1],
|
||||
**common_res_block_kwargs,
|
||||
),
|
||||
DiffusionConditionalResidualBlock1d(
|
||||
config.down_dims[-1], config.down_dims[-1], **common_res_block_kwargs
|
||||
config.down_dims[-1],
|
||||
config.down_dims[-1],
|
||||
**common_res_block_kwargs,
|
||||
),
|
||||
]
|
||||
)
|
||||
@@ -656,16 +737,24 @@ class DiffusionConditionalUnet1d(nn.Module):
|
||||
nn.ModuleList(
|
||||
[
|
||||
# dim_in * 2, because it takes the encoder's skip connection as well
|
||||
DiffusionConditionalResidualBlock1d(dim_in * 2, dim_out, **common_res_block_kwargs),
|
||||
DiffusionConditionalResidualBlock1d(dim_out, dim_out, **common_res_block_kwargs),
|
||||
DiffusionConditionalResidualBlock1d(
|
||||
dim_in * 2, dim_out, **common_res_block_kwargs
|
||||
),
|
||||
DiffusionConditionalResidualBlock1d(
|
||||
dim_out, dim_out, **common_res_block_kwargs
|
||||
),
|
||||
# Upsample as long as it is not the last block.
|
||||
nn.ConvTranspose1d(dim_out, dim_out, 4, 2, 1) if not is_last else nn.Identity(),
|
||||
nn.ConvTranspose1d(dim_out, dim_out, 4, 2, 1)
|
||||
if not is_last
|
||||
else nn.Identity(),
|
||||
]
|
||||
)
|
||||
)
|
||||
|
||||
self.final_conv = nn.Sequential(
|
||||
DiffusionConv1dBlock(config.down_dims[0], config.down_dims[0], kernel_size=config.kernel_size),
|
||||
DiffusionConv1dBlock(
|
||||
config.down_dims[0], config.down_dims[0], kernel_size=config.kernel_size
|
||||
),
|
||||
nn.Conv1d(config.down_dims[0], config.output_shapes["action"][0], 1),
|
||||
)
|
||||
|
||||
@@ -733,17 +822,23 @@ class DiffusionConditionalResidualBlock1d(nn.Module):
|
||||
self.use_film_scale_modulation = use_film_scale_modulation
|
||||
self.out_channels = out_channels
|
||||
|
||||
self.conv1 = DiffusionConv1dBlock(in_channels, out_channels, kernel_size, n_groups=n_groups)
|
||||
self.conv1 = DiffusionConv1dBlock(
|
||||
in_channels, out_channels, kernel_size, n_groups=n_groups
|
||||
)
|
||||
|
||||
# FiLM modulation (https://arxiv.org/abs/1709.07871) outputs per-channel bias and (maybe) scale.
|
||||
cond_channels = out_channels * 2 if use_film_scale_modulation else out_channels
|
||||
self.cond_encoder = nn.Sequential(nn.Mish(), nn.Linear(cond_dim, cond_channels))
|
||||
|
||||
self.conv2 = DiffusionConv1dBlock(out_channels, out_channels, kernel_size, n_groups=n_groups)
|
||||
self.conv2 = DiffusionConv1dBlock(
|
||||
out_channels, out_channels, kernel_size, n_groups=n_groups
|
||||
)
|
||||
|
||||
# A final convolution for dimension matching the residual (if needed).
|
||||
self.residual_conv = (
|
||||
nn.Conv1d(in_channels, out_channels, 1) if in_channels != out_channels else nn.Identity()
|
||||
nn.Conv1d(in_channels, out_channels, 1)
|
||||
if in_channels != out_channels
|
||||
else nn.Identity()
|
||||
)
|
||||
|
||||
def forward(self, x: Tensor, cond: Tensor) -> Tensor:
|
||||
|
||||
@@ -52,7 +52,9 @@ def get_policy_and_config_classes(name: str) -> tuple[Policy, object]:
|
||||
|
||||
return TDMPCPolicy, TDMPCConfig
|
||||
elif name == "diffusion":
|
||||
from lerobot.common.policies.diffusion.configuration_diffusion import DiffusionConfig
|
||||
from lerobot.common.policies.diffusion.configuration_diffusion import (
|
||||
DiffusionConfig,
|
||||
)
|
||||
from lerobot.common.policies.diffusion.modeling_diffusion import DiffusionPolicy
|
||||
|
||||
return DiffusionPolicy, DiffusionConfig
|
||||
@@ -66,12 +68,21 @@ def get_policy_and_config_classes(name: str) -> tuple[Policy, object]:
|
||||
from lerobot.common.policies.vqbet.modeling_vqbet import VQBeTPolicy
|
||||
|
||||
return VQBeTPolicy, VQBeTConfig
|
||||
elif name == "sac":
|
||||
from lerobot.common.policies.sac.configuration_sac import SACConfig
|
||||
from lerobot.common.policies.sac.modeling_sac import SACPolicy
|
||||
|
||||
return SACPolicy, SACConfig
|
||||
else:
|
||||
raise NotImplementedError(f"Policy with name {name} is not implemented.")
|
||||
|
||||
|
||||
def make_policy(
|
||||
hydra_cfg: DictConfig, pretrained_policy_name_or_path: str | None = None, dataset_stats=None
|
||||
hydra_cfg: DictConfig,
|
||||
pretrained_policy_name_or_path: str | None = None,
|
||||
dataset_stats=None,
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> Policy:
|
||||
"""Make an instance of a policy class.
|
||||
|
||||
@@ -85,17 +96,19 @@ def make_policy(
|
||||
be provided when initializing a new policy, and must not be provided when loading a pretrained
|
||||
policy. Therefore, this argument is mutually exclusive with `pretrained_policy_name_or_path`.
|
||||
"""
|
||||
if not (pretrained_policy_name_or_path is None) ^ (dataset_stats is None):
|
||||
raise ValueError(
|
||||
"Exactly one of `pretrained_policy_name_or_path` and `dataset_stats` must be provided."
|
||||
)
|
||||
# if not (pretrained_policy_name_or_path is None) ^ (dataset_stats is None):
|
||||
# raise ValueError(
|
||||
# "Exactly one of `pretrained_policy_name_or_path` and `dataset_stats` must be provided."
|
||||
# )
|
||||
|
||||
policy_cls, policy_cfg_class = get_policy_and_config_classes(hydra_cfg.policy.name)
|
||||
|
||||
policy_cfg = _policy_cfg_from_hydra_cfg(policy_cfg_class, hydra_cfg)
|
||||
if pretrained_policy_name_or_path is None:
|
||||
# Make a fresh policy.
|
||||
policy = policy_cls(policy_cfg, dataset_stats)
|
||||
# HACK: We pass *args and **kwargs to the policy constructor to allow for additional arguments
|
||||
# for example device for the sac policy.
|
||||
policy = policy_cls(config=policy_cfg, dataset_stats=dataset_stats)
|
||||
else:
|
||||
# Load a pretrained policy and override the config if needed (for example, if there are inference-time
|
||||
# hyperparameters that we want to vary).
|
||||
@@ -104,7 +117,9 @@ def make_policy(
|
||||
# huggingface_hub should make it possible to avoid the hack:
|
||||
# https://github.com/huggingface/huggingface_hub/pull/2274.
|
||||
policy = policy_cls(policy_cfg)
|
||||
policy.load_state_dict(policy_cls.from_pretrained(pretrained_policy_name_or_path).state_dict())
|
||||
policy.load_state_dict(
|
||||
policy_cls.from_pretrained(pretrained_policy_name_or_path).state_dict()
|
||||
)
|
||||
|
||||
policy.to(get_safe_torch_device(hydra_cfg.device))
|
||||
|
||||
|
||||
@@ -0,0 +1,35 @@
|
||||
import json
|
||||
import os
|
||||
from dataclasses import asdict, dataclass
|
||||
|
||||
|
||||
@dataclass
|
||||
class ClassifierConfig:
|
||||
"""Configuration for the Classifier model."""
|
||||
|
||||
num_classes: int = 2
|
||||
hidden_dim: int = 256
|
||||
dropout_rate: float = 0.1
|
||||
model_name: str = "helper2424/resnet10"
|
||||
device: str = "cpu"
|
||||
model_type: str = "cnn" # "transformer" or "cnn"
|
||||
num_cameras: int = 2
|
||||
|
||||
def save_pretrained(self, save_dir):
|
||||
"""Save config to json file."""
|
||||
os.makedirs(save_dir, exist_ok=True)
|
||||
|
||||
# Convert to dict and save as JSON
|
||||
config_dict = asdict(self)
|
||||
with open(os.path.join(save_dir, "config.json"), "w") as f:
|
||||
json.dump(config_dict, f, indent=2)
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, pretrained_model_name_or_path):
|
||||
"""Load config from json file."""
|
||||
config_file = os.path.join(pretrained_model_name_or_path, "config.json")
|
||||
|
||||
with open(config_file) as f:
|
||||
config_dict = json.load(f)
|
||||
|
||||
return cls(**config_dict)
|
||||
@@ -0,0 +1,173 @@
|
||||
import logging
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
from huggingface_hub import PyTorchModelHubMixin
|
||||
from torch import Tensor, nn
|
||||
|
||||
from .configuration_classifier import ClassifierConfig
|
||||
|
||||
logging.basicConfig(
|
||||
level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
||||
)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ClassifierOutput:
|
||||
"""Wrapper for classifier outputs with additional metadata."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
logits: Tensor,
|
||||
probabilities: Optional[Tensor] = None,
|
||||
hidden_states: Optional[Tensor] = None,
|
||||
):
|
||||
self.logits = logits
|
||||
self.probabilities = probabilities
|
||||
self.hidden_states = hidden_states
|
||||
|
||||
def __repr__(self):
|
||||
return (
|
||||
f"ClassifierOutput(logits={self.logits}, "
|
||||
f"probabilities={self.probabilities}, "
|
||||
f"hidden_states={self.hidden_states})"
|
||||
)
|
||||
|
||||
|
||||
class Classifier(
|
||||
nn.Module,
|
||||
PyTorchModelHubMixin,
|
||||
# Add Hub metadata
|
||||
library_name="lerobot",
|
||||
repo_url="https://github.com/huggingface/lerobot",
|
||||
tags=["robotics", "vision-classifier"],
|
||||
):
|
||||
"""Image classifier built on top of a pre-trained encoder."""
|
||||
|
||||
# Add name attribute for factory
|
||||
name = "classifier"
|
||||
|
||||
def __init__(self, config: ClassifierConfig):
|
||||
from transformers import AutoModel
|
||||
|
||||
super().__init__()
|
||||
self.config = config
|
||||
# self.processor = AutoImageProcessor.from_pretrained(self.config.model_name, trust_remote_code=True)
|
||||
encoder = AutoModel.from_pretrained(
|
||||
self.config.model_name, trust_remote_code=True
|
||||
)
|
||||
# Extract vision model if we're given a multimodal model
|
||||
if hasattr(encoder, "vision_model"):
|
||||
logging.info("Multimodal model detected - using vision encoder only")
|
||||
self.encoder = encoder.vision_model
|
||||
self.vision_config = encoder.config.vision_config
|
||||
else:
|
||||
self.encoder = encoder
|
||||
self.vision_config = getattr(encoder, "config", None)
|
||||
|
||||
# Model type from config
|
||||
self.is_cnn = self.config.model_type == "cnn"
|
||||
|
||||
# For CNNs, initialize backbone
|
||||
if self.is_cnn:
|
||||
self._setup_cnn_backbone()
|
||||
|
||||
self._freeze_encoder()
|
||||
self._build_classifier_head()
|
||||
|
||||
def _setup_cnn_backbone(self):
|
||||
"""Set up CNN encoder"""
|
||||
if hasattr(self.encoder, "fc"):
|
||||
self.feature_dim = self.encoder.fc.in_features
|
||||
self.encoder = nn.Sequential(*list(self.encoder.children())[:-1])
|
||||
elif hasattr(self.encoder.config, "hidden_sizes"):
|
||||
self.feature_dim = self.encoder.config.hidden_sizes[
|
||||
-1
|
||||
] # Last channel dimension
|
||||
else:
|
||||
raise ValueError("Unsupported CNN architecture")
|
||||
|
||||
self.encoder = self.encoder.to(self.config.device)
|
||||
|
||||
def _freeze_encoder(self) -> None:
|
||||
"""Freeze the encoder parameters."""
|
||||
for param in self.encoder.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
def _build_classifier_head(self) -> None:
|
||||
"""Initialize the classifier head architecture."""
|
||||
# Get input dimension based on model type
|
||||
if self.is_cnn:
|
||||
input_dim = self.feature_dim
|
||||
else: # Transformer models
|
||||
if hasattr(self.encoder.config, "hidden_size"):
|
||||
input_dim = self.encoder.config.hidden_size
|
||||
else:
|
||||
raise ValueError(
|
||||
"Unsupported transformer architecture since hidden_size is not found"
|
||||
)
|
||||
|
||||
self.classifier_head = nn.Sequential(
|
||||
nn.Linear(input_dim * self.config.num_cameras, self.config.hidden_dim),
|
||||
nn.Dropout(self.config.dropout_rate),
|
||||
nn.LayerNorm(self.config.hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(
|
||||
self.config.hidden_dim,
|
||||
1 if self.config.num_classes == 2 else self.config.num_classes,
|
||||
),
|
||||
)
|
||||
self.classifier_head = self.classifier_head.to(self.config.device)
|
||||
|
||||
def _get_encoder_output(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""Extract the appropriate output from the encoder."""
|
||||
# Process images with the processor (handles resizing and normalization)
|
||||
# processed = self.processor(
|
||||
# images=x, # LeRobotDataset already provides proper tensor format
|
||||
# return_tensors="pt",
|
||||
# )
|
||||
# processed = processed["pixel_values"].to(x.device)
|
||||
processed = x
|
||||
|
||||
with torch.no_grad():
|
||||
if self.is_cnn:
|
||||
# The HF ResNet applies pooling internally
|
||||
outputs = self.encoder(processed)
|
||||
# Get pooled output directly
|
||||
features = outputs.pooler_output
|
||||
|
||||
if features.dim() > 2:
|
||||
features = features.squeeze(-1).squeeze(-1)
|
||||
return features
|
||||
else: # Transformer models
|
||||
outputs = self.encoder(processed)
|
||||
if (
|
||||
hasattr(outputs, "pooler_output")
|
||||
and outputs.pooler_output is not None
|
||||
):
|
||||
return outputs.pooler_output
|
||||
return outputs.last_hidden_state[:, 0, :]
|
||||
|
||||
def forward(self, xs: torch.Tensor) -> ClassifierOutput:
|
||||
"""Forward pass of the classifier."""
|
||||
# For training, we expect input to be a tensor directly from LeRobotDataset
|
||||
encoder_outputs = torch.hstack([self._get_encoder_output(x) for x in xs])
|
||||
logits = self.classifier_head(encoder_outputs)
|
||||
|
||||
if self.config.num_classes == 2:
|
||||
logits = logits.squeeze(-1)
|
||||
probabilities = torch.sigmoid(logits)
|
||||
else:
|
||||
probabilities = torch.softmax(logits, dim=-1)
|
||||
|
||||
return ClassifierOutput(
|
||||
logits=logits, probabilities=probabilities, hidden_states=encoder_outputs
|
||||
)
|
||||
|
||||
def predict_reward(self, x, threshold=0.6):
|
||||
if self.config.num_classes == 2:
|
||||
probs = self.forward(x).probabilities
|
||||
logging.debug(f"Predicted reward images: {probs}")
|
||||
return (probs > threshold).float()
|
||||
else:
|
||||
return torch.argmax(self.forward(x).probabilities, dim=1)
|
||||
@@ -1,6 +1,7 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
# Copyright 2024 The HuggingFace Inc. team.
|
||||
# All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -14,17 +15,9 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from lerobot.scripts.visualize_dataset_html import visualize_dataset_html
|
||||
from dataclasses import dataclass
|
||||
|
||||
|
||||
def test_visualize_dataset_html(tmp_path, lerobot_dataset_factory):
|
||||
root = tmp_path / "dataset"
|
||||
output_dir = tmp_path / "outputs"
|
||||
dataset = lerobot_dataset_factory(root=root)
|
||||
visualize_dataset_html(
|
||||
dataset,
|
||||
episodes=[0],
|
||||
output_dir=output_dir,
|
||||
serve=False,
|
||||
)
|
||||
assert (output_dir / "static" / "episode_0.csv").exists()
|
||||
@dataclass
|
||||
class HILSerlConfig:
|
||||
pass
|
||||
29
lerobot/common/policies/hilserl/modeling_hilserl.py
Normal file
29
lerobot/common/policies/hilserl/modeling_hilserl.py
Normal file
@@ -0,0 +1,29 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team.
|
||||
# All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import torch.nn as nn
|
||||
from huggingface_hub import PyTorchModelHubMixin
|
||||
|
||||
|
||||
class HILSerlPolicy(
|
||||
nn.Module,
|
||||
PyTorchModelHubMixin,
|
||||
library_name="lerobot",
|
||||
repo_url="https://github.com/huggingface/lerobot",
|
||||
tags=["robotics", "hilserl"],
|
||||
):
|
||||
pass
|
||||
@@ -130,7 +130,7 @@ class Normalize(nn.Module):
|
||||
setattr(self, "buffer_" + key.replace(".", "_"), buffer)
|
||||
|
||||
# TODO(rcadene): should we remove torch.no_grad?
|
||||
@torch.no_grad
|
||||
# @torch.no_grad
|
||||
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
|
||||
batch = dict(batch) # shallow copy avoids mutating the input batch
|
||||
for key, mode in self.modes.items():
|
||||
@@ -196,7 +196,7 @@ class Unnormalize(nn.Module):
|
||||
setattr(self, "buffer_" + key.replace(".", "_"), buffer)
|
||||
|
||||
# TODO(rcadene): should we remove torch.no_grad?
|
||||
@torch.no_grad
|
||||
# @torch.no_grad
|
||||
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
|
||||
batch = dict(batch) # shallow copy avoids mutating the input batch
|
||||
for key, mode in self.modes.items():
|
||||
|
||||
108
lerobot/common/policies/sac/configuration_sac.py
Normal file
108
lerobot/common/policies/sac/configuration_sac.py
Normal file
@@ -0,0 +1,108 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team.
|
||||
# All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Any
|
||||
|
||||
|
||||
@dataclass
|
||||
class SACConfig:
|
||||
input_shapes: dict[str, list[int]] = field(
|
||||
default_factory=lambda: {
|
||||
"observation.image": [3, 84, 84],
|
||||
"observation.state": [4],
|
||||
}
|
||||
)
|
||||
output_shapes: dict[str, list[int]] = field(
|
||||
default_factory=lambda: {
|
||||
"action": [2],
|
||||
}
|
||||
)
|
||||
input_normalization_modes: dict[str, str] = field(
|
||||
default_factory=lambda: {
|
||||
"observation.image": "mean_std",
|
||||
"observation.state": "min_max",
|
||||
"observation.environment_state": "min_max",
|
||||
}
|
||||
)
|
||||
input_normalization_params: dict[str, dict[str, list[float]]] = field(
|
||||
default_factory=lambda: {
|
||||
"observation.image": {
|
||||
"mean": [[0.485, 0.456, 0.406]],
|
||||
"std": [[0.229, 0.224, 0.225]],
|
||||
},
|
||||
"observation.state": {"min": [-1, -1, -1, -1], "max": [1, 1, 1, 1]},
|
||||
}
|
||||
)
|
||||
output_normalization_modes: dict[str, str] = field(
|
||||
default_factory=lambda: {"action": "min_max"}
|
||||
)
|
||||
output_normalization_params: dict[str, dict[str, list[float]]] = field(
|
||||
default_factory=lambda: {
|
||||
"action": {"min": [-1, -1], "max": [1, 1]},
|
||||
}
|
||||
)
|
||||
# TODO: Move it outside of the config
|
||||
actor_learner_config: dict[str, str | int] = field(
|
||||
default_factory=lambda: {
|
||||
"learner_host": "127.0.0.1",
|
||||
"learner_port": 50051,
|
||||
}
|
||||
)
|
||||
camera_number: int = 1
|
||||
|
||||
storage_device: str = "cpu"
|
||||
# Add type annotations for these fields:
|
||||
vision_encoder_name: str | None = field(default="helper2424/resnet10")
|
||||
freeze_vision_encoder: bool = True
|
||||
image_encoder_hidden_dim: int = 32
|
||||
shared_encoder: bool = True
|
||||
discount: float = 0.99
|
||||
temperature_init: float = 1.0
|
||||
num_critics: int = 2
|
||||
num_subsample_critics: int | None = None
|
||||
critic_lr: float = 3e-4
|
||||
actor_lr: float = 3e-4
|
||||
temperature_lr: float = 3e-4
|
||||
critic_target_update_weight: float = 0.005
|
||||
utd_ratio: int = 1 # If you want enable utd_ratio, you need to set it to >1
|
||||
state_encoder_hidden_dim: int = 256
|
||||
latent_dim: int = 256
|
||||
target_entropy: float | None = None
|
||||
use_backup_entropy: bool = True
|
||||
grad_clip_norm: float = 40.0
|
||||
critic_network_kwargs: dict[str, Any] = field(
|
||||
default_factory=lambda: {
|
||||
"hidden_dims": [256, 256],
|
||||
"activate_final": True,
|
||||
"final_activation": None,
|
||||
}
|
||||
)
|
||||
actor_network_kwargs: dict[str, Any] = field(
|
||||
default_factory=lambda: {
|
||||
"hidden_dims": [256, 256],
|
||||
"activate_final": True,
|
||||
}
|
||||
)
|
||||
policy_kwargs: dict[str, Any] = field(
|
||||
default_factory=lambda: {
|
||||
"use_tanh_squash": True,
|
||||
"log_std_min": -5,
|
||||
"log_std_max": 2,
|
||||
"init_final": 0.05,
|
||||
}
|
||||
)
|
||||
981
lerobot/common/policies/sac/modeling_sac.py
Normal file
981
lerobot/common/policies/sac/modeling_sac.py
Normal file
@@ -0,0 +1,981 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team.
|
||||
# All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# TODO: (1) better device management
|
||||
|
||||
import math
|
||||
from typing import Callable, Optional, Tuple, Union, Dict, List
|
||||
from pathlib import Path
|
||||
|
||||
import einops
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F # noqa: N812
|
||||
from huggingface_hub import PyTorchModelHubMixin
|
||||
from torch import Tensor
|
||||
|
||||
from lerobot.common.policies.normalize import Normalize, Unnormalize
|
||||
from lerobot.common.policies.sac.configuration_sac import SACConfig
|
||||
from lerobot.common.policies.utils import get_device_from_parameters
|
||||
|
||||
|
||||
class SACPolicy(
|
||||
nn.Module,
|
||||
PyTorchModelHubMixin,
|
||||
library_name="lerobot",
|
||||
repo_url="https://github.com/huggingface/lerobot",
|
||||
tags=["robotics", "RL", "SAC"],
|
||||
):
|
||||
name = "sac"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: SACConfig | None = None,
|
||||
dataset_stats: dict[str, dict[str, Tensor]] | None = None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
if config is None:
|
||||
config = SACConfig()
|
||||
self.config = config
|
||||
|
||||
if config.input_normalization_modes is not None:
|
||||
input_normalization_params = _convert_normalization_params_to_tensor(
|
||||
config.input_normalization_params
|
||||
)
|
||||
self.normalize_inputs = Normalize(
|
||||
config.input_shapes,
|
||||
config.input_normalization_modes,
|
||||
input_normalization_params,
|
||||
)
|
||||
else:
|
||||
self.normalize_inputs = nn.Identity()
|
||||
|
||||
output_normalization_params = _convert_normalization_params_to_tensor(
|
||||
config.output_normalization_params
|
||||
)
|
||||
|
||||
# HACK: This is hacky and should be removed
|
||||
dataset_stats = dataset_stats or output_normalization_params
|
||||
self.normalize_targets = Normalize(
|
||||
config.output_shapes, config.output_normalization_modes, dataset_stats
|
||||
)
|
||||
self.unnormalize_outputs = Unnormalize(
|
||||
config.output_shapes, config.output_normalization_modes, dataset_stats
|
||||
)
|
||||
|
||||
# NOTE: For images the encoder should be shared between the actor and critic
|
||||
if config.shared_encoder:
|
||||
encoder_critic = SACObservationEncoder(config, self.normalize_inputs)
|
||||
encoder_actor: SACObservationEncoder = encoder_critic
|
||||
else:
|
||||
encoder_critic = SACObservationEncoder(config, self.normalize_inputs)
|
||||
encoder_actor = SACObservationEncoder(config, self.normalize_inputs)
|
||||
|
||||
# Create a list of critic heads
|
||||
critic_heads = [
|
||||
CriticHead(
|
||||
input_dim=encoder_critic.output_dim + config.output_shapes["action"][0],
|
||||
**config.critic_network_kwargs,
|
||||
)
|
||||
for _ in range(config.num_critics)
|
||||
]
|
||||
|
||||
self.critic_ensemble = CriticEnsemble(
|
||||
encoder=encoder_critic,
|
||||
ensemble=critic_heads,
|
||||
output_normalization=self.normalize_targets,
|
||||
)
|
||||
|
||||
# Create target critic heads as deepcopies of the original critic heads
|
||||
target_critic_heads = [
|
||||
CriticHead(
|
||||
input_dim=encoder_critic.output_dim + config.output_shapes["action"][0],
|
||||
**config.critic_network_kwargs,
|
||||
)
|
||||
for _ in range(config.num_critics)
|
||||
]
|
||||
|
||||
self.critic_target = CriticEnsemble(
|
||||
encoder=encoder_critic,
|
||||
ensemble=target_critic_heads,
|
||||
output_normalization=self.normalize_targets,
|
||||
)
|
||||
|
||||
self.critic_target.load_state_dict(self.critic_ensemble.state_dict())
|
||||
|
||||
self.critic_ensemble = torch.compile(self.critic_ensemble)
|
||||
self.critic_target = torch.compile(self.critic_target)
|
||||
|
||||
self.actor = Policy(
|
||||
encoder=encoder_actor,
|
||||
network=MLP(
|
||||
input_dim=encoder_actor.output_dim, **config.actor_network_kwargs
|
||||
),
|
||||
action_dim=config.output_shapes["action"][0],
|
||||
encoder_is_shared=config.shared_encoder,
|
||||
**config.policy_kwargs,
|
||||
)
|
||||
if config.target_entropy is None:
|
||||
config.target_entropy = (
|
||||
-np.prod(config.output_shapes["action"][0]) / 2
|
||||
) # (-dim(A)/2)
|
||||
|
||||
# TODO (azouitine): Handle the case where the temparameter is a fixed
|
||||
# TODO (michel-aractingi): Put the log_alpha in cuda by default because otherwise
|
||||
# it triggers "can't optimize a non-leaf Tensor"
|
||||
|
||||
temperature_init = config.temperature_init
|
||||
self.log_alpha = nn.Parameter(torch.tensor([math.log(temperature_init)]))
|
||||
self.temperature = self.log_alpha.exp().item()
|
||||
|
||||
def _save_pretrained(self, save_directory):
|
||||
"""Custom save method to handle TensorDict properly"""
|
||||
import os
|
||||
import json
|
||||
from dataclasses import asdict
|
||||
from huggingface_hub.constants import SAFETENSORS_SINGLE_FILE, CONFIG_NAME
|
||||
from safetensors.torch import save_model
|
||||
|
||||
save_model(self, os.path.join(save_directory, SAFETENSORS_SINGLE_FILE))
|
||||
|
||||
# Save config
|
||||
config_dict = asdict(self.config)
|
||||
with open(os.path.join(save_directory, CONFIG_NAME), "w") as f:
|
||||
json.dump(config_dict, f, indent=2)
|
||||
print(f"Saved config to {os.path.join(save_directory, CONFIG_NAME)}")
|
||||
|
||||
@classmethod
|
||||
def _from_pretrained(
|
||||
cls,
|
||||
*,
|
||||
model_id: str,
|
||||
revision: Optional[str],
|
||||
cache_dir: Optional[Union[str, Path]],
|
||||
force_download: bool,
|
||||
proxies: Optional[Dict],
|
||||
resume_download: Optional[bool],
|
||||
local_files_only: bool,
|
||||
token: Optional[Union[str, bool]],
|
||||
map_location: str = "cpu",
|
||||
strict: bool = False,
|
||||
**model_kwargs,
|
||||
) -> "SACPolicy":
|
||||
"""Custom load method to handle loading SAC policy from saved files"""
|
||||
import os
|
||||
import json
|
||||
from pathlib import Path
|
||||
from huggingface_hub import hf_hub_download
|
||||
from huggingface_hub.constants import SAFETENSORS_SINGLE_FILE, CONFIG_NAME
|
||||
from safetensors.torch import load_model
|
||||
from lerobot.common.policies.sac.configuration_sac import SACConfig
|
||||
|
||||
# Check if model_id is a local path or a hub model ID
|
||||
if os.path.isdir(model_id):
|
||||
model_path = Path(model_id)
|
||||
safetensors_file = os.path.join(model_path, SAFETENSORS_SINGLE_FILE)
|
||||
config_file = os.path.join(model_path, CONFIG_NAME)
|
||||
else:
|
||||
# Download the safetensors file from the hub
|
||||
safetensors_file = hf_hub_download(
|
||||
repo_id=model_id,
|
||||
filename=SAFETENSORS_SINGLE_FILE,
|
||||
revision=revision,
|
||||
cache_dir=cache_dir,
|
||||
force_download=force_download,
|
||||
proxies=proxies,
|
||||
resume_download=resume_download,
|
||||
token=token,
|
||||
local_files_only=local_files_only,
|
||||
)
|
||||
# Download the config file
|
||||
try:
|
||||
config_file = hf_hub_download(
|
||||
repo_id=model_id,
|
||||
filename=CONFIG_NAME,
|
||||
revision=revision,
|
||||
cache_dir=cache_dir,
|
||||
force_download=force_download,
|
||||
proxies=proxies,
|
||||
resume_download=resume_download,
|
||||
token=token,
|
||||
local_files_only=local_files_only,
|
||||
)
|
||||
except Exception:
|
||||
config_file = None
|
||||
|
||||
# Load or create config
|
||||
if config_file and os.path.exists(config_file):
|
||||
# Load config from file
|
||||
with open(config_file) as f:
|
||||
config_dict = json.load(f)
|
||||
config = SACConfig(**config_dict)
|
||||
else:
|
||||
# Use the provided config or create a default one
|
||||
config = model_kwargs.get("config", SACConfig())
|
||||
|
||||
# Create a new instance with the loaded config
|
||||
model = cls(config=config)
|
||||
|
||||
# Load state dict from safetensors file
|
||||
if os.path.exists(safetensors_file):
|
||||
load_model(model, filename=safetensors_file, device=map_location)
|
||||
|
||||
return model
|
||||
|
||||
def reset(self):
|
||||
"""Reset the policy"""
|
||||
pass
|
||||
|
||||
def to(self, *args, **kwargs):
|
||||
"""Override .to(device) method to involve moving the log_alpha fixed_std"""
|
||||
if self.actor.fixed_std is not None:
|
||||
self.actor.fixed_std = self.actor.fixed_std.to(*args, **kwargs)
|
||||
# self.log_alpha = self.log_alpha.to(*args, **kwargs)
|
||||
super().to(*args, **kwargs)
|
||||
|
||||
@torch.no_grad()
|
||||
def select_action(self, batch: dict[str, Tensor]) -> Tensor:
|
||||
"""Select action for inference/evaluation"""
|
||||
actions, _, _ = self.actor(batch)
|
||||
actions = self.unnormalize_outputs({"action": actions})["action"]
|
||||
return actions
|
||||
|
||||
def critic_forward(
|
||||
self,
|
||||
observations: dict[str, Tensor],
|
||||
actions: Tensor,
|
||||
use_target: bool = False,
|
||||
observation_features: Tensor | None = None,
|
||||
) -> Tensor:
|
||||
"""Forward pass through a critic network ensemble
|
||||
|
||||
Args:
|
||||
observations: Dictionary of observations
|
||||
actions: Action tensor
|
||||
use_target: If True, use target critics, otherwise use ensemble critics
|
||||
|
||||
Returns:
|
||||
Tensor of Q-values from all critics
|
||||
"""
|
||||
critics = self.critic_target if use_target else self.critic_ensemble
|
||||
q_values = critics(observations, actions, observation_features)
|
||||
return q_values
|
||||
|
||||
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor | float]: ...
|
||||
def update_target_networks(self):
|
||||
"""Update target networks with exponential moving average"""
|
||||
for target_param, param in zip(
|
||||
self.critic_target.parameters(),
|
||||
self.critic_ensemble.parameters(),
|
||||
strict=False,
|
||||
):
|
||||
target_param.data.copy_(
|
||||
param.data * self.config.critic_target_update_weight
|
||||
+ target_param.data * (1.0 - self.config.critic_target_update_weight)
|
||||
)
|
||||
|
||||
def compute_loss_critic(
|
||||
self,
|
||||
observations,
|
||||
actions,
|
||||
rewards,
|
||||
next_observations,
|
||||
done,
|
||||
observation_features: Tensor | None = None,
|
||||
next_observation_features: Tensor | None = None,
|
||||
) -> Tensor:
|
||||
self.temperature = self.log_alpha.exp().item()
|
||||
with torch.no_grad():
|
||||
next_action_preds, next_log_probs, _ = self.actor(
|
||||
next_observations, next_observation_features
|
||||
)
|
||||
|
||||
# TODO: (maractingi, azouitine) This is to slow, we should find a way to do this in a more efficient way
|
||||
next_action_preds = self.unnormalize_outputs({"action": next_action_preds})[
|
||||
"action"
|
||||
]
|
||||
|
||||
# 2- compute q targets
|
||||
q_targets = self.critic_forward(
|
||||
observations=next_observations,
|
||||
actions=next_action_preds,
|
||||
use_target=True,
|
||||
observation_features=next_observation_features,
|
||||
)
|
||||
|
||||
# subsample critics to prevent overfitting if use high UTD (update to date)
|
||||
if self.config.num_subsample_critics is not None:
|
||||
indices = torch.randperm(self.config.num_critics)
|
||||
indices = indices[: self.config.num_subsample_critics]
|
||||
q_targets = q_targets[indices]
|
||||
|
||||
# critics subsample size
|
||||
min_q, _ = q_targets.min(dim=0) # Get values from min operation
|
||||
if self.config.use_backup_entropy:
|
||||
min_q = min_q - (self.temperature * next_log_probs)
|
||||
|
||||
td_target = rewards + (1 - done) * self.config.discount * min_q
|
||||
|
||||
# 3- compute predicted qs
|
||||
q_preds = self.critic_forward(
|
||||
observations,
|
||||
actions,
|
||||
use_target=False,
|
||||
observation_features=observation_features,
|
||||
)
|
||||
|
||||
# 4- Calculate loss
|
||||
# Compute state-action value loss (TD loss) for all of the Q functions in the ensemble.
|
||||
td_target_duplicate = einops.repeat(td_target, "b -> e b", e=q_preds.shape[0])
|
||||
# You compute the mean loss of the batch for each critic and then to compute the final loss you sum them up
|
||||
critics_loss = (
|
||||
F.mse_loss(
|
||||
input=q_preds,
|
||||
target=td_target_duplicate,
|
||||
reduction="none",
|
||||
).mean(1)
|
||||
).sum()
|
||||
return critics_loss
|
||||
|
||||
def compute_loss_temperature(
|
||||
self, observations, observation_features: Tensor | None = None
|
||||
) -> Tensor:
|
||||
"""Compute the temperature loss"""
|
||||
# calculate temperature loss
|
||||
with torch.no_grad():
|
||||
_, log_probs, _ = self.actor(observations, observation_features)
|
||||
temperature_loss = (
|
||||
-self.log_alpha.exp() * (log_probs + self.config.target_entropy)
|
||||
).mean()
|
||||
return temperature_loss
|
||||
|
||||
def compute_loss_actor(
|
||||
self, observations, observation_features: Tensor | None = None
|
||||
) -> Tensor:
|
||||
self.temperature = self.log_alpha.exp().item()
|
||||
|
||||
actions_pi, log_probs, _ = self.actor(observations, observation_features)
|
||||
|
||||
# TODO: (maractingi, azouitine) This is to slow, we should find a way to do this in a more efficient way
|
||||
actions_pi = self.unnormalize_outputs({"action": actions_pi})["action"]
|
||||
|
||||
q_preds = self.critic_forward(
|
||||
observations,
|
||||
actions_pi,
|
||||
use_target=False,
|
||||
observation_features=observation_features,
|
||||
)
|
||||
min_q_preds = q_preds.min(dim=0)[0]
|
||||
|
||||
actor_loss = ((self.temperature * log_probs) - min_q_preds).mean()
|
||||
return actor_loss
|
||||
|
||||
|
||||
class MLP(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
input_dim: int,
|
||||
hidden_dims: list[int],
|
||||
activations: Callable[[torch.Tensor], torch.Tensor] | str = nn.SiLU(),
|
||||
activate_final: bool = False,
|
||||
dropout_rate: Optional[float] = None,
|
||||
final_activation: Callable[[torch.Tensor], torch.Tensor] | str | None = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.activate_final = activate_final
|
||||
layers = []
|
||||
|
||||
# First layer uses input_dim
|
||||
layers.append(nn.Linear(input_dim, hidden_dims[0]))
|
||||
|
||||
# Add activation after first layer
|
||||
if dropout_rate is not None and dropout_rate > 0:
|
||||
layers.append(nn.Dropout(p=dropout_rate))
|
||||
layers.append(nn.LayerNorm(hidden_dims[0]))
|
||||
layers.append(
|
||||
activations
|
||||
if isinstance(activations, nn.Module)
|
||||
else getattr(nn, activations)()
|
||||
)
|
||||
|
||||
# Rest of the layers
|
||||
for i in range(1, len(hidden_dims)):
|
||||
layers.append(nn.Linear(hidden_dims[i - 1], hidden_dims[i]))
|
||||
|
||||
if i + 1 < len(hidden_dims) or activate_final:
|
||||
if dropout_rate is not None and dropout_rate > 0:
|
||||
layers.append(nn.Dropout(p=dropout_rate))
|
||||
layers.append(nn.LayerNorm(hidden_dims[i]))
|
||||
|
||||
# If we're at the final layer and a final activation is specified, use it
|
||||
if (
|
||||
i + 1 == len(hidden_dims)
|
||||
and activate_final
|
||||
and final_activation is not None
|
||||
):
|
||||
layers.append(
|
||||
final_activation
|
||||
if isinstance(final_activation, nn.Module)
|
||||
else getattr(nn, final_activation)()
|
||||
)
|
||||
else:
|
||||
layers.append(
|
||||
activations
|
||||
if isinstance(activations, nn.Module)
|
||||
else getattr(nn, activations)()
|
||||
)
|
||||
|
||||
self.net = nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
return self.net(x)
|
||||
|
||||
|
||||
class CriticHead(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
input_dim: int,
|
||||
hidden_dims: list[int],
|
||||
activations: Callable[[torch.Tensor], torch.Tensor] | str = nn.SiLU(),
|
||||
activate_final: bool = False,
|
||||
dropout_rate: Optional[float] = None,
|
||||
init_final: Optional[float] = None,
|
||||
final_activation: Callable[[torch.Tensor], torch.Tensor] | str | None = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.net = MLP(
|
||||
input_dim=input_dim,
|
||||
hidden_dims=hidden_dims,
|
||||
activations=activations,
|
||||
activate_final=activate_final,
|
||||
dropout_rate=dropout_rate,
|
||||
final_activation=final_activation,
|
||||
)
|
||||
self.output_layer = nn.Linear(in_features=hidden_dims[-1], out_features=1)
|
||||
if init_final is not None:
|
||||
nn.init.uniform_(self.output_layer.weight, -init_final, init_final)
|
||||
nn.init.uniform_(self.output_layer.bias, -init_final, init_final)
|
||||
else:
|
||||
orthogonal_init()(self.output_layer.weight)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
return self.output_layer(self.net(x))
|
||||
|
||||
|
||||
class CriticEnsemble(nn.Module):
|
||||
"""
|
||||
┌──────────────────┬─────────────────────────────────────────────────────────┐
|
||||
│ Critic Ensemble │ │
|
||||
├──────────────────┘ │
|
||||
│ │
|
||||
│ ┌────┐ ┌────┐ ┌────┐ │
|
||||
│ │ Q1 │ │ Q2 │ │ Qn │ │
|
||||
│ └────┘ └────┘ └────┘ │
|
||||
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
|
||||
│ │ │ │ │ │ │ │
|
||||
│ │ MLP 1 │ │ MLP 2 │ │ MLP │ │
|
||||
│ │ │ │ │ ... │ num_critics │ │
|
||||
│ │ │ │ │ │ │ │
|
||||
│ └──────────────┘ └──────────────┘ └──────────────┘ │
|
||||
│ ▲ ▲ ▲ │
|
||||
│ └───────────────────┴───────┬────────────────────────────┘ │
|
||||
│ │ │
|
||||
│ │ │
|
||||
│ ┌───────────────────┐ │
|
||||
│ │ Embedding │ │
|
||||
│ │ │ │
|
||||
│ └───────────────────┘ │
|
||||
│ ▲ │
|
||||
│ │ │
|
||||
│ ┌─────────────┴────────────┐ │
|
||||
│ │ │ │
|
||||
│ │ SACObservationEncoder │ │
|
||||
│ │ │ │
|
||||
│ └──────────────────────────┘ │
|
||||
│ ▲ │
|
||||
│ │ │
|
||||
│ │ │
|
||||
│ │ │
|
||||
└───────────────────────────┬────────────────────┬───────────────────────────┘
|
||||
│ Observation │
|
||||
└────────────────────┘
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
encoder: Optional[nn.Module],
|
||||
ensemble: List[CriticHead],
|
||||
output_normalization: nn.Module,
|
||||
init_final: Optional[float] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.encoder = encoder
|
||||
self.init_final = init_final
|
||||
self.output_normalization = output_normalization
|
||||
self.critics = nn.ModuleList(ensemble)
|
||||
|
||||
self.parameters_to_optimize = []
|
||||
# Handle the case where a part of the encoder if frozen
|
||||
if self.encoder is not None:
|
||||
self.parameters_to_optimize += list(self.encoder.parameters_to_optimize)
|
||||
self.parameters_to_optimize += list(self.critics.parameters())
|
||||
|
||||
def forward(
|
||||
self,
|
||||
observations: dict[str, torch.Tensor],
|
||||
actions: torch.Tensor,
|
||||
observation_features: torch.Tensor | None = None,
|
||||
) -> torch.Tensor:
|
||||
device = get_device_from_parameters(self)
|
||||
# Move each tensor in observations to device
|
||||
observations = {k: v.to(device) for k, v in observations.items()}
|
||||
# NOTE: We normalize actions it helps for sample efficiency
|
||||
actions: dict[str, torch.tensor] = {"action": actions}
|
||||
# NOTE: Normalization layer took dict in input and outputs a dict that why
|
||||
actions = self.output_normalization(actions)["action"]
|
||||
actions = actions.to(device)
|
||||
|
||||
obs_enc = (
|
||||
observation_features
|
||||
if observation_features is not None
|
||||
else (observations if self.encoder is None else self.encoder(observations))
|
||||
)
|
||||
|
||||
inputs = torch.cat([obs_enc, actions], dim=-1)
|
||||
|
||||
# Loop through critics and collect outputs
|
||||
q_values = []
|
||||
for critic in self.critics:
|
||||
q_values.append(critic(inputs))
|
||||
|
||||
# Stack outputs to match expected shape [num_critics, batch_size]
|
||||
q_values = torch.stack([q.squeeze(-1) for q in q_values], dim=0)
|
||||
return q_values
|
||||
|
||||
|
||||
class Policy(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
encoder: Optional[nn.Module],
|
||||
network: nn.Module,
|
||||
action_dim: int,
|
||||
log_std_min: float = -5,
|
||||
log_std_max: float = 2,
|
||||
fixed_std: Optional[torch.Tensor] = None,
|
||||
init_final: Optional[float] = None,
|
||||
use_tanh_squash: bool = False,
|
||||
encoder_is_shared: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
self.encoder = encoder
|
||||
self.network = network
|
||||
self.action_dim = action_dim
|
||||
self.log_std_min = log_std_min
|
||||
self.log_std_max = log_std_max
|
||||
self.fixed_std = fixed_std
|
||||
self.use_tanh_squash = use_tanh_squash
|
||||
self.parameters_to_optimize = []
|
||||
|
||||
self.parameters_to_optimize += list(self.network.parameters())
|
||||
|
||||
if self.encoder is not None and not encoder_is_shared:
|
||||
self.parameters_to_optimize += list(self.encoder.parameters())
|
||||
# Find the last Linear layer's output dimension
|
||||
for layer in reversed(network.net):
|
||||
if isinstance(layer, nn.Linear):
|
||||
out_features = layer.out_features
|
||||
break
|
||||
# Mean layer
|
||||
self.mean_layer = nn.Linear(out_features, action_dim)
|
||||
if init_final is not None:
|
||||
nn.init.uniform_(self.mean_layer.weight, -init_final, init_final)
|
||||
nn.init.uniform_(self.mean_layer.bias, -init_final, init_final)
|
||||
else:
|
||||
orthogonal_init()(self.mean_layer.weight)
|
||||
|
||||
self.parameters_to_optimize += list(self.mean_layer.parameters())
|
||||
# Standard deviation layer or parameter
|
||||
if fixed_std is None:
|
||||
self.std_layer = nn.Linear(out_features, action_dim)
|
||||
if init_final is not None:
|
||||
nn.init.uniform_(self.std_layer.weight, -init_final, init_final)
|
||||
nn.init.uniform_(self.std_layer.bias, -init_final, init_final)
|
||||
else:
|
||||
orthogonal_init()(self.std_layer.weight)
|
||||
self.parameters_to_optimize += list(self.std_layer.parameters())
|
||||
|
||||
def forward(
|
||||
self,
|
||||
observations: torch.Tensor,
|
||||
observation_features: torch.Tensor | None = None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
# Encode observations if encoder exists
|
||||
obs_enc = (
|
||||
observation_features
|
||||
if observation_features is not None
|
||||
else (observations if self.encoder is None else self.encoder(observations))
|
||||
)
|
||||
|
||||
# Get network outputs
|
||||
outputs = self.network(obs_enc)
|
||||
means = self.mean_layer(outputs)
|
||||
|
||||
# Compute standard deviations
|
||||
if self.fixed_std is None:
|
||||
log_std = self.std_layer(outputs)
|
||||
assert not torch.isnan(
|
||||
log_std
|
||||
).any(), "[ERROR] log_std became NaN after std_layer!"
|
||||
|
||||
if self.use_tanh_squash:
|
||||
log_std = torch.tanh(log_std)
|
||||
log_std = self.log_std_min + 0.5 * (
|
||||
self.log_std_max - self.log_std_min
|
||||
) * (log_std + 1.0)
|
||||
else:
|
||||
log_std = torch.clamp(log_std, self.log_std_min, self.log_std_max)
|
||||
else:
|
||||
log_std = self.fixed_std.expand_as(means)
|
||||
|
||||
# uses tanh activation function to squash the action to be in the range of [-1, 1]
|
||||
normal = torch.distributions.Normal(means, torch.exp(log_std))
|
||||
x_t = normal.rsample() # Reparameterization trick (mean + std * N(0,1))
|
||||
log_probs = normal.log_prob(x_t) # Base log probability before Tanh
|
||||
|
||||
if self.use_tanh_squash:
|
||||
actions = torch.tanh(x_t)
|
||||
log_probs -= torch.log(
|
||||
(1 - actions.pow(2)) + 1e-6
|
||||
) # Adjust log-probs for Tanh
|
||||
else:
|
||||
actions = x_t # No Tanh; raw Gaussian sample
|
||||
|
||||
log_probs = log_probs.sum(-1) # Sum over action dimensions
|
||||
means = torch.tanh(means) if self.use_tanh_squash else means
|
||||
return actions, log_probs, means
|
||||
|
||||
def get_features(self, observations: torch.Tensor) -> torch.Tensor:
|
||||
"""Get encoded features from observations"""
|
||||
device = get_device_from_parameters(self)
|
||||
observations = observations.to(device)
|
||||
if self.encoder is not None:
|
||||
with torch.inference_mode():
|
||||
return self.encoder(observations)
|
||||
return observations
|
||||
|
||||
|
||||
class SACObservationEncoder(nn.Module):
|
||||
"""Encode image and/or state vector observations."""
|
||||
|
||||
def __init__(self, config: SACConfig, input_normalizer: nn.Module):
|
||||
"""
|
||||
Creates encoders for pixel and/or state modalities.
|
||||
"""
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.input_normalization = input_normalizer
|
||||
self.has_pretrained_vision_encoder = False
|
||||
self.parameters_to_optimize = []
|
||||
|
||||
self.aggregation_size: int = 0
|
||||
if any("observation.image" in key for key in config.input_shapes):
|
||||
self.camera_number = config.camera_number
|
||||
|
||||
if self.config.vision_encoder_name is not None:
|
||||
self.image_enc_layers = PretrainedImageEncoder(config)
|
||||
self.has_pretrained_vision_encoder = True
|
||||
else:
|
||||
self.image_enc_layers = DefaultImageEncoder(config)
|
||||
|
||||
self.aggregation_size += config.latent_dim * self.camera_number
|
||||
|
||||
if config.freeze_vision_encoder:
|
||||
freeze_image_encoder(self.image_enc_layers)
|
||||
else:
|
||||
self.parameters_to_optimize += list(self.image_enc_layers.parameters())
|
||||
self.all_image_keys = [
|
||||
k for k in config.input_shapes if k.startswith("observation.image")
|
||||
]
|
||||
|
||||
if "observation.state" in config.input_shapes:
|
||||
self.state_enc_layers = nn.Sequential(
|
||||
nn.Linear(
|
||||
in_features=config.input_shapes["observation.state"][0],
|
||||
out_features=config.latent_dim,
|
||||
),
|
||||
nn.LayerNorm(normalized_shape=config.latent_dim),
|
||||
nn.Tanh(),
|
||||
)
|
||||
self.aggregation_size += config.latent_dim
|
||||
|
||||
self.parameters_to_optimize += list(self.state_enc_layers.parameters())
|
||||
|
||||
if "observation.environment_state" in config.input_shapes:
|
||||
self.env_state_enc_layers = nn.Sequential(
|
||||
nn.Linear(
|
||||
in_features=config.input_shapes["observation.environment_state"][0],
|
||||
out_features=config.latent_dim,
|
||||
),
|
||||
nn.LayerNorm(normalized_shape=config.latent_dim),
|
||||
nn.Tanh(),
|
||||
)
|
||||
self.aggregation_size += config.latent_dim
|
||||
self.parameters_to_optimize += list(self.env_state_enc_layers.parameters())
|
||||
|
||||
self.aggregation_layer = nn.Linear(
|
||||
in_features=self.aggregation_size, out_features=config.latent_dim
|
||||
)
|
||||
self.parameters_to_optimize += list(self.aggregation_layer.parameters())
|
||||
|
||||
def forward(self, obs_dict: dict[str, Tensor]) -> Tensor:
|
||||
"""Encode the image and/or state vector.
|
||||
|
||||
Each modality is encoded into a feature vector of size (latent_dim,) and then a uniform mean is taken
|
||||
over all features.
|
||||
"""
|
||||
feat = []
|
||||
obs_dict = self.input_normalization(obs_dict)
|
||||
# Batch all images along the batch dimension, then encode them.
|
||||
if len(self.all_image_keys) > 0:
|
||||
images_batched = torch.cat(
|
||||
[obs_dict[key] for key in self.all_image_keys], dim=0
|
||||
)
|
||||
images_batched = self.image_enc_layers(images_batched)
|
||||
embeddings_chunks = torch.chunk(
|
||||
images_batched, dim=0, chunks=len(self.all_image_keys)
|
||||
)
|
||||
feat.extend(embeddings_chunks)
|
||||
|
||||
if "observation.environment_state" in self.config.input_shapes:
|
||||
feat.append(
|
||||
self.env_state_enc_layers(obs_dict["observation.environment_state"])
|
||||
)
|
||||
if "observation.state" in self.config.input_shapes:
|
||||
feat.append(self.state_enc_layers(obs_dict["observation.state"]))
|
||||
|
||||
features = torch.cat(tensors=feat, dim=-1)
|
||||
features = self.aggregation_layer(features)
|
||||
|
||||
return features
|
||||
|
||||
@property
|
||||
def output_dim(self) -> int:
|
||||
"""Returns the dimension of the encoder output"""
|
||||
return self.config.latent_dim
|
||||
|
||||
|
||||
class DefaultImageEncoder(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.image_enc_layers = nn.Sequential(
|
||||
nn.Conv2d(
|
||||
in_channels=config.input_shapes["observation.image"][0],
|
||||
out_channels=config.image_encoder_hidden_dim,
|
||||
kernel_size=7,
|
||||
stride=2,
|
||||
),
|
||||
nn.ReLU(),
|
||||
nn.Conv2d(
|
||||
in_channels=config.image_encoder_hidden_dim,
|
||||
out_channels=config.image_encoder_hidden_dim,
|
||||
kernel_size=5,
|
||||
stride=2,
|
||||
),
|
||||
nn.ReLU(),
|
||||
nn.Conv2d(
|
||||
in_channels=config.image_encoder_hidden_dim,
|
||||
out_channels=config.image_encoder_hidden_dim,
|
||||
kernel_size=3,
|
||||
stride=2,
|
||||
),
|
||||
nn.ReLU(),
|
||||
nn.Conv2d(
|
||||
in_channels=config.image_encoder_hidden_dim,
|
||||
out_channels=config.image_encoder_hidden_dim,
|
||||
kernel_size=3,
|
||||
stride=2,
|
||||
),
|
||||
nn.ReLU(),
|
||||
)
|
||||
dummy_batch = torch.zeros(1, *config.input_shapes["observation.image"])
|
||||
with torch.inference_mode():
|
||||
self.image_enc_out_shape = self.image_enc_layers(dummy_batch).shape[1:]
|
||||
self.image_enc_layers.extend(
|
||||
nn.Sequential(
|
||||
nn.Flatten(),
|
||||
nn.Linear(np.prod(self.image_enc_out_shape), config.latent_dim),
|
||||
nn.LayerNorm(config.latent_dim),
|
||||
nn.Tanh(),
|
||||
)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.image_enc_layers(x)
|
||||
|
||||
|
||||
class PretrainedImageEncoder(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
|
||||
self.image_enc_layers, self.image_enc_out_shape = (
|
||||
self._load_pretrained_vision_encoder(config)
|
||||
)
|
||||
self.image_enc_proj = nn.Sequential(
|
||||
nn.Linear(np.prod(self.image_enc_out_shape), config.latent_dim),
|
||||
nn.LayerNorm(config.latent_dim),
|
||||
nn.Tanh(),
|
||||
)
|
||||
|
||||
def _load_pretrained_vision_encoder(self, config):
|
||||
"""Set up CNN encoder"""
|
||||
from transformers import AutoModel
|
||||
|
||||
self.image_enc_layers = AutoModel.from_pretrained(
|
||||
config.vision_encoder_name, trust_remote_code=True
|
||||
)
|
||||
# self.image_enc_layers.pooler = Identity()
|
||||
|
||||
if hasattr(self.image_enc_layers.config, "hidden_sizes"):
|
||||
self.image_enc_out_shape = self.image_enc_layers.config.hidden_sizes[
|
||||
-1
|
||||
] # Last channel dimension
|
||||
elif hasattr(self.image_enc_layers, "fc"):
|
||||
self.image_enc_out_shape = self.image_enc_layers.fc.in_features
|
||||
else:
|
||||
raise ValueError(
|
||||
"Unsupported vision encoder architecture, make sure you are using a CNN"
|
||||
)
|
||||
return self.image_enc_layers, self.image_enc_out_shape
|
||||
|
||||
def forward(self, x):
|
||||
# TODO: (maractingi, azouitine) check the forward pass of the pretrained model
|
||||
# doesn't reach the classifier layer because we don't need it
|
||||
enc_feat = self.image_enc_layers(x).pooler_output
|
||||
enc_feat = self.image_enc_proj(enc_feat.view(enc_feat.shape[0], -1))
|
||||
return enc_feat
|
||||
|
||||
|
||||
def freeze_image_encoder(image_encoder: nn.Module):
|
||||
"""Freeze all parameters in the encoder"""
|
||||
for param in image_encoder.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
|
||||
def orthogonal_init():
|
||||
return lambda x: torch.nn.init.orthogonal_(x, gain=1.0)
|
||||
|
||||
|
||||
class Identity(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, x):
|
||||
return x
|
||||
|
||||
|
||||
def _convert_normalization_params_to_tensor(normalization_params: dict) -> dict:
|
||||
converted_params = {}
|
||||
for outer_key, inner_dict in normalization_params.items():
|
||||
converted_params[outer_key] = {}
|
||||
for key, value in inner_dict.items():
|
||||
converted_params[outer_key][key] = torch.tensor(value)
|
||||
if "image" in outer_key:
|
||||
converted_params[outer_key][key] = converted_params[outer_key][
|
||||
key
|
||||
].view(3, 1, 1)
|
||||
|
||||
return converted_params
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Benchmark the CriticEnsemble performance
|
||||
import time
|
||||
|
||||
# Configuration
|
||||
num_critics = 10
|
||||
batch_size = 32
|
||||
action_dim = 7
|
||||
obs_dim = 64
|
||||
hidden_dims = [256, 256]
|
||||
num_iterations = 100
|
||||
|
||||
print("Creating test environment...")
|
||||
|
||||
# Create a simple dummy encoder
|
||||
class DummyEncoder(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.output_dim = obs_dim
|
||||
self.parameters_to_optimize = []
|
||||
|
||||
def forward(self, obs):
|
||||
# Just return a random tensor of the right shape
|
||||
# In practice, this would encode the observations
|
||||
return torch.randn(batch_size, obs_dim, device=device)
|
||||
|
||||
# Create critic heads
|
||||
print(f"Creating {num_critics} critic heads...")
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
critic_heads = [
|
||||
CriticHead(
|
||||
input_dim=obs_dim + action_dim,
|
||||
hidden_dims=hidden_dims,
|
||||
).to(device)
|
||||
for _ in range(num_critics)
|
||||
]
|
||||
|
||||
# Create the critic ensemble
|
||||
print("Creating CriticEnsemble...")
|
||||
critic_ensemble = CriticEnsemble(
|
||||
encoder=DummyEncoder().to(device),
|
||||
ensemble=critic_heads,
|
||||
output_normalization=nn.Identity(),
|
||||
).to(device)
|
||||
|
||||
# Create random input data
|
||||
print("Creating input data...")
|
||||
obs_dict = {
|
||||
"observation.state": torch.randn(batch_size, obs_dim, device=device),
|
||||
}
|
||||
actions = torch.randn(batch_size, action_dim, device=device)
|
||||
|
||||
# Warmup run
|
||||
print("Warming up...")
|
||||
_ = critic_ensemble(obs_dict, actions)
|
||||
|
||||
# Time the forward pass
|
||||
print(f"Running benchmark with {num_iterations} iterations...")
|
||||
start_time = time.perf_counter()
|
||||
for _ in range(num_iterations):
|
||||
q_values = critic_ensemble(obs_dict, actions)
|
||||
end_time = time.perf_counter()
|
||||
|
||||
# Print results
|
||||
elapsed_time = end_time - start_time
|
||||
print(f"Total time: {elapsed_time:.4f} seconds")
|
||||
print(f"Average time per iteration: {elapsed_time / num_iterations * 1000:.4f} ms")
|
||||
print(f"Output shape: {q_values.shape}") # Should be [num_critics, batch_size]
|
||||
|
||||
# Verify that all critic heads produce different outputs
|
||||
# This confirms each critic head is unique
|
||||
# print("\nVerifying critic outputs are different:")
|
||||
# for i in range(num_critics):
|
||||
# for j in range(i + 1, num_critics):
|
||||
# diff = torch.abs(q_values[i] - q_values[j]).mean().item()
|
||||
# print(f"Mean difference between critic {i} and {j}: {diff:.6f}")
|
||||
@@ -191,6 +191,10 @@ class TDMPCConfig:
|
||||
"If `n_action_steps > 1`, `n_action_repeats` must be left to its default value of 1."
|
||||
)
|
||||
if not self.use_mpc:
|
||||
raise ValueError("If `n_action_steps > 1`, `use_mpc` must be set to `True`.")
|
||||
raise ValueError(
|
||||
"If `n_action_steps > 1`, `use_mpc` must be set to `True`."
|
||||
)
|
||||
if self.n_action_steps > self.horizon:
|
||||
raise ValueError("`n_action_steps` must be less than or equal to `horizon`.")
|
||||
raise ValueError(
|
||||
"`n_action_steps` must be less than or equal to `horizon`."
|
||||
)
|
||||
|
||||
@@ -68,7 +68,9 @@ class TDMPCPolicy(
|
||||
name = "tdmpc"
|
||||
|
||||
def __init__(
|
||||
self, config: TDMPCConfig | None = None, dataset_stats: dict[str, dict[str, Tensor]] | None = None
|
||||
self,
|
||||
config: TDMPCConfig | None = None,
|
||||
dataset_stats: dict[str, dict[str, Tensor]] | None = None,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
@@ -100,7 +102,9 @@ class TDMPCPolicy(
|
||||
config.output_shapes, config.output_normalization_modes, dataset_stats
|
||||
)
|
||||
|
||||
image_keys = [k for k in config.input_shapes if k.startswith("observation.image")]
|
||||
image_keys = [
|
||||
k for k in config.input_shapes if k.startswith("observation.image")
|
||||
]
|
||||
# Note: This check is covered in the post-init of the config but have a sanity check just in case.
|
||||
self._use_image = False
|
||||
self._use_env_state = False
|
||||
@@ -120,7 +124,9 @@ class TDMPCPolicy(
|
||||
"""
|
||||
self._queues = {
|
||||
"observation.state": deque(maxlen=1),
|
||||
"action": deque(maxlen=max(self.config.n_action_steps, self.config.n_action_repeats)),
|
||||
"action": deque(
|
||||
maxlen=max(self.config.n_action_steps, self.config.n_action_repeats)
|
||||
),
|
||||
}
|
||||
if self._use_image:
|
||||
self._queues["observation.image"] = deque(maxlen=1)
|
||||
@@ -135,7 +141,9 @@ class TDMPCPolicy(
|
||||
"""Select a single action given environment observations."""
|
||||
batch = self.normalize_inputs(batch)
|
||||
if self._use_image:
|
||||
batch = dict(batch) # shallow copy so that adding a key doesn't modify the original
|
||||
batch = dict(
|
||||
batch
|
||||
) # shallow copy so that adding a key doesn't modify the original
|
||||
batch["observation.image"] = batch[self.input_image_key]
|
||||
|
||||
self._queues = populate_queues(self._queues, batch)
|
||||
@@ -209,13 +217,20 @@ class TDMPCPolicy(
|
||||
|
||||
# In the CEM loop we will need this for a call to estimate_value with the gaussian sampled
|
||||
# trajectories.
|
||||
z = einops.repeat(z, "b d -> n b d", n=self.config.n_gaussian_samples + self.config.n_pi_samples)
|
||||
z = einops.repeat(
|
||||
z,
|
||||
"b d -> n b d",
|
||||
n=self.config.n_gaussian_samples + self.config.n_pi_samples,
|
||||
)
|
||||
|
||||
# Model Predictive Path Integral (MPPI) with the cross-entropy method (CEM) as the optimization
|
||||
# algorithm.
|
||||
# The initial mean and standard deviation for the cross-entropy method (CEM).
|
||||
mean = torch.zeros(
|
||||
self.config.horizon, batch_size, self.config.output_shapes["action"][0], device=device
|
||||
self.config.horizon,
|
||||
batch_size,
|
||||
self.config.output_shapes["action"][0],
|
||||
device=device,
|
||||
)
|
||||
# Maybe warm start CEM with the mean from the previous step.
|
||||
if self._prev_mean is not None:
|
||||
@@ -231,35 +246,47 @@ class TDMPCPolicy(
|
||||
self.config.output_shapes["action"][0],
|
||||
device=std.device,
|
||||
)
|
||||
gaussian_actions = torch.clamp(mean.unsqueeze(1) + std.unsqueeze(1) * std_normal_noise, -1, 1)
|
||||
gaussian_actions = torch.clamp(
|
||||
mean.unsqueeze(1) + std.unsqueeze(1) * std_normal_noise, -1, 1
|
||||
)
|
||||
|
||||
# Compute elite actions.
|
||||
actions = torch.cat([gaussian_actions, pi_actions], dim=1)
|
||||
value = self.estimate_value(z, actions).nan_to_num_(0)
|
||||
elite_idxs = torch.topk(value, self.config.n_elites, dim=0).indices # (n_elites, batch)
|
||||
elite_idxs = torch.topk(
|
||||
value, self.config.n_elites, dim=0
|
||||
).indices # (n_elites, batch)
|
||||
elite_value = value.take_along_dim(elite_idxs, dim=0) # (n_elites, batch)
|
||||
# (horizon, n_elites, batch, action_dim)
|
||||
elite_actions = actions.take_along_dim(einops.rearrange(elite_idxs, "n b -> 1 n b 1"), dim=1)
|
||||
elite_actions = actions.take_along_dim(
|
||||
einops.rearrange(elite_idxs, "n b -> 1 n b 1"), dim=1
|
||||
)
|
||||
|
||||
# Update gaussian PDF parameters to be the (weighted) mean and standard deviation of the elites.
|
||||
max_value = elite_value.max(0, keepdim=True)[0] # (1, batch)
|
||||
# The weighting is a softmax over trajectory values. Note that this is not the same as the usage
|
||||
# of Ω in eqn 4 of the TD-MPC paper. Instead it is the normalized version of it: s = Ω/ΣΩ. This
|
||||
# makes the equations: μ = Σ(s⋅Γ), σ = Σ(s⋅(Γ-μ)²).
|
||||
score = torch.exp(self.config.elite_weighting_temperature * (elite_value - max_value))
|
||||
score = torch.exp(
|
||||
self.config.elite_weighting_temperature * (elite_value - max_value)
|
||||
)
|
||||
score /= score.sum(axis=0, keepdim=True)
|
||||
# (horizon, batch, action_dim)
|
||||
_mean = torch.sum(einops.rearrange(score, "n b -> n b 1") * elite_actions, dim=1)
|
||||
_mean = torch.sum(
|
||||
einops.rearrange(score, "n b -> n b 1") * elite_actions, dim=1
|
||||
)
|
||||
_std = torch.sqrt(
|
||||
torch.sum(
|
||||
einops.rearrange(score, "n b -> n b 1")
|
||||
* (elite_actions - einops.rearrange(_mean, "h b d -> h 1 b d")) ** 2,
|
||||
* (elite_actions - einops.rearrange(_mean, "h b d -> h 1 b d"))
|
||||
** 2,
|
||||
dim=1,
|
||||
)
|
||||
)
|
||||
# Update mean with an exponential moving average, and std with a direct replacement.
|
||||
mean = (
|
||||
self.config.gaussian_mean_momentum * mean + (1 - self.config.gaussian_mean_momentum) * _mean
|
||||
self.config.gaussian_mean_momentum * mean
|
||||
+ (1 - self.config.gaussian_mean_momentum) * _mean
|
||||
)
|
||||
std = _std.clamp_(self.config.min_std, self.config.max_std)
|
||||
|
||||
@@ -268,7 +295,9 @@ class TDMPCPolicy(
|
||||
|
||||
# Randomly select one of the elite actions from the last iteration of MPPI/CEM using the softmax
|
||||
# scores from the last iteration.
|
||||
actions = elite_actions[:, torch.multinomial(score.T, 1).squeeze(), torch.arange(batch_size)]
|
||||
actions = elite_actions[
|
||||
:, torch.multinomial(score.T, 1).squeeze(), torch.arange(batch_size)
|
||||
]
|
||||
|
||||
return actions
|
||||
|
||||
@@ -291,7 +320,8 @@ class TDMPCPolicy(
|
||||
# of the FOWM paper.
|
||||
if self.config.uncertainty_regularizer_coeff > 0:
|
||||
regularization = -(
|
||||
self.config.uncertainty_regularizer_coeff * self.model.Qs(z, actions[t]).std(0)
|
||||
self.config.uncertainty_regularizer_coeff
|
||||
* self.model.Qs(z, actions[t]).std(0)
|
||||
)
|
||||
else:
|
||||
regularization = 0
|
||||
@@ -311,15 +341,22 @@ class TDMPCPolicy(
|
||||
if self.config.q_ensemble_size > 2:
|
||||
G += (
|
||||
running_discount
|
||||
* torch.min(terminal_values[torch.randint(0, self.config.q_ensemble_size, size=(2,))], dim=0)[
|
||||
0
|
||||
]
|
||||
* torch.min(
|
||||
terminal_values[
|
||||
torch.randint(0, self.config.q_ensemble_size, size=(2,))
|
||||
],
|
||||
dim=0,
|
||||
)[0]
|
||||
)
|
||||
else:
|
||||
G += running_discount * torch.min(terminal_values, dim=0)[0]
|
||||
# Finally, also regularize the terminal value.
|
||||
if self.config.uncertainty_regularizer_coeff > 0:
|
||||
G -= running_discount * self.config.uncertainty_regularizer_coeff * terminal_values.std(0)
|
||||
G -= (
|
||||
running_discount
|
||||
* self.config.uncertainty_regularizer_coeff
|
||||
* terminal_values.std(0)
|
||||
)
|
||||
return G
|
||||
|
||||
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor | float]:
|
||||
@@ -331,7 +368,9 @@ class TDMPCPolicy(
|
||||
|
||||
batch = self.normalize_inputs(batch)
|
||||
if self._use_image:
|
||||
batch = dict(batch) # shallow copy so that adding a key doesn't modify the original
|
||||
batch = dict(
|
||||
batch
|
||||
) # shallow copy so that adding a key doesn't modify the original
|
||||
batch["observation.image"] = batch[self.input_image_key]
|
||||
batch = self.normalize_targets(batch)
|
||||
|
||||
@@ -349,7 +388,10 @@ class TDMPCPolicy(
|
||||
# Apply random image augmentations.
|
||||
if self._use_image and self.config.max_random_shift_ratio > 0:
|
||||
observations["observation.image"] = flatten_forward_unflatten(
|
||||
partial(random_shifts_aug, max_random_shift_ratio=self.config.max_random_shift_ratio),
|
||||
partial(
|
||||
random_shifts_aug,
|
||||
max_random_shift_ratio=self.config.max_random_shift_ratio,
|
||||
),
|
||||
observations["observation.image"],
|
||||
)
|
||||
|
||||
@@ -367,14 +409,20 @@ class TDMPCPolicy(
|
||||
# Note this has shape `horizon+1` because there are `horizon` actions and a current `z`. Each action
|
||||
# gives us a next `z`.
|
||||
batch_size = batch["index"].shape[0]
|
||||
z_preds = torch.empty(horizon + 1, batch_size, self.config.latent_dim, device=device)
|
||||
z_preds = torch.empty(
|
||||
horizon + 1, batch_size, self.config.latent_dim, device=device
|
||||
)
|
||||
z_preds[0] = self.model.encode(current_observation)
|
||||
reward_preds = torch.empty_like(reward, device=device)
|
||||
for t in range(horizon):
|
||||
z_preds[t + 1], reward_preds[t] = self.model.latent_dynamics_and_reward(z_preds[t], action[t])
|
||||
z_preds[t + 1], reward_preds[t] = self.model.latent_dynamics_and_reward(
|
||||
z_preds[t], action[t]
|
||||
)
|
||||
|
||||
# Compute Q and V value predictions based on the latent rollout.
|
||||
q_preds_ensemble = self.model.Qs(z_preds[:-1], action) # (ensemble, horizon, batch)
|
||||
q_preds_ensemble = self.model.Qs(
|
||||
z_preds[:-1], action
|
||||
) # (ensemble, horizon, batch)
|
||||
v_preds = self.model.V(z_preds[:-1])
|
||||
info.update({"Q": q_preds_ensemble.mean().item(), "V": v_preds.mean().item()})
|
||||
|
||||
@@ -388,10 +436,14 @@ class TDMPCPolicy(
|
||||
# actions (not actions estimated by π).
|
||||
# Note: Here we do not use self.model_target, but self.model. This is to follow the original code
|
||||
# and the FOWM paper.
|
||||
q_targets = reward + self.config.discount * self.model.V(self.model.encode(next_observations))
|
||||
q_targets = reward + self.config.discount * self.model.V(
|
||||
self.model.encode(next_observations)
|
||||
)
|
||||
# From eqn 3 of FOWM. These appear as Q(z, a). Here we call them v_targets to emphasize that we
|
||||
# are using them to compute loss for V.
|
||||
v_targets = self.model_target.Qs(z_preds[:-1].detach(), action, return_min=True)
|
||||
v_targets = self.model_target.Qs(
|
||||
z_preds[:-1].detach(), action, return_min=True
|
||||
)
|
||||
|
||||
# Compute losses.
|
||||
# Exponentially decay the loss weight with respect to the timestep. Steps that are more distant in the
|
||||
@@ -434,7 +486,9 @@ class TDMPCPolicy(
|
||||
temporal_loss_coeffs
|
||||
* F.mse_loss(
|
||||
q_preds_ensemble,
|
||||
einops.repeat(q_targets, "t b -> e t b", e=q_preds_ensemble.shape[0]),
|
||||
einops.repeat(
|
||||
q_targets, "t b -> e t b", e=q_preds_ensemble.shape[0]
|
||||
),
|
||||
reduction="none",
|
||||
).sum(0) # sum over ensemble
|
||||
# `q_preds_ensemble` depends on the first observation and the actions.
|
||||
@@ -472,12 +526,14 @@ class TDMPCPolicy(
|
||||
z_preds = z_preds.detach()
|
||||
# Use stopgrad for the advantage calculation.
|
||||
with torch.no_grad():
|
||||
advantage = self.model_target.Qs(z_preds[:-1], action, return_min=True) - self.model.V(
|
||||
z_preds[:-1]
|
||||
)
|
||||
advantage = self.model_target.Qs(
|
||||
z_preds[:-1], action, return_min=True
|
||||
) - self.model.V(z_preds[:-1])
|
||||
info["advantage"] = advantage[0]
|
||||
# (t, b)
|
||||
exp_advantage = torch.clamp(torch.exp(advantage * self.config.advantage_scaling), max=100.0)
|
||||
exp_advantage = torch.clamp(
|
||||
torch.exp(advantage * self.config.advantage_scaling), max=100.0
|
||||
)
|
||||
action_preds = self.model.pi(z_preds[:-1]) # (t, b, a)
|
||||
# Calculate the MSE between the actions and the action predictions.
|
||||
# Note: FOWM's original code calculates the log probability (wrt to a unit standard deviation
|
||||
@@ -532,7 +588,9 @@ class TDMPCPolicy(
|
||||
# Note a minor variation with respect to the original FOWM code. Here they do this based on an EMA
|
||||
# update frequency parameter which is set to 2 (every 2 steps an update is done). To simplify the code
|
||||
# we update every step and adjust the decay parameter `alpha` accordingly (0.99 -> 0.995)
|
||||
update_ema_parameters(self.model_target, self.model, self.config.target_model_momentum)
|
||||
update_ema_parameters(
|
||||
self.model_target, self.model, self.config.target_model_momentum
|
||||
)
|
||||
|
||||
|
||||
class TDMPCTOLD(nn.Module):
|
||||
@@ -543,7 +601,9 @@ class TDMPCTOLD(nn.Module):
|
||||
self.config = config
|
||||
self._encoder = TDMPCObservationEncoder(config)
|
||||
self._dynamics = nn.Sequential(
|
||||
nn.Linear(config.latent_dim + config.output_shapes["action"][0], config.mlp_dim),
|
||||
nn.Linear(
|
||||
config.latent_dim + config.output_shapes["action"][0], config.mlp_dim
|
||||
),
|
||||
nn.LayerNorm(config.mlp_dim),
|
||||
nn.Mish(),
|
||||
nn.Linear(config.mlp_dim, config.mlp_dim),
|
||||
@@ -554,7 +614,9 @@ class TDMPCTOLD(nn.Module):
|
||||
nn.Sigmoid(),
|
||||
)
|
||||
self._reward = nn.Sequential(
|
||||
nn.Linear(config.latent_dim + config.output_shapes["action"][0], config.mlp_dim),
|
||||
nn.Linear(
|
||||
config.latent_dim + config.output_shapes["action"][0], config.mlp_dim
|
||||
),
|
||||
nn.LayerNorm(config.mlp_dim),
|
||||
nn.Mish(),
|
||||
nn.Linear(config.mlp_dim, config.mlp_dim),
|
||||
@@ -574,7 +636,10 @@ class TDMPCTOLD(nn.Module):
|
||||
self._Qs = nn.ModuleList(
|
||||
[
|
||||
nn.Sequential(
|
||||
nn.Linear(config.latent_dim + config.output_shapes["action"][0], config.mlp_dim),
|
||||
nn.Linear(
|
||||
config.latent_dim + config.output_shapes["action"][0],
|
||||
config.mlp_dim,
|
||||
),
|
||||
nn.LayerNorm(config.mlp_dim),
|
||||
nn.Tanh(),
|
||||
nn.Linear(config.mlp_dim, config.mlp_dim),
|
||||
@@ -619,7 +684,9 @@ class TDMPCTOLD(nn.Module):
|
||||
m[-1], nn.Linear
|
||||
), "Sanity check. The last linear layer needs 0 initialization on weights."
|
||||
nn.init.zeros_(m[-1].weight)
|
||||
nn.init.zeros_(m[-1].bias) # this has already been done, but keep this line here for good measure
|
||||
nn.init.zeros_(
|
||||
m[-1].bias
|
||||
) # this has already been done, but keep this line here for good measure
|
||||
|
||||
def encode(self, obs: dict[str, Tensor]) -> Tensor:
|
||||
"""Encodes an observation into its latent representation."""
|
||||
@@ -717,14 +784,32 @@ class TDMPCObservationEncoder(nn.Module):
|
||||
if "observation.image" in config.input_shapes:
|
||||
self.image_enc_layers = nn.Sequential(
|
||||
nn.Conv2d(
|
||||
config.input_shapes["observation.image"][0], config.image_encoder_hidden_dim, 7, stride=2
|
||||
config.input_shapes["observation.image"][0],
|
||||
config.image_encoder_hidden_dim,
|
||||
7,
|
||||
stride=2,
|
||||
),
|
||||
nn.ReLU(),
|
||||
nn.Conv2d(config.image_encoder_hidden_dim, config.image_encoder_hidden_dim, 5, stride=2),
|
||||
nn.Conv2d(
|
||||
config.image_encoder_hidden_dim,
|
||||
config.image_encoder_hidden_dim,
|
||||
5,
|
||||
stride=2,
|
||||
),
|
||||
nn.ReLU(),
|
||||
nn.Conv2d(config.image_encoder_hidden_dim, config.image_encoder_hidden_dim, 3, stride=2),
|
||||
nn.Conv2d(
|
||||
config.image_encoder_hidden_dim,
|
||||
config.image_encoder_hidden_dim,
|
||||
3,
|
||||
stride=2,
|
||||
),
|
||||
nn.ReLU(),
|
||||
nn.Conv2d(config.image_encoder_hidden_dim, config.image_encoder_hidden_dim, 3, stride=2),
|
||||
nn.Conv2d(
|
||||
config.image_encoder_hidden_dim,
|
||||
config.image_encoder_hidden_dim,
|
||||
3,
|
||||
stride=2,
|
||||
),
|
||||
nn.ReLU(),
|
||||
)
|
||||
dummy_batch = torch.zeros(1, *config.input_shapes["observation.image"])
|
||||
@@ -740,7 +825,10 @@ class TDMPCObservationEncoder(nn.Module):
|
||||
)
|
||||
if "observation.state" in config.input_shapes:
|
||||
self.state_enc_layers = nn.Sequential(
|
||||
nn.Linear(config.input_shapes["observation.state"][0], config.state_encoder_hidden_dim),
|
||||
nn.Linear(
|
||||
config.input_shapes["observation.state"][0],
|
||||
config.state_encoder_hidden_dim,
|
||||
),
|
||||
nn.ELU(),
|
||||
nn.Linear(config.state_encoder_hidden_dim, config.latent_dim),
|
||||
nn.LayerNorm(config.latent_dim),
|
||||
@@ -749,7 +837,8 @@ class TDMPCObservationEncoder(nn.Module):
|
||||
if "observation.environment_state" in config.input_shapes:
|
||||
self.env_state_enc_layers = nn.Sequential(
|
||||
nn.Linear(
|
||||
config.input_shapes["observation.environment_state"][0], config.state_encoder_hidden_dim
|
||||
config.input_shapes["observation.environment_state"][0],
|
||||
config.state_encoder_hidden_dim,
|
||||
),
|
||||
nn.ELU(),
|
||||
nn.Linear(config.state_encoder_hidden_dim, config.latent_dim),
|
||||
@@ -766,9 +855,15 @@ class TDMPCObservationEncoder(nn.Module):
|
||||
feat = []
|
||||
# NOTE: Order of observations matters here.
|
||||
if "observation.image" in self.config.input_shapes:
|
||||
feat.append(flatten_forward_unflatten(self.image_enc_layers, obs_dict["observation.image"]))
|
||||
feat.append(
|
||||
flatten_forward_unflatten(
|
||||
self.image_enc_layers, obs_dict["observation.image"]
|
||||
)
|
||||
)
|
||||
if "observation.environment_state" in self.config.input_shapes:
|
||||
feat.append(self.env_state_enc_layers(obs_dict["observation.environment_state"]))
|
||||
feat.append(
|
||||
self.env_state_enc_layers(obs_dict["observation.environment_state"])
|
||||
)
|
||||
if "observation.state" in self.config.input_shapes:
|
||||
feat.append(self.state_enc_layers(obs_dict["observation.state"]))
|
||||
return torch.stack(feat, dim=0).mean(0)
|
||||
@@ -811,12 +906,17 @@ def update_ema_parameters(ema_net: nn.Module, net: nn.Module, alpha: float):
|
||||
"""Update EMA parameters in place with ema_param <- alpha * ema_param + (1 - alpha) * param."""
|
||||
for ema_module, module in zip(ema_net.modules(), net.modules(), strict=True):
|
||||
for (n_p_ema, p_ema), (n_p, p) in zip(
|
||||
ema_module.named_parameters(recurse=False), module.named_parameters(recurse=False), strict=True
|
||||
ema_module.named_parameters(recurse=False),
|
||||
module.named_parameters(recurse=False),
|
||||
strict=True,
|
||||
):
|
||||
assert n_p_ema == n_p, "Parameter names don't match for EMA model update"
|
||||
if isinstance(p, dict):
|
||||
raise RuntimeError("Dict parameter not supported")
|
||||
if isinstance(module, nn.modules.batchnorm._BatchNorm) or not p.requires_grad:
|
||||
if (
|
||||
isinstance(module, nn.modules.batchnorm._BatchNorm)
|
||||
or not p.requires_grad
|
||||
):
|
||||
# Copy BatchNorm parameters, and non-trainable parameters directly.
|
||||
p_ema.copy_(p.to(dtype=p_ema.dtype).data)
|
||||
with torch.no_grad():
|
||||
@@ -824,7 +924,9 @@ def update_ema_parameters(ema_net: nn.Module, net: nn.Module, alpha: float):
|
||||
p_ema.add_(p.to(dtype=p_ema.dtype).data, alpha=1 - alpha)
|
||||
|
||||
|
||||
def flatten_forward_unflatten(fn: Callable[[Tensor], Tensor], image_tensor: Tensor) -> Tensor:
|
||||
def flatten_forward_unflatten(
|
||||
fn: Callable[[Tensor], Tensor], image_tensor: Tensor
|
||||
) -> Tensor:
|
||||
"""Helper to temporarily flatten extra dims at the start of the image tensor.
|
||||
|
||||
Args:
|
||||
|
||||
@@ -109,7 +109,9 @@ class VQBeTConfig:
|
||||
"observation.state": "min_max",
|
||||
}
|
||||
)
|
||||
output_normalization_modes: dict[str, str] = field(default_factory=lambda: {"action": "min_max"})
|
||||
output_normalization_modes: dict[str, str] = field(
|
||||
default_factory=lambda: {"action": "min_max"}
|
||||
)
|
||||
|
||||
# Architecture / modeling.
|
||||
# Vision backbone.
|
||||
|
||||
@@ -79,7 +79,9 @@ class VQBeTPolicy(
|
||||
|
||||
self.vqbet = VQBeTModel(config)
|
||||
|
||||
self.expected_image_keys = [k for k in config.input_shapes if k.startswith("observation.image")]
|
||||
self.expected_image_keys = [
|
||||
k for k in config.input_shapes if k.startswith("observation.image")
|
||||
]
|
||||
|
||||
self.reset()
|
||||
|
||||
@@ -104,8 +106,12 @@ class VQBeTPolicy(
|
||||
"""
|
||||
|
||||
batch = self.normalize_inputs(batch)
|
||||
batch = dict(batch) # shallow copy so that adding a key doesn't modify the original
|
||||
batch["observation.images"] = torch.stack([batch[k] for k in self.expected_image_keys], dim=-4)
|
||||
batch = dict(
|
||||
batch
|
||||
) # shallow copy so that adding a key doesn't modify the original
|
||||
batch["observation.images"] = torch.stack(
|
||||
[batch[k] for k in self.expected_image_keys], dim=-4
|
||||
)
|
||||
# Note: It's important that this happens after stacking the images into a single key.
|
||||
self._queues = populate_queues(self._queues, batch)
|
||||
|
||||
@@ -116,8 +122,14 @@ class VQBeTPolicy(
|
||||
)
|
||||
|
||||
if len(self._queues["action"]) == 0:
|
||||
batch = {k: torch.stack(list(self._queues[k]), dim=1) for k in batch if k in self._queues}
|
||||
actions = self.vqbet(batch, rollout=True)[:, : self.config.action_chunk_size]
|
||||
batch = {
|
||||
k: torch.stack(list(self._queues[k]), dim=1)
|
||||
for k in batch
|
||||
if k in self._queues
|
||||
}
|
||||
actions = self.vqbet(batch, rollout=True)[
|
||||
:, : self.config.action_chunk_size
|
||||
]
|
||||
|
||||
# the dimension of returned action is (batch_size, action_chunk_size, action_dim)
|
||||
actions = self.unnormalize_outputs({"action": actions})["action"]
|
||||
@@ -130,8 +142,12 @@ class VQBeTPolicy(
|
||||
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
|
||||
"""Run the batch through the model and compute the loss for training or validation."""
|
||||
batch = self.normalize_inputs(batch)
|
||||
batch = dict(batch) # shallow copy so that adding a key doesn't modify the original
|
||||
batch["observation.images"] = torch.stack([batch[k] for k in self.expected_image_keys], dim=-4)
|
||||
batch = dict(
|
||||
batch
|
||||
) # shallow copy so that adding a key doesn't modify the original
|
||||
batch["observation.images"] = torch.stack(
|
||||
[batch[k] for k in self.expected_image_keys], dim=-4
|
||||
)
|
||||
batch = self.normalize_targets(batch)
|
||||
# VQ-BeT discretizes action using VQ-VAE before training BeT (please refer to section 3.2 in the VQ-BeT paper https://arxiv.org/pdf/2403.03181)
|
||||
if not self.vqbet.action_head.vqvae_model.discretized.item():
|
||||
@@ -139,7 +155,9 @@ class VQBeTPolicy(
|
||||
# n_different_codes: how many of the total possible VQ codes are being used in single batch (how many of them have at least one encoder embedding as a nearest neighbor). This can be at most `vqvae_n_embed * number of layers of RVQ (=2)`.
|
||||
# n_different_combinations: how many different code combinations are being used out of all possible combinations in single batch. This can be at most `vqvae_n_embed ^ number of layers of RVQ (=2)` (hint consider the RVQ as a decision tree).
|
||||
loss, n_different_codes, n_different_combinations, recon_l1_error = (
|
||||
self.vqbet.action_head.discretize(self.config.n_vqvae_training_steps, batch["action"])
|
||||
self.vqbet.action_head.discretize(
|
||||
self.config.n_vqvae_training_steps, batch["action"]
|
||||
)
|
||||
)
|
||||
return {
|
||||
"loss": loss,
|
||||
@@ -196,7 +214,9 @@ class SpatialSoftmax(nn.Module):
|
||||
|
||||
# we could use torch.linspace directly but that seems to behave slightly differently than numpy
|
||||
# and causes a small degradation in pc_success of pre-trained models.
|
||||
pos_x, pos_y = np.meshgrid(np.linspace(-1.0, 1.0, self._in_w), np.linspace(-1.0, 1.0, self._in_h))
|
||||
pos_x, pos_y = np.meshgrid(
|
||||
np.linspace(-1.0, 1.0, self._in_w), np.linspace(-1.0, 1.0, self._in_h)
|
||||
)
|
||||
pos_x = torch.from_numpy(pos_x.reshape(self._in_h * self._in_w, 1)).float()
|
||||
pos_y = torch.from_numpy(pos_y.reshape(self._in_h * self._in_w, 1)).float()
|
||||
# register as buffer so it's moved to the correct device.
|
||||
@@ -288,14 +308,17 @@ class VQBeTModel(nn.Module):
|
||||
self.config = config
|
||||
|
||||
self.rgb_encoder = VQBeTRgbEncoder(config)
|
||||
self.num_images = len([k for k in config.input_shapes if k.startswith("observation.image")])
|
||||
self.num_images = len(
|
||||
[k for k in config.input_shapes if k.startswith("observation.image")]
|
||||
)
|
||||
# This action query token is used as a prompt for querying action chunks. Please refer to "A_Q" in the image above.
|
||||
# Note: During the forward pass, this token is repeated as many times as needed. The authors also experimented with initializing the necessary number of tokens independently and observed inferior results.
|
||||
self.action_token = nn.Parameter(torch.randn(1, 1, self.config.gpt_input_dim))
|
||||
|
||||
# To input state and observation features into GPT layers, we first project the features to fit the shape of input size of GPT.
|
||||
self.state_projector = MLP(
|
||||
config.input_shapes["observation.state"][0], hidden_channels=[self.config.gpt_input_dim]
|
||||
config.input_shapes["observation.state"][0],
|
||||
hidden_channels=[self.config.gpt_input_dim],
|
||||
)
|
||||
self.rgb_feature_projector = MLP(
|
||||
self.rgb_encoder.feature_dim, hidden_channels=[self.config.gpt_input_dim]
|
||||
@@ -310,7 +333,12 @@ class VQBeTModel(nn.Module):
|
||||
num_tokens = self.config.n_action_pred_token + self.config.n_obs_steps - 1
|
||||
self.register_buffer(
|
||||
"select_target_actions_indices",
|
||||
torch.row_stack([torch.arange(i, i + self.config.action_chunk_size) for i in range(num_tokens)]),
|
||||
torch.row_stack(
|
||||
[
|
||||
torch.arange(i, i + self.config.action_chunk_size)
|
||||
for i in range(num_tokens)
|
||||
]
|
||||
),
|
||||
)
|
||||
|
||||
def forward(self, batch: dict[str, Tensor], rollout: bool) -> Tensor:
|
||||
@@ -325,7 +353,11 @@ class VQBeTModel(nn.Module):
|
||||
)
|
||||
# Separate batch and sequence dims.
|
||||
img_features = einops.rearrange(
|
||||
img_features, "(b s n) ... -> b s n ...", b=batch_size, s=n_obs_steps, n=self.num_images
|
||||
img_features,
|
||||
"(b s n) ... -> b s n ...",
|
||||
b=batch_size,
|
||||
s=n_obs_steps,
|
||||
n=self.num_images,
|
||||
)
|
||||
|
||||
# Arrange prior and current observation step tokens as shown in the class docstring.
|
||||
@@ -337,13 +369,19 @@ class VQBeTModel(nn.Module):
|
||||
input_tokens.append(
|
||||
self.state_projector(batch["observation.state"])
|
||||
) # (batch, obs_step, projection dims)
|
||||
input_tokens.append(einops.repeat(self.action_token, "1 1 d -> b n d", b=batch_size, n=n_obs_steps))
|
||||
input_tokens.append(
|
||||
einops.repeat(
|
||||
self.action_token, "1 1 d -> b n d", b=batch_size, n=n_obs_steps
|
||||
)
|
||||
)
|
||||
# Interleave tokens by stacking and rearranging.
|
||||
input_tokens = torch.stack(input_tokens, dim=2)
|
||||
input_tokens = einops.rearrange(input_tokens, "b n t d -> b (n t) d")
|
||||
|
||||
len_additional_action_token = self.config.n_action_pred_token - 1
|
||||
future_action_tokens = self.action_token.repeat(batch_size, len_additional_action_token, 1)
|
||||
future_action_tokens = self.action_token.repeat(
|
||||
batch_size, len_additional_action_token, 1
|
||||
)
|
||||
|
||||
# add additional action query tokens for predicting future action chunks
|
||||
input_tokens = torch.cat([input_tokens, future_action_tokens], dim=1)
|
||||
@@ -352,9 +390,9 @@ class VQBeTModel(nn.Module):
|
||||
features = self.policy(input_tokens)
|
||||
# len(self.config.input_shapes) is the number of different observation modes.
|
||||
# this line gets the index of action prompt tokens.
|
||||
historical_act_pred_index = np.arange(0, n_obs_steps) * (len(self.config.input_shapes) + 1) + len(
|
||||
self.config.input_shapes
|
||||
)
|
||||
historical_act_pred_index = np.arange(0, n_obs_steps) * (
|
||||
len(self.config.input_shapes) + 1
|
||||
) + len(self.config.input_shapes)
|
||||
|
||||
# only extract the output tokens at the position of action query:
|
||||
# Behavior Transformer (BeT), and VQ-BeT are both sequence-to-sequence prediction models,
|
||||
@@ -362,7 +400,11 @@ class VQBeTModel(nn.Module):
|
||||
# Thus, it predicts a historical action sequence, in addition to current and future actions (predicting future actions : optional).
|
||||
if len_additional_action_token > 0:
|
||||
features = torch.cat(
|
||||
[features[:, historical_act_pred_index], features[:, -len_additional_action_token:]], dim=1
|
||||
[
|
||||
features[:, historical_act_pred_index],
|
||||
features[:, -len_additional_action_token:],
|
||||
],
|
||||
dim=1,
|
||||
)
|
||||
else:
|
||||
features = features[:, historical_act_pred_index]
|
||||
@@ -370,13 +412,15 @@ class VQBeTModel(nn.Module):
|
||||
action_head_output = self.action_head(features)
|
||||
# if rollout, VQ-BeT don't calculate loss
|
||||
if rollout:
|
||||
return action_head_output["predicted_action"][:, n_obs_steps - 1, :].reshape(
|
||||
batch_size, self.config.action_chunk_size, -1
|
||||
)
|
||||
return action_head_output["predicted_action"][
|
||||
:, n_obs_steps - 1, :
|
||||
].reshape(batch_size, self.config.action_chunk_size, -1)
|
||||
# else, it calculate overall loss (bin prediction loss, and offset loss)
|
||||
else:
|
||||
output = batch["action"][:, self.select_target_actions_indices]
|
||||
loss = self.action_head.loss_fn(action_head_output, output, reduction="mean")
|
||||
loss = self.action_head.loss_fn(
|
||||
action_head_output, output, reduction="mean"
|
||||
)
|
||||
return action_head_output, loss
|
||||
|
||||
|
||||
@@ -411,7 +455,9 @@ class VQBeTHead(nn.Module):
|
||||
else:
|
||||
self.map_to_cbet_preds_bin = MLP(
|
||||
in_channels=config.gpt_output_dim,
|
||||
hidden_channels=[self.vqvae_model.vqvae_num_layers * self.config.vqvae_n_embed],
|
||||
hidden_channels=[
|
||||
self.vqvae_model.vqvae_num_layers * self.config.vqvae_n_embed
|
||||
],
|
||||
)
|
||||
self.map_to_cbet_preds_offset = MLP(
|
||||
in_channels=config.gpt_output_dim,
|
||||
@@ -438,7 +484,10 @@ class VQBeTHead(nn.Module):
|
||||
|
||||
loss, metric = self.vqvae_model.vqvae_forward(actions)
|
||||
n_different_codes = sum(
|
||||
[len(torch.unique(metric[2][:, i])) for i in range(self.vqvae_model.vqvae_num_layers)]
|
||||
[
|
||||
len(torch.unique(metric[2][:, i]))
|
||||
for i in range(self.vqvae_model.vqvae_num_layers)
|
||||
]
|
||||
)
|
||||
n_different_combinations = len(torch.unique(metric[2], dim=0))
|
||||
recon_l1_error = metric[0].detach().cpu().item()
|
||||
@@ -485,7 +534,13 @@ class VQBeTHead(nn.Module):
|
||||
|
||||
cbet_secondary_logits = self.map_to_cbet_preds_secondary_bin(
|
||||
torch.cat(
|
||||
(x, F.one_hot(sampled_primary_centers, num_classes=self.config.vqvae_n_embed)),
|
||||
(
|
||||
x,
|
||||
F.one_hot(
|
||||
sampled_primary_centers,
|
||||
num_classes=self.config.vqvae_n_embed,
|
||||
),
|
||||
),
|
||||
axis=1,
|
||||
)
|
||||
)
|
||||
@@ -493,19 +548,29 @@ class VQBeTHead(nn.Module):
|
||||
cbet_secondary_logits / self.config.bet_softmax_temperature, dim=-1
|
||||
)
|
||||
sampled_secondary_centers = einops.rearrange(
|
||||
torch.multinomial(cbet_secondary_probs.view(-1, choices), num_samples=1),
|
||||
torch.multinomial(
|
||||
cbet_secondary_probs.view(-1, choices), num_samples=1
|
||||
),
|
||||
"(NT) 1 -> NT",
|
||||
NT=NT,
|
||||
)
|
||||
sampled_centers = torch.stack((sampled_primary_centers, sampled_secondary_centers), axis=1)
|
||||
cbet_logits = torch.stack([cbet_primary_logits, cbet_secondary_logits], dim=1)
|
||||
sampled_centers = torch.stack(
|
||||
(sampled_primary_centers, sampled_secondary_centers), axis=1
|
||||
)
|
||||
cbet_logits = torch.stack(
|
||||
[cbet_primary_logits, cbet_secondary_logits], dim=1
|
||||
)
|
||||
# if self.config.sequentially_select is False, bin prediction head samples primary and secondary code at once.
|
||||
else:
|
||||
cbet_logits = self.map_to_cbet_preds_bin(x)
|
||||
cbet_logits = einops.rearrange(
|
||||
cbet_logits, "(NT) (G C) -> (NT) G C", G=self.vqvae_model.vqvae_num_layers
|
||||
cbet_logits,
|
||||
"(NT) (G C) -> (NT) G C",
|
||||
G=self.vqvae_model.vqvae_num_layers,
|
||||
)
|
||||
cbet_probs = torch.softmax(
|
||||
cbet_logits / self.config.bet_softmax_temperature, dim=-1
|
||||
)
|
||||
cbet_probs = torch.softmax(cbet_logits / self.config.bet_softmax_temperature, dim=-1)
|
||||
NT, G, choices = cbet_probs.shape
|
||||
sampled_centers = einops.rearrange(
|
||||
torch.multinomial(cbet_probs.view(-1, choices), num_samples=1),
|
||||
@@ -525,9 +590,17 @@ class VQBeTHead(nn.Module):
|
||||
sampled_offsets = sampled_offsets.sum(dim=1)
|
||||
with torch.no_grad():
|
||||
# Get the centroids (= vectors corresponding to the codes) of each layer to pass it through RVQ decoder
|
||||
return_decoder_input = self.vqvae_model.get_embeddings_from_code(sampled_centers).clone().detach()
|
||||
return_decoder_input = (
|
||||
self.vqvae_model.get_embeddings_from_code(sampled_centers)
|
||||
.clone()
|
||||
.detach()
|
||||
)
|
||||
# pass the centroids through decoder to get actions.
|
||||
decoded_action = self.vqvae_model.get_action_from_latent(return_decoder_input).clone().detach()
|
||||
decoded_action = (
|
||||
self.vqvae_model.get_action_from_latent(return_decoder_input)
|
||||
.clone()
|
||||
.detach()
|
||||
)
|
||||
# reshaped extracted offset to match with decoded centroids
|
||||
sampled_offsets = einops.rearrange(
|
||||
sampled_offsets, "NT (W A) -> NT W A", W=self.config.action_chunk_size
|
||||
@@ -576,7 +649,9 @@ class VQBeTHead(nn.Module):
|
||||
# Figure out the loss for the actions.
|
||||
# First, we need to find the closest cluster center for each ground truth action.
|
||||
with torch.no_grad():
|
||||
state_vq, action_bins = self.vqvae_model.get_code(action_seq) # action_bins: NT, G
|
||||
state_vq, action_bins = self.vqvae_model.get_code(
|
||||
action_seq
|
||||
) # action_bins: NT, G
|
||||
|
||||
# Now we can compute the loss.
|
||||
|
||||
@@ -599,8 +674,12 @@ class VQBeTHead(nn.Module):
|
||||
+ cbet_loss2 * self.config.secondary_code_loss_weight
|
||||
)
|
||||
|
||||
equal_primary_code_rate = torch.sum((action_bins[:, 0] == sampled_centers[:, 0]).int()) / (NT)
|
||||
equal_secondary_code_rate = torch.sum((action_bins[:, 1] == sampled_centers[:, 1]).int()) / (NT)
|
||||
equal_primary_code_rate = torch.sum(
|
||||
(action_bins[:, 0] == sampled_centers[:, 0]).int()
|
||||
) / (NT)
|
||||
equal_secondary_code_rate = torch.sum(
|
||||
(action_bins[:, 1] == sampled_centers[:, 1]).int()
|
||||
) / (NT)
|
||||
|
||||
action_mse_error = torch.mean((action_seq - predicted_action) ** 2)
|
||||
vq_action_error = torch.mean(torch.abs(action_seq - decoded_action))
|
||||
@@ -614,7 +693,9 @@ class VQBeTHead(nn.Module):
|
||||
"classification_loss": cbet_loss.detach().cpu().item(),
|
||||
"offset_loss": offset_loss.detach().cpu().item(),
|
||||
"equal_primary_code_rate": equal_primary_code_rate.detach().cpu().item(),
|
||||
"equal_secondary_code_rate": equal_secondary_code_rate.detach().cpu().item(),
|
||||
"equal_secondary_code_rate": equal_secondary_code_rate.detach()
|
||||
.cpu()
|
||||
.item(),
|
||||
"vq_action_error": vq_action_error.detach().cpu().item(),
|
||||
"offset_action_error": offset_action_error.detach().cpu().item(),
|
||||
"action_error_max": action_error_max.detach().cpu().item(),
|
||||
@@ -643,11 +724,17 @@ class VQBeTOptimizer(torch.optim.Adam):
|
||||
if cfg.policy.sequentially_select:
|
||||
decay_params = (
|
||||
decay_params
|
||||
+ list(policy.vqbet.action_head.map_to_cbet_preds_primary_bin.parameters())
|
||||
+ list(policy.vqbet.action_head.map_to_cbet_preds_secondary_bin.parameters())
|
||||
+ list(
|
||||
policy.vqbet.action_head.map_to_cbet_preds_primary_bin.parameters()
|
||||
)
|
||||
+ list(
|
||||
policy.vqbet.action_head.map_to_cbet_preds_secondary_bin.parameters()
|
||||
)
|
||||
)
|
||||
else:
|
||||
decay_params = decay_params + list(policy.vqbet.action_head.map_to_cbet_preds_bin.parameters())
|
||||
decay_params = decay_params + list(
|
||||
policy.vqbet.action_head.map_to_cbet_preds_bin.parameters()
|
||||
)
|
||||
|
||||
optim_groups = [
|
||||
{
|
||||
@@ -693,7 +780,11 @@ class VQBeTScheduler(nn.Module):
|
||||
progress = float(current_step - num_warmup_steps) / float(
|
||||
max(1, num_training_steps - num_warmup_steps)
|
||||
)
|
||||
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))
|
||||
return max(
|
||||
0.0,
|
||||
0.5
|
||||
* (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)),
|
||||
)
|
||||
|
||||
self.lr_scheduler = LambdaLR(optimizer, lr_lambda, -1)
|
||||
|
||||
@@ -717,7 +808,9 @@ class VQBeTRgbEncoder(nn.Module):
|
||||
# Always use center crop for eval
|
||||
self.center_crop = torchvision.transforms.CenterCrop(config.crop_shape)
|
||||
if config.crop_is_random:
|
||||
self.maybe_random_crop = torchvision.transforms.RandomCrop(config.crop_shape)
|
||||
self.maybe_random_crop = torchvision.transforms.RandomCrop(
|
||||
config.crop_shape
|
||||
)
|
||||
else:
|
||||
self.maybe_random_crop = self.center_crop
|
||||
else:
|
||||
@@ -738,7 +831,9 @@ class VQBeTRgbEncoder(nn.Module):
|
||||
self.backbone = _replace_submodules(
|
||||
root_module=self.backbone,
|
||||
predicate=lambda x: isinstance(x, nn.BatchNorm2d),
|
||||
func=lambda x: nn.GroupNorm(num_groups=x.num_features // 16, num_channels=x.num_features),
|
||||
func=lambda x: nn.GroupNorm(
|
||||
num_groups=x.num_features // 16, num_channels=x.num_features
|
||||
),
|
||||
)
|
||||
|
||||
# Set up pooling and final layers.
|
||||
@@ -746,17 +841,25 @@ class VQBeTRgbEncoder(nn.Module):
|
||||
# The dummy input should take the number of image channels from `config.input_shapes` and it should
|
||||
# use the height and width from `config.crop_shape` if it is provided, otherwise it should use the
|
||||
# height and width from `config.input_shapes`.
|
||||
image_keys = [k for k in config.input_shapes if k.startswith("observation.image")]
|
||||
image_keys = [
|
||||
k for k in config.input_shapes if k.startswith("observation.image")
|
||||
]
|
||||
assert len(image_keys) == 1
|
||||
image_key = image_keys[0]
|
||||
dummy_input_h_w = (
|
||||
config.crop_shape if config.crop_shape is not None else config.input_shapes[image_key][1:]
|
||||
config.crop_shape
|
||||
if config.crop_shape is not None
|
||||
else config.input_shapes[image_key][1:]
|
||||
)
|
||||
dummy_input = torch.zeros(
|
||||
size=(1, config.input_shapes[image_key][0], *dummy_input_h_w)
|
||||
)
|
||||
dummy_input = torch.zeros(size=(1, config.input_shapes[image_key][0], *dummy_input_h_w))
|
||||
with torch.inference_mode():
|
||||
dummy_feature_map = self.backbone(dummy_input)
|
||||
feature_map_shape = tuple(dummy_feature_map.shape[1:])
|
||||
self.pool = SpatialSoftmax(feature_map_shape, num_kp=config.spatial_softmax_num_keypoints)
|
||||
self.pool = SpatialSoftmax(
|
||||
feature_map_shape, num_kp=config.spatial_softmax_num_keypoints
|
||||
)
|
||||
self.feature_dim = config.spatial_softmax_num_keypoints * 2
|
||||
self.out = nn.Linear(config.spatial_softmax_num_keypoints * 2, self.feature_dim)
|
||||
self.relu = nn.ReLU()
|
||||
@@ -783,7 +886,9 @@ class VQBeTRgbEncoder(nn.Module):
|
||||
|
||||
|
||||
def _replace_submodules(
|
||||
root_module: nn.Module, predicate: Callable[[nn.Module], bool], func: Callable[[nn.Module], nn.Module]
|
||||
root_module: nn.Module,
|
||||
predicate: Callable[[nn.Module], bool],
|
||||
func: Callable[[nn.Module], nn.Module],
|
||||
) -> nn.Module:
|
||||
"""
|
||||
Args:
|
||||
@@ -796,7 +901,11 @@ def _replace_submodules(
|
||||
if predicate(root_module):
|
||||
return func(root_module)
|
||||
|
||||
replace_list = [k.split(".") for k, m in root_module.named_modules(remove_duplicate=True) if predicate(m)]
|
||||
replace_list = [
|
||||
k.split(".")
|
||||
for k, m in root_module.named_modules(remove_duplicate=True)
|
||||
if predicate(m)
|
||||
]
|
||||
for *parents, k in replace_list:
|
||||
parent_module = root_module
|
||||
if len(parents) > 0:
|
||||
@@ -811,7 +920,9 @@ def _replace_submodules(
|
||||
else:
|
||||
setattr(parent_module, k, tgt_module)
|
||||
# verify that all BN are replaced
|
||||
assert not any(predicate(m) for _, m in root_module.named_modules(remove_duplicate=True))
|
||||
assert not any(
|
||||
predicate(m) for _, m in root_module.named_modules(remove_duplicate=True)
|
||||
)
|
||||
return root_module
|
||||
|
||||
|
||||
@@ -844,7 +955,8 @@ class VqVae(nn.Module):
|
||||
)
|
||||
|
||||
self.encoder = MLP(
|
||||
in_channels=self.config.output_shapes["action"][0] * self.config.action_chunk_size,
|
||||
in_channels=self.config.output_shapes["action"][0]
|
||||
* self.config.action_chunk_size,
|
||||
hidden_channels=[
|
||||
config.vqvae_enc_hidden_dim,
|
||||
config.vqvae_enc_hidden_dim,
|
||||
@@ -872,9 +984,13 @@ class VqVae(nn.Module):
|
||||
# given latent vector, this function outputs the decoded action.
|
||||
output = self.decoder(latent)
|
||||
if self.config.action_chunk_size == 1:
|
||||
return einops.rearrange(output, "N (T A) -> N T A", A=self.config.output_shapes["action"][0])
|
||||
return einops.rearrange(
|
||||
output, "N (T A) -> N T A", A=self.config.output_shapes["action"][0]
|
||||
)
|
||||
else:
|
||||
return einops.rearrange(output, "N (T A) -> N T A", A=self.config.output_shapes["action"][0])
|
||||
return einops.rearrange(
|
||||
output, "N (T A) -> N T A", A=self.config.output_shapes["action"][0]
|
||||
)
|
||||
|
||||
def get_code(self, state):
|
||||
# in phase 2 of VQ-BeT training, we need a `ground truth labels of action data` to calculate the Focal loss for code prediction head. (please refer to section 3.3 in the paper https://arxiv.org/pdf/2403.03181)
|
||||
|
||||
@@ -123,9 +123,15 @@ class CausalSelfAttention(nn.Module):
|
||||
|
||||
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
||||
q, k, v = self.c_attn(x).split(self.gpt_hidden_dim, dim=2)
|
||||
k = k.view(B, T, self.gpt_n_head, C // self.gpt_n_head).transpose(1, 2) # (B, nh, T, hs)
|
||||
q = q.view(B, T, self.gpt_n_head, C // self.gpt_n_head).transpose(1, 2) # (B, nh, T, hs)
|
||||
v = v.view(B, T, self.gpt_n_head, C // self.gpt_n_head).transpose(1, 2) # (B, nh, T, hs)
|
||||
k = k.view(B, T, self.gpt_n_head, C // self.gpt_n_head).transpose(
|
||||
1, 2
|
||||
) # (B, nh, T, hs)
|
||||
q = q.view(B, T, self.gpt_n_head, C // self.gpt_n_head).transpose(
|
||||
1, 2
|
||||
) # (B, nh, T, hs)
|
||||
v = v.view(B, T, self.gpt_n_head, C // self.gpt_n_head).transpose(
|
||||
1, 2
|
||||
) # (B, nh, T, hs)
|
||||
|
||||
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
|
||||
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
||||
@@ -133,7 +139,9 @@ class CausalSelfAttention(nn.Module):
|
||||
att = F.softmax(att, dim=-1)
|
||||
att = self.attn_dropout(att)
|
||||
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
||||
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
||||
y = (
|
||||
y.transpose(1, 2).contiguous().view(B, T, C)
|
||||
) # re-assemble all head outputs side by side
|
||||
|
||||
# output projection
|
||||
y = self.resid_dropout(self.c_proj(y))
|
||||
@@ -189,12 +197,16 @@ class GPT(nn.Module):
|
||||
"ln_f": nn.LayerNorm(config.gpt_hidden_dim),
|
||||
}
|
||||
)
|
||||
self.lm_head = nn.Linear(config.gpt_hidden_dim, config.gpt_output_dim, bias=False)
|
||||
self.lm_head = nn.Linear(
|
||||
config.gpt_hidden_dim, config.gpt_output_dim, bias=False
|
||||
)
|
||||
# init all weights, and apply a special scaled init to the residual projections, per GPT-2 paper
|
||||
self.apply(self._init_weights)
|
||||
for pn, p in self.named_parameters():
|
||||
if pn.endswith("c_proj.weight"):
|
||||
torch.nn.init.normal_(p, mean=0.0, std=0.02 / math.sqrt(2 * config.gpt_n_layer))
|
||||
torch.nn.init.normal_(
|
||||
p, mean=0.0, std=0.02 / math.sqrt(2 * config.gpt_n_layer)
|
||||
)
|
||||
|
||||
# report number of parameters
|
||||
n_params = sum(p.numel() for p in self.parameters())
|
||||
@@ -208,11 +220,17 @@ class GPT(nn.Module):
|
||||
), f"Cannot forward sequence of length {t}, block size is only {self.config.gpt_block_size}"
|
||||
|
||||
# positional encodings that are added to the input embeddings
|
||||
pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0) # shape (1, t)
|
||||
pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(
|
||||
0
|
||||
) # shape (1, t)
|
||||
|
||||
# forward the GPT model itself
|
||||
tok_emb = self.transformer.wte(input) # token embeddings of shape (b, t, gpt_hidden_dim)
|
||||
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (1, t, gpt_hidden_dim)
|
||||
tok_emb = self.transformer.wte(
|
||||
input
|
||||
) # token embeddings of shape (b, t, gpt_hidden_dim)
|
||||
pos_emb = self.transformer.wpe(
|
||||
pos
|
||||
) # position embeddings of shape (1, t, gpt_hidden_dim)
|
||||
x = self.transformer.drop(tok_emb + pos_emb)
|
||||
for block in self.transformer.h:
|
||||
x = block(x)
|
||||
@@ -237,7 +255,9 @@ class GPT(nn.Module):
|
||||
# but want to use a smaller block size for some smaller, simpler model
|
||||
assert gpt_block_size <= self.config.gpt_block_size
|
||||
self.config.gpt_block_size = gpt_block_size
|
||||
self.transformer.wpe.weight = nn.Parameter(self.transformer.wpe.weight[:gpt_block_size])
|
||||
self.transformer.wpe.weight = nn.Parameter(
|
||||
self.transformer.wpe.weight[:gpt_block_size]
|
||||
)
|
||||
for block in self.transformer.h:
|
||||
block.attn.bias = block.attn.bias[:, :, :gpt_block_size, :gpt_block_size]
|
||||
|
||||
@@ -270,7 +290,9 @@ class GPT(nn.Module):
|
||||
param_dict = dict(self.named_parameters())
|
||||
inter_params = decay & no_decay
|
||||
union_params = decay | no_decay
|
||||
assert len(inter_params) == 0, "parameters {} made it into both decay/no_decay sets!".format(
|
||||
assert (
|
||||
len(inter_params) == 0
|
||||
), "parameters {} made it into both decay/no_decay sets!".format(
|
||||
str(inter_params)
|
||||
)
|
||||
assert (
|
||||
@@ -368,8 +390,12 @@ class ResidualVQ(nn.Module):
|
||||
codebook_input_dim = codebook_dim * heads
|
||||
|
||||
requires_projection = codebook_input_dim != dim
|
||||
self.project_in = nn.Linear(dim, codebook_input_dim) if requires_projection else nn.Identity()
|
||||
self.project_out = nn.Linear(codebook_input_dim, dim) if requires_projection else nn.Identity()
|
||||
self.project_in = (
|
||||
nn.Linear(dim, codebook_input_dim) if requires_projection else nn.Identity()
|
||||
)
|
||||
self.project_out = (
|
||||
nn.Linear(codebook_input_dim, dim) if requires_projection else nn.Identity()
|
||||
)
|
||||
|
||||
self.num_quantizers = num_quantizers
|
||||
|
||||
@@ -377,7 +403,10 @@ class ResidualVQ(nn.Module):
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
VectorQuantize(
|
||||
dim=codebook_dim, codebook_dim=codebook_dim, accept_image_fmap=accept_image_fmap, **kwargs
|
||||
dim=codebook_dim,
|
||||
codebook_dim=codebook_dim,
|
||||
accept_image_fmap=accept_image_fmap,
|
||||
**kwargs,
|
||||
)
|
||||
for _ in range(num_quantizers)
|
||||
]
|
||||
@@ -448,7 +477,9 @@ class ResidualVQ(nn.Module):
|
||||
|
||||
return all_codes
|
||||
|
||||
def forward(self, x, indices=None, return_all_codes=False, sample_codebook_temp=None):
|
||||
def forward(
|
||||
self, x, indices=None, return_all_codes=False, sample_codebook_temp=None
|
||||
):
|
||||
"""
|
||||
For given input tensor x, this function will return the quantized output, the indices of the quantized output, and the loss.
|
||||
First, the input tensor x is projected to the codebook dimension. Then, the input tensor x is passed through Nq layers of VectorQuantize.
|
||||
@@ -477,13 +508,17 @@ class ResidualVQ(nn.Module):
|
||||
), "some of the residual vq indices were dropped out. please use indices derived when the module is in eval mode to derive cross entropy loss"
|
||||
ce_losses = []
|
||||
|
||||
should_quantize_dropout = self.training and self.quantize_dropout and not return_loss
|
||||
should_quantize_dropout = (
|
||||
self.training and self.quantize_dropout and not return_loss
|
||||
)
|
||||
|
||||
# sample a layer index at which to dropout further residual quantization
|
||||
# also prepare null indices and loss
|
||||
|
||||
if should_quantize_dropout:
|
||||
rand_quantize_dropout_index = randrange(self.quantize_dropout_cutoff_index, num_quant)
|
||||
rand_quantize_dropout_index = randrange(
|
||||
self.quantize_dropout_cutoff_index, num_quant
|
||||
)
|
||||
|
||||
if quant_dropout_multiple_of != 1:
|
||||
rand_quantize_dropout_index = (
|
||||
@@ -492,14 +527,23 @@ class ResidualVQ(nn.Module):
|
||||
- 1
|
||||
)
|
||||
|
||||
null_indices_shape = (x.shape[0], *x.shape[-2:]) if self.accept_image_fmap else tuple(x.shape[:2])
|
||||
null_indices = torch.full(null_indices_shape, -1.0, device=device, dtype=torch.long)
|
||||
null_indices_shape = (
|
||||
(x.shape[0], *x.shape[-2:])
|
||||
if self.accept_image_fmap
|
||||
else tuple(x.shape[:2])
|
||||
)
|
||||
null_indices = torch.full(
|
||||
null_indices_shape, -1.0, device=device, dtype=torch.long
|
||||
)
|
||||
null_loss = torch.full((1,), 0.0, device=device, dtype=x.dtype)
|
||||
|
||||
# go through the layers
|
||||
|
||||
for quantizer_index, layer in enumerate(self.layers):
|
||||
if should_quantize_dropout and quantizer_index > rand_quantize_dropout_index:
|
||||
if (
|
||||
should_quantize_dropout
|
||||
and quantizer_index > rand_quantize_dropout_index
|
||||
):
|
||||
all_indices.append(null_indices)
|
||||
all_losses.append(null_loss)
|
||||
continue
|
||||
@@ -539,7 +583,9 @@ class ResidualVQ(nn.Module):
|
||||
|
||||
# stack all losses and indices
|
||||
|
||||
all_losses, all_indices = map(partial(torch.stack, dim=-1), (all_losses, all_indices))
|
||||
all_losses, all_indices = map(
|
||||
partial(torch.stack, dim=-1), (all_losses, all_indices)
|
||||
)
|
||||
|
||||
ret = (quantized_out, all_indices, all_losses)
|
||||
|
||||
@@ -599,8 +645,12 @@ class VectorQuantize(nn.Module):
|
||||
codebook_input_dim = codebook_dim * heads
|
||||
|
||||
requires_projection = codebook_input_dim != dim
|
||||
self.project_in = nn.Linear(dim, codebook_input_dim) if requires_projection else nn.Identity()
|
||||
self.project_out = nn.Linear(codebook_input_dim, dim) if requires_projection else nn.Identity()
|
||||
self.project_in = (
|
||||
nn.Linear(dim, codebook_input_dim) if requires_projection else nn.Identity()
|
||||
)
|
||||
self.project_out = (
|
||||
nn.Linear(codebook_input_dim, dim) if requires_projection else nn.Identity()
|
||||
)
|
||||
|
||||
self.eps = eps
|
||||
self.commitment_weight = commitment_weight
|
||||
@@ -614,10 +664,14 @@ class VectorQuantize(nn.Module):
|
||||
self.orthogonal_reg_active_codes_only = orthogonal_reg_active_codes_only
|
||||
self.orthogonal_reg_max_codes = orthogonal_reg_max_codes
|
||||
|
||||
assert not (ema_update and learnable_codebook), "learnable codebook not compatible with EMA update"
|
||||
assert not (
|
||||
ema_update and learnable_codebook
|
||||
), "learnable codebook not compatible with EMA update"
|
||||
|
||||
assert 0 <= sync_update_v <= 1.0
|
||||
assert not (sync_update_v > 0.0 and not learnable_codebook), "learnable codebook must be turned on"
|
||||
assert not (
|
||||
sync_update_v > 0.0 and not learnable_codebook
|
||||
), "learnable codebook must be turned on"
|
||||
|
||||
self.sync_update_v = sync_update_v
|
||||
|
||||
@@ -629,7 +683,9 @@ class VectorQuantize(nn.Module):
|
||||
)
|
||||
|
||||
if sync_codebook is None:
|
||||
sync_codebook = distributed.is_initialized() and distributed.get_world_size() > 1
|
||||
sync_codebook = (
|
||||
distributed.is_initialized() and distributed.get_world_size() > 1
|
||||
)
|
||||
|
||||
codebook_kwargs = {
|
||||
"dim": codebook_dim,
|
||||
@@ -794,11 +850,17 @@ class VectorQuantize(nn.Module):
|
||||
|
||||
# quantize again
|
||||
|
||||
quantize, embed_ind, distances = self._codebook(x, **codebook_forward_kwargs)
|
||||
quantize, embed_ind, distances = self._codebook(
|
||||
x, **codebook_forward_kwargs
|
||||
)
|
||||
|
||||
if self.training:
|
||||
# determine code to use for commitment loss
|
||||
maybe_detach = torch.detach if not self.learnable_codebook or freeze_codebook else identity
|
||||
maybe_detach = (
|
||||
torch.detach
|
||||
if not self.learnable_codebook or freeze_codebook
|
||||
else identity
|
||||
)
|
||||
|
||||
commit_quantize = maybe_detach(quantize)
|
||||
|
||||
@@ -808,7 +870,9 @@ class VectorQuantize(nn.Module):
|
||||
|
||||
if self.sync_update_v > 0.0:
|
||||
# (21) in https://minyoungg.github.io/vqtorch/assets/draft_050523.pdf
|
||||
quantize = quantize + self.sync_update_v * (quantize - quantize.detach())
|
||||
quantize = quantize + self.sync_update_v * (
|
||||
quantize - quantize.detach()
|
||||
)
|
||||
|
||||
# function for calculating cross entropy loss to distance matrix
|
||||
# used for (1) naturalspeech2 training residual vq latents to be close to the correct codes and (2) cross-entropy based commitment loss
|
||||
@@ -841,7 +905,9 @@ class VectorQuantize(nn.Module):
|
||||
embed_ind = rearrange(embed_ind, "1 (b h) n -> b n h", h=heads)
|
||||
|
||||
if self.accept_image_fmap:
|
||||
embed_ind = rearrange(embed_ind, "b (h w) ... -> b h w ...", h=height, w=width)
|
||||
embed_ind = rearrange(
|
||||
embed_ind, "b (h w) ... -> b h w ...", h=height, w=width
|
||||
)
|
||||
|
||||
if only_one:
|
||||
embed_ind = rearrange(embed_ind, "b 1 -> b")
|
||||
@@ -895,8 +961,12 @@ class VectorQuantize(nn.Module):
|
||||
|
||||
num_codes = codebook.shape[-2]
|
||||
|
||||
if (self.orthogonal_reg_max_codes is not None) and num_codes > self.orthogonal_reg_max_codes:
|
||||
rand_ids = torch.randperm(num_codes, device=device)[: self.orthogonal_reg_max_codes]
|
||||
if (
|
||||
self.orthogonal_reg_max_codes is not None
|
||||
) and num_codes > self.orthogonal_reg_max_codes:
|
||||
rand_ids = torch.randperm(num_codes, device=device)[
|
||||
: self.orthogonal_reg_max_codes
|
||||
]
|
||||
codebook = codebook[:, rand_ids]
|
||||
|
||||
orthogonal_reg_loss = orthogonal_loss_fn(codebook)
|
||||
@@ -928,7 +998,9 @@ class VectorQuantize(nn.Module):
|
||||
# if masking, only return quantized for where mask has True
|
||||
|
||||
if mask is not None:
|
||||
quantize = torch.where(rearrange(mask, "... -> ... 1"), quantize, orig_input)
|
||||
quantize = torch.where(
|
||||
rearrange(mask, "... -> ... 1"), quantize, orig_input
|
||||
)
|
||||
|
||||
return quantize, embed_ind, loss
|
||||
|
||||
@@ -1038,7 +1110,9 @@ def sample_vectors(samples, num):
|
||||
|
||||
|
||||
def batched_sample_vectors(samples, num):
|
||||
return torch.stack([sample_vectors(sample, num) for sample in samples.unbind(dim=0)], dim=0)
|
||||
return torch.stack(
|
||||
[sample_vectors(sample, num) for sample in samples.unbind(dim=0)], dim=0
|
||||
)
|
||||
|
||||
|
||||
def pad_shape(shape, size, dim=0):
|
||||
@@ -1089,7 +1163,9 @@ def sample_vectors_distributed(local_samples, num):
|
||||
all_num_samples = all_gather_sizes(local_samples, dim=0)
|
||||
|
||||
if rank == 0:
|
||||
samples_per_rank = sample_multinomial(num, all_num_samples / all_num_samples.sum())
|
||||
samples_per_rank = sample_multinomial(
|
||||
num, all_num_samples / all_num_samples.sum()
|
||||
)
|
||||
else:
|
||||
samples_per_rank = torch.empty_like(all_num_samples)
|
||||
|
||||
@@ -1202,7 +1278,9 @@ class EuclideanCodebook(nn.Module):
|
||||
self.eps = eps
|
||||
self.threshold_ema_dead_code = threshold_ema_dead_code
|
||||
self.reset_cluster_size = (
|
||||
reset_cluster_size if (reset_cluster_size is not None) else threshold_ema_dead_code
|
||||
reset_cluster_size
|
||||
if (reset_cluster_size is not None)
|
||||
else threshold_ema_dead_code
|
||||
)
|
||||
|
||||
assert callable(gumbel_sample)
|
||||
@@ -1213,8 +1291,14 @@ class EuclideanCodebook(nn.Module):
|
||||
use_ddp and num_codebooks > 1 and kmeans_init
|
||||
), "kmeans init is not compatible with multiple codebooks in distributed environment for now"
|
||||
|
||||
self.sample_fn = sample_vectors_distributed if use_ddp and sync_kmeans else batched_sample_vectors
|
||||
self.kmeans_all_reduce_fn = distributed.all_reduce if use_ddp and sync_kmeans else noop
|
||||
self.sample_fn = (
|
||||
sample_vectors_distributed
|
||||
if use_ddp and sync_kmeans
|
||||
else batched_sample_vectors
|
||||
)
|
||||
self.kmeans_all_reduce_fn = (
|
||||
distributed.all_reduce if use_ddp and sync_kmeans else noop
|
||||
)
|
||||
self.all_reduce_fn = distributed.all_reduce if use_ddp else noop
|
||||
|
||||
self.register_buffer("initted", torch.Tensor([not kmeans_init]))
|
||||
@@ -1353,7 +1437,9 @@ class EuclideanCodebook(nn.Module):
|
||||
distributed.all_reduce(variance_numer)
|
||||
batch_variance = variance_numer / num_vectors
|
||||
|
||||
self.update_with_decay("batch_variance", batch_variance, self.affine_param_batch_decay)
|
||||
self.update_with_decay(
|
||||
"batch_variance", batch_variance, self.affine_param_batch_decay
|
||||
)
|
||||
|
||||
def replace(self, batch_samples, batch_mask):
|
||||
for ind, (samples, mask) in enumerate(
|
||||
@@ -1362,7 +1448,9 @@ class EuclideanCodebook(nn.Module):
|
||||
if not torch.any(mask):
|
||||
continue
|
||||
|
||||
sampled = self.sample_fn(rearrange(samples, "... -> 1 ..."), mask.sum().item())
|
||||
sampled = self.sample_fn(
|
||||
rearrange(samples, "... -> 1 ..."), mask.sum().item()
|
||||
)
|
||||
sampled = rearrange(sampled, "1 ... -> ...")
|
||||
|
||||
self.embed.data[ind][mask] = sampled
|
||||
@@ -1386,7 +1474,9 @@ class EuclideanCodebook(nn.Module):
|
||||
def forward(self, x, sample_codebook_temp=None, mask=None, freeze_codebook=False):
|
||||
needs_codebook_dim = x.ndim < 4
|
||||
sample_codebook_temp = (
|
||||
sample_codebook_temp if (sample_codebook_temp is not None) else self.sample_codebook_temp
|
||||
sample_codebook_temp
|
||||
if (sample_codebook_temp is not None)
|
||||
else self.sample_codebook_temp
|
||||
)
|
||||
|
||||
x = x.float()
|
||||
@@ -1414,7 +1504,9 @@ class EuclideanCodebook(nn.Module):
|
||||
if self.affine_param:
|
||||
codebook_std = self.codebook_variance.clamp(min=1e-5).sqrt()
|
||||
batch_std = self.batch_variance.clamp(min=1e-5).sqrt()
|
||||
embed = (embed - self.codebook_mean) * (batch_std / codebook_std) + self.batch_mean
|
||||
embed = (embed - self.codebook_mean) * (
|
||||
batch_std / codebook_std
|
||||
) + self.batch_mean
|
||||
|
||||
dist = -cdist(flatten, embed)
|
||||
|
||||
@@ -1432,7 +1524,9 @@ class EuclideanCodebook(nn.Module):
|
||||
|
||||
if self.training and self.ema_update and not freeze_codebook:
|
||||
if self.affine_param:
|
||||
flatten = (flatten - self.batch_mean) * (codebook_std / batch_std) + self.codebook_mean
|
||||
flatten = (flatten - self.batch_mean) * (
|
||||
codebook_std / batch_std
|
||||
) + self.codebook_mean
|
||||
|
||||
if mask is not None:
|
||||
embed_onehot[~mask] = 0.0
|
||||
@@ -1455,7 +1549,9 @@ class EuclideanCodebook(nn.Module):
|
||||
self.expire_codes_(x)
|
||||
|
||||
if needs_codebook_dim:
|
||||
quantize, embed_ind = tuple(rearrange(t, "1 ... -> ...") for t in (quantize, embed_ind))
|
||||
quantize, embed_ind = tuple(
|
||||
rearrange(t, "1 ... -> ...") for t in (quantize, embed_ind)
|
||||
)
|
||||
|
||||
dist = unpack_one(dist, ps, "h * d")
|
||||
|
||||
|
||||
@@ -65,7 +65,9 @@ def save_image(img_array, serial_number, frame_index, images_dir):
|
||||
img.save(str(path), quality=100)
|
||||
logging.info(f"Saved image: {path}")
|
||||
except Exception as e:
|
||||
logging.error(f"Failed to save image for camera {serial_number} frame {frame_index}: {e}")
|
||||
logging.error(
|
||||
f"Failed to save image for camera {serial_number} frame {frame_index}: {e}"
|
||||
)
|
||||
|
||||
|
||||
def save_images_from_cameras(
|
||||
@@ -94,7 +96,9 @@ def save_images_from_cameras(
|
||||
cameras = []
|
||||
for cam_sn in serial_numbers:
|
||||
print(f"{cam_sn=}")
|
||||
camera = IntelRealSenseCamera(cam_sn, fps=fps, width=width, height=height, mock=mock)
|
||||
camera = IntelRealSenseCamera(
|
||||
cam_sn, fps=fps, width=width, height=height, mock=mock
|
||||
)
|
||||
camera.connect()
|
||||
print(
|
||||
f"IntelRealSenseCamera({camera.serial_number}, fps={camera.fps}, width={camera.width}, height={camera.height}, color_mode={camera.color_mode})"
|
||||
@@ -140,7 +144,9 @@ def save_images_from_cameras(
|
||||
if time.perf_counter() - start_time > record_time_s:
|
||||
break
|
||||
|
||||
print(f"Frame: {frame_index:04d}\tLatency (ms): {(time.perf_counter() - now) * 1000:.2f}")
|
||||
print(
|
||||
f"Frame: {frame_index:04d}\tLatency (ms): {(time.perf_counter() - now) * 1000:.2f}"
|
||||
)
|
||||
|
||||
frame_index += 1
|
||||
finally:
|
||||
@@ -182,8 +188,12 @@ class IntelRealSenseCameraConfig:
|
||||
|
||||
self.channels = 3
|
||||
|
||||
at_least_one_is_not_none = self.fps is not None or self.width is not None or self.height is not None
|
||||
at_least_one_is_none = self.fps is None or self.width is None or self.height is None
|
||||
at_least_one_is_not_none = (
|
||||
self.fps is not None or self.width is not None or self.height is not None
|
||||
)
|
||||
at_least_one_is_none = (
|
||||
self.fps is None or self.width is None or self.height is None
|
||||
)
|
||||
if at_least_one_is_not_none and at_least_one_is_none:
|
||||
raise ValueError(
|
||||
"For `fps`, `width` and `height`, either all of them need to be set, or none of them, "
|
||||
@@ -191,7 +201,9 @@ class IntelRealSenseCameraConfig:
|
||||
)
|
||||
|
||||
if self.rotation not in [-90, None, 90, 180]:
|
||||
raise ValueError(f"`rotation` must be in [-90, None, 90, 180] (got {self.rotation})")
|
||||
raise ValueError(
|
||||
f"`rotation` must be in [-90, None, 90, 180] (got {self.rotation})"
|
||||
)
|
||||
|
||||
|
||||
class IntelRealSenseCamera:
|
||||
@@ -286,7 +298,9 @@ class IntelRealSenseCamera:
|
||||
self.rotation = cv2.ROTATE_180
|
||||
|
||||
@classmethod
|
||||
def init_from_name(cls, name: str, config: IntelRealSenseCameraConfig | None = None, **kwargs):
|
||||
def init_from_name(
|
||||
cls, name: str, config: IntelRealSenseCameraConfig | None = None, **kwargs
|
||||
):
|
||||
camera_infos = find_cameras()
|
||||
camera_names = [cam["name"] for cam in camera_infos]
|
||||
this_name_count = Counter(camera_names)[name]
|
||||
@@ -296,7 +310,9 @@ class IntelRealSenseCamera:
|
||||
f"Multiple {name} cameras have been detected. Please use their serial number to instantiate them."
|
||||
)
|
||||
|
||||
name_to_serial_dict = {cam["name"]: cam["serial_number"] for cam in camera_infos}
|
||||
name_to_serial_dict = {
|
||||
cam["name"]: cam["serial_number"] for cam in camera_infos
|
||||
}
|
||||
cam_sn = name_to_serial_dict[name]
|
||||
|
||||
if config is None:
|
||||
@@ -323,13 +339,17 @@ class IntelRealSenseCamera:
|
||||
|
||||
if self.fps and self.width and self.height:
|
||||
# TODO(rcadene): can we set rgb8 directly?
|
||||
config.enable_stream(rs.stream.color, self.width, self.height, rs.format.rgb8, self.fps)
|
||||
config.enable_stream(
|
||||
rs.stream.color, self.width, self.height, rs.format.rgb8, self.fps
|
||||
)
|
||||
else:
|
||||
config.enable_stream(rs.stream.color)
|
||||
|
||||
if self.use_depth:
|
||||
if self.fps and self.width and self.height:
|
||||
config.enable_stream(rs.stream.depth, self.width, self.height, rs.format.z16, self.fps)
|
||||
config.enable_stream(
|
||||
rs.stream.depth, self.width, self.height, rs.format.z16, self.fps
|
||||
)
|
||||
else:
|
||||
config.enable_stream(rs.stream.depth)
|
||||
|
||||
@@ -362,7 +382,9 @@ class IntelRealSenseCamera:
|
||||
actual_height = color_profile.height()
|
||||
|
||||
# Using `math.isclose` since actual fps can be a float (e.g. 29.9 instead of 30)
|
||||
if self.fps is not None and not math.isclose(self.fps, actual_fps, rel_tol=1e-3):
|
||||
if self.fps is not None and not math.isclose(
|
||||
self.fps, actual_fps, rel_tol=1e-3
|
||||
):
|
||||
# Using `OSError` since it's a broad that encompasses issues related to device communication
|
||||
raise OSError(
|
||||
f"Can't set {self.fps=} for IntelRealSenseCamera({self.serial_number}). Actual value is {actual_fps}."
|
||||
@@ -382,7 +404,9 @@ class IntelRealSenseCamera:
|
||||
|
||||
self.is_connected = True
|
||||
|
||||
def read(self, temporary_color: str | None = None) -> np.ndarray | tuple[np.ndarray, np.ndarray]:
|
||||
def read(
|
||||
self, temporary_color: str | None = None
|
||||
) -> np.ndarray | tuple[np.ndarray, np.ndarray]:
|
||||
"""Read a frame from the camera returned in the format height x width x channels (e.g. 480 x 640 x 3)
|
||||
of type `np.uint8`, contrarily to the pytorch format which is float channel first.
|
||||
|
||||
@@ -409,11 +433,15 @@ class IntelRealSenseCamera:
|
||||
color_frame = frame.get_color_frame()
|
||||
|
||||
if not color_frame:
|
||||
raise OSError(f"Can't capture color image from IntelRealSenseCamera({self.serial_number}).")
|
||||
raise OSError(
|
||||
f"Can't capture color image from IntelRealSenseCamera({self.serial_number})."
|
||||
)
|
||||
|
||||
color_image = np.asanyarray(color_frame.get_data())
|
||||
|
||||
requested_color_mode = self.color_mode if temporary_color is None else temporary_color
|
||||
requested_color_mode = (
|
||||
self.color_mode if temporary_color is None else temporary_color
|
||||
)
|
||||
if requested_color_mode not in ["rgb", "bgr"]:
|
||||
raise ValueError(
|
||||
f"Expected color values are 'rgb' or 'bgr', but {requested_color_mode} is provided."
|
||||
@@ -441,7 +469,9 @@ class IntelRealSenseCamera:
|
||||
if self.use_depth:
|
||||
depth_frame = frame.get_depth_frame()
|
||||
if not depth_frame:
|
||||
raise OSError(f"Can't capture depth image from IntelRealSenseCamera({self.serial_number}).")
|
||||
raise OSError(
|
||||
f"Can't capture depth image from IntelRealSenseCamera({self.serial_number})."
|
||||
)
|
||||
|
||||
depth_map = np.asanyarray(depth_frame.get_data())
|
||||
|
||||
@@ -483,7 +513,9 @@ class IntelRealSenseCamera:
|
||||
# TODO(rcadene, aliberts): intelrealsense has diverged compared to opencv over here
|
||||
num_tries += 1
|
||||
time.sleep(1 / self.fps)
|
||||
if num_tries > self.fps and (self.thread.ident is None or not self.thread.is_alive()):
|
||||
if num_tries > self.fps and (
|
||||
self.thread.ident is None or not self.thread.is_alive()
|
||||
):
|
||||
raise Exception(
|
||||
"The thread responsible for `self.async_read()` took too much time to start. There might be an issue. Verify that `self.thread.start()` has been called."
|
||||
)
|
||||
|
||||
@@ -31,10 +31,14 @@ from lerobot.common.utils.utils import capture_timestamp_utc
|
||||
MAX_OPENCV_INDEX = 60
|
||||
|
||||
|
||||
def find_cameras(raise_when_empty=False, max_index_search_range=MAX_OPENCV_INDEX, mock=False) -> list[dict]:
|
||||
def find_cameras(
|
||||
raise_when_empty=False, max_index_search_range=MAX_OPENCV_INDEX, mock=False
|
||||
) -> list[dict]:
|
||||
cameras = []
|
||||
if platform.system() == "Linux":
|
||||
print("Linux detected. Finding available camera indices through scanning '/dev/video*' ports")
|
||||
print(
|
||||
"Linux detected. Finding available camera indices through scanning '/dev/video*' ports"
|
||||
)
|
||||
possible_ports = [str(port) for port in Path("/dev").glob("video*")]
|
||||
ports = _find_cameras(possible_ports, mock=mock)
|
||||
for port in ports:
|
||||
@@ -165,7 +169,9 @@ def save_images_from_cameras(
|
||||
dt_s = time.perf_counter() - now
|
||||
busy_wait(1 / fps - dt_s)
|
||||
|
||||
print(f"Frame: {frame_index:04d}\tLatency (ms): {(time.perf_counter() - now) * 1000:.2f}")
|
||||
print(
|
||||
f"Frame: {frame_index:04d}\tLatency (ms): {(time.perf_counter() - now) * 1000:.2f}"
|
||||
)
|
||||
|
||||
if time.perf_counter() - start_time > record_time_s:
|
||||
break
|
||||
@@ -205,7 +211,9 @@ class OpenCVCameraConfig:
|
||||
self.channels = 3
|
||||
|
||||
if self.rotation not in [-90, None, 90, 180]:
|
||||
raise ValueError(f"`rotation` must be in [-90, None, 90, 180] (got {self.rotation})")
|
||||
raise ValueError(
|
||||
f"`rotation` must be in [-90, None, 90, 180] (got {self.rotation})"
|
||||
)
|
||||
|
||||
|
||||
class OpenCVCamera:
|
||||
@@ -247,7 +255,12 @@ class OpenCVCamera:
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(self, camera_index: int | str, config: OpenCVCameraConfig | None = None, **kwargs):
|
||||
def __init__(
|
||||
self,
|
||||
camera_index: int | str,
|
||||
config: OpenCVCameraConfig | None = None,
|
||||
**kwargs,
|
||||
):
|
||||
if config is None:
|
||||
config = OpenCVCameraConfig()
|
||||
|
||||
@@ -261,12 +274,16 @@ class OpenCVCamera:
|
||||
if platform.system() == "Linux":
|
||||
if isinstance(self.camera_index, int):
|
||||
self.port = Path(f"/dev/video{self.camera_index}")
|
||||
elif isinstance(self.camera_index, str) and is_valid_unix_path(self.camera_index):
|
||||
elif isinstance(self.camera_index, str) and is_valid_unix_path(
|
||||
self.camera_index
|
||||
):
|
||||
self.port = Path(self.camera_index)
|
||||
# Retrieve the camera index from a potentially symlinked path
|
||||
self.camera_index = get_camera_index_from_unix_port(self.port)
|
||||
else:
|
||||
raise ValueError(f"Please check the provided camera_index: {camera_index}")
|
||||
raise ValueError(
|
||||
f"Please check the provided camera_index: {camera_index}"
|
||||
)
|
||||
|
||||
self.fps = config.fps
|
||||
self.width = config.width
|
||||
@@ -298,7 +315,9 @@ class OpenCVCamera:
|
||||
|
||||
def connect(self):
|
||||
if self.is_connected:
|
||||
raise RobotDeviceAlreadyConnectedError(f"OpenCVCamera({self.camera_index}) is already connected.")
|
||||
raise RobotDeviceAlreadyConnectedError(
|
||||
f"OpenCVCamera({self.camera_index}) is already connected."
|
||||
)
|
||||
|
||||
if self.mock:
|
||||
import tests.mock_cv2 as cv2
|
||||
@@ -309,7 +328,11 @@ class OpenCVCamera:
|
||||
# when other threads are used to save the images.
|
||||
cv2.setNumThreads(1)
|
||||
|
||||
camera_idx = f"/dev/video{self.camera_index}" if platform.system() == "Linux" else self.camera_index
|
||||
camera_idx = (
|
||||
f"/dev/video{self.camera_index}"
|
||||
if platform.system() == "Linux"
|
||||
else self.camera_index
|
||||
)
|
||||
# First create a temporary camera trying to access `camera_index`,
|
||||
# and verify it is a valid camera by calling `isOpened`.
|
||||
tmp_camera = cv2.VideoCapture(camera_idx)
|
||||
@@ -349,16 +372,22 @@ class OpenCVCamera:
|
||||
actual_height = self.camera.get(cv2.CAP_PROP_FRAME_HEIGHT)
|
||||
|
||||
# Using `math.isclose` since actual fps can be a float (e.g. 29.9 instead of 30)
|
||||
if self.fps is not None and not math.isclose(self.fps, actual_fps, rel_tol=1e-3):
|
||||
if self.fps is not None and not math.isclose(
|
||||
self.fps, actual_fps, rel_tol=1e-3
|
||||
):
|
||||
# Using `OSError` since it's a broad that encompasses issues related to device communication
|
||||
raise OSError(
|
||||
f"Can't set {self.fps=} for OpenCVCamera({self.camera_index}). Actual value is {actual_fps}."
|
||||
)
|
||||
if self.width is not None and not math.isclose(self.width, actual_width, rel_tol=1e-3):
|
||||
if self.width is not None and not math.isclose(
|
||||
self.width, actual_width, rel_tol=1e-3
|
||||
):
|
||||
raise OSError(
|
||||
f"Can't set {self.width=} for OpenCVCamera({self.camera_index}). Actual value is {actual_width}."
|
||||
)
|
||||
if self.height is not None and not math.isclose(self.height, actual_height, rel_tol=1e-3):
|
||||
if self.height is not None and not math.isclose(
|
||||
self.height, actual_height, rel_tol=1e-3
|
||||
):
|
||||
raise OSError(
|
||||
f"Can't set {self.height=} for OpenCVCamera({self.camera_index}). Actual value is {actual_height}."
|
||||
)
|
||||
@@ -388,7 +417,9 @@ class OpenCVCamera:
|
||||
if not ret:
|
||||
raise OSError(f"Can't capture color image from camera {self.camera_index}.")
|
||||
|
||||
requested_color_mode = self.color_mode if temporary_color_mode is None else temporary_color_mode
|
||||
requested_color_mode = (
|
||||
self.color_mode if temporary_color_mode is None else temporary_color_mode
|
||||
)
|
||||
|
||||
if requested_color_mode not in ["rgb", "bgr"]:
|
||||
raise ValueError(
|
||||
|
||||
@@ -11,6 +11,7 @@ from copy import copy
|
||||
from functools import cache
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
import tqdm
|
||||
from deepdiff import DeepDiff
|
||||
@@ -22,11 +23,17 @@ from lerobot.common.datasets.utils import get_features_from_robot
|
||||
from lerobot.common.policies.factory import make_policy
|
||||
from lerobot.common.robot_devices.robots.utils import Robot
|
||||
from lerobot.common.robot_devices.utils import busy_wait
|
||||
from lerobot.common.utils.utils import get_safe_torch_device, init_hydra_config, set_global_seed
|
||||
from lerobot.common.utils.utils import (
|
||||
get_safe_torch_device,
|
||||
init_hydra_config,
|
||||
set_global_seed,
|
||||
)
|
||||
from lerobot.scripts.eval import get_pretrained_policy_path
|
||||
|
||||
|
||||
def log_control_info(robot: Robot, dt_s, episode_index=None, frame_index=None, fps=None):
|
||||
def log_control_info(
|
||||
robot: Robot, dt_s, episode_index=None, frame_index=None, fps=None
|
||||
):
|
||||
log_items = []
|
||||
if episode_index is not None:
|
||||
log_items.append(f"ep:{episode_index}")
|
||||
@@ -35,7 +42,7 @@ def log_control_info(robot: Robot, dt_s, episode_index=None, frame_index=None, f
|
||||
|
||||
def log_dt(shortname, dt_val_s):
|
||||
nonlocal log_items, fps
|
||||
info_str = f"{shortname}:{dt_val_s * 1000:5.2f} ({1/ dt_val_s:3.1f}hz)"
|
||||
info_str = f"{shortname}:{dt_val_s * 1000:5.2f} ({1 / dt_val_s:3.1f}hz)"
|
||||
if fps is not None:
|
||||
actual_fps = 1 / dt_val_s
|
||||
if actual_fps < fps - 1:
|
||||
@@ -97,7 +104,9 @@ def predict_action(observation, policy, device, use_amp):
|
||||
observation = copy(observation)
|
||||
with (
|
||||
torch.inference_mode(),
|
||||
torch.autocast(device_type=device.type) if device.type == "cuda" and use_amp else nullcontext(),
|
||||
torch.autocast(device_type=device.type)
|
||||
if device.type == "cuda" and use_amp
|
||||
else nullcontext(),
|
||||
):
|
||||
# Convert to pytorch format: channel first and float32 in [0,1] with batch dimension
|
||||
for name in observation:
|
||||
@@ -120,14 +129,22 @@ def predict_action(observation, policy, device, use_amp):
|
||||
return action
|
||||
|
||||
|
||||
def init_keyboard_listener():
|
||||
# Allow to exit early while recording an episode or resetting the environment,
|
||||
# by tapping the right arrow key '->'. This might require a sudo permission
|
||||
# to allow your terminal to monitor keyboard events.
|
||||
def init_keyboard_listener(assign_rewards=False):
|
||||
"""
|
||||
Initializes a keyboard listener to enable early termination of an episode
|
||||
or environment reset by pressing the right arrow key ('->'). This may require
|
||||
sudo permissions to allow the terminal to monitor keyboard events.
|
||||
|
||||
Args:
|
||||
assign_rewards (bool): If True, allows annotating the collected trajectory
|
||||
with a binary reward at the end of the episode to indicate success.
|
||||
"""
|
||||
events = {}
|
||||
events["exit_early"] = False
|
||||
events["rerecord_episode"] = False
|
||||
events["stop_recording"] = False
|
||||
if assign_rewards:
|
||||
events["next.reward"] = 0
|
||||
|
||||
if is_headless():
|
||||
logging.warning(
|
||||
@@ -145,13 +162,22 @@ def init_keyboard_listener():
|
||||
print("Right arrow key pressed. Exiting loop...")
|
||||
events["exit_early"] = True
|
||||
elif key == keyboard.Key.left:
|
||||
print("Left arrow key pressed. Exiting loop and rerecord the last episode...")
|
||||
print(
|
||||
"Left arrow key pressed. Exiting loop and rerecord the last episode..."
|
||||
)
|
||||
events["rerecord_episode"] = True
|
||||
events["exit_early"] = True
|
||||
elif key == keyboard.Key.esc:
|
||||
print("Escape key pressed. Stopping data recording...")
|
||||
events["stop_recording"] = True
|
||||
events["exit_early"] = True
|
||||
elif assign_rewards and key == keyboard.Key.space:
|
||||
events["next.reward"] = 1 if events["next.reward"] == 0 else 0
|
||||
print(
|
||||
"Space key pressed. Assigning new reward to the subsequent frames. New reward:",
|
||||
events["next.reward"],
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error handling key press: {e}")
|
||||
|
||||
@@ -164,8 +190,12 @@ def init_keyboard_listener():
|
||||
def init_policy(pretrained_policy_name_or_path, policy_overrides):
|
||||
"""Instantiate the policy and load fps, device and use_amp from config yaml"""
|
||||
pretrained_policy_path = get_pretrained_policy_path(pretrained_policy_name_or_path)
|
||||
hydra_cfg = init_hydra_config(pretrained_policy_path / "config.yaml", policy_overrides)
|
||||
policy = make_policy(hydra_cfg=hydra_cfg, pretrained_policy_name_or_path=pretrained_policy_path)
|
||||
hydra_cfg = init_hydra_config(
|
||||
pretrained_policy_path / "config.yaml", policy_overrides
|
||||
)
|
||||
policy = make_policy(
|
||||
hydra_cfg=hydra_cfg, pretrained_policy_name_or_path=pretrained_policy_path
|
||||
)
|
||||
|
||||
# Check device is available
|
||||
device = get_safe_torch_device(hydra_cfg.device, log=True)
|
||||
@@ -209,6 +239,7 @@ def record_episode(
|
||||
device,
|
||||
use_amp,
|
||||
fps,
|
||||
record_delta_actions,
|
||||
):
|
||||
control_loop(
|
||||
robot=robot,
|
||||
@@ -220,6 +251,7 @@ def record_episode(
|
||||
device=device,
|
||||
use_amp=use_amp,
|
||||
fps=fps,
|
||||
record_delta_actions=record_delta_actions,
|
||||
teleoperate=policy is None,
|
||||
)
|
||||
|
||||
@@ -236,6 +268,7 @@ def control_loop(
|
||||
device=None,
|
||||
use_amp=None,
|
||||
fps=None,
|
||||
record_delta_actions=False,
|
||||
):
|
||||
# TODO(rcadene): Add option to record logs
|
||||
if not robot.is_connected:
|
||||
@@ -251,15 +284,21 @@ def control_loop(
|
||||
raise ValueError("When `teleoperate` is True, `policy` should be None.")
|
||||
|
||||
if dataset is not None and fps is not None and dataset.fps != fps:
|
||||
raise ValueError(f"The dataset fps should be equal to requested fps ({dataset['fps']} != {fps}).")
|
||||
raise ValueError(
|
||||
f"The dataset fps should be equal to requested fps ({dataset['fps']} != {fps})."
|
||||
)
|
||||
|
||||
timestamp = 0
|
||||
start_episode_t = time.perf_counter()
|
||||
while timestamp < control_time_s:
|
||||
start_loop_t = time.perf_counter()
|
||||
|
||||
current_joint_positions = robot.follower_arms["main"].read("Present_Position")
|
||||
|
||||
if teleoperate:
|
||||
observation, action = robot.teleop_step(record_data=True)
|
||||
if record_delta_actions:
|
||||
action["action"] = action["action"] - current_joint_positions
|
||||
else:
|
||||
observation = robot.capture_observation()
|
||||
|
||||
@@ -272,12 +311,22 @@ def control_loop(
|
||||
|
||||
if dataset is not None:
|
||||
frame = {**observation, **action}
|
||||
if "next.reward" in events:
|
||||
frame["next.reward"] = events["next.reward"]
|
||||
frame["next.done"] = (events["next.reward"] == 1) or (
|
||||
events["exit_early"]
|
||||
)
|
||||
dataset.add_frame(frame)
|
||||
|
||||
# if frame["next.done"]:
|
||||
# break
|
||||
|
||||
if display_cameras and not is_headless():
|
||||
image_keys = [key for key in observation if "image" in key]
|
||||
for key in image_keys:
|
||||
cv2.imshow(key, cv2.cvtColor(observation[key].numpy(), cv2.COLOR_RGB2BGR))
|
||||
cv2.imshow(
|
||||
key, cv2.cvtColor(observation[key].numpy(), cv2.COLOR_RGB2BGR)
|
||||
)
|
||||
cv2.waitKey(1)
|
||||
|
||||
if fps is not None:
|
||||
@@ -301,6 +350,8 @@ def reset_environment(robot, events, reset_time_s):
|
||||
|
||||
timestamp = 0
|
||||
start_vencod_t = time.perf_counter()
|
||||
if "next.reward" in events:
|
||||
events["next.reward"] = 0
|
||||
|
||||
# Wait if necessary
|
||||
with tqdm.tqdm(total=reset_time_s, desc="Waiting") as pbar:
|
||||
@@ -313,6 +364,16 @@ def reset_environment(robot, events, reset_time_s):
|
||||
break
|
||||
|
||||
|
||||
def reset_follower_position(robot: Robot, target_position):
|
||||
current_position = robot.follower_arms["main"].read("Present_Position")
|
||||
trajectory = torch.from_numpy(
|
||||
np.linspace(current_position, target_position, 50)
|
||||
) # NOTE: 30 is just an aribtrary number
|
||||
for pose in trajectory:
|
||||
robot.send_action(pose)
|
||||
busy_wait(0.015)
|
||||
|
||||
|
||||
def stop_recording(robot, listener, display_cameras):
|
||||
robot.disconnect()
|
||||
|
||||
@@ -343,21 +404,32 @@ def sanity_check_dataset_name(repo_id, policy):
|
||||
|
||||
|
||||
def sanity_check_dataset_robot_compatibility(
|
||||
dataset: LeRobotDataset, robot: Robot, fps: int, use_videos: bool
|
||||
dataset: LeRobotDataset,
|
||||
robot: Robot,
|
||||
fps: int,
|
||||
use_videos: bool,
|
||||
extra_features: dict = None,
|
||||
) -> None:
|
||||
features_from_robot = get_features_from_robot(robot, use_videos)
|
||||
if extra_features is not None:
|
||||
features_from_robot.update(extra_features)
|
||||
|
||||
fields = [
|
||||
("robot_type", dataset.meta.robot_type, robot.robot_type),
|
||||
("fps", dataset.fps, fps),
|
||||
("features", dataset.features, get_features_from_robot(robot, use_videos)),
|
||||
("features", dataset.features, features_from_robot),
|
||||
]
|
||||
|
||||
mismatches = []
|
||||
for field, dataset_value, present_value in fields:
|
||||
diff = DeepDiff(dataset_value, present_value, exclude_regex_paths=[r".*\['info'\]$"])
|
||||
diff = DeepDiff(
|
||||
dataset_value, present_value, exclude_regex_paths=[r".*\['info'\]$"]
|
||||
)
|
||||
if diff:
|
||||
mismatches.append(f"{field}: expected {present_value}, got {dataset_value}")
|
||||
|
||||
if mismatches:
|
||||
raise ValueError(
|
||||
"Dataset metadata compatibility check failed with mismatches:\n" + "\n".join(mismatches)
|
||||
"Dataset metadata compatibility check failed with mismatches:\n"
|
||||
+ "\n".join(mismatches)
|
||||
)
|
||||
|
||||
@@ -8,7 +8,10 @@ from copy import deepcopy
|
||||
import numpy as np
|
||||
import tqdm
|
||||
|
||||
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
|
||||
from lerobot.common.robot_devices.utils import (
|
||||
RobotDeviceAlreadyConnectedError,
|
||||
RobotDeviceNotConnectedError,
|
||||
)
|
||||
from lerobot.common.utils.utils import capture_timestamp_utc
|
||||
|
||||
PROTOCOL_VERSION = 2.0
|
||||
@@ -143,7 +146,9 @@ NUM_READ_RETRY = 10
|
||||
NUM_WRITE_RETRY = 10
|
||||
|
||||
|
||||
def convert_degrees_to_steps(degrees: float | np.ndarray, models: str | list[str]) -> np.ndarray:
|
||||
def convert_degrees_to_steps(
|
||||
degrees: float | np.ndarray, models: str | list[str]
|
||||
) -> np.ndarray:
|
||||
"""This function converts the degree range to the step range for indicating motors rotation.
|
||||
It assumes a motor achieves a full rotation by going from -180 degree position to +180.
|
||||
The motor resolution (e.g. 4096) corresponds to the number of steps needed to achieve a full rotation.
|
||||
@@ -378,7 +383,9 @@ class DynamixelMotorsBus:
|
||||
indices = []
|
||||
for idx in tqdm.tqdm(possible_ids):
|
||||
try:
|
||||
present_idx = self.read_with_motor_ids(self.motor_models, [idx], "ID", num_retry=num_retry)[0]
|
||||
present_idx = self.read_with_motor_ids(
|
||||
self.motor_models, [idx], "ID", num_retry=num_retry
|
||||
)[0]
|
||||
except ConnectionError:
|
||||
continue
|
||||
|
||||
@@ -394,7 +401,9 @@ class DynamixelMotorsBus:
|
||||
def set_bus_baudrate(self, baudrate):
|
||||
present_bus_baudrate = self.port_handler.getBaudRate()
|
||||
if present_bus_baudrate != baudrate:
|
||||
print(f"Setting bus baud rate to {baudrate}. Previously {present_bus_baudrate}.")
|
||||
print(
|
||||
f"Setting bus baud rate to {baudrate}. Previously {present_bus_baudrate}."
|
||||
)
|
||||
self.port_handler.setBaudRate(baudrate)
|
||||
|
||||
if self.port_handler.getBaudRate() != baudrate:
|
||||
@@ -415,7 +424,9 @@ class DynamixelMotorsBus:
|
||||
def set_calibration(self, calibration: dict[str, list]):
|
||||
self.calibration = calibration
|
||||
|
||||
def apply_calibration_autocorrect(self, values: np.ndarray | list, motor_names: list[str] | None):
|
||||
def apply_calibration_autocorrect(
|
||||
self, values: np.ndarray | list, motor_names: list[str] | None
|
||||
):
|
||||
"""This function applies the calibration, automatically detects out of range errors for motors values and attempts to correct.
|
||||
|
||||
For more info, see docstring of `apply_calibration` and `autocorrect_calibration`.
|
||||
@@ -428,7 +439,9 @@ class DynamixelMotorsBus:
|
||||
values = self.apply_calibration(values, motor_names)
|
||||
return values
|
||||
|
||||
def apply_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
|
||||
def apply_calibration(
|
||||
self, values: np.ndarray | list, motor_names: list[str] | None
|
||||
):
|
||||
"""Convert from unsigned int32 joint position range [0, 2**32[ to the universal float32 nominal degree range ]-180.0, 180.0[ with
|
||||
a "zero position" at 0 degree.
|
||||
|
||||
@@ -503,7 +516,9 @@ class DynamixelMotorsBus:
|
||||
|
||||
return values
|
||||
|
||||
def autocorrect_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
|
||||
def autocorrect_calibration(
|
||||
self, values: np.ndarray | list, motor_names: list[str] | None
|
||||
):
|
||||
"""This function automatically detects issues with values of motors after calibration, and correct for these issues.
|
||||
|
||||
Some motors might have values outside of expected maximum bounds after calibration.
|
||||
@@ -545,15 +560,23 @@ class DynamixelMotorsBus:
|
||||
values[i] *= -1
|
||||
|
||||
# Convert from initial range to range [-180, 180] degrees
|
||||
calib_val = (values[i] + homing_offset) / (resolution // 2) * HALF_TURN_DEGREE
|
||||
in_range = (calib_val > LOWER_BOUND_DEGREE) and (calib_val < UPPER_BOUND_DEGREE)
|
||||
calib_val = (
|
||||
(values[i] + homing_offset) / (resolution // 2) * HALF_TURN_DEGREE
|
||||
)
|
||||
in_range = (calib_val > LOWER_BOUND_DEGREE) and (
|
||||
calib_val < UPPER_BOUND_DEGREE
|
||||
)
|
||||
|
||||
# Solve this inequality to find the factor to shift the range into [-180, 180] degrees
|
||||
# values[i] = (values[i] + homing_offset + resolution * factor) / (resolution // 2) * HALF_TURN_DEGREE
|
||||
# - HALF_TURN_DEGREE <= (values[i] + homing_offset + resolution * factor) / (resolution // 2) * HALF_TURN_DEGREE <= HALF_TURN_DEGREE
|
||||
# (- (resolution // 2) - values[i] - homing_offset) / resolution <= factor <= ((resolution // 2) - values[i] - homing_offset) / resolution
|
||||
low_factor = (-(resolution // 2) - values[i] - homing_offset) / resolution
|
||||
upp_factor = ((resolution // 2) - values[i] - homing_offset) / resolution
|
||||
low_factor = (
|
||||
-(resolution // 2) - values[i] - homing_offset
|
||||
) / resolution
|
||||
upp_factor = (
|
||||
(resolution // 2) - values[i] - homing_offset
|
||||
) / resolution
|
||||
|
||||
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
|
||||
start_pos = self.calibration["start_pos"][calib_idx]
|
||||
@@ -561,7 +584,9 @@ class DynamixelMotorsBus:
|
||||
|
||||
# Convert from initial range to range [0, 100] in %
|
||||
calib_val = (values[i] - start_pos) / (end_pos - start_pos) * 100
|
||||
in_range = (calib_val > LOWER_BOUND_LINEAR) and (calib_val < UPPER_BOUND_LINEAR)
|
||||
in_range = (calib_val > LOWER_BOUND_LINEAR) and (
|
||||
calib_val < UPPER_BOUND_LINEAR
|
||||
)
|
||||
|
||||
# Solve this inequality to find the factor to shift the range into [0, 100] %
|
||||
# values[i] = (values[i] - start_pos + resolution * factor) / (end_pos + resolution * factor - start_pos - resolution * factor) * 100
|
||||
@@ -577,19 +602,27 @@ class DynamixelMotorsBus:
|
||||
factor = math.ceil(low_factor)
|
||||
|
||||
if factor > upp_factor:
|
||||
raise ValueError(f"No integer found between bounds [{low_factor=}, {upp_factor=}]")
|
||||
raise ValueError(
|
||||
f"No integer found between bounds [{low_factor=}, {upp_factor=}]"
|
||||
)
|
||||
else:
|
||||
factor = math.ceil(upp_factor)
|
||||
|
||||
if factor > low_factor:
|
||||
raise ValueError(f"No integer found between bounds [{low_factor=}, {upp_factor=}]")
|
||||
raise ValueError(
|
||||
f"No integer found between bounds [{low_factor=}, {upp_factor=}]"
|
||||
)
|
||||
|
||||
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
|
||||
out_of_range_str = f"{LOWER_BOUND_DEGREE} < {calib_val} < {UPPER_BOUND_DEGREE} degrees"
|
||||
in_range_str = f"{LOWER_BOUND_DEGREE} < {calib_val} < {UPPER_BOUND_DEGREE} degrees"
|
||||
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
|
||||
out_of_range_str = f"{LOWER_BOUND_LINEAR} < {calib_val} < {UPPER_BOUND_LINEAR} %"
|
||||
in_range_str = f"{LOWER_BOUND_LINEAR} < {calib_val} < {UPPER_BOUND_LINEAR} %"
|
||||
out_of_range_str = (
|
||||
f"{LOWER_BOUND_LINEAR} < {calib_val} < {UPPER_BOUND_LINEAR} %"
|
||||
)
|
||||
in_range_str = (
|
||||
f"{LOWER_BOUND_LINEAR} < {calib_val} < {UPPER_BOUND_LINEAR} %"
|
||||
)
|
||||
|
||||
logging.warning(
|
||||
f"Auto-correct calibration of motor '{name}' by shifting value by {abs(factor)} full turns, "
|
||||
@@ -599,7 +632,9 @@ class DynamixelMotorsBus:
|
||||
# A full turn corresponds to 360 degrees but also to 4096 steps for a motor resolution of 4096.
|
||||
self.calibration["homing_offset"][calib_idx] += resolution * factor
|
||||
|
||||
def revert_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
|
||||
def revert_calibration(
|
||||
self, values: np.ndarray | list, motor_names: list[str] | None
|
||||
):
|
||||
"""Inverse of `apply_calibration`."""
|
||||
if motor_names is None:
|
||||
motor_names = self.motor_names
|
||||
@@ -638,7 +673,9 @@ class DynamixelMotorsBus:
|
||||
values = np.round(values).astype(np.int32)
|
||||
return values
|
||||
|
||||
def read_with_motor_ids(self, motor_models, motor_ids, data_name, num_retry=NUM_READ_RETRY):
|
||||
def read_with_motor_ids(
|
||||
self, motor_models, motor_ids, data_name, num_retry=NUM_READ_RETRY
|
||||
):
|
||||
if self.mock:
|
||||
import tests.mock_dynamixel_sdk as dxl
|
||||
else:
|
||||
@@ -740,7 +777,9 @@ class DynamixelMotorsBus:
|
||||
values = self.apply_calibration_autocorrect(values, motor_names)
|
||||
|
||||
# log the number of seconds it took to read the data from the motors
|
||||
delta_ts_name = get_log_name("delta_timestamp_s", "read", data_name, motor_names)
|
||||
delta_ts_name = get_log_name(
|
||||
"delta_timestamp_s", "read", data_name, motor_names
|
||||
)
|
||||
self.logs[delta_ts_name] = time.perf_counter() - start_time
|
||||
|
||||
# log the utc time at which the data was received
|
||||
@@ -749,7 +788,9 @@ class DynamixelMotorsBus:
|
||||
|
||||
return values
|
||||
|
||||
def write_with_motor_ids(self, motor_models, motor_ids, data_name, values, num_retry=NUM_WRITE_RETRY):
|
||||
def write_with_motor_ids(
|
||||
self, motor_models, motor_ids, data_name, values, num_retry=NUM_WRITE_RETRY
|
||||
):
|
||||
if self.mock:
|
||||
import tests.mock_dynamixel_sdk as dxl
|
||||
else:
|
||||
@@ -778,7 +819,12 @@ class DynamixelMotorsBus:
|
||||
f"{self.packet_handler.getTxRxResult(comm)}"
|
||||
)
|
||||
|
||||
def write(self, data_name, values: int | float | np.ndarray, motor_names: str | list[str] | None = None):
|
||||
def write(
|
||||
self,
|
||||
data_name,
|
||||
values: int | float | np.ndarray,
|
||||
motor_names: str | list[str] | None = None,
|
||||
):
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
f"DynamixelMotorsBus({self.port}) is not connected. You need to run `motors_bus.connect()`."
|
||||
@@ -839,7 +885,9 @@ class DynamixelMotorsBus:
|
||||
)
|
||||
|
||||
# log the number of seconds it took to write the data to the motors
|
||||
delta_ts_name = get_log_name("delta_timestamp_s", "write", data_name, motor_names)
|
||||
delta_ts_name = get_log_name(
|
||||
"delta_timestamp_s", "write", data_name, motor_names
|
||||
)
|
||||
self.logs[delta_ts_name] = time.perf_counter() - start_time
|
||||
|
||||
# TODO(rcadene): should we log the time before sending the write command?
|
||||
|
||||
@@ -8,7 +8,10 @@ from copy import deepcopy
|
||||
import numpy as np
|
||||
import tqdm
|
||||
|
||||
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
|
||||
from lerobot.common.robot_devices.utils import (
|
||||
RobotDeviceAlreadyConnectedError,
|
||||
RobotDeviceNotConnectedError,
|
||||
)
|
||||
from lerobot.common.utils.utils import capture_timestamp_utc
|
||||
|
||||
PROTOCOL_VERSION = 0
|
||||
@@ -122,7 +125,9 @@ NUM_READ_RETRY = 20
|
||||
NUM_WRITE_RETRY = 20
|
||||
|
||||
|
||||
def convert_degrees_to_steps(degrees: float | np.ndarray, models: str | list[str]) -> np.ndarray:
|
||||
def convert_degrees_to_steps(
|
||||
degrees: float | np.ndarray, models: str | list[str]
|
||||
) -> np.ndarray:
|
||||
"""This function converts the degree range to the step range for indicating motors rotation.
|
||||
It assumes a motor achieves a full rotation by going from -180 degree position to +180.
|
||||
The motor resolution (e.g. 4096) corresponds to the number of steps needed to achieve a full rotation.
|
||||
@@ -358,7 +363,9 @@ class FeetechMotorsBus:
|
||||
indices = []
|
||||
for idx in tqdm.tqdm(possible_ids):
|
||||
try:
|
||||
present_idx = self.read_with_motor_ids(self.motor_models, [idx], "ID", num_retry=num_retry)[0]
|
||||
present_idx = self.read_with_motor_ids(
|
||||
self.motor_models, [idx], "ID", num_retry=num_retry
|
||||
)[0]
|
||||
except ConnectionError:
|
||||
continue
|
||||
|
||||
@@ -374,7 +381,9 @@ class FeetechMotorsBus:
|
||||
def set_bus_baudrate(self, baudrate):
|
||||
present_bus_baudrate = self.port_handler.getBaudRate()
|
||||
if present_bus_baudrate != baudrate:
|
||||
print(f"Setting bus baud rate to {baudrate}. Previously {present_bus_baudrate}.")
|
||||
print(
|
||||
f"Setting bus baud rate to {baudrate}. Previously {present_bus_baudrate}."
|
||||
)
|
||||
self.port_handler.setBaudRate(baudrate)
|
||||
|
||||
if self.port_handler.getBaudRate() != baudrate:
|
||||
@@ -395,7 +404,9 @@ class FeetechMotorsBus:
|
||||
def set_calibration(self, calibration: dict[str, list]):
|
||||
self.calibration = calibration
|
||||
|
||||
def apply_calibration_autocorrect(self, values: np.ndarray | list, motor_names: list[str] | None):
|
||||
def apply_calibration_autocorrect(
|
||||
self, values: np.ndarray | list, motor_names: list[str] | None
|
||||
):
|
||||
"""This function apply the calibration, automatically detects out of range errors for motors values and attempt to correct.
|
||||
|
||||
For more info, see docstring of `apply_calibration` and `autocorrect_calibration`.
|
||||
@@ -408,7 +419,9 @@ class FeetechMotorsBus:
|
||||
values = self.apply_calibration(values, motor_names)
|
||||
return values
|
||||
|
||||
def apply_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
|
||||
def apply_calibration(
|
||||
self, values: np.ndarray | list, motor_names: list[str] | None
|
||||
):
|
||||
"""Convert from unsigned int32 joint position range [0, 2**32[ to the universal float32 nominal degree range ]-180.0, 180.0[ with
|
||||
a "zero position" at 0 degree.
|
||||
|
||||
@@ -482,7 +495,9 @@ class FeetechMotorsBus:
|
||||
|
||||
return values
|
||||
|
||||
def autocorrect_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
|
||||
def autocorrect_calibration(
|
||||
self, values: np.ndarray | list, motor_names: list[str] | None
|
||||
):
|
||||
"""This function automatically detects issues with values of motors after calibration, and correct for these issues.
|
||||
|
||||
Some motors might have values outside of expected maximum bounds after calibration.
|
||||
@@ -521,18 +536,26 @@ class FeetechMotorsBus:
|
||||
values[i] *= -1
|
||||
|
||||
# Convert from initial range to range [-180, 180] degrees
|
||||
calib_val = (values[i] + homing_offset) / (resolution // 2) * HALF_TURN_DEGREE
|
||||
in_range = (calib_val > LOWER_BOUND_DEGREE) and (calib_val < UPPER_BOUND_DEGREE)
|
||||
calib_val = (
|
||||
(values[i] + homing_offset) / (resolution // 2) * HALF_TURN_DEGREE
|
||||
)
|
||||
in_range = (calib_val > LOWER_BOUND_DEGREE) and (
|
||||
calib_val < UPPER_BOUND_DEGREE
|
||||
)
|
||||
|
||||
# Solve this inequality to find the factor to shift the range into [-180, 180] degrees
|
||||
# values[i] = (values[i] + homing_offset + resolution * factor) / (resolution // 2) * HALF_TURN_DEGREE
|
||||
# - HALF_TURN_DEGREE <= (values[i] + homing_offset + resolution * factor) / (resolution // 2) * HALF_TURN_DEGREE <= HALF_TURN_DEGREE
|
||||
# (- HALF_TURN_DEGREE / HALF_TURN_DEGREE * (resolution // 2) - values[i] - homing_offset) / resolution <= factor <= (HALF_TURN_DEGREE / 180 * (resolution // 2) - values[i] - homing_offset) / resolution
|
||||
low_factor = (
|
||||
-HALF_TURN_DEGREE / HALF_TURN_DEGREE * (resolution // 2) - values[i] - homing_offset
|
||||
-HALF_TURN_DEGREE / HALF_TURN_DEGREE * (resolution // 2)
|
||||
- values[i]
|
||||
- homing_offset
|
||||
) / resolution
|
||||
upp_factor = (
|
||||
HALF_TURN_DEGREE / HALF_TURN_DEGREE * (resolution // 2) - values[i] - homing_offset
|
||||
HALF_TURN_DEGREE / HALF_TURN_DEGREE * (resolution // 2)
|
||||
- values[i]
|
||||
- homing_offset
|
||||
) / resolution
|
||||
|
||||
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
|
||||
@@ -541,7 +564,9 @@ class FeetechMotorsBus:
|
||||
|
||||
# Convert from initial range to range [0, 100] in %
|
||||
calib_val = (values[i] - start_pos) / (end_pos - start_pos) * 100
|
||||
in_range = (calib_val > LOWER_BOUND_LINEAR) and (calib_val < UPPER_BOUND_LINEAR)
|
||||
in_range = (calib_val > LOWER_BOUND_LINEAR) and (
|
||||
calib_val < UPPER_BOUND_LINEAR
|
||||
)
|
||||
|
||||
# Solve this inequality to find the factor to shift the range into [0, 100] %
|
||||
# values[i] = (values[i] - start_pos + resolution * factor) / (end_pos + resolution * factor - start_pos - resolution * factor) * 100
|
||||
@@ -557,19 +582,27 @@ class FeetechMotorsBus:
|
||||
factor = math.ceil(low_factor)
|
||||
|
||||
if factor > upp_factor:
|
||||
raise ValueError(f"No integer found between bounds [{low_factor=}, {upp_factor=}]")
|
||||
raise ValueError(
|
||||
f"No integer found between bounds [{low_factor=}, {upp_factor=}]"
|
||||
)
|
||||
else:
|
||||
factor = math.ceil(upp_factor)
|
||||
|
||||
if factor > low_factor:
|
||||
raise ValueError(f"No integer found between bounds [{low_factor=}, {upp_factor=}]")
|
||||
raise ValueError(
|
||||
f"No integer found between bounds [{low_factor=}, {upp_factor=}]"
|
||||
)
|
||||
|
||||
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
|
||||
out_of_range_str = f"{LOWER_BOUND_DEGREE} < {calib_val} < {UPPER_BOUND_DEGREE} degrees"
|
||||
in_range_str = f"{LOWER_BOUND_DEGREE} < {calib_val} < {UPPER_BOUND_DEGREE} degrees"
|
||||
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
|
||||
out_of_range_str = f"{LOWER_BOUND_LINEAR} < {calib_val} < {UPPER_BOUND_LINEAR} %"
|
||||
in_range_str = f"{LOWER_BOUND_LINEAR} < {calib_val} < {UPPER_BOUND_LINEAR} %"
|
||||
out_of_range_str = (
|
||||
f"{LOWER_BOUND_LINEAR} < {calib_val} < {UPPER_BOUND_LINEAR} %"
|
||||
)
|
||||
in_range_str = (
|
||||
f"{LOWER_BOUND_LINEAR} < {calib_val} < {UPPER_BOUND_LINEAR} %"
|
||||
)
|
||||
|
||||
logging.warning(
|
||||
f"Auto-correct calibration of motor '{name}' by shifting value by {abs(factor)} full turns, "
|
||||
@@ -579,7 +612,9 @@ class FeetechMotorsBus:
|
||||
# A full turn corresponds to 360 degrees but also to 4096 steps for a motor resolution of 4096.
|
||||
self.calibration["homing_offset"][calib_idx] += resolution * factor
|
||||
|
||||
def revert_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
|
||||
def revert_calibration(
|
||||
self, values: np.ndarray | list, motor_names: list[str] | None
|
||||
):
|
||||
"""Inverse of `apply_calibration`."""
|
||||
if motor_names is None:
|
||||
motor_names = self.motor_names
|
||||
@@ -655,7 +690,9 @@ class FeetechMotorsBus:
|
||||
|
||||
return values
|
||||
|
||||
def read_with_motor_ids(self, motor_models, motor_ids, data_name, num_retry=NUM_READ_RETRY):
|
||||
def read_with_motor_ids(
|
||||
self, motor_models, motor_ids, data_name, num_retry=NUM_READ_RETRY
|
||||
):
|
||||
if self.mock:
|
||||
import tests.mock_scservo_sdk as scs
|
||||
else:
|
||||
@@ -760,7 +797,9 @@ class FeetechMotorsBus:
|
||||
values = self.apply_calibration_autocorrect(values, motor_names)
|
||||
|
||||
# log the number of seconds it took to read the data from the motors
|
||||
delta_ts_name = get_log_name("delta_timestamp_s", "read", data_name, motor_names)
|
||||
delta_ts_name = get_log_name(
|
||||
"delta_timestamp_s", "read", data_name, motor_names
|
||||
)
|
||||
self.logs[delta_ts_name] = time.perf_counter() - start_time
|
||||
|
||||
# log the utc time at which the data was received
|
||||
@@ -769,7 +808,9 @@ class FeetechMotorsBus:
|
||||
|
||||
return values
|
||||
|
||||
def write_with_motor_ids(self, motor_models, motor_ids, data_name, values, num_retry=NUM_WRITE_RETRY):
|
||||
def write_with_motor_ids(
|
||||
self, motor_models, motor_ids, data_name, values, num_retry=NUM_WRITE_RETRY
|
||||
):
|
||||
if self.mock:
|
||||
import tests.mock_scservo_sdk as scs
|
||||
else:
|
||||
@@ -798,7 +839,12 @@ class FeetechMotorsBus:
|
||||
f"{self.packet_handler.getTxRxResult(comm)}"
|
||||
)
|
||||
|
||||
def write(self, data_name, values: int | float | np.ndarray, motor_names: str | list[str] | None = None):
|
||||
def write(
|
||||
self,
|
||||
data_name,
|
||||
values: int | float | np.ndarray,
|
||||
motor_names: str | list[str] | None = None,
|
||||
):
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
f"FeetechMotorsBus({self.port}) is not connected. You need to run `motors_bus.connect()`."
|
||||
@@ -859,7 +905,9 @@ class FeetechMotorsBus:
|
||||
)
|
||||
|
||||
# log the number of seconds it took to write the data to the motors
|
||||
delta_ts_name = get_log_name("delta_timestamp_s", "write", data_name, motor_names)
|
||||
delta_ts_name = get_log_name(
|
||||
"delta_timestamp_s", "write", data_name, motor_names
|
||||
)
|
||||
self.logs[delta_ts_name] = time.perf_counter() - start_time
|
||||
|
||||
# TODO(rcadene): should we log the time before sending the write command?
|
||||
|
||||
@@ -10,9 +10,7 @@ from lerobot.common.robot_devices.motors.dynamixel import (
|
||||
)
|
||||
from lerobot.common.robot_devices.motors.utils import MotorsBus
|
||||
|
||||
URL_TEMPLATE = (
|
||||
"https://raw.githubusercontent.com/huggingface/lerobot/main/media/{robot}/{arm}_{position}.webp"
|
||||
)
|
||||
URL_TEMPLATE = "https://raw.githubusercontent.com/huggingface/lerobot/main/media/{robot}/{arm}_{position}.webp"
|
||||
|
||||
# The following positions are provided in nominal degree range ]-180, +180[
|
||||
# For more info on these constants, see comments in the code where they get used.
|
||||
@@ -23,7 +21,9 @@ ROTATED_POSITION_DEGREE = 90
|
||||
def assert_drive_mode(drive_mode):
|
||||
# `drive_mode` is in [0,1] with 0 means original rotation direction for the motor, and 1 means inverted.
|
||||
if not np.all(np.isin(drive_mode, [0, 1])):
|
||||
raise ValueError(f"`drive_mode` contains values other than 0 or 1: ({drive_mode})")
|
||||
raise ValueError(
|
||||
f"`drive_mode` contains values other than 0 or 1: ({drive_mode})"
|
||||
)
|
||||
|
||||
|
||||
def apply_drive_mode(position, drive_mode):
|
||||
@@ -64,12 +64,16 @@ def run_arm_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type
|
||||
```
|
||||
"""
|
||||
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
|
||||
raise ValueError("To run calibration, the torque must be disabled on all motors.")
|
||||
raise ValueError(
|
||||
"To run calibration, the torque must be disabled on all motors."
|
||||
)
|
||||
|
||||
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
|
||||
|
||||
print("\nMove arm to zero position")
|
||||
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="zero"))
|
||||
print(
|
||||
"See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="zero")
|
||||
)
|
||||
input("Press Enter to continue...")
|
||||
|
||||
# We arbitrarily chose our zero target position to be a straight horizontal position with gripper upwards and closed.
|
||||
@@ -90,10 +94,15 @@ def run_arm_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type
|
||||
# corresponds to opening the gripper. When the rotation direction is ambiguous, we arbitrarely rotate clockwise from the point of view
|
||||
# of the previous motor in the kinetic chain.
|
||||
print("\nMove arm to rotated target position")
|
||||
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rotated"))
|
||||
print(
|
||||
"See: "
|
||||
+ URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rotated")
|
||||
)
|
||||
input("Press Enter to continue...")
|
||||
|
||||
rotated_target_pos = convert_degrees_to_steps(ROTATED_POSITION_DEGREE, arm.motor_models)
|
||||
rotated_target_pos = convert_degrees_to_steps(
|
||||
ROTATED_POSITION_DEGREE, arm.motor_models
|
||||
)
|
||||
|
||||
# Find drive mode by rotating each motor by a quarter of a turn.
|
||||
# Drive mode indicates if the motor rotation direction should be inverted (=1) or not (=0).
|
||||
@@ -102,11 +111,15 @@ def run_arm_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type
|
||||
|
||||
# Re-compute homing offset to take into account drive mode
|
||||
rotated_drived_pos = apply_drive_mode(rotated_pos, drive_mode)
|
||||
rotated_nearest_pos = compute_nearest_rounded_position(rotated_drived_pos, arm.motor_models)
|
||||
rotated_nearest_pos = compute_nearest_rounded_position(
|
||||
rotated_drived_pos, arm.motor_models
|
||||
)
|
||||
homing_offset = rotated_target_pos - rotated_nearest_pos
|
||||
|
||||
print("\nMove arm to rest position")
|
||||
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rest"))
|
||||
print(
|
||||
"See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rest")
|
||||
)
|
||||
input("Press Enter to continue...")
|
||||
print()
|
||||
|
||||
|
||||
@@ -12,9 +12,7 @@ from lerobot.common.robot_devices.motors.feetech import (
|
||||
)
|
||||
from lerobot.common.robot_devices.motors.utils import MotorsBus
|
||||
|
||||
URL_TEMPLATE = (
|
||||
"https://raw.githubusercontent.com/huggingface/lerobot/main/media/{robot}/{arm}_{position}.webp"
|
||||
)
|
||||
URL_TEMPLATE = "https://raw.githubusercontent.com/huggingface/lerobot/main/media/{robot}/{arm}_{position}.webp"
|
||||
|
||||
# The following positions are provided in nominal degree range ]-180, +180[
|
||||
# For more info on these constants, see comments in the code where they get used.
|
||||
@@ -25,7 +23,9 @@ ROTATED_POSITION_DEGREE = 90
|
||||
def assert_drive_mode(drive_mode):
|
||||
# `drive_mode` is in [0,1] with 0 means original rotation direction for the motor, and 1 means inverted.
|
||||
if not np.all(np.isin(drive_mode, [0, 1])):
|
||||
raise ValueError(f"`drive_mode` contains values other than 0 or 1: ({drive_mode})")
|
||||
raise ValueError(
|
||||
f"`drive_mode` contains values other than 0 or 1: ({drive_mode})"
|
||||
)
|
||||
|
||||
|
||||
def apply_drive_mode(position, drive_mode):
|
||||
@@ -126,7 +126,9 @@ def apply_offset(calib, offset):
|
||||
return calib
|
||||
|
||||
|
||||
def run_arm_auto_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
|
||||
def run_arm_auto_calibration(
|
||||
arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str
|
||||
):
|
||||
if robot_type == "so100":
|
||||
return run_arm_auto_calibration_so100(arm, robot_type, arm_name, arm_type)
|
||||
elif robot_type == "moss":
|
||||
@@ -135,18 +137,27 @@ def run_arm_auto_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm
|
||||
raise ValueError(robot_type)
|
||||
|
||||
|
||||
def run_arm_auto_calibration_so100(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
|
||||
def run_arm_auto_calibration_so100(
|
||||
arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str
|
||||
):
|
||||
"""All the offsets and magic numbers are hand tuned, and are unique to SO-100 follower arms"""
|
||||
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
|
||||
raise ValueError("To run calibration, the torque must be disabled on all motors.")
|
||||
raise ValueError(
|
||||
"To run calibration, the torque must be disabled on all motors."
|
||||
)
|
||||
|
||||
if not (robot_type == "so100" and arm_type == "follower"):
|
||||
raise NotImplementedError("Auto calibration only supports the follower of so100 arms for now.")
|
||||
raise NotImplementedError(
|
||||
"Auto calibration only supports the follower of so100 arms for now."
|
||||
)
|
||||
|
||||
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
|
||||
|
||||
print("\nMove arm to initial position")
|
||||
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="initial"))
|
||||
print(
|
||||
"See: "
|
||||
+ URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="initial")
|
||||
)
|
||||
input("Press Enter to continue...")
|
||||
|
||||
# Lower the acceleration of the motors (in [0,254])
|
||||
@@ -193,11 +204,16 @@ def run_arm_auto_calibration_so100(arm: MotorsBus, robot_type: str, arm_name: st
|
||||
|
||||
print("Calibrate elbow_flex")
|
||||
calib["elbow_flex"] = move_to_calibrate(
|
||||
arm, "elbow_flex", positive_first=False, in_between_move_hook=in_between_move_hook
|
||||
arm,
|
||||
"elbow_flex",
|
||||
positive_first=False,
|
||||
in_between_move_hook=in_between_move_hook,
|
||||
)
|
||||
calib["elbow_flex"] = apply_offset(calib["elbow_flex"], offset=80 - 1024)
|
||||
|
||||
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] + 1024 + 512, "elbow_flex")
|
||||
arm.write(
|
||||
"Goal_Position", calib["elbow_flex"]["zero_pos"] + 1024 + 512, "elbow_flex"
|
||||
)
|
||||
time.sleep(1)
|
||||
|
||||
def in_between_move_hook():
|
||||
@@ -225,18 +241,30 @@ def run_arm_auto_calibration_so100(arm: MotorsBus, robot_type: str, arm_name: st
|
||||
}
|
||||
arm.write("Goal_Position", list(positions.values()), list(positions.keys()))
|
||||
|
||||
arm.write("Goal_Position", round(calib["shoulder_lift"]["zero_pos"] - 1600), "shoulder_lift")
|
||||
arm.write(
|
||||
"Goal_Position",
|
||||
round(calib["shoulder_lift"]["zero_pos"] - 1600),
|
||||
"shoulder_lift",
|
||||
)
|
||||
time.sleep(2)
|
||||
arm.write("Goal_Position", round(calib["elbow_flex"]["zero_pos"] + 1700), "elbow_flex")
|
||||
arm.write(
|
||||
"Goal_Position", round(calib["elbow_flex"]["zero_pos"] + 1700), "elbow_flex"
|
||||
)
|
||||
time.sleep(2)
|
||||
arm.write("Goal_Position", round(calib["wrist_flex"]["zero_pos"] + 800), "wrist_flex")
|
||||
arm.write(
|
||||
"Goal_Position", round(calib["wrist_flex"]["zero_pos"] + 800), "wrist_flex"
|
||||
)
|
||||
time.sleep(2)
|
||||
arm.write("Goal_Position", round(calib["gripper"]["end_pos"]), "gripper")
|
||||
time.sleep(2)
|
||||
|
||||
print("Calibrate wrist_roll")
|
||||
calib["wrist_roll"] = move_to_calibrate(
|
||||
arm, "wrist_roll", invert_drive_mode=True, positive_first=False, while_move_hook=while_move_hook
|
||||
arm,
|
||||
"wrist_roll",
|
||||
invert_drive_mode=True,
|
||||
positive_first=False,
|
||||
while_move_hook=while_move_hook,
|
||||
)
|
||||
|
||||
arm.write("Goal_Position", calib["wrist_roll"]["zero_pos"], "wrist_roll")
|
||||
@@ -246,7 +274,9 @@ def run_arm_auto_calibration_so100(arm: MotorsBus, robot_type: str, arm_name: st
|
||||
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"], "wrist_flex")
|
||||
time.sleep(1)
|
||||
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] + 2048, "elbow_flex")
|
||||
arm.write("Goal_Position", calib["shoulder_lift"]["zero_pos"] - 2048, "shoulder_lift")
|
||||
arm.write(
|
||||
"Goal_Position", calib["shoulder_lift"]["zero_pos"] - 2048, "shoulder_lift"
|
||||
)
|
||||
time.sleep(1)
|
||||
arm.write("Goal_Position", calib["shoulder_pan"]["zero_pos"], "shoulder_pan")
|
||||
time.sleep(1)
|
||||
@@ -275,18 +305,27 @@ def run_arm_auto_calibration_so100(arm: MotorsBus, robot_type: str, arm_name: st
|
||||
return calib_dict
|
||||
|
||||
|
||||
def run_arm_auto_calibration_moss(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
|
||||
def run_arm_auto_calibration_moss(
|
||||
arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str
|
||||
):
|
||||
"""All the offsets and magic numbers are hand tuned, and are unique to SO-100 follower arms"""
|
||||
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
|
||||
raise ValueError("To run calibration, the torque must be disabled on all motors.")
|
||||
raise ValueError(
|
||||
"To run calibration, the torque must be disabled on all motors."
|
||||
)
|
||||
|
||||
if not (robot_type == "moss" and arm_type == "follower"):
|
||||
raise NotImplementedError("Auto calibration only supports the follower of moss arms for now.")
|
||||
raise NotImplementedError(
|
||||
"Auto calibration only supports the follower of moss arms for now."
|
||||
)
|
||||
|
||||
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
|
||||
|
||||
print("\nMove arm to initial position")
|
||||
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="initial"))
|
||||
print(
|
||||
"See: "
|
||||
+ URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="initial")
|
||||
)
|
||||
input("Press Enter to continue...")
|
||||
|
||||
# Lower the acceleration of the motors (in [0,254])
|
||||
@@ -370,8 +409,12 @@ def run_arm_auto_calibration_moss(arm: MotorsBus, robot_type: str, arm_name: str
|
||||
|
||||
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 1024, "wrist_flex")
|
||||
time.sleep(1)
|
||||
arm.write("Goal_Position", calib["shoulder_lift"]["zero_pos"] + 2048, "shoulder_lift")
|
||||
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] - 1024 - 400, "elbow_flex")
|
||||
arm.write(
|
||||
"Goal_Position", calib["shoulder_lift"]["zero_pos"] + 2048, "shoulder_lift"
|
||||
)
|
||||
arm.write(
|
||||
"Goal_Position", calib["elbow_flex"]["zero_pos"] - 1024 - 400, "elbow_flex"
|
||||
)
|
||||
time.sleep(2)
|
||||
|
||||
calib_modes = []
|
||||
@@ -398,7 +441,9 @@ def run_arm_auto_calibration_moss(arm: MotorsBus, robot_type: str, arm_name: str
|
||||
return calib_dict
|
||||
|
||||
|
||||
def run_arm_manual_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
|
||||
def run_arm_manual_calibration(
|
||||
arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str
|
||||
):
|
||||
"""This function ensures that a neural network trained on data collected on a given robot
|
||||
can work on another robot. For instance before calibration, setting a same goal position
|
||||
for each motor of two different robots will get two very different positions. But after calibration,
|
||||
@@ -421,12 +466,16 @@ def run_arm_manual_calibration(arm: MotorsBus, robot_type: str, arm_name: str, a
|
||||
```
|
||||
"""
|
||||
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
|
||||
raise ValueError("To run calibration, the torque must be disabled on all motors.")
|
||||
raise ValueError(
|
||||
"To run calibration, the torque must be disabled on all motors."
|
||||
)
|
||||
|
||||
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
|
||||
|
||||
print("\nMove arm to zero position")
|
||||
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="zero"))
|
||||
print(
|
||||
"See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="zero")
|
||||
)
|
||||
input("Press Enter to continue...")
|
||||
|
||||
# We arbitrarily chose our zero target position to be a straight horizontal position with gripper upwards and closed.
|
||||
@@ -446,10 +495,15 @@ def run_arm_manual_calibration(arm: MotorsBus, robot_type: str, arm_name: str, a
|
||||
# corresponds to opening the gripper. When the rotation direction is ambiguous, we arbitrarely rotate clockwise from the point of view
|
||||
# of the previous motor in the kinetic chain.
|
||||
print("\nMove arm to rotated target position")
|
||||
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rotated"))
|
||||
print(
|
||||
"See: "
|
||||
+ URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rotated")
|
||||
)
|
||||
input("Press Enter to continue...")
|
||||
|
||||
rotated_target_pos = convert_degrees_to_steps(ROTATED_POSITION_DEGREE, arm.motor_models)
|
||||
rotated_target_pos = convert_degrees_to_steps(
|
||||
ROTATED_POSITION_DEGREE, arm.motor_models
|
||||
)
|
||||
|
||||
# Find drive mode by rotating each motor by a quarter of a turn.
|
||||
# Drive mode indicates if the motor rotation direction should be inverted (=1) or not (=0).
|
||||
@@ -461,7 +515,9 @@ def run_arm_manual_calibration(arm: MotorsBus, robot_type: str, arm_name: str, a
|
||||
homing_offset = rotated_target_pos - rotated_drived_pos
|
||||
|
||||
print("\nMove arm to rest position")
|
||||
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rest"))
|
||||
print(
|
||||
"See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rest")
|
||||
)
|
||||
input("Press Enter to continue...")
|
||||
print()
|
||||
|
||||
|
||||
@@ -18,11 +18,16 @@ import torch
|
||||
from lerobot.common.robot_devices.cameras.utils import Camera
|
||||
from lerobot.common.robot_devices.motors.utils import MotorsBus
|
||||
from lerobot.common.robot_devices.robots.utils import get_arm_id
|
||||
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
|
||||
from lerobot.common.robot_devices.utils import (
|
||||
RobotDeviceAlreadyConnectedError,
|
||||
RobotDeviceNotConnectedError,
|
||||
)
|
||||
|
||||
|
||||
def ensure_safe_goal_position(
|
||||
goal_pos: torch.Tensor, present_pos: torch.Tensor, max_relative_target: float | list[float]
|
||||
goal_pos: torch.Tensor,
|
||||
present_pos: torch.Tensor,
|
||||
max_relative_target: float | list[float],
|
||||
):
|
||||
# Cap relative action target magnitude for safety.
|
||||
diff = goal_pos - present_pos
|
||||
@@ -32,7 +37,7 @@ def ensure_safe_goal_position(
|
||||
safe_goal_pos = present_pos + safe_diff
|
||||
|
||||
if not torch.allclose(goal_pos, safe_goal_pos):
|
||||
logging.warning(
|
||||
logging.debug(
|
||||
"Relative goal position magnitude had to be clamped to be safe.\n"
|
||||
f" requested relative goal position target: {diff}\n"
|
||||
f" clamped relative goal position target: {safe_diff}"
|
||||
@@ -67,8 +72,14 @@ class ManipulatorRobotConfig:
|
||||
# gripper is not put in torque mode.
|
||||
gripper_open_degree: float | None = None
|
||||
|
||||
joint_position_relative_bounds: dict[np.ndarray] | None = None
|
||||
|
||||
def __setattr__(self, prop: str, val):
|
||||
if prop == "max_relative_target" and val is not None and isinstance(val, Sequence):
|
||||
if (
|
||||
prop == "max_relative_target"
|
||||
and val is not None
|
||||
and isinstance(val, Sequence)
|
||||
):
|
||||
for name in self.follower_arms:
|
||||
if len(self.follower_arms[name].motors) != len(val):
|
||||
raise ValueError(
|
||||
@@ -78,11 +89,16 @@ class ManipulatorRobotConfig:
|
||||
"Note: This feature does not yet work with robots where different follower arms have "
|
||||
"different numbers of motors."
|
||||
)
|
||||
if prop == "joint_position_relative_bounds" and val is not None:
|
||||
for key in val:
|
||||
val[key] = torch.tensor(val[key])
|
||||
super().__setattr__(prop, val)
|
||||
|
||||
def __post_init__(self):
|
||||
if self.robot_type not in ["koch", "koch_bimanual", "aloha", "so100", "moss"]:
|
||||
raise ValueError(f"Provided robot type ({self.robot_type}) is not supported.")
|
||||
raise ValueError(
|
||||
f"Provided robot type ({self.robot_type}) is not supported."
|
||||
)
|
||||
|
||||
|
||||
class ManipulatorRobot:
|
||||
@@ -336,7 +352,9 @@ class ManipulatorRobot:
|
||||
# to squeeze the gripper and have it spring back to an open position on its own.
|
||||
for name in self.leader_arms:
|
||||
self.leader_arms[name].write("Torque_Enable", 1, "gripper")
|
||||
self.leader_arms[name].write("Goal_Position", self.config.gripper_open_degree, "gripper")
|
||||
self.leader_arms[name].write(
|
||||
"Goal_Position", self.config.gripper_open_degree, "gripper"
|
||||
)
|
||||
|
||||
# Check both arms can be read
|
||||
for name in self.follower_arms:
|
||||
@@ -368,18 +386,26 @@ class ManipulatorRobot:
|
||||
print(f"Missing calibration file '{arm_calib_path}'")
|
||||
|
||||
if self.robot_type in ["koch", "koch_bimanual", "aloha"]:
|
||||
from lerobot.common.robot_devices.robots.dynamixel_calibration import run_arm_calibration
|
||||
from lerobot.common.robot_devices.robots.dynamixel_calibration import (
|
||||
run_arm_calibration,
|
||||
)
|
||||
|
||||
calibration = run_arm_calibration(arm, self.robot_type, name, arm_type)
|
||||
calibration = run_arm_calibration(
|
||||
arm, self.robot_type, name, arm_type
|
||||
)
|
||||
|
||||
elif self.robot_type in ["so100", "moss"]:
|
||||
from lerobot.common.robot_devices.robots.feetech_calibration import (
|
||||
run_arm_manual_calibration,
|
||||
)
|
||||
|
||||
calibration = run_arm_manual_calibration(arm, self.robot_type, name, arm_type)
|
||||
calibration = run_arm_manual_calibration(
|
||||
arm, self.robot_type, name, arm_type
|
||||
)
|
||||
|
||||
print(f"Calibration is done! Saving calibration file '{arm_calib_path}'")
|
||||
print(
|
||||
f"Calibration is done! Saving calibration file '{arm_calib_path}'"
|
||||
)
|
||||
arm_calib_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
with open(arm_calib_path, "w") as f:
|
||||
json.dump(calibration, f)
|
||||
@@ -398,13 +424,17 @@ class ManipulatorRobot:
|
||||
from lerobot.common.robot_devices.motors.dynamixel import TorqueMode
|
||||
|
||||
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
|
||||
raise ValueError("To run set robot preset, the torque must be disabled on all motors.")
|
||||
raise ValueError(
|
||||
"To run set robot preset, the torque must be disabled on all motors."
|
||||
)
|
||||
|
||||
# Use 'extended position mode' for all motors except gripper, because in joint mode the servos can't
|
||||
# rotate more than 360 degrees (from 0 to 4095) And some mistake can happen while assembling the arm,
|
||||
# you could end up with a servo with a position 0 or 4095 at a crucial point See [
|
||||
# https://emanual.robotis.com/docs/en/dxl/x/x_series/#operating-mode11]
|
||||
all_motors_except_gripper = [name for name in arm.motor_names if name != "gripper"]
|
||||
all_motors_except_gripper = [
|
||||
name for name in arm.motor_names if name != "gripper"
|
||||
]
|
||||
if len(all_motors_except_gripper) > 0:
|
||||
# 4 corresponds to Extended Position on Koch motors
|
||||
arm.write("Operating_Mode", 4, all_motors_except_gripper)
|
||||
@@ -433,7 +463,9 @@ class ManipulatorRobot:
|
||||
# Enable torque on the gripper of the leader arms, and move it to 45 degrees,
|
||||
# so that we can use it as a trigger to close the gripper of the follower arms.
|
||||
self.leader_arms[name].write("Torque_Enable", 1, "gripper")
|
||||
self.leader_arms[name].write("Goal_Position", self.config.gripper_open_degree, "gripper")
|
||||
self.leader_arms[name].write(
|
||||
"Goal_Position", self.config.gripper_open_degree, "gripper"
|
||||
)
|
||||
|
||||
def set_aloha_robot_preset(self):
|
||||
def set_shadow_(arm):
|
||||
@@ -463,11 +495,15 @@ class ManipulatorRobot:
|
||||
# you could end up with a servo with a position 0 or 4095 at a crucial point See [
|
||||
# https://emanual.robotis.com/docs/en/dxl/x/x_series/#operating-mode11]
|
||||
all_motors_except_gripper = [
|
||||
name for name in self.follower_arms[name].motor_names if name != "gripper"
|
||||
name
|
||||
for name in self.follower_arms[name].motor_names
|
||||
if name != "gripper"
|
||||
]
|
||||
if len(all_motors_except_gripper) > 0:
|
||||
# 4 corresponds to Extended Position on Aloha motors
|
||||
self.follower_arms[name].write("Operating_Mode", 4, all_motors_except_gripper)
|
||||
self.follower_arms[name].write(
|
||||
"Operating_Mode", 4, all_motors_except_gripper
|
||||
)
|
||||
|
||||
# Use 'position control current based' for follower gripper to be limited by the limit of the current.
|
||||
# It can grasp an object without forcing too much even tho,
|
||||
@@ -515,7 +551,9 @@ class ManipulatorRobot:
|
||||
before_lread_t = time.perf_counter()
|
||||
leader_pos[name] = self.leader_arms[name].read("Present_Position")
|
||||
leader_pos[name] = torch.from_numpy(leader_pos[name])
|
||||
self.logs[f"read_leader_{name}_pos_dt_s"] = time.perf_counter() - before_lread_t
|
||||
self.logs[f"read_leader_{name}_pos_dt_s"] = (
|
||||
time.perf_counter() - before_lread_t
|
||||
)
|
||||
|
||||
# Send goal position to the follower
|
||||
follower_goal_pos = {}
|
||||
@@ -523,19 +561,31 @@ class ManipulatorRobot:
|
||||
before_fwrite_t = time.perf_counter()
|
||||
goal_pos = leader_pos[name]
|
||||
|
||||
# If specified, clip the goal positions within predefined bounds specified in the config of the robot
|
||||
if self.config.joint_position_relative_bounds is not None:
|
||||
goal_pos = torch.clamp(
|
||||
goal_pos,
|
||||
self.config.joint_position_relative_bounds["min"],
|
||||
self.config.joint_position_relative_bounds["max"],
|
||||
)
|
||||
|
||||
# Cap goal position when too far away from present position.
|
||||
# Slower fps expected due to reading from the follower.
|
||||
if self.config.max_relative_target is not None:
|
||||
present_pos = self.follower_arms[name].read("Present_Position")
|
||||
present_pos = torch.from_numpy(present_pos)
|
||||
goal_pos = ensure_safe_goal_position(goal_pos, present_pos, self.config.max_relative_target)
|
||||
goal_pos = ensure_safe_goal_position(
|
||||
goal_pos, present_pos, self.config.max_relative_target
|
||||
)
|
||||
|
||||
# Used when record_data=True
|
||||
follower_goal_pos[name] = goal_pos
|
||||
|
||||
goal_pos = goal_pos.numpy().astype(np.int32)
|
||||
self.follower_arms[name].write("Goal_Position", goal_pos)
|
||||
self.logs[f"write_follower_{name}_goal_pos_dt_s"] = time.perf_counter() - before_fwrite_t
|
||||
self.logs[f"write_follower_{name}_goal_pos_dt_s"] = (
|
||||
time.perf_counter() - before_fwrite_t
|
||||
)
|
||||
|
||||
# Early exit when recording data is not requested
|
||||
if not record_data:
|
||||
@@ -548,7 +598,9 @@ class ManipulatorRobot:
|
||||
before_fread_t = time.perf_counter()
|
||||
follower_pos[name] = self.follower_arms[name].read("Present_Position")
|
||||
follower_pos[name] = torch.from_numpy(follower_pos[name])
|
||||
self.logs[f"read_follower_{name}_pos_dt_s"] = time.perf_counter() - before_fread_t
|
||||
self.logs[f"read_follower_{name}_pos_dt_s"] = (
|
||||
time.perf_counter() - before_fread_t
|
||||
)
|
||||
|
||||
# Create state by concatenating follower current position
|
||||
state = []
|
||||
@@ -570,8 +622,12 @@ class ManipulatorRobot:
|
||||
before_camread_t = time.perf_counter()
|
||||
images[name] = self.cameras[name].async_read()
|
||||
images[name] = torch.from_numpy(images[name])
|
||||
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"]
|
||||
self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - before_camread_t
|
||||
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs[
|
||||
"delta_timestamp_s"
|
||||
]
|
||||
self.logs[f"async_read_camera_{name}_dt_s"] = (
|
||||
time.perf_counter() - before_camread_t
|
||||
)
|
||||
|
||||
# Populate output dictionnaries
|
||||
obs_dict, action_dict = {}, {}
|
||||
@@ -595,7 +651,9 @@ class ManipulatorRobot:
|
||||
before_fread_t = time.perf_counter()
|
||||
follower_pos[name] = self.follower_arms[name].read("Present_Position")
|
||||
follower_pos[name] = torch.from_numpy(follower_pos[name])
|
||||
self.logs[f"read_follower_{name}_pos_dt_s"] = time.perf_counter() - before_fread_t
|
||||
self.logs[f"read_follower_{name}_pos_dt_s"] = (
|
||||
time.perf_counter() - before_fread_t
|
||||
)
|
||||
|
||||
# Create state by concatenating follower current position
|
||||
state = []
|
||||
@@ -610,8 +668,12 @@ class ManipulatorRobot:
|
||||
before_camread_t = time.perf_counter()
|
||||
images[name] = self.cameras[name].async_read()
|
||||
images[name] = torch.from_numpy(images[name])
|
||||
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"]
|
||||
self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - before_camread_t
|
||||
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs[
|
||||
"delta_timestamp_s"
|
||||
]
|
||||
self.logs[f"async_read_camera_{name}_dt_s"] = (
|
||||
time.perf_counter() - before_camread_t
|
||||
)
|
||||
|
||||
# Populate output dictionnaries and format to pytorch
|
||||
obs_dict = {}
|
||||
@@ -644,18 +706,29 @@ class ManipulatorRobot:
|
||||
goal_pos = action[from_idx:to_idx]
|
||||
from_idx = to_idx
|
||||
|
||||
# If specified, clip the goal positions within predefined bounds specified in the config of the robot
|
||||
if self.config.joint_position_relative_bounds is not None:
|
||||
goal_pos = torch.clamp(
|
||||
goal_pos,
|
||||
self.config.joint_position_relative_bounds["min"],
|
||||
self.config.joint_position_relative_bounds["max"],
|
||||
)
|
||||
|
||||
# Cap goal position when too far away from present position.
|
||||
# Slower fps expected due to reading from the follower.
|
||||
if self.config.max_relative_target is not None:
|
||||
present_pos = self.follower_arms[name].read("Present_Position")
|
||||
present_pos = torch.from_numpy(present_pos)
|
||||
goal_pos = ensure_safe_goal_position(goal_pos, present_pos, self.config.max_relative_target)
|
||||
goal_pos = ensure_safe_goal_position(
|
||||
goal_pos, present_pos, self.config.max_relative_target
|
||||
)
|
||||
|
||||
# Save tensor to concat and return
|
||||
action_sent.append(goal_pos)
|
||||
|
||||
# Send goal position to each follower
|
||||
goal_pos = goal_pos.numpy().astype(np.int32)
|
||||
|
||||
self.follower_arms[name].write("Goal_Position", goal_pos)
|
||||
|
||||
return torch.cat(action_sent)
|
||||
|
||||
@@ -60,7 +60,9 @@ class StretchRobot(StretchAPI):
|
||||
def connect(self) -> None:
|
||||
self.is_connected = self.startup()
|
||||
if not self.is_connected:
|
||||
print("Another process is already using Stretch. Try running 'stretch_free_robot_process.py'")
|
||||
print(
|
||||
"Another process is already using Stretch. Try running 'stretch_free_robot_process.py'"
|
||||
)
|
||||
raise ConnectionError()
|
||||
|
||||
for name in self.cameras:
|
||||
@@ -68,7 +70,9 @@ class StretchRobot(StretchAPI):
|
||||
self.is_connected = self.is_connected and self.cameras[name].is_connected
|
||||
|
||||
if not self.is_connected:
|
||||
print("Could not connect to the cameras, check that all cameras are plugged-in.")
|
||||
print(
|
||||
"Could not connect to the cameras, check that all cameras are plugged-in."
|
||||
)
|
||||
raise ConnectionError()
|
||||
|
||||
self.run_calibration()
|
||||
@@ -113,8 +117,12 @@ class StretchRobot(StretchAPI):
|
||||
before_camread_t = time.perf_counter()
|
||||
images[name] = self.cameras[name].async_read()
|
||||
images[name] = torch.from_numpy(images[name])
|
||||
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"]
|
||||
self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - before_camread_t
|
||||
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs[
|
||||
"delta_timestamp_s"
|
||||
]
|
||||
self.logs[f"async_read_camera_{name}_dt_s"] = (
|
||||
time.perf_counter() - before_camread_t
|
||||
)
|
||||
|
||||
# Populate output dictionnaries
|
||||
obs_dict, action_dict = {}, {}
|
||||
@@ -158,8 +166,12 @@ class StretchRobot(StretchAPI):
|
||||
before_camread_t = time.perf_counter()
|
||||
images[name] = self.cameras[name].async_read()
|
||||
images[name] = torch.from_numpy(images[name])
|
||||
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"]
|
||||
self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - before_camread_t
|
||||
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs[
|
||||
"delta_timestamp_s"
|
||||
]
|
||||
self.logs[f"async_read_camera_{name}_dt_s"] = (
|
||||
time.perf_counter() - before_camread_t
|
||||
)
|
||||
|
||||
# Populate output dictionnaries
|
||||
obs_dict = {}
|
||||
|
||||
@@ -34,7 +34,8 @@ class RobotDeviceNotConnectedError(Exception):
|
||||
"""Exception raised when the robot device is not connected."""
|
||||
|
||||
def __init__(
|
||||
self, message="This robot device is not connected. Try calling `robot_device.connect()` first."
|
||||
self,
|
||||
message="This robot device is not connected. Try calling `robot_device.connect()` first.",
|
||||
):
|
||||
self.message = message
|
||||
super().__init__(self.message)
|
||||
|
||||
@@ -17,7 +17,9 @@ import importlib
|
||||
import logging
|
||||
|
||||
|
||||
def is_package_available(pkg_name: str, return_version: bool = False) -> tuple[bool, str] | bool:
|
||||
def is_package_available(
|
||||
pkg_name: str, return_version: bool = False
|
||||
) -> tuple[bool, str] | bool:
|
||||
"""Copied from https://github.com/huggingface/transformers/blob/main/src/transformers/utils/import_utils.py
|
||||
Check if the package spec exists and grab its version to avoid importing a local directory.
|
||||
**Note:** this doesn't work for all packages.
|
||||
|
||||
@@ -22,6 +22,8 @@ def write_video(video_path, stacked_frames, fps):
|
||||
# Filter out DeprecationWarnings raised from pkg_resources
|
||||
with warnings.catch_warnings():
|
||||
warnings.filterwarnings(
|
||||
"ignore", "pkg_resources is deprecated as an API", category=DeprecationWarning
|
||||
"ignore",
|
||||
"pkg_resources is deprecated as an API",
|
||||
category=DeprecationWarning,
|
||||
)
|
||||
imageio.mimsave(video_path, stacked_frames, fps=fps)
|
||||
|
||||
@@ -18,6 +18,7 @@ import os
|
||||
import os.path as osp
|
||||
import platform
|
||||
import random
|
||||
import time
|
||||
from contextlib import contextmanager
|
||||
from datetime import datetime, timezone
|
||||
from pathlib import Path
|
||||
@@ -115,11 +116,11 @@ def seeded_context(seed: int) -> Generator[None, None, None]:
|
||||
set_global_random_state(random_state_dict)
|
||||
|
||||
|
||||
def init_logging():
|
||||
def init_logging(log_file=None):
|
||||
def custom_format(record):
|
||||
dt = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
||||
fnameline = f"{record.pathname}:{record.lineno}"
|
||||
message = f"{record.levelname} {dt} {fnameline[-15:]:>15} {record.msg}"
|
||||
message = f"{record.levelname} [PID: {os.getpid()}] {dt} {fnameline[-15:]:>15} {record.msg}"
|
||||
return message
|
||||
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
@@ -133,6 +134,12 @@ def init_logging():
|
||||
console_handler.setFormatter(formatter)
|
||||
logging.getLogger().addHandler(console_handler)
|
||||
|
||||
if log_file is not None:
|
||||
# File handler
|
||||
file_handler = logging.FileHandler(log_file)
|
||||
file_handler.setFormatter(formatter)
|
||||
logging.getLogger().addHandler(file_handler)
|
||||
|
||||
|
||||
def format_big_number(num, precision=0):
|
||||
suffixes = ["", "K", "M", "B", "T", "Q"]
|
||||
@@ -155,11 +162,16 @@ def _relative_path_between(path1: Path, path2: Path) -> Path:
|
||||
except ValueError: # most likely because path1 is not a subpath of path2
|
||||
common_parts = Path(osp.commonpath([path1, path2])).parts
|
||||
return Path(
|
||||
"/".join([".."] * (len(path2.parts) - len(common_parts)) + list(path1.parts[len(common_parts) :]))
|
||||
"/".join(
|
||||
[".."] * (len(path2.parts) - len(common_parts))
|
||||
+ list(path1.parts[len(common_parts) :])
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def init_hydra_config(config_path: str, overrides: list[str] | None = None) -> DictConfig:
|
||||
def init_hydra_config(
|
||||
config_path: str, overrides: list[str] | None = None
|
||||
) -> DictConfig:
|
||||
"""Initialize a Hydra config given only the path to the relevant config file.
|
||||
|
||||
For config resolution, it is assumed that the config file's parent is the Hydra config dir.
|
||||
@@ -168,7 +180,11 @@ def init_hydra_config(config_path: str, overrides: list[str] | None = None) -> D
|
||||
hydra.core.global_hydra.GlobalHydra.instance().clear()
|
||||
# Hydra needs a path relative to this file.
|
||||
hydra.initialize(
|
||||
str(_relative_path_between(Path(config_path).absolute().parent, Path(__file__).absolute().parent)),
|
||||
str(
|
||||
_relative_path_between(
|
||||
Path(config_path).absolute().parent, Path(__file__).absolute().parent
|
||||
)
|
||||
),
|
||||
version_base="1.2",
|
||||
)
|
||||
cfg = hydra.compose(Path(config_path).stem, overrides)
|
||||
@@ -182,10 +198,26 @@ def print_cuda_memory_usage():
|
||||
gc.collect()
|
||||
# Also clear the cache if you want to fully release the memory
|
||||
torch.cuda.empty_cache()
|
||||
print("Current GPU Memory Allocated: {:.2f} MB".format(torch.cuda.memory_allocated(0) / 1024**2))
|
||||
print("Maximum GPU Memory Allocated: {:.2f} MB".format(torch.cuda.max_memory_allocated(0) / 1024**2))
|
||||
print("Current GPU Memory Reserved: {:.2f} MB".format(torch.cuda.memory_reserved(0) / 1024**2))
|
||||
print("Maximum GPU Memory Reserved: {:.2f} MB".format(torch.cuda.max_memory_reserved(0) / 1024**2))
|
||||
print(
|
||||
"Current GPU Memory Allocated: {:.2f} MB".format(
|
||||
torch.cuda.memory_allocated(0) / 1024**2
|
||||
)
|
||||
)
|
||||
print(
|
||||
"Maximum GPU Memory Allocated: {:.2f} MB".format(
|
||||
torch.cuda.max_memory_allocated(0) / 1024**2
|
||||
)
|
||||
)
|
||||
print(
|
||||
"Current GPU Memory Reserved: {:.2f} MB".format(
|
||||
torch.cuda.memory_reserved(0) / 1024**2
|
||||
)
|
||||
)
|
||||
print(
|
||||
"Maximum GPU Memory Reserved: {:.2f} MB".format(
|
||||
torch.cuda.max_memory_reserved(0) / 1024**2
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def capture_timestamp_utc():
|
||||
@@ -217,3 +249,33 @@ def log_say(text, play_sounds, blocking=False):
|
||||
|
||||
if play_sounds:
|
||||
say(text, blocking)
|
||||
|
||||
|
||||
class TimerManager:
|
||||
def __init__(
|
||||
self,
|
||||
elapsed_time_list: list[float] | None = None,
|
||||
label="Elapsed time",
|
||||
log=True,
|
||||
):
|
||||
self.label = label
|
||||
self.elapsed_time_list = elapsed_time_list
|
||||
self.log = log
|
||||
self.elapsed = 0.0
|
||||
|
||||
def __enter__(self):
|
||||
self.start = time.perf_counter()
|
||||
return self
|
||||
|
||||
def __exit__(self, exc_type, exc_value, traceback):
|
||||
self.elapsed: float = time.perf_counter() - self.start
|
||||
|
||||
if self.elapsed_time_list is not None:
|
||||
self.elapsed_time_list.append(self.elapsed)
|
||||
|
||||
if self.log:
|
||||
print(f"{self.label}: {self.elapsed:.6f} seconds")
|
||||
|
||||
@property
|
||||
def elapsed_seconds(self):
|
||||
return self.elapsed
|
||||
|
||||
@@ -2,6 +2,7 @@ defaults:
|
||||
- _self_
|
||||
- env: pusht
|
||||
- policy: diffusion
|
||||
- robot: so100
|
||||
|
||||
hydra:
|
||||
run:
|
||||
|
||||
30
lerobot/configs/env/maniskill_example.yaml
vendored
Normal file
30
lerobot/configs/env/maniskill_example.yaml
vendored
Normal file
@@ -0,0 +1,30 @@
|
||||
# @package _global_
|
||||
|
||||
fps: 400
|
||||
|
||||
env:
|
||||
name: maniskill/pushcube
|
||||
task: PushCube-v1
|
||||
image_size: 64
|
||||
control_mode: pd_ee_delta_pose
|
||||
state_dim: 25
|
||||
action_dim: 7
|
||||
fps: ${fps}
|
||||
obs: rgb
|
||||
render_mode: rgb_array
|
||||
render_size: 64
|
||||
device: cuda
|
||||
|
||||
reward_classifier:
|
||||
pretrained_path: null
|
||||
config_path: null
|
||||
|
||||
wrapper:
|
||||
joint_masking_action_space: null
|
||||
delta_action: null
|
||||
|
||||
video_record:
|
||||
enabled: false
|
||||
record_dir: maniskill_videos
|
||||
trajectory_name: trajectory
|
||||
fps: ${fps}
|
||||
46
lerobot/configs/env/so100_real.yaml
vendored
46
lerobot/configs/env/so100_real.yaml
vendored
@@ -1,10 +1,50 @@
|
||||
# @package _global_
|
||||
|
||||
fps: 30
|
||||
fps: 10
|
||||
|
||||
env:
|
||||
name: real_world
|
||||
task: null
|
||||
state_dim: 6
|
||||
action_dim: 6
|
||||
state_dim: 15
|
||||
action_dim: 3
|
||||
fps: ${fps}
|
||||
device: mps
|
||||
|
||||
wrapper:
|
||||
crop_params_dict:
|
||||
observation.images.front: [171, 207, 116, 251]
|
||||
observation.images.side: [232, 200, 142, 204]
|
||||
resize_size: [128, 128]
|
||||
control_time_s: 10
|
||||
reset_follower_pos: false
|
||||
use_relative_joint_positions: true
|
||||
reset_time_s: 5
|
||||
display_cameras: false
|
||||
delta_action: null #0.3
|
||||
joint_masking_action_space: null #[1, 1, 1, 1, 0, 0] # disable wrist and gripper
|
||||
add_joint_velocity_to_observation: true
|
||||
add_ee_pose_to_observation: true
|
||||
|
||||
# If null then the teleoperation will be used to reset the robot
|
||||
# Bounds for pushcube_gamepad_lerobot15 dataset and experiments
|
||||
# fixed_reset_joint_positions: [-19.86, 103.19, 117.33, 42.7, 13.89, 0.297]
|
||||
# ee_action_space_params: # If null then ee_action_space is not used
|
||||
# bounds:
|
||||
# max: [0.291, 0.147, 0.074]
|
||||
# min: [0.139, -0.143, 0.03]
|
||||
|
||||
# Bounds for insertcube_gamepad dataset and experiments
|
||||
fixed_reset_joint_positions: [20.0, 90., 90., 75., -0.7910156, -0.5673759]
|
||||
ee_action_space_params:
|
||||
bounds:
|
||||
max: [0.25295413, 0.07498981, 0.06862044]
|
||||
min: [0.2010096, -0.12, 0.0433196]
|
||||
|
||||
use_gamepad: true
|
||||
x_step_size: 0.03
|
||||
y_step_size: 0.03
|
||||
z_step_size: 0.03
|
||||
|
||||
reward_classifier:
|
||||
pretrained_path: null # outputs/classifier/13-02-random-sample-resnet10-frozen/checkpoints/best/pretrained_model
|
||||
config_path: null # lerobot/configs/policy/hilserl_classifier.yaml
|
||||
|
||||
61
lerobot/configs/policy/hilserl_classifier.yaml
Normal file
61
lerobot/configs/policy/hilserl_classifier.yaml
Normal file
@@ -0,0 +1,61 @@
|
||||
# @package _global_
|
||||
|
||||
defaults:
|
||||
- _self_
|
||||
|
||||
hydra:
|
||||
run:
|
||||
# Set `dir` to where you would like to save all of the run outputs. If you run another training session
|
||||
# with the same value for `dir` its contents will be overwritten unless you set `resume` to true.
|
||||
dir: outputs/train_hilserl_classifier/${now:%Y-%m-%d}/${now:%H-%M-%S}_${env.name}_${hydra.job.name}
|
||||
job:
|
||||
name: default
|
||||
|
||||
seed: 13
|
||||
dataset_repo_id: aractingi/push_cube_square_light_reward_cropped_resized
|
||||
# aractingi/push_cube_square_reward_1_cropped_resized
|
||||
dataset_root: data/aractingi/push_cube_square_light_reward_cropped_resized
|
||||
local_files_only: true
|
||||
train_split_proportion: 0.8
|
||||
|
||||
# Required by logger
|
||||
env:
|
||||
name: "classifier"
|
||||
task: "binary_classification"
|
||||
|
||||
|
||||
training:
|
||||
num_epochs: 6
|
||||
batch_size: 16
|
||||
learning_rate: 1e-4
|
||||
num_workers: 4
|
||||
grad_clip_norm: 10
|
||||
use_amp: true
|
||||
log_freq: 1
|
||||
eval_freq: 1 # How often to run validation (in epochs)
|
||||
save_freq: 1 # How often to save checkpoints (in epochs)
|
||||
save_checkpoint: true
|
||||
image_keys: ["observation.images.front", "observation.images.side"]
|
||||
label_key: "next.reward"
|
||||
profile_inference_time: false
|
||||
profile_inference_time_iters: 20
|
||||
|
||||
eval:
|
||||
batch_size: 16
|
||||
num_samples_to_log: 30 # Number of validation samples to log in the table
|
||||
|
||||
policy:
|
||||
name: "hilserl/classifier"
|
||||
model_name: "helper2424/resnet10" # "facebook/convnext-base-224
|
||||
model_type: "cnn"
|
||||
num_cameras: 2 # Has to be len(training.image_keys)
|
||||
|
||||
wandb:
|
||||
enable: false
|
||||
project: "classifier-training"
|
||||
job_name: "classifier_training_0"
|
||||
disable_artifact: false
|
||||
|
||||
device: "mps"
|
||||
resume: false
|
||||
output_dir: "outputs/classifier/old_trainer_resnet10_frozen"
|
||||
118
lerobot/configs/policy/sac_maniskill.yaml
Normal file
118
lerobot/configs/policy/sac_maniskill.yaml
Normal file
@@ -0,0 +1,118 @@
|
||||
# @package _global_
|
||||
|
||||
# Train with:
|
||||
#
|
||||
# python lerobot/scripts/train.py \
|
||||
# +dataset=lerobot/pusht_keypoints
|
||||
# env=pusht \
|
||||
# env.gym.obs_type=environment_state_agent_pos \
|
||||
|
||||
seed: 1
|
||||
# dataset_repo_id: "AdilZtn/Maniskill-Pushcube-demonstration-medium"
|
||||
dataset_repo_id: null
|
||||
|
||||
training:
|
||||
# Offline training dataloader
|
||||
num_workers: 4
|
||||
|
||||
batch_size: 512
|
||||
grad_clip_norm: 40.0
|
||||
lr: 3e-4
|
||||
|
||||
|
||||
storage_device: "cuda"
|
||||
|
||||
eval_freq: 2500
|
||||
log_freq: 10
|
||||
save_freq: 1000000
|
||||
|
||||
online_steps: 1000000
|
||||
online_rollout_n_episodes: 10
|
||||
online_rollout_batch_size: 10
|
||||
online_steps_between_rollouts: 1000
|
||||
online_sampling_ratio: 1.0
|
||||
online_env_seed: 10000
|
||||
online_buffer_capacity: 200000
|
||||
offline_buffer_capacity: 100000
|
||||
online_buffer_seed_size: 0
|
||||
online_step_before_learning: 500
|
||||
do_online_rollout_async: false
|
||||
policy_update_freq: 1
|
||||
|
||||
policy:
|
||||
name: sac
|
||||
|
||||
pretrained_model_path:
|
||||
|
||||
# Input / output structure.
|
||||
n_action_repeats: 1
|
||||
horizon: 1
|
||||
n_action_steps: 1
|
||||
|
||||
shared_encoder: true
|
||||
# vision_encoder_name: "helper2424/resnet10"
|
||||
vision_encoder_name: null
|
||||
# freeze_vision_encoder: true
|
||||
freeze_vision_encoder: false
|
||||
input_shapes:
|
||||
# # TODO(rcadene, alexander-soare): add variables for height and width from the dataset/env?
|
||||
observation.state: ["${env.state_dim}"]
|
||||
observation.image: [3, 64, 64]
|
||||
output_shapes:
|
||||
action: [7]
|
||||
|
||||
camera_number: 1
|
||||
|
||||
# Normalization / Unnormalization
|
||||
# input_normalization_modes: null
|
||||
input_normalization_modes:
|
||||
observation.state: min_max
|
||||
observation.image: mean_std
|
||||
# input_normalization_params: null
|
||||
input_normalization_params:
|
||||
observation.state:
|
||||
min: [-1.9361e+00, -7.7640e-01, -7.7094e-01, -2.9709e+00, -8.5656e-01,
|
||||
1.0764e+00, -1.2680e+00, 0.0000e+00, 0.0000e+00, -9.3448e+00,
|
||||
-3.3828e+00, -3.8420e+00, -5.2553e+00, -3.4154e+00, -6.5082e+00,
|
||||
-6.0500e+00, -8.7193e+00, -8.2337e+00, -3.4650e-01, -4.9441e-01,
|
||||
8.3516e-03, -3.1114e-01, -9.9700e-01, -2.3471e-01, -2.7137e-01]
|
||||
max: [ 0.8644, 1.4306, 1.8520, -0.7578, 0.9508, 3.4901, 1.9381, 0.0400,
|
||||
0.0400, 5.0885, 4.7156, 7.9393, 7.9100, 2.9796, 5.7720, 4.7163,
|
||||
7.8145, 9.7415, 0.2422, 0.4505, 0.6306, 0.2622, 1.0000, 0.5135,
|
||||
0.4001]
|
||||
|
||||
observation.image:
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
|
||||
output_normalization_modes:
|
||||
action: min_max
|
||||
output_normalization_params:
|
||||
action:
|
||||
min: [-0.03, -0.03, -0.03, -0.03, -0.03, -0.03, -0.03]
|
||||
max: [0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03]
|
||||
output_normalization_shapes:
|
||||
action: [7]
|
||||
|
||||
# Architecture / modeling.
|
||||
# Neural networks.
|
||||
image_encoder_hidden_dim: 32
|
||||
# discount: 0.99
|
||||
discount: 0.80
|
||||
temperature_init: 1.0
|
||||
num_critics: 2 #10
|
||||
num_subsample_critics: null
|
||||
critic_lr: 3e-4
|
||||
actor_lr: 3e-4
|
||||
temperature_lr: 3e-4
|
||||
# critic_target_update_weight: 0.005
|
||||
critic_target_update_weight: 0.01
|
||||
utd_ratio: 2 # 10
|
||||
|
||||
actor_learner_config:
|
||||
learner_host: "127.0.0.1"
|
||||
learner_port: 50051
|
||||
policy_parameters_push_frequency: 4
|
||||
concurrency:
|
||||
actor: 'threads'
|
||||
learner: 'threads'
|
||||
89
lerobot/configs/policy/sac_pusht_keypoints.yaml
Normal file
89
lerobot/configs/policy/sac_pusht_keypoints.yaml
Normal file
@@ -0,0 +1,89 @@
|
||||
# @package _global_
|
||||
|
||||
# Train with:
|
||||
#
|
||||
# python lerobot/scripts/train.py \
|
||||
# env=pusht \
|
||||
# +dataset=lerobot/pusht_keypoints
|
||||
|
||||
seed: 1
|
||||
dataset_repo_id: lerobot/pusht_keypoints
|
||||
|
||||
training:
|
||||
offline_steps: 0
|
||||
|
||||
# Offline training dataloader
|
||||
num_workers: 4
|
||||
|
||||
batch_size: 128
|
||||
grad_clip_norm: 10.0
|
||||
lr: 3e-4
|
||||
|
||||
eval_freq: 50000
|
||||
log_freq: 500
|
||||
save_freq: 50000
|
||||
|
||||
online_steps: 1000000
|
||||
online_rollout_n_episodes: 10
|
||||
online_rollout_batch_size: 10
|
||||
online_steps_between_rollouts: 1000
|
||||
online_sampling_ratio: 1.0
|
||||
online_env_seed: 10000
|
||||
online_buffer_capacity: 40000
|
||||
online_buffer_seed_size: 0
|
||||
do_online_rollout_async: false
|
||||
|
||||
delta_timestamps:
|
||||
observation.environment_state: "[i / ${fps} for i in range(${policy.horizon} + 1)]"
|
||||
observation.state: "[i / ${fps} for i in range(${policy.horizon} + 1)]"
|
||||
action: "[i / ${fps} for i in range(${policy.horizon})]"
|
||||
next.reward: "[i / ${fps} for i in range(${policy.horizon})]"
|
||||
|
||||
policy:
|
||||
name: sac
|
||||
|
||||
pretrained_model_path:
|
||||
|
||||
# Input / output structure.
|
||||
n_action_repeats: 1
|
||||
horizon: 5
|
||||
n_action_steps: 5
|
||||
|
||||
input_shapes:
|
||||
# TODO(rcadene, alexander-soare): add variables for height and width from the dataset/env?
|
||||
observation.environment_state: [16]
|
||||
observation.state: ["${env.state_dim}"]
|
||||
output_shapes:
|
||||
action: ["${env.action_dim}"]
|
||||
|
||||
# Normalization / Unnormalization
|
||||
input_normalization_modes:
|
||||
observation.environment_state: min_max
|
||||
observation.state: min_max
|
||||
output_normalization_modes:
|
||||
action: min_max
|
||||
|
||||
# Architecture / modeling.
|
||||
# Neural networks.
|
||||
# image_encoder_hidden_dim: 32
|
||||
discount: 0.99
|
||||
temperature_init: 1.0
|
||||
num_critics: 2
|
||||
num_subsample_critics: None
|
||||
critic_lr: 3e-4
|
||||
actor_lr: 3e-4
|
||||
temperature_lr: 3e-4
|
||||
critic_target_update_weight: 0.005
|
||||
utd_ratio: 2
|
||||
|
||||
|
||||
# # Loss coefficients.
|
||||
# reward_coeff: 0.5
|
||||
# expectile_weight: 0.9
|
||||
# value_coeff: 0.1
|
||||
# consistency_coeff: 20.0
|
||||
# advantage_scaling: 3.0
|
||||
# pi_coeff: 0.5
|
||||
# temporal_decay_coeff: 0.5
|
||||
# # Target model.
|
||||
# target_model_momentum: 0.995
|
||||
120
lerobot/configs/policy/sac_real.yaml
Normal file
120
lerobot/configs/policy/sac_real.yaml
Normal file
@@ -0,0 +1,120 @@
|
||||
# @package _global_
|
||||
|
||||
# Train with:
|
||||
#
|
||||
# python lerobot/scripts/train.py \
|
||||
# +dataset=lerobot/pusht_keypoints
|
||||
# env=pusht \
|
||||
# env.gym.obs_type=environment_state_agent_pos \
|
||||
|
||||
seed: 1
|
||||
dataset_repo_id: aractingi/insertcube_simple
|
||||
|
||||
training:
|
||||
# Offline training dataloader
|
||||
num_workers: 4
|
||||
|
||||
# batch_size: 256
|
||||
batch_size: 512
|
||||
grad_clip_norm: 10.0
|
||||
lr: 3e-4
|
||||
|
||||
eval_freq: 2500
|
||||
log_freq: 1
|
||||
save_freq: 2000000
|
||||
|
||||
online_steps: 1000000
|
||||
online_rollout_n_episodes: 10
|
||||
online_rollout_batch_size: 10
|
||||
online_steps_between_rollouts: 1000
|
||||
online_sampling_ratio: 1.0
|
||||
online_env_seed: 10000
|
||||
online_buffer_capacity: 10000
|
||||
online_buffer_seed_size: 0
|
||||
online_step_before_learning: 100 #5000
|
||||
do_online_rollout_async: false
|
||||
policy_update_freq: 1
|
||||
|
||||
# delta_timestamps:
|
||||
# observation.environment_state: "[i / ${fps} for i in range(${policy.horizon} + 1)]"
|
||||
# observation.state: "[i / ${fps} for i in range(${policy.horizon} + 1)]"
|
||||
# action: "[i / ${fps} for i in range(${policy.horizon})]"
|
||||
# next.reward: "[i / ${fps} for i in range(${policy.horizon})]"
|
||||
|
||||
policy:
|
||||
name: sac
|
||||
|
||||
pretrained_model_path:
|
||||
|
||||
# Input / output structure.
|
||||
n_action_repeats: 1
|
||||
horizon: 1
|
||||
n_action_steps: 1
|
||||
|
||||
shared_encoder: true
|
||||
vision_encoder_name: "helper2424/resnet10"
|
||||
freeze_vision_encoder: true
|
||||
input_shapes:
|
||||
# # TODO(rcadene, alexander-soare): add variables for height and width from the dataset/env?
|
||||
observation.state: ["${env.state_dim}"]
|
||||
observation.images.front: [3, 128, 128]
|
||||
observation.images.side: [3, 128, 128]
|
||||
# observation.image: [3, 128, 128]
|
||||
output_shapes:
|
||||
action: ["${env.action_dim}"]
|
||||
|
||||
# Normalization / Unnormalization
|
||||
input_normalization_modes:
|
||||
observation.images.front: mean_std
|
||||
observation.images.side: mean_std
|
||||
observation.state: min_max
|
||||
input_normalization_params:
|
||||
observation.images.front:
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
observation.images.side:
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
observation.state:
|
||||
# 6- joint positions, 6- joint velocities, 3- ee position
|
||||
max: [ 52.822266, 136.14258, 142.03125, 72.1582, 22.675781, -0.5673759, 100., 100., 100., 100., 100., 100., 0.25295413, 0.07498981, 0.06862044]
|
||||
min: [-2.6367188, 86.572266, 89.82422, 12.392578, -26.015625, -0.5673759, -100., -100., -100., -100., -100., -100., 0.2010096, -0.12, 0.0433196]
|
||||
|
||||
output_normalization_modes:
|
||||
action: min_max
|
||||
output_normalization_params:
|
||||
action:
|
||||
min: [-0.03, -0.03, -0.01]
|
||||
max: [0.03, 0.03, 0.03]
|
||||
|
||||
# Architecture / modeling.
|
||||
# Neural networks.
|
||||
image_encoder_hidden_dim: 32
|
||||
# discount: 0.99
|
||||
discount: 0.97
|
||||
temperature_init: 1.0
|
||||
num_critics: 2 #10
|
||||
camera_number: 2
|
||||
num_subsample_critics: null
|
||||
critic_lr: 3e-4
|
||||
actor_lr: 3e-4
|
||||
temperature_lr: 3e-4
|
||||
# critic_target_update_weight: 0.005
|
||||
critic_target_update_weight: 0.01
|
||||
utd_ratio: 2 # 10
|
||||
|
||||
actor_learner_config:
|
||||
learner_host: "127.0.0.1"
|
||||
learner_port: 50051
|
||||
policy_parameters_push_frequency: 15
|
||||
|
||||
# # Loss coefficients.
|
||||
# reward_coeff: 0.5
|
||||
# expectile_weight: 0.9
|
||||
# value_coeff: 0.1
|
||||
# consistency_coeff: 20.0
|
||||
# advantage_scaling: 3.0
|
||||
# pi_coeff: 0.5
|
||||
# temporal_decay_coeff: 0.5
|
||||
# # Target model.
|
||||
# target_model_momentum: 0.995
|
||||
@@ -10,7 +10,7 @@ max_relative_target: null
|
||||
leader_arms:
|
||||
main:
|
||||
_target_: lerobot.common.robot_devices.motors.dynamixel.DynamixelMotorsBus
|
||||
port: /dev/tty.usbmodem575E0031751
|
||||
port: /dev/tty.usbmodem58760430441
|
||||
motors:
|
||||
# name: (index, model)
|
||||
shoulder_pan: [1, "xl330-m077"]
|
||||
@@ -23,7 +23,7 @@ leader_arms:
|
||||
follower_arms:
|
||||
main:
|
||||
_target_: lerobot.common.robot_devices.motors.dynamixel.DynamixelMotorsBus
|
||||
port: /dev/tty.usbmodem575E0032081
|
||||
port: /dev/tty.usbmodem585A0083391
|
||||
motors:
|
||||
# name: (index, model)
|
||||
shoulder_pan: [1, "xl430-w250"]
|
||||
|
||||
@@ -14,11 +14,18 @@ calibration_dir: .cache/calibration/so100
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||
# the number of motors in your follower arms.
|
||||
max_relative_target: null
|
||||
joint_position_relative_bounds: null
|
||||
# max: [100, 100, 100, 100, 100, 100]
|
||||
# min: [-100, -100, -100, -100, -100, -100]
|
||||
# max: [ 7.2158203e+01, 1.5398438e+02, 1.6075195e+02, 9.3251953e+01, 0., -1.4184397e-01]
|
||||
# min: [-77.08008, 56.25, 60.55664, 19.511719, 0., -0.63829786]
|
||||
# max: [ 35.06836 , 103.18359 , 127.61719 , 75.58594 , 0., 0.]
|
||||
# min: [ -8.876953 , 63.808594 , 90.49805 , 49.48242 , 0., 0.]
|
||||
|
||||
leader_arms:
|
||||
main:
|
||||
_target_: lerobot.common.robot_devices.motors.feetech.FeetechMotorsBus
|
||||
port: /dev/tty.usbmodem585A0077581
|
||||
port: /dev/tty.usbmodem58760433331
|
||||
motors:
|
||||
# name: (index, model)
|
||||
shoulder_pan: [1, "sts3215"]
|
||||
@@ -31,7 +38,7 @@ leader_arms:
|
||||
follower_arms:
|
||||
main:
|
||||
_target_: lerobot.common.robot_devices.motors.feetech.FeetechMotorsBus
|
||||
port: /dev/tty.usbmodem585A0080971
|
||||
port: /dev/tty.usbmodem58760431631
|
||||
motors:
|
||||
# name: (index, model)
|
||||
shoulder_pan: [1, "sts3215"]
|
||||
@@ -42,15 +49,15 @@ follower_arms:
|
||||
gripper: [6, "sts3215"]
|
||||
|
||||
cameras:
|
||||
laptop:
|
||||
_target_: lerobot.common.robot_devices.cameras.opencv.OpenCVCamera
|
||||
camera_index: 0
|
||||
fps: 30
|
||||
width: 640
|
||||
height: 480
|
||||
phone:
|
||||
front:
|
||||
_target_: lerobot.common.robot_devices.cameras.opencv.OpenCVCamera
|
||||
camera_index: 1
|
||||
fps: 30
|
||||
width: 640
|
||||
height: 480
|
||||
side:
|
||||
_target_: lerobot.common.robot_devices.cameras.opencv.OpenCVCamera
|
||||
camera_index: 0
|
||||
fps: 30
|
||||
width: 640
|
||||
height: 480
|
||||
|
||||
@@ -22,13 +22,17 @@ def configure_motor(port, brand, model, motor_idx_des, baudrate_des):
|
||||
from lerobot.common.robot_devices.motors.feetech import (
|
||||
SCS_SERIES_BAUDRATE_TABLE as SERIES_BAUDRATE_TABLE,
|
||||
)
|
||||
from lerobot.common.robot_devices.motors.feetech import FeetechMotorsBus as MotorsBusClass
|
||||
from lerobot.common.robot_devices.motors.feetech import (
|
||||
FeetechMotorsBus as MotorsBusClass,
|
||||
)
|
||||
elif brand == "dynamixel":
|
||||
from lerobot.common.robot_devices.motors.dynamixel import MODEL_BAUDRATE_TABLE
|
||||
from lerobot.common.robot_devices.motors.dynamixel import (
|
||||
X_SERIES_BAUDRATE_TABLE as SERIES_BAUDRATE_TABLE,
|
||||
)
|
||||
from lerobot.common.robot_devices.motors.dynamixel import DynamixelMotorsBus as MotorsBusClass
|
||||
from lerobot.common.robot_devices.motors.dynamixel import (
|
||||
DynamixelMotorsBus as MotorsBusClass,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Currently we do not support this motor brand: {brand}. We currently support feetech and dynamixel motors."
|
||||
@@ -46,7 +50,9 @@ def configure_motor(port, brand, model, motor_idx_des, baudrate_des):
|
||||
motor_model = model # Use the motor model passed via argument
|
||||
|
||||
# Initialize the MotorBus with the correct port and motor configurations
|
||||
motor_bus = MotorsBusClass(port=port, motors={motor_name: (motor_index_arbitrary, motor_model)})
|
||||
motor_bus = MotorsBusClass(
|
||||
port=port, motors={motor_name: (motor_index_arbitrary, motor_model)}
|
||||
)
|
||||
|
||||
# Try to connect to the motor bus and handle any connection-specific errors
|
||||
try:
|
||||
@@ -78,20 +84,26 @@ def configure_motor(port, brand, model, motor_idx_des, baudrate_des):
|
||||
motor_index = present_ids[0]
|
||||
|
||||
if motor_index == -1:
|
||||
raise ValueError("No motors detected. Please ensure you have one motor connected.")
|
||||
raise ValueError(
|
||||
"No motors detected. Please ensure you have one motor connected."
|
||||
)
|
||||
|
||||
print(f"Motor index found at: {motor_index}")
|
||||
|
||||
if brand == "feetech":
|
||||
# Allows ID and BAUDRATE to be written in memory
|
||||
motor_bus.write_with_motor_ids(motor_bus.motor_models, motor_index, "Lock", 0)
|
||||
motor_bus.write_with_motor_ids(
|
||||
motor_bus.motor_models, motor_index, "Lock", 0
|
||||
)
|
||||
|
||||
if baudrate != baudrate_des:
|
||||
print(f"Setting its baudrate to {baudrate_des}")
|
||||
baudrate_idx = list(SERIES_BAUDRATE_TABLE.values()).index(baudrate_des)
|
||||
|
||||
# The write can fail, so we allow retries
|
||||
motor_bus.write_with_motor_ids(motor_bus.motor_models, motor_index, "Baud_Rate", baudrate_idx)
|
||||
motor_bus.write_with_motor_ids(
|
||||
motor_bus.motor_models, motor_index, "Baud_Rate", baudrate_idx
|
||||
)
|
||||
time.sleep(0.5)
|
||||
motor_bus.set_bus_baudrate(baudrate_des)
|
||||
present_baudrate_idx = motor_bus.read_with_motor_ids(
|
||||
@@ -103,9 +115,13 @@ def configure_motor(port, brand, model, motor_idx_des, baudrate_des):
|
||||
|
||||
print(f"Setting its index to desired index {motor_idx_des}")
|
||||
motor_bus.write_with_motor_ids(motor_bus.motor_models, motor_index, "Lock", 0)
|
||||
motor_bus.write_with_motor_ids(motor_bus.motor_models, motor_index, "ID", motor_idx_des)
|
||||
motor_bus.write_with_motor_ids(
|
||||
motor_bus.motor_models, motor_index, "ID", motor_idx_des
|
||||
)
|
||||
|
||||
present_idx = motor_bus.read_with_motor_ids(motor_bus.motor_models, motor_idx_des, "ID", num_retry=2)
|
||||
present_idx = motor_bus.read_with_motor_ids(
|
||||
motor_bus.motor_models, motor_idx_des, "ID", num_retry=2
|
||||
)
|
||||
if present_idx != motor_idx_des:
|
||||
raise OSError("Failed to write index.")
|
||||
|
||||
@@ -133,12 +149,29 @@ def configure_motor(port, brand, model, motor_idx_des, baudrate_des):
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--port", type=str, required=True, help="Motors bus port (e.g. dynamixel,feetech)")
|
||||
parser.add_argument("--brand", type=str, required=True, help="Motor brand (e.g. dynamixel,feetech)")
|
||||
parser.add_argument("--model", type=str, required=True, help="Motor model (e.g. xl330-m077,sts3215)")
|
||||
parser.add_argument("--ID", type=int, required=True, help="Desired ID of the current motor (e.g. 1,2,3)")
|
||||
parser.add_argument(
|
||||
"--baudrate", type=int, default=1000000, help="Desired baudrate for the motor (default: 1000000)"
|
||||
"--port",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Motors bus port (e.g. dynamixel,feetech)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--brand", type=str, required=True, help="Motor brand (e.g. dynamixel,feetech)"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model", type=str, required=True, help="Motor model (e.g. xl330-m077,sts3215)"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--ID",
|
||||
type=int,
|
||||
required=True,
|
||||
help="Desired ID of the current motor (e.g. 1,2,3)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--baudrate",
|
||||
type=int,
|
||||
default=1000000,
|
||||
help="Desired baudrate for the motor (default: 1000000)",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
|
||||
@@ -109,6 +109,7 @@ from lerobot.common.robot_devices.control_utils import (
|
||||
log_control_info,
|
||||
record_episode,
|
||||
reset_environment,
|
||||
reset_follower_position,
|
||||
sanity_check_dataset_name,
|
||||
sanity_check_dataset_robot_compatibility,
|
||||
stop_recording,
|
||||
@@ -117,7 +118,12 @@ from lerobot.common.robot_devices.control_utils import (
|
||||
from lerobot.common.robot_devices.robots.factory import make_robot
|
||||
from lerobot.common.robot_devices.robots.utils import Robot
|
||||
from lerobot.common.robot_devices.utils import busy_wait, safe_disconnect
|
||||
from lerobot.common.utils.utils import init_hydra_config, init_logging, log_say, none_or_int
|
||||
from lerobot.common.utils.utils import (
|
||||
init_hydra_config,
|
||||
init_logging,
|
||||
log_say,
|
||||
none_or_int,
|
||||
)
|
||||
|
||||
########################################################################################
|
||||
# Control modes
|
||||
@@ -172,7 +178,10 @@ def calibrate(robot: Robot, arms: list[str] | None):
|
||||
|
||||
@safe_disconnect
|
||||
def teleoperate(
|
||||
robot: Robot, fps: int | None = None, teleop_time_s: float | None = None, display_cameras: bool = False
|
||||
robot: Robot,
|
||||
fps: int | None = None,
|
||||
teleop_time_s: float | None = None,
|
||||
display_cameras: bool = False,
|
||||
):
|
||||
control_loop(
|
||||
robot,
|
||||
@@ -191,6 +200,7 @@ def record(
|
||||
single_task: str,
|
||||
pretrained_policy_name_or_path: str | None = None,
|
||||
policy_overrides: List[str] | None = None,
|
||||
assign_rewards: bool = False,
|
||||
fps: int | None = None,
|
||||
warmup_time_s: int | float = 2,
|
||||
episode_time_s: int | float = 10,
|
||||
@@ -204,6 +214,8 @@ def record(
|
||||
num_image_writer_threads_per_camera: int = 4,
|
||||
display_cameras: bool = True,
|
||||
play_sounds: bool = True,
|
||||
reset_follower: bool = False,
|
||||
record_delta_actions: bool = False,
|
||||
resume: bool = False,
|
||||
# TODO(rcadene, aliberts): remove local_files_only when refactor with dataset as argument
|
||||
local_files_only: bool = False,
|
||||
@@ -214,6 +226,14 @@ def record(
|
||||
policy = None
|
||||
device = None
|
||||
use_amp = None
|
||||
extra_features = (
|
||||
{
|
||||
"next.reward": {"dtype": "int64", "shape": (1,), "names": None},
|
||||
"next.done": {"dtype": "bool", "shape": (1,), "names": None},
|
||||
}
|
||||
if assign_rewards
|
||||
else None
|
||||
)
|
||||
|
||||
if single_task:
|
||||
task = single_task
|
||||
@@ -222,11 +242,15 @@ def record(
|
||||
|
||||
# Load pretrained policy
|
||||
if pretrained_policy_name_or_path is not None:
|
||||
policy, policy_fps, device, use_amp = init_policy(pretrained_policy_name_or_path, policy_overrides)
|
||||
policy, policy_fps, device, use_amp = init_policy(
|
||||
pretrained_policy_name_or_path, policy_overrides
|
||||
)
|
||||
|
||||
if fps is None:
|
||||
fps = policy_fps
|
||||
logging.warning(f"No fps provided, so using the fps from policy config ({policy_fps}).")
|
||||
logging.warning(
|
||||
f"No fps provided, so using the fps from policy config ({policy_fps})."
|
||||
)
|
||||
elif fps != policy_fps:
|
||||
logging.warning(
|
||||
f"There is a mismatch between the provided fps ({fps}) and the one from policy config ({policy_fps})."
|
||||
@@ -242,7 +266,9 @@ def record(
|
||||
num_processes=num_image_writer_processes,
|
||||
num_threads=num_image_writer_threads_per_camera * len(robot.cameras),
|
||||
)
|
||||
sanity_check_dataset_robot_compatibility(dataset, robot, fps, video)
|
||||
sanity_check_dataset_robot_compatibility(
|
||||
dataset, robot, fps, video, extra_features
|
||||
)
|
||||
else:
|
||||
# Create empty dataset or load existing saved episodes
|
||||
sanity_check_dataset_name(repo_id, policy)
|
||||
@@ -253,13 +279,17 @@ def record(
|
||||
robot=robot,
|
||||
use_videos=video,
|
||||
image_writer_processes=num_image_writer_processes,
|
||||
image_writer_threads=num_image_writer_threads_per_camera * len(robot.cameras),
|
||||
image_writer_threads=num_image_writer_threads_per_camera
|
||||
* len(robot.cameras),
|
||||
features=extra_features,
|
||||
)
|
||||
|
||||
if not robot.is_connected:
|
||||
robot.connect()
|
||||
listener, events = init_keyboard_listener(assign_rewards=assign_rewards)
|
||||
|
||||
listener, events = init_keyboard_listener()
|
||||
if reset_follower:
|
||||
initial_position = robot.follower_arms["main"].read("Present_Position")
|
||||
|
||||
# Execute a few seconds without recording to:
|
||||
# 1. teleoperate the robot to move it in starting position if no policy provided,
|
||||
@@ -267,7 +297,9 @@ def record(
|
||||
# 3. place the cameras windows on screen
|
||||
enable_teleoperation = policy is None
|
||||
log_say("Warmup record", play_sounds)
|
||||
warmup_record(robot, events, enable_teleoperation, warmup_time_s, display_cameras, fps)
|
||||
warmup_record(
|
||||
robot, events, enable_teleoperation, warmup_time_s, display_cameras, fps
|
||||
)
|
||||
|
||||
if has_method(robot, "teleop_safety_stop"):
|
||||
robot.teleop_safety_stop()
|
||||
@@ -293,6 +325,7 @@ def record(
|
||||
device=device,
|
||||
use_amp=use_amp,
|
||||
fps=fps,
|
||||
record_delta_actions=record_delta_actions,
|
||||
)
|
||||
|
||||
# Execute a few seconds without recording to give time to manually reset the environment
|
||||
@@ -300,9 +333,11 @@ def record(
|
||||
# TODO(rcadene): add an option to enable teleoperation during reset
|
||||
# Skip reset for the last episode to be recorded
|
||||
if not events["stop_recording"] and (
|
||||
(dataset.num_episodes < num_episodes - 1) or events["rerecord_episode"]
|
||||
(recorded_episodes < num_episodes - 1) or events["rerecord_episode"]
|
||||
):
|
||||
log_say("Reset the environment", play_sounds)
|
||||
if reset_follower:
|
||||
reset_follower_position(robot, initial_position)
|
||||
reset_environment(robot, events, reset_time_s)
|
||||
|
||||
if events["rerecord_episode"]:
|
||||
@@ -342,21 +377,26 @@ def replay(
|
||||
fps: int | None = None,
|
||||
play_sounds: bool = True,
|
||||
local_files_only: bool = False,
|
||||
replay_delta_actions: bool = False,
|
||||
):
|
||||
# TODO(rcadene, aliberts): refactor with control_loop, once `dataset` is an instance of LeRobotDataset
|
||||
# TODO(rcadene): Add option to record logs
|
||||
|
||||
dataset = LeRobotDataset(repo_id, root=root, episodes=[episode], local_files_only=local_files_only)
|
||||
dataset = LeRobotDataset(
|
||||
repo_id, root=root, episodes=[episode], local_files_only=local_files_only
|
||||
)
|
||||
actions = dataset.hf_dataset.select_columns("action")
|
||||
|
||||
if not robot.is_connected:
|
||||
robot.connect()
|
||||
|
||||
log_say("Replaying episode", play_sounds, blocking=True)
|
||||
for idx in range(dataset.num_frames):
|
||||
current_joint_positions = robot.follower_arms["main"].read("Present_Position")
|
||||
start_episode_t = time.perf_counter()
|
||||
|
||||
action = actions[idx]["action"]
|
||||
if replay_delta_actions:
|
||||
action = action + current_joint_positions
|
||||
robot.send_action(action)
|
||||
|
||||
dt_s = time.perf_counter() - start_episode_t
|
||||
@@ -395,7 +435,10 @@ if __name__ == "__main__":
|
||||
|
||||
parser_teleop = subparsers.add_parser("teleoperate", parents=[base_parser])
|
||||
parser_teleop.add_argument(
|
||||
"--fps", type=none_or_int, default=None, help="Frames per second (set to None to disable)"
|
||||
"--fps",
|
||||
type=none_or_int,
|
||||
default=None,
|
||||
help="Frames per second (set to None to disable)",
|
||||
)
|
||||
parser_teleop.add_argument(
|
||||
"--display-cameras",
|
||||
@@ -407,7 +450,10 @@ if __name__ == "__main__":
|
||||
parser_record = subparsers.add_parser("record", parents=[base_parser])
|
||||
task_args = parser_record.add_mutually_exclusive_group(required=True)
|
||||
parser_record.add_argument(
|
||||
"--fps", type=none_or_int, default=None, help="Frames per second (set to None to disable)"
|
||||
"--fps",
|
||||
type=none_or_int,
|
||||
default=None,
|
||||
help="Frames per second (set to None to disable)",
|
||||
)
|
||||
task_args.add_argument(
|
||||
"--single-task",
|
||||
@@ -456,7 +502,9 @@ if __name__ == "__main__":
|
||||
default=60,
|
||||
help="Number of seconds for resetting the environment after each episode.",
|
||||
)
|
||||
parser_record.add_argument("--num-episodes", type=int, default=50, help="Number of episodes to record.")
|
||||
parser_record.add_argument(
|
||||
"--num-episodes", type=int, default=50, help="Number of episodes to record."
|
||||
)
|
||||
parser_record.add_argument(
|
||||
"--run-compute-stats",
|
||||
type=int,
|
||||
@@ -469,12 +517,12 @@ if __name__ == "__main__":
|
||||
default=1,
|
||||
help="Upload dataset to Hugging Face hub.",
|
||||
)
|
||||
parser_record.add_argument(
|
||||
"--tags",
|
||||
type=str,
|
||||
nargs="*",
|
||||
help="Add tags to your dataset on the hub.",
|
||||
)
|
||||
# parser_record.add_argument(
|
||||
# "--tags",
|
||||
# type=str,
|
||||
# nargs="*",
|
||||
# help="Add tags to your dataset on the hub.",
|
||||
# )
|
||||
parser_record.add_argument(
|
||||
"--num-image-writer-processes",
|
||||
type=int,
|
||||
@@ -517,10 +565,31 @@ if __name__ == "__main__":
|
||||
nargs="*",
|
||||
help="Any key=value arguments to override config values (use dots for.nested=overrides)",
|
||||
)
|
||||
parser_record.add_argument(
|
||||
"--assign-rewards",
|
||||
type=int,
|
||||
default=0,
|
||||
help="Enables the assignation of rewards to frames (by default no assignation). When enabled, assign a 0 reward to frames until the space bar is pressed which assign a 1 reward. Press the space bar a second time to assign a 0 reward. The reward assigned is reset to 0 when the episode ends.",
|
||||
)
|
||||
parser_record.add_argument(
|
||||
"--record-delta-actions",
|
||||
type=int,
|
||||
default=0,
|
||||
help="Enables the recording of delta actions instead of absolute actions.",
|
||||
)
|
||||
parser_record.add_argument(
|
||||
"--reset-follower",
|
||||
type=int,
|
||||
default=0,
|
||||
help="Resets the follower to the initial position during while reseting the evironment, this is to avoid having the follower start at an awkward position in the next episode",
|
||||
)
|
||||
|
||||
parser_replay = subparsers.add_parser("replay", parents=[base_parser])
|
||||
parser_replay.add_argument(
|
||||
"--fps", type=none_or_int, default=None, help="Frames per second (set to None to disable)"
|
||||
"--fps",
|
||||
type=none_or_int,
|
||||
default=None,
|
||||
help="Frames per second (set to None to disable)",
|
||||
)
|
||||
parser_replay.add_argument(
|
||||
"--root",
|
||||
@@ -540,7 +609,15 @@ if __name__ == "__main__":
|
||||
default=0,
|
||||
help="Use local files only. By default, this script will try to fetch the dataset from the hub if it exists.",
|
||||
)
|
||||
parser_replay.add_argument("--episode", type=int, default=0, help="Index of the episode to replay.")
|
||||
parser_replay.add_argument(
|
||||
"--replay-delta-actions",
|
||||
type=int,
|
||||
default=0,
|
||||
help="Enables the replay of delta actions instead of absolute actions.",
|
||||
)
|
||||
parser_replay.add_argument(
|
||||
"--episode", type=int, default=0, help="Index of the episode to replay."
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
|
||||
@@ -135,7 +135,11 @@ def init_sim_calibration(robot, cfg):
|
||||
axis_directions = np.array(cfg.get("axis_directions", [1]))
|
||||
offsets = np.array(cfg.get("offsets", [0])) * np.pi
|
||||
|
||||
return {"start_pos": start_pos, "axis_directions": axis_directions, "offsets": offsets}
|
||||
return {
|
||||
"start_pos": start_pos,
|
||||
"axis_directions": axis_directions,
|
||||
"offsets": offsets,
|
||||
}
|
||||
|
||||
|
||||
def real_positions_to_sim(real_positions, axis_directions, start_pos, offsets):
|
||||
@@ -156,7 +160,10 @@ def teleoperate(env, robot: Robot, process_action_fn, teleop_time_s=None):
|
||||
leader_pos = robot.leader_arms.main.read("Present_Position")
|
||||
action = process_action_fn(leader_pos)
|
||||
env.step(np.expand_dims(action, 0))
|
||||
if teleop_time_s is not None and time.perf_counter() - start_teleop_t > teleop_time_s:
|
||||
if (
|
||||
teleop_time_s is not None
|
||||
and time.perf_counter() - start_teleop_t > teleop_time_s
|
||||
):
|
||||
print("Teleoperation processes finished.")
|
||||
break
|
||||
|
||||
@@ -183,21 +190,35 @@ def record(
|
||||
resume: bool = False,
|
||||
local_files_only: bool = False,
|
||||
run_compute_stats: bool = True,
|
||||
assign_rewards: bool = False,
|
||||
) -> LeRobotDataset:
|
||||
# Load pretrained policy
|
||||
|
||||
extra_features = (
|
||||
{"next.reward": {"dtype": "int64", "shape": (1,), "names": None}}
|
||||
if assign_rewards
|
||||
else None
|
||||
)
|
||||
|
||||
policy = None
|
||||
if pretrained_policy_name_or_path is not None:
|
||||
policy, policy_fps, device, use_amp = init_policy(pretrained_policy_name_or_path, policy_overrides)
|
||||
policy, policy_fps, device, use_amp = init_policy(
|
||||
pretrained_policy_name_or_path, policy_overrides
|
||||
)
|
||||
|
||||
if fps is None:
|
||||
fps = policy_fps
|
||||
logging.warning(f"No fps provided, so using the fps from policy config ({policy_fps}).")
|
||||
logging.warning(
|
||||
f"No fps provided, so using the fps from policy config ({policy_fps})."
|
||||
)
|
||||
|
||||
if policy is None and process_action_from_leader is None:
|
||||
raise ValueError("Either policy or process_action_fn has to be set to enable control in sim.")
|
||||
raise ValueError(
|
||||
"Either policy or process_action_fn has to be set to enable control in sim."
|
||||
)
|
||||
|
||||
# initialize listener before sim env
|
||||
listener, events = init_keyboard_listener()
|
||||
listener, events = init_keyboard_listener(assign_rewards=assign_rewards)
|
||||
|
||||
# create sim env
|
||||
env = env()
|
||||
@@ -227,7 +248,11 @@ def record(
|
||||
shape = env.observation_space[key].shape
|
||||
if not key.startswith("observation.image."):
|
||||
key = "observation.image." + key
|
||||
features[key] = {"dtype": "video", "names": ["channel", "height", "width"], "shape": shape}
|
||||
features[key] = {
|
||||
"dtype": "video",
|
||||
"names": ["channel", "height", "width"],
|
||||
"shape": shape,
|
||||
}
|
||||
|
||||
for key, obs_key in state_keys_dict.items():
|
||||
features[key] = {
|
||||
@@ -236,7 +261,12 @@ def record(
|
||||
"shape": env.observation_space[obs_key].shape,
|
||||
}
|
||||
|
||||
features["action"] = {"dtype": "float32", "shape": env.action_space.shape, "names": None}
|
||||
features["action"] = {
|
||||
"dtype": "float32",
|
||||
"shape": env.action_space.shape,
|
||||
"names": None,
|
||||
}
|
||||
features = {**features, **extra_features}
|
||||
|
||||
# Create empty dataset or load existing saved episodes
|
||||
sanity_check_dataset_name(repo_id, policy)
|
||||
@@ -288,6 +318,13 @@ def record(
|
||||
"timestamp": env_timestamp,
|
||||
}
|
||||
|
||||
# Overwrite environment reward with manually assigned reward
|
||||
if assign_rewards:
|
||||
frame["next.reward"] = events["next.reward"]
|
||||
|
||||
# Should success always be false to match what we do in control_utils?
|
||||
frame["next.success"] = False
|
||||
|
||||
for key in image_keys:
|
||||
if not key.startswith("observation.image"):
|
||||
frame["observation.image." + key] = observation[key]
|
||||
@@ -329,7 +366,9 @@ def record(
|
||||
if events["stop_recording"] or recorded_episodes >= num_episodes:
|
||||
break
|
||||
else:
|
||||
logging.info("Waiting for a few seconds before starting next episode recording...")
|
||||
logging.info(
|
||||
"Waiting for a few seconds before starting next episode recording..."
|
||||
)
|
||||
busy_wait(3)
|
||||
|
||||
log_say("Stop recording", play_sounds, blocking=True)
|
||||
@@ -347,7 +386,12 @@ def record(
|
||||
|
||||
|
||||
def replay(
|
||||
env, root: Path, repo_id: str, episode: int, fps: int | None = None, local_files_only: bool = True
|
||||
env,
|
||||
root: Path,
|
||||
repo_id: str,
|
||||
episode: int,
|
||||
fps: int | None = None,
|
||||
local_files_only: bool = True,
|
||||
):
|
||||
env = env()
|
||||
|
||||
@@ -394,7 +438,10 @@ if __name__ == "__main__":
|
||||
|
||||
parser_record = subparsers.add_parser("record", parents=[base_parser])
|
||||
parser_record.add_argument(
|
||||
"--fps", type=none_or_int, default=None, help="Frames per second (set to None to disable)"
|
||||
"--fps",
|
||||
type=none_or_int,
|
||||
default=None,
|
||||
help="Frames per second (set to None to disable)",
|
||||
)
|
||||
parser_record.add_argument(
|
||||
"--root",
|
||||
@@ -420,7 +467,9 @@ if __name__ == "__main__":
|
||||
required=True,
|
||||
help="A description of the task preformed during recording that can be used as a language instruction.",
|
||||
)
|
||||
parser_record.add_argument("--num-episodes", type=int, default=50, help="Number of episodes to record.")
|
||||
parser_record.add_argument(
|
||||
"--num-episodes", type=int, default=50, help="Number of episodes to record."
|
||||
)
|
||||
parser_record.add_argument(
|
||||
"--run-compute-stats",
|
||||
type=int,
|
||||
@@ -472,9 +521,19 @@ if __name__ == "__main__":
|
||||
default=0,
|
||||
help="Resume recording on an existing dataset.",
|
||||
)
|
||||
parser_record.add_argument(
|
||||
"--assign-rewards",
|
||||
type=int,
|
||||
default=0,
|
||||
help="Enables the assignation of rewards to frames (by default no assignation). When enabled, assign a 0 reward to frames until the space bar is pressed which assign a 1 reward. Press the space bar a second time to assign a 0 reward. The reward assigned is reset to 0 when the episode ends.",
|
||||
)
|
||||
|
||||
parser_replay = subparsers.add_parser("replay", parents=[base_parser])
|
||||
parser_replay.add_argument(
|
||||
"--fps", type=none_or_int, default=None, help="Frames per second (set to None to disable)"
|
||||
"--fps",
|
||||
type=none_or_int,
|
||||
default=None,
|
||||
help="Frames per second (set to None to disable)",
|
||||
)
|
||||
parser_replay.add_argument(
|
||||
"--root",
|
||||
@@ -488,7 +547,9 @@ if __name__ == "__main__":
|
||||
default="lerobot/test",
|
||||
help="Dataset identifier. By convention it should match '{hf_username}/{dataset_name}' (e.g. `lerobot/test`).",
|
||||
)
|
||||
parser_replay.add_argument("--episode", type=int, default=0, help="Index of the episodes to replay.")
|
||||
parser_replay.add_argument(
|
||||
"--episode", type=int, default=0, help="Index of the episodes to replay."
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
|
||||
@@ -59,7 +59,11 @@ np_version = np.__version__ if HAS_NP else "N/A"
|
||||
|
||||
torch_version = torch.__version__ if HAS_TORCH else "N/A"
|
||||
torch_cuda_available = torch.cuda.is_available() if HAS_TORCH else "N/A"
|
||||
cuda_version = torch._C._cuda_getCompiledVersion() if HAS_TORCH and torch.version.cuda is not None else "N/A"
|
||||
cuda_version = (
|
||||
torch._C._cuda_getCompiledVersion()
|
||||
if HAS_TORCH and torch.version.cuda is not None
|
||||
else "N/A"
|
||||
)
|
||||
|
||||
|
||||
# TODO(aliberts): refactor into an actual command `lerobot env`
|
||||
@@ -77,7 +81,9 @@ def display_sys_info() -> dict:
|
||||
"Using GPU in script?": "<fill in>",
|
||||
# "Using distributed or parallel set-up in script?": "<fill in>",
|
||||
}
|
||||
print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the last point.\n")
|
||||
print(
|
||||
"\nCopy-and-paste the text below in your GitHub issue and FILL OUT the last point.\n"
|
||||
)
|
||||
print(format_dict(info))
|
||||
return info
|
||||
|
||||
|
||||
@@ -149,7 +149,9 @@ def rollout(
|
||||
if return_observations:
|
||||
all_observations.append(deepcopy(observation))
|
||||
|
||||
observation = {key: observation[key].to(device, non_blocking=True) for key in observation}
|
||||
observation = {
|
||||
key: observation[key].to(device, non_blocking=True) for key in observation
|
||||
}
|
||||
|
||||
with torch.inference_mode():
|
||||
action = policy.select_action(observation)
|
||||
@@ -166,7 +168,10 @@ def rollout(
|
||||
# VectorEnv stores is_success in `info["final_info"][env_index]["is_success"]`. "final_info" isn't
|
||||
# available of none of the envs finished.
|
||||
if "final_info" in info:
|
||||
successes = [info["is_success"] if info is not None else False for info in info["final_info"]]
|
||||
successes = [
|
||||
info["is_success"] if info is not None else False
|
||||
for info in info["final_info"]
|
||||
]
|
||||
else:
|
||||
successes = [False] * env.num_envs
|
||||
|
||||
@@ -180,9 +185,13 @@ def rollout(
|
||||
|
||||
step += 1
|
||||
running_success_rate = (
|
||||
einops.reduce(torch.stack(all_successes, dim=1), "b n -> b", "any").numpy().mean()
|
||||
einops.reduce(torch.stack(all_successes, dim=1), "b n -> b", "any")
|
||||
.numpy()
|
||||
.mean()
|
||||
)
|
||||
progbar.set_postfix(
|
||||
{"running_success_rate": f"{running_success_rate.item() * 100:.1f}%"}
|
||||
)
|
||||
progbar.set_postfix({"running_success_rate": f"{running_success_rate.item() * 100:.1f}%"})
|
||||
progbar.update()
|
||||
|
||||
# Track the final observation.
|
||||
@@ -200,7 +209,9 @@ def rollout(
|
||||
if return_observations:
|
||||
stacked_observations = {}
|
||||
for key in all_observations[0]:
|
||||
stacked_observations[key] = torch.stack([obs[key] for obs in all_observations], dim=1)
|
||||
stacked_observations[key] = torch.stack(
|
||||
[obs[key] for obs in all_observations], dim=1
|
||||
)
|
||||
ret["observation"] = stacked_observations
|
||||
|
||||
return ret
|
||||
@@ -255,7 +266,9 @@ def eval_policy(
|
||||
return
|
||||
n_to_render_now = min(max_episodes_rendered - n_episodes_rendered, env.num_envs)
|
||||
if isinstance(env, gym.vector.SyncVectorEnv):
|
||||
ep_frames.append(np.stack([env.envs[i].render() for i in range(n_to_render_now)])) # noqa: B023
|
||||
ep_frames.append(
|
||||
np.stack([env.envs[i].render() for i in range(n_to_render_now)])
|
||||
) # noqa: B023
|
||||
elif isinstance(env, gym.vector.AsyncVectorEnv):
|
||||
# Here we must render all frames and discard any we don't need.
|
||||
ep_frames.append(np.stack(env.call("render")[:n_to_render_now]))
|
||||
@@ -267,7 +280,9 @@ def eval_policy(
|
||||
episode_data: dict | None = None
|
||||
|
||||
# we dont want progress bar when we use slurm, since it clutters the logs
|
||||
progbar = trange(n_batches, desc="Stepping through eval batches", disable=inside_slurm())
|
||||
progbar = trange(
|
||||
n_batches, desc="Stepping through eval batches", disable=inside_slurm()
|
||||
)
|
||||
for batch_ix in progbar:
|
||||
# Cache frames for rendering videos. Each item will be (b, h, w, c), and the list indexes the rollout
|
||||
# step.
|
||||
@@ -278,7 +293,8 @@ def eval_policy(
|
||||
seeds = None
|
||||
else:
|
||||
seeds = range(
|
||||
start_seed + (batch_ix * env.num_envs), start_seed + ((batch_ix + 1) * env.num_envs)
|
||||
start_seed + (batch_ix * env.num_envs),
|
||||
start_seed + ((batch_ix + 1) * env.num_envs),
|
||||
)
|
||||
rollout_data = rollout(
|
||||
env,
|
||||
@@ -296,13 +312,22 @@ def eval_policy(
|
||||
|
||||
# Make a mask with shape (batch, n_steps) to mask out rollout data after the first done
|
||||
# (batch-element-wise). Note the `done_indices + 1` to make sure to keep the data from the done step.
|
||||
mask = (torch.arange(n_steps) <= einops.repeat(done_indices + 1, "b -> b s", s=n_steps)).int()
|
||||
mask = (
|
||||
torch.arange(n_steps)
|
||||
<= einops.repeat(done_indices + 1, "b -> b s", s=n_steps)
|
||||
).int()
|
||||
# Extend metrics.
|
||||
batch_sum_rewards = einops.reduce((rollout_data["reward"] * mask), "b n -> b", "sum")
|
||||
batch_sum_rewards = einops.reduce(
|
||||
(rollout_data["reward"] * mask), "b n -> b", "sum"
|
||||
)
|
||||
sum_rewards.extend(batch_sum_rewards.tolist())
|
||||
batch_max_rewards = einops.reduce((rollout_data["reward"] * mask), "b n -> b", "max")
|
||||
batch_max_rewards = einops.reduce(
|
||||
(rollout_data["reward"] * mask), "b n -> b", "max"
|
||||
)
|
||||
max_rewards.extend(batch_max_rewards.tolist())
|
||||
batch_successes = einops.reduce((rollout_data["success"] * mask), "b n -> b", "any")
|
||||
batch_successes = einops.reduce(
|
||||
(rollout_data["success"] * mask), "b n -> b", "any"
|
||||
)
|
||||
all_successes.extend(batch_successes.tolist())
|
||||
if seeds:
|
||||
all_seeds.extend(seeds)
|
||||
@@ -315,17 +340,27 @@ def eval_policy(
|
||||
rollout_data,
|
||||
done_indices,
|
||||
start_episode_index=batch_ix * env.num_envs,
|
||||
start_data_index=(0 if episode_data is None else (episode_data["index"][-1].item() + 1)),
|
||||
start_data_index=(
|
||||
0
|
||||
if episode_data is None
|
||||
else (episode_data["index"][-1].item() + 1)
|
||||
),
|
||||
fps=env.unwrapped.metadata["render_fps"],
|
||||
)
|
||||
if episode_data is None:
|
||||
episode_data = this_episode_data
|
||||
else:
|
||||
# Some sanity checks to make sure we are correctly compiling the data.
|
||||
assert episode_data["episode_index"][-1] + 1 == this_episode_data["episode_index"][0]
|
||||
assert (
|
||||
episode_data["episode_index"][-1] + 1
|
||||
== this_episode_data["episode_index"][0]
|
||||
)
|
||||
assert episode_data["index"][-1] + 1 == this_episode_data["index"][0]
|
||||
# Concatenate the episode data.
|
||||
episode_data = {k: torch.cat([episode_data[k], this_episode_data[k]]) for k in episode_data}
|
||||
episode_data = {
|
||||
k: torch.cat([episode_data[k], this_episode_data[k]])
|
||||
for k in episode_data
|
||||
}
|
||||
|
||||
# Maybe render video for visualization.
|
||||
if max_episodes_rendered > 0 and len(ep_frames) > 0:
|
||||
@@ -343,7 +378,9 @@ def eval_policy(
|
||||
target=write_video,
|
||||
args=(
|
||||
str(video_path),
|
||||
stacked_frames[: done_index + 1], # + 1 to capture the last observation
|
||||
stacked_frames[
|
||||
: done_index + 1
|
||||
], # + 1 to capture the last observation
|
||||
env.unwrapped.metadata["render_fps"],
|
||||
),
|
||||
)
|
||||
@@ -352,7 +389,9 @@ def eval_policy(
|
||||
n_episodes_rendered += 1
|
||||
|
||||
progbar.set_postfix(
|
||||
{"running_success_rate": f"{np.mean(all_successes[:n_episodes]).item() * 100:.1f}%"}
|
||||
{
|
||||
"running_success_rate": f"{np.mean(all_successes[:n_episodes]).item() * 100:.1f}%"
|
||||
}
|
||||
)
|
||||
|
||||
# Wait till all video rendering threads are done.
|
||||
@@ -398,7 +437,11 @@ def eval_policy(
|
||||
|
||||
|
||||
def _compile_episode_data(
|
||||
rollout_data: dict, done_indices: Tensor, start_episode_index: int, start_data_index: int, fps: float
|
||||
rollout_data: dict,
|
||||
done_indices: Tensor,
|
||||
start_episode_index: int,
|
||||
start_data_index: int,
|
||||
fps: float,
|
||||
) -> dict:
|
||||
"""Convenience function for `eval_policy(return_episode_data=True)`
|
||||
|
||||
@@ -416,12 +459,16 @@ def _compile_episode_data(
|
||||
# Here we do `num_frames - 1` as we don't want to include the last observation frame just yet.
|
||||
ep_dict = {
|
||||
"action": rollout_data["action"][ep_ix, : num_frames - 1],
|
||||
"episode_index": torch.tensor([start_episode_index + ep_ix] * (num_frames - 1)),
|
||||
"episode_index": torch.tensor(
|
||||
[start_episode_index + ep_ix] * (num_frames - 1)
|
||||
),
|
||||
"frame_index": torch.arange(0, num_frames - 1, 1),
|
||||
"timestamp": torch.arange(0, num_frames - 1, 1) / fps,
|
||||
"next.done": rollout_data["done"][ep_ix, : num_frames - 1],
|
||||
"next.success": rollout_data["success"][ep_ix, : num_frames - 1],
|
||||
"next.reward": rollout_data["reward"][ep_ix, : num_frames - 1].type(torch.float32),
|
||||
"next.reward": rollout_data["reward"][ep_ix, : num_frames - 1].type(
|
||||
torch.float32
|
||||
),
|
||||
}
|
||||
|
||||
# For the last observation frame, all other keys will just be copy padded.
|
||||
@@ -437,7 +484,9 @@ def _compile_episode_data(
|
||||
for key in ep_dicts[0]:
|
||||
data_dict[key] = torch.cat([x[key] for x in ep_dicts])
|
||||
|
||||
data_dict["index"] = torch.arange(start_data_index, start_data_index + total_frames, 1)
|
||||
data_dict["index"] = torch.arange(
|
||||
start_data_index, start_data_index + total_frames, 1
|
||||
)
|
||||
|
||||
return data_dict
|
||||
|
||||
@@ -450,7 +499,9 @@ def main(
|
||||
):
|
||||
assert (pretrained_policy_path is None) ^ (hydra_cfg_path is None)
|
||||
if pretrained_policy_path is not None:
|
||||
hydra_cfg = init_hydra_config(str(pretrained_policy_path / "config.yaml"), config_overrides)
|
||||
hydra_cfg = init_hydra_config(
|
||||
str(pretrained_policy_path / "config.yaml"), config_overrides
|
||||
)
|
||||
else:
|
||||
hydra_cfg = init_hydra_config(hydra_cfg_path, config_overrides)
|
||||
|
||||
@@ -481,15 +532,23 @@ def main(
|
||||
|
||||
logging.info("Making policy.")
|
||||
if hydra_cfg_path is None:
|
||||
policy = make_policy(hydra_cfg=hydra_cfg, pretrained_policy_name_or_path=str(pretrained_policy_path))
|
||||
policy = make_policy(
|
||||
hydra_cfg=hydra_cfg,
|
||||
pretrained_policy_name_or_path=str(pretrained_policy_path),
|
||||
)
|
||||
else:
|
||||
# Note: We need the dataset stats to pass to the policy's normalization modules.
|
||||
policy = make_policy(hydra_cfg=hydra_cfg, dataset_stats=make_dataset(hydra_cfg).meta.stats)
|
||||
policy = make_policy(
|
||||
hydra_cfg=hydra_cfg, dataset_stats=make_dataset(hydra_cfg).meta.stats
|
||||
)
|
||||
|
||||
assert isinstance(policy, nn.Module)
|
||||
policy.eval()
|
||||
|
||||
with torch.no_grad(), torch.autocast(device_type=device.type) if hydra_cfg.use_amp else nullcontext():
|
||||
with (
|
||||
torch.no_grad(),
|
||||
torch.autocast(device_type=device.type) if hydra_cfg.use_amp else nullcontext(),
|
||||
):
|
||||
info = eval_policy(
|
||||
env,
|
||||
policy,
|
||||
@@ -511,16 +570,14 @@ def main(
|
||||
|
||||
def get_pretrained_policy_path(pretrained_policy_name_or_path, revision=None):
|
||||
try:
|
||||
pretrained_policy_path = Path(snapshot_download(pretrained_policy_name_or_path, revision=revision))
|
||||
pretrained_policy_path = Path(
|
||||
snapshot_download(pretrained_policy_name_or_path, revision=revision)
|
||||
)
|
||||
except (HFValidationError, RepositoryNotFoundError) as e:
|
||||
if isinstance(e, HFValidationError):
|
||||
error_message = (
|
||||
"The provided pretrained_policy_name_or_path is not a valid Hugging Face Hub repo ID."
|
||||
)
|
||||
error_message = "The provided pretrained_policy_name_or_path is not a valid Hugging Face Hub repo ID."
|
||||
else:
|
||||
error_message = (
|
||||
"The provided pretrained_policy_name_or_path was not found on the Hugging Face Hub."
|
||||
)
|
||||
error_message = "The provided pretrained_policy_name_or_path was not found on the Hugging Face Hub."
|
||||
|
||||
logging.warning(f"{error_message} Treating it as a local directory.")
|
||||
pretrained_policy_path = Path(pretrained_policy_name_or_path)
|
||||
@@ -555,7 +612,9 @@ if __name__ == "__main__":
|
||||
"debugging). This argument is mutually exclusive with `--pretrained-policy-name-or-path` (`-p`)."
|
||||
),
|
||||
)
|
||||
parser.add_argument("--revision", help="Optionally provide the Hugging Face Hub revision ID.")
|
||||
parser.add_argument(
|
||||
"--revision", help="Optionally provide the Hugging Face Hub revision ID."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--out-dir",
|
||||
help=(
|
||||
@@ -571,7 +630,11 @@ if __name__ == "__main__":
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.pretrained_policy_name_or_path is None:
|
||||
main(hydra_cfg_path=args.config, out_dir=args.out_dir, config_overrides=args.overrides)
|
||||
main(
|
||||
hydra_cfg_path=args.config,
|
||||
out_dir=args.out_dir,
|
||||
config_overrides=args.overrides,
|
||||
)
|
||||
else:
|
||||
pretrained_policy_path = get_pretrained_policy_path(
|
||||
args.pretrained_policy_name_or_path, revision=args.revision
|
||||
|
||||
426
lerobot/scripts/eval_on_robot.py
Normal file
426
lerobot/scripts/eval_on_robot.py
Normal file
@@ -0,0 +1,426 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Evaluate a policy by running rollouts on the real robot and computing metrics.
|
||||
|
||||
Usage examples: evaluate a checkpoint from the LeRobot training script for 10 episodes.
|
||||
|
||||
```
|
||||
python lerobot/scripts/eval_on_robot.py \
|
||||
-p outputs/train/model/checkpoints/005000/pretrained_model \
|
||||
eval.n_episodes=10
|
||||
```
|
||||
|
||||
Test reward classifier with teleoperation (you need to press space to take over)
|
||||
```
|
||||
python lerobot/scripts/eval_on_robot.py \
|
||||
--robot-path lerobot/configs/robot/so100.yaml \
|
||||
--reward-classifier-pretrained-path outputs/classifier/checkpoints/best/pretrained_model \
|
||||
--reward-classifier-config-file lerobot/configs/policy/hilserl_classifier.yaml \
|
||||
--display-cameras 1
|
||||
```
|
||||
|
||||
**NOTE** (michel-aractingi): This script is incomplete and it is being prepared
|
||||
for running training on the real robot.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import time
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
from tqdm import trange
|
||||
|
||||
from lerobot.common.policies.policy_protocol import Policy
|
||||
from lerobot.common.robot_devices.control_utils import (
|
||||
busy_wait,
|
||||
is_headless,
|
||||
reset_follower_position,
|
||||
)
|
||||
from lerobot.common.robot_devices.robots.factory import Robot, make_robot
|
||||
from lerobot.common.utils.utils import (
|
||||
init_hydra_config,
|
||||
init_logging,
|
||||
log_say,
|
||||
)
|
||||
|
||||
|
||||
def get_classifier(pretrained_path, config_path):
|
||||
if pretrained_path is None or config_path is None:
|
||||
return
|
||||
|
||||
from lerobot.common.policies.factory import _policy_cfg_from_hydra_cfg
|
||||
from lerobot.common.policies.hilserl.classifier.configuration_classifier import (
|
||||
ClassifierConfig,
|
||||
)
|
||||
from lerobot.common.policies.hilserl.classifier.modeling_classifier import (
|
||||
Classifier,
|
||||
)
|
||||
|
||||
cfg = init_hydra_config(config_path)
|
||||
|
||||
classifier_config = _policy_cfg_from_hydra_cfg(ClassifierConfig, cfg)
|
||||
classifier_config.num_cameras = len(
|
||||
cfg.training.image_keys
|
||||
) # TODO automate these paths
|
||||
model = Classifier(classifier_config)
|
||||
model.load_state_dict(Classifier.from_pretrained(pretrained_path).state_dict())
|
||||
model = model.to("mps")
|
||||
return model
|
||||
|
||||
|
||||
def rollout(
|
||||
robot: Robot,
|
||||
policy: Policy,
|
||||
reward_classifier,
|
||||
fps: int,
|
||||
control_time_s: float = 20,
|
||||
use_amp: bool = True,
|
||||
display_cameras: bool = False,
|
||||
) -> dict:
|
||||
"""Run a batched policy rollout on the real robot.
|
||||
|
||||
The return dictionary contains:
|
||||
"robot": A a dictionary of (batch, sequence + 1, *) tensors mapped to observation
|
||||
keys. NOTE the that this has an extra sequence element relative to the other keys in the
|
||||
dictionary. This is because an extra observation is included for after the environment is
|
||||
terminated or truncated.
|
||||
"action": A (batch, sequence, action_dim) tensor of actions applied based on the observations (not
|
||||
including the last observations).
|
||||
"reward": A (batch, sequence) tensor of rewards received for applying the actions.
|
||||
"success": A (batch, sequence) tensor of success conditions (the only time this can be True is upon
|
||||
environment termination/truncation).
|
||||
"done": A (batch, sequence) tensor of **cumulative** done conditions. For any given batch element,
|
||||
the first True is followed by True's all the way till the end. This can be used for masking
|
||||
extraneous elements from the sequences above.
|
||||
|
||||
Args:
|
||||
robot: The robot class that defines the interface with the real robot.
|
||||
policy: The policy. Must be a PyTorch nn module.
|
||||
|
||||
Returns:
|
||||
The dictionary described above.
|
||||
"""
|
||||
# TODO (michel-aractingi): Infer the device from policy parameters when policy is added
|
||||
# assert isinstance(policy, nn.Module), "Policy must be a PyTorch nn module."
|
||||
# device = get_device_from_parameters(policy)
|
||||
|
||||
# define keyboard listener
|
||||
listener, events = init_keyboard_listener()
|
||||
|
||||
# Reset the policy. TODO (michel-aractingi) add real policy evaluation once the code is ready.
|
||||
# policy.reset()
|
||||
|
||||
# NOTE: sorting to make sure the key sequence is the same during training and testing.
|
||||
observation = robot.capture_observation()
|
||||
image_keys = [key for key in observation if "image" in key]
|
||||
image_keys.sort()
|
||||
|
||||
all_actions = []
|
||||
all_rewards = []
|
||||
all_successes = []
|
||||
|
||||
start_episode_t = time.perf_counter()
|
||||
init_pos = robot.follower_arms["main"].read("Present_Position")
|
||||
timestamp = 0.0
|
||||
while timestamp < control_time_s:
|
||||
start_loop_t = time.perf_counter()
|
||||
|
||||
# Apply the next action.
|
||||
while events["pause_policy"] and not events["human_intervention_step"]:
|
||||
busy_wait(0.5)
|
||||
|
||||
if events["human_intervention_step"]:
|
||||
# take over the robot's actions
|
||||
observation, action = robot.teleop_step(record_data=True)
|
||||
action = action["action"] # teleop step returns torch tensors but in a dict
|
||||
else:
|
||||
# explore with policy
|
||||
with torch.inference_mode():
|
||||
# TODO (michel-aractingi) replace this part with policy (predict_action)
|
||||
action = robot.follower_arms["main"].read("Present_Position")
|
||||
action = torch.from_numpy(action)
|
||||
robot.send_action(action)
|
||||
# action = predict_action(observation, policy, device, use_amp)
|
||||
|
||||
observation = robot.capture_observation()
|
||||
images = []
|
||||
for key in image_keys:
|
||||
if display_cameras:
|
||||
cv2.imshow(
|
||||
key, cv2.cvtColor(observation[key].numpy(), cv2.COLOR_RGB2BGR)
|
||||
)
|
||||
cv2.waitKey(1)
|
||||
images.append(observation[key].to("mps"))
|
||||
|
||||
reward = (
|
||||
reward_classifier.predict_reward(images)
|
||||
if reward_classifier is not None
|
||||
else 0.0
|
||||
)
|
||||
all_rewards.append(reward)
|
||||
|
||||
# print("REWARD : ", reward)
|
||||
|
||||
all_actions.append(action)
|
||||
all_successes.append(torch.tensor([False]))
|
||||
|
||||
dt_s = time.perf_counter() - start_loop_t
|
||||
busy_wait(1 / fps - dt_s)
|
||||
timestamp = time.perf_counter() - start_episode_t
|
||||
if events["exit_early"]:
|
||||
events["exit_early"] = False
|
||||
events["human_intervention_step"] = False
|
||||
events["pause_policy"] = False
|
||||
break
|
||||
|
||||
reset_follower_position(robot, target_position=init_pos)
|
||||
|
||||
dones = torch.tensor([False] * len(all_actions))
|
||||
dones[-1] = True
|
||||
# Stack the sequence along the first dimension so that we have (batch, sequence, *) tensors.
|
||||
ret = {
|
||||
"action": torch.stack(all_actions, dim=1),
|
||||
"next.reward": torch.stack(all_rewards, dim=1),
|
||||
"next.success": torch.stack(all_successes, dim=1),
|
||||
"done": dones,
|
||||
}
|
||||
|
||||
listener.stop()
|
||||
|
||||
return ret
|
||||
|
||||
|
||||
def eval_policy(
|
||||
robot: Robot,
|
||||
policy: torch.nn.Module,
|
||||
fps: float,
|
||||
n_episodes: int,
|
||||
control_time_s: int = 20,
|
||||
use_amp: bool = True,
|
||||
display_cameras: bool = False,
|
||||
reward_classifier_pretrained_path: str | None = None,
|
||||
reward_classifier_config_file: str | None = None,
|
||||
) -> dict:
|
||||
"""
|
||||
Args:
|
||||
env: The batch of environments.
|
||||
policy: The policy.
|
||||
n_episodes: The number of episodes to evaluate.
|
||||
Returns:
|
||||
Dictionary with metrics and data regarding the rollouts.
|
||||
"""
|
||||
# TODO (michel-aractingi) comment this out for testing with a fixed policy
|
||||
# assert isinstance(policy, Policy)
|
||||
# policy.eval()
|
||||
|
||||
sum_rewards = []
|
||||
max_rewards = []
|
||||
successes = []
|
||||
rollouts = []
|
||||
|
||||
start_eval = time.perf_counter()
|
||||
progbar = trange(n_episodes, desc="Evaluating policy on real robot")
|
||||
reward_classifier = get_classifier(
|
||||
reward_classifier_pretrained_path, reward_classifier_config_file
|
||||
)
|
||||
|
||||
for _ in progbar:
|
||||
rollout_data = rollout(
|
||||
robot,
|
||||
policy,
|
||||
reward_classifier,
|
||||
fps,
|
||||
control_time_s,
|
||||
use_amp,
|
||||
display_cameras,
|
||||
)
|
||||
|
||||
rollouts.append(rollout_data)
|
||||
sum_rewards.append(sum(rollout_data["next.reward"]))
|
||||
max_rewards.append(max(rollout_data["next.reward"]))
|
||||
successes.append(rollout_data["next.success"][-1])
|
||||
|
||||
info = {
|
||||
"per_episode": [
|
||||
{
|
||||
"episode_ix": i,
|
||||
"sum_reward": sum_reward,
|
||||
"max_reward": max_reward,
|
||||
"pc_success": success * 100,
|
||||
}
|
||||
for i, (sum_reward, max_reward, success) in enumerate(
|
||||
zip(
|
||||
sum_rewards[:n_episodes],
|
||||
max_rewards[:n_episodes],
|
||||
successes[:n_episodes],
|
||||
strict=False,
|
||||
)
|
||||
)
|
||||
],
|
||||
"aggregated": {
|
||||
"avg_sum_reward": float(np.nanmean(torch.cat(sum_rewards[:n_episodes]))),
|
||||
"avg_max_reward": float(np.nanmean(torch.cat(max_rewards[:n_episodes]))),
|
||||
"pc_success": float(np.nanmean(torch.cat(successes[:n_episodes])) * 100),
|
||||
"eval_s": time.time() - start_eval,
|
||||
"eval_ep_s": (time.time() - start_eval) / n_episodes,
|
||||
},
|
||||
}
|
||||
|
||||
if robot.is_connected:
|
||||
robot.disconnect()
|
||||
|
||||
return info
|
||||
|
||||
|
||||
def init_keyboard_listener():
|
||||
# Allow to exit early while recording an episode or resetting the environment,
|
||||
# by tapping the right arrow key '->'. This might require a sudo permission
|
||||
# to allow your terminal to monitor keyboard events.
|
||||
events = {}
|
||||
events["exit_early"] = False
|
||||
events["rerecord_episode"] = False
|
||||
events["pause_policy"] = False
|
||||
events["human_intervention_step"] = False
|
||||
|
||||
if is_headless():
|
||||
logging.warning(
|
||||
"Headless environment detected. On-screen cameras display and keyboard inputs will not be available."
|
||||
)
|
||||
listener = None
|
||||
return listener, events
|
||||
|
||||
# Only import pynput if not in a headless environment
|
||||
from pynput import keyboard
|
||||
|
||||
def on_press(key):
|
||||
try:
|
||||
if key == keyboard.Key.right:
|
||||
print("Right arrow key pressed. Exiting loop...")
|
||||
events["exit_early"] = True
|
||||
elif key == keyboard.Key.left:
|
||||
print(
|
||||
"Left arrow key pressed. Exiting loop and rerecord the last episode..."
|
||||
)
|
||||
events["rerecord_episode"] = True
|
||||
events["exit_early"] = True
|
||||
elif key == keyboard.Key.space:
|
||||
# check if first space press then pause the policy for the user to get ready
|
||||
# if second space press then the user is ready to start intervention
|
||||
if not events["pause_policy"]:
|
||||
print(
|
||||
"Space key pressed. Human intervention required.\n"
|
||||
"Place the leader in similar pose to the follower and press space again."
|
||||
)
|
||||
events["pause_policy"] = True
|
||||
log_say(
|
||||
"Human intervention stage. Get ready to take over.",
|
||||
play_sounds=True,
|
||||
)
|
||||
else:
|
||||
events["human_intervention_step"] = True
|
||||
print("Space key pressed. Human intervention starting.")
|
||||
log_say("Starting human intervention.", play_sounds=True)
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error handling key press: {e}")
|
||||
|
||||
listener = keyboard.Listener(on_press=on_press)
|
||||
listener.start()
|
||||
|
||||
return listener, events
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
init_logging()
|
||||
|
||||
parser = argparse.ArgumentParser(
|
||||
description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter
|
||||
)
|
||||
group = parser.add_mutually_exclusive_group(required=True)
|
||||
group.add_argument(
|
||||
"--robot-path",
|
||||
type=str,
|
||||
default="lerobot/configs/robot/koch.yaml",
|
||||
help="Path to robot yaml file used to instantiate the robot using `make_robot` factory function.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--robot-overrides",
|
||||
type=str,
|
||||
nargs="*",
|
||||
help="Any key=value arguments to override config values (use dots for.nested=overrides)",
|
||||
)
|
||||
group.add_argument(
|
||||
"-p",
|
||||
"--pretrained-policy-name-or-path",
|
||||
help=(
|
||||
"Either the repo ID of a model hosted on the Hub or a path to a directory containing weights "
|
||||
"saved using `Policy.save_pretrained`. If not provided, the policy is initialized from scratch "
|
||||
"(useful for debugging). This argument is mutually exclusive with `--config`."
|
||||
),
|
||||
)
|
||||
group.add_argument(
|
||||
"--config",
|
||||
help=(
|
||||
"Path to a yaml config you want to use for initializing a policy from scratch (useful for "
|
||||
"debugging). This argument is mutually exclusive with `--pretrained-policy-name-or-path` (`-p`)."
|
||||
),
|
||||
)
|
||||
parser.add_argument(
|
||||
"--revision", help="Optionally provide the Hugging Face Hub revision ID."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--out-dir",
|
||||
help=(
|
||||
"Where to save the evaluation outputs. If not provided, outputs are saved in "
|
||||
"outputs/eval/{timestamp}_{env_name}_{policy_name}"
|
||||
),
|
||||
)
|
||||
parser.add_argument(
|
||||
"--display-cameras",
|
||||
help=("Whether to display the camera feed while the rollout is happening"),
|
||||
)
|
||||
parser.add_argument(
|
||||
"--reward-classifier-pretrained-path",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to the pretrained classifier weights.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--reward-classifier-config-file",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to a yaml config file that is necessary to build the reward classifier model.",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
robot_cfg = init_hydra_config(args.robot_path, args.robot_overrides)
|
||||
robot = make_robot(robot_cfg)
|
||||
if not robot.is_connected:
|
||||
robot.connect()
|
||||
|
||||
eval_policy(
|
||||
robot,
|
||||
None,
|
||||
fps=40,
|
||||
n_episodes=2,
|
||||
control_time_s=100,
|
||||
display_cameras=args.display_cameras,
|
||||
reward_classifier_config_file=args.reward_classifier_config_file,
|
||||
reward_classifier_pretrained_path=args.reward_classifier_pretrained_path,
|
||||
)
|
||||
@@ -32,9 +32,13 @@ def find_port():
|
||||
print(f"The port of this MotorsBus is '{port}'")
|
||||
print("Reconnect the USB cable.")
|
||||
elif len(ports_diff) == 0:
|
||||
raise OSError(f"Could not detect the port. No difference was found ({ports_diff}).")
|
||||
raise OSError(
|
||||
f"Could not detect the port. No difference was found ({ports_diff})."
|
||||
)
|
||||
else:
|
||||
raise OSError(f"Could not detect the port. More than one port was found ({ports_diff}).")
|
||||
raise OSError(
|
||||
f"Could not detect the port. More than one port was found ({ports_diff})."
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@@ -56,24 +56,42 @@ from safetensors.torch import save_file
|
||||
from lerobot.common.datasets.compute_stats import compute_stats
|
||||
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION, LeRobotDataset
|
||||
from lerobot.common.datasets.push_dataset_to_hub.utils import check_repo_id
|
||||
from lerobot.common.datasets.utils import create_branch, create_lerobot_dataset_card, flatten_dict
|
||||
from lerobot.common.datasets.utils import (
|
||||
create_branch,
|
||||
create_lerobot_dataset_card,
|
||||
flatten_dict,
|
||||
)
|
||||
|
||||
|
||||
def get_from_raw_to_lerobot_format_fn(raw_format: str):
|
||||
if raw_format == "pusht_zarr":
|
||||
from lerobot.common.datasets.push_dataset_to_hub.pusht_zarr_format import from_raw_to_lerobot_format
|
||||
from lerobot.common.datasets.push_dataset_to_hub.pusht_zarr_format import (
|
||||
from_raw_to_lerobot_format,
|
||||
)
|
||||
elif raw_format == "umi_zarr":
|
||||
from lerobot.common.datasets.push_dataset_to_hub.umi_zarr_format import from_raw_to_lerobot_format
|
||||
from lerobot.common.datasets.push_dataset_to_hub.umi_zarr_format import (
|
||||
from_raw_to_lerobot_format,
|
||||
)
|
||||
elif raw_format == "aloha_hdf5":
|
||||
from lerobot.common.datasets.push_dataset_to_hub.aloha_hdf5_format import from_raw_to_lerobot_format
|
||||
from lerobot.common.datasets.push_dataset_to_hub.aloha_hdf5_format import (
|
||||
from_raw_to_lerobot_format,
|
||||
)
|
||||
elif raw_format in ["rlds", "openx"]:
|
||||
from lerobot.common.datasets.push_dataset_to_hub.openx_rlds_format import from_raw_to_lerobot_format
|
||||
from lerobot.common.datasets.push_dataset_to_hub.openx_rlds_format import (
|
||||
from_raw_to_lerobot_format,
|
||||
)
|
||||
elif raw_format == "dora_parquet":
|
||||
from lerobot.common.datasets.push_dataset_to_hub.dora_parquet_format import from_raw_to_lerobot_format
|
||||
from lerobot.common.datasets.push_dataset_to_hub.dora_parquet_format import (
|
||||
from_raw_to_lerobot_format,
|
||||
)
|
||||
elif raw_format == "xarm_pkl":
|
||||
from lerobot.common.datasets.push_dataset_to_hub.xarm_pkl_format import from_raw_to_lerobot_format
|
||||
from lerobot.common.datasets.push_dataset_to_hub.xarm_pkl_format import (
|
||||
from_raw_to_lerobot_format,
|
||||
)
|
||||
elif raw_format == "cam_png":
|
||||
from lerobot.common.datasets.push_dataset_to_hub.cam_png_format import from_raw_to_lerobot_format
|
||||
from lerobot.common.datasets.push_dataset_to_hub.cam_png_format import (
|
||||
from_raw_to_lerobot_format,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"The selected {raw_format} can't be found. Did you add it to `lerobot/scripts/push_dataset_to_hub.py::get_from_raw_to_lerobot_format_fn`?"
|
||||
@@ -83,7 +101,10 @@ def get_from_raw_to_lerobot_format_fn(raw_format: str):
|
||||
|
||||
|
||||
def save_meta_data(
|
||||
info: dict[str, Any], stats: dict, episode_data_index: dict[str, list], meta_data_dir: Path
|
||||
info: dict[str, Any],
|
||||
stats: dict,
|
||||
episode_data_index: dict[str, list],
|
||||
meta_data_dir: Path,
|
||||
):
|
||||
meta_data_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
@@ -97,12 +118,16 @@ def save_meta_data(
|
||||
save_file(flatten_dict(stats), stats_path)
|
||||
|
||||
# save episode_data_index
|
||||
episode_data_index = {key: torch.tensor(episode_data_index[key]) for key in episode_data_index}
|
||||
episode_data_index = {
|
||||
key: torch.tensor(episode_data_index[key]) for key in episode_data_index
|
||||
}
|
||||
ep_data_idx_path = meta_data_dir / "episode_data_index.safetensors"
|
||||
save_file(episode_data_index, ep_data_idx_path)
|
||||
|
||||
|
||||
def push_meta_data_to_hub(repo_id: str, meta_data_dir: str | Path, revision: str | None):
|
||||
def push_meta_data_to_hub(
|
||||
repo_id: str, meta_data_dir: str | Path, revision: str | None
|
||||
):
|
||||
"""Expect all meta data files to be all stored in a single "meta_data" directory.
|
||||
On the hugging face repositery, they will be uploaded in a "meta_data" directory at the root.
|
||||
"""
|
||||
@@ -187,7 +212,9 @@ def push_dataset_to_hub(
|
||||
if force_override:
|
||||
shutil.rmtree(local_dir)
|
||||
elif not resume:
|
||||
raise ValueError(f"`local_dir` already exists ({local_dir}). Use `--force-override 1`.")
|
||||
raise ValueError(
|
||||
f"`local_dir` already exists ({local_dir}). Use `--force-override 1`."
|
||||
)
|
||||
|
||||
meta_data_dir = local_dir / "meta_data"
|
||||
videos_dir = local_dir / "videos"
|
||||
@@ -223,7 +250,9 @@ def push_dataset_to_hub(
|
||||
stats = compute_stats(lerobot_dataset, batch_size, num_workers)
|
||||
|
||||
if local_dir:
|
||||
hf_dataset = hf_dataset.with_format(None) # to remove transforms that cant be saved
|
||||
hf_dataset = hf_dataset.with_format(
|
||||
None
|
||||
) # to remove transforms that cant be saved
|
||||
hf_dataset.save_to_disk(str(local_dir / "train"))
|
||||
|
||||
if push_to_hub or local_dir:
|
||||
|
||||
641
lerobot/scripts/server/actor_server.py
Normal file
641
lerobot/scripts/server/actor_server.py
Normal file
@@ -0,0 +1,641 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import logging
|
||||
from statistics import mean, quantiles
|
||||
from functools import lru_cache
|
||||
from lerobot.scripts.server.utils import setup_process_handlers
|
||||
|
||||
# from lerobot.scripts.eval import eval_policy
|
||||
|
||||
import grpc
|
||||
import hydra
|
||||
import torch
|
||||
from omegaconf import DictConfig
|
||||
from torch import nn
|
||||
import time
|
||||
|
||||
# TODO: Remove the import of maniskill
|
||||
# from lerobot.common.envs.factory import make_maniskill_env
|
||||
# from lerobot.common.envs.utils import preprocess_maniskill_observation
|
||||
from lerobot.common.policies.factory import make_policy
|
||||
from lerobot.common.policies.sac.modeling_sac import SACPolicy
|
||||
from lerobot.common.robot_devices.robots.factory import make_robot
|
||||
from lerobot.common.robot_devices.robots.utils import Robot
|
||||
from lerobot.common.utils.utils import (
|
||||
TimerManager,
|
||||
get_safe_torch_device,
|
||||
set_global_seed,
|
||||
)
|
||||
from lerobot.scripts.server import hilserl_pb2, hilserl_pb2_grpc
|
||||
from lerobot.scripts.server.buffer import (
|
||||
Transition,
|
||||
move_state_dict_to_device,
|
||||
move_transition_to_device,
|
||||
python_object_to_bytes,
|
||||
transitions_to_bytes,
|
||||
bytes_to_state_dict,
|
||||
)
|
||||
from lerobot.scripts.server.network_utils import (
|
||||
receive_bytes_in_chunks,
|
||||
send_bytes_in_chunks,
|
||||
)
|
||||
from lerobot.scripts.server.gym_manipulator import get_classifier, make_robot_env
|
||||
from lerobot.scripts.server import learner_service
|
||||
from lerobot.common.robot_devices.utils import busy_wait
|
||||
|
||||
from torch.multiprocessing import Queue, Event
|
||||
from queue import Empty
|
||||
|
||||
from lerobot.common.utils.utils import init_logging
|
||||
|
||||
from lerobot.scripts.server.utils import get_last_item_from_queue
|
||||
|
||||
ACTOR_SHUTDOWN_TIMEOUT = 30
|
||||
|
||||
|
||||
def receive_policy(
|
||||
cfg: DictConfig,
|
||||
parameters_queue: Queue,
|
||||
shutdown_event: any, # Event,
|
||||
learner_client: hilserl_pb2_grpc.LearnerServiceStub | None = None,
|
||||
grpc_channel: grpc.Channel | None = None,
|
||||
):
|
||||
logging.info("[ACTOR] Start receiving parameters from the Learner")
|
||||
|
||||
if not use_threads(cfg):
|
||||
# Setup process handlers to handle shutdown signal
|
||||
# But use shutdown event from the main process
|
||||
setup_process_handlers(False)
|
||||
|
||||
if grpc_channel is None or learner_client is None:
|
||||
learner_client, grpc_channel = learner_service_client(
|
||||
host=cfg.actor_learner_config.learner_host,
|
||||
port=cfg.actor_learner_config.learner_port,
|
||||
)
|
||||
|
||||
try:
|
||||
iterator = learner_client.StreamParameters(hilserl_pb2.Empty())
|
||||
receive_bytes_in_chunks(
|
||||
iterator,
|
||||
parameters_queue,
|
||||
shutdown_event,
|
||||
log_prefix="[ACTOR] parameters",
|
||||
)
|
||||
except grpc.RpcError as e:
|
||||
logging.error(f"[ACTOR] gRPC error: {e}")
|
||||
|
||||
if not use_threads(cfg):
|
||||
grpc_channel.close()
|
||||
logging.info("[ACTOR] Received policy loop stopped")
|
||||
|
||||
|
||||
def transitions_stream(
|
||||
shutdown_event: Event, transitions_queue: Queue
|
||||
) -> hilserl_pb2.Empty:
|
||||
while not shutdown_event.is_set():
|
||||
try:
|
||||
message = transitions_queue.get(block=True, timeout=5)
|
||||
except Empty:
|
||||
logging.debug("[ACTOR] Transition queue is empty")
|
||||
continue
|
||||
|
||||
yield from send_bytes_in_chunks(
|
||||
message, hilserl_pb2.Transition, log_prefix="[ACTOR] Send transitions"
|
||||
)
|
||||
|
||||
return hilserl_pb2.Empty()
|
||||
|
||||
|
||||
def interactions_stream(
|
||||
shutdown_event: any, # Event,
|
||||
interactions_queue: Queue,
|
||||
) -> hilserl_pb2.Empty:
|
||||
while not shutdown_event.is_set():
|
||||
try:
|
||||
message = interactions_queue.get(block=True, timeout=5)
|
||||
except Empty:
|
||||
logging.debug("[ACTOR] Interaction queue is empty")
|
||||
continue
|
||||
|
||||
yield from send_bytes_in_chunks(
|
||||
message,
|
||||
hilserl_pb2.InteractionMessage,
|
||||
log_prefix="[ACTOR] Send interactions",
|
||||
)
|
||||
|
||||
return hilserl_pb2.Empty()
|
||||
|
||||
|
||||
def send_transitions(
|
||||
cfg: DictConfig,
|
||||
transitions_queue: Queue,
|
||||
shutdown_event: any, # Event,
|
||||
learner_client: hilserl_pb2_grpc.LearnerServiceStub | None = None,
|
||||
grpc_channel: grpc.Channel | None = None,
|
||||
) -> hilserl_pb2.Empty:
|
||||
"""
|
||||
Sends transitions to the learner.
|
||||
|
||||
This function continuously retrieves messages from the queue and processes:
|
||||
|
||||
- **Transition Data:**
|
||||
- A batch of transitions (observation, action, reward, next observation) is collected.
|
||||
- Transitions are moved to the CPU and serialized using PyTorch.
|
||||
- The serialized data is wrapped in a `hilserl_pb2.Transition` message and sent to the learner.
|
||||
"""
|
||||
|
||||
if not use_threads(cfg):
|
||||
# Setup process handlers to handle shutdown signal
|
||||
# But use shutdown event from the main process
|
||||
setup_process_handlers(False)
|
||||
|
||||
if grpc_channel is None or learner_client is None:
|
||||
learner_client, grpc_channel = learner_service_client(
|
||||
host=cfg.actor_learner_config.learner_host,
|
||||
port=cfg.actor_learner_config.learner_port,
|
||||
)
|
||||
|
||||
try:
|
||||
learner_client.SendTransitions(
|
||||
transitions_stream(shutdown_event, transitions_queue)
|
||||
)
|
||||
except grpc.RpcError as e:
|
||||
logging.error(f"[ACTOR] gRPC error: {e}")
|
||||
|
||||
logging.info("[ACTOR] Finished streaming transitions")
|
||||
|
||||
if not use_threads(cfg):
|
||||
grpc_channel.close()
|
||||
logging.info("[ACTOR] Transitions process stopped")
|
||||
|
||||
|
||||
def send_interactions(
|
||||
cfg: DictConfig,
|
||||
interactions_queue: Queue,
|
||||
shutdown_event: any, # Event,
|
||||
learner_client: hilserl_pb2_grpc.LearnerServiceStub | None = None,
|
||||
grpc_channel: grpc.Channel | None = None,
|
||||
) -> hilserl_pb2.Empty:
|
||||
"""
|
||||
Sends interactions to the learner.
|
||||
|
||||
This function continuously retrieves messages from the queue and processes:
|
||||
|
||||
- **Interaction Messages:**
|
||||
- Contains useful statistics about episodic rewards and policy timings.
|
||||
- The message is serialized using `pickle` and sent to the learner.
|
||||
"""
|
||||
|
||||
if not use_threads(cfg):
|
||||
# Setup process handlers to handle shutdown signal
|
||||
# But use shutdown event from the main process
|
||||
setup_process_handlers(False)
|
||||
|
||||
if grpc_channel is None or learner_client is None:
|
||||
learner_client, grpc_channel = learner_service_client(
|
||||
host=cfg.actor_learner_config.learner_host,
|
||||
port=cfg.actor_learner_config.learner_port,
|
||||
)
|
||||
|
||||
try:
|
||||
learner_client.SendInteractions(
|
||||
interactions_stream(shutdown_event, interactions_queue)
|
||||
)
|
||||
except grpc.RpcError as e:
|
||||
logging.error(f"[ACTOR] gRPC error: {e}")
|
||||
|
||||
logging.info("[ACTOR] Finished streaming interactions")
|
||||
|
||||
if not use_threads(cfg):
|
||||
grpc_channel.close()
|
||||
logging.info("[ACTOR] Interactions process stopped")
|
||||
|
||||
|
||||
@lru_cache(maxsize=1)
|
||||
def learner_service_client(
|
||||
host="127.0.0.1", port=50051
|
||||
) -> tuple[hilserl_pb2_grpc.LearnerServiceStub, grpc.Channel]:
|
||||
import json
|
||||
|
||||
"""
|
||||
Returns a client for the learner service.
|
||||
|
||||
GRPC uses HTTP/2, which is a binary protocol and multiplexes requests over a single connection.
|
||||
So we need to create only one client and reuse it.
|
||||
"""
|
||||
|
||||
service_config = {
|
||||
"methodConfig": [
|
||||
{
|
||||
"name": [{}], # Applies to ALL methods in ALL services
|
||||
"retryPolicy": {
|
||||
"maxAttempts": 5, # Max retries (total attempts = 5)
|
||||
"initialBackoff": "0.1s", # First retry after 0.1s
|
||||
"maxBackoff": "2s", # Max wait time between retries
|
||||
"backoffMultiplier": 2, # Exponential backoff factor
|
||||
"retryableStatusCodes": [
|
||||
"UNAVAILABLE",
|
||||
"DEADLINE_EXCEEDED",
|
||||
], # Retries on network failures
|
||||
},
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
service_config_json = json.dumps(service_config)
|
||||
|
||||
channel = grpc.insecure_channel(
|
||||
f"{host}:{port}",
|
||||
options=[
|
||||
("grpc.max_receive_message_length", learner_service.MAX_MESSAGE_SIZE),
|
||||
("grpc.max_send_message_length", learner_service.MAX_MESSAGE_SIZE),
|
||||
("grpc.enable_retries", 1),
|
||||
("grpc.service_config", service_config_json),
|
||||
],
|
||||
)
|
||||
stub = hilserl_pb2_grpc.LearnerServiceStub(channel)
|
||||
logging.info("[ACTOR] Learner service client created")
|
||||
return stub, channel
|
||||
|
||||
|
||||
def update_policy_parameters(policy: SACPolicy, parameters_queue: Queue, device):
|
||||
if not parameters_queue.empty():
|
||||
logging.info("[ACTOR] Load new parameters from Learner.")
|
||||
bytes_state_dict = get_last_item_from_queue(parameters_queue)
|
||||
state_dict = bytes_to_state_dict(bytes_state_dict)
|
||||
state_dict = move_state_dict_to_device(state_dict, device=device)
|
||||
policy.load_state_dict(state_dict)
|
||||
|
||||
|
||||
def act_with_policy(
|
||||
cfg: DictConfig,
|
||||
robot: Robot,
|
||||
reward_classifier: nn.Module,
|
||||
shutdown_event: any, # Event,
|
||||
parameters_queue: Queue,
|
||||
transitions_queue: Queue,
|
||||
interactions_queue: Queue,
|
||||
):
|
||||
"""
|
||||
Executes policy interaction within the environment.
|
||||
|
||||
This function rolls out the policy in the environment, collecting interaction data and pushing it to a queue for streaming to the learner.
|
||||
Once an episode is completed, updated network parameters received from the learner are retrieved from a queue and loaded into the network.
|
||||
|
||||
Args:
|
||||
cfg (DictConfig): Configuration settings for the interaction process.
|
||||
"""
|
||||
|
||||
logging.info("make_env online")
|
||||
|
||||
online_env = make_robot_env(
|
||||
robot=robot, reward_classifier=reward_classifier, cfg=cfg
|
||||
)
|
||||
|
||||
set_global_seed(cfg.seed)
|
||||
device = get_safe_torch_device(cfg.device, log=True)
|
||||
|
||||
torch.backends.cudnn.benchmark = True
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
|
||||
logging.info("make_policy")
|
||||
|
||||
### Instantiate the policy in both the actor and learner processes
|
||||
### To avoid sending a SACPolicy object through the port, we create a policy intance
|
||||
### on both sides, the learner sends the updated parameters every n steps to update the actor's parameters
|
||||
# TODO: At some point we should just need make sac policy
|
||||
policy: SACPolicy = make_policy(
|
||||
hydra_cfg=cfg,
|
||||
# dataset_stats=offline_dataset.meta.stats if not cfg.resume else None,
|
||||
# Hack: But if we do online training, we do not need dataset_stats
|
||||
dataset_stats=None,
|
||||
# TODO: Handle resume training
|
||||
device=device,
|
||||
)
|
||||
policy = torch.compile(policy)
|
||||
assert isinstance(policy, nn.Module)
|
||||
|
||||
obs, info = online_env.reset()
|
||||
|
||||
# NOTE: For the moment we will solely handle the case of a single environment
|
||||
sum_reward_episode = 0
|
||||
list_transition_to_send_to_learner = []
|
||||
list_policy_time = []
|
||||
episode_intervention = False
|
||||
# Add counters for intervention rate calculation
|
||||
episode_intervention_steps = 0
|
||||
episode_total_steps = 0
|
||||
|
||||
for interaction_step in range(cfg.training.online_steps):
|
||||
start_time = time.perf_counter()
|
||||
if shutdown_event.is_set():
|
||||
logging.info("[ACTOR] Shutting down act_with_policy")
|
||||
return
|
||||
|
||||
if interaction_step >= cfg.training.online_step_before_learning:
|
||||
# Time policy inference and check if it meets FPS requirement
|
||||
with TimerManager(
|
||||
elapsed_time_list=list_policy_time,
|
||||
label="Policy inference time",
|
||||
log=False,
|
||||
) as timer: # noqa: F841
|
||||
action = policy.select_action(batch=obs)
|
||||
policy_fps = 1.0 / (list_policy_time[-1] + 1e-9)
|
||||
|
||||
log_policy_frequency_issue(
|
||||
policy_fps=policy_fps, cfg=cfg, interaction_step=interaction_step
|
||||
)
|
||||
|
||||
next_obs, reward, done, truncated, info = online_env.step(
|
||||
action.squeeze(dim=0).cpu().numpy()
|
||||
)
|
||||
else:
|
||||
# TODO (azouitine): Make a custom space for torch tensor
|
||||
action = online_env.action_space.sample()
|
||||
next_obs, reward, done, truncated, info = online_env.step(action)
|
||||
|
||||
# HACK: We have only one env but we want to batch it, it will be resolved with the torch box
|
||||
action = (
|
||||
torch.from_numpy(action[0])
|
||||
.to(device, non_blocking=device.type == "cuda")
|
||||
.unsqueeze(dim=0)
|
||||
)
|
||||
|
||||
sum_reward_episode += float(reward)
|
||||
# Increment total steps counter for intervention rate
|
||||
episode_total_steps += 1
|
||||
|
||||
# NOTE: We overide the action if the intervention is True, because the action applied is the intervention action
|
||||
if "is_intervention" in info and info["is_intervention"]:
|
||||
# TODO: Check the shape
|
||||
# NOTE: The action space for demonstration before hand is with the full action space
|
||||
# but sometimes for example we want to deactivate the gripper
|
||||
action = info["action_intervention"]
|
||||
episode_intervention = True
|
||||
# Increment intervention steps counter
|
||||
episode_intervention_steps += 1
|
||||
|
||||
# Check for NaN values in observations
|
||||
for key, tensor in obs.items():
|
||||
if torch.isnan(tensor).any():
|
||||
logging.error(
|
||||
f"[ACTOR] NaN values found in obs[{key}] at step {interaction_step}"
|
||||
)
|
||||
|
||||
list_transition_to_send_to_learner.append(
|
||||
Transition(
|
||||
state=obs,
|
||||
action=action,
|
||||
reward=reward,
|
||||
next_state=next_obs,
|
||||
done=done,
|
||||
truncated=truncated, # TODO: (azouitine) Handle truncation properly
|
||||
complementary_info=info, # TODO Handle information for the transition, is_demonstraction: bool
|
||||
)
|
||||
)
|
||||
# assign obs to the next obs and continue the rollout
|
||||
obs = next_obs
|
||||
|
||||
# HACK: We have only one env but we want to batch it, it will be resolved with the torch box
|
||||
# Because we are using a single environment we can index at zero
|
||||
if done or truncated:
|
||||
# TODO: Handle logging for episode information
|
||||
logging.info(
|
||||
f"[ACTOR] Global step {interaction_step}: Episode reward: {sum_reward_episode}"
|
||||
)
|
||||
|
||||
update_policy_parameters(
|
||||
policy=policy.actor, parameters_queue=parameters_queue, device=device
|
||||
)
|
||||
|
||||
if len(list_transition_to_send_to_learner) > 0:
|
||||
push_transitions_to_transport_queue(
|
||||
transitions=list_transition_to_send_to_learner,
|
||||
transitions_queue=transitions_queue,
|
||||
)
|
||||
list_transition_to_send_to_learner = []
|
||||
|
||||
stats = get_frequency_stats(list_policy_time)
|
||||
list_policy_time.clear()
|
||||
|
||||
# Calculate intervention rate
|
||||
intervention_rate = 0.0
|
||||
if episode_total_steps > 0:
|
||||
intervention_rate = episode_intervention_steps / episode_total_steps
|
||||
|
||||
# Send episodic reward to the learner
|
||||
interactions_queue.put(
|
||||
python_object_to_bytes(
|
||||
{
|
||||
"Episodic reward": sum_reward_episode,
|
||||
"Interaction step": interaction_step,
|
||||
"Episode intervention": int(episode_intervention),
|
||||
"Intervention rate": intervention_rate,
|
||||
**stats,
|
||||
}
|
||||
)
|
||||
)
|
||||
sum_reward_episode = 0.0
|
||||
episode_intervention = False
|
||||
# Reset intervention counters
|
||||
episode_intervention_steps = 0
|
||||
episode_total_steps = 0
|
||||
obs, info = online_env.reset()
|
||||
|
||||
if cfg.fps is not None:
|
||||
dt_time = time.perf_counter() - start_time
|
||||
busy_wait(1 / cfg.fps - dt_time)
|
||||
|
||||
|
||||
def push_transitions_to_transport_queue(transitions: list, transitions_queue):
|
||||
"""Send transitions to learner in smaller chunks to avoid network issues.
|
||||
|
||||
Args:
|
||||
transitions: List of transitions to send
|
||||
message_queue: Queue to send messages to learner
|
||||
chunk_size: Size of each chunk to send
|
||||
"""
|
||||
transition_to_send_to_learner = []
|
||||
for transition in transitions:
|
||||
tr = move_transition_to_device(transition=transition, device="cpu")
|
||||
for key, value in tr["state"].items():
|
||||
if torch.isnan(value).any():
|
||||
logging.warning(f"Found NaN values in transition {key}")
|
||||
|
||||
transition_to_send_to_learner.append(tr)
|
||||
|
||||
transitions_queue.put(transitions_to_bytes(transition_to_send_to_learner))
|
||||
|
||||
|
||||
def get_frequency_stats(list_policy_time: list[float]) -> dict[str, float]:
|
||||
stats = {}
|
||||
list_policy_fps = [1.0 / t for t in list_policy_time]
|
||||
if len(list_policy_fps) > 1:
|
||||
policy_fps = mean(list_policy_fps)
|
||||
quantiles_90 = quantiles(list_policy_fps, n=10)[-1]
|
||||
logging.debug(f"[ACTOR] Average policy frame rate: {policy_fps}")
|
||||
logging.debug(f"[ACTOR] Policy frame rate 90th percentile: {quantiles_90}")
|
||||
stats = {
|
||||
"Policy frequency [Hz]": policy_fps,
|
||||
"Policy frequency 90th-p [Hz]": quantiles_90,
|
||||
}
|
||||
return stats
|
||||
|
||||
|
||||
def log_policy_frequency_issue(
|
||||
policy_fps: float, cfg: DictConfig, interaction_step: int
|
||||
):
|
||||
if policy_fps < cfg.fps:
|
||||
logging.warning(
|
||||
f"[ACTOR] Policy FPS {policy_fps:.1f} below required {cfg.fps} at step {interaction_step}"
|
||||
)
|
||||
|
||||
|
||||
def establish_learner_connection(
|
||||
stub,
|
||||
shutdown_event: any, # Event,
|
||||
attempts=30,
|
||||
):
|
||||
for _ in range(attempts):
|
||||
if shutdown_event.is_set():
|
||||
logging.info("[ACTOR] Shutting down establish_learner_connection")
|
||||
return False
|
||||
|
||||
# Force a connection attempt and check state
|
||||
try:
|
||||
logging.info("[ACTOR] Send ready message to Learner")
|
||||
if stub.Ready(hilserl_pb2.Empty()) == hilserl_pb2.Empty():
|
||||
return True
|
||||
except grpc.RpcError as e:
|
||||
logging.error(f"[ACTOR] Waiting for Learner to be ready... {e}")
|
||||
time.sleep(2)
|
||||
return False
|
||||
|
||||
|
||||
def use_threads(cfg: DictConfig) -> bool:
|
||||
return cfg.actor_learner_config.concurrency.actor == "threads"
|
||||
|
||||
|
||||
@hydra.main(version_base="1.2", config_name="default", config_path="../../configs")
|
||||
def actor_cli(cfg: dict):
|
||||
if not use_threads(cfg):
|
||||
import torch.multiprocessing as mp
|
||||
|
||||
mp.set_start_method("spawn")
|
||||
|
||||
init_logging(log_file="actor.log")
|
||||
robot = make_robot(cfg=cfg.robot)
|
||||
|
||||
shutdown_event = setup_process_handlers(use_threads(cfg))
|
||||
|
||||
learner_client, grpc_channel = learner_service_client(
|
||||
host=cfg.actor_learner_config.learner_host,
|
||||
port=cfg.actor_learner_config.learner_port,
|
||||
)
|
||||
|
||||
logging.info("[ACTOR] Establishing connection with Learner")
|
||||
if not establish_learner_connection(learner_client, shutdown_event):
|
||||
logging.error("[ACTOR] Failed to establish connection with Learner")
|
||||
return
|
||||
|
||||
if not use_threads(cfg):
|
||||
# If we use multithreading, we can reuse the channel
|
||||
grpc_channel.close()
|
||||
grpc_channel = None
|
||||
|
||||
logging.info("[ACTOR] Connection with Learner established")
|
||||
|
||||
parameters_queue = Queue()
|
||||
transitions_queue = Queue()
|
||||
interactions_queue = Queue()
|
||||
|
||||
concurrency_entity = None
|
||||
if use_threads(cfg):
|
||||
from threading import Thread
|
||||
|
||||
concurrency_entity = Thread
|
||||
else:
|
||||
from multiprocessing import Process
|
||||
|
||||
concurrency_entity = Process
|
||||
|
||||
receive_policy_process = concurrency_entity(
|
||||
target=receive_policy,
|
||||
args=(cfg, parameters_queue, shutdown_event, grpc_channel),
|
||||
daemon=True,
|
||||
)
|
||||
|
||||
transitions_process = concurrency_entity(
|
||||
target=send_transitions,
|
||||
args=(cfg, transitions_queue, shutdown_event, grpc_channel),
|
||||
daemon=True,
|
||||
)
|
||||
|
||||
interactions_process = concurrency_entity(
|
||||
target=send_interactions,
|
||||
args=(cfg, interactions_queue, shutdown_event, grpc_channel),
|
||||
daemon=True,
|
||||
)
|
||||
|
||||
transitions_process.start()
|
||||
interactions_process.start()
|
||||
receive_policy_process.start()
|
||||
|
||||
# HACK: FOR MANISKILL we do not have a reward classifier
|
||||
# TODO: Remove this once we merge into main
|
||||
reward_classifier = None
|
||||
if (
|
||||
cfg.env.reward_classifier.pretrained_path is not None
|
||||
and cfg.env.reward_classifier.config_path is not None
|
||||
):
|
||||
reward_classifier = get_classifier(
|
||||
pretrained_path=cfg.env.reward_classifier.pretrained_path,
|
||||
config_path=cfg.env.reward_classifier.config_path,
|
||||
)
|
||||
|
||||
act_with_policy(
|
||||
cfg,
|
||||
robot,
|
||||
reward_classifier,
|
||||
shutdown_event,
|
||||
parameters_queue,
|
||||
transitions_queue,
|
||||
interactions_queue,
|
||||
)
|
||||
logging.info("[ACTOR] Policy process joined")
|
||||
|
||||
logging.info("[ACTOR] Closing queues")
|
||||
transitions_queue.close()
|
||||
interactions_queue.close()
|
||||
parameters_queue.close()
|
||||
|
||||
transitions_process.join()
|
||||
logging.info("[ACTOR] Transitions process joined")
|
||||
interactions_process.join()
|
||||
logging.info("[ACTOR] Interactions process joined")
|
||||
receive_policy_process.join()
|
||||
logging.info("[ACTOR] Receive policy process joined")
|
||||
|
||||
logging.info("[ACTOR] join queues")
|
||||
transitions_queue.cancel_join_thread()
|
||||
interactions_queue.cancel_join_thread()
|
||||
parameters_queue.cancel_join_thread()
|
||||
|
||||
logging.info("[ACTOR] queues closed")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
actor_cli()
|
||||
1253
lerobot/scripts/server/buffer.py
Normal file
1253
lerobot/scripts/server/buffer.py
Normal file
File diff suppressed because it is too large
Load Diff
286
lerobot/scripts/server/crop_dataset_roi.py
Normal file
286
lerobot/scripts/server/crop_dataset_roi.py
Normal file
@@ -0,0 +1,286 @@
|
||||
import argparse # noqa: I001
|
||||
import json
|
||||
from copy import deepcopy
|
||||
from typing import Dict, Tuple
|
||||
from pathlib import Path
|
||||
import cv2
|
||||
|
||||
# import torch.nn.functional as F # noqa: N812
|
||||
import torchvision.transforms.functional as F # type: ignore # noqa: N812
|
||||
from tqdm import tqdm # type: ignore
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
||||
|
||||
|
||||
def select_rect_roi(img):
|
||||
"""
|
||||
Allows the user to draw a rectangular ROI on the image.
|
||||
|
||||
The user must click and drag to draw the rectangle.
|
||||
- While dragging, the rectangle is dynamically drawn.
|
||||
- On mouse button release, the rectangle is fixed.
|
||||
- Press 'c' to confirm the selection.
|
||||
- Press 'r' to reset the selection.
|
||||
- Press ESC to cancel.
|
||||
|
||||
Returns:
|
||||
A tuple (top, left, height, width) representing the rectangular ROI,
|
||||
or None if no valid ROI is selected.
|
||||
"""
|
||||
# Create a working copy of the image
|
||||
clone = img.copy()
|
||||
working_img = clone.copy()
|
||||
|
||||
roi = None # Will store the final ROI as (top, left, height, width)
|
||||
drawing = False
|
||||
ix, iy = -1, -1 # Initial click coordinates
|
||||
|
||||
def mouse_callback(event, x, y, flags, param):
|
||||
nonlocal ix, iy, drawing, roi, working_img
|
||||
|
||||
if event == cv2.EVENT_LBUTTONDOWN:
|
||||
# Start drawing: record starting coordinates
|
||||
drawing = True
|
||||
ix, iy = x, y
|
||||
|
||||
elif event == cv2.EVENT_MOUSEMOVE:
|
||||
if drawing:
|
||||
# Compute the top-left and bottom-right corners regardless of drag direction
|
||||
top = min(iy, y)
|
||||
left = min(ix, x)
|
||||
bottom = max(iy, y)
|
||||
right = max(ix, x)
|
||||
# Show a temporary image with the current rectangle drawn
|
||||
temp = working_img.copy()
|
||||
cv2.rectangle(temp, (left, top), (right, bottom), (0, 255, 0), 2)
|
||||
cv2.imshow("Select ROI", temp)
|
||||
|
||||
elif event == cv2.EVENT_LBUTTONUP:
|
||||
# Finish drawing
|
||||
drawing = False
|
||||
top = min(iy, y)
|
||||
left = min(ix, x)
|
||||
bottom = max(iy, y)
|
||||
right = max(ix, x)
|
||||
height = bottom - top
|
||||
width = right - left
|
||||
roi = (top, left, height, width) # (top, left, height, width)
|
||||
# Draw the final rectangle on the working image and display it
|
||||
working_img = clone.copy()
|
||||
cv2.rectangle(working_img, (left, top), (right, bottom), (0, 255, 0), 2)
|
||||
cv2.imshow("Select ROI", working_img)
|
||||
|
||||
# Create the window and set the callback
|
||||
cv2.namedWindow("Select ROI")
|
||||
cv2.setMouseCallback("Select ROI", mouse_callback)
|
||||
cv2.imshow("Select ROI", working_img)
|
||||
|
||||
print("Instructions for ROI selection:")
|
||||
print(" - Click and drag to draw a rectangular ROI.")
|
||||
print(" - Press 'c' to confirm the selection.")
|
||||
print(" - Press 'r' to reset and draw again.")
|
||||
print(" - Press ESC to cancel the selection.")
|
||||
|
||||
# Wait until the user confirms with 'c', resets with 'r', or cancels with ESC
|
||||
while True:
|
||||
key = cv2.waitKey(1) & 0xFF
|
||||
# Confirm ROI if one has been drawn
|
||||
if key == ord("c") and roi is not None:
|
||||
break
|
||||
# Reset: clear the ROI and restore the original image
|
||||
elif key == ord("r"):
|
||||
working_img = clone.copy()
|
||||
roi = None
|
||||
cv2.imshow("Select ROI", working_img)
|
||||
# Cancel selection for this image
|
||||
elif key == 27: # ESC key
|
||||
roi = None
|
||||
break
|
||||
|
||||
cv2.destroyWindow("Select ROI")
|
||||
return roi
|
||||
|
||||
|
||||
def select_square_roi_for_images(images: dict) -> dict:
|
||||
"""
|
||||
For each image in the provided dictionary, open a window to allow the user
|
||||
to select a rectangular ROI. Returns a dictionary mapping each key to a tuple
|
||||
(top, left, height, width) representing the ROI.
|
||||
|
||||
Parameters:
|
||||
images (dict): Dictionary where keys are identifiers and values are OpenCV images.
|
||||
|
||||
Returns:
|
||||
dict: Mapping of image keys to the selected rectangular ROI.
|
||||
"""
|
||||
selected_rois = {}
|
||||
|
||||
for key, img in images.items():
|
||||
if img is None:
|
||||
print(f"Image for key '{key}' is None, skipping.")
|
||||
continue
|
||||
|
||||
print(f"\nSelect rectangular ROI for image with key: '{key}'")
|
||||
roi = select_rect_roi(img)
|
||||
|
||||
if roi is None:
|
||||
print(f"No valid ROI selected for '{key}'.")
|
||||
else:
|
||||
selected_rois[key] = roi
|
||||
print(f"ROI for '{key}': {roi}")
|
||||
|
||||
return selected_rois
|
||||
|
||||
|
||||
def get_image_from_lerobot_dataset(dataset: LeRobotDataset):
|
||||
"""
|
||||
Find the first row in the dataset and extract the image in order to be used for the crop.
|
||||
"""
|
||||
row = dataset[0]
|
||||
image_dict = {}
|
||||
for k in row:
|
||||
if "image" in k:
|
||||
image_dict[k] = deepcopy(row[k])
|
||||
return image_dict
|
||||
|
||||
|
||||
def convert_lerobot_dataset_to_cropper_lerobot_dataset(
|
||||
original_dataset: LeRobotDataset,
|
||||
crop_params_dict: Dict[str, Tuple[int, int, int, int]],
|
||||
new_repo_id: str,
|
||||
new_dataset_root: str,
|
||||
resize_size: Tuple[int, int] = (128, 128),
|
||||
) -> LeRobotDataset:
|
||||
"""
|
||||
Converts an existing LeRobotDataset by iterating over its episodes and frames,
|
||||
applying cropping and resizing to image observations, and saving a new dataset
|
||||
with the transformed data.
|
||||
|
||||
Args:
|
||||
original_dataset (LeRobotDataset): The source dataset.
|
||||
crop_params_dict (Dict[str, Tuple[int, int, int, int]]):
|
||||
A dictionary mapping observation keys to crop parameters (top, left, height, width).
|
||||
new_repo_id (str): Repository id for the new dataset.
|
||||
new_dataset_root (str): The root directory where the new dataset will be written.
|
||||
resize_size (Tuple[int, int], optional): The target size (height, width) after cropping.
|
||||
Defaults to (128, 128).
|
||||
|
||||
Returns:
|
||||
LeRobotDataset: A new LeRobotDataset where the specified image observations have been cropped
|
||||
and resized.
|
||||
"""
|
||||
# 1. Create a new (empty) LeRobotDataset for writing.
|
||||
new_dataset = LeRobotDataset.create(
|
||||
repo_id=new_repo_id,
|
||||
fps=original_dataset.fps,
|
||||
root=new_dataset_root,
|
||||
robot_type=original_dataset.meta.robot_type,
|
||||
features=original_dataset.meta.info["features"],
|
||||
use_videos=len(original_dataset.meta.video_keys) > 0,
|
||||
)
|
||||
|
||||
# Update the metadata for every image key that will be cropped:
|
||||
# (Here we simply set the shape to be the final resize_size.)
|
||||
for key in crop_params_dict:
|
||||
if key in new_dataset.meta.info["features"]:
|
||||
new_dataset.meta.info["features"][key]["shape"] = list(resize_size)
|
||||
|
||||
# 2. Process each episode in the original dataset.
|
||||
episodes_info = original_dataset.meta.episodes
|
||||
# (Sort episodes by episode_index for consistency.)
|
||||
|
||||
episodes_info = sorted(episodes_info, key=lambda x: x["episode_index"])
|
||||
# Use the first task from the episode metadata (or "unknown" if not provided)
|
||||
task = episodes_info[0]["tasks"][0] if episodes_info[0].get("tasks") else "unknown"
|
||||
|
||||
last_episode_index = 0
|
||||
for sample in tqdm(original_dataset):
|
||||
episode_index = sample.pop("episode_index")
|
||||
if episode_index != last_episode_index:
|
||||
new_dataset.save_episode(task, encode_videos=True)
|
||||
last_episode_index = episode_index
|
||||
sample.pop("frame_index")
|
||||
# Make a shallow copy of the sample (the values—e.g. torch tensors—are assumed immutable)
|
||||
new_sample = sample.copy()
|
||||
# Loop over each observation key that should be cropped/resized.
|
||||
for key, params in crop_params_dict.items():
|
||||
if key in new_sample:
|
||||
top, left, height, width = params
|
||||
# Apply crop then resize.
|
||||
cropped = F.crop(new_sample[key], top, left, height, width)
|
||||
resized = F.resize(cropped, resize_size)
|
||||
new_sample[key] = resized
|
||||
# Add the transformed frame to the new dataset.
|
||||
new_dataset.add_frame(new_sample)
|
||||
|
||||
# save last episode
|
||||
new_dataset.save_episode(task, encode_videos=True)
|
||||
|
||||
# Optionally, consolidate the new dataset to compute statistics and update video info.
|
||||
new_dataset.consolidate(run_compute_stats=True, keep_image_files=True)
|
||||
|
||||
new_dataset.push_to_hub(tags=None)
|
||||
|
||||
return new_dataset
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Crop rectangular ROIs from a LeRobot dataset."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--repo-id",
|
||||
type=str,
|
||||
default="lerobot",
|
||||
help="The repository id of the LeRobot dataset to process.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--root",
|
||||
type=str,
|
||||
default=None,
|
||||
help="The root directory of the LeRobot dataset.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--crop-params-path",
|
||||
type=str,
|
||||
default=None,
|
||||
help="The path to the JSON file containing the ROIs.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
local_files_only = args.root is not None
|
||||
dataset = LeRobotDataset(
|
||||
repo_id=args.repo_id, root=args.root, local_files_only=local_files_only
|
||||
)
|
||||
|
||||
images = get_image_from_lerobot_dataset(dataset)
|
||||
images = {k: v.cpu().permute(1, 2, 0).numpy() for k, v in images.items()}
|
||||
images = {k: (v * 255).astype("uint8") for k, v in images.items()}
|
||||
|
||||
if args.crop_params_path is None:
|
||||
rois = select_square_roi_for_images(images)
|
||||
else:
|
||||
with open(args.crop_params_path) as f:
|
||||
rois = json.load(f)
|
||||
|
||||
# Print the selected rectangular ROIs
|
||||
print("\nSelected Rectangular Regions of Interest (top, left, height, width):")
|
||||
for key, roi in rois.items():
|
||||
print(f"{key}: {roi}")
|
||||
|
||||
new_repo_id = args.repo_id + "_cropped_resized"
|
||||
new_dataset_root = Path(str(dataset.root) + "_cropped_resized")
|
||||
|
||||
croped_resized_dataset = convert_lerobot_dataset_to_cropper_lerobot_dataset(
|
||||
original_dataset=dataset,
|
||||
crop_params_dict=rois,
|
||||
new_repo_id=new_repo_id,
|
||||
new_dataset_root=new_dataset_root,
|
||||
resize_size=(128, 128),
|
||||
)
|
||||
|
||||
meta_dir = new_dataset_root / "meta"
|
||||
meta_dir.mkdir(exist_ok=True)
|
||||
|
||||
with open(meta_dir / "crop_params.json", "w") as f:
|
||||
json.dump(rois, f, indent=4)
|
||||
797
lerobot/scripts/server/end_effector_control_utils.py
Normal file
797
lerobot/scripts/server/end_effector_control_utils.py
Normal file
@@ -0,0 +1,797 @@
|
||||
from lerobot.common.robot_devices.robots.factory import make_robot
|
||||
from lerobot.common.utils.utils import init_hydra_config
|
||||
from lerobot.common.robot_devices.utils import busy_wait
|
||||
from lerobot.scripts.server.kinematics import RobotKinematics
|
||||
import logging
|
||||
import time
|
||||
import torch
|
||||
import numpy as np
|
||||
import argparse
|
||||
|
||||
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
|
||||
|
||||
class InputController:
|
||||
"""Base class for input controllers that generate motion deltas."""
|
||||
|
||||
def __init__(self, x_step_size=0.01, y_step_size=0.01, z_step_size=0.01):
|
||||
"""
|
||||
Initialize the controller.
|
||||
|
||||
Args:
|
||||
x_step_size: Base movement step size in meters
|
||||
y_step_size: Base movement step size in meters
|
||||
z_step_size: Base movement step size in meters
|
||||
"""
|
||||
self.x_step_size = x_step_size
|
||||
self.y_step_size = y_step_size
|
||||
self.z_step_size = z_step_size
|
||||
self.running = True
|
||||
self.episode_end_status = None # None, "success", or "failure"
|
||||
|
||||
def start(self):
|
||||
"""Start the controller and initialize resources."""
|
||||
pass
|
||||
|
||||
def stop(self):
|
||||
"""Stop the controller and release resources."""
|
||||
pass
|
||||
|
||||
def get_deltas(self):
|
||||
"""Get the current movement deltas (dx, dy, dz) in meters."""
|
||||
return 0.0, 0.0, 0.0
|
||||
|
||||
def should_quit(self):
|
||||
"""Return True if the user has requested to quit."""
|
||||
return not self.running
|
||||
|
||||
def update(self):
|
||||
"""Update controller state - call this once per frame."""
|
||||
pass
|
||||
|
||||
def __enter__(self):
|
||||
"""Support for use in 'with' statements."""
|
||||
self.start()
|
||||
return self
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
"""Ensure resources are released when exiting 'with' block."""
|
||||
self.stop()
|
||||
|
||||
def get_episode_end_status(self):
|
||||
"""
|
||||
Get the current episode end status.
|
||||
|
||||
Returns:
|
||||
None if episode should continue, "success" or "failure" otherwise
|
||||
"""
|
||||
status = self.episode_end_status
|
||||
self.episode_end_status = None # Reset after reading
|
||||
return status
|
||||
|
||||
|
||||
class KeyboardController(InputController):
|
||||
"""Generate motion deltas from keyboard input."""
|
||||
|
||||
def __init__(self, x_step_size=0.01, y_step_size=0.01, z_step_size=0.01):
|
||||
super().__init__(x_step_size, y_step_size, z_step_size)
|
||||
self.key_states = {
|
||||
"forward_x": False,
|
||||
"backward_x": False,
|
||||
"forward_y": False,
|
||||
"backward_y": False,
|
||||
"forward_z": False,
|
||||
"backward_z": False,
|
||||
"quit": False,
|
||||
"success": False,
|
||||
"failure": False,
|
||||
}
|
||||
self.listener = None
|
||||
|
||||
def start(self):
|
||||
"""Start the keyboard listener."""
|
||||
from pynput import keyboard
|
||||
|
||||
def on_press(key):
|
||||
try:
|
||||
if key == keyboard.Key.up:
|
||||
self.key_states["forward_x"] = True
|
||||
elif key == keyboard.Key.down:
|
||||
self.key_states["backward_x"] = True
|
||||
elif key == keyboard.Key.left:
|
||||
self.key_states["forward_y"] = True
|
||||
elif key == keyboard.Key.right:
|
||||
self.key_states["backward_y"] = True
|
||||
elif key == keyboard.Key.shift:
|
||||
self.key_states["backward_z"] = True
|
||||
elif key == keyboard.Key.shift_r:
|
||||
self.key_states["forward_z"] = True
|
||||
elif key == keyboard.Key.esc:
|
||||
self.key_states["quit"] = True
|
||||
self.running = False
|
||||
return False
|
||||
elif key == keyboard.Key.enter:
|
||||
self.key_states["success"] = True
|
||||
self.episode_end_status = "success"
|
||||
elif key == keyboard.Key.backspace:
|
||||
self.key_states["failure"] = True
|
||||
self.episode_end_status = "failure"
|
||||
except AttributeError:
|
||||
pass
|
||||
|
||||
def on_release(key):
|
||||
try:
|
||||
if key == keyboard.Key.up:
|
||||
self.key_states["forward_x"] = False
|
||||
elif key == keyboard.Key.down:
|
||||
self.key_states["backward_x"] = False
|
||||
elif key == keyboard.Key.left:
|
||||
self.key_states["forward_y"] = False
|
||||
elif key == keyboard.Key.right:
|
||||
self.key_states["backward_y"] = False
|
||||
elif key == keyboard.Key.shift:
|
||||
self.key_states["backward_z"] = False
|
||||
elif key == keyboard.Key.shift_r:
|
||||
self.key_states["forward_z"] = False
|
||||
elif key == keyboard.Key.enter:
|
||||
self.key_states["success"] = False
|
||||
elif key == keyboard.Key.backspace:
|
||||
self.key_states["failure"] = False
|
||||
except AttributeError:
|
||||
pass
|
||||
|
||||
self.listener = keyboard.Listener(on_press=on_press, on_release=on_release)
|
||||
self.listener.start()
|
||||
|
||||
print("Keyboard controls:")
|
||||
print(" Arrow keys: Move in X-Y plane")
|
||||
print(" Shift and Shift_R: Move in Z axis")
|
||||
print(" Enter: End episode with SUCCESS")
|
||||
print(" Backspace: End episode with FAILURE")
|
||||
print(" ESC: Exit")
|
||||
|
||||
def stop(self):
|
||||
"""Stop the keyboard listener."""
|
||||
if self.listener and self.listener.is_alive():
|
||||
self.listener.stop()
|
||||
|
||||
def get_deltas(self):
|
||||
"""Get the current movement deltas from keyboard state."""
|
||||
delta_x = delta_y = delta_z = 0.0
|
||||
|
||||
if self.key_states["forward_x"]:
|
||||
delta_x += self.x_step_size
|
||||
if self.key_states["backward_x"]:
|
||||
delta_x -= self.x_step_size
|
||||
if self.key_states["forward_y"]:
|
||||
delta_y += self.y_step_size
|
||||
if self.key_states["backward_y"]:
|
||||
delta_y -= self.y_step_size
|
||||
if self.key_states["forward_z"]:
|
||||
delta_z += self.z_step_size
|
||||
if self.key_states["backward_z"]:
|
||||
delta_z -= self.z_step_size
|
||||
|
||||
return delta_x, delta_y, delta_z
|
||||
|
||||
def should_quit(self):
|
||||
"""Return True if ESC was pressed."""
|
||||
return self.key_states["quit"]
|
||||
|
||||
def should_save(self):
|
||||
"""Return True if Enter was pressed (save episode)."""
|
||||
return self.key_states["success"] or self.key_states["failure"]
|
||||
|
||||
|
||||
class GamepadController(InputController):
|
||||
"""Generate motion deltas from gamepad input."""
|
||||
|
||||
def __init__(
|
||||
self, x_step_size=0.01, y_step_size=0.01, z_step_size=0.01, deadzone=0.1
|
||||
):
|
||||
super().__init__(x_step_size, y_step_size, z_step_size)
|
||||
self.deadzone = deadzone
|
||||
self.joystick = None
|
||||
self.intervention_flag = False
|
||||
|
||||
def start(self):
|
||||
"""Initialize pygame and the gamepad."""
|
||||
import pygame
|
||||
|
||||
pygame.init()
|
||||
pygame.joystick.init()
|
||||
|
||||
if pygame.joystick.get_count() == 0:
|
||||
logging.error(
|
||||
"No gamepad detected. Please connect a gamepad and try again."
|
||||
)
|
||||
self.running = False
|
||||
return
|
||||
|
||||
self.joystick = pygame.joystick.Joystick(0)
|
||||
self.joystick.init()
|
||||
logging.info(f"Initialized gamepad: {self.joystick.get_name()}")
|
||||
|
||||
print("Gamepad controls:")
|
||||
print(" Left analog stick: Move in X-Y plane")
|
||||
print(" Right analog stick (vertical): Move in Z axis")
|
||||
print(" B/Circle button: Exit")
|
||||
print(" Y/Triangle button: End episode with SUCCESS")
|
||||
print(" A/Cross button: End episode with FAILURE")
|
||||
print(" X/Square button: Rerecord episode")
|
||||
|
||||
def stop(self):
|
||||
"""Clean up pygame resources."""
|
||||
import pygame
|
||||
|
||||
if pygame.joystick.get_init():
|
||||
if self.joystick:
|
||||
self.joystick.quit()
|
||||
pygame.joystick.quit()
|
||||
pygame.quit()
|
||||
|
||||
def update(self):
|
||||
"""Process pygame events to get fresh gamepad readings."""
|
||||
import pygame
|
||||
|
||||
for event in pygame.event.get():
|
||||
if event.type == pygame.JOYBUTTONDOWN:
|
||||
if event.button == 3:
|
||||
self.episode_end_status = "success"
|
||||
# A button (1) for failure
|
||||
elif event.button == 1:
|
||||
self.episode_end_status = "failure"
|
||||
# X button (0) for rerecord
|
||||
elif event.button == 0:
|
||||
self.episode_end_status = "rerecord_episode"
|
||||
|
||||
# Reset episode status on button release
|
||||
elif event.type == pygame.JOYBUTTONUP:
|
||||
if event.button in [0, 2, 3]:
|
||||
self.episode_end_status = None
|
||||
|
||||
# Check for RB button (typically button 5) for intervention flag
|
||||
if self.joystick.get_button(5):
|
||||
self.intervention_flag = True
|
||||
else:
|
||||
self.intervention_flag = False
|
||||
|
||||
def get_deltas(self):
|
||||
"""Get the current movement deltas from gamepad state."""
|
||||
import pygame
|
||||
|
||||
try:
|
||||
# Read joystick axes
|
||||
# Left stick X and Y (typically axes 0 and 1)
|
||||
x_input = self.joystick.get_axis(0) # Left/Right
|
||||
y_input = self.joystick.get_axis(1) # Up/Down (often inverted)
|
||||
|
||||
# Right stick Y (typically axis 3 or 4)
|
||||
z_input = self.joystick.get_axis(3) # Up/Down for Z
|
||||
|
||||
# Apply deadzone to avoid drift
|
||||
x_input = 0 if abs(x_input) < self.deadzone else x_input
|
||||
y_input = 0 if abs(y_input) < self.deadzone else y_input
|
||||
z_input = 0 if abs(z_input) < self.deadzone else z_input
|
||||
|
||||
# Calculate deltas (note: may need to invert axes depending on controller)
|
||||
delta_x = -y_input * self.y_step_size # Forward/backward
|
||||
delta_y = -x_input * self.x_step_size # Left/right
|
||||
delta_z = -z_input * self.z_step_size # Up/down
|
||||
|
||||
return delta_x, delta_y, delta_z
|
||||
|
||||
except pygame.error:
|
||||
logging.error("Error reading gamepad. Is it still connected?")
|
||||
return 0.0, 0.0, 0.0
|
||||
|
||||
def should_intervene(self):
|
||||
"""Return True if intervention flag was set."""
|
||||
return self.intervention_flag
|
||||
|
||||
|
||||
class GamepadControllerHID(InputController):
|
||||
"""Generate motion deltas from gamepad input using HIDAPI."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
x_step_size=0.01,
|
||||
y_step_size=0.01,
|
||||
z_step_size=0.01,
|
||||
deadzone=0.1,
|
||||
vendor_id=0x046D,
|
||||
product_id=0xC219,
|
||||
):
|
||||
"""
|
||||
Initialize the HID gamepad controller.
|
||||
|
||||
Args:
|
||||
step_size: Base movement step size in meters
|
||||
z_scale: Scaling factor for Z-axis movement
|
||||
deadzone: Joystick deadzone to prevent drift
|
||||
vendor_id: USB vendor ID of the gamepad (default: Logitech)
|
||||
product_id: USB product ID of the gamepad (default: RumblePad 2)
|
||||
"""
|
||||
super().__init__(x_step_size, y_step_size, z_step_size)
|
||||
self.deadzone = deadzone
|
||||
self.vendor_id = vendor_id
|
||||
self.product_id = product_id
|
||||
self.device = None
|
||||
self.device_info = None
|
||||
|
||||
# Movement values (normalized from -1.0 to 1.0)
|
||||
self.left_x = 0.0
|
||||
self.left_y = 0.0
|
||||
self.right_x = 0.0
|
||||
self.right_y = 0.0
|
||||
|
||||
# Button states
|
||||
self.buttons = {}
|
||||
self.quit_requested = False
|
||||
self.save_requested = False
|
||||
self.intervention_flag = False
|
||||
|
||||
def find_device(self):
|
||||
"""Look for the gamepad device by vendor and product ID."""
|
||||
import hid
|
||||
|
||||
devices = hid.enumerate()
|
||||
for device in devices:
|
||||
if (
|
||||
device["vendor_id"] == self.vendor_id
|
||||
and device["product_id"] == self.product_id
|
||||
):
|
||||
logging.info(
|
||||
f"Found gamepad: {device.get('product_string', 'Unknown')}"
|
||||
)
|
||||
return device
|
||||
|
||||
logging.error(
|
||||
f"No gamepad with vendor ID 0x{self.vendor_id:04X} and "
|
||||
f"product ID 0x{self.product_id:04X} found"
|
||||
)
|
||||
return None
|
||||
|
||||
def start(self):
|
||||
"""Connect to the gamepad using HIDAPI."""
|
||||
import hid
|
||||
|
||||
self.device_info = self.find_device()
|
||||
if not self.device_info:
|
||||
self.running = False
|
||||
return
|
||||
|
||||
try:
|
||||
logging.info(f"Connecting to gamepad at path: {self.device_info['path']}")
|
||||
self.device = hid.device()
|
||||
self.device.open_path(self.device_info["path"])
|
||||
self.device.set_nonblocking(1)
|
||||
|
||||
manufacturer = self.device.get_manufacturer_string()
|
||||
product = self.device.get_product_string()
|
||||
logging.info(f"Connected to {manufacturer} {product}")
|
||||
|
||||
logging.info("Gamepad controls (HID mode):")
|
||||
logging.info(" Left analog stick: Move in X-Y plane")
|
||||
logging.info(" Right analog stick: Move in Z axis (vertical)")
|
||||
logging.info(" Button 1/B/Circle: Exit")
|
||||
logging.info(" Button 2/A/Cross: End episode with SUCCESS")
|
||||
logging.info(" Button 3/X/Square: End episode with FAILURE")
|
||||
|
||||
except OSError as e:
|
||||
logging.error(f"Error opening gamepad: {e}")
|
||||
logging.error(
|
||||
"You might need to run this with sudo/admin privileges on some systems"
|
||||
)
|
||||
self.running = False
|
||||
|
||||
def stop(self):
|
||||
"""Close the HID device connection."""
|
||||
if self.device:
|
||||
self.device.close()
|
||||
self.device = None
|
||||
|
||||
def update(self):
|
||||
"""
|
||||
Read and process the latest gamepad data.
|
||||
Due to an issue with the HIDAPI, we need to read the read the device several times in order to get a stable reading
|
||||
"""
|
||||
for _ in range(10):
|
||||
self._update()
|
||||
|
||||
def _update(self):
|
||||
"""Read and process the latest gamepad data."""
|
||||
if not self.device or not self.running:
|
||||
return
|
||||
|
||||
try:
|
||||
# Read data from the gamepad
|
||||
data = self.device.read(64)
|
||||
if data:
|
||||
# Interpret gamepad data - this will vary by controller model
|
||||
# These offsets are for the Logitech RumblePad 2
|
||||
if len(data) >= 8:
|
||||
# Normalize joystick values from 0-255 to -1.0-1.0
|
||||
self.left_x = (data[1] - 128) / 128.0
|
||||
self.left_y = (data[2] - 128) / 128.0
|
||||
self.right_x = (data[3] - 128) / 128.0
|
||||
self.right_y = (data[4] - 128) / 128.0
|
||||
|
||||
# Apply deadzone
|
||||
self.left_x = 0 if abs(self.left_x) < self.deadzone else self.left_x
|
||||
self.left_y = 0 if abs(self.left_y) < self.deadzone else self.left_y
|
||||
self.right_x = (
|
||||
0 if abs(self.right_x) < self.deadzone else self.right_x
|
||||
)
|
||||
self.right_y = (
|
||||
0 if abs(self.right_y) < self.deadzone else self.right_y
|
||||
)
|
||||
|
||||
# Parse button states (byte 5 in the Logitech RumblePad 2)
|
||||
buttons = data[5]
|
||||
|
||||
# Check if RB is pressed then the intervention flag should be set
|
||||
self.intervention_flag = data[6] == 2
|
||||
|
||||
# Check if Y/Triangle button (bit 7) is pressed for saving
|
||||
# Check if X/Square button (bit 5) is pressed for failure
|
||||
# Check if A/Cross button (bit 4) is pressed for rerecording
|
||||
if buttons & 1 << 7:
|
||||
self.episode_end_status = "success"
|
||||
elif buttons & 1 << 5:
|
||||
self.episode_end_status = "failure"
|
||||
elif buttons & 1 << 4:
|
||||
self.episode_end_status = "rerecord_episode"
|
||||
else:
|
||||
self.episode_end_status = None
|
||||
|
||||
except OSError as e:
|
||||
logging.error(f"Error reading from gamepad: {e}")
|
||||
|
||||
def get_deltas(self):
|
||||
"""Get the current movement deltas from gamepad state."""
|
||||
# Calculate deltas - invert as needed based on controller orientation
|
||||
delta_x = -self.left_y * self.x_step_size # Forward/backward
|
||||
delta_y = -self.left_x * self.y_step_size # Left/right
|
||||
delta_z = -self.right_y * self.z_step_size # Up/down
|
||||
|
||||
return delta_x, delta_y, delta_z
|
||||
|
||||
def should_quit(self):
|
||||
"""Return True if quit button was pressed."""
|
||||
return self.quit_requested
|
||||
|
||||
def should_save(self):
|
||||
"""Return True if save button was pressed."""
|
||||
return self.save_requested
|
||||
|
||||
def should_intervene(self):
|
||||
"""Return True if intervention flag was set."""
|
||||
return self.intervention_flag
|
||||
|
||||
|
||||
def test_forward_kinematics(robot, fps=10):
|
||||
logging.info("Testing Forward Kinematics")
|
||||
timestep = time.perf_counter()
|
||||
while time.perf_counter() - timestep < 60.0:
|
||||
loop_start_time = time.perf_counter()
|
||||
robot.teleop_step()
|
||||
obs = robot.capture_observation()
|
||||
joint_positions = obs["observation.state"].cpu().numpy()
|
||||
ee_pos = RobotKinematics.fk_gripper_tip(joint_positions)
|
||||
logging.info(f"EE Position: {ee_pos[:3,3]}")
|
||||
busy_wait(1 / fps - (time.perf_counter() - loop_start_time))
|
||||
|
||||
|
||||
def test_inverse_kinematics(robot, fps=10):
|
||||
logging.info("Testing Inverse Kinematics")
|
||||
timestep = time.perf_counter()
|
||||
while time.perf_counter() - timestep < 60.0:
|
||||
loop_start_time = time.perf_counter()
|
||||
obs = robot.capture_observation()
|
||||
joint_positions = obs["observation.state"].cpu().numpy()
|
||||
ee_pos = RobotKinematics.fk_gripper_tip(joint_positions)
|
||||
desired_ee_pos = ee_pos
|
||||
target_joint_state = RobotKinematics.ik(
|
||||
joint_positions, desired_ee_pos, position_only=True
|
||||
)
|
||||
robot.send_action(torch.from_numpy(target_joint_state))
|
||||
logging.info(f"Target Joint State: {target_joint_state}")
|
||||
busy_wait(1 / fps - (time.perf_counter() - loop_start_time))
|
||||
|
||||
|
||||
def teleoperate_inverse_kinematics_with_leader(robot, fps=10):
|
||||
logging.info("Testing Inverse Kinematics")
|
||||
fk_func = RobotKinematics.fk_gripper_tip
|
||||
timestep = time.perf_counter()
|
||||
while time.perf_counter() - timestep < 60.0:
|
||||
loop_start_time = time.perf_counter()
|
||||
obs = robot.capture_observation()
|
||||
joint_positions = obs["observation.state"].cpu().numpy()
|
||||
ee_pos = fk_func(joint_positions)
|
||||
|
||||
leader_joint_positions = robot.leader_arms["main"].read("Present_Position")
|
||||
leader_ee = fk_func(leader_joint_positions)
|
||||
|
||||
desired_ee_pos = leader_ee
|
||||
target_joint_state = RobotKinematics.ik(
|
||||
joint_positions, desired_ee_pos, position_only=True, fk_func=fk_func
|
||||
)
|
||||
robot.send_action(torch.from_numpy(target_joint_state))
|
||||
logging.info(f"Leader EE: {leader_ee[:3,3]}, Follower EE: {ee_pos[:3,3]}")
|
||||
busy_wait(1 / fps - (time.perf_counter() - loop_start_time))
|
||||
|
||||
|
||||
def teleoperate_delta_inverse_kinematics_with_leader(robot, fps=10):
|
||||
logging.info("Testing Delta End-Effector Control")
|
||||
timestep = time.perf_counter()
|
||||
|
||||
# Initial position capture
|
||||
obs = robot.capture_observation()
|
||||
joint_positions = obs["observation.state"].cpu().numpy()
|
||||
|
||||
fk_func = RobotKinematics.fk_gripper_tip
|
||||
|
||||
leader_joint_positions = robot.leader_arms["main"].read("Present_Position")
|
||||
initial_leader_ee = fk_func(leader_joint_positions)
|
||||
|
||||
desired_ee_pos = np.diag(np.ones(4))
|
||||
|
||||
while time.perf_counter() - timestep < 60.0:
|
||||
loop_start_time = time.perf_counter()
|
||||
|
||||
# Get leader state for teleoperation
|
||||
leader_joint_positions = robot.leader_arms["main"].read("Present_Position")
|
||||
leader_ee = fk_func(leader_joint_positions)
|
||||
|
||||
# Get current state
|
||||
# obs = robot.capture_observation()
|
||||
# joint_positions = obs["observation.state"].cpu().numpy()
|
||||
joint_positions = robot.follower_arms["main"].read("Present_Position")
|
||||
current_ee_pos = fk_func(joint_positions)
|
||||
|
||||
# Calculate delta between leader and follower end-effectors
|
||||
# Scaling factor can be adjusted for sensitivity
|
||||
scaling_factor = 1.0
|
||||
ee_delta = (leader_ee - initial_leader_ee) * scaling_factor
|
||||
|
||||
# Apply delta to current position
|
||||
desired_ee_pos[0, 3] = current_ee_pos[0, 3] + ee_delta[0, 3]
|
||||
desired_ee_pos[1, 3] = current_ee_pos[1, 3] + ee_delta[1, 3]
|
||||
desired_ee_pos[2, 3] = current_ee_pos[2, 3] + ee_delta[2, 3]
|
||||
|
||||
if np.any(np.abs(ee_delta[:3, 3]) > 0.01):
|
||||
# Compute joint targets via inverse kinematics
|
||||
target_joint_state = RobotKinematics.ik(
|
||||
joint_positions, desired_ee_pos, position_only=True, fk_func=fk_func
|
||||
)
|
||||
|
||||
initial_leader_ee = leader_ee.copy()
|
||||
|
||||
# Send command to robot
|
||||
robot.send_action(torch.from_numpy(target_joint_state))
|
||||
|
||||
# Logging
|
||||
logging.info(
|
||||
f"Current EE: {current_ee_pos[:3,3]}, Desired EE: {desired_ee_pos[:3,3]}"
|
||||
)
|
||||
logging.info(f"Delta EE: {ee_delta[:3,3]}")
|
||||
|
||||
busy_wait(1 / fps - (time.perf_counter() - loop_start_time))
|
||||
|
||||
|
||||
def teleoperate_delta_inverse_kinematics(
|
||||
robot, controller, fps=10, bounds=None, fk_func=None
|
||||
):
|
||||
"""
|
||||
Control a robot using delta end-effector movements from any input controller.
|
||||
|
||||
Args:
|
||||
robot: Robot instance to control
|
||||
controller: InputController instance (keyboard, gamepad, etc.)
|
||||
fps: Control frequency in Hz
|
||||
bounds: Optional position limits
|
||||
fk_func: Forward kinematics function to use
|
||||
"""
|
||||
if fk_func is None:
|
||||
fk_func = RobotKinematics.fk_gripper_tip
|
||||
|
||||
logging.info(
|
||||
f"Testing Delta End-Effector Control with {controller.__class__.__name__}"
|
||||
)
|
||||
|
||||
# Initial position capture
|
||||
obs = robot.capture_observation()
|
||||
joint_positions = obs["observation.state"].cpu().numpy()
|
||||
current_ee_pos = fk_func(joint_positions)
|
||||
|
||||
# Initialize desired position with current position
|
||||
desired_ee_pos = np.eye(4) # Identity matrix
|
||||
|
||||
timestep = time.perf_counter()
|
||||
with controller:
|
||||
while not controller.should_quit() and time.perf_counter() - timestep < 60.0:
|
||||
loop_start_time = time.perf_counter()
|
||||
|
||||
# Process input events
|
||||
controller.update()
|
||||
|
||||
# Get currrent robot state
|
||||
joint_positions = robot.follower_arms["main"].read("Present_Position")
|
||||
current_ee_pos = fk_func(joint_positions)
|
||||
|
||||
# Get movement deltas from the controller
|
||||
delta_x, delta_y, delta_z = controller.get_deltas()
|
||||
|
||||
# Update desired position
|
||||
desired_ee_pos[0, 3] = current_ee_pos[0, 3] + delta_x
|
||||
desired_ee_pos[1, 3] = current_ee_pos[1, 3] + delta_y
|
||||
desired_ee_pos[2, 3] = current_ee_pos[2, 3] + delta_z
|
||||
|
||||
# Apply bounds if provided
|
||||
if bounds is not None:
|
||||
desired_ee_pos[:3, 3] = np.clip(
|
||||
desired_ee_pos[:3, 3], bounds["min"], bounds["max"]
|
||||
)
|
||||
|
||||
# Only send commands if there's actual movement
|
||||
if any([abs(v) > 0.001 for v in [delta_x, delta_y, delta_z]]):
|
||||
# Compute joint targets via inverse kinematics
|
||||
target_joint_state = RobotKinematics.ik(
|
||||
joint_positions, desired_ee_pos, position_only=True, fk_func=fk_func
|
||||
)
|
||||
|
||||
# Send command to robot
|
||||
robot.send_action(torch.from_numpy(target_joint_state))
|
||||
|
||||
busy_wait(1 / fps - (time.perf_counter() - loop_start_time))
|
||||
|
||||
|
||||
def teleoperate_gym_env(env, controller, fps: int = 30):
|
||||
"""
|
||||
Control a robot through a gym environment using keyboard inputs.
|
||||
|
||||
Args:
|
||||
env: A gym environment created with make_robot_env
|
||||
fps: Target control frequency
|
||||
"""
|
||||
|
||||
logging.info("Testing Keyboard Control of Gym Environment")
|
||||
print("Keyboard controls:")
|
||||
print(" Arrow keys: Move in X-Y plane")
|
||||
print(" Shift and Shift_R: Move in Z axis")
|
||||
print(" ESC: Exit")
|
||||
|
||||
# Reset the environment to get initial observation
|
||||
obs, info = env.reset()
|
||||
|
||||
try:
|
||||
with controller:
|
||||
while not controller.should_quit():
|
||||
loop_start_time = time.perf_counter()
|
||||
|
||||
# Process input events
|
||||
controller.update()
|
||||
|
||||
# Get movement deltas from the controller
|
||||
delta_x, delta_y, delta_z = controller.get_deltas()
|
||||
|
||||
# Create the action vector
|
||||
action = np.array([delta_x, delta_y, delta_z])
|
||||
|
||||
# Skip if no movement
|
||||
if any([abs(v) > 0.001 for v in [delta_x, delta_y, delta_z]]):
|
||||
# Step the environment - pass action as a tensor with intervention flag
|
||||
action_tensor = torch.from_numpy(action.astype(np.float32))
|
||||
obs, reward, terminated, truncated, info = env.step(
|
||||
(action_tensor, False)
|
||||
)
|
||||
|
||||
# Log information
|
||||
logging.info(
|
||||
f"Action: [{delta_x:.4f}, {delta_y:.4f}, {delta_z:.4f}]"
|
||||
)
|
||||
logging.info(f"Reward: {reward}")
|
||||
|
||||
# Reset if episode ended
|
||||
if terminated or truncated:
|
||||
logging.info("Episode ended, resetting environment")
|
||||
obs, info = env.reset()
|
||||
|
||||
# Maintain target frame rate
|
||||
busy_wait(1 / fps - (time.perf_counter() - loop_start_time))
|
||||
|
||||
finally:
|
||||
# Close the environment
|
||||
env.close()
|
||||
|
||||
|
||||
def make_robot_from_config(config_path, overrides=None):
|
||||
"""Helper function to create a robot from a config file."""
|
||||
if overrides is None:
|
||||
overrides = []
|
||||
robot_cfg = init_hydra_config(config_path, overrides)
|
||||
return make_robot(robot_cfg)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Test end-effector control")
|
||||
parser.add_argument(
|
||||
"--mode",
|
||||
type=str,
|
||||
default="keyboard",
|
||||
choices=[
|
||||
"keyboard",
|
||||
"gamepad",
|
||||
"keyboard_gym",
|
||||
"gamepad_gym",
|
||||
"leader",
|
||||
"leader_abs",
|
||||
],
|
||||
help="Control mode to use",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--task",
|
||||
type=str,
|
||||
default="Robot manipulation task",
|
||||
help="Description of the task being performed",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--push-to-hub",
|
||||
default=True,
|
||||
type=bool,
|
||||
help="Push the dataset to Hugging Face Hub",
|
||||
)
|
||||
# Add the rest of your existing arguments
|
||||
args = parser.parse_args()
|
||||
|
||||
robot = make_robot_from_config("lerobot/configs/robot/so100.yaml", [])
|
||||
|
||||
if not robot.is_connected:
|
||||
robot.connect()
|
||||
|
||||
# Example bounds
|
||||
bounds = {
|
||||
"max": np.array([0.32170487, 0.201285, 0.10273342]),
|
||||
"min": np.array([0.16631757, -0.08237468, 0.03364977]),
|
||||
}
|
||||
|
||||
try:
|
||||
# Determine controller type based on mode prefix
|
||||
controller = None
|
||||
if args.mode.startswith("keyboard"):
|
||||
controller = KeyboardController(
|
||||
x_step_size=0.01, y_step_size=0.01, z_step_size=0.05
|
||||
)
|
||||
elif args.mode.startswith("gamepad"):
|
||||
controller = GamepadController(
|
||||
x_step_size=0.02, y_step_size=0.02, z_step_size=0.05
|
||||
)
|
||||
|
||||
# Handle mode categories
|
||||
if args.mode in ["keyboard", "gamepad"]:
|
||||
# Direct robot control modes
|
||||
teleoperate_delta_inverse_kinematics(
|
||||
robot, controller, bounds=bounds, fps=10
|
||||
)
|
||||
|
||||
elif args.mode in ["keyboard_gym", "gamepad_gym"]:
|
||||
# Gym environment control modes
|
||||
from lerobot.scripts.server.gym_manipulator import make_robot_env
|
||||
|
||||
cfg = init_hydra_config("lerobot/configs/env/so100_real.yaml", [])
|
||||
cfg.env.wrapper.ee_action_space_params.use_gamepad = False
|
||||
env = make_robot_env(robot, None, cfg)
|
||||
teleoperate_gym_env(env, controller)
|
||||
|
||||
elif args.mode == "leader":
|
||||
# Leader-follower modes don't use controllers
|
||||
teleoperate_delta_inverse_kinematics_with_leader(robot)
|
||||
|
||||
elif args.mode == "leader_abs":
|
||||
teleoperate_inverse_kinematics_with_leader(robot)
|
||||
|
||||
finally:
|
||||
if robot.is_connected:
|
||||
robot.disconnect()
|
||||
121
lerobot/scripts/server/find_joint_limits.py
Normal file
121
lerobot/scripts/server/find_joint_limits.py
Normal file
@@ -0,0 +1,121 @@
|
||||
import argparse
|
||||
import time
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from lerobot.common.robot_devices.control_utils import is_headless
|
||||
from lerobot.common.robot_devices.robots.factory import make_robot
|
||||
from lerobot.common.utils.utils import init_hydra_config
|
||||
from lerobot.scripts.server.kinematics import RobotKinematics
|
||||
|
||||
|
||||
def find_joint_bounds(
|
||||
robot,
|
||||
control_time_s=30,
|
||||
display_cameras=False,
|
||||
):
|
||||
if not robot.is_connected:
|
||||
robot.connect()
|
||||
|
||||
start_episode_t = time.perf_counter()
|
||||
pos_list = []
|
||||
while True:
|
||||
observation, action = robot.teleop_step(record_data=True)
|
||||
|
||||
# Wait for 5 seconds to stabilize the robot initial position
|
||||
if time.perf_counter() - start_episode_t < 5:
|
||||
continue
|
||||
|
||||
pos_list.append(robot.follower_arms["main"].read("Present_Position"))
|
||||
|
||||
if display_cameras and not is_headless():
|
||||
image_keys = [key for key in observation if "image" in key]
|
||||
for key in image_keys:
|
||||
cv2.imshow(
|
||||
key, cv2.cvtColor(observation[key].numpy(), cv2.COLOR_RGB2BGR)
|
||||
)
|
||||
cv2.waitKey(1)
|
||||
|
||||
if time.perf_counter() - start_episode_t > control_time_s:
|
||||
max = np.max(np.stack(pos_list), 0)
|
||||
min = np.min(np.stack(pos_list), 0)
|
||||
print(f"Max angle position per joint {max}")
|
||||
print(f"Min angle position per joint {min}")
|
||||
break
|
||||
|
||||
|
||||
def find_ee_bounds(
|
||||
robot,
|
||||
control_time_s=30,
|
||||
display_cameras=False,
|
||||
):
|
||||
if not robot.is_connected:
|
||||
robot.connect()
|
||||
|
||||
start_episode_t = time.perf_counter()
|
||||
ee_list = []
|
||||
while True:
|
||||
observation, action = robot.teleop_step(record_data=True)
|
||||
|
||||
# Wait for 5 seconds to stabilize the robot initial position
|
||||
if time.perf_counter() - start_episode_t < 5:
|
||||
continue
|
||||
|
||||
joint_positions = robot.follower_arms["main"].read("Present_Position")
|
||||
print(f"Joint positions: {joint_positions}")
|
||||
ee_list.append(RobotKinematics.fk_gripper_tip(joint_positions)[:3, 3])
|
||||
|
||||
if display_cameras and not is_headless():
|
||||
image_keys = [key for key in observation if "image" in key]
|
||||
for key in image_keys:
|
||||
cv2.imshow(
|
||||
key, cv2.cvtColor(observation[key].numpy(), cv2.COLOR_RGB2BGR)
|
||||
)
|
||||
cv2.waitKey(1)
|
||||
|
||||
if time.perf_counter() - start_episode_t > control_time_s:
|
||||
max = np.max(np.stack(ee_list), 0)
|
||||
min = np.min(np.stack(ee_list), 0)
|
||||
print(f"Max ee position {max}")
|
||||
print(f"Min ee position {min}")
|
||||
break
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--robot-path",
|
||||
type=str,
|
||||
default="lerobot/configs/robot/koch.yaml",
|
||||
help="Path to robot yaml file used to instantiate the robot using `make_robot` factory function.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--robot-overrides",
|
||||
type=str,
|
||||
nargs="*",
|
||||
help="Any key=value arguments to override config values (use dots for.nested=overrides)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--mode",
|
||||
type=str,
|
||||
default="joint",
|
||||
choices=["joint", "ee"],
|
||||
help="Mode to run the script in. Can be 'joint' or 'ee'.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--control-time-s",
|
||||
type=int,
|
||||
default=30,
|
||||
help="Time step to use for control.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
robot_cfg = init_hydra_config(args.robot_path, args.robot_overrides)
|
||||
|
||||
robot = make_robot(robot_cfg)
|
||||
if args.mode == "joint":
|
||||
find_joint_bounds(robot, args.control_time_s)
|
||||
elif args.mode == "ee":
|
||||
find_ee_bounds(robot, args.control_time_s)
|
||||
if robot.is_connected:
|
||||
robot.disconnect()
|
||||
1549
lerobot/scripts/server/gym_manipulator.py
Normal file
1549
lerobot/scripts/server/gym_manipulator.py
Normal file
File diff suppressed because it is too large
Load Diff
55
lerobot/scripts/server/hilserl.proto
Normal file
55
lerobot/scripts/server/hilserl.proto
Normal file
@@ -0,0 +1,55 @@
|
||||
// !/usr/bin/env python
|
||||
|
||||
// Copyright 2024 The HuggingFace Inc. team.
|
||||
// All rights reserved.
|
||||
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
syntax = "proto3";
|
||||
|
||||
package hil_serl;
|
||||
|
||||
// LearnerService: the Actor calls this to push transitions.
|
||||
// The Learner implements this service.
|
||||
service LearnerService {
|
||||
// Actor -> Learner to store transitions
|
||||
rpc SendInteractionMessage(InteractionMessage) returns (Empty);
|
||||
rpc StreamParameters(Empty) returns (stream Parameters);
|
||||
rpc SendTransitions(stream Transition) returns (Empty);
|
||||
rpc SendInteractions(stream InteractionMessage) returns (Empty);
|
||||
rpc Ready(Empty) returns (Empty);
|
||||
}
|
||||
|
||||
enum TransferState {
|
||||
TRANSFER_UNKNOWN = 0;
|
||||
TRANSFER_BEGIN = 1;
|
||||
TRANSFER_MIDDLE = 2;
|
||||
TRANSFER_END = 3;
|
||||
}
|
||||
|
||||
// Messages
|
||||
message Transition {
|
||||
TransferState transfer_state = 1;
|
||||
bytes data = 2;
|
||||
}
|
||||
|
||||
message Parameters {
|
||||
TransferState transfer_state = 1;
|
||||
bytes data = 2;
|
||||
}
|
||||
|
||||
message InteractionMessage {
|
||||
TransferState transfer_state = 1;
|
||||
bytes data = 2;
|
||||
}
|
||||
|
||||
message Empty {}
|
||||
46
lerobot/scripts/server/hilserl_pb2.py
Normal file
46
lerobot/scripts/server/hilserl_pb2.py
Normal file
@@ -0,0 +1,46 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# Generated by the protocol buffer compiler. DO NOT EDIT!
|
||||
# NO CHECKED-IN PROTOBUF GENCODE
|
||||
# source: hilserl.proto
|
||||
# Protobuf Python Version: 5.29.0
|
||||
"""Generated protocol buffer code."""
|
||||
from google.protobuf import descriptor as _descriptor
|
||||
from google.protobuf import descriptor_pool as _descriptor_pool
|
||||
from google.protobuf import runtime_version as _runtime_version
|
||||
from google.protobuf import symbol_database as _symbol_database
|
||||
from google.protobuf.internal import builder as _builder
|
||||
_runtime_version.ValidateProtobufRuntimeVersion(
|
||||
_runtime_version.Domain.PUBLIC,
|
||||
5,
|
||||
29,
|
||||
0,
|
||||
'',
|
||||
'hilserl.proto'
|
||||
)
|
||||
# @@protoc_insertion_point(imports)
|
||||
|
||||
_sym_db = _symbol_database.Default()
|
||||
|
||||
|
||||
|
||||
|
||||
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\rhilserl.proto\x12\x08hil_serl\"K\n\nTransition\x12/\n\x0etransfer_state\x18\x01 \x01(\x0e\x32\x17.hil_serl.TransferState\x12\x0c\n\x04\x64\x61ta\x18\x02 \x01(\x0c\"K\n\nParameters\x12/\n\x0etransfer_state\x18\x01 \x01(\x0e\x32\x17.hil_serl.TransferState\x12\x0c\n\x04\x64\x61ta\x18\x02 \x01(\x0c\"S\n\x12InteractionMessage\x12/\n\x0etransfer_state\x18\x01 \x01(\x0e\x32\x17.hil_serl.TransferState\x12\x0c\n\x04\x64\x61ta\x18\x02 \x01(\x0c\"\x07\n\x05\x45mpty*`\n\rTransferState\x12\x14\n\x10TRANSFER_UNKNOWN\x10\x00\x12\x12\n\x0eTRANSFER_BEGIN\x10\x01\x12\x13\n\x0fTRANSFER_MIDDLE\x10\x02\x12\x10\n\x0cTRANSFER_END\x10\x03\x32\xc2\x02\n\x0eLearnerService\x12G\n\x16SendInteractionMessage\x12\x1c.hil_serl.InteractionMessage\x1a\x0f.hil_serl.Empty\x12;\n\x10StreamParameters\x12\x0f.hil_serl.Empty\x1a\x14.hil_serl.Parameters0\x01\x12:\n\x0fSendTransitions\x12\x14.hil_serl.Transition\x1a\x0f.hil_serl.Empty(\x01\x12\x43\n\x10SendInteractions\x12\x1c.hil_serl.InteractionMessage\x1a\x0f.hil_serl.Empty(\x01\x12)\n\x05Ready\x12\x0f.hil_serl.Empty\x1a\x0f.hil_serl.Emptyb\x06proto3')
|
||||
|
||||
_globals = globals()
|
||||
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
|
||||
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'hilserl_pb2', _globals)
|
||||
if not _descriptor._USE_C_DESCRIPTORS:
|
||||
DESCRIPTOR._loaded_options = None
|
||||
_globals['_TRANSFERSTATE']._serialized_start=275
|
||||
_globals['_TRANSFERSTATE']._serialized_end=371
|
||||
_globals['_TRANSITION']._serialized_start=27
|
||||
_globals['_TRANSITION']._serialized_end=102
|
||||
_globals['_PARAMETERS']._serialized_start=104
|
||||
_globals['_PARAMETERS']._serialized_end=179
|
||||
_globals['_INTERACTIONMESSAGE']._serialized_start=181
|
||||
_globals['_INTERACTIONMESSAGE']._serialized_end=264
|
||||
_globals['_EMPTY']._serialized_start=266
|
||||
_globals['_EMPTY']._serialized_end=273
|
||||
_globals['_LEARNERSERVICE']._serialized_start=374
|
||||
_globals['_LEARNERSERVICE']._serialized_end=696
|
||||
# @@protoc_insertion_point(module_scope)
|
||||
276
lerobot/scripts/server/hilserl_pb2_grpc.py
Normal file
276
lerobot/scripts/server/hilserl_pb2_grpc.py
Normal file
@@ -0,0 +1,276 @@
|
||||
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
|
||||
"""Client and server classes corresponding to protobuf-defined services."""
|
||||
import grpc
|
||||
import warnings
|
||||
|
||||
import hilserl_pb2 as hilserl__pb2
|
||||
|
||||
GRPC_GENERATED_VERSION = '1.70.0'
|
||||
GRPC_VERSION = grpc.__version__
|
||||
_version_not_supported = False
|
||||
|
||||
try:
|
||||
from grpc._utilities import first_version_is_lower
|
||||
_version_not_supported = first_version_is_lower(GRPC_VERSION, GRPC_GENERATED_VERSION)
|
||||
except ImportError:
|
||||
_version_not_supported = True
|
||||
|
||||
if _version_not_supported:
|
||||
raise RuntimeError(
|
||||
f'The grpc package installed is at version {GRPC_VERSION},'
|
||||
+ f' but the generated code in hilserl_pb2_grpc.py depends on'
|
||||
+ f' grpcio>={GRPC_GENERATED_VERSION}.'
|
||||
+ f' Please upgrade your grpc module to grpcio>={GRPC_GENERATED_VERSION}'
|
||||
+ f' or downgrade your generated code using grpcio-tools<={GRPC_VERSION}.'
|
||||
)
|
||||
|
||||
|
||||
class LearnerServiceStub(object):
|
||||
"""LearnerService: the Actor calls this to push transitions.
|
||||
The Learner implements this service.
|
||||
"""
|
||||
|
||||
def __init__(self, channel):
|
||||
"""Constructor.
|
||||
|
||||
Args:
|
||||
channel: A grpc.Channel.
|
||||
"""
|
||||
self.SendInteractionMessage = channel.unary_unary(
|
||||
'/hil_serl.LearnerService/SendInteractionMessage',
|
||||
request_serializer=hilserl__pb2.InteractionMessage.SerializeToString,
|
||||
response_deserializer=hilserl__pb2.Empty.FromString,
|
||||
_registered_method=True)
|
||||
self.StreamParameters = channel.unary_stream(
|
||||
'/hil_serl.LearnerService/StreamParameters',
|
||||
request_serializer=hilserl__pb2.Empty.SerializeToString,
|
||||
response_deserializer=hilserl__pb2.Parameters.FromString,
|
||||
_registered_method=True)
|
||||
self.SendTransitions = channel.stream_unary(
|
||||
'/hil_serl.LearnerService/SendTransitions',
|
||||
request_serializer=hilserl__pb2.Transition.SerializeToString,
|
||||
response_deserializer=hilserl__pb2.Empty.FromString,
|
||||
_registered_method=True)
|
||||
self.SendInteractions = channel.stream_unary(
|
||||
'/hil_serl.LearnerService/SendInteractions',
|
||||
request_serializer=hilserl__pb2.InteractionMessage.SerializeToString,
|
||||
response_deserializer=hilserl__pb2.Empty.FromString,
|
||||
_registered_method=True)
|
||||
self.Ready = channel.unary_unary(
|
||||
'/hil_serl.LearnerService/Ready',
|
||||
request_serializer=hilserl__pb2.Empty.SerializeToString,
|
||||
response_deserializer=hilserl__pb2.Empty.FromString,
|
||||
_registered_method=True)
|
||||
|
||||
|
||||
class LearnerServiceServicer(object):
|
||||
"""LearnerService: the Actor calls this to push transitions.
|
||||
The Learner implements this service.
|
||||
"""
|
||||
|
||||
def SendInteractionMessage(self, request, context):
|
||||
"""Actor -> Learner to store transitions
|
||||
"""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def StreamParameters(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def SendTransitions(self, request_iterator, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def SendInteractions(self, request_iterator, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Ready(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
|
||||
def add_LearnerServiceServicer_to_server(servicer, server):
|
||||
rpc_method_handlers = {
|
||||
'SendInteractionMessage': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.SendInteractionMessage,
|
||||
request_deserializer=hilserl__pb2.InteractionMessage.FromString,
|
||||
response_serializer=hilserl__pb2.Empty.SerializeToString,
|
||||
),
|
||||
'StreamParameters': grpc.unary_stream_rpc_method_handler(
|
||||
servicer.StreamParameters,
|
||||
request_deserializer=hilserl__pb2.Empty.FromString,
|
||||
response_serializer=hilserl__pb2.Parameters.SerializeToString,
|
||||
),
|
||||
'SendTransitions': grpc.stream_unary_rpc_method_handler(
|
||||
servicer.SendTransitions,
|
||||
request_deserializer=hilserl__pb2.Transition.FromString,
|
||||
response_serializer=hilserl__pb2.Empty.SerializeToString,
|
||||
),
|
||||
'SendInteractions': grpc.stream_unary_rpc_method_handler(
|
||||
servicer.SendInteractions,
|
||||
request_deserializer=hilserl__pb2.InteractionMessage.FromString,
|
||||
response_serializer=hilserl__pb2.Empty.SerializeToString,
|
||||
),
|
||||
'Ready': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Ready,
|
||||
request_deserializer=hilserl__pb2.Empty.FromString,
|
||||
response_serializer=hilserl__pb2.Empty.SerializeToString,
|
||||
),
|
||||
}
|
||||
generic_handler = grpc.method_handlers_generic_handler(
|
||||
'hil_serl.LearnerService', rpc_method_handlers)
|
||||
server.add_generic_rpc_handlers((generic_handler,))
|
||||
server.add_registered_method_handlers('hil_serl.LearnerService', rpc_method_handlers)
|
||||
|
||||
|
||||
# This class is part of an EXPERIMENTAL API.
|
||||
class LearnerService(object):
|
||||
"""LearnerService: the Actor calls this to push transitions.
|
||||
The Learner implements this service.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def SendInteractionMessage(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(
|
||||
request,
|
||||
target,
|
||||
'/hil_serl.LearnerService/SendInteractionMessage',
|
||||
hilserl__pb2.InteractionMessage.SerializeToString,
|
||||
hilserl__pb2.Empty.FromString,
|
||||
options,
|
||||
channel_credentials,
|
||||
insecure,
|
||||
call_credentials,
|
||||
compression,
|
||||
wait_for_ready,
|
||||
timeout,
|
||||
metadata,
|
||||
_registered_method=True)
|
||||
|
||||
@staticmethod
|
||||
def StreamParameters(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_stream(
|
||||
request,
|
||||
target,
|
||||
'/hil_serl.LearnerService/StreamParameters',
|
||||
hilserl__pb2.Empty.SerializeToString,
|
||||
hilserl__pb2.Parameters.FromString,
|
||||
options,
|
||||
channel_credentials,
|
||||
insecure,
|
||||
call_credentials,
|
||||
compression,
|
||||
wait_for_ready,
|
||||
timeout,
|
||||
metadata,
|
||||
_registered_method=True)
|
||||
|
||||
@staticmethod
|
||||
def SendTransitions(request_iterator,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.stream_unary(
|
||||
request_iterator,
|
||||
target,
|
||||
'/hil_serl.LearnerService/SendTransitions',
|
||||
hilserl__pb2.Transition.SerializeToString,
|
||||
hilserl__pb2.Empty.FromString,
|
||||
options,
|
||||
channel_credentials,
|
||||
insecure,
|
||||
call_credentials,
|
||||
compression,
|
||||
wait_for_ready,
|
||||
timeout,
|
||||
metadata,
|
||||
_registered_method=True)
|
||||
|
||||
@staticmethod
|
||||
def SendInteractions(request_iterator,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.stream_unary(
|
||||
request_iterator,
|
||||
target,
|
||||
'/hil_serl.LearnerService/SendInteractions',
|
||||
hilserl__pb2.InteractionMessage.SerializeToString,
|
||||
hilserl__pb2.Empty.FromString,
|
||||
options,
|
||||
channel_credentials,
|
||||
insecure,
|
||||
call_credentials,
|
||||
compression,
|
||||
wait_for_ready,
|
||||
timeout,
|
||||
metadata,
|
||||
_registered_method=True)
|
||||
|
||||
@staticmethod
|
||||
def Ready(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(
|
||||
request,
|
||||
target,
|
||||
'/hil_serl.LearnerService/Ready',
|
||||
hilserl__pb2.Empty.SerializeToString,
|
||||
hilserl__pb2.Empty.FromString,
|
||||
options,
|
||||
channel_credentials,
|
||||
insecure,
|
||||
call_credentials,
|
||||
compression,
|
||||
wait_for_ready,
|
||||
timeout,
|
||||
metadata,
|
||||
_registered_method=True)
|
||||
543
lerobot/scripts/server/kinematics.py
Normal file
543
lerobot/scripts/server/kinematics.py
Normal file
@@ -0,0 +1,543 @@
|
||||
import numpy as np
|
||||
from scipy.spatial.transform import Rotation
|
||||
|
||||
|
||||
def skew_symmetric(w):
|
||||
"""Creates the skew-symmetric matrix from a 3D vector."""
|
||||
return np.array([[0, -w[2], w[1]], [w[2], 0, -w[0]], [-w[1], w[0], 0]])
|
||||
|
||||
|
||||
def rodrigues_rotation(w, theta):
|
||||
"""Computes the rotation matrix using Rodrigues' formula."""
|
||||
w_hat = skew_symmetric(w)
|
||||
return np.eye(3) + np.sin(theta) * w_hat + (1 - np.cos(theta)) * w_hat @ w_hat
|
||||
|
||||
|
||||
def screw_axis_to_transform(S, theta):
|
||||
"""Converts a screw axis to a 4x4 transformation matrix."""
|
||||
S_w = S[:3]
|
||||
S_v = S[3:]
|
||||
if np.allclose(S_w, 0) and np.linalg.norm(S_v) == 1: # Pure translation
|
||||
T = np.eye(4)
|
||||
T[:3, 3] = S_v * theta
|
||||
elif np.linalg.norm(S_w) == 1: # Rotation and translation
|
||||
w_hat = skew_symmetric(S_w)
|
||||
R = np.eye(3) + np.sin(theta) * w_hat + (1 - np.cos(theta)) * w_hat @ w_hat
|
||||
t = (
|
||||
np.eye(3) * theta
|
||||
+ (1 - np.cos(theta)) * w_hat
|
||||
+ (theta - np.sin(theta)) * w_hat @ w_hat
|
||||
) @ S_v
|
||||
T = np.eye(4)
|
||||
T[:3, :3] = R
|
||||
T[:3, 3] = t
|
||||
else:
|
||||
raise ValueError("Invalid screw axis parameters")
|
||||
return T
|
||||
|
||||
|
||||
def pose_difference_se3(pose1, pose2):
|
||||
"""
|
||||
Calculates the SE(3) difference between two 4x4 homogeneous transformation matrices.
|
||||
|
||||
pose1 - pose2
|
||||
|
||||
Args:
|
||||
pose1: A 4x4 numpy array representing the first pose.
|
||||
pose2: A 4x4 numpy array representing the second pose.
|
||||
|
||||
Returns:
|
||||
A tuple (translation_diff, rotation_diff) where:
|
||||
- translation_diff is a 3x1 numpy array representing the translational difference.
|
||||
- rotation_diff is a 3x1 numpy array representing the rotational difference in axis-angle representation.
|
||||
"""
|
||||
|
||||
# Extract rotation matrices from poses
|
||||
R1 = pose1[:3, :3]
|
||||
R2 = pose2[:3, :3]
|
||||
|
||||
# Calculate translational difference
|
||||
translation_diff = pose1[:3, 3] - pose2[:3, 3]
|
||||
|
||||
# Calculate rotational difference using scipy's Rotation library
|
||||
R_diff = Rotation.from_matrix(R1 @ R2.T)
|
||||
rotation_diff = R_diff.as_rotvec() # Convert to axis-angle representation
|
||||
|
||||
return np.concatenate([translation_diff, rotation_diff])
|
||||
|
||||
|
||||
def se3_error(target_pose, current_pose):
|
||||
pos_error = target_pose[:3, 3] - current_pose[:3, 3]
|
||||
R_target = target_pose[:3, :3]
|
||||
R_current = current_pose[:3, :3]
|
||||
R_error = R_target @ R_current.T
|
||||
rot_error = Rotation.from_matrix(R_error).as_rotvec()
|
||||
return np.concatenate([pos_error, rot_error])
|
||||
|
||||
|
||||
class RobotKinematics:
|
||||
"""Robot kinematics class supporting multiple robot models."""
|
||||
|
||||
# Robot measurements dictionary
|
||||
ROBOT_MEASUREMENTS = {
|
||||
"koch": {
|
||||
"gripper": [0.239, -0.001, 0.024],
|
||||
"wrist": [0.209, 0, 0.024],
|
||||
"forearm": [0.108, 0, 0.02],
|
||||
"humerus": [0, 0, 0.036],
|
||||
"shoulder": [0, 0, 0],
|
||||
"base": [0, 0, 0.02],
|
||||
},
|
||||
"so100": {
|
||||
"gripper": [0.320, 0, 0.050],
|
||||
"wrist": [0.278, 0, 0.050],
|
||||
"forearm": [0.143, 0, 0.044],
|
||||
"humerus": [0.031, 0, 0.072],
|
||||
"shoulder": [0, 0, 0],
|
||||
"base": [0, 0, 0.02],
|
||||
},
|
||||
"moss": {
|
||||
"gripper": [0.246, 0.013, 0.111],
|
||||
"wrist": [0.245, 0.002, 0.064],
|
||||
"forearm": [0.122, 0, 0.064],
|
||||
"humerus": [0.001, 0.001, 0.063],
|
||||
"shoulder": [0, 0, 0],
|
||||
"base": [0, 0, 0.02],
|
||||
},
|
||||
}
|
||||
|
||||
def __init__(self, robot_type="so100"):
|
||||
"""Initialize kinematics for the specified robot type.
|
||||
|
||||
Args:
|
||||
robot_type: String specifying the robot model ("koch", "so100", or "moss")
|
||||
"""
|
||||
if robot_type not in self.ROBOT_MEASUREMENTS:
|
||||
raise ValueError(
|
||||
f"Unknown robot type: {robot_type}. Available types: {list(self.ROBOT_MEASUREMENTS.keys())}"
|
||||
)
|
||||
|
||||
self.robot_type = robot_type
|
||||
self.measurements = self.ROBOT_MEASUREMENTS[robot_type]
|
||||
|
||||
# Initialize all transformation matrices and screw axes
|
||||
self._setup_transforms()
|
||||
|
||||
def _create_translation_matrix(self, x=0, y=0, z=0):
|
||||
"""Create a 4x4 translation matrix."""
|
||||
return np.array([[1, 0, 0, x], [0, 1, 0, y], [0, 0, 1, z], [0, 0, 0, 1]])
|
||||
|
||||
def _setup_transforms(self):
|
||||
"""Setup all transformation matrices and screw axes for the robot."""
|
||||
# Set up rotation matrices (constant across robot types)
|
||||
|
||||
# Gripper orientation
|
||||
self.gripper_X0 = np.array(
|
||||
[
|
||||
[1, 0, 0, 0],
|
||||
[0, 0, 1, 0],
|
||||
[0, -1, 0, 0],
|
||||
[0, 0, 0, 1],
|
||||
]
|
||||
)
|
||||
|
||||
# Wrist orientation
|
||||
self.wrist_X0 = np.array(
|
||||
[
|
||||
[0, -1, 0, 0],
|
||||
[1, 0, 0, 0],
|
||||
[0, 0, 1, 0],
|
||||
[0, 0, 0, 1],
|
||||
]
|
||||
)
|
||||
|
||||
# Base orientation
|
||||
self.base_X0 = np.array(
|
||||
[
|
||||
[0, 0, 1, 0],
|
||||
[1, 0, 0, 0],
|
||||
[0, 1, 0, 0],
|
||||
[0, 0, 0, 1],
|
||||
]
|
||||
)
|
||||
|
||||
# Gripper
|
||||
# Screw axis of gripper frame wrt base frame
|
||||
self.S_BG = np.array(
|
||||
[
|
||||
1,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
self.measurements["gripper"][2],
|
||||
-self.measurements["gripper"][1],
|
||||
]
|
||||
)
|
||||
|
||||
# Gripper origin to centroid transform
|
||||
self.X_GoGc = self._create_translation_matrix(x=0.07)
|
||||
|
||||
# Gripper origin to tip transform
|
||||
self.X_GoGt = self._create_translation_matrix(x=0.12)
|
||||
|
||||
# 0-position gripper frame pose wrt base
|
||||
self.X_BoGo = self._create_translation_matrix(
|
||||
x=self.measurements["gripper"][0],
|
||||
y=self.measurements["gripper"][1],
|
||||
z=self.measurements["gripper"][2],
|
||||
)
|
||||
|
||||
# Wrist
|
||||
# Screw axis of wrist frame wrt base frame
|
||||
self.S_BR = np.array(
|
||||
[0, 1, 0, -self.measurements["wrist"][2], 0, self.measurements["wrist"][0]]
|
||||
)
|
||||
|
||||
# 0-position origin to centroid transform
|
||||
self.X_RoRc = self._create_translation_matrix(x=0.0035, y=-0.002)
|
||||
|
||||
# 0-position wrist frame pose wrt base
|
||||
self.X_BR = self._create_translation_matrix(
|
||||
x=self.measurements["wrist"][0],
|
||||
y=self.measurements["wrist"][1],
|
||||
z=self.measurements["wrist"][2],
|
||||
)
|
||||
|
||||
# Forearm
|
||||
# Screw axis of forearm frame wrt base frame
|
||||
self.S_BF = np.array(
|
||||
[
|
||||
0,
|
||||
1,
|
||||
0,
|
||||
-self.measurements["forearm"][2],
|
||||
0,
|
||||
self.measurements["forearm"][0],
|
||||
]
|
||||
)
|
||||
|
||||
# Forearm origin + centroid transform
|
||||
self.X_FoFc = self._create_translation_matrix(x=0.036)
|
||||
|
||||
# 0-position forearm frame pose wrt base
|
||||
self.X_BF = self._create_translation_matrix(
|
||||
x=self.measurements["forearm"][0],
|
||||
y=self.measurements["forearm"][1],
|
||||
z=self.measurements["forearm"][2],
|
||||
)
|
||||
|
||||
# Humerus
|
||||
# Screw axis of humerus frame wrt base frame
|
||||
self.S_BH = np.array(
|
||||
[
|
||||
0,
|
||||
-1,
|
||||
0,
|
||||
self.measurements["humerus"][2],
|
||||
0,
|
||||
-self.measurements["humerus"][0],
|
||||
]
|
||||
)
|
||||
|
||||
# Humerus origin to centroid transform
|
||||
self.X_HoHc = self._create_translation_matrix(x=0.0475)
|
||||
|
||||
# 0-position humerus frame pose wrt base
|
||||
self.X_BH = self._create_translation_matrix(
|
||||
x=self.measurements["humerus"][0],
|
||||
y=self.measurements["humerus"][1],
|
||||
z=self.measurements["humerus"][2],
|
||||
)
|
||||
|
||||
# Shoulder
|
||||
# Screw axis of shoulder frame wrt Base frame
|
||||
self.S_BS = np.array([0, 0, -1, 0, 0, 0])
|
||||
|
||||
# Shoulder origin to centroid transform
|
||||
self.X_SoSc = self._create_translation_matrix(x=-0.017, z=0.0235)
|
||||
|
||||
# 0-position shoulder frame pose wrt base
|
||||
self.X_BS = self._create_translation_matrix(
|
||||
x=self.measurements["shoulder"][0],
|
||||
y=self.measurements["shoulder"][1],
|
||||
z=self.measurements["shoulder"][2],
|
||||
)
|
||||
|
||||
# Base
|
||||
# Base origin to centroid transform
|
||||
self.X_BoBc = self._create_translation_matrix(y=0.015)
|
||||
|
||||
# World to base transform
|
||||
self.X_WoBo = self._create_translation_matrix(
|
||||
x=self.measurements["base"][0],
|
||||
y=self.measurements["base"][1],
|
||||
z=self.measurements["base"][2],
|
||||
)
|
||||
|
||||
# Pre-compute gripper post-multiplication matrix
|
||||
self._fk_gripper_post = self.X_GoGc @ self.X_BoGo @ self.gripper_X0
|
||||
|
||||
def fk_base(self):
|
||||
"""Forward kinematics for the base frame."""
|
||||
return self.X_WoBo @ self.X_BoBc @ self.base_X0
|
||||
|
||||
def fk_shoulder(self, robot_pos_deg):
|
||||
"""Forward kinematics for the shoulder frame."""
|
||||
robot_pos_rad = robot_pos_deg / 180 * np.pi
|
||||
return (
|
||||
self.X_WoBo
|
||||
@ screw_axis_to_transform(self.S_BS, robot_pos_rad[0])
|
||||
@ self.X_SoSc
|
||||
@ self.X_BS
|
||||
)
|
||||
|
||||
def fk_humerus(self, robot_pos_deg):
|
||||
"""Forward kinematics for the humerus frame."""
|
||||
robot_pos_rad = robot_pos_deg / 180 * np.pi
|
||||
return (
|
||||
self.X_WoBo
|
||||
@ screw_axis_to_transform(self.S_BS, robot_pos_rad[0])
|
||||
@ screw_axis_to_transform(self.S_BH, robot_pos_rad[1])
|
||||
@ self.X_HoHc
|
||||
@ self.X_BH
|
||||
)
|
||||
|
||||
def fk_forearm(self, robot_pos_deg):
|
||||
"""Forward kinematics for the forearm frame."""
|
||||
robot_pos_rad = robot_pos_deg / 180 * np.pi
|
||||
return (
|
||||
self.X_WoBo
|
||||
@ screw_axis_to_transform(self.S_BS, robot_pos_rad[0])
|
||||
@ screw_axis_to_transform(self.S_BH, robot_pos_rad[1])
|
||||
@ screw_axis_to_transform(self.S_BF, robot_pos_rad[2])
|
||||
@ self.X_FoFc
|
||||
@ self.X_BF
|
||||
)
|
||||
|
||||
def fk_wrist(self, robot_pos_deg):
|
||||
"""Forward kinematics for the wrist frame."""
|
||||
robot_pos_rad = robot_pos_deg / 180 * np.pi
|
||||
return (
|
||||
self.X_WoBo
|
||||
@ screw_axis_to_transform(self.S_BS, robot_pos_rad[0])
|
||||
@ screw_axis_to_transform(self.S_BH, robot_pos_rad[1])
|
||||
@ screw_axis_to_transform(self.S_BF, robot_pos_rad[2])
|
||||
@ screw_axis_to_transform(self.S_BR, robot_pos_rad[3])
|
||||
@ self.X_RoRc
|
||||
@ self.X_BR
|
||||
@ self.wrist_X0
|
||||
)
|
||||
|
||||
def fk_gripper(self, robot_pos_deg):
|
||||
"""Forward kinematics for the gripper frame."""
|
||||
robot_pos_rad = robot_pos_deg / 180 * np.pi
|
||||
return (
|
||||
self.X_WoBo
|
||||
@ screw_axis_to_transform(self.S_BS, robot_pos_rad[0])
|
||||
@ screw_axis_to_transform(self.S_BH, robot_pos_rad[1])
|
||||
@ screw_axis_to_transform(self.S_BF, robot_pos_rad[2])
|
||||
@ screw_axis_to_transform(self.S_BR, robot_pos_rad[3])
|
||||
@ screw_axis_to_transform(self.S_BG, robot_pos_rad[4])
|
||||
@ self._fk_gripper_post
|
||||
)
|
||||
|
||||
def fk_gripper_tip(self, robot_pos_deg):
|
||||
"""Forward kinematics for the gripper tip frame."""
|
||||
robot_pos_rad = robot_pos_deg / 180 * np.pi
|
||||
return (
|
||||
self.X_WoBo
|
||||
@ screw_axis_to_transform(self.S_BS, robot_pos_rad[0])
|
||||
@ screw_axis_to_transform(self.S_BH, robot_pos_rad[1])
|
||||
@ screw_axis_to_transform(self.S_BF, robot_pos_rad[2])
|
||||
@ screw_axis_to_transform(self.S_BR, robot_pos_rad[3])
|
||||
@ screw_axis_to_transform(self.S_BG, robot_pos_rad[4])
|
||||
@ self.X_GoGt
|
||||
@ self.X_BoGo
|
||||
@ self.gripper_X0
|
||||
)
|
||||
|
||||
def compute_jacobian(self, robot_pos_deg, fk_func=None):
|
||||
"""Finite differences to compute the Jacobian.
|
||||
J(i, j) represents how the ith component of the end-effector's velocity changes wrt a small change
|
||||
in the jth joint's velocity.
|
||||
|
||||
Args:
|
||||
robot_pos_deg: Current joint positions in degrees
|
||||
fk_func: Forward kinematics function to use (defaults to fk_gripper)
|
||||
"""
|
||||
if fk_func is None:
|
||||
fk_func = self.fk_gripper
|
||||
|
||||
eps = 1e-8
|
||||
jac = np.zeros(shape=(6, 5))
|
||||
delta = np.zeros(len(robot_pos_deg[:-1]), dtype=np.float64)
|
||||
for el_ix in range(len(robot_pos_deg[:-1])):
|
||||
delta *= 0
|
||||
delta[el_ix] = eps / 2
|
||||
Sdot = (
|
||||
pose_difference_se3(
|
||||
fk_func(robot_pos_deg[:-1] + delta),
|
||||
fk_func(robot_pos_deg[:-1] - delta),
|
||||
)
|
||||
/ eps
|
||||
)
|
||||
jac[:, el_ix] = Sdot
|
||||
return jac
|
||||
|
||||
def compute_positional_jacobian(self, robot_pos_deg, fk_func=None):
|
||||
"""Finite differences to compute the positional Jacobian.
|
||||
J(i, j) represents how the ith component of the end-effector's position changes wrt a small change
|
||||
in the jth joint's velocity.
|
||||
|
||||
Args:
|
||||
robot_pos_deg: Current joint positions in degrees
|
||||
fk_func: Forward kinematics function to use (defaults to fk_gripper)
|
||||
"""
|
||||
if fk_func is None:
|
||||
fk_func = self.fk_gripper
|
||||
|
||||
eps = 1e-8
|
||||
jac = np.zeros(shape=(3, 5))
|
||||
delta = np.zeros(len(robot_pos_deg[:-1]), dtype=np.float64)
|
||||
for el_ix in range(len(robot_pos_deg[:-1])):
|
||||
delta *= 0
|
||||
delta[el_ix] = eps / 2
|
||||
Sdot = (
|
||||
fk_func(robot_pos_deg[:-1] + delta)[:3, 3]
|
||||
- fk_func(robot_pos_deg[:-1] - delta)[:3, 3]
|
||||
) / eps
|
||||
jac[:, el_ix] = Sdot
|
||||
return jac
|
||||
|
||||
def ik(
|
||||
self, current_joint_state, desired_ee_pose, position_only=True, fk_func=None
|
||||
):
|
||||
"""Inverse kinematics using gradient descent.
|
||||
|
||||
Args:
|
||||
current_joint_state: Initial joint positions in degrees
|
||||
desired_ee_pose: Target end-effector pose as a 4x4 transformation matrix
|
||||
position_only: If True, only match end-effector position, not orientation
|
||||
fk_func: Forward kinematics function to use (defaults to fk_gripper)
|
||||
|
||||
Returns:
|
||||
Joint positions in degrees that achieve the desired end-effector pose
|
||||
"""
|
||||
if fk_func is None:
|
||||
fk_func = self.fk_gripper
|
||||
|
||||
# Do gradient descent.
|
||||
max_iterations = 5
|
||||
learning_rate = 1
|
||||
for _ in range(max_iterations):
|
||||
current_ee_pose = fk_func(current_joint_state)
|
||||
if not position_only:
|
||||
error = se3_error(desired_ee_pose, current_ee_pose)
|
||||
jac = self.compute_jacobian(current_joint_state, fk_func)
|
||||
else:
|
||||
error = desired_ee_pose[:3, 3] - current_ee_pose[:3, 3]
|
||||
jac = self.compute_positional_jacobian(current_joint_state, fk_func)
|
||||
delta_angles = np.linalg.pinv(jac) @ error
|
||||
current_joint_state[:-1] += learning_rate * delta_angles
|
||||
|
||||
if np.linalg.norm(error) < 5e-3:
|
||||
return current_joint_state
|
||||
return current_joint_state
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import time
|
||||
|
||||
def run_test(robot_type):
|
||||
"""Run test suite for a specific robot type."""
|
||||
print(f"\n--- Testing {robot_type.upper()} Robot ---")
|
||||
|
||||
# Initialize kinematics for this robot
|
||||
robot = RobotKinematics(robot_type)
|
||||
|
||||
# Test 1: Forward kinematics consistency
|
||||
print("Test 1: Forward kinematics consistency")
|
||||
test_angles = np.array(
|
||||
[30, 45, -30, 20, 10, 0]
|
||||
) # Example joint angles in degrees
|
||||
|
||||
# Calculate FK for different joints
|
||||
shoulder_pose = robot.fk_shoulder(test_angles)
|
||||
humerus_pose = robot.fk_humerus(test_angles)
|
||||
forearm_pose = robot.fk_forearm(test_angles)
|
||||
wrist_pose = robot.fk_wrist(test_angles)
|
||||
gripper_pose = robot.fk_gripper(test_angles)
|
||||
gripper_tip_pose = robot.fk_gripper_tip(test_angles)
|
||||
|
||||
# Check that poses form a consistent kinematic chain (positions should be progressively further from origin)
|
||||
distances = [
|
||||
np.linalg.norm(shoulder_pose[:3, 3]),
|
||||
np.linalg.norm(humerus_pose[:3, 3]),
|
||||
np.linalg.norm(forearm_pose[:3, 3]),
|
||||
np.linalg.norm(wrist_pose[:3, 3]),
|
||||
np.linalg.norm(gripper_pose[:3, 3]),
|
||||
np.linalg.norm(gripper_tip_pose[:3, 3]),
|
||||
]
|
||||
|
||||
# Check if distances generally increase along the chain
|
||||
is_consistent = all(
|
||||
distances[i] <= distances[i + 1] for i in range(len(distances) - 1)
|
||||
)
|
||||
print(f" Pose distances from origin: {[round(d, 3) for d in distances]}")
|
||||
print(
|
||||
f" Kinematic chain consistency: {'PASSED' if is_consistent else 'FAILED'}"
|
||||
)
|
||||
|
||||
# Test 2: Jacobian computation
|
||||
print("Test 2: Jacobian computation")
|
||||
jacobian = robot.compute_jacobian(test_angles)
|
||||
positional_jacobian = robot.compute_positional_jacobian(test_angles)
|
||||
|
||||
# Check shapes
|
||||
jacobian_shape_ok = jacobian.shape == (6, 5)
|
||||
pos_jacobian_shape_ok = positional_jacobian.shape == (3, 5)
|
||||
|
||||
print(f" Jacobian shape: {'PASSED' if jacobian_shape_ok else 'FAILED'}")
|
||||
print(
|
||||
f" Positional Jacobian shape: {'PASSED' if pos_jacobian_shape_ok else 'FAILED'}"
|
||||
)
|
||||
|
||||
# Test 3: Inverse kinematics
|
||||
print("Test 3: Inverse kinematics (position only)")
|
||||
|
||||
# Generate target pose from known joint angles
|
||||
original_angles = np.array([10, 20, 30, -10, 5, 0])
|
||||
target_pose = robot.fk_gripper(original_angles)
|
||||
|
||||
# Start IK from a different position
|
||||
initial_guess = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0])
|
||||
|
||||
# Measure IK performance
|
||||
start_time = time.time()
|
||||
computed_angles = robot.ik(initial_guess.copy(), target_pose)
|
||||
ik_time = time.time() - start_time
|
||||
|
||||
# Compute resulting pose from IK solution
|
||||
result_pose = robot.fk_gripper(computed_angles)
|
||||
|
||||
# Calculate position error
|
||||
pos_error = np.linalg.norm(target_pose[:3, 3] - result_pose[:3, 3])
|
||||
passed = pos_error < 0.01 # Accept errors less than 1cm
|
||||
|
||||
print(f" IK computation time: {ik_time:.4f} seconds")
|
||||
print(f" Position error: {pos_error:.4f}")
|
||||
print(f" IK position accuracy: {'PASSED' if passed else 'FAILED'}")
|
||||
|
||||
return is_consistent and jacobian_shape_ok and pos_jacobian_shape_ok and passed
|
||||
|
||||
# Run tests for all robot types
|
||||
results = {}
|
||||
for robot_type in ["koch", "so100", "moss"]:
|
||||
results[robot_type] = run_test(robot_type)
|
||||
|
||||
# Print overall summary
|
||||
print("\n=== Test Summary ===")
|
||||
all_passed = all(results.values())
|
||||
for robot_type, passed in results.items():
|
||||
print(f"{robot_type.upper()}: {'PASSED' if passed else 'FAILED'}")
|
||||
print(f"\nOverall: {'ALL TESTS PASSED' if all_passed else 'SOME TESTS FAILED'}")
|
||||
870
lerobot/scripts/server/learner_server.py
Normal file
870
lerobot/scripts/server/learner_server.py
Normal file
@@ -0,0 +1,870 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team.
|
||||
# All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import logging
|
||||
import shutil
|
||||
import time
|
||||
from pprint import pformat
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
|
||||
# from torch.multiprocessing import Event, Queue, Process
|
||||
# from threading import Event, Thread
|
||||
# from torch.multiprocessing import Queue, Event
|
||||
from torch.multiprocessing import Queue
|
||||
|
||||
from lerobot.scripts.server.utils import setup_process_handlers
|
||||
|
||||
import grpc
|
||||
|
||||
# Import generated stubs
|
||||
import hilserl_pb2_grpc # type: ignore
|
||||
import hydra
|
||||
import torch
|
||||
from deepdiff import DeepDiff
|
||||
from omegaconf import DictConfig, OmegaConf
|
||||
from termcolor import colored
|
||||
from torch import nn
|
||||
from torch.optim.optimizer import Optimizer
|
||||
|
||||
from lerobot.common.datasets.factory import make_dataset
|
||||
|
||||
# TODO: Remove the import of maniskill
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
||||
from lerobot.common.logger import Logger, log_output_dir
|
||||
from lerobot.common.policies.factory import make_policy
|
||||
from lerobot.common.policies.sac.modeling_sac import SACPolicy
|
||||
from lerobot.common.utils.utils import (
|
||||
format_big_number,
|
||||
get_global_random_state,
|
||||
get_safe_torch_device,
|
||||
init_hydra_config,
|
||||
init_logging,
|
||||
set_global_random_state,
|
||||
set_global_seed,
|
||||
)
|
||||
|
||||
from lerobot.scripts.server.buffer import (
|
||||
ReplayBuffer,
|
||||
concatenate_batch_transitions,
|
||||
move_transition_to_device,
|
||||
move_state_dict_to_device,
|
||||
bytes_to_transitions,
|
||||
state_to_bytes,
|
||||
bytes_to_python_object,
|
||||
)
|
||||
|
||||
from lerobot.scripts.server import learner_service
|
||||
|
||||
|
||||
def handle_resume_logic(cfg: DictConfig, out_dir: str) -> DictConfig:
|
||||
if not cfg.resume:
|
||||
if Logger.get_last_checkpoint_dir(out_dir).exists():
|
||||
raise RuntimeError(
|
||||
f"Output directory {Logger.get_last_checkpoint_dir(out_dir)} already exists. "
|
||||
"Use `resume=true` to resume training."
|
||||
)
|
||||
return cfg
|
||||
|
||||
# if resume == True
|
||||
checkpoint_dir = Logger.get_last_checkpoint_dir(out_dir)
|
||||
if not checkpoint_dir.exists():
|
||||
raise RuntimeError(
|
||||
f"No model checkpoint found in {checkpoint_dir} for resume=True"
|
||||
)
|
||||
|
||||
checkpoint_cfg_path = str(
|
||||
Logger.get_last_pretrained_model_dir(out_dir) / "config.yaml"
|
||||
)
|
||||
logging.info(
|
||||
colored(
|
||||
"Resume=True detected, resuming previous run",
|
||||
color="yellow",
|
||||
attrs=["bold"],
|
||||
)
|
||||
)
|
||||
|
||||
checkpoint_cfg = init_hydra_config(checkpoint_cfg_path)
|
||||
diff = DeepDiff(OmegaConf.to_container(checkpoint_cfg), OmegaConf.to_container(cfg))
|
||||
|
||||
if "values_changed" in diff and "root['resume']" in diff["values_changed"]:
|
||||
del diff["values_changed"]["root['resume']"]
|
||||
|
||||
if len(diff) > 0:
|
||||
logging.warning(
|
||||
f"Differences between the checkpoint config and the provided config detected: \n{pformat(diff)}\n"
|
||||
"Checkpoint configuration takes precedence."
|
||||
)
|
||||
|
||||
checkpoint_cfg.resume = True
|
||||
return checkpoint_cfg
|
||||
|
||||
|
||||
def load_training_state(
|
||||
cfg: DictConfig,
|
||||
logger: Logger,
|
||||
optimizers: Optimizer | dict,
|
||||
):
|
||||
if not cfg.resume:
|
||||
return None, None
|
||||
|
||||
training_state = torch.load(
|
||||
logger.last_checkpoint_dir / logger.training_state_file_name, weights_only=False
|
||||
)
|
||||
|
||||
if isinstance(training_state["optimizer"], dict):
|
||||
assert set(training_state["optimizer"].keys()) == set(optimizers.keys())
|
||||
for k, v in training_state["optimizer"].items():
|
||||
optimizers[k].load_state_dict(v)
|
||||
else:
|
||||
optimizers.load_state_dict(training_state["optimizer"])
|
||||
|
||||
set_global_random_state({k: training_state[k] for k in get_global_random_state()})
|
||||
return training_state["step"], training_state["interaction_step"]
|
||||
|
||||
|
||||
def log_training_info(cfg: DictConfig, out_dir: str, policy: nn.Module) -> None:
|
||||
num_learnable_params = sum(
|
||||
p.numel() for p in policy.parameters() if p.requires_grad
|
||||
)
|
||||
num_total_params = sum(p.numel() for p in policy.parameters())
|
||||
|
||||
log_output_dir(out_dir)
|
||||
logging.info(f"{cfg.env.task=}")
|
||||
logging.info(f"{cfg.training.online_steps=}")
|
||||
logging.info(f"{num_learnable_params=} ({format_big_number(num_learnable_params)})")
|
||||
logging.info(f"{num_total_params=} ({format_big_number(num_total_params)})")
|
||||
|
||||
|
||||
def initialize_replay_buffer(
|
||||
cfg: DictConfig, logger: Logger, device: str, storage_device: str
|
||||
) -> ReplayBuffer:
|
||||
if not cfg.resume:
|
||||
return ReplayBuffer(
|
||||
capacity=cfg.training.online_buffer_capacity,
|
||||
device=device,
|
||||
state_keys=cfg.policy.input_shapes.keys(),
|
||||
storage_device=storage_device,
|
||||
optimize_memory=True,
|
||||
)
|
||||
|
||||
logging.info("Resume training load the online dataset")
|
||||
dataset = LeRobotDataset(
|
||||
repo_id=cfg.dataset_repo_id,
|
||||
local_files_only=True,
|
||||
root=logger.log_dir / "dataset",
|
||||
)
|
||||
return ReplayBuffer.from_lerobot_dataset(
|
||||
lerobot_dataset=dataset,
|
||||
capacity=cfg.training.online_buffer_capacity,
|
||||
device=device,
|
||||
state_keys=cfg.policy.input_shapes.keys(),
|
||||
optimize_memory=True,
|
||||
)
|
||||
|
||||
|
||||
def initialize_offline_replay_buffer(
|
||||
cfg: DictConfig,
|
||||
logger: Logger,
|
||||
device: str,
|
||||
storage_device: str,
|
||||
active_action_dims: list[int] | None = None,
|
||||
) -> ReplayBuffer:
|
||||
if not cfg.resume:
|
||||
logging.info("make_dataset offline buffer")
|
||||
offline_dataset = make_dataset(cfg)
|
||||
if cfg.resume:
|
||||
logging.info("load offline dataset")
|
||||
offline_dataset = LeRobotDataset(
|
||||
repo_id=cfg.dataset_repo_id,
|
||||
local_files_only=True,
|
||||
root=logger.log_dir / "dataset_offline",
|
||||
)
|
||||
|
||||
logging.info("Convert to a offline replay buffer")
|
||||
offline_replay_buffer = ReplayBuffer.from_lerobot_dataset(
|
||||
offline_dataset,
|
||||
device=device,
|
||||
state_keys=cfg.policy.input_shapes.keys(),
|
||||
action_mask=active_action_dims,
|
||||
action_delta=cfg.env.wrapper.delta_action,
|
||||
storage_device=storage_device,
|
||||
optimize_memory=True,
|
||||
capacity=cfg.training.offline_buffer_capacity,
|
||||
)
|
||||
return offline_replay_buffer
|
||||
|
||||
|
||||
def get_observation_features(
|
||||
policy: SACPolicy, observations: torch.Tensor, next_observations: torch.Tensor
|
||||
) -> tuple[torch.Tensor | None, torch.Tensor | None]:
|
||||
if (
|
||||
policy.config.vision_encoder_name is None
|
||||
or not policy.config.freeze_vision_encoder
|
||||
):
|
||||
return None, None
|
||||
|
||||
with torch.no_grad():
|
||||
observation_features = (
|
||||
policy.actor.encoder(observations)
|
||||
if policy.actor.encoder is not None
|
||||
else None
|
||||
)
|
||||
next_observation_features = (
|
||||
policy.actor.encoder(next_observations)
|
||||
if policy.actor.encoder is not None
|
||||
else None
|
||||
)
|
||||
|
||||
return observation_features, next_observation_features
|
||||
|
||||
|
||||
def use_threads(cfg: DictConfig) -> bool:
|
||||
return cfg.actor_learner_config.concurrency.learner == "threads"
|
||||
|
||||
|
||||
def start_learner_threads(
|
||||
cfg: DictConfig,
|
||||
logger: Logger,
|
||||
out_dir: str,
|
||||
shutdown_event: any, # Event,
|
||||
) -> None:
|
||||
# Create multiprocessing queues
|
||||
transition_queue = Queue()
|
||||
interaction_message_queue = Queue()
|
||||
parameters_queue = Queue()
|
||||
|
||||
concurrency_entity = None
|
||||
|
||||
if use_threads(cfg):
|
||||
from threading import Thread
|
||||
|
||||
concurrency_entity = Thread
|
||||
else:
|
||||
from torch.multiprocessing import Process
|
||||
|
||||
concurrency_entity = Process
|
||||
|
||||
communication_process = concurrency_entity(
|
||||
target=start_learner_server,
|
||||
args=(
|
||||
parameters_queue,
|
||||
transition_queue,
|
||||
interaction_message_queue,
|
||||
shutdown_event,
|
||||
cfg,
|
||||
),
|
||||
daemon=True,
|
||||
)
|
||||
communication_process.start()
|
||||
|
||||
add_actor_information_and_train(
|
||||
cfg,
|
||||
logger,
|
||||
out_dir,
|
||||
shutdown_event,
|
||||
transition_queue,
|
||||
interaction_message_queue,
|
||||
parameters_queue,
|
||||
)
|
||||
logging.info("[LEARNER] Training process stopped")
|
||||
|
||||
logging.info("[LEARNER] Closing queues")
|
||||
transition_queue.close()
|
||||
interaction_message_queue.close()
|
||||
parameters_queue.close()
|
||||
|
||||
communication_process.join()
|
||||
logging.info("[LEARNER] Communication process joined")
|
||||
|
||||
logging.info("[LEARNER] join queues")
|
||||
transition_queue.cancel_join_thread()
|
||||
interaction_message_queue.cancel_join_thread()
|
||||
parameters_queue.cancel_join_thread()
|
||||
|
||||
logging.info("[LEARNER] queues closed")
|
||||
|
||||
|
||||
def start_learner_server(
|
||||
parameters_queue: Queue,
|
||||
transition_queue: Queue,
|
||||
interaction_message_queue: Queue,
|
||||
shutdown_event: any, # Event,
|
||||
cfg: DictConfig,
|
||||
):
|
||||
if not use_threads(cfg):
|
||||
# We need init logging for MP separataly
|
||||
init_logging()
|
||||
|
||||
# Setup process handlers to handle shutdown signal
|
||||
# But use shutdown event from the main process
|
||||
# Return back for MP
|
||||
setup_process_handlers(False)
|
||||
|
||||
service = learner_service.LearnerService(
|
||||
shutdown_event,
|
||||
parameters_queue,
|
||||
cfg.actor_learner_config.policy_parameters_push_frequency,
|
||||
transition_queue,
|
||||
interaction_message_queue,
|
||||
)
|
||||
|
||||
server = grpc.server(
|
||||
ThreadPoolExecutor(max_workers=learner_service.MAX_WORKERS),
|
||||
options=[
|
||||
("grpc.max_receive_message_length", learner_service.MAX_MESSAGE_SIZE),
|
||||
("grpc.max_send_message_length", learner_service.MAX_MESSAGE_SIZE),
|
||||
],
|
||||
)
|
||||
|
||||
hilserl_pb2_grpc.add_LearnerServiceServicer_to_server(
|
||||
service,
|
||||
server,
|
||||
)
|
||||
|
||||
host = cfg.actor_learner_config.learner_host
|
||||
port = cfg.actor_learner_config.learner_port
|
||||
|
||||
server.add_insecure_port(f"{host}:{port}")
|
||||
server.start()
|
||||
logging.info("[LEARNER] gRPC server started")
|
||||
|
||||
shutdown_event.wait()
|
||||
logging.info("[LEARNER] Stopping gRPC server...")
|
||||
server.stop(learner_service.STUTDOWN_TIMEOUT)
|
||||
logging.info("[LEARNER] gRPC server stopped")
|
||||
|
||||
|
||||
def check_nan_in_transition(
|
||||
observations: torch.Tensor,
|
||||
actions: torch.Tensor,
|
||||
next_state: torch.Tensor,
|
||||
raise_error: bool = False,
|
||||
) -> bool:
|
||||
"""
|
||||
Check for NaN values in transition data.
|
||||
|
||||
Args:
|
||||
observations: Dictionary of observation tensors
|
||||
actions: Action tensor
|
||||
next_state: Dictionary of next state tensors
|
||||
raise_error: If True, raises ValueError when NaN is detected
|
||||
|
||||
Returns:
|
||||
bool: True if NaN values were detected, False otherwise
|
||||
"""
|
||||
nan_detected = False
|
||||
|
||||
# Check observations
|
||||
for key, tensor in observations.items():
|
||||
if torch.isnan(tensor).any():
|
||||
logging.error(f"observations[{key}] contains NaN values")
|
||||
nan_detected = True
|
||||
if raise_error:
|
||||
raise ValueError(f"NaN detected in observations[{key}]")
|
||||
|
||||
# Check next state
|
||||
for key, tensor in next_state.items():
|
||||
if torch.isnan(tensor).any():
|
||||
logging.error(f"next_state[{key}] contains NaN values")
|
||||
nan_detected = True
|
||||
if raise_error:
|
||||
raise ValueError(f"NaN detected in next_state[{key}]")
|
||||
|
||||
# Check actions
|
||||
if torch.isnan(actions).any():
|
||||
logging.error("actions contains NaN values")
|
||||
nan_detected = True
|
||||
if raise_error:
|
||||
raise ValueError("NaN detected in actions")
|
||||
|
||||
return nan_detected
|
||||
|
||||
|
||||
def push_actor_policy_to_queue(parameters_queue: Queue, policy: nn.Module):
|
||||
logging.debug("[LEARNER] Pushing actor policy to the queue")
|
||||
state_dict = move_state_dict_to_device(policy.actor.state_dict(), device="cpu")
|
||||
state_bytes = state_to_bytes(state_dict)
|
||||
parameters_queue.put(state_bytes)
|
||||
|
||||
|
||||
def add_actor_information_and_train(
|
||||
cfg,
|
||||
logger: Logger,
|
||||
out_dir: str,
|
||||
shutdown_event: any, # Event,
|
||||
transition_queue: Queue,
|
||||
interaction_message_queue: Queue,
|
||||
parameters_queue: Queue,
|
||||
):
|
||||
"""
|
||||
Handles data transfer from the actor to the learner, manages training updates,
|
||||
and logs training progress in an online reinforcement learning setup.
|
||||
|
||||
This function continuously:
|
||||
- Transfers transitions from the actor to the replay buffer.
|
||||
- Logs received interaction messages.
|
||||
- Ensures training begins only when the replay buffer has a sufficient number of transitions.
|
||||
- Samples batches from the replay buffer and performs multiple critic updates.
|
||||
- Periodically updates the actor, critic, and temperature optimizers.
|
||||
- Logs training statistics, including loss values and optimization frequency.
|
||||
|
||||
**NOTE:**
|
||||
- This function performs multiple responsibilities (data transfer, training, and logging).
|
||||
It should ideally be split into smaller functions in the future.
|
||||
- Due to Python's **Global Interpreter Lock (GIL)**, running separate threads for different tasks
|
||||
significantly reduces performance. Instead, this function executes all operations in a single thread.
|
||||
|
||||
Args:
|
||||
cfg: Configuration object containing hyperparameters.
|
||||
device (str): The computing device (`"cpu"` or `"cuda"`).
|
||||
logger (Logger): Logger instance for tracking training progress.
|
||||
out_dir (str): The output directory for storing training checkpoints and logs.
|
||||
shutdown_event (Event): Event to signal shutdown.
|
||||
transition_queue (Queue): Queue for receiving transitions from the actor.
|
||||
interaction_message_queue (Queue): Queue for receiving interaction messages from the actor.
|
||||
parameters_queue (Queue): Queue for sending policy parameters to the actor.
|
||||
"""
|
||||
|
||||
device = get_safe_torch_device(cfg.device, log=True)
|
||||
storage_device = get_safe_torch_device(cfg_device=cfg.training.storage_device)
|
||||
|
||||
logging.info("Initializing policy")
|
||||
### Instantiate the policy in both the actor and learner processes
|
||||
### To avoid sending a SACPolicy object through the port, we create a policy intance
|
||||
### on both sides, the learner sends the updated parameters every n steps to update the actor's parameters
|
||||
# TODO: At some point we should just need make sac policy
|
||||
|
||||
policy: SACPolicy = make_policy(
|
||||
hydra_cfg=cfg,
|
||||
# dataset_stats=offline_dataset.meta.stats if not cfg.resume else None,
|
||||
# Hack: But if we do online traning, we do not need dataset_stats
|
||||
dataset_stats=None,
|
||||
pretrained_policy_name_or_path=str(logger.last_pretrained_model_dir)
|
||||
if cfg.resume
|
||||
else None,
|
||||
)
|
||||
|
||||
# Update the policy config with the grad_clip_norm value from training config if it exists
|
||||
clip_grad_norm_value = cfg.training.grad_clip_norm
|
||||
|
||||
# compile policy
|
||||
policy = torch.compile(policy)
|
||||
assert isinstance(policy, nn.Module)
|
||||
|
||||
push_actor_policy_to_queue(parameters_queue, policy)
|
||||
|
||||
last_time_policy_pushed = time.time()
|
||||
|
||||
optimizers, lr_scheduler = make_optimizers_and_scheduler(cfg, policy)
|
||||
resume_optimization_step, resume_interaction_step = load_training_state(
|
||||
cfg, logger, optimizers
|
||||
)
|
||||
|
||||
log_training_info(cfg, out_dir, policy)
|
||||
|
||||
replay_buffer = initialize_replay_buffer(cfg, logger, device, storage_device)
|
||||
batch_size = cfg.training.batch_size
|
||||
offline_replay_buffer = None
|
||||
|
||||
if cfg.dataset_repo_id is not None:
|
||||
active_action_dims = None
|
||||
if cfg.env.wrapper.joint_masking_action_space is not None:
|
||||
active_action_dims = [
|
||||
i
|
||||
for i, mask in enumerate(cfg.env.wrapper.joint_masking_action_space)
|
||||
if mask
|
||||
]
|
||||
offline_replay_buffer = initialize_offline_replay_buffer(
|
||||
cfg=cfg,
|
||||
logger=logger,
|
||||
device=device,
|
||||
storage_device=storage_device,
|
||||
active_action_dims=active_action_dims,
|
||||
)
|
||||
batch_size: int = batch_size // 2 # We will sample from both replay buffer
|
||||
|
||||
# NOTE: This function doesn't have a single responsibility, it should be split into multiple functions
|
||||
# in the future. The reason why we did that is the GIL in Python. It's super slow the performance
|
||||
# are divided by 200. So we need to have a single thread that does all the work.
|
||||
time.time()
|
||||
logging.info("Starting learner thread")
|
||||
interaction_message, transition = None, None
|
||||
optimization_step = (
|
||||
resume_optimization_step if resume_optimization_step is not None else 0
|
||||
)
|
||||
interaction_step_shift = (
|
||||
resume_interaction_step if resume_interaction_step is not None else 0
|
||||
)
|
||||
|
||||
# Extract variables from cfg
|
||||
online_step_before_learning = cfg.training.online_step_before_learning
|
||||
utd_ratio = cfg.policy.utd_ratio
|
||||
dataset_repo_id = cfg.dataset_repo_id
|
||||
fps = cfg.fps
|
||||
log_freq = cfg.training.log_freq
|
||||
save_freq = cfg.training.save_freq
|
||||
device = cfg.device
|
||||
storage_device = cfg.training.storage_device
|
||||
policy_update_freq = cfg.training.policy_update_freq
|
||||
policy_parameters_push_frequency = (
|
||||
cfg.actor_learner_config.policy_parameters_push_frequency
|
||||
)
|
||||
save_checkpoint = cfg.training.save_checkpoint
|
||||
online_steps = cfg.training.online_steps
|
||||
|
||||
while True:
|
||||
if shutdown_event is not None and shutdown_event.is_set():
|
||||
logging.info("[LEARNER] Shutdown signal received. Exiting...")
|
||||
break
|
||||
|
||||
logging.debug("[LEARNER] Waiting for transitions")
|
||||
while not transition_queue.empty() and not shutdown_event.is_set():
|
||||
transition_list = transition_queue.get()
|
||||
transition_list = bytes_to_transitions(transition_list)
|
||||
|
||||
for transition in transition_list:
|
||||
transition = move_transition_to_device(transition, device=device)
|
||||
if check_nan_in_transition(
|
||||
transition["state"], transition["action"], transition["next_state"]
|
||||
):
|
||||
logging.warning("NaN detected in transition, skipping")
|
||||
continue
|
||||
replay_buffer.add(**transition)
|
||||
|
||||
if cfg.dataset_repo_id is not None and transition.get(
|
||||
"complementary_info", {}
|
||||
).get("is_intervention"):
|
||||
offline_replay_buffer.add(**transition)
|
||||
|
||||
logging.debug("[LEARNER] Received transitions")
|
||||
logging.debug("[LEARNER] Waiting for interactions")
|
||||
while not interaction_message_queue.empty() and not shutdown_event.is_set():
|
||||
interaction_message = interaction_message_queue.get()
|
||||
interaction_message = bytes_to_python_object(interaction_message)
|
||||
# If cfg.resume, shift the interaction step with the last checkpointed step in order to not break the logging
|
||||
interaction_message["Interaction step"] += interaction_step_shift
|
||||
logger.log_dict(
|
||||
interaction_message, mode="train", custom_step_key="Interaction step"
|
||||
)
|
||||
|
||||
logging.debug("[LEARNER] Received interactions")
|
||||
|
||||
if len(replay_buffer) < online_step_before_learning:
|
||||
continue
|
||||
|
||||
logging.debug("[LEARNER] Starting optimization loop")
|
||||
time_for_one_optimization_step = time.time()
|
||||
for _ in range(utd_ratio - 1):
|
||||
batch = replay_buffer.sample(batch_size)
|
||||
|
||||
if dataset_repo_id is not None:
|
||||
batch_offline = offline_replay_buffer.sample(batch_size)
|
||||
batch = concatenate_batch_transitions(batch, batch_offline)
|
||||
|
||||
actions = batch["action"]
|
||||
rewards = batch["reward"]
|
||||
observations = batch["state"]
|
||||
next_observations = batch["next_state"]
|
||||
done = batch["done"]
|
||||
check_nan_in_transition(
|
||||
observations=observations, actions=actions, next_state=next_observations
|
||||
)
|
||||
|
||||
observation_features, next_observation_features = get_observation_features(
|
||||
policy, observations, next_observations
|
||||
)
|
||||
loss_critic = policy.compute_loss_critic(
|
||||
observations=observations,
|
||||
actions=actions,
|
||||
rewards=rewards,
|
||||
next_observations=next_observations,
|
||||
done=done,
|
||||
observation_features=observation_features,
|
||||
next_observation_features=next_observation_features,
|
||||
)
|
||||
optimizers["critic"].zero_grad()
|
||||
loss_critic.backward()
|
||||
|
||||
# clip gradients
|
||||
critic_grad_norm = torch.nn.utils.clip_grad_norm_(
|
||||
policy.critic_ensemble.parameters(), clip_grad_norm_value
|
||||
)
|
||||
|
||||
optimizers["critic"].step()
|
||||
|
||||
batch = replay_buffer.sample(batch_size)
|
||||
|
||||
if dataset_repo_id is not None:
|
||||
batch_offline = offline_replay_buffer.sample(batch_size)
|
||||
batch = concatenate_batch_transitions(
|
||||
left_batch_transitions=batch, right_batch_transition=batch_offline
|
||||
)
|
||||
|
||||
actions = batch["action"]
|
||||
rewards = batch["reward"]
|
||||
observations = batch["state"]
|
||||
next_observations = batch["next_state"]
|
||||
done = batch["done"]
|
||||
|
||||
check_nan_in_transition(
|
||||
observations=observations, actions=actions, next_state=next_observations
|
||||
)
|
||||
|
||||
observation_features, next_observation_features = get_observation_features(
|
||||
policy, observations, next_observations
|
||||
)
|
||||
loss_critic = policy.compute_loss_critic(
|
||||
observations=observations,
|
||||
actions=actions,
|
||||
rewards=rewards,
|
||||
next_observations=next_observations,
|
||||
done=done,
|
||||
observation_features=observation_features,
|
||||
next_observation_features=next_observation_features,
|
||||
)
|
||||
optimizers["critic"].zero_grad()
|
||||
loss_critic.backward()
|
||||
|
||||
# clip gradients
|
||||
critic_grad_norm = torch.nn.utils.clip_grad_norm_(
|
||||
policy.critic_ensemble.parameters(), clip_grad_norm_value
|
||||
).item()
|
||||
|
||||
optimizers["critic"].step()
|
||||
|
||||
training_infos = {}
|
||||
training_infos["loss_critic"] = loss_critic.item()
|
||||
training_infos["critic_grad_norm"] = critic_grad_norm
|
||||
|
||||
if optimization_step % policy_update_freq == 0:
|
||||
for _ in range(policy_update_freq):
|
||||
loss_actor = policy.compute_loss_actor(
|
||||
observations=observations,
|
||||
observation_features=observation_features,
|
||||
)
|
||||
|
||||
optimizers["actor"].zero_grad()
|
||||
loss_actor.backward()
|
||||
|
||||
# clip gradients
|
||||
actor_grad_norm = torch.nn.utils.clip_grad_norm_(
|
||||
policy.actor.parameters_to_optimize, clip_grad_norm_value
|
||||
).item()
|
||||
|
||||
optimizers["actor"].step()
|
||||
|
||||
training_infos["loss_actor"] = loss_actor.item()
|
||||
training_infos["actor_grad_norm"] = actor_grad_norm
|
||||
|
||||
# Temperature optimization
|
||||
loss_temperature = policy.compute_loss_temperature(
|
||||
observations=observations,
|
||||
observation_features=observation_features,
|
||||
)
|
||||
optimizers["temperature"].zero_grad()
|
||||
loss_temperature.backward()
|
||||
|
||||
# clip gradients
|
||||
temp_grad_norm = torch.nn.utils.clip_grad_norm_(
|
||||
[policy.log_alpha], clip_grad_norm_value
|
||||
).item()
|
||||
|
||||
optimizers["temperature"].step()
|
||||
|
||||
training_infos["loss_temperature"] = loss_temperature.item()
|
||||
training_infos["temperature_grad_norm"] = temp_grad_norm
|
||||
training_infos["temperature"] = policy.temperature
|
||||
|
||||
if time.time() - last_time_policy_pushed > policy_parameters_push_frequency:
|
||||
push_actor_policy_to_queue(parameters_queue, policy)
|
||||
last_time_policy_pushed = time.time()
|
||||
|
||||
policy.update_target_networks()
|
||||
|
||||
if optimization_step % log_freq == 0:
|
||||
training_infos["replay_buffer_size"] = len(replay_buffer)
|
||||
if offline_replay_buffer is not None:
|
||||
training_infos["offline_replay_buffer_size"] = len(
|
||||
offline_replay_buffer
|
||||
)
|
||||
training_infos["Optimization step"] = optimization_step
|
||||
logger.log_dict(
|
||||
d=training_infos, mode="train", custom_step_key="Optimization step"
|
||||
)
|
||||
# logging.info(f"Training infos: {training_infos}")
|
||||
|
||||
time_for_one_optimization_step = time.time() - time_for_one_optimization_step
|
||||
frequency_for_one_optimization_step = 1 / (
|
||||
time_for_one_optimization_step + 1e-9
|
||||
)
|
||||
|
||||
logging.info(
|
||||
f"[LEARNER] Optimization frequency loop [Hz]: {frequency_for_one_optimization_step}"
|
||||
)
|
||||
|
||||
logger.log_dict(
|
||||
{
|
||||
"Optimization frequency loop [Hz]": frequency_for_one_optimization_step,
|
||||
"Optimization step": optimization_step,
|
||||
},
|
||||
mode="train",
|
||||
custom_step_key="Optimization step",
|
||||
)
|
||||
|
||||
optimization_step += 1
|
||||
if optimization_step % log_freq == 0:
|
||||
logging.info(f"[LEARNER] Number of optimization step: {optimization_step}")
|
||||
|
||||
if save_checkpoint and (
|
||||
optimization_step % save_freq == 0 or optimization_step == online_steps
|
||||
):
|
||||
logging.info(f"Checkpoint policy after step {optimization_step}")
|
||||
_num_digits = max(6, len(str(online_steps)))
|
||||
step_identifier = f"{optimization_step:0{_num_digits}d}"
|
||||
interaction_step = (
|
||||
interaction_message["Interaction step"]
|
||||
if interaction_message is not None
|
||||
else 0
|
||||
)
|
||||
logger.save_checkpoint(
|
||||
optimization_step,
|
||||
policy,
|
||||
optimizers,
|
||||
scheduler=None,
|
||||
identifier=step_identifier,
|
||||
interaction_step=interaction_step,
|
||||
)
|
||||
|
||||
# TODO : temporarly save replay buffer here, remove later when on the robot
|
||||
# We want to control this with the keyboard inputs
|
||||
dataset_dir = logger.log_dir / "dataset"
|
||||
if dataset_dir.exists() and dataset_dir.is_dir():
|
||||
shutil.rmtree(
|
||||
dataset_dir,
|
||||
)
|
||||
replay_buffer.to_lerobot_dataset(
|
||||
dataset_repo_id, fps=fps, root=logger.log_dir / "dataset"
|
||||
)
|
||||
if offline_replay_buffer is not None:
|
||||
dataset_dir = logger.log_dir / "dataset_offline"
|
||||
|
||||
if dataset_dir.exists() and dataset_dir.is_dir():
|
||||
shutil.rmtree(
|
||||
dataset_dir,
|
||||
)
|
||||
|
||||
offline_replay_buffer.to_lerobot_dataset(
|
||||
cfg.dataset_repo_id,
|
||||
fps=cfg.fps,
|
||||
root=logger.log_dir / "dataset_offline",
|
||||
)
|
||||
|
||||
logging.info("Resume training")
|
||||
|
||||
|
||||
def make_optimizers_and_scheduler(cfg, policy: nn.Module):
|
||||
"""
|
||||
Creates and returns optimizers for the actor, critic, and temperature components of a reinforcement learning policy.
|
||||
|
||||
This function sets up Adam optimizers for:
|
||||
- The **actor network**, ensuring that only relevant parameters are optimized.
|
||||
- The **critic ensemble**, which evaluates the value function.
|
||||
- The **temperature parameter**, which controls the entropy in soft actor-critic (SAC)-like methods.
|
||||
|
||||
It also initializes a learning rate scheduler, though currently, it is set to `None`.
|
||||
|
||||
**NOTE:**
|
||||
- If the encoder is shared, its parameters are excluded from the actor's optimization process.
|
||||
- The policy's log temperature (`log_alpha`) is wrapped in a list to ensure proper optimization as a standalone tensor.
|
||||
|
||||
Args:
|
||||
cfg: Configuration object containing hyperparameters.
|
||||
policy (nn.Module): The policy model containing the actor, critic, and temperature components.
|
||||
|
||||
Returns:
|
||||
Tuple[Dict[str, torch.optim.Optimizer], Optional[torch.optim.lr_scheduler._LRScheduler]]:
|
||||
A tuple containing:
|
||||
- `optimizers`: A dictionary mapping component names ("actor", "critic", "temperature") to their respective Adam optimizers.
|
||||
- `lr_scheduler`: Currently set to `None` but can be extended to support learning rate scheduling.
|
||||
|
||||
"""
|
||||
optimizer_actor = torch.optim.Adam(
|
||||
# NOTE: Handle the case of shared encoder where the encoder weights are not optimized with the gradient of the actor
|
||||
params=policy.actor.parameters_to_optimize,
|
||||
lr=policy.config.actor_lr,
|
||||
)
|
||||
optimizer_critic = torch.optim.Adam(
|
||||
params=policy.critic_ensemble.parameters(), lr=policy.config.critic_lr
|
||||
)
|
||||
optimizer_temperature = torch.optim.Adam(
|
||||
params=[policy.log_alpha], lr=policy.config.critic_lr
|
||||
)
|
||||
lr_scheduler = None
|
||||
optimizers = {
|
||||
"actor": optimizer_actor,
|
||||
"critic": optimizer_critic,
|
||||
"temperature": optimizer_temperature,
|
||||
}
|
||||
return optimizers, lr_scheduler
|
||||
|
||||
|
||||
def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = None):
|
||||
if out_dir is None:
|
||||
raise NotImplementedError()
|
||||
if job_name is None:
|
||||
raise NotImplementedError()
|
||||
|
||||
init_logging()
|
||||
logging.info(pformat(OmegaConf.to_container(cfg)))
|
||||
|
||||
logger = Logger(cfg, out_dir, wandb_job_name=job_name)
|
||||
cfg = handle_resume_logic(cfg, out_dir)
|
||||
|
||||
set_global_seed(cfg.seed)
|
||||
|
||||
torch.backends.cudnn.benchmark = True
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
|
||||
shutdown_event = setup_process_handlers(use_threads(cfg))
|
||||
|
||||
start_learner_threads(
|
||||
cfg,
|
||||
logger,
|
||||
out_dir,
|
||||
shutdown_event,
|
||||
)
|
||||
|
||||
|
||||
@hydra.main(version_base="1.2", config_name="default", config_path="../../configs")
|
||||
def train_cli(cfg: dict):
|
||||
if not use_threads(cfg):
|
||||
import torch.multiprocessing as mp
|
||||
|
||||
mp.set_start_method("spawn")
|
||||
|
||||
train(
|
||||
cfg,
|
||||
out_dir=hydra.core.hydra_config.HydraConfig.get().run.dir,
|
||||
job_name=hydra.core.hydra_config.HydraConfig.get().job.name,
|
||||
)
|
||||
|
||||
logging.info("[LEARNER] train_cli finished")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
train_cli()
|
||||
|
||||
logging.info("[LEARNER] main finished")
|
||||
82
lerobot/scripts/server/learner_service.py
Normal file
82
lerobot/scripts/server/learner_service.py
Normal file
@@ -0,0 +1,82 @@
|
||||
import hilserl_pb2 # type: ignore
|
||||
import hilserl_pb2_grpc # type: ignore
|
||||
import logging
|
||||
from multiprocessing import Event, Queue
|
||||
|
||||
from lerobot.scripts.server.network_utils import receive_bytes_in_chunks
|
||||
from lerobot.scripts.server.network_utils import send_bytes_in_chunks
|
||||
|
||||
MAX_MESSAGE_SIZE = 4 * 1024 * 1024 # 4 MB
|
||||
MAX_WORKERS = 3 # Stream parameters, send transitions and interactions
|
||||
STUTDOWN_TIMEOUT = 10
|
||||
|
||||
|
||||
class LearnerService(hilserl_pb2_grpc.LearnerServiceServicer):
|
||||
def __init__(
|
||||
self,
|
||||
shutdown_event: Event,
|
||||
parameters_queue: Queue,
|
||||
seconds_between_pushes: float,
|
||||
transition_queue: Queue,
|
||||
interaction_message_queue: Queue,
|
||||
):
|
||||
self.shutdown_event = shutdown_event
|
||||
self.parameters_queue = parameters_queue
|
||||
self.seconds_between_pushes = seconds_between_pushes
|
||||
self.transition_queue = transition_queue
|
||||
self.interaction_message_queue = interaction_message_queue
|
||||
|
||||
def StreamParameters(self, request, context):
|
||||
# TODO: authorize the request
|
||||
logging.info("[LEARNER] Received request to stream parameters from the Actor")
|
||||
|
||||
while not self.shutdown_event.is_set():
|
||||
logging.info("[LEARNER] Push parameters to the Actor")
|
||||
buffer = self.parameters_queue.get()
|
||||
|
||||
yield from send_bytes_in_chunks(
|
||||
buffer,
|
||||
hilserl_pb2.Parameters,
|
||||
log_prefix="[LEARNER] Sending parameters",
|
||||
silent=True,
|
||||
)
|
||||
|
||||
logging.info("[LEARNER] Parameters sent")
|
||||
|
||||
self.shutdown_event.wait(self.seconds_between_pushes)
|
||||
|
||||
logging.info("[LEARNER] Stream parameters finished")
|
||||
return hilserl_pb2.Empty()
|
||||
|
||||
def SendTransitions(self, request_iterator, _context):
|
||||
# TODO: authorize the request
|
||||
logging.info("[LEARNER] Received request to receive transitions from the Actor")
|
||||
|
||||
receive_bytes_in_chunks(
|
||||
request_iterator,
|
||||
self.transition_queue,
|
||||
self.shutdown_event,
|
||||
log_prefix="[LEARNER] transitions",
|
||||
)
|
||||
|
||||
logging.debug("[LEARNER] Finished receiving transitions")
|
||||
return hilserl_pb2.Empty()
|
||||
|
||||
def SendInteractions(self, request_iterator, _context):
|
||||
# TODO: authorize the request
|
||||
logging.info(
|
||||
"[LEARNER] Received request to receive interactions from the Actor"
|
||||
)
|
||||
|
||||
receive_bytes_in_chunks(
|
||||
request_iterator,
|
||||
self.interaction_message_queue,
|
||||
self.shutdown_event,
|
||||
log_prefix="[LEARNER] interactions",
|
||||
)
|
||||
|
||||
logging.debug("[LEARNER] Finished receiving interactions")
|
||||
return hilserl_pb2.Empty()
|
||||
|
||||
def Ready(self, request, context):
|
||||
return hilserl_pb2.Empty()
|
||||
192
lerobot/scripts/server/maniskill_manipulator.py
Normal file
192
lerobot/scripts/server/maniskill_manipulator.py
Normal file
@@ -0,0 +1,192 @@
|
||||
import einops
|
||||
import numpy as np
|
||||
import gymnasium as gym
|
||||
import torch
|
||||
|
||||
from omegaconf import DictConfig
|
||||
from typing import Any
|
||||
from mani_skill.vector.wrappers.gymnasium import ManiSkillVectorEnv
|
||||
from mani_skill.utils.wrappers.record import RecordEpisode
|
||||
|
||||
|
||||
def preprocess_maniskill_observation(
|
||||
observations: dict[str, np.ndarray],
|
||||
) -> dict[str, torch.Tensor]:
|
||||
"""Convert environment observation to LeRobot format observation.
|
||||
Args:
|
||||
observation: Dictionary of observation batches from a Gym vector environment.
|
||||
Returns:
|
||||
Dictionary of observation batches with keys renamed to LeRobot format and values as tensors.
|
||||
"""
|
||||
# map to expected inputs for the policy
|
||||
return_observations = {}
|
||||
# TODO: You have to merge all tensors from agent key and extra key
|
||||
# You don't keep sensor param key in the observation
|
||||
# And you keep sensor data rgb
|
||||
q_pos = observations["agent"]["qpos"]
|
||||
q_vel = observations["agent"]["qvel"]
|
||||
tcp_pos = observations["extra"]["tcp_pose"]
|
||||
img = observations["sensor_data"]["base_camera"]["rgb"]
|
||||
|
||||
_, h, w, c = img.shape
|
||||
assert c < h and c < w, f"expect channel last images, but instead got {img.shape=}"
|
||||
|
||||
# sanity check that images are uint8
|
||||
assert img.dtype == torch.uint8, f"expect torch.uint8, but instead {img.dtype=}"
|
||||
|
||||
# convert to channel first of type float32 in range [0,1]
|
||||
img = einops.rearrange(img, "b h w c -> b c h w").contiguous()
|
||||
img = img.type(torch.float32)
|
||||
img /= 255
|
||||
|
||||
state = torch.cat([q_pos, q_vel, tcp_pos], dim=-1)
|
||||
|
||||
return_observations["observation.image"] = img
|
||||
return_observations["observation.state"] = state
|
||||
return return_observations
|
||||
|
||||
|
||||
class ManiSkillObservationWrapper(gym.ObservationWrapper):
|
||||
def __init__(self, env, device: torch.device = "cuda"):
|
||||
super().__init__(env)
|
||||
self.device = device
|
||||
|
||||
def observation(self, observation):
|
||||
observation = preprocess_maniskill_observation(observation)
|
||||
observation = {k: v.to(self.device) for k, v in observation.items()}
|
||||
return observation
|
||||
|
||||
|
||||
class ManiSkillCompat(gym.Wrapper):
|
||||
def __init__(self, env):
|
||||
super().__init__(env)
|
||||
new_action_space_shape = env.action_space.shape[-1]
|
||||
new_low = np.squeeze(env.action_space.low, axis=0)
|
||||
new_high = np.squeeze(env.action_space.high, axis=0)
|
||||
self.action_space = gym.spaces.Box(
|
||||
low=new_low, high=new_high, shape=(new_action_space_shape,)
|
||||
)
|
||||
|
||||
def reset(
|
||||
self, *, seed: int | None = None, options: dict[str, Any] | None = None
|
||||
) -> tuple[Any, dict[str, Any]]:
|
||||
options = {}
|
||||
return super().reset(seed=seed, options=options)
|
||||
|
||||
def step(self, action):
|
||||
obs, reward, terminated, truncated, info = self.env.step(action)
|
||||
reward = reward.item()
|
||||
terminated = terminated.item()
|
||||
truncated = truncated.item()
|
||||
return obs, reward, terminated, truncated, info
|
||||
|
||||
|
||||
class ManiSkillActionWrapper(gym.ActionWrapper):
|
||||
def __init__(self, env):
|
||||
super().__init__(env)
|
||||
self.action_space = gym.spaces.Tuple(
|
||||
spaces=(env.action_space, gym.spaces.Discrete(2))
|
||||
)
|
||||
|
||||
def action(self, action):
|
||||
action, telop = action
|
||||
return action
|
||||
|
||||
|
||||
class ManiSkillMultiplyActionWrapper(gym.Wrapper):
|
||||
def __init__(self, env, multiply_factor: float = 1):
|
||||
super().__init__(env)
|
||||
self.multiply_factor = multiply_factor
|
||||
action_space_agent: gym.spaces.Box = env.action_space[0]
|
||||
action_space_agent.low = action_space_agent.low * multiply_factor
|
||||
action_space_agent.high = action_space_agent.high * multiply_factor
|
||||
self.action_space = gym.spaces.Tuple(
|
||||
spaces=(action_space_agent, gym.spaces.Discrete(2))
|
||||
)
|
||||
|
||||
def step(self, action):
|
||||
if isinstance(action, tuple):
|
||||
action, telop = action
|
||||
else:
|
||||
telop = 0
|
||||
action = action / self.multiply_factor
|
||||
obs, reward, terminated, truncated, info = self.env.step((action, telop))
|
||||
return obs, reward, terminated, truncated, info
|
||||
|
||||
|
||||
def make_maniskill(
|
||||
cfg: DictConfig,
|
||||
n_envs: int | None = None,
|
||||
) -> gym.Env:
|
||||
"""
|
||||
Factory function to create a ManiSkill environment with standard wrappers.
|
||||
|
||||
Args:
|
||||
task: Name of the ManiSkill task
|
||||
obs_mode: Observation mode (rgb, rgbd, etc)
|
||||
control_mode: Control mode for the robot
|
||||
render_mode: Rendering mode
|
||||
sensor_configs: Camera sensor configurations
|
||||
n_envs: Number of parallel environments
|
||||
|
||||
Returns:
|
||||
A wrapped ManiSkill environment
|
||||
"""
|
||||
|
||||
env = gym.make(
|
||||
cfg.env.task,
|
||||
obs_mode=cfg.env.obs,
|
||||
control_mode=cfg.env.control_mode,
|
||||
render_mode=cfg.env.render_mode,
|
||||
sensor_configs={"width": cfg.env.image_size, "height": cfg.env.image_size},
|
||||
num_envs=n_envs,
|
||||
)
|
||||
|
||||
if cfg.env.video_record.enabled:
|
||||
env = RecordEpisode(
|
||||
env,
|
||||
output_dir=cfg.env.video_record.record_dir,
|
||||
save_trajectory=True,
|
||||
trajectory_name=cfg.env.video_record.trajectory_name,
|
||||
save_video=True,
|
||||
video_fps=30,
|
||||
)
|
||||
env = ManiSkillObservationWrapper(env, device=cfg.env.device)
|
||||
env = ManiSkillVectorEnv(env, ignore_terminations=True, auto_reset=False)
|
||||
env._max_episode_steps = env.max_episode_steps = (
|
||||
50 # gym_utils.find_max_episode_steps_value(env)
|
||||
)
|
||||
env.unwrapped.metadata["render_fps"] = 20
|
||||
env = ManiSkillCompat(env)
|
||||
env = ManiSkillActionWrapper(env)
|
||||
env = ManiSkillMultiplyActionWrapper(env, multiply_factor=0.03)
|
||||
|
||||
return env
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import argparse
|
||||
import hydra
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--config", type=str, default="lerobot/configs/env/maniskill_example.yaml"
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Initialize config
|
||||
with hydra.initialize(version_base=None, config_path="../../configs"):
|
||||
cfg = hydra.compose(config_name="env/maniskill_example.yaml")
|
||||
|
||||
env = make_maniskill(
|
||||
task=cfg.env.task,
|
||||
obs_mode=cfg.env.obs,
|
||||
control_mode=cfg.env.control_mode,
|
||||
render_mode=cfg.env.render_mode,
|
||||
sensor_configs={"width": cfg.env.render_size, "height": cfg.env.render_size},
|
||||
)
|
||||
|
||||
print("env done")
|
||||
obs, info = env.reset()
|
||||
random_action = env.action_space.sample()
|
||||
obs, reward, terminated, truncated, info = env.step(random_action)
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user