Compare commits

..

2 Commits

Author SHA1 Message Date
Pepijn
57491b44ee Remove v5 link diffusion policy 2025-06-02 10:28:55 +02:00
Quentin Gallouédec
bb3d014677 Use HF Papers 2025-05-17 04:02:07 +00:00
39 changed files with 119 additions and 139 deletions

View File

@@ -40,24 +40,24 @@ jobs:
git lfs install
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@b5ca514318bd6ebac0fb2aedd5d36ec1b5c232a2 # v3.10.0
uses: docker/setup-buildx-action@v3
with:
cache-binary: false
- name: Check out code
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
uses: actions/checkout@v4
with:
lfs: true
persist-credentials: false
- name: Login to DockerHub
uses: docker/login-action@74a5d142397b4f367a81961eba4e8cd7edddf772 # v3.4.0
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
- name: Build and Push CPU
uses: docker/build-push-action@ca052bb54ab0790a636c9b5f226502c73d547a25 # v5.4.0
uses: docker/build-push-action@v5
with:
context: .
file: ./docker/lerobot-cpu/Dockerfile
@@ -78,24 +78,24 @@ jobs:
git lfs install
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@b5ca514318bd6ebac0fb2aedd5d36ec1b5c232a2 # v3.10.0
uses: docker/setup-buildx-action@v3
with:
cache-binary: false
- name: Check out code
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
uses: actions/checkout@v4
with:
lfs: true
persist-credentials: false
- name: Login to DockerHub
uses: docker/login-action@74a5d142397b4f367a81961eba4e8cd7edddf772 # v3.4.0
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
- name: Build and Push GPU
uses: docker/build-push-action@ca052bb54ab0790a636c9b5f226502c73d547a25 # v5.4.0
uses: docker/build-push-action@v5
with:
context: .
file: ./docker/lerobot-gpu/Dockerfile
@@ -110,23 +110,23 @@ jobs:
group: aws-general-8-plus
steps:
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@b5ca514318bd6ebac0fb2aedd5d36ec1b5c232a2 # v3.10.0
uses: docker/setup-buildx-action@v3
with:
cache-binary: false
- name: Check out code
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
uses: actions/checkout@v4
with:
persist-credentials: false
- name: Login to DockerHub
uses: docker/login-action@74a5d142397b4f367a81961eba4e8cd7edddf772 # v3.4.0
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
- name: Build and Push GPU dev
uses: docker/build-push-action@ca052bb54ab0790a636c9b5f226502c73d547a25 # v5.4.0
uses: docker/build-push-action@v5
with:
context: .
file: ./docker/lerobot-gpu-dev/Dockerfile

View File

@@ -33,7 +33,7 @@ jobs:
runs-on:
group: aws-general-8-plus
container:
image: huggingface/lerobot-cpu:latest # zizmor: ignore[unpinned-images]
image: huggingface/lerobot-cpu:latest
options: --shm-size "16gb"
credentials:
username: ${{ secrets.DOCKERHUB_USERNAME }}
@@ -60,7 +60,7 @@ jobs:
CUDA_VISIBLE_DEVICES: "0"
TEST_TYPE: "single_gpu"
container:
image: huggingface/lerobot-gpu:latest # zizmor: ignore[unpinned-images]
image: huggingface/lerobot-gpu:latest
options: --gpus all --shm-size "16gb"
credentials:
username: ${{ secrets.DOCKERHUB_USERNAME }}

View File

@@ -33,12 +33,12 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Checkout Repository
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
uses: actions/checkout@v4
with:
persist-credentials: false
- name: Set up Python
uses: actions/setup-python@7f4fc3e22c37d6ff65e88745f38bd3157c663f7c # v4.9.1
uses: actions/setup-python@v4
with:
python-version: ${{ env.PYTHON_VERSION }}
@@ -64,9 +64,9 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Checkout Repository
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
uses: actions/checkout@v4
with:
persist-credentials: false
- name: typos-action
uses: crate-ci/typos@db35ee91e80fbb447f33b0e5fbddb24d2a1a884f # v1.29.10
uses: crate-ci/typos@v1.29.10

View File

@@ -35,7 +35,7 @@ jobs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
steps:
- name: Check out code
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
uses: actions/checkout@v4
with:
persist-credentials: false
@@ -64,17 +64,17 @@ jobs:
docker-file: ${{ fromJson(needs.get_changed_files.outputs.matrix) }}
steps:
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@b5ca514318bd6ebac0fb2aedd5d36ec1b5c232a2 # v3.10.0
uses: docker/setup-buildx-action@v3
with:
cache-binary: false
- name: Check out code
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
uses: actions/checkout@v4
with:
persist-credentials: false
- name: Build Docker image
uses: docker/build-push-action@ca052bb54ab0790a636c9b5f226502c73d547a25 # v5.4.0
uses: docker/build-push-action@v5
with:
file: ${{ matrix.docker-file }}
context: .

View File

@@ -50,7 +50,7 @@ jobs:
env:
MUJOCO_GL: egl
steps:
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
- uses: actions/checkout@v4
with:
lfs: true # Ensure LFS files are pulled
persist-credentials: false
@@ -62,7 +62,7 @@ jobs:
sudo apt-get install -y libegl1-mesa-dev ffmpeg portaudio19-dev
- name: Install uv and python
uses: astral-sh/setup-uv@d4b2f3b6ecc6e67c4457f6d3e41ec42d3d0fcb86 # v5.4.2
uses: astral-sh/setup-uv@v5
with:
enable-cache: true
version: ${{ env.UV_VERSION }}
@@ -85,7 +85,7 @@ jobs:
env:
MUJOCO_GL: egl
steps:
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
- uses: actions/checkout@v4
with:
lfs: true # Ensure LFS files are pulled
persist-credentials: false
@@ -94,7 +94,7 @@ jobs:
run: sudo apt-get update && sudo apt-get install -y ffmpeg
- name: Install uv and python
uses: astral-sh/setup-uv@d4b2f3b6ecc6e67c4457f6d3e41ec42d3d0fcb86 # v5.4.2
uses: astral-sh/setup-uv@v5
with:
enable-cache: true
version: ${{ env.UV_VERSION }}
@@ -117,7 +117,7 @@ jobs:
env:
MUJOCO_GL: egl
steps:
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
- uses: actions/checkout@v4
with:
lfs: true # Ensure LFS files are pulled
persist-credentials: false
@@ -129,7 +129,7 @@ jobs:
sudo apt-get install -y libegl1-mesa-dev ffmpeg portaudio19-dev
- name: Install uv and python
uses: astral-sh/setup-uv@d4b2f3b6ecc6e67c4457f6d3e41ec42d3d0fcb86 # v5.4.2
uses: astral-sh/setup-uv@v5
with:
enable-cache: true
version: ${{ env.UV_VERSION }}

View File

@@ -24,12 +24,12 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
uses: actions/checkout@v4
with:
fetch-depth: 0
persist-credentials: false
- name: Secret Scanning
uses: trufflesecurity/trufflehog@90694bf9af66e7536abc5824e7a87246dbf933cb # v3.88.35
uses: trufflesecurity/trufflehog@main
with:
extra_args: --only-verified

View File

@@ -37,18 +37,18 @@ repos:
- id: trailing-whitespace
- repo: https://github.com/adhtruong/mirrors-typos
rev: v1.32.0
rev: v1.31.1
hooks:
- id: typos
args: [--force-exclude]
- repo: https://github.com/asottile/pyupgrade
rev: v3.20.0
rev: v3.19.1
hooks:
- id: pyupgrade
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.11.12
rev: v0.11.5
hooks:
- id: ruff
args: [--fix]
@@ -57,12 +57,12 @@ repos:
##### Security #####
- repo: https://github.com/gitleaks/gitleaks
rev: v8.27.0
rev: v8.24.3
hooks:
- id: gitleaks
- repo: https://github.com/woodruffw/zizmor-pre-commit
rev: v1.9.0
rev: v1.5.2
hooks:
- id: zizmor

View File

@@ -360,7 +360,7 @@ with profile(
If you want, you can cite this work with:
```bibtex
@misc{cadene2024lerobot,
author = {Cadene, Remi and Alibert, Simon and Soare, Alexander and Gallouedec, Quentin and Zouitine, Adil and Palma, Steven and Kooijmans, Pepijn and Aractingi, Michel and Shukor, Mustafa and Aubakirova, Dana and Russi, Martino and Capuano, Francesco and Pascale, Caroline and Choghari, Jade and Moss, Jess and Wolf, Thomas},
author = {Cadene, Remi and Alibert, Simon and Soare, Alexander and Gallouedec, Quentin and Zouitine, Adil and Wolf, Thomas},
title = {LeRobot: State-of-the-art Machine Learning for Real-World Robotics in Pytorch},
howpublished = "\url{https://github.com/huggingface/lerobot}",
year = {2024}

View File

@@ -55,7 +55,7 @@ conda install ffmpeg -c conda-forge
Install 🤗 LeRobot:
```bash
cd lerobot && pip install -e ".[feetech]"
cd lerobot && pip install ".[feetech]"
```
## Troubleshooting

View File

@@ -141,7 +141,7 @@ python lerobot/scripts/configure_motor.py \
--ID 1
```
Note: These motors are currently limited. They can take values between 0 and 4096 only, which corresponds to a full turn. They can't turn more than that. 2048 is at the middle of this range, so we can take -2048 steps (180 degrees anticlockwise) and reach the maximum range, or take +2048 steps (180 degrees clockwise) and reach the maximum range. The configuration step also sets the homing offset to 0, so that if you misassembled the arm, you can always update the homing offset to account for a shift up to ± 2048 steps (± 180 degrees).
Note: These motors are currently limitated. They can take values between 0 and 4096 only, which corresponds to a full turn. They can't turn more than that. 2048 is at the middle of this range, so we can take -2048 steps (180 degrees anticlockwise) and reach the maximum range, or take +2048 steps (180 degrees clockwise) and reach the maximum range. The configuration step also sets the homing offset to 0, so that if you misassembled the arm, you can always update the homing offset to account for a shift up to ± 2048 steps (± 180 degrees).
Then unplug your motor and plug the second motor and set its ID to 2.
```bash

View File

@@ -61,7 +61,7 @@ conda install ffmpeg -c conda-forge
Install 🤗 LeRobot:
```bash
cd lerobot && pip install -e ".[feetech]"
cd lerobot && pip install ".[feetech]"
```
> [!NOTE]

View File

@@ -106,7 +106,7 @@ def worker_process(queue: queue.Queue, num_threads: int):
class AsyncImageWriter:
"""
This class abstract away the initialisation of processes or/and threads to
save images on disk asynchronously, which is critical to control a robot and record data
save images on disk asynchrounously, which is critical to control a robot and record data
at a high frame rate.
When `num_processes=0`, it creates a threads pool of size `num_threads`.

View File

@@ -944,7 +944,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
def stop_image_writer(self) -> None:
"""
Whenever wrapping this dataset inside a parallelized DataLoader, this needs to be called first to
remove the image_writer in order for the LeRobotDataset object to be picklable and parallelized.
remove the image_writer in order for the LeRobotDataset object to be pickleable and parallelized.
"""
if self.image_writer is not None:
self.image_writer.stop()

View File

@@ -36,7 +36,7 @@ ALOHA_MOBILE_INFO = {
"robot_config": AlohaRobotConfig(),
"license": "mit",
"url": "https://mobile-aloha.github.io/",
"paper": "https://arxiv.org/abs/2401.02117",
"paper": "https://huggingface.co/papers/2401.02117",
"citation_bibtex": dedent(r"""
@inproceedings{fu2024mobile,
author = {Fu, Zipeng and Zhao, Tony Z. and Finn, Chelsea},
@@ -49,7 +49,7 @@ ALOHA_STATIC_INFO = {
"robot_config": AlohaRobotConfig(),
"license": "mit",
"url": "https://tonyzhaozh.github.io/aloha/",
"paper": "https://arxiv.org/abs/2304.13705",
"paper": "https://huggingface.co/papers/2304.13705",
"citation_bibtex": dedent(r"""
@article{Zhao2023LearningFB,
title={Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware},
@@ -57,13 +57,13 @@ ALOHA_STATIC_INFO = {
journal={RSS},
year={2023},
volume={abs/2304.13705},
url={https://arxiv.org/abs/2304.13705}
url={https://huggingface.co/papers/2304.13705}
}""").lstrip(),
}
PUSHT_INFO = {
"license": "mit",
"url": "https://diffusion-policy.cs.columbia.edu/",
"paper": "https://arxiv.org/abs/2303.04137v5",
"paper": "https://huggingface.co/papers/2303.04137v5",
"citation_bibtex": dedent(r"""
@article{chi2024diffusionpolicy,
author = {Cheng Chi and Zhenjia Xu and Siyuan Feng and Eric Cousineau and Yilun Du and Benjamin Burchfiel and Russ Tedrake and Shuran Song},
@@ -75,7 +75,7 @@ PUSHT_INFO = {
XARM_INFO = {
"license": "mit",
"url": "https://www.nicklashansen.com/td-mpc/",
"paper": "https://arxiv.org/abs/2203.04955",
"paper": "https://huggingface.co/papers/2203.04955",
"citation_bibtex": dedent(r"""
@inproceedings{Hansen2022tdmpc,
title={Temporal Difference Learning for Model Predictive Control},
@@ -244,7 +244,7 @@ DATASETS = {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://ut-austin-rpl.github.io/BUDS-website/",
"paper": "https://arxiv.org/abs/2109.13841",
"paper": "https://huggingface.co/papers/2109.13841",
"citation_bibtex": dedent(r"""
@article{zhu2022bottom,
title={Bottom-Up Skill Discovery From Unsegmented Demonstrations for Long-Horizon Robot Manipulation},
@@ -261,7 +261,7 @@ DATASETS = {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://ut-austin-rpl.github.io/sailor/",
"paper": "https://arxiv.org/abs/2210.11435",
"paper": "https://huggingface.co/papers/2210.11435",
"citation_bibtex": dedent(r"""
@inproceedings{nasiriany2022sailor,
title={Learning and Retrieval from Prior Data for Skill-based Imitation Learning},
@@ -274,7 +274,7 @@ DATASETS = {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://ut-austin-rpl.github.io/sirius/",
"paper": "https://arxiv.org/abs/2211.08416",
"paper": "https://huggingface.co/papers/2211.08416",
"citation_bibtex": dedent(r"""
@inproceedings{liu2022robot,
title = {Robot Learning on the Job: Human-in-the-Loop Autonomy and Learning During Deployment},
@@ -298,14 +298,14 @@ DATASETS = {
"tasks_col": "language_instruction",
"license": "cc-by-4.0",
"url": "https://sites.google.com/view/cablerouting/home",
"paper": "https://arxiv.org/abs/2307.08927",
"paper": "https://huggingface.co/papers/2307.08927",
"citation_bibtex": dedent(r"""
@article{luo2023multistage,
author = {Jianlan Luo and Charles Xu and Xinyang Geng and Gilbert Feng and Kuan Fang and Liam Tan and Stefan Schaal and Sergey Levine},
title = {Multi-Stage Cable Routing through Hierarchical Imitation Learning},
journal = {arXiv pre-print},
year = {2023},
url = {https://arxiv.org/abs/2307.08927},
url = {https://huggingface.co/papers/2307.08927},
}""").lstrip(),
},
"berkeley_fanuc_manipulation": {
@@ -322,7 +322,7 @@ DATASETS = {
"berkeley_gnm_cory_hall": {
"tasks_col": "language_instruction",
"license": "mit",
"paper": "https://arxiv.org/abs/1709.10489",
"paper": "https://huggingface.co/papers/1709.10489",
"citation_bibtex": dedent(r"""
@inproceedings{kahn2018self,
title={Self-supervised deep reinforcement learning with generalized computation graphs for robot navigation},
@@ -337,7 +337,7 @@ DATASETS = {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://sites.google.com/view/recon-robot",
"paper": "https://arxiv.org/abs/2104.05859",
"paper": "https://huggingface.co/papers/2104.05859",
"citation_bibtex": dedent(r"""
@inproceedings{shah2021rapid,
title={Rapid Exploration for Open-World Navigation with Latent Goal Models},
@@ -351,7 +351,7 @@ DATASETS = {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://sites.google.com/view/SACSoN-review",
"paper": "https://arxiv.org/abs/2306.01874",
"paper": "https://huggingface.co/papers/2306.01874",
"citation_bibtex": dedent(r"""
@article{hirose2023sacson,
title={SACSoN: Scalable Autonomous Data Collection for Social Navigation},
@@ -363,7 +363,7 @@ DATASETS = {
"berkeley_mvp": {
"tasks_col": "language_instruction",
"license": "mit",
"paper": "https://arxiv.org/abs/2203.06173",
"paper": "https://huggingface.co/papers/2203.06173",
"citation_bibtex": dedent(r"""
@InProceedings{Radosavovic2022,
title = {Real-World Robot Learning with Masked Visual Pre-training},
@@ -375,7 +375,7 @@ DATASETS = {
"berkeley_rpt": {
"tasks_col": "language_instruction",
"license": "mit",
"paper": "https://arxiv.org/abs/2306.10007",
"paper": "https://huggingface.co/papers/2306.10007",
"citation_bibtex": dedent(r"""
@article{Radosavovic2023,
title={Robot Learning with Sensorimotor Pre-training},
@@ -388,7 +388,7 @@ DATASETS = {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://human-world-model.github.io/",
"paper": "https://arxiv.org/abs/2308.10901",
"paper": "https://huggingface.co/papers/2308.10901",
"citation_bibtex": dedent(r"""
@inproceedings{mendonca2023structured,
title={Structured World Models from Human Videos},
@@ -401,7 +401,7 @@ DATASETS = {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://play-fusion.github.io/",
"paper": "https://arxiv.org/abs/2312.04549",
"paper": "https://huggingface.co/papers/2312.04549",
"citation_bibtex": dedent(r"""
@inproceedings{chen2023playfusion,
title={PlayFusion: Skill Acquisition via Diffusion from Language-Annotated Play},
@@ -414,7 +414,7 @@ DATASETS = {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://robo-affordances.github.io/",
"paper": "https://arxiv.org/abs/2304.08488",
"paper": "https://huggingface.co/papers/2304.08488",
"citation_bibtex": dedent(r"""
@inproceedings{bahl2023affordances,
title={Affordances from Human Videos as a Versatile Representation for Robotics},
@@ -433,7 +433,7 @@ DATASETS = {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://diffusion-policy.cs.columbia.edu/",
"paper": "https://arxiv.org/abs/2303.04137v5",
"paper": "https://huggingface.co/papers/2303.04137",
"citation_bibtex": dedent(r"""
@inproceedings{chi2023diffusionpolicy,
title={Diffusion Policy: Visuomotor Policy Learning via Action Diffusion},
@@ -505,7 +505,7 @@ DATASETS = {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://droid-dataset.github.io/",
"paper": "https://arxiv.org/abs/2403.12945",
"paper": "https://huggingface.co/papers/2403.12945",
"citation_bibtex": dedent(r"""
@article{khazatsky2024droid,
title = {DROID: A Large-Scale In-The-Wild Robot Manipulation Dataset},
@@ -517,7 +517,7 @@ DATASETS = {
"tasks_col": "language_instruction",
"license": "cc-by-4.0",
"url": "https://functional-manipulation-benchmark.github.io/",
"paper": "https://arxiv.org/abs/2401.08553",
"paper": "https://huggingface.co/papers/2401.08553",
"citation_bibtex": dedent(r"""
@article{luo2024fmb,
title={FMB: a Functional Manipulation Benchmark for Generalizable Robotic Learning},
@@ -530,7 +530,7 @@ DATASETS = {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://openreview.net/forum?id=WuBv9-IGDUA",
"paper": "https://arxiv.org/abs/2401.14502",
"paper": "https://huggingface.co/papers/2401.14502",
"citation_bibtex": dedent(r"""
@inproceedings{saxena2023multiresolution,
title={Multi-Resolution Sensing for Real-Time Control with Vision-Language Models},
@@ -575,7 +575,7 @@ DATASETS = {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://jyopari.github.io/VINN/",
"paper": "https://arxiv.org/abs/2112.01511",
"paper": "https://huggingface.co/papers/2112.01511",
"citation_bibtex": dedent(r"""
@misc{pari2021surprising,
title={The Surprising Effectiveness of Representation Learning for Visual Imitation},
@@ -590,7 +590,7 @@ DATASETS = {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://play-to-policy.github.io/",
"paper": "https://arxiv.org/abs/2210.10047",
"paper": "https://huggingface.co/papers/2210.10047",
"citation_bibtex": dedent(r"""
@article{cui2022play,
title = {From Play to Policy: Conditional Behavior Generation from Uncurated Robot Data},
@@ -603,7 +603,7 @@ DATASETS = {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://rot-robot.github.io/",
"paper": "https://arxiv.org/abs/2206.15469",
"paper": "https://huggingface.co/papers/2206.15469",
"citation_bibtex": dedent(r"""
@inproceedings{haldar2023watch,
title={Watch and match: Supercharging imitation with regularized optimal transport},
@@ -633,7 +633,7 @@ DATASETS = {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://sites.google.com/view/hydra-il-2023",
"paper": "https://arxiv.org/abs/2306.17237",
"paper": "https://huggingface.co/papers/2306.17237",
"citation_bibtex": dedent(r"""
@article{belkhale2023hydra,
title={HYDRA: Hybrid Robot Actions for Imitation Learning},
@@ -646,21 +646,21 @@ DATASETS = {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://sites.google.com/view/visionandtouch",
"paper": "https://arxiv.org/abs/1810.10191",
"paper": "https://huggingface.co/papers/1810.10191",
"citation_bibtex": dedent(r"""
@inproceedings{lee2019icra,
title={Making sense of vision and touch: Self-supervised learning of multimodal representations for contact-rich tasks},
author={Lee, Michelle A and Zhu, Yuke and Srinivasan, Krishnan and Shah, Parth and Savarese, Silvio and Fei-Fei, Li and Garg, Animesh and Bohg, Jeannette},
booktitle={2019 IEEE International Conference on Robotics and Automation (ICRA)},
year={2019},
url={https://arxiv.org/abs/1810.10191}
url={https://huggingface.co/papers/1810.10191}
}""").lstrip(),
},
"stanford_robocook": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://hshi74.github.io/robocook/",
"paper": "https://arxiv.org/abs/2306.14447",
"paper": "https://huggingface.co/papers/2306.14447",
"citation_bibtex": dedent(r"""
@article{shi2023robocook,
title={RoboCook: Long-Horizon Elasto-Plastic Object Manipulation with Diverse Tools},
@@ -673,7 +673,7 @@ DATASETS = {
"tasks_col": "language_instruction",
"license": "cc-by-4.0",
"url": "https://www.kaggle.com/datasets/oiermees/taco-robot",
"paper": "https://arxiv.org/abs/2209.08959, https://arxiv.org/abs/2210.01911",
"paper": "https://huggingface.co/papers/2209.08959, https://huggingface.co/papers/2210.01911",
"citation_bibtex": dedent(r"""
@inproceedings{rosete2022tacorl,
author = {Erick Rosete-Beas and Oier Mees and Gabriel Kalweit and Joschka Boedecker and Wolfram Burgard},
@@ -693,7 +693,7 @@ DATASETS = {
"tasks_col": "language_instruction",
"license": "mit",
"url": "URL",
"paper": "https://arxiv.org/abs/2107.05842",
"paper": "https://huggingface.co/papers/2107.05842",
"citation_bibtex": dedent(r"""
@Article{Osa22,
author = {Takayuki Osa},
@@ -709,7 +709,7 @@ DATASETS = {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://toto-benchmark.org/",
"paper": "https://arxiv.org/abs/2306.00942",
"paper": "https://huggingface.co/papers/2306.00942",
"citation_bibtex": dedent(r"""
@inproceedings{zhou2023train,
author={Zhou, Gaoyue and Dean, Victoria and Srirama, Mohan Kumar and Rajeswaran, Aravind and Pari, Jyothish and Hatch, Kyle and Jain, Aryan and Yu, Tianhe and Abbeel, Pieter and Pinto, Lerrel and Finn, Chelsea and Gupta, Abhinav},
@@ -733,7 +733,7 @@ DATASETS = {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://owmcorl.github.io/#",
"paper": "https://arxiv.org/abs/2310.16029",
"paper": "https://huggingface.co/papers/2310.16029",
"citation_bibtex": dedent(r"""
@preprint{Feng2023Finetuning,
title={Finetuning Offline World Models in the Real World},
@@ -745,7 +745,7 @@ DATASETS = {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://robopil.github.io/d3fields/",
"paper": "https://arxiv.org/abs/2309.16118",
"paper": "https://huggingface.co/papers/2309.16118",
"citation_bibtex": dedent(r"""
@article{wang2023d3field,
title={D^3Field: Dynamic 3D Descriptor Fields for Generalizable Robotic Manipulation},
@@ -758,7 +758,7 @@ DATASETS = {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://uscresl.github.io/dmfd/",
"paper": "https://arxiv.org/abs/2207.10148",
"paper": "https://huggingface.co/papers/2207.10148",
"citation_bibtex": dedent(r"""
@article{salhotra2022dmfd,
author={Salhotra, Gautam and Liu, I-Chun Arthur and Dominguez-Kuhne, Marcus and Sukhatme, Gaurav S.},
@@ -775,7 +775,7 @@ DATASETS = {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://ut-austin-rpl.github.io/MUTEX/",
"paper": "https://arxiv.org/abs/2309.14320",
"paper": "https://huggingface.co/papers/2309.14320",
"citation_bibtex": dedent(r"""
@inproceedings{shah2023mutex,
title={{MUTEX}: Learning Unified Policies from Multimodal Task Specifications},
@@ -811,7 +811,7 @@ DATASETS = {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://saytap.github.io/",
"paper": "https://arxiv.org/abs/2306.07580",
"paper": "https://huggingface.co/papers/2306.07580",
"citation_bibtex": dedent(r"""
@article{saytap2023,
author = {Yujin Tang and Wenhao Yu and Jie Tan and Heiga Zen and Aleksandra Faust and
@@ -847,7 +847,7 @@ DATASETS = {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://ut-austin-rpl.github.io/VIOLA/",
"paper": "https://arxiv.org/abs/2210.11339",
"paper": "https://huggingface.co/papers/2210.11339",
"citation_bibtex": dedent(r"""
@article{zhu2022viola,
title={VIOLA: Imitation Learning for Vision-Based Manipulation with Object Proposal Priors},

View File

@@ -101,7 +101,7 @@ def decode_video_frames_torchvision(
keyframes_only = False
torchvision.set_video_backend(backend)
if backend == "pyav":
keyframes_only = True # pyav doesn't support accurate seek
keyframes_only = True # pyav doesnt support accuracte seek
# set a video stream reader
# TODO(rcadene): also load audio stream at the same time

View File

@@ -15,7 +15,7 @@
# limitations under the License.
"""Action Chunking Transformer Policy
As per Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware (https://arxiv.org/abs/2304.13705).
As per Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware (https://huggingface.co/papers/2304.13705).
The majority of changes here involve removing unused code, unifying naming, and adding helpful comments.
"""
@@ -41,7 +41,7 @@ from lerobot.common.policies.pretrained import PreTrainedPolicy
class ACTPolicy(PreTrainedPolicy):
"""
Action Chunking Transformer Policy as per Learning Fine-Grained Bimanual Manipulation with Low-Cost
Hardware (paper: https://arxiv.org/abs/2304.13705, code: https://github.com/tonyzhaozh/act)
Hardware (paper: https://huggingface.co/papers/2304.13705, code: https://github.com/tonyzhaozh/act)
"""
config_class = ACTConfig
@@ -161,7 +161,7 @@ class ACTPolicy(PreTrainedPolicy):
# Calculate Dₖₗ(latent_pdf || standard_normal). Note: After computing the KL-divergence for
# each dimension independently, we sum over the latent dimension to get the total
# KL-divergence per batch element, then take the mean over the batch.
# (See App. B of https://arxiv.org/abs/1312.6114 for more details).
# (See App. B of https://huggingface.co/papers/1312.6114 for more details).
mean_kld = (
(-0.5 * (1 + log_sigma_x2_hat - mu_hat.pow(2) - (log_sigma_x2_hat).exp())).sum(-1).mean()
)
@@ -175,7 +175,7 @@ class ACTPolicy(PreTrainedPolicy):
class ACTTemporalEnsembler:
def __init__(self, temporal_ensemble_coeff: float, chunk_size: int) -> None:
"""Temporal ensembling as described in Algorithm 2 of https://arxiv.org/abs/2304.13705.
"""Temporal ensembling as described in Algorithm 2 of https://huggingface.co/papers/2304.13705.
The weights are calculated as wᵢ = exp(-temporal_ensemble_coeff * i) where w₀ is the oldest action.
They are then normalized to sum to 1 by dividing by Σwᵢ. Here's some intuition around how the

View File

@@ -81,7 +81,7 @@ class DiffusionConfig(PreTrainedConfig):
n_groups: Number of groups used in the group norm of the Unet's convolutional blocks.
diffusion_step_embed_dim: The Unet is conditioned on the diffusion timestep via a small non-linear
network. This is the output dimension of that network, i.e., the embedding dimension.
use_film_scale_modulation: FiLM (https://arxiv.org/abs/1709.07871) is used for the Unet conditioning.
use_film_scale_modulation: FiLM (https://huggingface.co/papers/1709.07871) is used for the Unet conditioning.
Bias modulation is used be default, while this parameter indicates whether to also use scale
modulation.
noise_scheduler_type: Name of the noise scheduler to use. Supported options: ["DDPM", "DDIM"].

View File

@@ -48,7 +48,7 @@ from lerobot.common.policies.utils import (
class DiffusionPolicy(PreTrainedPolicy):
"""
Diffusion Policy as per "Diffusion Policy: Visuomotor Policy Learning via Action Diffusion"
(paper: https://arxiv.org/abs/2303.04137, code: https://github.com/real-stanford/diffusion_policy).
(paper: https://huggingface.co/papers/2303.04137, code: https://github.com/real-stanford/diffusion_policy).
"""
config_class = DiffusionConfig
@@ -370,7 +370,7 @@ class DiffusionModel(nn.Module):
class SpatialSoftmax(nn.Module):
"""
Spatial Soft Argmax operation described in "Deep Spatial Autoencoders for Visuomotor Learning" by Finn et al.
(https://arxiv.org/pdf/1509.06113). A minimal port of the robomimic implementation.
(https://huggingface.co/papers/1509.06113). A minimal port of the robomimic implementation.
At a high level, this takes 2D feature maps (from a convnet/ViT) and returns the "center of mass"
of activations of each channel, i.e., keypoints in the image space for the policy to focus on.
@@ -728,7 +728,7 @@ class DiffusionConditionalResidualBlock1d(nn.Module):
self.conv1 = DiffusionConv1dBlock(in_channels, out_channels, kernel_size, n_groups=n_groups)
# FiLM modulation (https://arxiv.org/abs/1709.07871) outputs per-channel bias and (maybe) scale.
# FiLM modulation (https://huggingface.co/papers/1709.07871) outputs per-channel bias and (maybe) scale.
cond_channels = out_channels * 2 if use_film_scale_modulation else out_channels
self.cond_encoder = nn.Sequential(nn.Mish(), nn.Linear(cond_dim, cond_channels))

View File

@@ -357,7 +357,7 @@ class PI0Policy(PreTrainedPolicy):
if self.config.resize_imgs_with_padding is not None:
img = resize_with_pad(img, *self.config.resize_imgs_with_padding, pad_value=0)
# Normalize from range [0,1] to [-1,1] as expected by siglip
# Normalize from range [0,1] to [-1,1] as expacted by siglip
img = img * 2.0 - 1.0
bsize = img.shape[0]

View File

@@ -17,7 +17,7 @@
"""
π0+FAST: Efficient Action Tokenization for Vision-Language-Action Models
[Paper](https://arxiv.org/abs/2501.09747)
[Paper](https://huggingface.co/papers/2501.09747)
[Jax code](https://github.com/Physical-Intelligence/openpi)
Designed by Physical Intelligence. Ported from Jax by Hugging Face.
@@ -516,7 +516,7 @@ class PI0FAST(nn.Module):
interpolate_like_pi=self.config.interpolate_like_pi,
)
# Normalize from range [0,1] to [-1,1] as expected by siglip
# Normalize from range [0,1] to [-1,1] as expacted by siglip
img = img * 2.0 - 1.0
bsize = img.shape[0]

View File

@@ -17,8 +17,8 @@
"""Implementation of Finetuning Offline World Models in the Real World.
The comments in this code may sometimes refer to these references:
TD-MPC paper: Temporal Difference Learning for Model Predictive Control (https://arxiv.org/abs/2203.04955)
FOWM paper: Finetuning Offline World Models in the Real World (https://arxiv.org/abs/2310.16029)
TD-MPC paper: Temporal Difference Learning for Model Predictive Control (https://huggingface.co/papers/2203.04955)
FOWM paper: Finetuning Offline World Models in the Real World (https://huggingface.co/papers/2310.16029)
"""
# ruff: noqa: N806

View File

@@ -162,7 +162,7 @@ class VQBeTPolicy(PreTrainedPolicy):
batch = dict(batch) # shallow copy so that adding a key doesn't modify the original
batch["observation.images"] = torch.stack([batch[key] for key in self.config.image_features], dim=-4)
batch = self.normalize_targets(batch)
# VQ-BeT discretizes action using VQ-VAE before training BeT (please refer to section 3.2 in the VQ-BeT paper https://arxiv.org/pdf/2403.03181)
# VQ-BeT discretizes action using VQ-VAE before training BeT (please refer to section 3.2 in the VQ-BeT paper https://huggingface.co/papers/2403.03181)
if not self.vqbet.action_head.vqvae_model.discretized.item():
# loss: total loss of training RVQ
# n_different_codes: how many of the total possible VQ codes are being used in single batch (how many of them have at least one encoder embedding as a nearest neighbor). This can be at most `vqvae_n_embed * number of layers of RVQ (=2)`.
@@ -185,7 +185,7 @@ class VQBeTPolicy(PreTrainedPolicy):
class SpatialSoftmax(nn.Module):
"""
Spatial Soft Argmax operation described in "Deep Spatial Autoencoders for Visuomotor Learning" by Finn et al.
(https://arxiv.org/pdf/1509.06113). A minimal port of the robomimic implementation.
(https://huggingface.co/papers/1509.06113). A minimal port of the robomimic implementation.
At a high level, this takes 2D feature maps (from a convnet/ViT) and returns the "center of mass"
of activations of each channel, i.e., keypoints in the image space for the policy to focus on.
@@ -387,7 +387,7 @@ class VQBeTModel(nn.Module):
# only extract the output tokens at the position of action query:
# Behavior Transformer (BeT), and VQ-BeT are both sequence-to-sequence prediction models,
# mapping sequential observation to sequential action (please refer to section 2.2 in BeT paper https://arxiv.org/pdf/2206.11251).
# mapping sequential observation to sequential action (please refer to section 2.2 in BeT paper https://huggingface.co/papers/2206.11251).
# Thus, it predicts a historical action sequence, in addition to current and future actions (predicting future actions : optional).
if len_additional_action_token > 0:
features = torch.cat(
@@ -824,8 +824,8 @@ class VqVae(nn.Module):
return einops.rearrange(output, "N (T A) -> N T A", A=self.config.action_feature.shape[0])
def get_code(self, state):
# in phase 2 of VQ-BeT training, we need a `ground truth labels of action data` to calculate the Focal loss for code prediction head. (please refer to section 3.3 in the paper https://arxiv.org/pdf/2403.03181)
# this function outputs the `GT code` of given action using frozen encoder and quantization layers. (please refer to Figure 2. in the paper https://arxiv.org/pdf/2403.03181)
# in phase 2 of VQ-BeT training, we need a `ground truth labels of action data` to calculate the Focal loss for code prediction head. (please refer to section 3.3 in the paper https://huggingface.co/papers/2403.03181)
# this function outputs the `GT code` of given action using frozen encoder and quantization layers. (please refer to Figure 2. in the paper https://huggingface.co/papers/2403.03181)
state = einops.rearrange(state, "N T A -> N (T A)")
with torch.no_grad():
state_rep = self.encoder(state)
@@ -838,7 +838,7 @@ class VqVae(nn.Module):
return state_vq, vq_code
def vqvae_forward(self, state):
# This function passes the given data through Residual VQ with Encoder and Decoder. Please refer to section 3.2 in the paper https://arxiv.org/pdf/2403.03181).
# This function passes the given data through Residual VQ with Encoder and Decoder. Please refer to section 3.2 in the paper https://huggingface.co/papers/2403.03181).
state = einops.rearrange(state, "N T A -> N (T A)")
# We start with passing action (or action chunk) at:t+n through the encoder ϕ.
state_rep = self.encoder(state)

View File

@@ -336,7 +336,7 @@ class ResidualVQ(nn.Module):
"""
Residual VQ is composed of multiple VectorQuantize layers.
Follows Algorithm 1. in https://arxiv.org/pdf/2107.03312.pdf
Follows Algorithm 1. in https://huggingface.co/papers/2107.03312
"Residual Vector Quantizer (a.k.a. multi-stage vector quantizer [36]) cascades Nq layers of VQ as follows. The unquantized input vector is
passed through a first VQ and quantization residuals are computed. The residuals are then iteratively quantized by a sequence of additional
Nq -1 vector quantizers, as described in Algorithm 1."
@@ -1006,7 +1006,7 @@ def gumbel_sample(
if not straight_through or temperature <= 0.0 or not training:
return ind, one_hot
# use reinmax for better second-order accuracy - https://arxiv.org/abs/2304.08612
# use reinmax for better second-order accuracy - https://huggingface.co/papers/2304.08612
# algorithm 2
if reinmax:
@@ -1156,7 +1156,7 @@ def batched_embedding(indices, embeds):
def orthogonal_loss_fn(t):
# eq (2) from https://arxiv.org/abs/2112.00384
# eq (2) from https://huggingface.co/papers/2112.00384
h, n = t.shape[:2]
normed_codes = F.normalize(t, p=2, dim=-1)
cosine_sim = einsum("h i d, h j d -> h i j", normed_codes, normed_codes)

View File

@@ -243,11 +243,6 @@ def control_loop(
timestamp = 0
start_episode_t = time.perf_counter()
# Controls starts, if policy is given it needs cleaning up
if policy is not None:
policy.reset()
while timestamp < control_time_s:
start_loop_t = time.perf_counter()

View File

@@ -63,13 +63,13 @@ dependencies = [
"opencv-python-headless>=4.9.0",
"packaging>=24.2",
"av>=14.2.0",
"pymunk>=6.6.0,<7.0.0",
"pymunk>=6.6.0",
"pynput>=1.7.7",
"pyzmq>=26.2.1",
"rerun-sdk>=0.21.0",
"termcolor>=2.4.0",
"torch>=2.2.1",
"torchcodec>=0.2.1; sys_platform != 'win32' and (sys_platform != 'linux' or (platform_machine != 'aarch64' and platform_machine != 'arm64' and platform_machine != 'armv7l')) and (sys_platform != 'darwin' or platform_machine != 'x86_64')",
"torch>=2.2.1,<2.7",
"torchcodec==0.2.1; sys_platform != 'win32' and (sys_platform != 'linux' or (platform_machine != 'aarch64' and platform_machine != 'arm64' and platform_machine != 'armv7l')) and (sys_platform != 'darwin' or platform_machine != 'x86_64')",
"torchvision>=0.21.0",
"wandb>=0.16.3",
"zarr>=2.17.0",

View File

@@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:6b1e600768a8771c5fe650e038a1193597e3810f032041b2a0d021e4496381c1
oid sha256:0389a716d51c1c615fb2a3bfa386d89f00b0deca08c4fa21b23e020a939d0213
size 3686488

View File

@@ -28,7 +28,7 @@ from lerobot.common.datasets.transforms import (
from lerobot.common.utils.random_utils import seeded_context
ARTIFACT_DIR = Path("tests/artifacts/image_transforms")
DATASET_REPO_ID = "lerobot/aloha_static_cups_open"
DATASET_REPO_ID = "lerobot/aloha_mobile_shrimp"
def save_default_config_transform(original_frame: torch.Tensor, output_dir: Path):

View File

@@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:9d4ebab73eabddc58879a4e770289d19e00a1a4cf2fa5fa33cd3a3246992bc90
oid sha256:0dc691503e7d90b2086bb408e89a65f772ce5ee6e3562ef8c127bcb09bd90851
size 40551392

View File

@@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:f3e4c8e85e146b043fd4e4984947c2a6f01627f174a19f18b5914cf690579d77
oid sha256:cc67af1d60f95d84c98d6c9ebd648990e0f0705368bd6b72d2b39533950b0179
size 5104

View File

@@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:1a7a8b1a457149109f843c32bcbb047d09de2201847b9b79f7501b447f77ecf4
oid sha256:64518cf652105d15f5fd2cfc13d0681f66a4ec4797dc5d5dc2f7b0d91fe5dfd6
size 31672

View File

@@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:5e6ce85296b2009e7c2060d336c0429b1c7197d9adb159e7df0ba18003067b36
oid sha256:32b6d14fab4244b5140adb345e47f662b6739c04974e04b21c3127caa988abbb
size 68

View File

@@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:9b5f557e30aead3731c38cbd85af8c706395d8689a918ad88805b5a886245603
oid sha256:e1904ef0338f7b6efdec70ec235ee931b5751008bf4eb433edb0b3fa0838a4f1
size 33400

View File

@@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:2e6625cabfeb4800abc80252cf9112a9271c154edd01eb291658f143c951610b
oid sha256:fa544a97f00bf46393a09b006b44c2499bbf7d177782360a8c21cacbf200c07a
size 515400

View File

@@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:224b5fa4828aa88171b68c036e8919c1eae563e2113f03b6461eadf5bf8525a6
oid sha256:83c7a8ae912300b5cedba31904f7ba22542059fd60dd86548a95e415713f719e
size 31672

View File

@@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:016d2fa8fe5f58017dfd46f4632fdc19dfd751e32a2c7cde2077c6f95546d6bd
oid sha256:5a010633237b3a1141603c65174c551daa9e7b4c474af5a1376d73e5425bfb5d
size 68

View File

@@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:021562ee3e4814425e367ed0c144d6fbe2eb28838247085716cf0b58fd69a075
oid sha256:ec8b5c440e9fcec190c9be48b28ebb79f82ae63626afe7c811e4bb0c3dd08842
size 33400

View File

@@ -16,7 +16,6 @@
import pytest
import torch
from packaging import version
from safetensors.torch import load_file
from torchvision.transforms import v2
from torchvision.transforms.v2 import functional as F # noqa: N812
@@ -254,14 +253,7 @@ def test_backward_compatibility_single_transforms(
@require_x86_64_kernel
@pytest.mark.skipif(
version.parse(torch.__version__) < version.parse("2.7.0"),
reason="Test artifacts were generated with PyTorch >= 2.7.0 which has different multinomial behavior",
)
def test_backward_compatibility_default_config(img_tensor, default_transforms):
# NOTE: PyTorch versions have different randomness, it might break this test.
# See this PR: https://github.com/huggingface/lerobot/pull/1127.
cfg = ImageTransformsConfig(enable=True)
default_tf = ImageTransforms(cfg)

View File

@@ -37,6 +37,7 @@ def test_diffuser_scheduler(optimizer):
"base_lrs": [0.001],
"last_epoch": 1,
"lr_lambdas": [None],
"verbose": False,
}
assert scheduler.state_dict() == expected_state_dict
@@ -55,6 +56,7 @@ def test_vqbet_scheduler(optimizer):
"base_lrs": [0.001],
"last_epoch": 1,
"lr_lambdas": [None],
"verbose": False,
}
assert scheduler.state_dict() == expected_state_dict
@@ -75,6 +77,7 @@ def test_cosine_decay_with_warmup_scheduler(optimizer):
"base_lrs": [0.001],
"last_epoch": 1,
"lr_lambdas": [None],
"verbose": False,
}
assert scheduler.state_dict() == expected_state_dict

View File

@@ -20,7 +20,6 @@ from pathlib import Path
import einops
import pytest
import torch
from packaging import version
from safetensors.torch import load_file
from lerobot import available_policies
@@ -409,16 +408,7 @@ def test_backward_compatibility(ds_repo_id: str, policy_name: str, policy_kwargs
4. Check that this test now passes.
5. Remember to restore `tests/scripts/save_policy_to_safetensors.py` to its original state.
6. Remember to stage and commit the resulting changes to `tests/artifacts`.
NOTE: If the test does not pass, and you don't change the policy, it is likely that the test artifact
is out of date. For example, some PyTorch versions have different randomness, see this PR:
https://github.com/huggingface/lerobot/pull/1127.
"""
# NOTE: ACT policy has different randomness, after PyTorch 2.7.0
if policy_name == "act" and version.parse(torch.__version__) < version.parse("2.7.0"):
pytest.skip(f"Skipping act policy test with PyTorch {torch.__version__}. Requires PyTorch >= 2.7.0")
ds_name = ds_repo_id.split("/")[-1]
artifact_dir = Path("tests/artifacts/policies") / f"{ds_name}_{policy_name}_{file_name_extra}"
saved_output_dict = load_file(artifact_dir / "output_dict.safetensors")