Compare commits

...

6 Commits

Author SHA1 Message Date
Simon Alibert
bc36fefa8e WIP 2024-03-22 00:44:02 +01:00
Simon Alibert
cfbbb4e80a WIP 2024-03-22 00:11:52 +01:00
Simon Alibert
b10960140d WIP 2024-03-22 00:11:52 +01:00
Simon Alibert
eb56a96e67 Run pre-commit autoupdate 2024-03-22 00:11:52 +01:00
Simon Alibert
01b88b208e Update readme (examples) 2024-03-22 00:11:52 +01:00
Simon Alibert
4c1024e537 Add pretrained notebook 2024-03-22 00:11:52 +01:00
11 changed files with 1869 additions and 29 deletions

4
.gitignore vendored
View File

@@ -1,3 +1,7 @@
# Apple
.DS_Store
._.DS_Store
# Logging
logs
tmp

View File

@@ -18,11 +18,18 @@ repos:
hooks:
- id: pyupgrade
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.2.2
rev: v0.3.3
hooks:
- id: ruff
args: [--fix]
- id: ruff-format
- repo: https://github.com/nbQA-dev/nbQA
rev: 1.8.4
hooks:
- id: nbqa-ruff
- id: nbqa-pyupgrade
args: ["--py310-plus"]
- id: nbqa-isort
- repo: https://github.com/python-poetry/poetry
rev: 1.8.0
hooks:

View File

@@ -30,7 +30,7 @@ conda activate lerobot
curl -sSL https://install.python-poetry.org | python -
```
Install dependencies
Install the project
```
poetry install
```
@@ -48,6 +48,13 @@ wandb login
## Usage
### Example
To use the [notebook example](./examples/pretrained.ipynb), install the project with jupyter dependencies
```
poetry install --with examples
```
### Train

View File

@@ -0,0 +1,65 @@
# ruff: noqa
from pathlib import Path
from pprint import pprint
from hydra import compose, initialize
from hydra.core.global_hydra import GlobalHydra
from omegaconf import OmegaConf
from omegaconf.dictconfig import DictConfig
CONFIG_DIR = "../lerobot/configs"
DEFAULT_CONFIG = "default"
def config_notebook(
policy: str = "diffusion",
env: str = "pusht",
device: str = "cpu",
config_name=DEFAULT_CONFIG,
config_path=CONFIG_DIR,
pretrained_model_path: str = None,
print_config: bool = False,
) -> DictConfig:
GlobalHydra.instance().clear()
initialize(config_path=config_path)
overrides = [
f"env={env}",
f"policy={policy}",
f"device={device}",
f"policy.pretrained_model_path={pretrained_model_path}",
f"eval_episodes=1",
f"env.episode_length=200",
]
cfg = compose(config_name=config_name, overrides=overrides)
if print_config:
pprint(OmegaConf.to_container(cfg))
return cfg
def notebook():
"""tmp"""
from pathlib import Path
from examples.notebook_utils import config_notebook
from lerobot.scripts.eval import eval
# Select policy and env
POLICY = "act" # "tdmpc" | "diffusion"
ENV = "aloha" # "pusht" | "simxarm"
# Select device
DEVICE = "mps" # "cuda" | "mps"
# Generated videos will be written here
OUT_DIR = Path("./outputs")
OUT_EXAMPLE = OUT_DIR / "eval" / "eval_episode_0.mp4"
# Setup config
cfg = config_notebook(policy=POLICY, env=ENV, device=DEVICE, print_config=False)
eval(cfg, out_dir=OUT_DIR)
if __name__ == "__main__":
notebook()

101
examples/pretrained.ipynb Normal file
View File

@@ -0,0 +1,101 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%load_ext autoreload\n",
"%autoreload 2"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from pathlib import Path\n",
"from pprint import pprint\n",
"\n",
"from huggingface_hub import snapshot_download\n",
"from hydra import compose, initialize\n",
"from hydra.core.global_hydra import GlobalHydra\n",
"from IPython.display import Video\n",
"from omegaconf import OmegaConf\n",
"from omegaconf.dictconfig import DictConfig\n",
"\n",
"from examples.notebook_utils import config_notebook\n",
"from examples.pretrained_script import download_eval_pretrained\n",
"from lerobot.scripts.eval import eval\n",
"\n",
"# Select policy and env\n",
"POLICY = \"diffusion\" # \"tdmpc\" | \"diffusion\"\n",
"ENV = \"pusht\" # \"pusht\" | \"simxarm\"\n",
"\n",
"# Select device\n",
"DEVICE = \"mps\" # \"cuda\" | \"mps\"\n",
"\n",
"# Generated videos will be written here\n",
"OUT_DIR = Path(\"./outputs\")\n",
"OUT_EXAMPLE = OUT_DIR / \"eval\" / \"eval_episode_0.mp4\"\n",
"\n",
"PRETRAINED_REPO = \"lerobot/diffusion_policy_pusht_image\"\n",
"pretrained_folder = Path(snapshot_download(repo_id=PRETRAINED_REPO, repo_type=\"model\", revision=\"v1.0\"))\n",
"pretrained_model_path = pretrained_folder / \"model.pt\"\n",
"\n",
"cfg_path = pretrained_folder / \"config.yaml\"\n",
"GlobalHydra.instance().clear()\n",
"\n",
"print(pretrained_folder)\n",
"\n",
"initialize(config_path=\"../../../.cache/huggingface/hub/models--lerobot--diffusion_policy_pusht_image/snapshots/163d168f5c193c356b82e3bf6bbf5b4eeaa780d7\")\n",
"overrides = [\n",
" f\"env={ENV}\",\n",
" f\"policy={POLICY}\",\n",
" f\"device={DEVICE}\",\n",
" f\"+policy.pretrained_model_path={pretrained_model_path}\",\n",
" f\"eval_episodes=1\",\n",
" f\"+env.episode_length=200\",\n",
"]\n",
"cfg = compose(config_name=\"config\", overrides=overrides)\n",
"pprint(OmegaConf.to_container(cfg))\n",
"# Setup config\n",
"#cfg = config_notebook(cfg_path, policy=POLICY, env=ENV, device=DEVICE, print_config=False, pretrained_model_path=pretrained_model_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# eval(cfg, out_dir=OUT_DIR)\n",
"download_eval_pretrained(OUT_DIR, cfg)\n",
"Video(OUT_EXAMPLE, embed=True)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "lerobot",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.14"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,62 @@
import logging
from pathlib import Path
import torch
from tensordict.nn import TensorDictModule
from lerobot.common.datasets.factory import make_offline_buffer
from lerobot.common.envs.factory import make_env
from lerobot.common.logger import log_output_dir
from lerobot.common.policies.factory import make_policy
from lerobot.common.utils import get_safe_torch_device, init_logging, set_seed
from lerobot.scripts.eval import eval_policy
def download_eval_pretrained(out_dir, cfg):
if out_dir is None:
raise NotImplementedError()
init_logging()
# Check device is available
get_safe_torch_device(cfg.device, log=True)
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
set_seed(cfg.seed)
log_output_dir(out_dir)
logging.info("make_offline_buffer")
offline_buffer = make_offline_buffer(cfg)
logging.info("make_env")
env = make_env(cfg, transform=offline_buffer.transform)
if cfg.policy.pretrained_model_path:
policy = make_policy(cfg)
policy = TensorDictModule(
policy,
in_keys=["observation", "step_count"],
out_keys=["action"],
)
else:
# when policy is None, rollout a random policy
policy = None
metrics = eval_policy(
env,
policy=policy,
save_video=True,
video_dir=Path(out_dir) / "eval",
fps=cfg.env.fps,
max_steps=cfg.env.episode_length,
num_episodes=cfg.eval_episodes,
)
print(metrics)
logging.info("End of eval")
if __name__ == "__main__":
download_eval_pretrained()

View File

@@ -202,7 +202,7 @@ class DiffusionPolicy(AbstractPolicy):
torch.save(self.state_dict(), fp)
def load(self, fp):
d = torch.load(fp)
d = torch.load(fp, map_location=torch.device(self.device))
missing_keys, unexpected_keys = self.load_state_dict(d, strict=False)
if len(missing_keys) > 0:
assert all(k.startswith("ema_diffusion.") for k in missing_keys)

View File

@@ -145,16 +145,24 @@ def eval(cfg: dict, out_dir=None):
logging.info("make_env")
env = make_env(cfg, transform=offline_buffer.transform)
if cfg.policy.pretrained_model_path:
policy = make_policy(cfg)
policy = TensorDictModule(
policy,
in_keys=["observation", "step_count"],
out_keys=["action"],
)
else:
# when policy is None, rollout a random policy
policy = None
# WIP
policy = make_policy(cfg)
policy = TensorDictModule(
policy,
in_keys=["observation", "step_count"],
out_keys=["action"],
)
# TODO(aliberts, Cadene): fetch pretrained model from HF hub
# if cfg.policy.pretrained_model_path:
# policy = make_policy(cfg)
# policy = TensorDictModule(
# policy,
# in_keys=["observation", "step_count"],
# out_keys=["action"],
# )
# else:
# # when policy is None, rollout a random policy
# policy = None
metrics = eval_policy(
env,

View File

@@ -25,15 +25,6 @@ def train_cli(cfg: dict):
)
def train_notebook(out_dir=None, job_name=None, config_name="default", config_path="../configs"):
from hydra import compose, initialize
hydra.core.global_hydra.GlobalHydra.instance().clear()
initialize(config_path=config_path)
cfg = compose(config_name=config_name)
train(cfg, out_dir=out_dir, job_name=job_name)
def log_train_info(logger, info, step, cfg, offline_buffer, is_offline):
loss = info["loss"]
grad_norm = info["grad_norm"]

1602
poetry.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -60,6 +60,13 @@ debugpy = "^1.8.1"
pytest = "^8.1.0"
[tool.poetry.group.examples]
optional = true
[tool.poetry.group.examples.dependencies]
jupyter = "^1.0.0"
[tool.ruff]
line-length = 110
target-version = "py310"