Compare commits

..

3 Commits

Author SHA1 Message Date
Simon Alibert
1e6a7ea334 Fix version 2024-09-10 19:26:03 +02:00
Simon Alibert
4439d3af69 Try different base image 2024-09-10 19:19:15 +02:00
Simon Alibert
599b58daa0 Remove ffmpeg build dependencies 2024-09-10 19:00:52 +02:00
154 changed files with 5807 additions and 18047 deletions

View File

@@ -65,6 +65,7 @@ htmlcov/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
@@ -72,11 +73,6 @@ coverage.xml
.hypothesis/
.pytest_cache/
# Ignore .cache except calibration
.cache/*
!.cache/calibration/
!.cache/calibration/**
# Translations
*.mo
*.pot

View File

@@ -21,7 +21,7 @@ Provide a simple way for the reviewer to try out your changes.
Examples:
```bash
pytest -sx tests/test_stuff.py::test_something
DATA_DIR=tests/data pytest -sx tests/test_stuff.py::test_something
```
```bash
python lerobot/scripts/train.py --some.option=true

View File

@@ -7,8 +7,10 @@ on:
schedule:
- cron: "0 2 * * *"
# env:
env:
DATA_DIR: tests/data
# SLACK_API_TOKEN: ${{ secrets.SLACK_API_TOKEN }}
jobs:
run_all_tests_cpu:
name: CPU
@@ -28,9 +30,13 @@ jobs:
working-directory: /lerobot
steps:
- name: Tests
env:
DATA_DIR: tests/data
run: pytest -v --cov=./lerobot --disable-warnings tests
- name: Tests end-to-end
env:
DATA_DIR: tests/data
run: make test-end-to-end

View File

@@ -11,7 +11,6 @@ on:
- ".github/**"
- "poetry.lock"
- "Makefile"
- ".cache/**"
push:
branches:
- main
@@ -22,13 +21,13 @@ on:
- ".github/**"
- "poetry.lock"
- "Makefile"
- ".cache/**"
jobs:
pytest:
name: Pytest
runs-on: ubuntu-latest
env:
DATA_DIR: tests/data
MUJOCO_GL: egl
steps:
- uses: actions/checkout@v4
@@ -36,17 +35,13 @@ jobs:
lfs: true # Ensure LFS files are pulled
- name: Install apt dependencies
# portaudio19-dev is needed to install pyaudio
run: |
sudo apt-get update && \
sudo apt-get install -y libegl1-mesa-dev ffmpeg portaudio19-dev
run: sudo apt-get update && sudo apt-get install -y libegl1-mesa-dev ffmpeg
- name: Install poetry
run: |
pipx install poetry && poetry config virtualenvs.in-project true
echo "${{ github.workspace }}/.venv/bin" >> $GITHUB_PATH
# TODO(rcadene, aliberts): python 3.12 seems to be used in the tests, not python 3.10
- name: Set up Python 3.10
uses: actions/setup-python@v5
with:
@@ -65,10 +60,12 @@ jobs:
-W ignore::UserWarning:gymnasium.utils.env_checker:247 \
&& rm -rf tests/outputs outputs
pytest-minimal:
name: Pytest (minimal install)
runs-on: ubuntu-latest
env:
DATA_DIR: tests/data
MUJOCO_GL: egl
steps:
- uses: actions/checkout@v4
@@ -83,7 +80,6 @@ jobs:
pipx install poetry && poetry config virtualenvs.in-project true
echo "${{ github.workspace }}/.venv/bin" >> $GITHUB_PATH
# TODO(rcadene, aliberts): python 3.12 seems to be used in the tests, not python 3.10
- name: Set up Python 3.10
uses: actions/setup-python@v5
with:
@@ -101,39 +97,37 @@ jobs:
-W ignore::UserWarning:gymnasium.utils.env_checker:247 \
&& rm -rf tests/outputs outputs
# TODO(aliberts, rcadene): redesign after v2 migration / removing hydra
# end-to-end:
# name: End-to-end
# runs-on: ubuntu-latest
# env:
# MUJOCO_GL: egl
# steps:
# - uses: actions/checkout@v4
# with:
# lfs: true # Ensure LFS files are pulled
# - name: Install apt dependencies
# # portaudio19-dev is needed to install pyaudio
# run: |
# sudo apt-get update && \
# sudo apt-get install -y libegl1-mesa-dev portaudio19-dev
end-to-end:
name: End-to-end
runs-on: ubuntu-latest
env:
DATA_DIR: tests/data
MUJOCO_GL: egl
steps:
- uses: actions/checkout@v4
with:
lfs: true # Ensure LFS files are pulled
# - name: Install poetry
# run: |
# pipx install poetry && poetry config virtualenvs.in-project true
# echo "${{ github.workspace }}/.venv/bin" >> $GITHUB_PATH
- name: Install apt dependencies
run: sudo apt-get update && sudo apt-get install -y libegl1-mesa-dev
# - name: Set up Python 3.10
# uses: actions/setup-python@v5
# with:
# python-version: "3.10"
# cache: "poetry"
- name: Install poetry
run: |
pipx install poetry && poetry config virtualenvs.in-project true
echo "${{ github.workspace }}/.venv/bin" >> $GITHUB_PATH
# - name: Install poetry dependencies
# run: |
# poetry install --all-extras
- name: Set up Python 3.10
uses: actions/setup-python@v5
with:
python-version: "3.10"
cache: "poetry"
# - name: Test end-to-end
# run: |
# make test-end-to-end \
# && rm -rf outputs
- name: Install poetry dependencies
run: |
poetry install --all-extras
- name: Test end-to-end
run: |
make test-end-to-end \
&& rm -rf outputs

View File

@@ -3,7 +3,7 @@ default_language_version:
python: python3.10
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v5.0.0
rev: v4.6.0
hooks:
- id: check-added-large-files
- id: debug-statements
@@ -14,11 +14,11 @@ repos:
- id: end-of-file-fixer
- id: trailing-whitespace
- repo: https://github.com/asottile/pyupgrade
rev: v3.19.0
rev: v3.16.0
hooks:
- id: pyupgrade
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.8.2
rev: v0.5.2
hooks:
- id: ruff
args: [--fix]
@@ -32,6 +32,6 @@ repos:
- "--check"
- "--no-update"
- repo: https://github.com/gitleaks/gitleaks
rev: v8.21.2
rev: v8.18.4
hooks:
- id: gitleaks

View File

@@ -267,7 +267,7 @@ We use `pytest` in order to run the tests. From the root of the
repository, here's how to run tests with `pytest` for the library:
```bash
python -m pytest -sv ./tests
DATA_DIR="tests/data" python -m pytest -sv ./tests
```

View File

@@ -23,15 +23,15 @@
</div>
<h2 align="center">
<p><a href="https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md">New robot in town: SO-100</a></p>
<p><a href="https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md">Hot new tutorial: Getting started with real-world robots</a></p>
</h2>
<div align="center">
<img src="media/so100/leader_follower.webp?raw=true" alt="SO-100 leader and follower arms" title="SO-100 leader and follower arms" width="50%">
<p>We just added a new tutorial on how to build a more affordable robot, at the price of $110 per arm!</p>
<img src="media/tutorial/koch_v1_1_leader_follower.webp?raw=true" alt="Koch v1.1 leader and follower arms" title="Koch v1.1 leader and follower arms" width="50%">
<p>We just dropped an in-depth tutorial on how to build your own robot!</p>
<p>Teach it new skills by showing it a few moves with just a laptop.</p>
<p>Then watch your homemade robot act autonomously 🤯</p>
<p>Follow the link to the <a href="https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md">full tutorial for SO-100</a>.</p>
<p>For more info, see <a href="https://x.com/RemiCadene/status/1825455895561859185">our thread on X</a> or <a href="https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md">our tutorial page</a>.</p>
</div>
<br/>
@@ -55,9 +55,9 @@
<table>
<tr>
<td><img src="media/gym/aloha_act.gif" width="100%" alt="ACT policy on ALOHA env"/></td>
<td><img src="media/gym/simxarm_tdmpc.gif" width="100%" alt="TDMPC policy on SimXArm env"/></td>
<td><img src="media/gym/pusht_diffusion.gif" width="100%" alt="Diffusion policy on PushT env"/></td>
<td><img src="http://remicadene.com/assets/gif/aloha_act.gif" width="100%" alt="ACT policy on ALOHA env"/></td>
<td><img src="http://remicadene.com/assets/gif/simxarm_tdmpc.gif" width="100%" alt="TDMPC policy on SimXArm env"/></td>
<td><img src="http://remicadene.com/assets/gif/pusht_diffusion.gif" width="100%" alt="Diffusion policy on PushT env"/></td>
</tr>
<tr>
<td align="center">ACT policy on ALOHA env</td>
@@ -144,7 +144,7 @@ wandb login
### Visualize datasets
Check out [example 1](./examples/1_load_lerobot_dataset.py) that illustrates how to use our dataset class which automatically downloads data from the Hugging Face hub.
Check out [example 1](./examples/1_load_lerobot_dataset.py) that illustrates how to use our dataset class which automatically download data from the Hugging Face hub.
You can also locally visualize episodes from a dataset on the hub by executing our script from the command line:
```bash
@@ -153,12 +153,10 @@ python lerobot/scripts/visualize_dataset.py \
--episode-index 0
```
or from a dataset in a local folder with the `root` option and the `--local-files-only` (in the following case the dataset will be searched for in `./my_local_data_dir/lerobot/pusht`)
or from a dataset in a local folder with the root `DATA_DIR` environment variable (in the following case the dataset will be searched for in `./my_local_data_dir/lerobot/pusht`)
```bash
python lerobot/scripts/visualize_dataset.py \
DATA_DIR='./my_local_data_dir' python lerobot/scripts/visualize_dataset.py \
--repo-id lerobot/pusht \
--root ./my_local_data_dir \
--local-files-only 1 \
--episode-index 0
```
@@ -210,10 +208,12 @@ dataset attributes:
A `LeRobotDataset` is serialised using several widespread file formats for each of its parts, namely:
- hf_dataset stored using Hugging Face datasets library serialization to parquet
- videos are stored in mp4 format to save space
- metadata are stored in plain json/jsonl files
- videos are stored in mp4 format to save space or png files
- episode_data_index saved using `safetensor` tensor serialization format
- stats saved using `safetensor` tensor serialization format
- info are saved using JSON
Dataset can be uploaded/downloaded from the HuggingFace hub seamlessly. To work on a local dataset, you can use the `local_files_only` argument and specify its location with the `root` argument if it's not in the default `~/.cache/huggingface/lerobot` location.
Dataset can be uploaded/downloaded from the HuggingFace hub seamlessly. To work on a local dataset, you can set the `DATA_DIR` environment variable to your root dataset folder as illustrated in the above section on dataset visualization.
### Evaluate a pretrained policy
@@ -280,7 +280,7 @@ To use wandb for logging training and evaluation curves, make sure you've run `w
wandb.enable=true
```
A link to the wandb logs for the run will also show up in yellow in your terminal. Here is an example of what they look like in your browser. Please also check [here](https://github.com/huggingface/lerobot/blob/main/examples/4_train_policy_with_script.md#typical-logs-and-metrics) for the explanation of some commonly used metrics in logs.
A link to the wandb logs for the run will also show up in yellow in your terminal. Here is an example of what they look like in your browser. Please also check [here](https://github.com/huggingface/lerobot/blob/main/examples/4_train_policy_with_script.md#typical-logs-and-metrics) for the explaination of some commonly used metrics in logs.
![](media/wandb.png)

View File

@@ -266,7 +266,7 @@ def benchmark_encoding_decoding(
)
ep_num_images = dataset.episode_data_index["to"][0].item()
width, height = tuple(dataset[0][dataset.meta.camera_keys[0]].shape[-2:])
width, height = tuple(dataset[0][dataset.camera_keys[0]].shape[-2:])
num_pixels = width * height
video_size_bytes = video_path.stat().st_size
images_size_bytes = get_directory_size(imgs_dir)

View File

@@ -1,4 +1,4 @@
FROM nvidia/cuda:12.2.2-devel-ubuntu22.04
FROM nvidia/cuda:12.4.1-base-ubuntu22.04
# Configure image
ARG PYTHON_VERSION=3.10
@@ -17,33 +17,6 @@ RUN apt-get update && apt-get install -y --no-install-recommends \
python${PYTHON_VERSION} python${PYTHON_VERSION}-venv \
&& apt-get clean && rm -rf /var/lib/apt/lists/*
# Install ffmpeg build dependencies. See:
# https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu
# TODO(aliberts): create image to build dependencies from source instead
RUN apt-get update && apt-get install -y --no-install-recommends \
autoconf automake yasm \
libass-dev \
libfreetype6-dev \
libgnutls28-dev \
libunistring-dev \
libmp3lame-dev \
libtool \
libvorbis-dev \
meson \
ninja-build \
pkg-config \
texinfo \
yasm \
zlib1g-dev \
nasm \
libx264-dev \
libx265-dev libnuma-dev \
libvpx-dev \
libfdk-aac-dev \
libopus-dev \
libsvtav1-dev libsvtav1enc-dev libsvtav1dec-dev \
libdav1d-dev
# Install gh cli tool
RUN (type -p wget >/dev/null || (apt update && apt-get install wget -y)) \
&& mkdir -p -m 755 /etc/apt/keyrings \

View File

@@ -1,275 +0,0 @@
This tutorial explains how to use [SO-100](https://github.com/TheRobotStudio/SO-ARM100) with LeRobot.
## Source the parts
Follow this [README](https://github.com/TheRobotStudio/SO-ARM100). It contains the bill of materials, with link to source the parts, as well as the instructions to 3D print the parts, and advices if it's your first time printing or if you don't own a 3D printer already.
**Important**: Before assembling, you will first need to configure your motors. To this end, we provide a nice script, so let's first install LeRobot. After configuration, we will also guide you through assembly.
## Install LeRobot
On your computer:
1. [Install Miniconda](https://docs.anaconda.com/miniconda/#quick-command-line-install):
```bash
mkdir -p ~/miniconda3
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
rm ~/miniconda3/miniconda.sh
~/miniconda3/bin/conda init bash
```
2. Restart shell or `source ~/.bashrc`
3. Create and activate a fresh conda environment for lerobot
```bash
conda create -y -n lerobot python=3.10 && conda activate lerobot
```
4. Clone LeRobot:
```bash
git clone https://github.com/huggingface/lerobot.git ~/lerobot
```
5. Install LeRobot with dependencies for the feetech motors:
```bash
cd ~/lerobot && pip install -e ".[feetech]"
```
For Linux only (not Mac), install extra dependencies for recording datasets:
```bash
conda install -y -c conda-forge ffmpeg
pip uninstall -y opencv-python
conda install -y -c conda-forge "opencv>=4.10.0"
```
## Configure the motors
Follow steps 1 of the [assembly video](https://www.youtube.com/watch?v=FioA2oeFZ5I) which illustrates the use of our scripts below.
**Find USB ports associated to your arms**
To find the correct ports for each arm, run the utility script twice:
```bash
python lerobot/scripts/find_motors_bus_port.py
```
Example output when identifying the leader arm's port (e.g., `/dev/tty.usbmodem575E0031751` on Mac, or possibly `/dev/ttyACM0` on Linux):
```
Finding all available ports for the MotorBus.
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
Remove the usb cable from your DynamixelMotorsBus and press Enter when done.
[...Disconnect leader arm and press Enter...]
The port of this DynamixelMotorsBus is /dev/tty.usbmodem575E0031751
Reconnect the usb cable.
```
Example output when identifying the follower arm's port (e.g., `/dev/tty.usbmodem575E0032081`, or possibly `/dev/ttyACM1` on Linux):
```
Finding all available ports for the MotorBus.
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
Remove the usb cable from your DynamixelMotorsBus and press Enter when done.
[...Disconnect follower arm and press Enter...]
The port of this DynamixelMotorsBus is /dev/tty.usbmodem575E0032081
Reconnect the usb cable.
```
Troubleshooting: On Linux, you might need to give access to the USB ports by running:
```bash
sudo chmod 666 /dev/ttyACM0
sudo chmod 666 /dev/ttyACM1
```
**Configure your motors**
Plug your first motor and run this script to set its ID to 1. It will also set its present position to 2048, so expect your motor to rotate:
```bash
python lerobot/scripts/configure_motor.py \
--port /dev/tty.usbmodem58760432961 \
--brand feetech \
--model sts3215 \
--baudrate 1000000 \
--ID 1
```
Note: These motors are currently limitated. They can take values between 0 and 4096 only, which corresponds to a full turn. They can't turn more than that. 2048 is at the middle of this range, so we can take -2048 steps (180 degrees anticlockwise) and reach the maximum range, or take +2048 steps (180 degrees clockwise) and reach the maximum range. The configuration step also sets the homing offset to 0, so that if you misassembled the arm, you can always update the homing offset to account for a shift up to ± 2048 steps (± 180 degrees).
Then unplug your motor and plug the second motor and set its ID to 2.
```bash
python lerobot/scripts/configure_motor.py \
--port /dev/tty.usbmodem58760432961 \
--brand feetech \
--model sts3215 \
--baudrate 1000000 \
--ID 2
```
Redo the process for all your motors until ID 6. Do the same for the 6 motors of the leader arm.
**Remove the gears of the 6 leader motors**
Follow step 2 of the [assembly video](https://www.youtube.com/watch?v=FioA2oeFZ5I). You need to remove the gear for the motors of the leader arm. As a result, you will only use the position encoding of the motor and reduce friction to more easily operate the leader arm.
**Add motor horn to the motors**
Follow step 3 of the [assembly video](https://www.youtube.com/watch?v=FioA2oeFZ5I). For SO-100, you need to align the holes on the motor horn to the motor spline to be approximately 1:30, 4:30, 7:30 and 10:30.
Try to avoid rotating the motor while doing so to keep position 2048 set during configuration. It is especially tricky for the leader motors as it is more sensible without the gears, but it's ok if it's a bit rotated.
## Assemble the arms
Follow step 4 of the [assembly video](https://www.youtube.com/watch?v=FioA2oeFZ5I). The first arm should take a bit more than 1 hour to assemble, but once you get use to it, you can do it under 1 hour for the second arm.
## Calibrate
Next, you'll need to calibrate your SO-100 robot to ensure that the leader and follower arms have the same position values when they are in the same physical position. This calibration is essential because it allows a neural network trained on one SO-100 robot to work on another.
**Manual calibration of follower arm**
/!\ Contrarily to step 6 of the [assembly video](https://www.youtube.com/watch?v=FioA2oeFZ5I) which illustrates the auto calibration, we will actually do manual calibration of follower for now.
You will need to move the follower arm to these positions sequentially:
| 1. Zero position | 2. Rotated position | 3. Rest position |
|---|---|---|
| <img src="../media/so100/follower_zero.webp?raw=true" alt="SO-100 follower arm zero position" title="SO-100 follower arm zero position" style="width:100%;"> | <img src="../media/so100/follower_rotated.webp?raw=true" alt="SO-100 follower arm rotated position" title="SO-100 follower arm rotated position" style="width:100%;"> | <img src="../media/so100/follower_rest.webp?raw=true" alt="SO-100 follower arm rest position" title="SO-100 follower arm rest position" style="width:100%;"> |
Make sure both arms are connected and run this script to launch manual calibration:
```bash
python lerobot/scripts/control_robot.py calibrate \
--robot-path lerobot/configs/robot/so100.yaml \
--robot-overrides '~cameras' --arms main_follower
```
**Manual calibration of leader arm**
Follow step 6 of the [assembly video](https://www.youtube.com/watch?v=FioA2oeFZ5I) which illustrates the manual calibration. You will need to move the leader arm to these positions sequentially:
| 1. Zero position | 2. Rotated position | 3. Rest position |
|---|---|---|
| <img src="../media/so100/leader_zero.webp?raw=true" alt="SO-100 leader arm zero position" title="SO-100 leader arm zero position" style="width:100%;"> | <img src="../media/so100/leader_rotated.webp?raw=true" alt="SO-100 leader arm rotated position" title="SO-100 leader arm rotated position" style="width:100%;"> | <img src="../media/so100/leader_rest.webp?raw=true" alt="SO-100 leader arm rest position" title="SO-100 leader arm rest position" style="width:100%;"> |
Run this script to launch manual calibration:
```bash
python lerobot/scripts/control_robot.py calibrate \
--robot-path lerobot/configs/robot/so100.yaml \
--robot-overrides '~cameras' --arms main_leader
```
## Teleoperate
**Simple teleop**
Then you are ready to teleoperate your robot! Run this simple script (it won't connect and display the cameras):
```bash
python lerobot/scripts/control_robot.py teleoperate \
--robot-path lerobot/configs/robot/so100.yaml \
--robot-overrides '~cameras' \
--display-cameras 0
```
**Teleop with displaying cameras**
Follow [this guide to setup your cameras](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#c-add-your-cameras-with-opencvcamera). Then you will be able to display the cameras on your computer while you are teleoperating by running the following code. This is useful to prepare your setup before recording your first dataset.
```bash
python lerobot/scripts/control_robot.py teleoperate \
--robot-path lerobot/configs/robot/so100.yaml
```
## Record a dataset
Once you're familiar with teleoperation, you can record your first dataset with SO-100.
If you want to use the Hugging Face hub features for uploading your dataset and you haven't previously done it, make sure you've logged in using a write-access token, which can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens):
```bash
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
```
Store your Hugging Face repository name in a variable to run these commands:
```bash
HF_USER=$(huggingface-cli whoami | head -n 1)
echo $HF_USER
```
Record 2 episodes and upload your dataset to the hub:
```bash
python lerobot/scripts/control_robot.py record \
--robot-path lerobot/configs/robot/so100.yaml \
--fps 30 \
--repo-id ${HF_USER}/so100_test \
--tags so100 tutorial \
--warmup-time-s 5 \
--episode-time-s 40 \
--reset-time-s 10 \
--num-episodes 2 \
--push-to-hub 1
```
## Visualize a dataset
If you uploaded your dataset to the hub with `--push-to-hub 1`, you can [visualize your dataset online](https://huggingface.co/spaces/lerobot/visualize_dataset) by copy pasting your repo id given by:
```bash
echo ${HF_USER}/so100_test
```
If you didn't upload with `--push-to-hub 0`, you can also visualize it locally with:
```bash
python lerobot/scripts/visualize_dataset_html.py \
--repo-id ${HF_USER}/so100_test
```
## Replay an episode
Now try to replay the first episode on your robot:
```bash
python lerobot/scripts/control_robot.py replay \
--robot-path lerobot/configs/robot/so100.yaml \
--fps 30 \
--repo-id ${HF_USER}/so100_test \
--episode 0
```
## Train a policy
To train a policy to control your robot, use the [`python lerobot/scripts/train.py`](../lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
```bash
python lerobot/scripts/train.py \
dataset_repo_id=${HF_USER}/so100_test \
policy=act_so100_real \
env=so100_real \
hydra.run.dir=outputs/train/act_so100_test \
hydra.job.name=act_so100_test \
device=cuda \
wandb.enable=true
```
Let's explain it:
1. We provided the dataset as argument with `dataset_repo_id=${HF_USER}/so100_test`.
2. We provided the policy with `policy=act_so100_real`. This loads configurations from [`lerobot/configs/policy/act_so100_real.yaml`](../lerobot/configs/policy/act_so100_real.yaml). Importantly, this policy uses 2 cameras as input `laptop`, `phone`.
3. We provided an environment as argument with `env=so100_real`. This loads configurations from [`lerobot/configs/env/so100_real.yaml`](../lerobot/configs/env/so100_real.yaml).
4. We provided `device=cuda` since we are training on a Nvidia GPU, but you can also use `device=mps` if you are using a Mac with Apple silicon, or `device=cpu` otherwise.
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
Training should take several hours. You will find checkpoints in `outputs/train/act_so100_test/checkpoints`.
## Evaluate your policy
You can use the `record` function from [`lerobot/scripts/control_robot.py`](../lerobot/scripts/control_robot.py) but with a policy checkpoint as input. For instance, run this command to record 10 evaluation episodes:
```bash
python lerobot/scripts/control_robot.py record \
--robot-path lerobot/configs/robot/so100.yaml \
--fps 30 \
--repo-id ${HF_USER}/eval_act_so100_test \
--tags so100 tutorial eval \
--warmup-time-s 5 \
--episode-time-s 40 \
--reset-time-s 10 \
--num-episodes 10 \
-p outputs/train/act_so100_test/checkpoints/last/pretrained_model
```
As you can see, it's almost the same command as previously used to record your training dataset. Two things changed:
1. There is an additional `-p` argument which indicates the path to your policy checkpoint with (e.g. `-p outputs/train/eval_so100_test/checkpoints/last/pretrained_model`). You can also use the model repository if you uploaded a model checkpoint to the hub (e.g. `-p ${HF_USER}/act_so100_test`).
2. The name of dataset begins by `eval` to reflect that you are running inference (e.g. `--repo-id ${HF_USER}/eval_act_so100_test`).
## More
Follow this [previous tutorial](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#4-train-a-policy-on-your-data) for a more in-depth tutorial on controlling real robots with LeRobot.
If you have any question or need help, please reach out on Discord in the channel [`#so100-arm`](https://discord.com/channels/1216765309076115607/1237741463832363039).

View File

@@ -1,275 +0,0 @@
This tutorial explains how to use [Moss v1](https://github.com/jess-moss/moss-robot-arms) with LeRobot.
## Source the parts
Follow this [README](https://github.com/jess-moss/moss-robot-arms). It contains the bill of materials, with link to source the parts, as well as the instructions to 3D print the parts, and advices if it's your first time printing or if you don't own a 3D printer already.
**Important**: Before assembling, you will first need to configure your motors. To this end, we provide a nice script, so let's first install LeRobot. After configuration, we will also guide you through assembly.
## Install LeRobot
On your computer:
1. [Install Miniconda](https://docs.anaconda.com/miniconda/#quick-command-line-install):
```bash
mkdir -p ~/miniconda3
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
rm ~/miniconda3/miniconda.sh
~/miniconda3/bin/conda init bash
```
2. Restart shell or `source ~/.bashrc`
3. Create and activate a fresh conda environment for lerobot
```bash
conda create -y -n lerobot python=3.10 && conda activate lerobot
```
4. Clone LeRobot:
```bash
git clone https://github.com/huggingface/lerobot.git ~/lerobot
```
5. Install LeRobot with dependencies for the feetech motors:
```bash
cd ~/lerobot && pip install -e ".[feetech]"
```
For Linux only (not Mac), install extra dependencies for recording datasets:
```bash
conda install -y -c conda-forge ffmpeg
pip uninstall -y opencv-python
conda install -y -c conda-forge "opencv>=4.10.0"
```
## Configure the motors
Follow steps 1 of the [assembly video](https://www.youtube.com/watch?v=DA91NJOtMic) which illustrates the use of our scripts below.
**Find USB ports associated to your arms**
To find the correct ports for each arm, run the utility script twice:
```bash
python lerobot/scripts/find_motors_bus_port.py
```
Example output when identifying the leader arm's port (e.g., `/dev/tty.usbmodem575E0031751` on Mac, or possibly `/dev/ttyACM0` on Linux):
```
Finding all available ports for the MotorBus.
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
Remove the usb cable from your DynamixelMotorsBus and press Enter when done.
[...Disconnect leader arm and press Enter...]
The port of this DynamixelMotorsBus is /dev/tty.usbmodem575E0031751
Reconnect the usb cable.
```
Example output when identifying the follower arm's port (e.g., `/dev/tty.usbmodem575E0032081`, or possibly `/dev/ttyACM1` on Linux):
```
Finding all available ports for the MotorBus.
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
Remove the usb cable from your DynamixelMotorsBus and press Enter when done.
[...Disconnect follower arm and press Enter...]
The port of this DynamixelMotorsBus is /dev/tty.usbmodem575E0032081
Reconnect the usb cable.
```
Troubleshooting: On Linux, you might need to give access to the USB ports by running:
```bash
sudo chmod 666 /dev/ttyACM0
sudo chmod 666 /dev/ttyACM1
```
**Configure your motors**
Plug your first motor and run this script to set its ID to 1. It will also set its present position to 2048, so expect your motor to rotate:
```bash
python lerobot/scripts/configure_motor.py \
--port /dev/tty.usbmodem58760432961 \
--brand feetech \
--model sts3215 \
--baudrate 1000000 \
--ID 1
```
Note: These motors are currently limitated. They can take values between 0 and 4096 only, which corresponds to a full turn. They can't turn more than that. 2048 is at the middle of this range, so we can take -2048 steps (180 degrees anticlockwise) and reach the maximum range, or take +2048 steps (180 degrees clockwise) and reach the maximum range. The configuration step also sets the homing offset to 0, so that if you misassembled the arm, you can always update the homing offset to account for a shift up to ± 2048 steps (± 180 degrees).
Then unplug your motor and plug the second motor and set its ID to 2.
```bash
python lerobot/scripts/configure_motor.py \
--port /dev/tty.usbmodem58760432961 \
--brand feetech \
--model sts3215 \
--baudrate 1000000 \
--ID 2
```
Redo the process for all your motors until ID 6. Do the same for the 6 motors of the leader arm.
**Remove the gears of the 6 leader motors**
Follow step 2 of the [assembly video](https://www.youtube.com/watch?v=DA91NJOtMic). You need to remove the gear for the motors of the leader arm. As a result, you will only use the position encoding of the motor and reduce friction to more easily operate the leader arm.
**Add motor horn to the motors**
Follow step 3 of the [assembly video](https://www.youtube.com/watch?v=DA91NJOtMic). For Moss v1, you need to align the holes on the motor horn to the motor spline to be approximately 3, 6, 9 and 12 o'clock.
Try to avoid rotating the motor while doing so to keep position 2048 set during configuration. It is especially tricky for the leader motors as it is more sensible without the gears, but it's ok if it's a bit rotated.
## Assemble the arms
Follow step 4 of the [assembly video](https://www.youtube.com/watch?v=DA91NJOtMic). The first arm should take a bit more than 1 hour to assemble, but once you get use to it, you can do it under 1 hour for the second arm.
## Calibrate
Next, you'll need to calibrate your Moss v1 robot to ensure that the leader and follower arms have the same position values when they are in the same physical position. This calibration is essential because it allows a neural network trained on one Moss v1 robot to work on another.
**Manual calibration of follower arm**
/!\ Contrarily to step 6 of the [assembly video](https://www.youtube.com/watch?v=DA91NJOtMic) which illustrates the auto calibration, we will actually do manual calibration of follower for now.
You will need to move the follower arm to these positions sequentially:
| 1. Zero position | 2. Rotated position | 3. Rest position |
|---|---|---|
| <img src="../media/moss/follower_zero.webp?raw=true" alt="Moss v1 follower arm zero position" title="Moss v1 follower arm zero position" style="width:100%;"> | <img src="../media/moss/follower_rotated.webp?raw=true" alt="Moss v1 follower arm rotated position" title="Moss v1 follower arm rotated position" style="width:100%;"> | <img src="../media/moss/follower_rest.webp?raw=true" alt="Moss v1 follower arm rest position" title="Moss v1 follower arm rest position" style="width:100%;"> |
Make sure both arms are connected and run this script to launch manual calibration:
```bash
python lerobot/scripts/control_robot.py calibrate \
--robot-path lerobot/configs/robot/moss.yaml \
--robot-overrides '~cameras' --arms main_follower
```
**Manual calibration of leader arm**
Follow step 6 of the [assembly video](https://www.youtube.com/watch?v=DA91NJOtMic) which illustrates the manual calibration. You will need to move the leader arm to these positions sequentially:
| 1. Zero position | 2. Rotated position | 3. Rest position |
|---|---|---|
| <img src="../media/moss/leader_zero.webp?raw=true" alt="Moss v1 leader arm zero position" title="Moss v1 leader arm zero position" style="width:100%;"> | <img src="../media/moss/leader_rotated.webp?raw=true" alt="Moss v1 leader arm rotated position" title="Moss v1 leader arm rotated position" style="width:100%;"> | <img src="../media/moss/leader_rest.webp?raw=true" alt="Moss v1 leader arm rest position" title="Moss v1 leader arm rest position" style="width:100%;"> |
Run this script to launch manual calibration:
```bash
python lerobot/scripts/control_robot.py calibrate \
--robot-path lerobot/configs/robot/moss.yaml \
--robot-overrides '~cameras' --arms main_leader
```
## Teleoperate
**Simple teleop**
Then you are ready to teleoperate your robot! Run this simple script (it won't connect and display the cameras):
```bash
python lerobot/scripts/control_robot.py teleoperate \
--robot-path lerobot/configs/robot/moss.yaml \
--robot-overrides '~cameras' \
--display-cameras 0
```
**Teleop with displaying cameras**
Follow [this guide to setup your cameras](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#c-add-your-cameras-with-opencvcamera). Then you will be able to display the cameras on your computer while you are teleoperating by running the following code. This is useful to prepare your setup before recording your first dataset.
```bash
python lerobot/scripts/control_robot.py teleoperate \
--robot-path lerobot/configs/robot/moss.yaml
```
## Record a dataset
Once you're familiar with teleoperation, you can record your first dataset with Moss v1.
If you want to use the Hugging Face hub features for uploading your dataset and you haven't previously done it, make sure you've logged in using a write-access token, which can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens):
```bash
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
```
Store your Hugging Face repository name in a variable to run these commands:
```bash
HF_USER=$(huggingface-cli whoami | head -n 1)
echo $HF_USER
```
Record 2 episodes and upload your dataset to the hub:
```bash
python lerobot/scripts/control_robot.py record \
--robot-path lerobot/configs/robot/moss.yaml \
--fps 30 \
--repo-id ${HF_USER}/moss_test \
--tags moss tutorial \
--warmup-time-s 5 \
--episode-time-s 40 \
--reset-time-s 10 \
--num-episodes 2 \
--push-to-hub 1
```
## Visualize a dataset
If you uploaded your dataset to the hub with `--push-to-hub 1`, you can [visualize your dataset online](https://huggingface.co/spaces/lerobot/visualize_dataset) by copy pasting your repo id given by:
```bash
echo ${HF_USER}/moss_test
```
If you didn't upload with `--push-to-hub 0`, you can also visualize it locally with:
```bash
python lerobot/scripts/visualize_dataset_html.py \
--repo-id ${HF_USER}/moss_test
```
## Replay an episode
Now try to replay the first episode on your robot:
```bash
python lerobot/scripts/control_robot.py replay \
--robot-path lerobot/configs/robot/moss.yaml \
--fps 30 \
--repo-id ${HF_USER}/moss_test \
--episode 0
```
## Train a policy
To train a policy to control your robot, use the [`python lerobot/scripts/train.py`](../lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
```bash
python lerobot/scripts/train.py \
dataset_repo_id=${HF_USER}/moss_test \
policy=act_moss_real \
env=moss_real \
hydra.run.dir=outputs/train/act_moss_test \
hydra.job.name=act_moss_test \
device=cuda \
wandb.enable=true
```
Let's explain it:
1. We provided the dataset as argument with `dataset_repo_id=${HF_USER}/moss_test`.
2. We provided the policy with `policy=act_moss_real`. This loads configurations from [`lerobot/configs/policy/act_moss_real.yaml`](../lerobot/configs/policy/act_moss_real.yaml). Importantly, this policy uses 2 cameras as input `laptop`, `phone`.
3. We provided an environment as argument with `env=moss_real`. This loads configurations from [`lerobot/configs/env/moss_real.yaml`](../lerobot/configs/env/moss_real.yaml).
4. We provided `device=cuda` since we are training on a Nvidia GPU, but you can also use `device=mps` if you are using a Mac with Apple silicon, or `device=cpu` otherwise.
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
Training should take several hours. You will find checkpoints in `outputs/train/act_moss_test/checkpoints`.
## Evaluate your policy
You can use the `record` function from [`lerobot/scripts/control_robot.py`](../lerobot/scripts/control_robot.py) but with a policy checkpoint as input. For instance, run this command to record 10 evaluation episodes:
```bash
python lerobot/scripts/control_robot.py record \
--robot-path lerobot/configs/robot/moss.yaml \
--fps 30 \
--repo-id ${HF_USER}/eval_act_moss_test \
--tags moss tutorial eval \
--warmup-time-s 5 \
--episode-time-s 40 \
--reset-time-s 10 \
--num-episodes 10 \
-p outputs/train/act_moss_test/checkpoints/last/pretrained_model
```
As you can see, it's almost the same command as previously used to record your training dataset. Two things changed:
1. There is an additional `-p` argument which indicates the path to your policy checkpoint with (e.g. `-p outputs/train/eval_moss_test/checkpoints/last/pretrained_model`). You can also use the model repository if you uploaded a model checkpoint to the hub (e.g. `-p ${HF_USER}/act_moss_test`).
2. The name of dataset begins by `eval` to reflect that you are running inference (e.g. `--repo-id ${HF_USER}/eval_act_moss_test`).
## More
Follow this [previous tutorial](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#4-train-a-policy-on-your-data) for a more in-depth tutorial on controlling real robots with LeRobot.
If you have any question or need help, please reach out on Discord in the channel [`#moss-arm`](https://discord.com/channels/1216765309076115607/1275374638985252925).

View File

@@ -1,83 +0,0 @@
# Training a HIL-SERL Reward Classifier with LeRobot
This tutorial provides step-by-step instructions for training a reward classifier using LeRobot.
---
## Training Script Overview
LeRobot includes a ready-to-use training script located at [`lerobot/scripts/train_hilserl_classifier.py`](../../lerobot/scripts/train_hilserl_classifier.py). Here's an outline of its workflow:
1. **Configuration Loading**
The script uses Hydra to load a configuration file for subsequent steps. (Details on Hydra follow below.)
2. **Dataset Initialization**
It loads a `LeRobotDataset` containing images and rewards. To optimize performance, a weighted random sampler is used to balance class sampling.
3. **Classifier Initialization**
A lightweight classification head is built on top of a frozen, pretrained image encoder from HuggingFace. The classifier outputs either:
- A single probability (binary classification), or
- Logits (multi-class classification).
4. **Training Loop Execution**
The script performs:
- Forward and backward passes,
- Optimization steps,
- Periodic logging, evaluation, and checkpoint saving.
---
## Configuring with Hydra
For detailed information about Hydra usage, refer to [`examples/4_train_policy_with_script.md`](../examples/4_train_policy_with_script.md). However, note that training the reward classifier differs slightly and requires a separate configuration file.
### Config File Setup
The default `default.yaml` cannot launch the reward classifier training directly. Instead, you need a configuration file like [`lerobot/configs/policy/hilserl_classifier.yaml`](../../lerobot/configs/policy/hilserl_classifier.yaml), with the following adjustment:
Replace the `dataset_repo_id` field with the identifier for your dataset, which contains images and sparse rewards:
```yaml
# Example: lerobot/configs/policy/reward_classifier.yaml
dataset_repo_id: "my_dataset_repo_id"
## Typical logs and metrics
```
When you start the training process, you will first see your full configuration being printed in the terminal. You can check it to make sure that you config it correctly and your config is not overrided by other files. The final configuration will also be saved with the checkpoint.
After that, you will see training log like this one:
```
[2024-11-29 18:26:36,999][root][INFO] -
Epoch 5/5
Training: 82%|██████████████████████████████████████████████████████████████████████████████▋ | 91/111 [00:50<00:09, 2.04it/s, loss=0.2999, acc=69.99%]
```
or evaluation log like:
```
Validation: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 28/28 [00:20<00:00, 1.37it/s]
```
### Metrics Tracking with Weights & Biases (WandB)
If `wandb.enable` is set to `true`, the training and evaluation logs will also be saved in WandB. This allows you to track key metrics in real-time, including:
- **Training Metrics**:
- `train/accuracy`
- `train/loss`
- `train/dataloading_s`
- **Evaluation Metrics**:
- `eval/accuracy`
- `eval/loss`
- `eval/eval_s`
#### Additional Features
You can also log sample predictions during evaluation. Each logged sample will include:
- The **input image**.
- The **predicted label**.
- The **true label**.
- The **classifier's "confidence" (logits/probability)**.
These logs can be useful for diagnosing and debugging performance issues.

View File

@@ -3,120 +3,78 @@ This script demonstrates the use of `LeRobotDataset` class for handling and proc
It illustrates how to load datasets, manipulate them, and apply transformations suitable for machine learning tasks in PyTorch.
Features included in this script:
- Viewing a dataset's metadata and exploring its properties.
- Loading an existing dataset from the hub or a subset of it.
- Accessing frames by episode number.
- Loading a dataset and accessing its properties.
- Filtering data by episode number.
- Converting tensor data for visualization.
- Saving video files from dataset frames.
- Using advanced dataset features like timestamp-based frame selection.
- Demonstrating compatibility with PyTorch DataLoader for batch processing.
The script ends with examples of how to batch process data using PyTorch's DataLoader.
"""
from pathlib import Path
from pprint import pprint
import imageio
import torch
from huggingface_hub import HfApi
import lerobot
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset, LeRobotDatasetMetadata
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
# We ported a number of existing datasets ourselves, use this to see the list:
print("List of available datasets:")
pprint(lerobot.available_datasets)
# You can also browse through the datasets created/ported by the community on the hub using the hub api:
hub_api = HfApi()
repo_ids = [info.id for info in hub_api.list_datasets(task_categories="robotics", tags=["LeRobot"])]
pprint(repo_ids)
# Let's take one for this example
repo_id = "lerobot/pusht"
# Or simply explore them in your web browser directly at:
# https://huggingface.co/datasets?other=LeRobot
# Let's take this one for this example
repo_id = "lerobot/aloha_mobile_cabinet"
# We can have a look and fetch its metadata to know more about it:
ds_meta = LeRobotDatasetMetadata(repo_id)
# By instantiating just this class, you can quickly access useful information about the content and the
# structure of the dataset without downloading the actual data yet (only metadata files — which are
# lightweight).
print(f"Total number of episodes: {ds_meta.total_episodes}")
print(f"Average number of frames per episode: {ds_meta.total_frames / ds_meta.total_episodes:.3f}")
print(f"Frames per second used during data collection: {ds_meta.fps}")
print(f"Robot type: {ds_meta.robot_type}")
print(f"keys to access images from cameras: {ds_meta.camera_keys=}\n")
print("Tasks:")
print(ds_meta.tasks)
print("Features:")
pprint(ds_meta.features)
# You can also get a short summary by simply printing the object:
print(ds_meta)
# You can then load the actual dataset from the hub.
# Either load any subset of episodes:
dataset = LeRobotDataset(repo_id, episodes=[0, 10, 11, 23])
# And see how many frames you have:
print(f"Selected episodes: {dataset.episodes}")
print(f"Number of episodes selected: {dataset.num_episodes}")
print(f"Number of frames selected: {dataset.num_frames}")
# Or simply load the entire dataset:
# You can easily load a dataset from a Hugging Face repository
dataset = LeRobotDataset(repo_id)
print(f"Number of episodes selected: {dataset.num_episodes}")
print(f"Number of frames selected: {dataset.num_frames}")
# The previous metadata class is contained in the 'meta' attribute of the dataset:
print(dataset.meta)
# LeRobotDataset actually wraps an underlying Hugging Face dataset
# (see https://huggingface.co/docs/datasets for more information).
# LeRobotDataset is actually a thin wrapper around an underlying Hugging Face dataset
# (see https://huggingface.co/docs/datasets/index for more information).
print(dataset)
print(dataset.hf_dataset)
# LeRobot datasets also subclasses PyTorch datasets so you can do everything you know and love from working
# with the latter, like iterating through the dataset.
# The __getitem__ iterates over the frames of the dataset. Since our datasets are also structured by
# episodes, you can access the frame indices of any episode using the episode_data_index. Here, we access
# frame indices associated to the first episode:
# And provides additional utilities for robotics and compatibility with Pytorch
print(f"\naverage number of frames per episode: {dataset.num_samples / dataset.num_episodes:.3f}")
print(f"frames per second used during data collection: {dataset.fps=}")
print(f"keys to access images from cameras: {dataset.camera_keys=}\n")
# Access frame indexes associated to first episode
episode_index = 0
from_idx = dataset.episode_data_index["from"][episode_index].item()
to_idx = dataset.episode_data_index["to"][episode_index].item()
# Then we grab all the image frames from the first camera:
camera_key = dataset.meta.camera_keys[0]
frames = [dataset[idx][camera_key] for idx in range(from_idx, to_idx)]
# LeRobot datasets actually subclass PyTorch datasets so you can do everything you know and love from working
# with the latter, like iterating through the dataset. Here we grab all the image frames.
frames = [dataset[idx]["observation.image"] for idx in range(from_idx, to_idx)]
# The objects returned by the dataset are all torch.Tensors
print(type(frames[0]))
print(frames[0].shape)
# Video frames are now float32 in range [0,1] channel first (c,h,w) to follow pytorch convention. To visualize
# them, we convert to uint8 in range [0,255]
frames = [(frame * 255).type(torch.uint8) for frame in frames]
# and to channel last (h,w,c).
frames = [frame.permute((1, 2, 0)).numpy() for frame in frames]
# Since we're using pytorch, the shape is in pytorch, channel-first convention (c, h, w).
# We can compare this shape with the information available for that feature
pprint(dataset.features[camera_key])
# In particular:
print(dataset.features[camera_key]["shape"])
# The shape is in (h, w, c) which is a more universal format.
# Finally, we save the frames to a mp4 video for visualization.
Path("outputs/examples/1_load_lerobot_dataset").mkdir(parents=True, exist_ok=True)
imageio.mimsave("outputs/examples/1_load_lerobot_dataset/episode_0.mp4", frames, fps=dataset.fps)
# For many machine learning applications we need to load the history of past observations or trajectories of
# future actions. Our datasets can load previous and future frames for each key/modality, using timestamps
# differences with the current loaded frame. For instance:
delta_timestamps = {
# loads 4 images: 1 second before current frame, 500 ms before, 200 ms before, and current frame
camera_key: [-1, -0.5, -0.20, 0],
# loads 8 state vectors: 1.5 seconds before, 1 second before, ... 200 ms, 100 ms, and current frame
"observation.state": [-1.5, -1, -0.5, -0.20, -0.10, 0],
"observation.image": [-1, -0.5, -0.20, 0],
# loads 8 state vectors: 1.5 seconds before, 1 second before, ... 20 ms, 10 ms, and current frame
"observation.state": [-1.5, -1, -0.5, -0.20, -0.10, -0.02, -0.01, 0],
# loads 64 action vectors: current frame, 1 frame in the future, 2 frames, ... 63 frames in the future
"action": [t / dataset.fps for t in range(64)],
}
# Note that in any case, these delta_timestamps values need to be multiples of (1/fps) so that added to any
# timestamp, you still get a valid timestamp.
dataset = LeRobotDataset(repo_id, delta_timestamps=delta_timestamps)
print(f"\n{dataset[0][camera_key].shape=}") # (4, c, h, w)
print(f"{dataset[0]['observation.state'].shape=}") # (6, c)
print(f"{dataset[0]['action'].shape=}\n") # (64, c)
print(f"\n{dataset[0]['observation.image'].shape=}") # (4,c,h,w)
print(f"{dataset[0]['observation.state'].shape=}") # (8,c)
print(f"{dataset[0]['action'].shape=}\n") # (64,c)
# Finally, our datasets are fully compatible with PyTorch dataloaders and samplers because they are just
# PyTorch datasets.
@@ -126,9 +84,8 @@ dataloader = torch.utils.data.DataLoader(
batch_size=32,
shuffle=True,
)
for batch in dataloader:
print(f"{batch[camera_key].shape=}") # (32, 4, c, h, w)
print(f"{batch['observation.state'].shape=}") # (32, 5, c)
print(f"{batch['action'].shape=}") # (32, 64, c)
print(f"{batch['observation.image'].shape=}") # (32,4,c,h,w)
print(f"{batch['observation.state'].shape=}") # (32,8,c)
print(f"{batch['action'].shape=}") # (32,64,c)
break

View File

@@ -40,7 +40,7 @@ dataset = LeRobotDataset("lerobot/pusht", delta_timestamps=delta_timestamps)
# For this example, no arguments need to be passed because the defaults are set up for PushT.
# If you're doing something different, you will likely need to change at least some of the defaults.
cfg = DiffusionConfig()
policy = DiffusionPolicy(cfg, dataset_stats=dataset.meta.stats)
policy = DiffusionPolicy(cfg, dataset_stats=dataset.stats)
policy.train()
policy.to(device)

View File

@@ -1,7 +1,7 @@
"""
This script demonstrates how to use torchvision's image transformation with LeRobotDataset for data
augmentation purposes. The transformations are passed to the dataset as an argument upon creation, and
transforms are applied to the observation images before they are returned in the dataset's __getitem__.
transforms are applied to the observation images before they are returned in the dataset's __get_item__.
"""
from pathlib import Path
@@ -10,17 +10,17 @@ from torchvision.transforms import ToPILImage, v2
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
dataset_repo_id = "lerobot/aloha_static_screw_driver"
dataset_repo_id = "lerobot/aloha_static_tape"
# Create a LeRobotDataset with no transformations
dataset = LeRobotDataset(dataset_repo_id, episodes=[0])
dataset = LeRobotDataset(dataset_repo_id)
# This is equivalent to `dataset = LeRobotDataset(dataset_repo_id, image_transforms=None)`
# Get the index of the first observation in the first episode
first_idx = dataset.episode_data_index["from"][0].item()
# Get the frame corresponding to the first camera
frame = dataset[first_idx][dataset.meta.camera_keys[0]]
frame = dataset[first_idx][dataset.camera_keys[0]]
# Define the transformations
@@ -28,16 +28,15 @@ transforms = v2.Compose(
[
v2.ColorJitter(brightness=(0.5, 1.5)),
v2.ColorJitter(contrast=(0.5, 1.5)),
v2.ColorJitter(hue=(-0.1, 0.1)),
v2.RandomAdjustSharpness(sharpness_factor=2, p=1),
]
)
# Create another LeRobotDataset with the defined transformations
transformed_dataset = LeRobotDataset(dataset_repo_id, episodes=[0], image_transforms=transforms)
transformed_dataset = LeRobotDataset(dataset_repo_id, image_transforms=transforms)
# Get a frame from the transformed dataset
transformed_frame = transformed_dataset[first_idx][transformed_dataset.meta.camera_keys[0]]
transformed_frame = transformed_dataset[first_idx][transformed_dataset.camera_keys[0]]
# Create a directory to store output images
output_dir = Path("outputs/image_transforms")

View File

@@ -11,7 +11,7 @@ This tutorial will guide you through the process of setting up and training a ne
By following these steps, you'll be able to replicate tasks like picking up a Lego block and placing it in a bin with a high success rate, as demonstrated in [this video](https://x.com/RemiCadene/status/1814680760592572934).
This tutorial is specifically made for the affordable [Koch v1.1](https://github.com/jess-moss/koch-v1-1) robot, but it contains additional information to be easily adapted to various types of robots like [Aloha bimanual robot](https://aloha-2.github.io) by changing some configurations. The Koch v1.1 consists of a leader arm and a follower arm, each with 6 motors. It can work with one or several cameras to record the scene, which serve as visual sensors for the robot.
This tutorial is specifically made for the affordable [Koch v1.1](https://github.com/jess-moss/koch-v1-1) robot, but it contains additional information to be easily adapted to various types of robots like [Aloha bimanual robot](aloha-2.github.io) by changing some configurations. The Koch v1.1 consists of a leader arm and a follower arm, each with 6 motors. It can work with one or several cameras to record the scene, which serve as visual sensors for the robot.
During the data collection phase, you will control the follower arm by moving the leader arm. This process is known as "teleoperation." This technique is used to collect robot trajectories. Afterward, you'll train a neural network to imitate these trajectories and deploy the network to enable your robot to operate autonomously.
@@ -29,7 +29,7 @@ For a visual walkthrough of the assembly process, you can refer to [this video t
## 2. Configure motors, calibrate arms, teleoperate your Koch v1.1
First, install the additional dependencies required for robots built with dynamixel motors like Koch v1.1 by running one of the following commands (make sure gcc is installed).
First, install the additional dependencies required for robots built with dynamixel motors like Koch v1.1 by running one of the following commands.
Using `pip`:
```bash
@@ -45,7 +45,7 @@ poetry install --sync --extras "dynamixel"
```bash
conda install -c conda-forge ffmpeg
pip uninstall opencv-python
conda install -c conda-forge "opencv>=4.10.0"
conda install -c conda-forge opencv>=4.10.0
```
You are now ready to plug the 5V power supply to the motor bus of the leader arm (the smaller one) since all its motors only require 5V.
@@ -78,12 +78,12 @@ To begin, create two instances of the [`DynamixelMotorsBus`](../lerobot/common/
To find the correct ports for each arm, run the utility script twice:
```bash
python lerobot/scripts/find_motors_bus_port.py
python lerobot/common/robot_devices/motors/dynamixel.py
```
Example output when identifying the leader arm's port (e.g., `/dev/tty.usbmodem575E0031751` on Mac, or possibly `/dev/ttyACM0` on Linux):
```
Finding all available ports for the MotorBus.
Finding all available ports for the DynamixelMotorsBus.
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
Remove the usb cable from your DynamixelMotorsBus and press Enter when done.
@@ -95,7 +95,7 @@ Reconnect the usb cable.
Example output when identifying the follower arm's port (e.g., `/dev/tty.usbmodem575E0032081`, or possibly `/dev/ttyACM1` on Linux):
```
Finding all available ports for the MotorBus.
Finding all available ports for the DynamixelMotorsBus.
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
Remove the usb cable from your DynamixelMotorsBus and press Enter when done.
@@ -778,6 +778,7 @@ Now run this to record 2 episodes:
python lerobot/scripts/control_robot.py record \
--robot-path lerobot/configs/robot/koch.yaml \
--fps 30 \
--root data \
--repo-id ${HF_USER}/koch_test \
--tags tutorial \
--warmup-time-s 5 \
@@ -786,7 +787,7 @@ python lerobot/scripts/control_robot.py record \
--num-episodes 2
```
This will write your dataset locally to `~/.cache/huggingface/lerobot/{repo-id}` (e.g. `data/cadene/koch_test`) and push it on the hub at `https://huggingface.co/datasets/{HF_USER}/{repo-id}`. Your dataset will be automatically tagged with `LeRobot` for the community to find it easily, and you can also add custom tags (in this case `tutorial` for example).
This will write your dataset locally to `{root}/{repo-id}` (e.g. `data/cadene/koch_test`) and push it on the hub at `https://huggingface.co/datasets/{HF_USER}/{repo-id}`. Your dataset will be automatically tagged with `LeRobot` for the community to find it easily, and you can also add custom tags (in this case `tutorial` for example).
You can look for other LeRobot datasets on the hub by searching for `LeRobot` tags: https://huggingface.co/datasets?other=LeRobot
@@ -839,6 +840,7 @@ In the coming months, we plan to release a foundational model for robotics. We a
You can visualize your dataset by running:
```bash
python lerobot/scripts/visualize_dataset_html.py \
--root data \
--repo-id ${HF_USER}/koch_test
```
@@ -856,6 +858,7 @@ To replay the first episode of the dataset you just recorded, run the following
python lerobot/scripts/control_robot.py replay \
--robot-path lerobot/configs/robot/koch.yaml \
--fps 30 \
--root data \
--repo-id ${HF_USER}/koch_test \
--episode 0
```
@@ -868,7 +871,7 @@ Your robot should replicate movements similar to those you recorded. For example
To train a policy to control your robot, use the [`python lerobot/scripts/train.py`](../lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
```bash
python lerobot/scripts/train.py \
DATA_DIR=data python lerobot/scripts/train.py \
dataset_repo_id=${HF_USER}/koch_test \
policy=act_koch_real \
env=koch_real \
@@ -915,6 +918,7 @@ env:
It should match your dataset (e.g. `fps: 30`) and your robot (e.g. `state_dim: 6` and `action_dim: 6`). We are still working on simplifying this in future versions of `lerobot`.
4. We provided `device=cuda` since we are training on a Nvidia GPU, but you could use `device=mps` to train on Apple silicon.
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
6. We added `DATA_DIR=data` to access your dataset stored in your local `data` directory. If you dont provide `DATA_DIR`, your dataset will be downloaded from Hugging Face hub to your cache folder `$HOME/.cache/hugginface`. In future versions of `lerobot`, both directories will be in sync.
For more information on the `train` script see the previous tutorial: [`examples/4_train_policy_with_script.md`](../examples/4_train_policy_with_script.md)
@@ -987,6 +991,7 @@ To this end, you can use the `record` function from [`lerobot/scripts/control_ro
python lerobot/scripts/control_robot.py record \
--robot-path lerobot/configs/robot/koch.yaml \
--fps 30 \
--root data \
--repo-id ${HF_USER}/eval_koch_test \
--tags tutorial eval \
--warmup-time-s 5 \
@@ -1005,6 +1010,7 @@ As you can see, it's almost the same command as previously used to record your t
You can then visualize your evaluation dataset by running the same command as before but with the new inference dataset as argument:
```bash
python lerobot/scripts/visualize_dataset.py \
--root data \
--repo-id ${HF_USER}/eval_koch_test
```

View File

@@ -1,156 +0,0 @@
This tutorial explains how to use [Stretch 3](https://hello-robot.com/stretch-3-product) with LeRobot.
## Setup
Familiarize yourself with Stretch by following its [tutorials](https://docs.hello-robot.com/0.3/getting_started/hello_robot/) (recommended).
To use LeRobot on Stretch, 3 options are available:
- [tethered setup](https://docs.hello-robot.com/0.3/getting_started/connecting_to_stretch/#tethered-setup)
- [untethered setup](https://docs.hello-robot.com/0.3/getting_started/connecting_to_stretch/#untethered-setup)
- ssh directly into Stretch (you will first need to install and configure openssh-server on stretch using one of the two above setups)
## Install LeRobot
On Stretch's CLI, follow these steps:
1. [Install Miniconda](https://docs.anaconda.com/miniconda/#quick-command-line-install):
```bash
mkdir -p ~/miniconda3
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
rm ~/miniconda3/miniconda.sh
~/miniconda3/bin/conda init bash
```
2. Comment out these lines in `~/.profile` (this can mess up paths used by conda and ~/.local/bin should already be in your PATH)
```
# set PATH so it includes user's private bin if it exists
if [ -d "$HOME/.local/bin" ] ; then
PATH="$HOME/.local/bin:$PATH"
fi
```
3. Restart shell or `source ~/.bashrc`
4. Create and activate a fresh conda environment for lerobot
```bash
conda create -y -n lerobot python=3.10 && conda activate lerobot
```
5. Clone LeRobot:
```bash
git clone https://github.com/huggingface/lerobot.git ~/lerobot
```
6. Install LeRobot with stretch dependencies:
```bash
cd ~/lerobot && pip install -e ".[stretch]"
```
> **Note:** If you get this message, you can ignore it: `ERROR: pip's dependency resolver does not currently take into account all the packages that are installed.`
For Linux only (not Mac), install extra dependencies for recording datasets:
```bash
conda install -y -c conda-forge ffmpeg
pip uninstall -y opencv-python
conda install -y -c conda-forge "opencv>=4.10.0"
```
7. Run a [system check](https://docs.hello-robot.com/0.3/getting_started/stretch_hardware_overview/#system-check) to make sure your robot is ready:
```bash
stretch_system_check.py
```
> **Note:** You may need to free the "robot process" after booting Stretch by running `stretch_free_robot_process.py`. For more info this Stretch's [doc](https://docs.hello-robot.com/0.3/getting_started/stretch_hardware_overview/#turning-off-gamepad-teleoperation).
You should get something like this:
```bash
For use with S T R E T C H (R) from Hello Robot Inc.
---------------------------------------------------------------------
Model = Stretch 3
Tool = DexWrist 3 w/ Gripper
Serial Number = stretch-se3-3054
---- Checking Hardware ----
[Pass] Comms are ready
[Pass] Actuators are ready
[Warn] Sensors not ready (IMU AZ = -10.19 out of range -10.1 to -9.5)
[Pass] Battery voltage is 13.6 V
---- Checking Software ----
[Pass] Ubuntu 22.04 is ready
[Pass] All APT pkgs are setup correctly
[Pass] Firmware is up-to-date
[Pass] Python pkgs are up-to-date
[Pass] ROS2 Humble is ready
```
## Teleoperate, record a dataset and run a policy
**Calibrate (Optional)**
Before operating Stretch, you need to [home](https://docs.hello-robot.com/0.3/getting_started/stretch_hardware_overview/#homing) it first. Be mindful about giving Stretch some space as this procedure will move the robot's arm and gripper. Now run this command:
```bash
python lerobot/scripts/control_robot.py calibrate \
--robot-path lerobot/configs/robot/stretch.yaml
```
This is equivalent to running `stretch_robot_home.py`
> **Note:** If you run any of the LeRobot scripts below and Stretch is not poperly homed, it will automatically home/calibrate first.
**Teleoperate**
Before trying teleoperation, you need activate the gamepad controller by pressing the middle button. For more info, see Stretch's [doc](https://docs.hello-robot.com/0.3/getting_started/hello_robot/#gamepad-teleoperation).
Now try out teleoperation (see above documentation to learn about the gamepad controls):
```bash
python lerobot/scripts/control_robot.py teleoperate \
--robot-path lerobot/configs/robot/stretch.yaml
```
This is essentially the same as running `stretch_gamepad_teleop.py`
**Record a dataset**
Once you're familiar with the gamepad controls and after a bit of practice, you can try to record your first dataset with Stretch.
If you want to use the Hugging Face hub features for uploading your dataset and you haven't previously done it, make sure you've logged in using a write-access token, which can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens):
```bash
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
```
Store your Hugging Face repository name in a variable to run these commands:
```bash
HF_USER=$(huggingface-cli whoami | head -n 1)
echo $HF_USER
```
Record one episode:
```bash
python lerobot/scripts/control_robot.py record \
--robot-path lerobot/configs/robot/stretch.yaml \
--fps 20 \
--repo-id ${HF_USER}/stretch_test \
--tags stretch tutorial \
--warmup-time-s 3 \
--episode-time-s 40 \
--reset-time-s 10 \
--num-episodes 1 \
--push-to-hub 0
```
> **Note:** If you're using ssh to connect to Stretch and run this script, you won't be able to visualize its cameras feed (though they will still be recording). To see the cameras stream, use [tethered](https://docs.hello-robot.com/0.3/getting_started/connecting_to_stretch/#tethered-setup) or [untethered setup](https://docs.hello-robot.com/0.3/getting_started/connecting_to_stretch/#untethered-setup).
**Replay an episode**
Now try to replay this episode (make sure the robot's initial position is the same):
```bash
python lerobot/scripts/control_robot.py replay \
--robot-path lerobot/configs/robot/stretch.yaml \
--fps 20 \
--repo-id ${HF_USER}/stretch_test \
--episode 0
```
Follow [previous tutorial](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#4-train-a-policy-on-your-data) to train a policy on your data and run inference on your robot. You will need to adapt the code for Stretch.
> TODO(rcadene, aliberts): Add already setup environment and policy yaml configuration files
If you need help, please reach out on Discord in the channel `#stretch3-mobile-arm`.

View File

@@ -1,174 +0,0 @@
This tutorial explains how to use [Aloha and Aloha 2 stationary](https://www.trossenrobotics.com/aloha-stationary) with LeRobot.
## Setup
Follow the [documentation from Trossen Robotics](https://docs.trossenrobotics.com/aloha_docs/getting_started/stationary/hardware_setup.html) for setting up the hardware and plugging the 4 arms and 4 cameras to your computer.
## Install LeRobot
On your computer:
1. [Install Miniconda](https://docs.anaconda.com/miniconda/#quick-command-line-install):
```bash
mkdir -p ~/miniconda3
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
rm ~/miniconda3/miniconda.sh
~/miniconda3/bin/conda init bash
```
2. Restart shell or `source ~/.bashrc`
3. Create and activate a fresh conda environment for lerobot
```bash
conda create -y -n lerobot python=3.10 && conda activate lerobot
```
4. Clone LeRobot:
```bash
git clone https://github.com/huggingface/lerobot.git ~/lerobot
```
5. Install LeRobot with dependencies for the Aloha motors (dynamixel) and cameras (intelrealsense):
```bash
cd ~/lerobot && pip install -e ".[dynamixel, intelrealsense]"
```
For Linux only (not Mac), install extra dependencies for recording datasets:
```bash
conda install -y -c conda-forge ffmpeg
pip uninstall -y opencv-python
conda install -y -c conda-forge "opencv>=4.10.0"
```
## Teleoperate
**/!\ FOR SAFETY, READ THIS /!\**
Teleoperation consists in manually operating the leader arms to move the follower arms. Importantly:
1. Make sure your leader arms are in the same position as the follower arms, so that the follower arms don't move too fast to match the leader arms,
2. Our code assumes that your robot has been assembled following Trossen Robotics instructions. This allows us to skip calibration, as we use the pre-defined calibration files in `.cache/calibration/aloha_default`. If you replace a motor, make sure you follow the exact instructions from Trossen Robotics.
By running the following code, you can start your first **SAFE** teleoperation:
```bash
python lerobot/scripts/control_robot.py teleoperate \
--robot-path lerobot/configs/robot/aloha.yaml \
--robot-overrides max_relative_target=5
```
By adding `--robot-overrides max_relative_target=5`, we override the default value for `max_relative_target` defined in `lerobot/configs/robot/aloha.yaml`. It is expected to be `5` to limit the magnitude of the movement for more safety, but the teleoperation won't be smooth. When you feel confident, you can disable this limit by adding `--robot-overrides max_relative_target=null` to the command line:
```bash
python lerobot/scripts/control_robot.py teleoperate \
--robot-path lerobot/configs/robot/aloha.yaml \
--robot-overrides max_relative_target=null
```
## Record a dataset
Once you're familiar with teleoperation, you can record your first dataset with Aloha.
If you want to use the Hugging Face hub features for uploading your dataset and you haven't previously done it, make sure you've logged in using a write-access token, which can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens):
```bash
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
```
Store your Hugging Face repository name in a variable to run these commands:
```bash
HF_USER=$(huggingface-cli whoami | head -n 1)
echo $HF_USER
```
Record 2 episodes and upload your dataset to the hub:
```bash
python lerobot/scripts/control_robot.py record \
--robot-path lerobot/configs/robot/aloha.yaml \
--robot-overrides max_relative_target=null \
--fps 30 \
--repo-id ${HF_USER}/aloha_test \
--tags aloha tutorial \
--warmup-time-s 5 \
--episode-time-s 40 \
--reset-time-s 10 \
--num-episodes 2 \
--push-to-hub 1
```
## Visualize a dataset
If you uploaded your dataset to the hub with `--push-to-hub 1`, you can [visualize your dataset online](https://huggingface.co/spaces/lerobot/visualize_dataset) by copy pasting your repo id given by:
```bash
echo ${HF_USER}/aloha_test
```
If you didn't upload with `--push-to-hub 0`, you can also visualize it locally with:
```bash
python lerobot/scripts/visualize_dataset_html.py \
--repo-id ${HF_USER}/aloha_test
```
## Replay an episode
**/!\ FOR SAFETY, READ THIS /!\**
Replay consists in automatically replaying the sequence of actions (i.e. goal positions for your motors) recorded in a given dataset episode. Make sure the current initial position of your robot is similar to the one in your episode, so that your follower arms don't move too fast to go to the first goal positions. For safety, you might want to add `--robot-overrides max_relative_target=5` to your command line as explained above.
Now try to replay the first episode on your robot:
```bash
python lerobot/scripts/control_robot.py replay \
--robot-path lerobot/configs/robot/aloha.yaml \
--robot-overrides max_relative_target=null \
--fps 30 \
--repo-id ${HF_USER}/aloha_test \
--episode 0
```
## Train a policy
To train a policy to control your robot, use the [`python lerobot/scripts/train.py`](../lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
```bash
python lerobot/scripts/train.py \
dataset_repo_id=${HF_USER}/aloha_test \
policy=act_aloha_real \
env=aloha_real \
hydra.run.dir=outputs/train/act_aloha_test \
hydra.job.name=act_aloha_test \
device=cuda \
wandb.enable=true
```
Let's explain it:
1. We provided the dataset as argument with `dataset_repo_id=${HF_USER}/aloha_test`.
2. We provided the policy with `policy=act_aloha_real`. This loads configurations from [`lerobot/configs/policy/act_aloha_real.yaml`](../lerobot/configs/policy/act_aloha_real.yaml). Importantly, this policy uses 4 cameras as input `cam_right_wrist`, `cam_left_wrist`, `cam_high`, and `cam_low`.
3. We provided an environment as argument with `env=aloha_real`. This loads configurations from [`lerobot/configs/env/aloha_real.yaml`](../lerobot/configs/env/aloha_real.yaml). Note: this yaml defines 18 dimensions for the `state_dim` and `action_dim`, corresponding to 18 motors, not 14 motors as used in previous Aloha work. This is because, we include the `shoulder_shadow` and `elbow_shadow` motors for simplicity.
4. We provided `device=cuda` since we are training on a Nvidia GPU.
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
Training should take several hours. You will find checkpoints in `outputs/train/act_aloha_test/checkpoints`.
## Evaluate your policy
You can use the `record` function from [`lerobot/scripts/control_robot.py`](../lerobot/scripts/control_robot.py) but with a policy checkpoint as input. For instance, run this command to record 10 evaluation episodes:
```bash
python lerobot/scripts/control_robot.py record \
--robot-path lerobot/configs/robot/aloha.yaml \
--robot-overrides max_relative_target=null \
--fps 30 \
--repo-id ${HF_USER}/eval_act_aloha_test \
--tags aloha tutorial eval \
--warmup-time-s 5 \
--episode-time-s 40 \
--reset-time-s 10 \
--num-episodes 10 \
--num-image-writer-processes 1 \
-p outputs/train/act_aloha_test/checkpoints/last/pretrained_model
```
As you can see, it's almost the same command as previously used to record your training dataset. Two things changed:
1. There is an additional `-p` argument which indicates the path to your policy checkpoint with (e.g. `-p outputs/train/eval_aloha_test/checkpoints/last/pretrained_model`). You can also use the model repository if you uploaded a model checkpoint to the hub (e.g. `-p ${HF_USER}/act_aloha_test`).
2. The name of dataset begins by `eval` to reflect that you are running inference (e.g. `--repo-id ${HF_USER}/eval_act_aloha_test`).
3. We use `--num-image-writer-processes 1` instead of the default value (`0`). On our computer, using a dedicated process to write images from the 4 cameras on disk allows to reach constent 30 fps during inference. Feel free to explore different values for `--num-image-writer-processes`.
## More
Follow this [previous tutorial](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#4-train-a-policy-on-your-data) for a more in-depth explaination.
If you have any question or need help, please reach out on Discord in the channel `#aloha-arm`.

View File

@@ -14,7 +14,7 @@ from pathlib import Path
import torch
from huggingface_hub import snapshot_download
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset, LeRobotDatasetMetadata
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.policies.diffusion.modeling_diffusion import DiffusionPolicy
device = torch.device("cuda")
@@ -41,20 +41,26 @@ delta_timestamps = {
}
# Load the last 10% of episodes of the dataset as a validation set.
# - Load dataset metadata
dataset_metadata = LeRobotDatasetMetadata("lerobot/pusht")
# - Calculate train and val episodes
total_episodes = dataset_metadata.total_episodes
episodes = list(range(dataset_metadata.total_episodes))
num_train_episodes = math.floor(total_episodes * 90 / 100)
train_episodes = episodes[:num_train_episodes]
val_episodes = episodes[num_train_episodes:]
print(f"Number of episodes in full dataset: {total_episodes}")
print(f"Number of episodes in training dataset (90% subset): {len(train_episodes)}")
print(f"Number of episodes in validation dataset (10% subset): {len(val_episodes)}")
# - Load train an val datasets
train_dataset = LeRobotDataset("lerobot/pusht", episodes=train_episodes, delta_timestamps=delta_timestamps)
val_dataset = LeRobotDataset("lerobot/pusht", episodes=val_episodes, delta_timestamps=delta_timestamps)
# - Load full dataset
full_dataset = LeRobotDataset("lerobot/pusht", split="train")
# - Calculate train and val subsets
num_train_episodes = math.floor(full_dataset.num_episodes * 90 / 100)
num_val_episodes = full_dataset.num_episodes - num_train_episodes
print(f"Number of episodes in full dataset: {full_dataset.num_episodes}")
print(f"Number of episodes in training dataset (90% subset): {num_train_episodes}")
print(f"Number of episodes in validation dataset (10% subset): {num_val_episodes}")
# - Get first frame index of the validation set
first_val_frame_index = full_dataset.episode_data_index["from"][num_train_episodes].item()
# - Load frames subset belonging to validation set using the `split` argument.
# It utilizes the `datasets` library's syntax for slicing datasets.
# For more information on the Slice API, please see:
# https://huggingface.co/docs/datasets/v2.19.0/loading#slice-splits
train_dataset = LeRobotDataset(
"lerobot/pusht", split=f"train[:{first_val_frame_index}]", delta_timestamps=delta_timestamps
)
val_dataset = LeRobotDataset(
"lerobot/pusht", split=f"train[{first_val_frame_index}:]", delta_timestamps=delta_timestamps
)
print(f"Number of frames in training dataset (90% subset): {len(train_dataset)}")
print(f"Number of frames in validation dataset (10% subset): {len(val_dataset)}")

View File

@@ -1,222 +0,0 @@
import shutil
from pathlib import Path
import numpy as np
import torch
from lerobot.common.datasets.lerobot_dataset import LEROBOT_HOME, LeRobotDataset
from lerobot.common.datasets.push_dataset_to_hub._download_raw import download_raw
PUSHT_TASK = "Push the T-shaped blue block onto the T-shaped green target surface."
PUSHT_FEATURES = {
"observation.state": {
"dtype": "float32",
"shape": (2,),
"names": {
"axes": ["x", "y"],
},
},
"action": {
"dtype": "float32",
"shape": (2,),
"names": {
"axes": ["x", "y"],
},
},
"next.reward": {
"dtype": "float32",
"shape": (1,),
"names": None,
},
"next.success": {
"dtype": "bool",
"shape": (1,),
"names": None,
},
"observation.environment_state": {
"dtype": "float32",
"shape": (16,),
"names": [
"keypoints",
],
},
"observation.image": {
"dtype": None,
"shape": (3, 96, 96),
"names": [
"channel",
"height",
"width",
],
},
}
def build_features(mode: str) -> dict:
features = PUSHT_FEATURES
if mode == "keypoints":
features.pop("observation.image")
else:
features.pop("observation.environment_state")
features["observation.image"]["dtype"] = mode
return features
def load_raw_dataset(zarr_path: Path):
try:
from lerobot.common.datasets.push_dataset_to_hub._diffusion_policy_replay_buffer import (
ReplayBuffer as DiffusionPolicyReplayBuffer,
)
except ModuleNotFoundError as e:
print("`gym_pusht` is not installed. Please install it with `pip install 'lerobot[gym_pusht]'`")
raise e
zarr_data = DiffusionPolicyReplayBuffer.copy_from_path(zarr_path)
return zarr_data
def calculate_coverage(zarr_data):
try:
import pymunk
from gym_pusht.envs.pusht import PushTEnv, pymunk_to_shapely
except ModuleNotFoundError as e:
print("`gym_pusht` is not installed. Please install it with `pip install 'lerobot[gym_pusht]'`")
raise e
block_pos = zarr_data["state"][:, 2:4]
block_angle = zarr_data["state"][:, 4]
num_frames = len(block_pos)
coverage = np.zeros((num_frames,))
# 8 keypoints with 2 coords each
keypoints = np.zeros((num_frames, 16))
# Set x, y, theta (in radians)
goal_pos_angle = np.array([256, 256, np.pi / 4])
goal_body = PushTEnv.get_goal_pose_body(goal_pos_angle)
for i in range(num_frames):
space = pymunk.Space()
space.gravity = 0, 0
space.damping = 0
# Add walls.
walls = [
PushTEnv.add_segment(space, (5, 506), (5, 5), 2),
PushTEnv.add_segment(space, (5, 5), (506, 5), 2),
PushTEnv.add_segment(space, (506, 5), (506, 506), 2),
PushTEnv.add_segment(space, (5, 506), (506, 506), 2),
]
space.add(*walls)
block_body, block_shapes = PushTEnv.add_tee(space, block_pos[i].tolist(), block_angle[i].item())
goal_geom = pymunk_to_shapely(goal_body, block_body.shapes)
block_geom = pymunk_to_shapely(block_body, block_body.shapes)
intersection_area = goal_geom.intersection(block_geom).area
goal_area = goal_geom.area
coverage[i] = intersection_area / goal_area
keypoints[i] = torch.from_numpy(PushTEnv.get_keypoints(block_shapes).flatten())
return coverage, keypoints
def calculate_success(coverage: float, success_threshold: float):
return coverage > success_threshold
def calculate_reward(coverage: float, success_threshold: float):
return np.clip(coverage / success_threshold, 0, 1)
def main(raw_dir: Path, repo_id: str, mode: str = "video", push_to_hub: bool = True):
if mode not in ["video", "image", "keypoints"]:
raise ValueError(mode)
if (LEROBOT_HOME / repo_id).exists():
shutil.rmtree(LEROBOT_HOME / repo_id)
if not raw_dir.exists():
download_raw(raw_dir, repo_id="lerobot-raw/pusht_raw")
zarr_data = load_raw_dataset(zarr_path=raw_dir / "pusht_cchi_v7_replay.zarr")
env_state = zarr_data["state"][:]
agent_pos = env_state[:, :2]
action = zarr_data["action"][:]
image = zarr_data["img"] # (b, h, w, c)
episode_data_index = {
"from": np.concatenate(([0], zarr_data.meta["episode_ends"][:-1])),
"to": zarr_data.meta["episode_ends"],
}
# Calculate success and reward based on the overlapping area
# of the T-object and the T-area.
coverage, keypoints = calculate_coverage(zarr_data)
success = calculate_success(coverage, success_threshold=0.95)
reward = calculate_reward(coverage, success_threshold=0.95)
features = build_features(mode)
dataset = LeRobotDataset.create(
repo_id=repo_id,
fps=10,
robot_type="2d pointer",
features=features,
image_writer_threads=4,
)
episodes = range(len(episode_data_index["from"]))
for ep_idx in episodes:
from_idx = episode_data_index["from"][ep_idx]
to_idx = episode_data_index["to"][ep_idx]
num_frames = to_idx - from_idx
for frame_idx in range(num_frames):
i = from_idx + frame_idx
frame = {
"action": torch.from_numpy(action[i]),
# Shift reward and success by +1 until the last item of the episode
"next.reward": reward[i + (frame_idx < num_frames - 1)],
"next.success": success[i + (frame_idx < num_frames - 1)],
}
frame["observation.state"] = torch.from_numpy(agent_pos[i])
if mode == "keypoints":
frame["observation.environment_state"] = torch.from_numpy(keypoints[i])
else:
frame["observation.image"] = torch.from_numpy(image[i])
dataset.add_frame(frame)
dataset.save_episode(task=PUSHT_TASK)
dataset.consolidate()
if push_to_hub:
dataset.push_to_hub()
if __name__ == "__main__":
# To try this script, modify the repo id with your own HuggingFace user (e.g cadene/pusht)
repo_id = "lerobot/pusht"
modes = ["video", "image", "keypoints"]
# Uncomment if you want to try with a specific mode
# modes = ["video"]
# modes = ["image"]
# modes = ["keypoints"]
raw_dir = Path("data/lerobot-raw/pusht_raw")
for mode in modes:
if mode in ["image", "keypoints"]:
repo_id += f"_{mode}"
# download and load raw dataset, create LeRobotDataset, populate it, push to hub
main(raw_dir, repo_id=repo_id, mode=mode)
# Uncomment if you want to load the local dataset and explore it
# dataset = LeRobotDataset(repo_id=repo_id, local_files_only=True)
# breakpoint()

View File

@@ -28,8 +28,6 @@ Example:
print(lerobot.available_policies)
print(lerobot.available_policies_per_env)
print(lerobot.available_robots)
print(lerobot.available_cameras)
print(lerobot.available_motors)
```
When implementing a new dataset loadable with LeRobotDataset follow these steps:
@@ -181,8 +179,8 @@ available_real_world_datasets = [
"lerobot/usc_cloth_sim",
]
available_datasets = sorted(
set(itertools.chain(*available_datasets_per_env.values(), available_real_world_datasets))
available_datasets = list(
itertools.chain(*available_datasets_per_env.values(), available_real_world_datasets)
)
# lists all available policies from `lerobot/common/policies`
@@ -198,20 +196,6 @@ available_robots = [
"koch",
"koch_bimanual",
"aloha",
"so100",
"moss",
]
# lists all available cameras from `lerobot/common/robot_devices/cameras`
available_cameras = [
"opencv",
"intelrealsense",
]
# lists all available motors from `lerobot/common/robot_devices/motors`
available_motors = [
"dynamixel",
"feetech",
]
# keys and values refer to yaml files
@@ -219,9 +203,7 @@ available_policies_per_env = {
"aloha": ["act"],
"pusht": ["diffusion", "vqbet"],
"xarm": ["tdmpc"],
"koch_real": ["act_koch_real"],
"aloha_real": ["act_aloha_real"],
"dora_aloha_real": ["act_aloha_real"],
"dora_aloha_real": ["act_real"],
}
env_task_pairs = [(env, task) for env, tasks in available_tasks_per_env.items() for task in tasks]

View File

@@ -1,27 +0,0 @@
---
# For reference on dataset card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/datasetcard.md?plain=1
# Doc / guide: https://huggingface.co/docs/hub/datasets-cards
{{ card_data }}
---
This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
## Dataset Description
{{ dataset_description | default("", true) }}
- **Homepage:** {{ url | default("[More Information Needed]", true)}}
- **Paper:** {{ paper | default("[More Information Needed]", true)}}
- **License:** {{ license | default("[More Information Needed]", true)}}
## Dataset Structure
{{ dataset_structure | default("[More Information Needed]", true)}}
## Citation
**BibTeX:**
```bibtex
{{ citation_bibtex | default("[More Information Needed]", true)}}
```

View File

@@ -19,6 +19,9 @@ from math import ceil
import einops
import torch
import tqdm
from datasets import Image
from lerobot.common.datasets.video_utils import VideoFrame
def get_stats_einops_patterns(dataset, num_workers=0):
@@ -36,13 +39,15 @@ def get_stats_einops_patterns(dataset, num_workers=0):
batch = next(iter(dataloader))
stats_patterns = {}
for key, feats_type in dataset.features.items():
# NOTE: skip language_instruction embedding in stats computation
if key == "language_instruction":
continue
for key in dataset.features:
# sanity check that tensors are not float64
assert batch[key].dtype != torch.float64
# if isinstance(feats_type, (VideoFrame, Image)):
if key in dataset.meta.camera_keys:
if isinstance(feats_type, (VideoFrame, Image)):
# sanity check that images are channel first
_, c, h, w = batch[key].shape
assert c < h and c < w, f"expect channel first images, but instead {batch[key].shape}"
@@ -58,12 +63,12 @@ def get_stats_einops_patterns(dataset, num_workers=0):
elif batch[key].ndim == 1:
stats_patterns[key] = "b -> 1"
else:
raise ValueError(f"{key}, {batch[key].shape}")
raise ValueError(f"{key}, {feats_type}, {batch[key].shape}")
return stats_patterns
def compute_stats(dataset, batch_size=8, num_workers=8, max_num_samples=None):
def compute_stats(dataset, batch_size=32, num_workers=16, max_num_samples=None):
"""Compute mean/std and min/max statistics of all data keys in a LeRobotDataset."""
if max_num_samples is None:
max_num_samples = len(dataset)
@@ -170,45 +175,39 @@ def aggregate_stats(ls_datasets) -> dict[str, torch.Tensor]:
"""
data_keys = set()
for dataset in ls_datasets:
data_keys.update(dataset.meta.stats.keys())
data_keys.update(dataset.stats.keys())
stats = {k: {} for k in data_keys}
for data_key in data_keys:
for stat_key in ["min", "max"]:
# compute `max(dataset_0["max"], dataset_1["max"], ...)`
stats[data_key][stat_key] = einops.reduce(
torch.stack(
[ds.meta.stats[data_key][stat_key] for ds in ls_datasets if data_key in ds.meta.stats],
dim=0,
),
torch.stack([d.stats[data_key][stat_key] for d in ls_datasets if data_key in d.stats], dim=0),
"n ... -> ...",
stat_key,
)
total_samples = sum(d.num_frames for d in ls_datasets if data_key in d.meta.stats)
total_samples = sum(d.num_samples for d in ls_datasets if data_key in d.stats)
# Compute the "sum" statistic by multiplying each mean by the number of samples in the respective
# dataset, then divide by total_samples to get the overall "mean".
# NOTE: the brackets around (d.num_frames / total_samples) are needed tor minimize the risk of
# NOTE: the brackets around (d.num_samples / total_samples) are needed tor minimize the risk of
# numerical overflow!
stats[data_key]["mean"] = sum(
d.meta.stats[data_key]["mean"] * (d.num_frames / total_samples)
d.stats[data_key]["mean"] * (d.num_samples / total_samples)
for d in ls_datasets
if data_key in d.meta.stats
if data_key in d.stats
)
# The derivation for standard deviation is a little more involved but is much in the same spirit as
# the computation of the mean.
# Given two sets of data where the statistics are known:
# σ_combined = sqrt[ (n1 * (σ1^2 + d1^2) + n2 * (σ2^2 + d2^2)) / (n1 + n2) ]
# where d1 = μ1 - μ_combined, d2 = μ2 - μ_combined
# NOTE: the brackets around (d.num_frames / total_samples) are needed tor minimize the risk of
# NOTE: the brackets around (d.num_samples / total_samples) are needed tor minimize the risk of
# numerical overflow!
stats[data_key]["std"] = torch.sqrt(
sum(
(
d.meta.stats[data_key]["std"] ** 2
+ (d.meta.stats[data_key]["mean"] - stats[data_key]["mean"]) ** 2
)
* (d.num_frames / total_samples)
(d.stats[data_key]["std"] ** 2 + (d.stats[data_key]["mean"] - stats[data_key]["mean"]) ** 2)
* (d.num_samples / total_samples)
for d in ls_datasets
if data_key in d.meta.stats
if data_key in d.stats
)
)
return stats

View File

@@ -91,9 +91,9 @@ def make_dataset(cfg, split: str = "train") -> LeRobotDataset | MultiLeRobotData
)
if isinstance(cfg.dataset_repo_id, str):
# TODO (aliberts): add 'episodes' arg from config after removing hydra
dataset = LeRobotDataset(
cfg.dataset_repo_id,
split=split,
delta_timestamps=cfg.training.get("delta_timestamps"),
image_transforms=image_transforms,
video_backend=cfg.video_backend,
@@ -101,6 +101,7 @@ def make_dataset(cfg, split: str = "train") -> LeRobotDataset | MultiLeRobotData
else:
dataset = MultiLeRobotDataset(
cfg.dataset_repo_id,
split=split,
delta_timestamps=cfg.training.get("delta_timestamps"),
image_transforms=image_transforms,
video_backend=cfg.video_backend,
@@ -111,6 +112,6 @@ def make_dataset(cfg, split: str = "train") -> LeRobotDataset | MultiLeRobotData
for stats_type, listconfig in stats_dict.items():
# example of stats_type: min, max, mean, std
stats = OmegaConf.to_container(listconfig, resolve=True)
dataset.meta.stats[key][stats_type] = torch.tensor(stats, dtype=torch.float32)
dataset.stats[key][stats_type] = torch.tensor(stats, dtype=torch.float32)
return dataset

View File

@@ -1,160 +0,0 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import multiprocessing
import queue
import threading
from pathlib import Path
import numpy as np
import PIL.Image
import torch
def safe_stop_image_writer(func):
def wrapper(*args, **kwargs):
try:
return func(*args, **kwargs)
except Exception as e:
dataset = kwargs.get("dataset")
image_writer = getattr(dataset, "image_writer", None) if dataset else None
if image_writer is not None:
print("Waiting for image writer to terminate...")
image_writer.stop()
raise e
return wrapper
def image_array_to_image(image_array: np.ndarray) -> PIL.Image.Image:
# TODO(aliberts): handle 1 channel and 4 for depth images
if image_array.ndim == 3 and image_array.shape[0] in [1, 3]:
# Transpose from pytorch convention (C, H, W) to (H, W, C)
image_array = image_array.transpose(1, 2, 0)
if image_array.dtype != np.uint8:
# Assume the image is in [0, 1] range for floating-point data
image_array = np.clip(image_array, 0, 1)
image_array = (image_array * 255).astype(np.uint8)
return PIL.Image.fromarray(image_array)
def write_image(image: np.ndarray | PIL.Image.Image, fpath: Path):
try:
if isinstance(image, np.ndarray):
img = image_array_to_image(image)
elif isinstance(image, PIL.Image.Image):
img = image
else:
raise TypeError(f"Unsupported image type: {type(image)}")
img.save(fpath)
except Exception as e:
print(f"Error writing image {fpath}: {e}")
def worker_thread_loop(queue: queue.Queue):
while True:
item = queue.get()
if item is None:
queue.task_done()
break
image_array, fpath = item
write_image(image_array, fpath)
queue.task_done()
def worker_process(queue: queue.Queue, num_threads: int):
threads = []
for _ in range(num_threads):
t = threading.Thread(target=worker_thread_loop, args=(queue,))
t.daemon = True
t.start()
threads.append(t)
for t in threads:
t.join()
class AsyncImageWriter:
"""
This class abstract away the initialisation of processes or/and threads to
save images on disk asynchrounously, which is critical to control a robot and record data
at a high frame rate.
When `num_processes=0`, it creates a threads pool of size `num_threads`.
When `num_processes>0`, it creates processes pool of size `num_processes`, where each subprocess starts
their own threads pool of size `num_threads`.
The optimal number of processes and threads depends on your computer capabilities.
We advise to use 4 threads per camera with 0 processes. If the fps is not stable, try to increase or lower
the number of threads. If it is still not stable, try to use 1 subprocess, or more.
"""
def __init__(self, num_processes: int = 0, num_threads: int = 1):
self.num_processes = num_processes
self.num_threads = num_threads
self.queue = None
self.threads = []
self.processes = []
self._stopped = False
if num_threads <= 0 and num_processes <= 0:
raise ValueError("Number of threads and processes must be greater than zero.")
if self.num_processes == 0:
# Use threading
self.queue = queue.Queue()
for _ in range(self.num_threads):
t = threading.Thread(target=worker_thread_loop, args=(self.queue,))
t.daemon = True
t.start()
self.threads.append(t)
else:
# Use multiprocessing
self.queue = multiprocessing.JoinableQueue()
for _ in range(self.num_processes):
p = multiprocessing.Process(target=worker_process, args=(self.queue, self.num_threads))
p.daemon = True
p.start()
self.processes.append(p)
def save_image(self, image: torch.Tensor | np.ndarray | PIL.Image.Image, fpath: Path):
if isinstance(image, torch.Tensor):
# Convert tensor to numpy array to minimize main process time
image = image.cpu().numpy()
self.queue.put((image, fpath))
def wait_until_done(self):
self.queue.join()
def stop(self):
if self._stopped:
return
if self.num_processes == 0:
for _ in self.threads:
self.queue.put(None)
for t in self.threads:
t.join()
else:
num_nones = self.num_processes * self.num_threads
for _ in range(num_nones):
self.queue.put(None)
for p in self.processes:
p.join()
if p.is_alive():
p.terminate()
self.queue.close()
self.queue.join_thread()
self._stopped = True

File diff suppressed because it is too large Load Diff

View File

@@ -187,7 +187,7 @@ class OnlineBuffer(torch.utils.data.Dataset):
assert data[OnlineBuffer.INDEX_KEY][0].item() == 0
# Shift the incoming indices if necessary.
if self.num_frames > 0:
if self.num_samples > 0:
last_episode_index = self._data[OnlineBuffer.EPISODE_INDEX_KEY][next_index - 1]
last_data_index = self._data[OnlineBuffer.INDEX_KEY][next_index - 1]
data[OnlineBuffer.EPISODE_INDEX_KEY] += last_episode_index + 1
@@ -227,11 +227,11 @@ class OnlineBuffer(torch.utils.data.Dataset):
)
@property
def num_frames(self) -> int:
def num_samples(self) -> int:
return np.count_nonzero(self._data[OnlineBuffer.OCCUPANCY_MASK_KEY])
def __len__(self):
return self.num_frames
return self.num_samples
def _item_to_tensors(self, item: dict) -> dict:
item_ = {}

View File

@@ -30,12 +30,12 @@ from PIL import Image as PILImage
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
from lerobot.common.datasets.push_dataset_to_hub.utils import (
calculate_episode_data_index,
concatenate_episodes,
get_default_encoding,
save_images_concurrently,
)
from lerobot.common.datasets.utils import (
calculate_episode_data_index,
hf_transform_to_torch,
)
from lerobot.common.datasets.video_utils import VideoFrame, encode_video_frames

View File

@@ -24,11 +24,8 @@ from datasets import Dataset, Features, Image, Value
from PIL import Image as PILImage
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
from lerobot.common.datasets.push_dataset_to_hub.utils import (
calculate_episode_data_index,
concatenate_episodes,
)
from lerobot.common.datasets.utils import hf_transform_to_torch
from lerobot.common.datasets.push_dataset_to_hub.utils import concatenate_episodes
from lerobot.common.datasets.utils import calculate_episode_data_index, hf_transform_to_torch
from lerobot.common.datasets.video_utils import VideoFrame

View File

@@ -26,8 +26,8 @@ import torch
from datasets import Dataset, Features, Image, Sequence, Value
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
from lerobot.common.datasets.push_dataset_to_hub.utils import calculate_episode_data_index
from lerobot.common.datasets.utils import (
calculate_episode_data_index,
hf_transform_to_torch,
)
from lerobot.common.datasets.video_utils import VideoFrame

View File

@@ -0,0 +1,639 @@
OPENX_DATASET_CONFIGS:
fractal20220817_data:
image_obs_keys:
- image
depth_obs_keys:
- null
state_obs_keys:
- base_pose_tool_reached
- gripper_closed
fps: 3
kuka:
image_obs_keys:
- image
depth_obs_keys:
- null
state_obs_keys:
- clip_function_input/base_pose_tool_reached
- gripper_closed
fps: 10
bridge_openx:
image_obs_keys:
- image
depth_obs_keys:
- null
state_obs_keys:
- EEF_state
- gripper_state
fps: 5
taco_play:
image_obs_keys:
- rgb_static
- rgb_gripper
depth_obs_keys:
- depth_static
- depth_gripper
state_obs_keys:
- state_eef
- state_gripper
fps: 15
jaco_play:
image_obs_keys:
- image
- image_wrist
depth_obs_keys:
- null
state_obs_keys:
- state_eef
- state_gripper
fps: 10
berkeley_cable_routing:
image_obs_keys:
- image
- top_image
- wrist45_image
- wrist225_image
depth_obs_keys:
- null
state_obs_keys:
- robot_state
fps: 10
roboturk:
image_obs_keys:
- front_rgb
depth_obs_keys:
- null
state_obs_keys:
- null
fps: 10
nyu_door_opening_surprising_effectiveness:
image_obs_keys:
- image
depth_obs_keys:
- null
state_obs_keys:
- null
fps: 3
viola:
image_obs_keys:
- agentview_rgb
- eye_in_hand_rgb
depth_obs_keys:
- null
state_obs_keys:
- joint_states
- gripper_states
fps: 20
berkeley_autolab_ur5:
image_obs_keys:
- image
- hand_image
depth_obs_keys:
- image_with_depth
state_obs_keys:
- state
fps: 5
toto:
image_obs_keys:
- image
depth_obs_keys:
- null
state_obs_keys:
- state
fps: 30
language_table:
image_obs_keys:
- rgb
depth_obs_keys:
- null
state_obs_keys:
- effector_translation
fps: 10
columbia_cairlab_pusht_real:
image_obs_keys:
- image
- wrist_image
depth_obs_keys:
- null
state_obs_keys:
- robot_state
fps: 10
stanford_kuka_multimodal_dataset_converted_externally_to_rlds:
image_obs_keys:
- image
depth_obs_keys:
- depth_image
state_obs_keys:
- ee_position
- ee_orientation
fps: 20
nyu_rot_dataset_converted_externally_to_rlds:
image_obs_keys:
- image
depth_obs_keys:
- null
state_obs_keys:
- eef_state
- gripper_state
fps: 3
io_ai_tech:
image_obs_keys:
- image
- image_fisheye
- image_left_side
- image_right_side
depth_obs_keys:
- null
state_obs_keys:
- state
fps: 3
stanford_hydra_dataset_converted_externally_to_rlds:
image_obs_keys:
- image
- wrist_image
depth_obs_keys:
- null
state_obs_keys:
- eef_state
- gripper_state
fps: 10
austin_buds_dataset_converted_externally_to_rlds:
image_obs_keys:
- image
- wrist_image
depth_obs_keys:
- null
state_obs_keys:
- state
fps: 20
nyu_franka_play_dataset_converted_externally_to_rlds:
image_obs_keys:
- image
- image_additional_view
depth_obs_keys:
- depth
- depth_additional_view
state_obs_keys:
- eef_state
fps: 3
maniskill_dataset_converted_externally_to_rlds:
image_obs_keys:
- image
- wrist_image
depth_obs_keys:
- depth
- wrist_depth
state_obs_keys:
- tcp_pose
- gripper_state
fps: 20
furniture_bench_dataset_converted_externally_to_rlds:
image_obs_keys:
- image
- wrist_image
depth_obs_keys:
- null
state_obs_keys:
- state
fps: 10
cmu_franka_exploration_dataset_converted_externally_to_rlds:
image_obs_keys:
- highres_image
depth_obs_keys:
- null
state_obs_keys:
- null
fps: 10
ucsd_kitchen_dataset_converted_externally_to_rlds:
image_obs_keys:
- image
depth_obs_keys:
- null
state_obs_keys:
- joint_state
fps: 2
ucsd_pick_and_place_dataset_converted_externally_to_rlds:
image_obs_keys:
- image
depth_obs_keys:
- null
state_obs_keys:
- eef_state
- gripper_state
fps: 3
spoc:
image_obs_keys:
- image
- image_manipulation
depth_obs_keys:
- null
state_obs_keys:
- null
fps: 3
austin_sailor_dataset_converted_externally_to_rlds:
image_obs_keys:
- image
- wrist_image
depth_obs_keys:
- null
state_obs_keys:
- state
fps: 20
austin_sirius_dataset_converted_externally_to_rlds:
image_obs_keys:
- image
- wrist_image
depth_obs_keys:
- null
state_obs_keys:
- state
fps: 20
bc_z:
image_obs_keys:
- image
depth_obs_keys:
- null
state_obs_keys:
- present/xyz
- present/axis_angle
- present/sensed_close
fps: 10
utokyo_pr2_opening_fridge_converted_externally_to_rlds:
image_obs_keys:
- image
depth_obs_keys:
- null
state_obs_keys:
- eef_state
- gripper_state
fps: 10
utokyo_pr2_tabletop_manipulation_converted_externally_to_rlds:
image_obs_keys:
- image
depth_obs_keys:
- null
state_obs_keys:
- eef_state
- gripper_state
fps: 10
utokyo_xarm_pick_and_place_converted_externally_to_rlds:
image_obs_keys:
- image
- image2
- hand_image
depth_obs_keys:
- null
state_obs_keys:
- end_effector_pose
fps: 10
utokyo_xarm_bimanual_converted_externally_to_rlds:
image_obs_keys:
- image
depth_obs_keys:
- null
state_obs_keys:
- pose_r
fps: 10
robo_net:
image_obs_keys:
- image
- image1
depth_obs_keys:
- null
state_obs_keys:
- eef_state
- gripper_state
fps: 1
robo_set:
image_obs_keys:
- image_left
- image_right
- image_wrist
depth_obs_keys:
- null
state_obs_keys:
- state
- state_velocity
fps: 5
berkeley_mvp_converted_externally_to_rlds:
image_obs_keys:
- hand_image
depth_obs_keys:
- null
state_obs_keys:
- gripper
- pose
- joint_pos
fps: 5
berkeley_rpt_converted_externally_to_rlds:
image_obs_keys:
- hand_image
depth_obs_keys:
- null
state_obs_keys:
- joint_pos
- gripper
fps: 30
kaist_nonprehensile_converted_externally_to_rlds:
image_obs_keys:
- image
depth_obs_keys:
- null
state_obs_keys:
- state
fps: 10
stanford_mask_vit_converted_externally_to_rlds:
image_obs_keys:
- image
depth_obs_keys:
- null
state_obs_keys:
- eef_state
- gripper_state
tokyo_u_lsmo_converted_externally_to_rlds:
image_obs_keys:
- image
depth_obs_keys:
- null
state_obs_keys:
- eef_state
- gripper_state
fps: 10
dlr_sara_pour_converted_externally_to_rlds:
image_obs_keys:
- image
depth_obs_keys:
- null
state_obs_keys:
- state
fps: 10
dlr_sara_grid_clamp_converted_externally_to_rlds:
image_obs_keys:
- image
depth_obs_keys:
- null
state_obs_keys:
- state
fps: 10
dlr_edan_shared_control_converted_externally_to_rlds:
image_obs_keys:
- image
depth_obs_keys:
- null
state_obs_keys:
- state
fps: 5
asu_table_top_converted_externally_to_rlds:
image_obs_keys:
- image
depth_obs_keys:
- null
state_obs_keys:
- eef_state
- gripper_state
fps: 12.5
stanford_robocook_converted_externally_to_rlds:
image_obs_keys:
- image_1
- image_2
depth_obs_keys:
- depth_1
- depth_2
state_obs_keys:
- eef_state
- gripper_state
fps: 5
imperialcollege_sawyer_wrist_cam:
image_obs_keys:
- image
- wrist_image
depth_obs_keys:
- null
state_obs_keys:
- state
fps: 10
iamlab_cmu_pickup_insert_converted_externally_to_rlds:
image_obs_keys:
- image
- wrist_image
depth_obs_keys:
- null
state_obs_keys:
- joint_state
- gripper_state
fps: 20
uiuc_d3field:
image_obs_keys:
- image_1
- image_2
depth_obs_keys:
- depth_1
- depth_2
state_obs_keys:
- null
fps: 1
utaustin_mutex:
image_obs_keys:
- image
- wrist_image
depth_obs_keys:
- null
state_obs_keys:
- state
fps: 20
berkeley_fanuc_manipulation:
image_obs_keys:
- image
- wrist_image
depth_obs_keys:
- null
state_obs_keys:
- joint_state
- gripper_state
fps: 10
cmu_playing_with_food:
image_obs_keys:
- image
- finger_vision_1
depth_obs_keys:
- null
state_obs_keys:
- state
fps: 10
cmu_play_fusion:
image_obs_keys:
- image
depth_obs_keys:
- null
state_obs_keys:
- state
fps: 5
cmu_stretch:
image_obs_keys:
- image
depth_obs_keys:
- null
state_obs_keys:
- eef_state
- gripper_state
fps: 10
berkeley_gnm_recon:
image_obs_keys:
- image
depth_obs_keys:
- null
state_obs_keys:
- state
- position
- yaw
fps: 3
berkeley_gnm_cory_hall:
image_obs_keys:
- image
depth_obs_keys:
- null
state_obs_keys:
- state
- position
- yaw
fps: 5
berkeley_gnm_sac_son:
image_obs_keys:
- image
depth_obs_keys:
- null
state_obs_keys:
- state
- position
- yaw
fps: 10
droid:
image_obs_keys:
- exterior_image_1_left
- exterior_image_2_left
- wrist_image_left
depth_obs_keys:
- null
state_obs_keys:
- proprio
fps: 15
droid_100:
image_obs_keys:
- exterior_image_1_left
- exterior_image_2_left
- wrist_image_left
depth_obs_keys:
- null
state_obs_keys:
- proprio
fps: 15
fmb:
image_obs_keys:
- image_side_1
- image_side_2
- image_wrist_1
- image_wrist_2
depth_obs_keys:
- image_side_1_depth
- image_side_2_depth
- image_wrist_1_depth
- image_wrist_2_depth
state_obs_keys:
- proprio
fps: 10
dobbe:
image_obs_keys:
- wrist_image
depth_obs_keys:
- null
state_obs_keys:
- proprio
fps: 3.75
usc_cloth_sim_converted_externally_to_rlds:
image_obs_keys:
- image
depth_obs_keys:
- null
state_obs_keys:
- null
fps: 10
plex_robosuite:
image_obs_keys:
- image
- wrist_image
depth_obs_keys:
- null
state_obs_keys:
- state
fps: 20
conq_hose_manipulation:
image_obs_keys:
- frontleft_fisheye_image
- frontright_fisheye_image
- hand_color_image
depth_obs_keys:
- null
state_obs_keys:
- state
fps: 30

View File

@@ -0,0 +1,106 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the Licens e.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
NOTE(YL): Adapted from:
Octo: https://github.com/octo-models/octo/blob/main/octo/data/utils/data_utils.py
data_utils.py
Additional utils for data processing.
"""
from typing import Any, Dict, List
import tensorflow as tf
def binarize_gripper_actions(actions: tf.Tensor) -> tf.Tensor:
"""
Converts gripper actions from continuous to binary values (0 and 1).
We exploit that fact that most of the time, the gripper is fully open (near 1.0) or fully closed (near 0.0). As it
transitions between the two, it sometimes passes through a few intermediate values. We relabel those intermediate
values based on the state that is reached _after_ those intermediate values.
In the edge case that the trajectory ends with an intermediate value, we give up on binarizing and relabel that
chunk of intermediate values as the last action in the trajectory.
The `scan_fn` implements the following logic:
new_actions = np.empty_like(actions)
carry = actions[-1]
for i in reversed(range(actions.shape[0])):
if in_between_mask[i]:
carry = carry
else:
carry = float(open_mask[i])
new_actions[i] = carry
"""
open_mask, closed_mask = actions > 0.95, actions < 0.05
in_between_mask = tf.logical_not(tf.logical_or(open_mask, closed_mask))
is_open_float = tf.cast(open_mask, tf.float32)
def scan_fn(carry, i):
return tf.cond(in_between_mask[i], lambda: tf.cast(carry, tf.float32), lambda: is_open_float[i])
return tf.scan(scan_fn, tf.range(tf.shape(actions)[0]), actions[-1], reverse=True)
def invert_gripper_actions(actions: tf.Tensor) -> tf.Tensor:
return 1 - actions
def rel2abs_gripper_actions(actions: tf.Tensor) -> tf.Tensor:
"""
Converts relative gripper actions (+1 for closing, -1 for opening) to absolute actions (0 = closed; 1 = open).
Assumes that the first relative gripper is not redundant (i.e. close when already closed)!
"""
# Note =>> -1 for closing, 1 for opening, 0 for no change
opening_mask, closing_mask = actions < -0.1, actions > 0.1
thresholded_actions = tf.where(opening_mask, 1, tf.where(closing_mask, -1, 0))
def scan_fn(carry, i):
return tf.cond(thresholded_actions[i] == 0, lambda: carry, lambda: thresholded_actions[i])
# If no relative grasp, assumes open for whole trajectory
start = -1 * thresholded_actions[tf.argmax(thresholded_actions != 0, axis=0)]
start = tf.cond(start == 0, lambda: 1, lambda: start)
# Note =>> -1 for closed, 1 for open
new_actions = tf.scan(scan_fn, tf.range(tf.shape(actions)[0]), start)
new_actions = tf.cast(new_actions, tf.float32) / 2 + 0.5
return new_actions
# === Bridge-V2 =>> Dataset-Specific Transform ===
def relabel_bridge_actions(traj: Dict[str, Any]) -> Dict[str, Any]:
"""Relabels actions to use reached proprioceptive state; discards last timestep (no-action)."""
movement_actions = traj["observation"]["state"][1:, :6] - traj["observation"]["state"][:-1, :6]
traj_truncated = tf.nest.map_structure(lambda x: x[:-1], traj)
traj_truncated["action"] = tf.concat([movement_actions, traj["action"][:-1, -1:]], axis=1)
return traj_truncated
# === RLDS Dataset Initialization Utilities ===
def pprint_data_mixture(dataset_kwargs_list: List[Dict[str, Any]], dataset_weights: List[int]) -> None:
print("\n######################################################################################")
print(f"# Loading the following {len(dataset_kwargs_list)} datasets (incl. sampling weight):{'': >24} #")
for dataset_kwargs, weight in zip(dataset_kwargs_list, dataset_weights, strict=False):
pad = 80 - len(dataset_kwargs["name"])
print(f"# {dataset_kwargs['name']}: {weight:=>{pad}f} #")
print("######################################################################################\n")

View File

@@ -0,0 +1,200 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
NOTE(YL): Adapted from:
OpenVLA: https://github.com/openvla/openvla
Episode transforms for DROID dataset.
"""
from typing import Any, Dict
import tensorflow as tf
import tensorflow_graphics.geometry.transformation as tfg
def rmat_to_euler(rot_mat):
return tfg.euler.from_rotation_matrix(rot_mat)
def euler_to_rmat(euler):
return tfg.rotation_matrix_3d.from_euler(euler)
def invert_rmat(rot_mat):
return tfg.rotation_matrix_3d.inverse(rot_mat)
def rotmat_to_rot6d(mat):
"""
Converts rotation matrix to R6 rotation representation (first two rows in rotation matrix).
Args:
mat: rotation matrix
Returns: 6d vector (first two rows of rotation matrix)
"""
r6 = mat[..., :2, :]
r6_0, r6_1 = r6[..., 0, :], r6[..., 1, :]
r6_flat = tf.concat([r6_0, r6_1], axis=-1)
return r6_flat
def velocity_act_to_wrist_frame(velocity, wrist_in_robot_frame):
"""
Translates velocity actions (translation + rotation) from base frame of the robot to wrist frame.
Args:
velocity: 6d velocity action (3 x translation, 3 x rotation)
wrist_in_robot_frame: 6d pose of the end-effector in robot base frame
Returns: 9d velocity action in robot wrist frame (3 x translation, 6 x rotation as R6)
"""
r_frame = euler_to_rmat(wrist_in_robot_frame[:, 3:6])
r_frame_inv = invert_rmat(r_frame)
# world to wrist: dT_pi = R^-1 dT_rbt
vel_t = (r_frame_inv @ velocity[:, :3][..., None])[..., 0]
# world to wrist: dR_pi = R^-1 dR_rbt R
dr_ = euler_to_rmat(velocity[:, 3:6])
dr_ = r_frame_inv @ (dr_ @ r_frame)
dr_r6 = rotmat_to_rot6d(dr_)
return tf.concat([vel_t, dr_r6], axis=-1)
def rand_swap_exterior_images(img1, img2):
"""
Randomly swaps the two exterior images (for training with single exterior input).
"""
return tf.cond(tf.random.uniform(shape=[]) > 0.5, lambda: (img1, img2), lambda: (img2, img1))
def droid_baseact_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
"""
DROID dataset transformation for actions expressed in *base* frame of the robot.
"""
dt = trajectory["action_dict"]["cartesian_velocity"][:, :3]
dr_ = trajectory["action_dict"]["cartesian_velocity"][:, 3:6]
trajectory["action"] = tf.concat(
(
dt,
dr_,
1 - trajectory["action_dict"]["gripper_position"],
),
axis=-1,
)
trajectory["observation"]["exterior_image_1_left"], trajectory["observation"]["exterior_image_2_left"] = (
rand_swap_exterior_images(
trajectory["observation"]["exterior_image_1_left"],
trajectory["observation"]["exterior_image_2_left"],
)
)
trajectory["observation"]["proprio"] = tf.concat(
(
trajectory["observation"]["cartesian_position"],
trajectory["observation"]["gripper_position"],
),
axis=-1,
)
return trajectory
def droid_wristact_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
"""
DROID dataset transformation for actions expressed in *wrist* frame of the robot.
"""
wrist_act = velocity_act_to_wrist_frame(
trajectory["action_dict"]["cartesian_velocity"], trajectory["observation"]["cartesian_position"]
)
trajectory["action"] = tf.concat(
(
wrist_act,
trajectory["action_dict"]["gripper_position"],
),
axis=-1,
)
trajectory["observation"]["exterior_image_1_left"], trajectory["observation"]["exterior_image_2_left"] = (
rand_swap_exterior_images(
trajectory["observation"]["exterior_image_1_left"],
trajectory["observation"]["exterior_image_2_left"],
)
)
trajectory["observation"]["proprio"] = tf.concat(
(
trajectory["observation"]["cartesian_position"],
trajectory["observation"]["gripper_position"],
),
axis=-1,
)
return trajectory
def droid_finetuning_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
"""
DROID dataset transformation for actions expressed in *base* frame of the robot.
"""
dt = trajectory["action_dict"]["cartesian_velocity"][:, :3]
dr_ = trajectory["action_dict"]["cartesian_velocity"][:, 3:6]
trajectory["action"] = tf.concat(
(
dt,
dr_,
1 - trajectory["action_dict"]["gripper_position"],
),
axis=-1,
)
trajectory["observation"]["proprio"] = tf.concat(
(
trajectory["observation"]["cartesian_position"],
trajectory["observation"]["gripper_position"],
),
axis=-1,
)
return trajectory
def zero_action_filter(traj: Dict) -> bool:
"""
Filters transitions whose actions are all-0 (only relative actions, no gripper action).
Note: this filter is applied *after* action normalization, so need to compare to "normalized 0".
"""
droid_q01 = tf.convert_to_tensor(
[
-0.7776297926902771,
-0.5803514122962952,
-0.5795090794563293,
-0.6464047729969025,
-0.7041108310222626,
-0.8895104378461838,
]
)
droid_q99 = tf.convert_to_tensor(
[
0.7597932070493698,
0.5726242214441299,
0.7351000607013702,
0.6705610305070877,
0.6464948207139969,
0.8897542208433151,
]
)
droid_norm_0_act = (
2 * (tf.zeros_like(traj["action"][:, :6]) - droid_q01) / (droid_q99 - droid_q01 + 1e-8) - 1
)
return tf.reduce_any(tf.math.abs(traj["action"][:, :6] - droid_norm_0_act) > 1e-5)

View File

@@ -0,0 +1,859 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
NOTE(YL): Adapted from:
OpenVLA: https://github.com/openvla/openvla
Octo: https://github.com/octo-models/octo
transforms.py
Defines a registry of per-dataset standardization transforms for each dataset in Open-X Embodiment.
Transforms adopt the following structure:
Input: Dictionary of *batched* features (i.e., has leading time dimension)
Output: Dictionary `step` =>> {
"observation": {
<image_keys, depth_image_keys>
State (in chosen state representation)
},
"action": Action (in chosen action representation),
"language_instruction": str
}
"""
from typing import Any, Dict
import tensorflow as tf
from lerobot.common.datasets.push_dataset_to_hub.openx.data_utils import (
binarize_gripper_actions,
invert_gripper_actions,
rel2abs_gripper_actions,
relabel_bridge_actions,
)
def droid_baseact_transform_fn():
from lerobot.common.datasets.push_dataset_to_hub.openx.droid_utils import droid_baseact_transform
return droid_baseact_transform
def bridge_openx_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
"""
Applies to version of Bridge V2 in Open X-Embodiment mixture.
Note =>> In original Bridge V2 dataset, the first timestep has an all-zero action, so we remove it!
"""
for key in trajectory:
if key == "traj_metadata":
continue
elif key in ["observation", "action"]:
for key2 in trajectory[key]:
trajectory[key][key2] = trajectory[key][key2][1:]
else:
trajectory[key] = trajectory[key][1:]
trajectory["action"] = tf.concat(
(
trajectory["action"]["world_vector"],
trajectory["action"]["rotation_delta"],
tf.cast(trajectory["action"]["open_gripper"][:, None], tf.float32),
),
axis=-1,
)
trajectory["language_instruction"] = trajectory["observation"]["natural_language_instruction"]
trajectory = relabel_bridge_actions(trajectory)
trajectory["observation"]["EEF_state"] = trajectory["observation"]["state"][:, :6]
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][:, -1:]
return trajectory
def bridge_orig_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
"""
Applies to original version of Bridge V2 from the official project website.
Note =>> In original Bridge V2 dataset, the first timestep has an all-zero action, so we remove it!
"""
for key in trajectory:
if key == "traj_metadata":
continue
elif key == "observation":
for key2 in trajectory[key]:
trajectory[key][key2] = trajectory[key][key2][1:]
else:
trajectory[key] = trajectory[key][1:]
trajectory["action"] = tf.concat(
[
trajectory["action"][:, :6],
binarize_gripper_actions(trajectory["action"][:, -1])[:, None],
],
axis=1,
)
trajectory = relabel_bridge_actions(trajectory)
trajectory["observation"]["EEF_state"] = trajectory["observation"]["state"][:, :6]
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][:, -1:]
return trajectory
def ppgm_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
trajectory["action"] = tf.concat(
[
trajectory["action"][:, :6],
binarize_gripper_actions(trajectory["action"][:, -1])[:, None],
],
axis=1,
)
trajectory["observation"]["EEF_state"] = trajectory["observation"]["cartesian_position"][:, :6]
trajectory["observation"]["gripper_state"] = trajectory["observation"]["gripper_position"][:, -1:]
return trajectory
def rt1_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
# make gripper action absolute action, +1 = open, 0 = close
gripper_action = trajectory["action"]["gripper_closedness_action"][:, 0]
gripper_action = rel2abs_gripper_actions(gripper_action)
trajectory["action"] = tf.concat(
(
trajectory["action"]["world_vector"],
trajectory["action"]["rotation_delta"],
gripper_action[:, None],
),
axis=-1,
)
trajectory["language_instruction"] = trajectory["observation"]["natural_language_instruction"]
return trajectory
def kuka_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
# make gripper action absolute action, +1 = open, 0 = close
gripper_action = trajectory["action"]["gripper_closedness_action"][:, 0]
gripper_action = rel2abs_gripper_actions(gripper_action)
trajectory["action"] = tf.concat(
(
trajectory["action"]["world_vector"],
trajectory["action"]["rotation_delta"],
gripper_action[:, None],
),
axis=-1,
)
# decode compressed state
eef_value = tf.io.decode_compressed(
trajectory["observation"]["clip_function_input/base_pose_tool_reached"],
compression_type="ZLIB",
)
eef_value = tf.io.decode_raw(eef_value, tf.float32)
trajectory["observation"]["clip_function_input/base_pose_tool_reached"] = tf.reshape(eef_value, (-1, 7))
gripper_value = tf.io.decode_compressed(
trajectory["observation"]["gripper_closed"], compression_type="ZLIB"
)
gripper_value = tf.io.decode_raw(gripper_value, tf.float32)
trajectory["observation"]["gripper_closed"] = tf.reshape(gripper_value, (-1, 1))
trajectory["language_instruction"] = trajectory["observation"]["natural_language_instruction"]
return trajectory
def taco_play_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
trajectory["observation"]["state_eef"] = trajectory["observation"]["robot_obs"][:, :6]
trajectory["observation"]["state_gripper"] = trajectory["observation"]["robot_obs"][:, 7:8]
trajectory["action"] = trajectory["action"]["rel_actions_world"]
# invert gripper action + clip, +1 = open, 0 = close
trajectory["action"] = tf.concat(
(
trajectory["action"][:, :6],
tf.clip_by_value(trajectory["action"][:, -1:], 0, 1),
),
axis=-1,
)
trajectory["language_instruction"] = trajectory["observation"]["natural_language_instruction"]
return trajectory
def jaco_play_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
trajectory["observation"]["state_eef"] = trajectory["observation"]["end_effector_cartesian_pos"][:, :6]
trajectory["observation"]["state_gripper"] = trajectory["observation"]["end_effector_cartesian_pos"][
:, -1:
]
# make gripper action absolute action, +1 = open, 0 = close
gripper_action = trajectory["action"]["gripper_closedness_action"][:, 0]
gripper_action = rel2abs_gripper_actions(gripper_action)
trajectory["action"] = tf.concat(
(
trajectory["action"]["world_vector"],
tf.zeros_like(trajectory["action"]["world_vector"]),
gripper_action[:, None],
),
axis=-1,
)
trajectory["language_instruction"] = trajectory["observation"]["natural_language_instruction"]
return trajectory
def berkeley_cable_routing_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
trajectory["action"] = tf.concat(
(
trajectory["action"]["world_vector"],
trajectory["action"]["rotation_delta"],
tf.zeros_like(trajectory["action"]["world_vector"][:, :1]),
),
axis=-1,
)
trajectory["language_instruction"] = trajectory["observation"]["natural_language_instruction"]
return trajectory
def roboturk_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
# invert absolute gripper action, +1 = open, 0 = close
gripper_action = invert_gripper_actions(
tf.clip_by_value(trajectory["action"]["gripper_closedness_action"], 0, 1)
)
trajectory["action"] = tf.concat(
(
trajectory["action"]["world_vector"],
trajectory["action"]["rotation_delta"],
gripper_action,
),
axis=-1,
)
trajectory["language_instruction"] = trajectory["observation"]["natural_language_instruction"]
trajectory["language_embedding"] = trajectory["observation"]["natural_language_embedding"]
return trajectory
def nyu_door_opening_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
# make gripper action absolute action, +1 = open, 0 = close
gripper_action = trajectory["action"]["gripper_closedness_action"][:, 0]
gripper_action = rel2abs_gripper_actions(gripper_action)
trajectory["action"] = tf.concat(
(
trajectory["action"]["world_vector"],
trajectory["action"]["rotation_delta"],
gripper_action[:, None],
),
axis=-1,
)
trajectory["language_instruction"] = trajectory["observation"]["natural_language_instruction"]
return trajectory
def viola_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
# make gripper action, +1 = open, 0 = close
gripper_action = trajectory["action"]["gripper_closedness_action"][:, None]
gripper_action = tf.clip_by_value(gripper_action, 0, 1)
gripper_action = invert_gripper_actions(gripper_action)
trajectory["action"] = tf.concat(
(
trajectory["action"]["world_vector"],
trajectory["action"]["rotation_delta"],
gripper_action,
),
axis=-1,
)
trajectory["language_instruction"] = trajectory["observation"]["natural_language_instruction"]
return trajectory
def berkeley_autolab_ur5_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
trajectory["observation"]["state"] = trajectory["observation"]["robot_state"][:, 6:14]
# make gripper action absolute action, +1 = open, 0 = close
gripper_action = trajectory["action"]["gripper_closedness_action"]
gripper_action = rel2abs_gripper_actions(gripper_action)
trajectory["action"] = tf.concat(
(
trajectory["action"]["world_vector"],
trajectory["action"]["rotation_delta"],
gripper_action[:, None],
),
axis=-1,
)
trajectory["language_instruction"] = trajectory["observation"]["natural_language_instruction"]
return trajectory
def toto_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
trajectory["action"] = tf.concat(
(
trajectory["action"]["world_vector"],
trajectory["action"]["rotation_delta"],
tf.cast(trajectory["action"]["open_gripper"][:, None], tf.float32),
),
axis=-1,
)
trajectory["language_instruction"] = trajectory["observation"]["natural_language_instruction"]
return trajectory
def language_table_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
# default to "open" gripper
trajectory["action"] = tf.concat(
(
trajectory["action"],
tf.zeros_like(trajectory["action"]),
tf.zeros_like(trajectory["action"]),
tf.ones_like(trajectory["action"][:, :1]),
),
axis=-1,
)
# decode language instruction
instruction_bytes = trajectory["observation"]["instruction"]
instruction_encoded = tf.strings.unicode_encode(instruction_bytes, output_encoding="UTF-8")
# Remove trailing padding --> convert RaggedTensor to regular Tensor.
trajectory["language_instruction"] = tf.strings.split(instruction_encoded, "\x00")[:, :1].to_tensor()[
:, 0
]
return trajectory
def pusht_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
trajectory["action"] = tf.concat(
(
trajectory["action"]["world_vector"],
trajectory["action"]["rotation_delta"],
trajectory["action"]["gripper_closedness_action"][:, None],
),
axis=-1,
)
trajectory["language_instruction"] = trajectory["observation"]["natural_language_instruction"]
return trajectory
def stanford_kuka_multimodal_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
trajectory["observation"]["depth_image"] = trajectory["observation"]["depth_image"][..., 0]
trajectory["action"] = tf.concat(
(
trajectory["action"][:, :3],
tf.zeros_like(trajectory["action"][:, :3]),
trajectory["action"][:, -1:],
),
axis=-1,
)
return trajectory
def nyu_rot_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
trajectory["observation"]["eef_state"] = trajectory["observation"]["state"][..., :6]
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][..., -1:]
trajectory["action"] = trajectory["action"][..., :7]
return trajectory
def stanford_hydra_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
# invert gripper action, +1 = open, 0 = close
trajectory["action"] = tf.concat(
(
trajectory["action"][:, :6],
invert_gripper_actions(trajectory["action"][:, -1:]),
),
axis=-1,
)
trajectory["observation"]["eef_state"] = tf.concat(
(
trajectory["observation"]["state"][:, :3],
trajectory["observation"]["state"][:, 7:10],
),
axis=-1,
)
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][:, -3:-2]
return trajectory
def austin_buds_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
# invert gripper action + clip, +1 = open, 0 = close
trajectory["action"] = tf.concat(
(
trajectory["action"][:, :6],
invert_gripper_actions(tf.clip_by_value(trajectory["action"][:, -1:], 0, 1)),
),
axis=-1,
)
trajectory["observation"]["state"] = trajectory["observation"]["state"][:, :8]
return trajectory
def nyu_franka_play_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
trajectory["observation"]["depth"] = tf.cast(trajectory["observation"]["depth"][..., 0], tf.float32)
trajectory["observation"]["depth_additional_view"] = tf.cast(
trajectory["observation"]["depth_additional_view"][..., 0], tf.float32
)
trajectory["observation"]["eef_state"] = trajectory["observation"]["state"][:, -6:]
# clip gripper action, +1 = open, 0 = close
trajectory["action"] = tf.concat(
(
trajectory["action"][:, -8:-2],
tf.clip_by_value(trajectory["action"][:, -2:-1], 0, 1),
),
axis=-1,
)
return trajectory
def maniskill_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][..., 7:8]
return trajectory
def furniture_bench_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
import tensorflow_graphics.geometry.transformation as tft
trajectory["observation"]["state"] = tf.concat(
(
trajectory["observation"]["state"][:, :7],
trajectory["observation"]["state"][:, -1:],
),
axis=-1,
)
# invert gripper action + clip, +1 = open, 0 = close
trajectory["action"] = tf.concat(
(
trajectory["action"][:, :3],
tft.euler.from_quaternion(trajectory["action"][:, 3:7]),
invert_gripper_actions(tf.clip_by_value(trajectory["action"][:, -1:], 0, 1)),
),
axis=-1,
)
return trajectory
def cmu_franka_exploration_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
trajectory["action"] = trajectory["action"][..., :-1]
return trajectory
def ucsd_kitchen_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
trajectory["observation"]["joint_state"] = trajectory["observation"]["state"][:, :7]
trajectory["action"] = trajectory["action"][..., :-1]
return trajectory
def ucsd_pick_place_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
trajectory["observation"]["eef_state"] = trajectory["observation"]["state"][:, :6]
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][:, -1:]
trajectory["action"] = tf.concat(
(
trajectory["action"][:, :3],
tf.zeros_like(trajectory["action"][:, :3]),
trajectory["action"][:, -1:],
),
axis=-1,
)
return trajectory
def austin_sailor_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
# invert gripper action + clip, +1 = open, 0 = close
trajectory["action"] = tf.concat(
(
trajectory["action"][:, :6],
invert_gripper_actions(tf.clip_by_value(trajectory["action"][:, -1:], 0, 1)),
),
axis=-1,
)
return trajectory
def austin_sirius_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
# invert gripper action + clip, +1 = open, 0 = close
trajectory["action"] = tf.concat(
(
trajectory["action"][:, :6],
invert_gripper_actions(tf.clip_by_value(trajectory["action"][:, -1:], 0, 1)),
),
axis=-1,
)
return trajectory
def bc_z_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
trajectory["action"] = tf.concat(
(
trajectory["action"]["future/xyz_residual"][:, :3],
trajectory["action"]["future/axis_angle_residual"][:, :3],
invert_gripper_actions(tf.cast(trajectory["action"]["future/target_close"][:, :1], tf.float32)),
),
axis=-1,
)
trajectory["language_instruction"] = trajectory["observation"]["natural_language_instruction"]
return trajectory
def tokyo_pr2_opening_fridge_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
trajectory["observation"]["eef_state"] = trajectory["observation"]["state"][:, :6]
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][:, -1:]
trajectory["action"] = trajectory["action"][..., :-1]
return trajectory
def tokyo_pr2_tabletop_manipulation_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
trajectory["observation"]["eef_state"] = trajectory["observation"]["state"][:, :6]
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][:, -1:]
trajectory["action"] = trajectory["action"][..., :-1]
return trajectory
def utokyo_xarm_bimanual_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
trajectory["action"] = trajectory["action"][..., -7:]
return trajectory
def robo_net_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
trajectory["observation"]["eef_state"] = tf.concat(
(
trajectory["observation"]["state"][:, :4],
tf.zeros_like(trajectory["observation"]["state"][:, :2]),
),
axis=-1,
)
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][:, -1:]
trajectory["action"] = tf.concat(
(
trajectory["action"][:, :4],
tf.zeros_like(trajectory["action"][:, :2]),
trajectory["action"][:, -1:],
),
axis=-1,
)
return trajectory
def berkeley_mvp_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
"""
trajectory["observation"]["state"] = tf.concat((
tf.cast(trajectory["observation"]["gripper"][:, None], tf.float32),
trajectory["observation"]["pose"],
trajectory["observation"]["joint_pos"],),
axis=-1,)
"""
trajectory["observation"]["gripper"] = tf.cast(trajectory["observation"]["gripper"][:, None], tf.float32)
return trajectory
def berkeley_rpt_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
trajectory["observation"]["gripper"] = tf.cast(trajectory["observation"]["gripper"][:, None], tf.float32)
return trajectory
def kaist_nonprehensible_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
trajectory["observation"]["state"] = trajectory["observation"]["state"][:, -7:]
trajectory["action"] = tf.concat(
(
trajectory["action"][:, :6],
tf.zeros_like(trajectory["action"][:, :1]),
),
axis=-1,
)
return trajectory
def stanford_mask_vit_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
trajectory["observation"]["eef_state"] = tf.concat(
(
trajectory["observation"]["end_effector_pose"][:, :4],
tf.zeros_like(trajectory["observation"]["end_effector_pose"][:, :2]),
),
axis=-1,
)
trajectory["observation"]["gripper_state"] = trajectory["observation"]["end_effector_pose"][:, -1:]
trajectory["action"] = tf.concat(
(
trajectory["action"][:, :4],
tf.zeros_like(trajectory["action"][:, :2]),
trajectory["action"][:, -1:],
),
axis=-1,
)
return trajectory
def tokyo_lsmo_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
trajectory["observation"]["eef_state"] = trajectory["observation"]["state"][:, :6]
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][:, -1:]
return trajectory
def dlr_sara_grid_clamp_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
trajectory["observation"]["state"] = trajectory["observation"]["state"][:, :6]
return trajectory
def dlr_edan_shared_control_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
# invert gripper action, +1 = open, 0 = close
trajectory["action"] = tf.concat(
(
trajectory["action"][:, :6],
invert_gripper_actions(trajectory["action"][:, -1:]),
),
axis=-1,
)
return trajectory
def asu_table_top_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
trajectory["observation"]["eef_state"] = trajectory["ground_truth_states"]["EE"]
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][:, -1:]
return trajectory
def robocook_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
trajectory["observation"]["eef_state"] = trajectory["observation"]["state"][:, :6]
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][:, -1:]
return trajectory
def imperial_wristcam_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
trajectory["action"] = trajectory["action"][..., :-1]
return trajectory
def iamlab_pick_insert_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
import tensorflow_graphics.geometry.transformation as tft
trajectory["observation"]["joint_state"] = trajectory["observation"]["state"][:, :7]
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][:, 7:8]
trajectory["action"] = tf.concat(
(
trajectory["action"][:, :3],
tft.euler.from_quaternion(trajectory["action"][:, 3:7]),
trajectory["action"][:, 7:8],
),
axis=-1,
)
return trajectory
def uiuc_d3field_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
trajectory["action"] = tf.concat(
(
trajectory["action"],
tf.zeros_like(trajectory["action"]),
tf.zeros_like(trajectory["action"][:, :1]),
),
axis=-1,
)
return trajectory
def utaustin_mutex_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
trajectory["observation"]["state"] = trajectory["observation"]["state"][:, :8]
# invert gripper action + clip, +1 = open, 0 = close
trajectory["action"] = tf.concat(
(
trajectory["action"][:, :6],
invert_gripper_actions(tf.clip_by_value(trajectory["action"][:, -1:], 0, 1)),
),
axis=-1,
)
return trajectory
def berkeley_fanuc_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
trajectory["observation"]["joint_state"] = trajectory["observation"]["state"][:, :6]
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][:, 6:7]
# dataset does not store gripper actions, so use gripper state info, invert so +1 = open, 0 = close
trajectory["action"] = tf.concat(
(
trajectory["action"],
invert_gripper_actions(trajectory["observation"]["gripper_state"]),
),
axis=-1,
)
return trajectory
def cmu_playing_with_food_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
import tensorflow_graphics.geometry.transformation as tft
trajectory["action"] = tf.concat(
(
trajectory["action"][:, :3],
tft.euler.from_quaternion(trajectory["action"][:, 3:7]),
trajectory["action"][:, -1:],
),
axis=-1,
)
return trajectory
def playfusion_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
trajectory["action"] = tf.concat(
(
trajectory["action"][:, :3],
trajectory["action"][:, -4:],
),
axis=-1,
)
return trajectory
def cmu_stretch_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
trajectory["observation"]["eef_state"] = tf.concat(
(
trajectory["observation"]["state"][:, :3],
tf.zeros_like(trajectory["observation"]["state"][:, :3]),
),
axis=-1,
)
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][:, -1:]
trajectory["action"] = trajectory["action"][..., :-1]
return trajectory
def gnm_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
trajectory["observation"]["state"] = tf.concat(
(
trajectory["observation"]["position"],
tf.zeros_like(trajectory["observation"]["state"][:, :3]),
trajectory["observation"]["yaw"],
),
axis=-1,
)
trajectory["action"] = tf.concat(
(
trajectory["action"],
tf.zeros_like(trajectory["action"]),
tf.zeros_like(trajectory["action"]),
tf.zeros_like(trajectory["action"][:, :1]),
),
axis=-1,
)
return trajectory
def fmb_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
# every input feature is batched, ie has leading batch dimension
trajectory["observation"]["proprio"] = tf.concat(
(
trajectory["observation"]["eef_pose"],
trajectory["observation"]["state_gripper_pose"][..., None],
),
axis=-1,
)
return trajectory
def dobbe_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
# every input feature is batched, ie has leading batch dimension
trajectory["observation"]["proprio"] = trajectory["observation"]["state"]
return trajectory
def robo_set_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
# gripper action is in -1...1 --> clip to 0...1, flip
gripper_action = trajectory["action"][:, -1:]
gripper_action = invert_gripper_actions(tf.clip_by_value(gripper_action, 0, 1))
trajectory["action"] = tf.concat(
(
trajectory["action"][:, :7],
gripper_action,
),
axis=-1,
)
return trajectory
def identity_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
return trajectory
# === Registry ===
OPENX_STANDARDIZATION_TRANSFORMS = {
"bridge_openx": bridge_openx_dataset_transform,
"bridge_orig": bridge_orig_dataset_transform,
"bridge_dataset": bridge_orig_dataset_transform,
"ppgm": ppgm_dataset_transform,
"ppgm_static": ppgm_dataset_transform,
"ppgm_wrist": ppgm_dataset_transform,
"fractal20220817_data": rt1_dataset_transform,
"kuka": kuka_dataset_transform,
"taco_play": taco_play_dataset_transform,
"jaco_play": jaco_play_dataset_transform,
"berkeley_cable_routing": berkeley_cable_routing_dataset_transform,
"roboturk": roboturk_dataset_transform,
"nyu_door_opening_surprising_effectiveness": nyu_door_opening_dataset_transform,
"viola": viola_dataset_transform,
"berkeley_autolab_ur5": berkeley_autolab_ur5_dataset_transform,
"toto": toto_dataset_transform,
"language_table": language_table_dataset_transform,
"columbia_cairlab_pusht_real": pusht_dataset_transform,
"stanford_kuka_multimodal_dataset_converted_externally_to_rlds": stanford_kuka_multimodal_dataset_transform,
"nyu_rot_dataset_converted_externally_to_rlds": nyu_rot_dataset_transform,
"stanford_hydra_dataset_converted_externally_to_rlds": stanford_hydra_dataset_transform,
"austin_buds_dataset_converted_externally_to_rlds": austin_buds_dataset_transform,
"nyu_franka_play_dataset_converted_externally_to_rlds": nyu_franka_play_dataset_transform,
"maniskill_dataset_converted_externally_to_rlds": maniskill_dataset_transform,
"furniture_bench_dataset_converted_externally_to_rlds": furniture_bench_dataset_transform,
"cmu_franka_exploration_dataset_converted_externally_to_rlds": cmu_franka_exploration_dataset_transform,
"ucsd_kitchen_dataset_converted_externally_to_rlds": ucsd_kitchen_dataset_transform,
"ucsd_pick_and_place_dataset_converted_externally_to_rlds": ucsd_pick_place_dataset_transform,
"austin_sailor_dataset_converted_externally_to_rlds": austin_sailor_dataset_transform,
"austin_sirius_dataset_converted_externally_to_rlds": austin_sirius_dataset_transform,
"bc_z": bc_z_dataset_transform,
"utokyo_pr2_opening_fridge_converted_externally_to_rlds": tokyo_pr2_opening_fridge_dataset_transform,
"utokyo_pr2_tabletop_manipulation_converted_externally_to_rlds": tokyo_pr2_tabletop_manipulation_dataset_transform,
"utokyo_xarm_pick_and_place_converted_externally_to_rlds": identity_transform,
"utokyo_xarm_bimanual_converted_externally_to_rlds": utokyo_xarm_bimanual_dataset_transform,
"robo_net": robo_net_dataset_transform,
"berkeley_mvp_converted_externally_to_rlds": berkeley_mvp_dataset_transform,
"berkeley_rpt_converted_externally_to_rlds": berkeley_rpt_dataset_transform,
"kaist_nonprehensile_converted_externally_to_rlds": kaist_nonprehensible_dataset_transform,
"stanford_mask_vit_converted_externally_to_rlds": stanford_mask_vit_dataset_transform,
"tokyo_u_lsmo_converted_externally_to_rlds": tokyo_lsmo_dataset_transform,
"dlr_sara_pour_converted_externally_to_rlds": identity_transform,
"dlr_sara_grid_clamp_converted_externally_to_rlds": dlr_sara_grid_clamp_dataset_transform,
"dlr_edan_shared_control_converted_externally_to_rlds": dlr_edan_shared_control_dataset_transform,
"asu_table_top_converted_externally_to_rlds": asu_table_top_dataset_transform,
"stanford_robocook_converted_externally_to_rlds": robocook_dataset_transform,
"imperialcollege_sawyer_wrist_cam": imperial_wristcam_dataset_transform,
"iamlab_cmu_pickup_insert_converted_externally_to_rlds": iamlab_pick_insert_dataset_transform,
"uiuc_d3field": uiuc_d3field_dataset_transform,
"utaustin_mutex": utaustin_mutex_dataset_transform,
"berkeley_fanuc_manipulation": berkeley_fanuc_dataset_transform,
"cmu_playing_with_food": cmu_playing_with_food_dataset_transform,
"cmu_play_fusion": playfusion_dataset_transform,
"cmu_stretch": cmu_stretch_dataset_transform,
"berkeley_gnm_recon": gnm_dataset_transform,
"berkeley_gnm_cory_hall": gnm_dataset_transform,
"berkeley_gnm_sac_son": gnm_dataset_transform,
"droid": droid_baseact_transform_fn(),
"droid_100": droid_baseact_transform_fn(), # first 100 episodes of droid
"fmb": fmb_transform,
"dobbe": dobbe_dataset_transform,
"robo_set": robo_set_dataset_transform,
"usc_cloth_sim_converted_externally_to_rlds": identity_transform,
"plex_robosuite": identity_transform,
"conq_hose_manipulation": identity_transform,
"io_ai_tech": identity_transform,
"spoc": identity_transform,
}

View File

@@ -14,16 +14,13 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""
For all datasets in the RLDS format.
For https://github.com/google-deepmind/open_x_embodiment (OPENX) datasets.
NOTE: You need to install tensorflow and tensorflow_datsets before running this script.
Example:
python lerobot/scripts/push_dataset_to_hub.py \
--raw-dir /path/to/data/bridge_dataset/1.0.0/ \
--repo-id your_hub/sampled_bridge_data_v2 \
--raw-format rlds \
--raw-dir /hdd/tensorflow_datasets/bridge_dataset/1.0.0/ \
--repo-id youliangtan/sampled_bridge_data_v2 \
--raw-format openx_rlds.bridge_orig \
--episodes 3 4 5 8 9
Exact dataset fps defined in openx/config.py, obtained from:
@@ -38,21 +35,28 @@ import tensorflow as tf
import tensorflow_datasets as tfds
import torch
import tqdm
import yaml
from datasets import Dataset, Features, Image, Sequence, Value
from PIL import Image as PILImage
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
from lerobot.common.datasets.push_dataset_to_hub.openx.transforms import OPENX_STANDARDIZATION_TRANSFORMS
from lerobot.common.datasets.push_dataset_to_hub.utils import (
calculate_episode_data_index,
concatenate_episodes,
get_default_encoding,
save_images_concurrently,
)
from lerobot.common.datasets.utils import (
calculate_episode_data_index,
hf_transform_to_torch,
)
from lerobot.common.datasets.video_utils import VideoFrame, encode_video_frames
with open("lerobot/common/datasets/push_dataset_to_hub/openx/configs.yaml") as f:
_openx_list = yaml.safe_load(f)
OPENX_DATASET_CONFIGS = _openx_list["OPENX_DATASET_CONFIGS"]
np.set_printoptions(precision=2)
@@ -104,6 +108,7 @@ def load_from_raw(
video: bool,
episodes: list[int] | None = None,
encoding: dict | None = None,
openx_dataset_name: str | None = None,
):
"""
Args:
@@ -131,17 +136,16 @@ def load_from_raw(
# we will apply the standardization transform if the dataset_name is provided
# if the dataset name is not provided and the goal is to convert any rlds formatted dataset
# search for 'image' keys in the observations
image_keys = []
state_keys = []
observation_info = dataset_info.features["steps"]["observation"]
for key in observation_info:
# check whether the key is for an image or a vector observation
if len(observation_info[key].shape) == 3:
# only adding uint8 images discards depth images
if observation_info[key].dtype == tf.uint8:
image_keys.append(key)
else:
state_keys.append(key)
if openx_dataset_name is not None:
print(" - applying standardization transform for dataset: ", openx_dataset_name)
assert openx_dataset_name in OPENX_STANDARDIZATION_TRANSFORMS
transform_fn = OPENX_STANDARDIZATION_TRANSFORMS[openx_dataset_name]
dataset = dataset.map(transform_fn)
image_keys = OPENX_DATASET_CONFIGS[openx_dataset_name]["image_obs_keys"]
else:
obs_keys = dataset_info.features["steps"]["observation"].keys()
image_keys = [key for key in obs_keys if "image" in key]
lang_key = "language_instruction" if "language_instruction" in dataset.element_spec else None
@@ -189,31 +193,50 @@ def load_from_raw(
num_frames = episode["action"].shape[0]
ep_dict = {}
for key in state_keys:
ep_dict[f"observation.{key}"] = tf_to_torch(episode["observation"][key])
###########################################################
# Handle the episodic data
ep_dict["action"] = tf_to_torch(episode["action"])
ep_dict["next.reward"] = tf_to_torch(episode["reward"]).float()
ep_dict["next.done"] = tf_to_torch(episode["is_last"])
ep_dict["is_terminal"] = tf_to_torch(episode["is_terminal"])
ep_dict["is_first"] = tf_to_torch(episode["is_first"])
ep_dict["discount"] = tf_to_torch(episode["discount"])
# last step of demonstration is considered done
done = torch.zeros(num_frames, dtype=torch.bool)
done[-1] = True
ep_dict = {}
langs = [] # TODO: might be located in "observation"
image_array_dict = {key: [] for key in image_keys}
# We will create the state observation tensor by stacking the state
# obs keys defined in the openx/configs.py
if openx_dataset_name is not None:
state_obs_keys = OPENX_DATASET_CONFIGS[openx_dataset_name]["state_obs_keys"]
# stack the state observations, if is None, pad with zeros
states = []
for key in state_obs_keys:
if key in episode["observation"]:
states.append(tf_to_torch(episode["observation"][key]))
else:
states.append(torch.zeros(num_frames, 1)) # pad with zeros
states = torch.cat(states, dim=1)
# assert states.shape == (num_frames, 8), f"states shape: {states.shape}"
else:
states = tf_to_torch(episode["observation"]["state"])
actions = tf_to_torch(episode["action"])
rewards = tf_to_torch(episode["reward"]).float()
# If lang_key is present, convert the entire tensor at once
if lang_key is not None:
ep_dict["language_instruction"] = [x.numpy().decode("utf-8") for x in episode[lang_key]]
ep_dict["timestamp"] = torch.arange(0, num_frames, 1) / fps
ep_dict["episode_index"] = torch.tensor([ep_idx] * num_frames)
ep_dict["frame_index"] = torch.arange(0, num_frames, 1)
image_array_dict = {key: [] for key in image_keys}
langs = [str(x) for x in episode[lang_key]]
for im_key in image_keys:
imgs = episode["observation"][im_key]
image_array_dict[im_key] = [tf_img_convert(img) for img in imgs]
# simple assertions
for item in [states, actions, rewards, done]:
assert len(item) == num_frames
###########################################################
# loop through all cameras
for im_key in image_keys:
img_key = f"observation.images.{im_key}"
@@ -239,6 +262,17 @@ def load_from_raw(
else:
ep_dict[img_key] = [PILImage.fromarray(x) for x in imgs_array]
if lang_key is not None:
ep_dict["language_instruction"] = langs
ep_dict["observation.state"] = states
ep_dict["action"] = actions
ep_dict["timestamp"] = torch.arange(0, num_frames, 1) / fps
ep_dict["episode_index"] = torch.tensor([ep_idx] * num_frames)
ep_dict["frame_index"] = torch.arange(0, num_frames, 1)
ep_dict["next.reward"] = rewards
ep_dict["next.done"] = done
path_ep_dict = tmp_ep_dicts_dir.joinpath(
"ep_dict_" + "0" * (10 - len(str(ep_idx))) + str(ep_idx) + ".pt"
)
@@ -256,28 +290,30 @@ def load_from_raw(
def to_hf_dataset(data_dict, video) -> Dataset:
features = {}
for key in data_dict:
# check if vector state obs
if key.startswith("observation.") and "observation.images." not in key:
features[key] = Sequence(length=data_dict[key].shape[1], feature=Value(dtype="float32", id=None))
# check if image obs
elif "observation.images." in key:
if video:
features[key] = VideoFrame()
else:
features[key] = Image()
keys = [key for key in data_dict if "observation.images." in key]
for key in keys:
if video:
features[key] = VideoFrame()
else:
features[key] = Image()
features["observation.state"] = Sequence(
length=data_dict["observation.state"].shape[1], feature=Value(dtype="float32", id=None)
)
if "observation.velocity" in data_dict:
features["observation.velocity"] = Sequence(
length=data_dict["observation.velocity"].shape[1], feature=Value(dtype="float32", id=None)
)
if "observation.effort" in data_dict:
features["observation.effort"] = Sequence(
length=data_dict["observation.effort"].shape[1], feature=Value(dtype="float32", id=None)
)
if "language_instruction" in data_dict:
features["language_instruction"] = Value(dtype="string", id=None)
features["action"] = Sequence(
length=data_dict["action"].shape[1], feature=Value(dtype="float32", id=None)
)
features["is_terminal"] = Value(dtype="bool", id=None)
features["is_first"] = Value(dtype="bool", id=None)
features["discount"] = Value(dtype="float32", id=None)
features["episode_index"] = Value(dtype="int64", id=None)
features["frame_index"] = Value(dtype="int64", id=None)
features["timestamp"] = Value(dtype="float32", id=None)
@@ -297,8 +333,19 @@ def from_raw_to_lerobot_format(
video: bool = True,
episodes: list[int] | None = None,
encoding: dict | None = None,
openx_dataset_name: str | None = None,
):
data_dict = load_from_raw(raw_dir, videos_dir, fps, video, episodes, encoding)
"""This is a test impl for rlds conversion"""
if openx_dataset_name is None:
# set a default rlds frame rate if the dataset is not from openx
fps = 30
elif "fps" not in OPENX_DATASET_CONFIGS[openx_dataset_name]:
raise ValueError(
"fps for this dataset is not specified in openx/configs.py yet," "means it is not yet tested"
)
fps = OPENX_DATASET_CONFIGS[openx_dataset_name]["fps"]
data_dict = load_from_raw(raw_dir, videos_dir, fps, video, episodes, encoding, openx_dataset_name)
hf_dataset = to_hf_dataset(data_dict, video)
episode_data_index = calculate_episode_data_index(hf_dataset)
info = {

View File

@@ -27,12 +27,12 @@ from PIL import Image as PILImage
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
from lerobot.common.datasets.push_dataset_to_hub.utils import (
calculate_episode_data_index,
concatenate_episodes,
get_default_encoding,
save_images_concurrently,
)
from lerobot.common.datasets.utils import (
calculate_episode_data_index,
hf_transform_to_torch,
)
from lerobot.common.datasets.video_utils import VideoFrame, encode_video_frames

View File

@@ -28,12 +28,12 @@ from PIL import Image as PILImage
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
from lerobot.common.datasets.push_dataset_to_hub._umi_imagecodecs_numcodecs import register_codecs
from lerobot.common.datasets.push_dataset_to_hub.utils import (
calculate_episode_data_index,
concatenate_episodes,
get_default_encoding,
save_images_concurrently,
)
from lerobot.common.datasets.utils import (
calculate_episode_data_index,
hf_transform_to_torch,
)
from lerobot.common.datasets.video_utils import VideoFrame, encode_video_frames

View File

@@ -16,9 +16,7 @@
import inspect
from concurrent.futures import ThreadPoolExecutor
from pathlib import Path
from typing import Dict
import datasets
import numpy
import PIL
import torch
@@ -74,58 +72,3 @@ def check_repo_id(repo_id: str) -> None:
f"""`repo_id` is expected to contain a community or user id `/` the name of the dataset
(e.g. 'lerobot/pusht'), but contains '{repo_id}'."""
)
# TODO(aliberts): remove
def calculate_episode_data_index(hf_dataset: datasets.Dataset) -> Dict[str, torch.Tensor]:
"""
Calculate episode data index for the provided HuggingFace Dataset. Relies on episode_index column of hf_dataset.
Parameters:
- hf_dataset (datasets.Dataset): A HuggingFace dataset containing the episode index.
Returns:
- episode_data_index: A dictionary containing the data index for each episode. The dictionary has two keys:
- "from": A tensor containing the starting index of each episode.
- "to": A tensor containing the ending index of each episode.
"""
episode_data_index = {"from": [], "to": []}
current_episode = None
"""
The episode_index is a list of integers, each representing the episode index of the corresponding example.
For instance, the following is a valid episode_index:
[0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2]
Below, we iterate through the episode_index and populate the episode_data_index dictionary with the starting and
ending index of each episode. For the episode_index above, the episode_data_index dictionary will look like this:
{
"from": [0, 3, 7],
"to": [3, 7, 12]
}
"""
if len(hf_dataset) == 0:
episode_data_index = {
"from": torch.tensor([]),
"to": torch.tensor([]),
}
return episode_data_index
for idx, episode_idx in enumerate(hf_dataset["episode_index"]):
if episode_idx != current_episode:
# We encountered a new episode, so we append its starting location to the "from" list
episode_data_index["from"].append(idx)
# If this is not the first episode, we append the ending location of the previous episode to the "to" list
if current_episode is not None:
episode_data_index["to"].append(idx)
# Let's keep track of the current episode index
current_episode = episode_idx
else:
# We are still in the same episode, so there is nothing for us to do here
pass
# We have reached the end of the dataset, so we append the ending location of the last episode to the "to" list
episode_data_index["to"].append(idx + 1)
for k in ["from", "to"]:
episode_data_index[k] = torch.tensor(episode_data_index[k])
return episode_data_index

View File

@@ -27,12 +27,12 @@ from PIL import Image as PILImage
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
from lerobot.common.datasets.push_dataset_to_hub.utils import (
calculate_episode_data_index,
concatenate_episodes,
get_default_encoding,
save_images_concurrently,
)
from lerobot.common.datasets.utils import (
calculate_episode_data_index,
hf_transform_to_torch,
)
from lerobot.common.datasets.video_utils import VideoFrame, encode_video_frames

View File

@@ -13,58 +13,31 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib.resources
import json
import logging
import textwrap
from itertools import accumulate
import re
import warnings
from functools import cache
from pathlib import Path
from pprint import pformat
from typing import Any
from typing import Dict
import datasets
import jsonlines
import numpy as np
import pyarrow.compute as pc
import torch
from datasets.table import embed_table_storage
from huggingface_hub import DatasetCard, DatasetCardData, HfApi
from datasets import load_dataset, load_from_disk
from huggingface_hub import DatasetCard, HfApi, hf_hub_download, snapshot_download
from PIL import Image as PILImage
from safetensors.torch import load_file
from torchvision import transforms
from lerobot.common.robot_devices.robots.utils import Robot
DEFAULT_CHUNK_SIZE = 1000 # Max number of episodes per chunk
INFO_PATH = "meta/info.json"
EPISODES_PATH = "meta/episodes.jsonl"
STATS_PATH = "meta/stats.json"
TASKS_PATH = "meta/tasks.jsonl"
DEFAULT_VIDEO_PATH = "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4"
DEFAULT_PARQUET_PATH = "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet"
DEFAULT_IMAGE_PATH = "images/{image_key}/episode_{episode_index:06d}/frame_{frame_index:06d}.png"
DATASET_CARD_TEMPLATE = """
---
# Metadata will go there
---
This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
## {}
This dataset was created using [🤗 LeRobot](https://github.com/huggingface/lerobot).
"""
DEFAULT_FEATURES = {
"timestamp": {"dtype": "float32", "shape": (1,), "names": None},
"frame_index": {"dtype": "int64", "shape": (1,), "names": None},
"episode_index": {"dtype": "int64", "shape": (1,), "names": None},
"index": {"dtype": "int64", "shape": (1,), "names": None},
"task_index": {"dtype": "int64", "shape": (1,), "names": None},
}
def flatten_dict(d: dict, parent_key: str = "", sep: str = "/") -> dict:
def flatten_dict(d, parent_key="", sep="/"):
"""Flatten a nested dictionary structure by collapsing nested keys into one key with a separator.
For example:
@@ -83,7 +56,7 @@ def flatten_dict(d: dict, parent_key: str = "", sep: str = "/") -> dict:
return dict(items)
def unflatten_dict(d: dict, sep: str = "/") -> dict:
def unflatten_dict(d, sep="/"):
outdict = {}
for key, value in d.items():
parts = key.split(sep)
@@ -96,82 +69,6 @@ def unflatten_dict(d: dict, sep: str = "/") -> dict:
return outdict
def serialize_dict(stats: dict[str, torch.Tensor | np.ndarray | dict]) -> dict:
serialized_dict = {key: value.tolist() for key, value in flatten_dict(stats).items()}
return unflatten_dict(serialized_dict)
def write_parquet(dataset: datasets.Dataset, fpath: Path) -> None:
# Embed image bytes into the table before saving to parquet
format = dataset.format
dataset = dataset.with_format("arrow")
dataset = dataset.map(embed_table_storage, batched=False)
dataset = dataset.with_format(**format)
dataset.to_parquet(fpath)
def load_json(fpath: Path) -> Any:
with open(fpath) as f:
return json.load(f)
def write_json(data: dict, fpath: Path) -> None:
fpath.parent.mkdir(exist_ok=True, parents=True)
with open(fpath, "w") as f:
json.dump(data, f, indent=4, ensure_ascii=False)
def load_jsonlines(fpath: Path) -> list[Any]:
with jsonlines.open(fpath, "r") as reader:
return list(reader)
def write_jsonlines(data: dict, fpath: Path) -> None:
fpath.parent.mkdir(exist_ok=True, parents=True)
with jsonlines.open(fpath, "w") as writer:
writer.write_all(data)
def append_jsonlines(data: dict, fpath: Path) -> None:
fpath.parent.mkdir(exist_ok=True, parents=True)
with jsonlines.open(fpath, "a") as writer:
writer.write(data)
def load_info(local_dir: Path) -> dict:
info = load_json(local_dir / INFO_PATH)
for ft in info["features"].values():
ft["shape"] = tuple(ft["shape"])
return info
def load_stats(local_dir: Path) -> dict:
if not (local_dir / STATS_PATH).exists():
return None
stats = load_json(local_dir / STATS_PATH)
stats = {key: torch.tensor(value) for key, value in flatten_dict(stats).items()}
return unflatten_dict(stats)
def load_tasks(local_dir: Path) -> dict:
tasks = load_jsonlines(local_dir / TASKS_PATH)
return {item["task_index"]: item["task"] for item in sorted(tasks, key=lambda x: x["task_index"])}
def load_episodes(local_dir: Path) -> dict:
return load_jsonlines(local_dir / EPISODES_PATH)
def load_image_as_numpy(fpath: str | Path, dtype="float32", channel_first: bool = True) -> np.ndarray:
img = PILImage.open(fpath).convert("RGB")
img_array = np.array(img, dtype=dtype)
if channel_first: # (H, W, C) -> (C, H, W)
img_array = np.transpose(img_array, (2, 0, 1))
if "float" in dtype:
img_array /= 255.0
return img_array
def hf_transform_to_torch(items_dict: dict[torch.Tensor | None]):
"""Get a transform function that convert items from Hugging Face dataset (pyarrow)
to torch tensors. Importantly, images are converted from PIL, which corresponds to
@@ -183,6 +80,14 @@ def hf_transform_to_torch(items_dict: dict[torch.Tensor | None]):
if isinstance(first_item, PILImage.Image):
to_tensor = transforms.ToTensor()
items_dict[key] = [to_tensor(img) for img in items_dict[key]]
elif isinstance(first_item, str):
# TODO (michel-aractingi): add str2embedding via language tokenizer
# For now we leave this part up to the user to choose how to address
# language conditioned tasks
pass
elif isinstance(first_item, dict) and "path" in first_item and "timestamp" in first_item:
# video frame will be processed downstream
pass
elif first_item is None:
pass
else:
@@ -190,67 +95,19 @@ def hf_transform_to_torch(items_dict: dict[torch.Tensor | None]):
return items_dict
def _get_major_minor(version: str) -> tuple[int]:
split = version.strip("v").split(".")
return int(split[0]), int(split[1])
class BackwardCompatibilityError(Exception):
def __init__(self, repo_id, version):
message = textwrap.dedent(f"""
BackwardCompatibilityError: The dataset you requested ({repo_id}) is in {version} format.
We introduced a new format since v2.0 which is not backward compatible with v1.x.
Please, use our conversion script. Modify the following command with your own task description:
```
python lerobot/common/datasets/v2/convert_dataset_v1_to_v2.py \\
--repo-id {repo_id} \\
--single-task "TASK DESCRIPTION." # <---- /!\\ Replace TASK DESCRIPTION /!\\
```
A few examples to replace TASK DESCRIPTION: "Pick up the blue cube and place it into the bin.",
"Insert the peg into the socket.", "Slide open the ziploc bag.", "Take the elevator to the 1st floor.",
"Open the top cabinet, store the pot inside it then close the cabinet.", "Push the T-shaped block onto the T-shaped target.",
"Grab the spray paint on the shelf and place it in the bin on top of the robot dog.", "Fold the sweatshirt.", ...
If you encounter a problem, contact LeRobot maintainers on [Discord](https://discord.com/invite/s3KuuzsPFb)
or open an [issue on GitHub](https://github.com/huggingface/lerobot/issues/new/choose).
""")
super().__init__(message)
def check_version_compatibility(
repo_id: str, version_to_check: str, current_version: str, enforce_breaking_major: bool = True
) -> None:
current_major, _ = _get_major_minor(current_version)
major_to_check, _ = _get_major_minor(version_to_check)
if major_to_check < current_major and enforce_breaking_major:
raise BackwardCompatibilityError(repo_id, version_to_check)
elif float(version_to_check.strip("v")) < float(current_version.strip("v")):
logging.warning(
f"""The dataset you requested ({repo_id}) was created with a previous version ({version_to_check}) of the
codebase. The current codebase version is {current_version}. You should be fine since
backward compatibility is maintained. If you encounter a problem, contact LeRobot maintainers on
Discord ('https://discord.com/invite/s3KuuzsPFb') or open an issue on github.""",
)
def get_hub_safe_version(repo_id: str, version: str) -> str:
@cache
def get_hf_dataset_safe_version(repo_id: str, version: str) -> str:
api = HfApi()
dataset_info = api.list_repo_refs(repo_id, repo_type="dataset")
branches = [b.name for b in dataset_info.branches]
if version not in branches:
num_version = float(version.strip("v"))
hub_num_versions = [float(v.strip("v")) for v in branches if v.startswith("v")]
if num_version >= 2.0 and all(v < 2.0 for v in hub_num_versions):
raise BackwardCompatibilityError(repo_id, version)
logging.warning(
warnings.warn(
f"""You are trying to load a dataset from {repo_id} created with a previous version of the
codebase. The following versions are available: {branches}.
The requested version ('{version}') is not found. You should be fine since
backward compatibility is maintained. If you encounter a problem, contact LeRobot maintainers on
Discord ('https://discord.com/invite/s3KuuzsPFb') or open an issue on github.""",
stacklevel=1,
)
if "main" not in branches:
raise ValueError(f"Version 'main' not found on {repo_id}")
@@ -259,184 +116,275 @@ def get_hub_safe_version(repo_id: str, version: str) -> str:
return version
def get_hf_features_from_features(features: dict) -> datasets.Features:
hf_features = {}
for key, ft in features.items():
if ft["dtype"] == "video":
continue
elif ft["dtype"] == "image":
hf_features[key] = datasets.Image()
elif ft["shape"] == (1,):
hf_features[key] = datasets.Value(dtype=ft["dtype"])
else:
assert len(ft["shape"]) == 1
hf_features[key] = datasets.Sequence(
length=ft["shape"][0], feature=datasets.Value(dtype=ft["dtype"])
)
def load_hf_dataset(repo_id: str, version: str, root: Path, split: str) -> datasets.Dataset:
"""hf_dataset contains all the observations, states, actions, rewards, etc."""
if root is not None:
hf_dataset = load_from_disk(str(Path(root) / repo_id / "train"))
# TODO(rcadene): clean this which enables getting a subset of dataset
if split != "train":
if "%" in split:
raise NotImplementedError(f"We dont support splitting based on percentage for now ({split}).")
match_from = re.search(r"train\[(\d+):\]", split)
match_to = re.search(r"train\[:(\d+)\]", split)
if match_from:
from_frame_index = int(match_from.group(1))
hf_dataset = hf_dataset.select(range(from_frame_index, len(hf_dataset)))
elif match_to:
to_frame_index = int(match_to.group(1))
hf_dataset = hf_dataset.select(range(to_frame_index))
else:
raise ValueError(
f'`split` ({split}) should either be "train", "train[INT:]", or "train[:INT]"'
)
else:
safe_version = get_hf_dataset_safe_version(repo_id, version)
hf_dataset = load_dataset(repo_id, revision=safe_version, split=split)
return datasets.Features(hf_features)
hf_dataset.set_transform(hf_transform_to_torch)
return hf_dataset
def get_features_from_robot(robot: Robot, use_videos: bool = True) -> dict:
camera_ft = {}
if robot.cameras:
camera_ft = {
key: {"dtype": "video" if use_videos else "image", **ft}
for key, ft in robot.camera_features.items()
}
return {**robot.motor_features, **camera_ft, **DEFAULT_FEATURES}
def load_episode_data_index(repo_id, version, root) -> dict[str, torch.Tensor]:
"""episode_data_index contains the range of indices for each episode
Example:
```python
from_id = episode_data_index["from"][episode_id].item()
to_id = episode_data_index["to"][episode_id].item()
episode_frames = [dataset[i] for i in range(from_id, to_id)]
```
"""
if root is not None:
path = Path(root) / repo_id / "meta_data" / "episode_data_index.safetensors"
else:
safe_version = get_hf_dataset_safe_version(repo_id, version)
path = hf_hub_download(
repo_id, "meta_data/episode_data_index.safetensors", repo_type="dataset", revision=safe_version
)
return load_file(path)
def create_empty_dataset_info(
codebase_version: str,
fps: int,
robot_type: str,
features: dict,
use_videos: bool,
) -> dict:
return {
"codebase_version": codebase_version,
"robot_type": robot_type,
"total_episodes": 0,
"total_frames": 0,
"total_tasks": 0,
"total_videos": 0,
"total_chunks": 0,
"chunks_size": DEFAULT_CHUNK_SIZE,
"fps": fps,
"splits": {},
"data_path": DEFAULT_PARQUET_PATH,
"video_path": DEFAULT_VIDEO_PATH if use_videos else None,
"features": features,
}
def load_stats(repo_id, version, root) -> dict[str, dict[str, torch.Tensor]]:
"""stats contains the statistics per modality computed over the full dataset, such as max, min, mean, std
Example:
```python
normalized_action = (action - stats["action"]["mean"]) / stats["action"]["std"]
```
"""
if root is not None:
path = Path(root) / repo_id / "meta_data" / "stats.safetensors"
else:
safe_version = get_hf_dataset_safe_version(repo_id, version)
path = hf_hub_download(
repo_id, "meta_data/stats.safetensors", repo_type="dataset", revision=safe_version
)
stats = load_file(path)
return unflatten_dict(stats)
def get_episode_data_index(
episode_dicts: list[dict], episodes: list[int] | None = None
) -> dict[str, torch.Tensor]:
episode_lengths = {ep_idx: ep_dict["length"] for ep_idx, ep_dict in enumerate(episode_dicts)}
if episodes is not None:
episode_lengths = {ep_idx: episode_lengths[ep_idx] for ep_idx in episodes}
def load_info(repo_id, version, root) -> dict:
"""info contains useful information regarding the dataset that are not stored elsewhere
cumulative_lenghts = list(accumulate(episode_lengths.values()))
return {
"from": torch.LongTensor([0] + cumulative_lenghts[:-1]),
"to": torch.LongTensor(cumulative_lenghts),
}
Example:
```python
print("frame per second used to collect the video", info["fps"])
```
"""
if root is not None:
path = Path(root) / repo_id / "meta_data" / "info.json"
else:
safe_version = get_hf_dataset_safe_version(repo_id, version)
path = hf_hub_download(repo_id, "meta_data/info.json", repo_type="dataset", revision=safe_version)
with open(path) as f:
info = json.load(f)
return info
def calculate_total_episode(
hf_dataset: datasets.Dataset, raise_if_not_contiguous: bool = True
) -> dict[str, torch.Tensor]:
episode_indices = sorted(hf_dataset.unique("episode_index"))
total_episodes = len(episode_indices)
if raise_if_not_contiguous and episode_indices != list(range(total_episodes)):
raise ValueError("episode_index values are not sorted and contiguous.")
return total_episodes
def load_videos(repo_id, version, root) -> Path:
if root is not None:
path = Path(root) / repo_id / "videos"
else:
# TODO(rcadene): we download the whole repo here. see if we can avoid this
safe_version = get_hf_dataset_safe_version(repo_id, version)
repo_dir = snapshot_download(repo_id, repo_type="dataset", revision=safe_version)
path = Path(repo_dir) / "videos"
return path
def calculate_episode_data_index(hf_dataset: datasets.Dataset) -> dict[str, torch.Tensor]:
episode_lengths = []
table = hf_dataset.data.table
total_episodes = calculate_total_episode(hf_dataset)
for ep_idx in range(total_episodes):
ep_table = table.filter(pc.equal(table["episode_index"], ep_idx))
episode_lengths.insert(ep_idx, len(ep_table))
cumulative_lenghts = list(accumulate(episode_lengths))
return {
"from": torch.LongTensor([0] + cumulative_lenghts[:-1]),
"to": torch.LongTensor(cumulative_lenghts),
}
def check_timestamps_sync(
def load_previous_and_future_frames(
item: dict[str, torch.Tensor],
hf_dataset: datasets.Dataset,
episode_data_index: dict[str, torch.Tensor],
fps: int,
delta_timestamps: dict[str, list[float]],
tolerance_s: float,
raise_value_error: bool = True,
) -> bool:
) -> dict[torch.Tensor]:
"""
This check is to make sure that each timestamps is separated to the next by 1/fps +/- tolerance to
account for possible numerical error.
Given a current item in the dataset containing a timestamp (e.g. 0.6 seconds), and a list of time differences of
some modalities (e.g. delta_timestamps={"observation.image": [-0.8, -0.2, 0, 0.2]}), this function computes for each
given modality (e.g. "observation.image") a list of query timestamps (e.g. [-0.2, 0.4, 0.6, 0.8]) and loads the closest
frames in the dataset.
Importantly, when no frame can be found around a query timestamp within a specified tolerance window, this function
raises an AssertionError. When a timestamp is queried before the first available timestamp of the episode or after
the last available timestamp, the violation of the tolerance doesnt raise an AssertionError, and the function
populates a boolean array indicating which frames are outside of the episode range. For instance, this boolean array
is useful during batched training to not supervise actions associated to timestamps coming after the end of the
episode, or to pad the observations in a specific way. Note that by default the observation frames before the start
of the episode are the same as the first frame of the episode.
Parameters:
- item (dict): A dictionary containing all the data related to a frame. It is the result of `dataset[idx]`. Each key
corresponds to a different modality (e.g., "timestamp", "observation.image", "action").
- hf_dataset (datasets.Dataset): A dictionary containing the full dataset. Each key corresponds to a different
modality (e.g., "timestamp", "observation.image", "action").
- episode_data_index (dict): A dictionary containing two keys ("from" and "to") associated to dataset indices.
They indicate the start index and end index of each episode in the dataset.
- delta_timestamps (dict): A dictionary containing lists of delta timestamps for each possible modality to be
retrieved. These deltas are added to the item timestamp to form the query timestamps.
- tolerance_s (float, optional): The tolerance level (in seconds) used to determine if a data point is close enough to the query
timestamp by asserting `tol > difference`. It is suggested to set `tol` to a smaller value than the
smallest expected inter-frame period, but large enough to account for jitter.
Returns:
- The same item with the queried frames for each modality specified in delta_timestamps, with an additional key for
each modality (e.g. "observation.image_is_pad").
Raises:
- AssertionError: If any of the frames unexpectedly violate the tolerance level. This could indicate synchronization
issues with timestamps during data collection.
"""
timestamps = torch.stack(hf_dataset["timestamp"])
diffs = torch.diff(timestamps)
within_tolerance = torch.abs(diffs - 1 / fps) <= tolerance_s
# get indices of the frames associated to the episode, and their timestamps
ep_id = item["episode_index"].item()
ep_data_id_from = episode_data_index["from"][ep_id].item()
ep_data_id_to = episode_data_index["to"][ep_id].item()
ep_data_ids = torch.arange(ep_data_id_from, ep_data_id_to, 1)
# We mask differences between the timestamp at the end of an episode
# and the one at the start of the next episode since these are expected
# to be outside tolerance.
mask = torch.ones(len(diffs), dtype=torch.bool)
ignored_diffs = episode_data_index["to"][:-1] - 1
mask[ignored_diffs] = False
filtered_within_tolerance = within_tolerance[mask]
# load timestamps
ep_timestamps = hf_dataset.select_columns("timestamp")[ep_data_id_from:ep_data_id_to]["timestamp"]
ep_timestamps = torch.stack(ep_timestamps)
if not torch.all(filtered_within_tolerance):
# Track original indices before masking
original_indices = torch.arange(len(diffs))
filtered_indices = original_indices[mask]
outside_tolerance_filtered_indices = torch.nonzero(~filtered_within_tolerance) # .squeeze()
outside_tolerance_indices = filtered_indices[outside_tolerance_filtered_indices]
episode_indices = torch.stack(hf_dataset["episode_index"])
# we make the assumption that the timestamps are sorted
ep_first_ts = ep_timestamps[0]
ep_last_ts = ep_timestamps[-1]
current_ts = item["timestamp"].item()
outside_tolerances = []
for idx in outside_tolerance_indices:
entry = {
"timestamps": [timestamps[idx], timestamps[idx + 1]],
"diff": diffs[idx],
"episode_index": episode_indices[idx].item(),
}
outside_tolerances.append(entry)
for key in delta_timestamps:
# get timestamps used as query to retrieve data of previous/future frames
delta_ts = delta_timestamps[key]
query_ts = current_ts + torch.tensor(delta_ts)
if raise_value_error:
raise ValueError(
f"""One or several timestamps unexpectedly violate the tolerance inside episode range.
This might be due to synchronization issues with timestamps during data collection.
\n{pformat(outside_tolerances)}"""
)
return False
# compute distances between each query timestamp and all timestamps of all the frames belonging to the episode
dist = torch.cdist(query_ts[:, None], ep_timestamps[:, None], p=1)
min_, argmin_ = dist.min(1)
return True
# TODO(rcadene): synchronize timestamps + interpolation if needed
is_pad = min_ > tolerance_s
# check violated query timestamps are all outside the episode range
assert ((query_ts[is_pad] < ep_first_ts) | (ep_last_ts < query_ts[is_pad])).all(), (
f"One or several timestamps unexpectedly violate the tolerance ({min_} > {tolerance_s=}) inside episode range."
"This might be due to synchronization issues with timestamps during data collection."
)
# get dataset indices corresponding to frames to be loaded
data_ids = ep_data_ids[argmin_]
# load frames modality
item[key] = hf_dataset.select_columns(key)[data_ids][key]
if isinstance(item[key][0], dict) and "path" in item[key][0]:
# video mode where frame are expressed as dict of path and timestamp
item[key] = item[key]
else:
item[key] = torch.stack(item[key])
item[f"{key}_is_pad"] = is_pad
return item
def check_delta_timestamps(
delta_timestamps: dict[str, list[float]], fps: int, tolerance_s: float, raise_value_error: bool = True
) -> bool:
"""This will check if all the values in delta_timestamps are multiples of 1/fps +/- tolerance.
This is to ensure that these delta_timestamps added to any timestamp from a dataset will themselves be
actual timestamps from the dataset.
def calculate_episode_data_index(hf_dataset: datasets.Dataset) -> Dict[str, torch.Tensor]:
"""
outside_tolerance = {}
for key, delta_ts in delta_timestamps.items():
within_tolerance = [abs(ts * fps - round(ts * fps)) / fps <= tolerance_s for ts in delta_ts]
if not all(within_tolerance):
outside_tolerance[key] = [
ts for ts, is_within in zip(delta_ts, within_tolerance, strict=True) if not is_within
]
Calculate episode data index for the provided HuggingFace Dataset. Relies on episode_index column of hf_dataset.
if len(outside_tolerance) > 0:
if raise_value_error:
raise ValueError(
f"""
The following delta_timestamps are found outside of tolerance range.
Please make sure they are multiples of 1/{fps} +/- tolerance and adjust
their values accordingly.
\n{pformat(outside_tolerance)}
"""
)
return False
Parameters:
- hf_dataset (datasets.Dataset): A HuggingFace dataset containing the episode index.
return True
Returns:
- episode_data_index: A dictionary containing the data index for each episode. The dictionary has two keys:
- "from": A tensor containing the starting index of each episode.
- "to": A tensor containing the ending index of each episode.
"""
episode_data_index = {"from": [], "to": []}
current_episode = None
"""
The episode_index is a list of integers, each representing the episode index of the corresponding example.
For instance, the following is a valid episode_index:
[0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2]
Below, we iterate through the episode_index and populate the episode_data_index dictionary with the starting and
ending index of each episode. For the episode_index above, the episode_data_index dictionary will look like this:
{
"from": [0, 3, 7],
"to": [3, 7, 12]
}
"""
if len(hf_dataset) == 0:
episode_data_index = {
"from": torch.tensor([]),
"to": torch.tensor([]),
}
return episode_data_index
for idx, episode_idx in enumerate(hf_dataset["episode_index"]):
if episode_idx != current_episode:
# We encountered a new episode, so we append its starting location to the "from" list
episode_data_index["from"].append(idx)
# If this is not the first episode, we append the ending location of the previous episode to the "to" list
if current_episode is not None:
episode_data_index["to"].append(idx)
# Let's keep track of the current episode index
current_episode = episode_idx
else:
# We are still in the same episode, so there is nothing for us to do here
pass
# We have reached the end of the dataset, so we append the ending location of the last episode to the "to" list
episode_data_index["to"].append(idx + 1)
for k in ["from", "to"]:
episode_data_index[k] = torch.tensor(episode_data_index[k])
return episode_data_index
def get_delta_indices(delta_timestamps: dict[str, list[float]], fps: int) -> dict[str, list[int]]:
delta_indices = {}
for key, delta_ts in delta_timestamps.items():
delta_indices[key] = (torch.tensor(delta_ts) * fps).long().tolist()
def reset_episode_index(hf_dataset: datasets.Dataset) -> datasets.Dataset:
"""Reset the `episode_index` of the provided HuggingFace Dataset.
return delta_indices
`episode_data_index` (and related functionality such as `load_previous_and_future_frames`) requires the
`episode_index` to be sorted, continuous (1,1,1 and not 1,2,1) and start at 0.
This brings the `episode_index` to the required format.
"""
if len(hf_dataset) == 0:
return hf_dataset
unique_episode_idxs = torch.stack(hf_dataset["episode_index"]).unique().tolist()
episode_idx_to_reset_idx_mapping = {
ep_id: reset_ep_id for reset_ep_id, ep_id in enumerate(unique_episode_idxs)
}
def modify_ep_idx_func(example):
example["episode_index"] = episode_idx_to_reset_idx_mapping[example["episode_index"].item()]
return example
hf_dataset = hf_dataset.map(modify_ep_idx_func)
return hf_dataset
def cycle(iterable):
@@ -452,7 +400,7 @@ def cycle(iterable):
iterator = iter(iterable)
def create_branch(repo_id, *, branch: str, repo_type: str | None = None) -> None:
def create_branch(repo_id, *, branch: str, repo_type: str | None = None):
"""Create a branch on a existing Hugging Face repo. Delete the branch if it already
exists before creating it.
"""
@@ -467,38 +415,12 @@ def create_branch(repo_id, *, branch: str, repo_type: str | None = None) -> None
api.create_branch(repo_id, repo_type=repo_type, branch=branch)
def create_lerobot_dataset_card(
tags: list | None = None,
dataset_info: dict | None = None,
**kwargs,
) -> DatasetCard:
"""
Keyword arguments will be used to replace values in ./lerobot/common/datasets/card_template.md.
Note: If specified, license must be one of https://huggingface.co/docs/hub/repositories-licenses.
"""
card_tags = ["LeRobot"]
card_template_path = importlib.resources.path("lerobot.common.datasets", "card_template.md")
if tags:
card_tags += tags
if dataset_info:
dataset_structure = "[meta/info.json](meta/info.json):\n"
dataset_structure += f"```json\n{json.dumps(dataset_info, indent=4)}\n```\n"
kwargs = {**kwargs, "dataset_structure": dataset_structure}
card_data = DatasetCardData(
license=kwargs.get("license"),
tags=card_tags,
task_categories=["robotics"],
configs=[
{
"config_name": "default",
"data_files": "data/*/*.parquet",
}
],
)
return DatasetCard.from_template(
card_data=card_data,
template_path=str(card_template_path),
**kwargs,
)
def create_lerobot_dataset_card(tags: list | None = None, text: str | None = None) -> DatasetCard:
card = DatasetCard(DATASET_CARD_TEMPLATE)
card.data.task_categories = ["robotics"]
card.data.tags = ["LeRobot"]
if tags is not None:
card.data.tags += tags
if text is not None:
card.text += text
return card

View File

@@ -1,882 +0,0 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script is for internal use to convert all datasets under the 'lerobot' hub user account to v2.
Note: Since the original Aloha datasets don't use shadow motors, you need to comment those out in
lerobot/configs/robot/aloha.yaml before running this script.
"""
import traceback
from pathlib import Path
from textwrap import dedent
from lerobot import available_datasets
from lerobot.common.datasets.v2.convert_dataset_v1_to_v2 import convert_dataset, parse_robot_config
LOCAL_DIR = Path("data/")
ALOHA_CONFIG = Path("lerobot/configs/robot/aloha.yaml")
ALOHA_MOBILE_INFO = {
"robot_config": parse_robot_config(ALOHA_CONFIG),
"license": "mit",
"url": "https://mobile-aloha.github.io/",
"paper": "https://arxiv.org/abs/2401.02117",
"citation_bibtex": dedent(r"""
@inproceedings{fu2024mobile,
author = {Fu, Zipeng and Zhao, Tony Z. and Finn, Chelsea},
title = {Mobile ALOHA: Learning Bimanual Mobile Manipulation with Low-Cost Whole-Body Teleoperation},
booktitle = {arXiv},
year = {2024},
}""").lstrip(),
}
ALOHA_STATIC_INFO = {
"robot_config": parse_robot_config(ALOHA_CONFIG),
"license": "mit",
"url": "https://tonyzhaozh.github.io/aloha/",
"paper": "https://arxiv.org/abs/2304.13705",
"citation_bibtex": dedent(r"""
@article{Zhao2023LearningFB,
title={Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware},
author={Tony Zhao and Vikash Kumar and Sergey Levine and Chelsea Finn},
journal={RSS},
year={2023},
volume={abs/2304.13705},
url={https://arxiv.org/abs/2304.13705}
}""").lstrip(),
}
PUSHT_INFO = {
"license": "mit",
"url": "https://diffusion-policy.cs.columbia.edu/",
"paper": "https://arxiv.org/abs/2303.04137v5",
"citation_bibtex": dedent(r"""
@article{chi2024diffusionpolicy,
author = {Cheng Chi and Zhenjia Xu and Siyuan Feng and Eric Cousineau and Yilun Du and Benjamin Burchfiel and Russ Tedrake and Shuran Song},
title ={Diffusion Policy: Visuomotor Policy Learning via Action Diffusion},
journal = {The International Journal of Robotics Research},
year = {2024},
}""").lstrip(),
}
XARM_INFO = {
"license": "mit",
"url": "https://www.nicklashansen.com/td-mpc/",
"paper": "https://arxiv.org/abs/2203.04955",
"citation_bibtex": dedent(r"""
@inproceedings{Hansen2022tdmpc,
title={Temporal Difference Learning for Model Predictive Control},
author={Nicklas Hansen and Xiaolong Wang and Hao Su},
booktitle={ICML},
year={2022}
}
"""),
}
UNITREEH_INFO = {
"license": "apache-2.0",
}
DATASETS = {
"aloha_mobile_cabinet": {
"single_task": "Open the top cabinet, store the pot inside it then close the cabinet.",
**ALOHA_MOBILE_INFO,
},
"aloha_mobile_chair": {
"single_task": "Push the chairs in front of the desk to place them against it.",
**ALOHA_MOBILE_INFO,
},
"aloha_mobile_elevator": {
"single_task": "Take the elevator to the 1st floor.",
**ALOHA_MOBILE_INFO,
},
"aloha_mobile_shrimp": {
"single_task": "Sauté the raw shrimp on both sides, then serve it in the bowl.",
**ALOHA_MOBILE_INFO,
},
"aloha_mobile_wash_pan": {
"single_task": "Pick up the pan, rinse it in the sink and then place it in the drying rack.",
**ALOHA_MOBILE_INFO,
},
"aloha_mobile_wipe_wine": {
"single_task": "Pick up the wet cloth on the faucet and use it to clean the spilled wine on the table and underneath the glass.",
**ALOHA_MOBILE_INFO,
},
"aloha_static_battery": {
"single_task": "Place the battery into the slot of the remote controller.",
**ALOHA_STATIC_INFO,
},
"aloha_static_candy": {"single_task": "Pick up the candy and unwrap it.", **ALOHA_STATIC_INFO},
"aloha_static_coffee": {
"single_task": "Place the coffee capsule inside the capsule container, then place the cup onto the center of the cup tray, then push the 'Hot Water' and 'Travel Mug' buttons.",
**ALOHA_STATIC_INFO,
},
"aloha_static_coffee_new": {
"single_task": "Place the coffee capsule inside the capsule container, then place the cup onto the center of the cup tray.",
**ALOHA_STATIC_INFO,
},
"aloha_static_cups_open": {
"single_task": "Pick up the plastic cup and open its lid.",
**ALOHA_STATIC_INFO,
},
"aloha_static_fork_pick_up": {
"single_task": "Pick up the fork and place it on the plate.",
**ALOHA_STATIC_INFO,
},
"aloha_static_pingpong_test": {
"single_task": "Transfer one of the two balls in the right glass into the left glass, then transfer it back to the right glass.",
**ALOHA_STATIC_INFO,
},
"aloha_static_pro_pencil": {
"single_task": "Pick up the pencil with the right arm, hand it over to the left arm then place it back onto the table.",
**ALOHA_STATIC_INFO,
},
"aloha_static_screw_driver": {
"single_task": "Pick up the screwdriver with the right arm, hand it over to the left arm then place it into the cup.",
**ALOHA_STATIC_INFO,
},
"aloha_static_tape": {
"single_task": "Cut a small piece of tape from the tape dispenser then place it on the cardboard box's edge.",
**ALOHA_STATIC_INFO,
},
"aloha_static_thread_velcro": {
"single_task": "Pick up the velcro cable tie with the left arm, then insert the end of the velcro tie into the other end's loop with the right arm.",
**ALOHA_STATIC_INFO,
},
"aloha_static_towel": {
"single_task": "Pick up a piece of paper towel and place it on the spilled liquid.",
**ALOHA_STATIC_INFO,
},
"aloha_static_vinh_cup": {
"single_task": "Pick up the platic cup with the right arm, then pop its lid open with the left arm.",
**ALOHA_STATIC_INFO,
},
"aloha_static_vinh_cup_left": {
"single_task": "Pick up the platic cup with the left arm, then pop its lid open with the right arm.",
**ALOHA_STATIC_INFO,
},
"aloha_static_ziploc_slide": {"single_task": "Slide open the ziploc bag.", **ALOHA_STATIC_INFO},
"aloha_sim_insertion_scripted": {"single_task": "Insert the peg into the socket.", **ALOHA_STATIC_INFO},
"aloha_sim_insertion_scripted_image": {
"single_task": "Insert the peg into the socket.",
**ALOHA_STATIC_INFO,
},
"aloha_sim_insertion_human": {"single_task": "Insert the peg into the socket.", **ALOHA_STATIC_INFO},
"aloha_sim_insertion_human_image": {
"single_task": "Insert the peg into the socket.",
**ALOHA_STATIC_INFO,
},
"aloha_sim_transfer_cube_scripted": {
"single_task": "Pick up the cube with the right arm and transfer it to the left arm.",
**ALOHA_STATIC_INFO,
},
"aloha_sim_transfer_cube_scripted_image": {
"single_task": "Pick up the cube with the right arm and transfer it to the left arm.",
**ALOHA_STATIC_INFO,
},
"aloha_sim_transfer_cube_human": {
"single_task": "Pick up the cube with the right arm and transfer it to the left arm.",
**ALOHA_STATIC_INFO,
},
"aloha_sim_transfer_cube_human_image": {
"single_task": "Pick up the cube with the right arm and transfer it to the left arm.",
**ALOHA_STATIC_INFO,
},
"pusht": {"single_task": "Push the T-shaped block onto the T-shaped target.", **PUSHT_INFO},
"pusht_image": {"single_task": "Push the T-shaped block onto the T-shaped target.", **PUSHT_INFO},
"unitreeh1_fold_clothes": {"single_task": "Fold the sweatshirt.", **UNITREEH_INFO},
"unitreeh1_rearrange_objects": {"single_task": "Put the object into the bin.", **UNITREEH_INFO},
"unitreeh1_two_robot_greeting": {
"single_task": "Greet the other robot with a high five.",
**UNITREEH_INFO,
},
"unitreeh1_warehouse": {
"single_task": "Grab the spray paint on the shelf and place it in the bin on top of the robot dog.",
**UNITREEH_INFO,
},
"xarm_lift_medium": {"single_task": "Pick up the cube and lift it.", **XARM_INFO},
"xarm_lift_medium_image": {"single_task": "Pick up the cube and lift it.", **XARM_INFO},
"xarm_lift_medium_replay": {"single_task": "Pick up the cube and lift it.", **XARM_INFO},
"xarm_lift_medium_replay_image": {"single_task": "Pick up the cube and lift it.", **XARM_INFO},
"xarm_push_medium": {"single_task": "Push the cube onto the target.", **XARM_INFO},
"xarm_push_medium_image": {"single_task": "Push the cube onto the target.", **XARM_INFO},
"xarm_push_medium_replay": {"single_task": "Push the cube onto the target.", **XARM_INFO},
"xarm_push_medium_replay_image": {"single_task": "Push the cube onto the target.", **XARM_INFO},
"umi_cup_in_the_wild": {
"single_task": "Put the cup on the plate.",
"license": "apache-2.0",
},
"asu_table_top": {
"tasks_col": "language_instruction",
"license": "mit",
"paper": "https://link.springer.com/article/10.1007/s10514-023-10129-1",
"citation_bibtex": dedent(r"""
@inproceedings{zhou2023modularity,
title={Modularity through Attention: Efficient Training and Transfer of Language-Conditioned Policies for Robot Manipulation},
author={Zhou, Yifan and Sonawani, Shubham and Phielipp, Mariano and Stepputtis, Simon and Amor, Heni},
booktitle={Conference on Robot Learning},
pages={1684--1695},
year={2023},
organization={PMLR}
}
@article{zhou2023learning,
title={Learning modular language-conditioned robot policies through attention},
author={Zhou, Yifan and Sonawani, Shubham and Phielipp, Mariano and Ben Amor, Heni and Stepputtis, Simon},
journal={Autonomous Robots},
pages={1--21},
year={2023},
publisher={Springer}
}""").lstrip(),
},
"austin_buds_dataset": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://ut-austin-rpl.github.io/BUDS-website/",
"paper": "https://arxiv.org/abs/2109.13841",
"citation_bibtex": dedent(r"""
@article{zhu2022bottom,
title={Bottom-Up Skill Discovery From Unsegmented Demonstrations for Long-Horizon Robot Manipulation},
author={Zhu, Yifeng and Stone, Peter and Zhu, Yuke},
journal={IEEE Robotics and Automation Letters},
volume={7},
number={2},
pages={4126--4133},
year={2022},
publisher={IEEE}
}""").lstrip(),
},
"austin_sailor_dataset": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://ut-austin-rpl.github.io/sailor/",
"paper": "https://arxiv.org/abs/2210.11435",
"citation_bibtex": dedent(r"""
@inproceedings{nasiriany2022sailor,
title={Learning and Retrieval from Prior Data for Skill-based Imitation Learning},
author={Soroush Nasiriany and Tian Gao and Ajay Mandlekar and Yuke Zhu},
booktitle={Conference on Robot Learning (CoRL)},
year={2022}
}""").lstrip(),
},
"austin_sirius_dataset": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://ut-austin-rpl.github.io/sirius/",
"paper": "https://arxiv.org/abs/2211.08416",
"citation_bibtex": dedent(r"""
@inproceedings{liu2022robot,
title = {Robot Learning on the Job: Human-in-the-Loop Autonomy and Learning During Deployment},
author = {Huihan Liu and Soroush Nasiriany and Lance Zhang and Zhiyao Bao and Yuke Zhu},
booktitle = {Robotics: Science and Systems (RSS)},
year = {2023}
}""").lstrip(),
},
"berkeley_autolab_ur5": {
"tasks_col": "language_instruction",
"license": "cc-by-4.0",
"url": "https://sites.google.com/view/berkeley-ur5/home",
"citation_bibtex": dedent(r"""
@misc{BerkeleyUR5Website,
title = {Berkeley {UR5} Demonstration Dataset},
author = {Lawrence Yunliang Chen and Simeon Adebola and Ken Goldberg},
howpublished = {https://sites.google.com/view/berkeley-ur5/home},
}""").lstrip(),
},
"berkeley_cable_routing": {
"tasks_col": "language_instruction",
"license": "cc-by-4.0",
"url": "https://sites.google.com/view/cablerouting/home",
"paper": "https://arxiv.org/abs/2307.08927",
"citation_bibtex": dedent(r"""
@article{luo2023multistage,
author = {Jianlan Luo and Charles Xu and Xinyang Geng and Gilbert Feng and Kuan Fang and Liam Tan and Stefan Schaal and Sergey Levine},
title = {Multi-Stage Cable Routing through Hierarchical Imitation Learning},
journal = {arXiv pre-print},
year = {2023},
url = {https://arxiv.org/abs/2307.08927},
}""").lstrip(),
},
"berkeley_fanuc_manipulation": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://sites.google.com/berkeley.edu/fanuc-manipulation",
"citation_bibtex": dedent(r"""
@article{fanuc_manipulation2023,
title={Fanuc Manipulation: A Dataset for Learning-based Manipulation with FANUC Mate 200iD Robot},
author={Zhu, Xinghao and Tian, Ran and Xu, Chenfeng and Ding, Mingyu and Zhan, Wei and Tomizuka, Masayoshi},
year={2023},
}""").lstrip(),
},
"berkeley_gnm_cory_hall": {
"tasks_col": "language_instruction",
"license": "mit",
"paper": "https://arxiv.org/abs/1709.10489",
"citation_bibtex": dedent(r"""
@inproceedings{kahn2018self,
title={Self-supervised deep reinforcement learning with generalized computation graphs for robot navigation},
author={Kahn, Gregory and Villaflor, Adam and Ding, Bosen and Abbeel, Pieter and Levine, Sergey},
booktitle={2018 IEEE international conference on robotics and automation (ICRA)},
pages={5129--5136},
year={2018},
organization={IEEE}
}""").lstrip(),
},
"berkeley_gnm_recon": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://sites.google.com/view/recon-robot",
"paper": "https://arxiv.org/abs/2104.05859",
"citation_bibtex": dedent(r"""
@inproceedings{shah2021rapid,
title={Rapid Exploration for Open-World Navigation with Latent Goal Models},
author={Dhruv Shah and Benjamin Eysenbach and Nicholas Rhinehart and Sergey Levine},
booktitle={5th Annual Conference on Robot Learning },
year={2021},
url={https://openreview.net/forum?id=d_SWJhyKfVw}
}""").lstrip(),
},
"berkeley_gnm_sac_son": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://sites.google.com/view/SACSoN-review",
"paper": "https://arxiv.org/abs/2306.01874",
"citation_bibtex": dedent(r"""
@article{hirose2023sacson,
title={SACSoN: Scalable Autonomous Data Collection for Social Navigation},
author={Hirose, Noriaki and Shah, Dhruv and Sridhar, Ajay and Levine, Sergey},
journal={arXiv preprint arXiv:2306.01874},
year={2023}
}""").lstrip(),
},
"berkeley_mvp": {
"tasks_col": "language_instruction",
"license": "mit",
"paper": "https://arxiv.org/abs/2203.06173",
"citation_bibtex": dedent(r"""
@InProceedings{Radosavovic2022,
title = {Real-World Robot Learning with Masked Visual Pre-training},
author = {Ilija Radosavovic and Tete Xiao and Stephen James and Pieter Abbeel and Jitendra Malik and Trevor Darrell},
booktitle = {CoRL},
year = {2022}
}""").lstrip(),
},
"berkeley_rpt": {
"tasks_col": "language_instruction",
"license": "mit",
"paper": "https://arxiv.org/abs/2306.10007",
"citation_bibtex": dedent(r"""
@article{Radosavovic2023,
title={Robot Learning with Sensorimotor Pre-training},
author={Ilija Radosavovic and Baifeng Shi and Letian Fu and Ken Goldberg and Trevor Darrell and Jitendra Malik},
year={2023},
journal={arXiv:2306.10007}
}""").lstrip(),
},
"cmu_franka_exploration_dataset": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://human-world-model.github.io/",
"paper": "https://arxiv.org/abs/2308.10901",
"citation_bibtex": dedent(r"""
@inproceedings{mendonca2023structured,
title={Structured World Models from Human Videos},
author={Mendonca, Russell and Bahl, Shikhar and Pathak, Deepak},
journal={RSS},
year={2023}
}""").lstrip(),
},
"cmu_play_fusion": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://play-fusion.github.io/",
"paper": "https://arxiv.org/abs/2312.04549",
"citation_bibtex": dedent(r"""
@inproceedings{chen2023playfusion,
title={PlayFusion: Skill Acquisition via Diffusion from Language-Annotated Play},
author={Chen, Lili and Bahl, Shikhar and Pathak, Deepak},
booktitle={CoRL},
year={2023}
}""").lstrip(),
},
"cmu_stretch": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://robo-affordances.github.io/",
"paper": "https://arxiv.org/abs/2304.08488",
"citation_bibtex": dedent(r"""
@inproceedings{bahl2023affordances,
title={Affordances from Human Videos as a Versatile Representation for Robotics},
author={Bahl, Shikhar and Mendonca, Russell and Chen, Lili and Jain, Unnat and Pathak, Deepak},
booktitle={CVPR},
year={2023}
}
@article{mendonca2023structured,
title={Structured World Models from Human Videos},
author={Mendonca, Russell and Bahl, Shikhar and Pathak, Deepak},
journal={CoRL},
year={2023}
}""").lstrip(),
},
"columbia_cairlab_pusht_real": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://diffusion-policy.cs.columbia.edu/",
"paper": "https://arxiv.org/abs/2303.04137v5",
"citation_bibtex": dedent(r"""
@inproceedings{chi2023diffusionpolicy,
title={Diffusion Policy: Visuomotor Policy Learning via Action Diffusion},
author={Chi, Cheng and Feng, Siyuan and Du, Yilun and Xu, Zhenjia and Cousineau, Eric and Burchfiel, Benjamin and Song, Shuran},
booktitle={Proceedings of Robotics: Science and Systems (RSS)},
year={2023}
}""").lstrip(),
},
"conq_hose_manipulation": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://sites.google.com/view/conq-hose-manipulation-dataset/home",
"citation_bibtex": dedent(r"""
@misc{ConqHoseManipData,
author={Peter Mitrano and Dmitry Berenson},
title={Conq Hose Manipulation Dataset, v1.15.0},
year={2024},
howpublished={https://sites.google.com/view/conq-hose-manipulation-dataset}
}""").lstrip(),
},
"dlr_edan_shared_control": {
"tasks_col": "language_instruction",
"license": "mit",
"paper": "https://ieeexplore.ieee.org/document/9341156",
"citation_bibtex": dedent(r"""
@inproceedings{vogel_edan_2020,
title = {EDAN - an EMG-Controlled Daily Assistant to Help People with Physical Disabilities},
language = {en},
booktitle = {2020 {IEEE}/{RSJ} {International} {Conference} on {Intelligent} {Robots} and {Systems} ({IROS})},
author = {Vogel, Jörn and Hagengruber, Annette and Iskandar, Maged and Quere, Gabriel and Leipscher, Ulrike and Bustamante, Samuel and Dietrich, Alexander and Hoeppner, Hannes and Leidner, Daniel and Albu-Schäffer, Alin},
year = {2020}
}
@inproceedings{quere_shared_2020,
address = {Paris, France},
title = {Shared {Control} {Templates} for {Assistive} {Robotics}},
language = {en},
booktitle = {2020 {IEEE} {International} {Conference} on {Robotics} and {Automation} ({ICRA})},
author = {Quere, Gabriel and Hagengruber, Annette and Iskandar, Maged and Bustamante, Samuel and Leidner, Daniel and Stulp, Freek and Vogel, Joern},
year = {2020},
pages = {7},
}""").lstrip(),
},
"dlr_sara_grid_clamp": {
"tasks_col": "language_instruction",
"license": "mit",
"paper": "https://www.researchsquare.com/article/rs-3289569/v1",
"citation_bibtex": dedent(r"""
@article{padalkar2023guided,
title={A guided reinforcement learning approach using shared control templates for learning manipulation skills in the real world},
author={Padalkar, Abhishek and Quere, Gabriel and Raffin, Antonin and Silv{\'e}rio, Jo{\~a}o and Stulp, Freek},
journal={Research square preprint rs-3289569/v1},
year={2023}
}""").lstrip(),
},
"dlr_sara_pour": {
"tasks_col": "language_instruction",
"license": "mit",
"paper": "https://elib.dlr.de/193739/1/padalkar2023rlsct.pdf",
"citation_bibtex": dedent(r"""
@inproceedings{padalkar2023guiding,
title={Guiding Reinforcement Learning with Shared Control Templates},
author={Padalkar, Abhishek and Quere, Gabriel and Steinmetz, Franz and Raffin, Antonin and Nieuwenhuisen, Matthias and Silv{\'e}rio, Jo{\~a}o and Stulp, Freek},
booktitle={40th IEEE International Conference on Robotics and Automation, ICRA 2023},
year={2023},
organization={IEEE}
}""").lstrip(),
},
"droid_100": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://droid-dataset.github.io/",
"paper": "https://arxiv.org/abs/2403.12945",
"citation_bibtex": dedent(r"""
@article{khazatsky2024droid,
title = {DROID: A Large-Scale In-The-Wild Robot Manipulation Dataset},
author = {Alexander Khazatsky and Karl Pertsch and Suraj Nair and Ashwin Balakrishna and Sudeep Dasari and Siddharth Karamcheti and Soroush Nasiriany and Mohan Kumar Srirama and Lawrence Yunliang Chen and Kirsty Ellis and Peter David Fagan and Joey Hejna and Masha Itkina and Marion Lepert and Yecheng Jason Ma and Patrick Tree Miller and Jimmy Wu and Suneel Belkhale and Shivin Dass and Huy Ha and Arhan Jain and Abraham Lee and Youngwoon Lee and Marius Memmel and Sungjae Park and Ilija Radosavovic and Kaiyuan Wang and Albert Zhan and Kevin Black and Cheng Chi and Kyle Beltran Hatch and Shan Lin and Jingpei Lu and Jean Mercat and Abdul Rehman and Pannag R Sanketi and Archit Sharma and Cody Simpson and Quan Vuong and Homer Rich Walke and Blake Wulfe and Ted Xiao and Jonathan Heewon Yang and Arefeh Yavary and Tony Z. Zhao and Christopher Agia and Rohan Baijal and Mateo Guaman Castro and Daphne Chen and Qiuyu Chen and Trinity Chung and Jaimyn Drake and Ethan Paul Foster and Jensen Gao and David Antonio Herrera and Minho Heo and Kyle Hsu and Jiaheng Hu and Donovon Jackson and Charlotte Le and Yunshuang Li and Kevin Lin and Roy Lin and Zehan Ma and Abhiram Maddukuri and Suvir Mirchandani and Daniel Morton and Tony Nguyen and Abigail O'Neill and Rosario Scalise and Derick Seale and Victor Son and Stephen Tian and Emi Tran and Andrew E. Wang and Yilin Wu and Annie Xie and Jingyun Yang and Patrick Yin and Yunchu Zhang and Osbert Bastani and Glen Berseth and Jeannette Bohg and Ken Goldberg and Abhinav Gupta and Abhishek Gupta and Dinesh Jayaraman and Joseph J Lim and Jitendra Malik and Roberto Martín-Martín and Subramanian Ramamoorthy and Dorsa Sadigh and Shuran Song and Jiajun Wu and Michael C. Yip and Yuke Zhu and Thomas Kollar and Sergey Levine and Chelsea Finn},
year = {2024},
}""").lstrip(),
},
"fmb": {
"tasks_col": "language_instruction",
"license": "cc-by-4.0",
"url": "https://functional-manipulation-benchmark.github.io/",
"paper": "https://arxiv.org/abs/2401.08553",
"citation_bibtex": dedent(r"""
@article{luo2024fmb,
title={FMB: a Functional Manipulation Benchmark for Generalizable Robotic Learning},
author={Luo, Jianlan and Xu, Charles and Liu, Fangchen and Tan, Liam and Lin, Zipeng and Wu, Jeffrey and Abbeel, Pieter and Levine, Sergey},
journal={arXiv preprint arXiv:2401.08553},
year={2024}
}""").lstrip(),
},
"iamlab_cmu_pickup_insert": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://openreview.net/forum?id=WuBv9-IGDUA",
"paper": "https://arxiv.org/abs/2401.14502",
"citation_bibtex": dedent(r"""
@inproceedings{saxena2023multiresolution,
title={Multi-Resolution Sensing for Real-Time Control with Vision-Language Models},
author={Saumya Saxena and Mohit Sharma and Oliver Kroemer},
booktitle={7th Annual Conference on Robot Learning},
year={2023},
url={https://openreview.net/forum?id=WuBv9-IGDUA}
}""").lstrip(),
},
"imperialcollege_sawyer_wrist_cam": {
"tasks_col": "language_instruction",
"license": "mit",
},
"jaco_play": {
"tasks_col": "language_instruction",
"license": "cc-by-4.0",
"url": "https://github.com/clvrai/clvr_jaco_play_dataset",
"citation_bibtex": dedent(r"""
@software{dass2023jacoplay,
author = {Dass, Shivin and Yapeter, Jullian and Zhang, Jesse and Zhang, Jiahui
and Pertsch, Karl and Nikolaidis, Stefanos and Lim, Joseph J.},
title = {CLVR Jaco Play Dataset},
url = {https://github.com/clvrai/clvr_jaco_play_dataset},
version = {1.0.0},
year = {2023}
}""").lstrip(),
},
"kaist_nonprehensile": {
"tasks_col": "language_instruction",
"license": "cc-by-4.0",
"url": "https://github.com/JaeHyung-Kim/rlds_dataset_builder",
"citation_bibtex": dedent(r"""
@article{kimpre,
title={Pre-and post-contact policy decomposition for non-prehensile manipulation with zero-shot sim-to-real transfer},
author={Kim, Minchan and Han, Junhyek and Kim, Jaehyung and Kim, Beomjoon},
booktitle={2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
year={2023},
organization={IEEE}
}""").lstrip(),
},
"nyu_door_opening_surprising_effectiveness": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://jyopari.github.io/VINN/",
"paper": "https://arxiv.org/abs/2112.01511",
"citation_bibtex": dedent(r"""
@misc{pari2021surprising,
title={The Surprising Effectiveness of Representation Learning for Visual Imitation},
author={Jyothish Pari and Nur Muhammad Shafiullah and Sridhar Pandian Arunachalam and Lerrel Pinto},
year={2021},
eprint={2112.01511},
archivePrefix={arXiv},
primaryClass={cs.RO}
}""").lstrip(),
},
"nyu_franka_play_dataset": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://play-to-policy.github.io/",
"paper": "https://arxiv.org/abs/2210.10047",
"citation_bibtex": dedent(r"""
@article{cui2022play,
title = {From Play to Policy: Conditional Behavior Generation from Uncurated Robot Data},
author = {Cui, Zichen Jeff and Wang, Yibin and Shafiullah, Nur Muhammad Mahi and Pinto, Lerrel},
journal = {arXiv preprint arXiv:2210.10047},
year = {2022}
}""").lstrip(),
},
"nyu_rot_dataset": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://rot-robot.github.io/",
"paper": "https://arxiv.org/abs/2206.15469",
"citation_bibtex": dedent(r"""
@inproceedings{haldar2023watch,
title={Watch and match: Supercharging imitation with regularized optimal transport},
author={Haldar, Siddhant and Mathur, Vaibhav and Yarats, Denis and Pinto, Lerrel},
booktitle={Conference on Robot Learning},
pages={32--43},
year={2023},
organization={PMLR}
}""").lstrip(),
},
"roboturk": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://roboturk.stanford.edu/dataset_real.html",
"paper": "PAPER",
"citation_bibtex": dedent(r"""
@inproceedings{mandlekar2019scaling,
title={Scaling robot supervision to hundreds of hours with roboturk: Robotic manipulation dataset through human reasoning and dexterity},
author={Mandlekar, Ajay and Booher, Jonathan and Spero, Max and Tung, Albert and Gupta, Anchit and Zhu, Yuke and Garg, Animesh and Savarese, Silvio and Fei-Fei, Li},
booktitle={2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
pages={1048--1055},
year={2019},
organization={IEEE}
}""").lstrip(),
},
"stanford_hydra_dataset": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://sites.google.com/view/hydra-il-2023",
"paper": "https://arxiv.org/abs/2306.17237",
"citation_bibtex": dedent(r"""
@article{belkhale2023hydra,
title={HYDRA: Hybrid Robot Actions for Imitation Learning},
author={Belkhale, Suneel and Cui, Yuchen and Sadigh, Dorsa},
journal={arxiv},
year={2023}
}""").lstrip(),
},
"stanford_kuka_multimodal_dataset": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://sites.google.com/view/visionandtouch",
"paper": "https://arxiv.org/abs/1810.10191",
"citation_bibtex": dedent(r"""
@inproceedings{lee2019icra,
title={Making sense of vision and touch: Self-supervised learning of multimodal representations for contact-rich tasks},
author={Lee, Michelle A and Zhu, Yuke and Srinivasan, Krishnan and Shah, Parth and Savarese, Silvio and Fei-Fei, Li and Garg, Animesh and Bohg, Jeannette},
booktitle={2019 IEEE International Conference on Robotics and Automation (ICRA)},
year={2019},
url={https://arxiv.org/abs/1810.10191}
}""").lstrip(),
},
"stanford_robocook": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://hshi74.github.io/robocook/",
"paper": "https://arxiv.org/abs/2306.14447",
"citation_bibtex": dedent(r"""
@article{shi2023robocook,
title={RoboCook: Long-Horizon Elasto-Plastic Object Manipulation with Diverse Tools},
author={Shi, Haochen and Xu, Huazhe and Clarke, Samuel and Li, Yunzhu and Wu, Jiajun},
journal={arXiv preprint arXiv:2306.14447},
year={2023}
}""").lstrip(),
},
"taco_play": {
"tasks_col": "language_instruction",
"license": "cc-by-4.0",
"url": "https://www.kaggle.com/datasets/oiermees/taco-robot",
"paper": "https://arxiv.org/abs/2209.08959, https://arxiv.org/abs/2210.01911",
"citation_bibtex": dedent(r"""
@inproceedings{rosete2022tacorl,
author = {Erick Rosete-Beas and Oier Mees and Gabriel Kalweit and Joschka Boedecker and Wolfram Burgard},
title = {Latent Plans for Task Agnostic Offline Reinforcement Learning},
journal = {Proceedings of the 6th Conference on Robot Learning (CoRL)},
year = {2022}
}
@inproceedings{mees23hulc2,
title={Grounding Language with Visual Affordances over Unstructured Data},
author={Oier Mees and Jessica Borja-Diaz and Wolfram Burgard},
booktitle = {Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)},
year={2023},
address = {London, UK}
}""").lstrip(),
},
"tokyo_u_lsmo": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "URL",
"paper": "https://arxiv.org/abs/2107.05842",
"citation_bibtex": dedent(r"""
@Article{Osa22,
author = {Takayuki Osa},
journal = {The International Journal of Robotics Research},
title = {Motion Planning by Learning the Solution Manifold in Trajectory Optimization},
year = {2022},
number = {3},
pages = {291--311},
volume = {41},
}""").lstrip(),
},
"toto": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://toto-benchmark.org/",
"paper": "https://arxiv.org/abs/2306.00942",
"citation_bibtex": dedent(r"""
@inproceedings{zhou2023train,
author={Zhou, Gaoyue and Dean, Victoria and Srirama, Mohan Kumar and Rajeswaran, Aravind and Pari, Jyothish and Hatch, Kyle and Jain, Aryan and Yu, Tianhe and Abbeel, Pieter and Pinto, Lerrel and Finn, Chelsea and Gupta, Abhinav},
booktitle={2023 IEEE International Conference on Robotics and Automation (ICRA)},
title={Train Offline, Test Online: A Real Robot Learning Benchmark},
year={2023},
}""").lstrip(),
},
"ucsd_kitchen_dataset": {
"tasks_col": "language_instruction",
"license": "mit",
"citation_bibtex": dedent(r"""
@ARTICLE{ucsd_kitchens,
author = {Ge Yan, Kris Wu, and Xiaolong Wang},
title = {{ucsd kitchens Dataset}},
year = {2023},
month = {August}
}""").lstrip(),
},
"ucsd_pick_and_place_dataset": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://owmcorl.github.io/#",
"paper": "https://arxiv.org/abs/2310.16029",
"citation_bibtex": dedent(r"""
@preprint{Feng2023Finetuning,
title={Finetuning Offline World Models in the Real World},
author={Yunhai Feng, Nicklas Hansen, Ziyan Xiong, Chandramouli Rajagopalan, Xiaolong Wang},
year={2023}
}""").lstrip(),
},
"uiuc_d3field": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://robopil.github.io/d3fields/",
"paper": "https://arxiv.org/abs/2309.16118",
"citation_bibtex": dedent(r"""
@article{wang2023d3field,
title={D^3Field: Dynamic 3D Descriptor Fields for Generalizable Robotic Manipulation},
author={Wang, Yixuan and Li, Zhuoran and Zhang, Mingtong and Driggs-Campbell, Katherine and Wu, Jiajun and Fei-Fei, Li and Li, Yunzhu},
journal={arXiv preprint arXiv:},
year={2023},
}""").lstrip(),
},
"usc_cloth_sim": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://uscresl.github.io/dmfd/",
"paper": "https://arxiv.org/abs/2207.10148",
"citation_bibtex": dedent(r"""
@article{salhotra2022dmfd,
author={Salhotra, Gautam and Liu, I-Chun Arthur and Dominguez-Kuhne, Marcus and Sukhatme, Gaurav S.},
journal={IEEE Robotics and Automation Letters},
title={Learning Deformable Object Manipulation From Expert Demonstrations},
year={2022},
volume={7},
number={4},
pages={8775-8782},
doi={10.1109/LRA.2022.3187843}
}""").lstrip(),
},
"utaustin_mutex": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://ut-austin-rpl.github.io/MUTEX/",
"paper": "https://arxiv.org/abs/2309.14320",
"citation_bibtex": dedent(r"""
@inproceedings{shah2023mutex,
title={{MUTEX}: Learning Unified Policies from Multimodal Task Specifications},
author={Rutav Shah and Roberto Mart{\'\i}n-Mart{\'\i}n and Yuke Zhu},
booktitle={7th Annual Conference on Robot Learning},
year={2023},
url={https://openreview.net/forum?id=PwqiqaaEzJ}
}""").lstrip(),
},
"utokyo_pr2_opening_fridge": {
"tasks_col": "language_instruction",
"license": "mit",
"citation_bibtex": dedent(r"""
@misc{oh2023pr2utokyodatasets,
author={Jihoon Oh and Naoaki Kanazawa and Kento Kawaharazuka},
title={X-Embodiment U-Tokyo PR2 Datasets},
year={2023},
url={https://github.com/ojh6404/rlds_dataset_builder},
}""").lstrip(),
},
"utokyo_pr2_tabletop_manipulation": {
"tasks_col": "language_instruction",
"license": "mit",
"citation_bibtex": dedent(r"""
@misc{oh2023pr2utokyodatasets,
author={Jihoon Oh and Naoaki Kanazawa and Kento Kawaharazuka},
title={X-Embodiment U-Tokyo PR2 Datasets},
year={2023},
url={https://github.com/ojh6404/rlds_dataset_builder},
}""").lstrip(),
},
"utokyo_saytap": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://saytap.github.io/",
"paper": "https://arxiv.org/abs/2306.07580",
"citation_bibtex": dedent(r"""
@article{saytap2023,
author = {Yujin Tang and Wenhao Yu and Jie Tan and Heiga Zen and Aleksandra Faust and
Tatsuya Harada},
title = {SayTap: Language to Quadrupedal Locomotion},
eprint = {arXiv:2306.07580},
url = {https://saytap.github.io},
note = {https://saytap.github.io},
year = {2023}
}""").lstrip(),
},
"utokyo_xarm_bimanual": {
"tasks_col": "language_instruction",
"license": "cc-by-4.0",
"citation_bibtex": dedent(r"""
@misc{matsushima2023weblab,
title={Weblab xArm Dataset},
author={Tatsuya Matsushima and Hiroki Furuta and Yusuke Iwasawa and Yutaka Matsuo},
year={2023},
}""").lstrip(),
},
"utokyo_xarm_pick_and_place": {
"tasks_col": "language_instruction",
"license": "cc-by-4.0",
"citation_bibtex": dedent(r"""
@misc{matsushima2023weblab,
title={Weblab xArm Dataset},
author={Tatsuya Matsushima and Hiroki Furuta and Yusuke Iwasawa and Yutaka Matsuo},
year={2023},
}""").lstrip(),
},
"viola": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://ut-austin-rpl.github.io/VIOLA/",
"paper": "https://arxiv.org/abs/2210.11339",
"citation_bibtex": dedent(r"""
@article{zhu2022viola,
title={VIOLA: Imitation Learning for Vision-Based Manipulation with Object Proposal Priors},
author={Zhu, Yifeng and Joshi, Abhishek and Stone, Peter and Zhu, Yuke},
journal={6th Annual Conference on Robot Learning (CoRL)},
year={2022}
}""").lstrip(),
},
}
def batch_convert():
status = {}
logfile = LOCAL_DIR / "conversion_log.txt"
assert set(DATASETS) == {id_.split("/")[1] for id_ in available_datasets}
for num, (name, kwargs) in enumerate(DATASETS.items()):
repo_id = f"lerobot/{name}"
print(f"\nConverting {repo_id} ({num}/{len(DATASETS)})")
print("---------------------------------------------------------")
try:
convert_dataset(repo_id, LOCAL_DIR, **kwargs)
status = f"{repo_id}: success."
with open(logfile, "a") as file:
file.write(status + "\n")
except Exception:
status = f"{repo_id}: failed\n {traceback.format_exc()}"
with open(logfile, "a") as file:
file.write(status + "\n")
continue
if __name__ == "__main__":
batch_convert()

View File

@@ -1,665 +0,0 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script will help you convert any LeRobot dataset already pushed to the hub from codebase version 1.6 to
2.0. You will be required to provide the 'tasks', which is a short but accurate description in plain English
for each of the task performed in the dataset. This will allow to easily train models with task-conditionning.
We support 3 different scenarios for these tasks (see instructions below):
1. Single task dataset: all episodes of your dataset have the same single task.
2. Single task episodes: the episodes of your dataset each contain a single task but they can differ from
one episode to the next.
3. Multi task episodes: episodes of your dataset may each contain several different tasks.
Can you can also provide a robot config .yaml file (not mandatory) to this script via the option
'--robot-config' so that it writes information about the robot (robot type, motors names) this dataset was
recorded with. For now, only Aloha/Koch type robots are supported with this option.
# 1. Single task dataset
If your dataset contains a single task, you can simply provide it directly via the CLI with the
'--single-task' option.
Examples:
```bash
python lerobot/common/datasets/v2/convert_dataset_v1_to_v2.py \
--repo-id lerobot/aloha_sim_insertion_human_image \
--single-task "Insert the peg into the socket." \
--robot-config lerobot/configs/robot/aloha.yaml \
--local-dir data
```
```bash
python lerobot/common/datasets/v2/convert_dataset_v1_to_v2.py \
--repo-id aliberts/koch_tutorial \
--single-task "Pick the Lego block and drop it in the box on the right." \
--robot-config lerobot/configs/robot/koch.yaml \
--local-dir data
```
# 2. Single task episodes
If your dataset is a multi-task dataset, you have two options to provide the tasks to this script:
- If your dataset already contains a language instruction column in its parquet file, you can simply provide
this column's name with the '--tasks-col' arg.
Example:
```bash
python lerobot/common/datasets/v2/convert_dataset_v1_to_v2.py \
--repo-id lerobot/stanford_kuka_multimodal_dataset \
--tasks-col "language_instruction" \
--local-dir data
```
- If your dataset doesn't contain a language instruction, you should provide the path to a .json file with the
'--tasks-path' arg. This file should have the following structure where keys correspond to each
episode_index in the dataset, and values are the language instruction for that episode.
Example:
```json
{
"0": "Do something",
"1": "Do something else",
"2": "Do something",
"3": "Go there",
...
}
```
# 3. Multi task episodes
If you have multiple tasks per episodes, your dataset should contain a language instruction column in its
parquet file, and you must provide this column's name with the '--tasks-col' arg.
Example:
```bash
python lerobot/common/datasets/v2/convert_dataset_v1_to_v2.py \
--repo-id lerobot/stanford_kuka_multimodal_dataset \
--tasks-col "language_instruction" \
--local-dir data
```
"""
import argparse
import contextlib
import filecmp
import json
import logging
import math
import shutil
import subprocess
import tempfile
from pathlib import Path
import datasets
import pyarrow.compute as pc
import pyarrow.parquet as pq
import torch
from datasets import Dataset
from huggingface_hub import HfApi
from huggingface_hub.errors import EntryNotFoundError, HfHubHTTPError
from safetensors.torch import load_file
from lerobot.common.datasets.utils import (
DEFAULT_CHUNK_SIZE,
DEFAULT_PARQUET_PATH,
DEFAULT_VIDEO_PATH,
EPISODES_PATH,
INFO_PATH,
STATS_PATH,
TASKS_PATH,
create_branch,
create_lerobot_dataset_card,
flatten_dict,
get_hub_safe_version,
load_json,
unflatten_dict,
write_json,
write_jsonlines,
)
from lerobot.common.datasets.video_utils import (
VideoFrame, # noqa: F401
get_image_pixel_channels,
get_video_info,
)
from lerobot.common.utils.utils import init_hydra_config
V16 = "v1.6"
V20 = "v2.0"
GITATTRIBUTES_REF = "aliberts/gitattributes_reference"
V1_VIDEO_FILE = "{video_key}_episode_{episode_index:06d}.mp4"
V1_INFO_PATH = "meta_data/info.json"
V1_STATS_PATH = "meta_data/stats.safetensors"
def parse_robot_config(config_path: Path, config_overrides: list[str] | None = None) -> tuple[str, dict]:
robot_cfg = init_hydra_config(config_path, config_overrides)
if robot_cfg["robot_type"] in ["aloha", "koch"]:
state_names = [
f"{arm}_{motor}" if len(robot_cfg["follower_arms"]) > 1 else motor
for arm in robot_cfg["follower_arms"]
for motor in robot_cfg["follower_arms"][arm]["motors"]
]
action_names = [
# f"{arm}_{motor}" for arm in ["left", "right"] for motor in robot_cfg["leader_arms"][arm]["motors"]
f"{arm}_{motor}" if len(robot_cfg["leader_arms"]) > 1 else motor
for arm in robot_cfg["leader_arms"]
for motor in robot_cfg["leader_arms"][arm]["motors"]
]
# elif robot_cfg["robot_type"] == "stretch3": TODO
else:
raise NotImplementedError(
"Please provide robot_config={'robot_type': ..., 'names': ...} directly to convert_dataset()."
)
return {
"robot_type": robot_cfg["robot_type"],
"names": {
"observation.state": state_names,
"observation.effort": state_names,
"action": action_names,
},
}
def convert_stats_to_json(v1_dir: Path, v2_dir: Path) -> None:
safetensor_path = v1_dir / V1_STATS_PATH
stats = load_file(safetensor_path)
serialized_stats = {key: value.tolist() for key, value in stats.items()}
serialized_stats = unflatten_dict(serialized_stats)
json_path = v2_dir / STATS_PATH
json_path.parent.mkdir(exist_ok=True, parents=True)
with open(json_path, "w") as f:
json.dump(serialized_stats, f, indent=4)
# Sanity check
with open(json_path) as f:
stats_json = json.load(f)
stats_json = flatten_dict(stats_json)
stats_json = {key: torch.tensor(value) for key, value in stats_json.items()}
for key in stats:
torch.testing.assert_close(stats_json[key], stats[key])
def get_features_from_hf_dataset(dataset: Dataset, robot_config: dict | None = None) -> dict[str, list]:
features = {}
for key, ft in dataset.features.items():
if isinstance(ft, datasets.Value):
dtype = ft.dtype
shape = (1,)
names = None
if isinstance(ft, datasets.Sequence):
assert isinstance(ft.feature, datasets.Value)
dtype = ft.feature.dtype
shape = (ft.length,)
motor_names = (
robot_config["names"][key] if robot_config else [f"motor_{i}" for i in range(ft.length)]
)
assert len(motor_names) == shape[0]
names = {"motors": motor_names}
elif isinstance(ft, datasets.Image):
dtype = "image"
image = dataset[0][key] # Assuming first row
channels = get_image_pixel_channels(image)
shape = (image.height, image.width, channels)
names = ["height", "width", "channel"]
elif ft._type == "VideoFrame":
dtype = "video"
shape = None # Add shape later
names = ["height", "width", "channel"]
features[key] = {
"dtype": dtype,
"shape": shape,
"names": names,
}
return features
def add_task_index_by_episodes(dataset: Dataset, tasks_by_episodes: dict) -> tuple[Dataset, list[str]]:
df = dataset.to_pandas()
tasks = list(set(tasks_by_episodes.values()))
tasks_to_task_index = {task: task_idx for task_idx, task in enumerate(tasks)}
episodes_to_task_index = {ep_idx: tasks_to_task_index[task] for ep_idx, task in tasks_by_episodes.items()}
df["task_index"] = df["episode_index"].map(episodes_to_task_index).astype(int)
features = dataset.features
features["task_index"] = datasets.Value(dtype="int64")
dataset = Dataset.from_pandas(df, features=features, split="train")
return dataset, tasks
def add_task_index_from_tasks_col(
dataset: Dataset, tasks_col: str
) -> tuple[Dataset, dict[str, list[str]], list[str]]:
df = dataset.to_pandas()
# HACK: This is to clean some of the instructions in our version of Open X datasets
prefix_to_clean = "tf.Tensor(b'"
suffix_to_clean = "', shape=(), dtype=string)"
df[tasks_col] = df[tasks_col].str.removeprefix(prefix_to_clean).str.removesuffix(suffix_to_clean)
# Create task_index col
tasks_by_episode = df.groupby("episode_index")[tasks_col].unique().apply(lambda x: x.tolist()).to_dict()
tasks = df[tasks_col].unique().tolist()
tasks_to_task_index = {task: idx for idx, task in enumerate(tasks)}
df["task_index"] = df[tasks_col].map(tasks_to_task_index).astype(int)
# Build the dataset back from df
features = dataset.features
features["task_index"] = datasets.Value(dtype="int64")
dataset = Dataset.from_pandas(df, features=features, split="train")
dataset = dataset.remove_columns(tasks_col)
return dataset, tasks, tasks_by_episode
def split_parquet_by_episodes(
dataset: Dataset,
total_episodes: int,
total_chunks: int,
output_dir: Path,
) -> list:
table = dataset.data.table
episode_lengths = []
for ep_chunk in range(total_chunks):
ep_chunk_start = DEFAULT_CHUNK_SIZE * ep_chunk
ep_chunk_end = min(DEFAULT_CHUNK_SIZE * (ep_chunk + 1), total_episodes)
chunk_dir = "/".join(DEFAULT_PARQUET_PATH.split("/")[:-1]).format(episode_chunk=ep_chunk)
(output_dir / chunk_dir).mkdir(parents=True, exist_ok=True)
for ep_idx in range(ep_chunk_start, ep_chunk_end):
ep_table = table.filter(pc.equal(table["episode_index"], ep_idx))
episode_lengths.insert(ep_idx, len(ep_table))
output_file = output_dir / DEFAULT_PARQUET_PATH.format(
episode_chunk=ep_chunk, episode_index=ep_idx
)
pq.write_table(ep_table, output_file)
return episode_lengths
def move_videos(
repo_id: str,
video_keys: list[str],
total_episodes: int,
total_chunks: int,
work_dir: Path,
clean_gittatributes: Path,
branch: str = "main",
) -> None:
"""
HACK: Since HfApi() doesn't provide a way to move files directly in a repo, this function will run git
commands to fetch git lfs video files references to move them into subdirectories without having to
actually download them.
"""
_lfs_clone(repo_id, work_dir, branch)
videos_moved = False
video_files = [str(f.relative_to(work_dir)) for f in work_dir.glob("videos*/*.mp4")]
if len(video_files) == 0:
video_files = [str(f.relative_to(work_dir)) for f in work_dir.glob("videos*/*/*/*.mp4")]
videos_moved = True # Videos have already been moved
assert len(video_files) == total_episodes * len(video_keys)
lfs_untracked_videos = _get_lfs_untracked_videos(work_dir, video_files)
current_gittatributes = work_dir / ".gitattributes"
if not filecmp.cmp(current_gittatributes, clean_gittatributes, shallow=False):
fix_gitattributes(work_dir, current_gittatributes, clean_gittatributes)
if lfs_untracked_videos:
fix_lfs_video_files_tracking(work_dir, video_files)
if videos_moved:
return
video_dirs = sorted(work_dir.glob("videos*/"))
for ep_chunk in range(total_chunks):
ep_chunk_start = DEFAULT_CHUNK_SIZE * ep_chunk
ep_chunk_end = min(DEFAULT_CHUNK_SIZE * (ep_chunk + 1), total_episodes)
for vid_key in video_keys:
chunk_dir = "/".join(DEFAULT_VIDEO_PATH.split("/")[:-1]).format(
episode_chunk=ep_chunk, video_key=vid_key
)
(work_dir / chunk_dir).mkdir(parents=True, exist_ok=True)
for ep_idx in range(ep_chunk_start, ep_chunk_end):
target_path = DEFAULT_VIDEO_PATH.format(
episode_chunk=ep_chunk, video_key=vid_key, episode_index=ep_idx
)
video_file = V1_VIDEO_FILE.format(video_key=vid_key, episode_index=ep_idx)
if len(video_dirs) == 1:
video_path = video_dirs[0] / video_file
else:
for dir in video_dirs:
if (dir / video_file).is_file():
video_path = dir / video_file
break
video_path.rename(work_dir / target_path)
commit_message = "Move video files into chunk subdirectories"
subprocess.run(["git", "add", "."], cwd=work_dir, check=True)
subprocess.run(["git", "commit", "-m", commit_message], cwd=work_dir, check=True)
subprocess.run(["git", "push"], cwd=work_dir, check=True)
def fix_lfs_video_files_tracking(work_dir: Path, lfs_untracked_videos: list[str]) -> None:
"""
HACK: This function fixes the tracking by git lfs which was not properly set on some repos. In that case,
there's no other option than to download the actual files and reupload them with lfs tracking.
"""
for i in range(0, len(lfs_untracked_videos), 100):
files = lfs_untracked_videos[i : i + 100]
try:
subprocess.run(["git", "rm", "--cached", *files], cwd=work_dir, capture_output=True, check=True)
except subprocess.CalledProcessError as e:
print("git rm --cached ERROR:")
print(e.stderr)
subprocess.run(["git", "add", *files], cwd=work_dir, check=True)
commit_message = "Track video files with git lfs"
subprocess.run(["git", "commit", "-m", commit_message], cwd=work_dir, check=True)
subprocess.run(["git", "push"], cwd=work_dir, check=True)
def fix_gitattributes(work_dir: Path, current_gittatributes: Path, clean_gittatributes: Path) -> None:
shutil.copyfile(clean_gittatributes, current_gittatributes)
subprocess.run(["git", "add", ".gitattributes"], cwd=work_dir, check=True)
subprocess.run(["git", "commit", "-m", "Fix .gitattributes"], cwd=work_dir, check=True)
subprocess.run(["git", "push"], cwd=work_dir, check=True)
def _lfs_clone(repo_id: str, work_dir: Path, branch: str) -> None:
subprocess.run(["git", "lfs", "install"], cwd=work_dir, check=True)
repo_url = f"https://huggingface.co/datasets/{repo_id}"
env = {"GIT_LFS_SKIP_SMUDGE": "1"} # Prevent downloading LFS files
subprocess.run(
["git", "clone", "--branch", branch, "--single-branch", "--depth", "1", repo_url, str(work_dir)],
check=True,
env=env,
)
def _get_lfs_untracked_videos(work_dir: Path, video_files: list[str]) -> list[str]:
lfs_tracked_files = subprocess.run(
["git", "lfs", "ls-files", "-n"], cwd=work_dir, capture_output=True, text=True, check=True
)
lfs_tracked_files = set(lfs_tracked_files.stdout.splitlines())
return [f for f in video_files if f not in lfs_tracked_files]
def get_videos_info(repo_id: str, local_dir: Path, video_keys: list[str], branch: str) -> dict:
# Assumes first episode
video_files = [
DEFAULT_VIDEO_PATH.format(episode_chunk=0, video_key=vid_key, episode_index=0)
for vid_key in video_keys
]
hub_api = HfApi()
hub_api.snapshot_download(
repo_id=repo_id, repo_type="dataset", local_dir=local_dir, revision=branch, allow_patterns=video_files
)
videos_info_dict = {}
for vid_key, vid_path in zip(video_keys, video_files, strict=True):
videos_info_dict[vid_key] = get_video_info(local_dir / vid_path)
return videos_info_dict
def convert_dataset(
repo_id: str,
local_dir: Path,
single_task: str | None = None,
tasks_path: Path | None = None,
tasks_col: Path | None = None,
robot_config: dict | None = None,
test_branch: str | None = None,
**card_kwargs,
):
v1 = get_hub_safe_version(repo_id, V16)
v1x_dir = local_dir / V16 / repo_id
v20_dir = local_dir / V20 / repo_id
v1x_dir.mkdir(parents=True, exist_ok=True)
v20_dir.mkdir(parents=True, exist_ok=True)
hub_api = HfApi()
hub_api.snapshot_download(
repo_id=repo_id, repo_type="dataset", revision=v1, local_dir=v1x_dir, ignore_patterns="videos*/"
)
branch = "main"
if test_branch:
branch = test_branch
create_branch(repo_id=repo_id, branch=test_branch, repo_type="dataset")
metadata_v1 = load_json(v1x_dir / V1_INFO_PATH)
dataset = datasets.load_dataset("parquet", data_dir=v1x_dir / "data", split="train")
features = get_features_from_hf_dataset(dataset, robot_config)
video_keys = [key for key, ft in features.items() if ft["dtype"] == "video"]
if single_task and "language_instruction" in dataset.column_names:
logging.warning(
"'single_task' provided but 'language_instruction' tasks_col found. Using 'language_instruction'.",
)
single_task = None
tasks_col = "language_instruction"
# Episodes & chunks
episode_indices = sorted(dataset.unique("episode_index"))
total_episodes = len(episode_indices)
assert episode_indices == list(range(total_episodes))
total_videos = total_episodes * len(video_keys)
total_chunks = total_episodes // DEFAULT_CHUNK_SIZE
if total_episodes % DEFAULT_CHUNK_SIZE != 0:
total_chunks += 1
# Tasks
if single_task:
tasks_by_episodes = {ep_idx: single_task for ep_idx in episode_indices}
dataset, tasks = add_task_index_by_episodes(dataset, tasks_by_episodes)
tasks_by_episodes = {ep_idx: [task] for ep_idx, task in tasks_by_episodes.items()}
elif tasks_path:
tasks_by_episodes = load_json(tasks_path)
tasks_by_episodes = {int(ep_idx): task for ep_idx, task in tasks_by_episodes.items()}
dataset, tasks = add_task_index_by_episodes(dataset, tasks_by_episodes)
tasks_by_episodes = {ep_idx: [task] for ep_idx, task in tasks_by_episodes.items()}
elif tasks_col:
dataset, tasks, tasks_by_episodes = add_task_index_from_tasks_col(dataset, tasks_col)
else:
raise ValueError
assert set(tasks) == {task for ep_tasks in tasks_by_episodes.values() for task in ep_tasks}
tasks = [{"task_index": task_idx, "task": task} for task_idx, task in enumerate(tasks)]
write_jsonlines(tasks, v20_dir / TASKS_PATH)
features["task_index"] = {
"dtype": "int64",
"shape": (1,),
"names": None,
}
# Videos
if video_keys:
assert metadata_v1.get("video", False)
dataset = dataset.remove_columns(video_keys)
clean_gitattr = Path(
hub_api.hf_hub_download(
repo_id=GITATTRIBUTES_REF, repo_type="dataset", local_dir=local_dir, filename=".gitattributes"
)
).absolute()
with tempfile.TemporaryDirectory() as tmp_video_dir:
move_videos(
repo_id, video_keys, total_episodes, total_chunks, Path(tmp_video_dir), clean_gitattr, branch
)
videos_info = get_videos_info(repo_id, v1x_dir, video_keys=video_keys, branch=branch)
for key in video_keys:
features[key]["shape"] = (
videos_info[key].pop("video.height"),
videos_info[key].pop("video.width"),
videos_info[key].pop("video.channels"),
)
features[key]["video_info"] = videos_info[key]
assert math.isclose(videos_info[key]["video.fps"], metadata_v1["fps"], rel_tol=1e-3)
if "encoding" in metadata_v1:
assert videos_info[key]["video.pix_fmt"] == metadata_v1["encoding"]["pix_fmt"]
else:
assert metadata_v1.get("video", 0) == 0
videos_info = None
# Split data into 1 parquet file by episode
episode_lengths = split_parquet_by_episodes(dataset, total_episodes, total_chunks, v20_dir)
if robot_config is not None:
robot_type = robot_config["robot_type"]
repo_tags = [robot_type]
else:
robot_type = "unknown"
repo_tags = None
# Episodes
episodes = [
{"episode_index": ep_idx, "tasks": tasks_by_episodes[ep_idx], "length": episode_lengths[ep_idx]}
for ep_idx in episode_indices
]
write_jsonlines(episodes, v20_dir / EPISODES_PATH)
# Assemble metadata v2.0
metadata_v2_0 = {
"codebase_version": V20,
"robot_type": robot_type,
"total_episodes": total_episodes,
"total_frames": len(dataset),
"total_tasks": len(tasks),
"total_videos": total_videos,
"total_chunks": total_chunks,
"chunks_size": DEFAULT_CHUNK_SIZE,
"fps": metadata_v1["fps"],
"splits": {"train": f"0:{total_episodes}"},
"data_path": DEFAULT_PARQUET_PATH,
"video_path": DEFAULT_VIDEO_PATH if video_keys else None,
"features": features,
}
write_json(metadata_v2_0, v20_dir / INFO_PATH)
convert_stats_to_json(v1x_dir, v20_dir)
card = create_lerobot_dataset_card(tags=repo_tags, dataset_info=metadata_v2_0, **card_kwargs)
with contextlib.suppress(EntryNotFoundError, HfHubHTTPError):
hub_api.delete_folder(repo_id=repo_id, path_in_repo="data", repo_type="dataset", revision=branch)
with contextlib.suppress(EntryNotFoundError, HfHubHTTPError):
hub_api.delete_folder(repo_id=repo_id, path_in_repo="meta_data", repo_type="dataset", revision=branch)
with contextlib.suppress(EntryNotFoundError, HfHubHTTPError):
hub_api.delete_folder(repo_id=repo_id, path_in_repo="meta", repo_type="dataset", revision=branch)
hub_api.upload_folder(
repo_id=repo_id,
path_in_repo="data",
folder_path=v20_dir / "data",
repo_type="dataset",
revision=branch,
)
hub_api.upload_folder(
repo_id=repo_id,
path_in_repo="meta",
folder_path=v20_dir / "meta",
repo_type="dataset",
revision=branch,
)
card.push_to_hub(repo_id=repo_id, repo_type="dataset", revision=branch)
if not test_branch:
create_branch(repo_id=repo_id, branch=V20, repo_type="dataset")
def main():
parser = argparse.ArgumentParser()
task_args = parser.add_mutually_exclusive_group(required=True)
parser.add_argument(
"--repo-id",
type=str,
required=True,
help="Repository identifier on Hugging Face: a community or a user name `/` the name of the dataset (e.g. `lerobot/pusht`, `cadene/aloha_sim_insertion_human`).",
)
task_args.add_argument(
"--single-task",
type=str,
help="A short but accurate description of the single task performed in the dataset.",
)
task_args.add_argument(
"--tasks-col",
type=str,
help="The name of the column containing language instructions",
)
task_args.add_argument(
"--tasks-path",
type=Path,
help="The path to a .json file containing one language instruction for each episode_index",
)
parser.add_argument(
"--robot-config",
type=Path,
default=None,
help="Path to the robot's config yaml the dataset during conversion.",
)
parser.add_argument(
"--robot-overrides",
type=str,
nargs="*",
help="Any key=value arguments to override the robot config values (use dots for.nested=overrides)",
)
parser.add_argument(
"--local-dir",
type=Path,
default=None,
help="Local directory to store the dataset during conversion. Defaults to /tmp/lerobot_dataset_v2",
)
parser.add_argument(
"--license",
type=str,
default="apache-2.0",
help="Repo license. Must be one of https://huggingface.co/docs/hub/repositories-licenses. Defaults to mit.",
)
parser.add_argument(
"--test-branch",
type=str,
default=None,
help="Repo branch to test your conversion first (e.g. 'v2.0.test')",
)
args = parser.parse_args()
if not args.local_dir:
args.local_dir = Path("/tmp/lerobot_dataset_v2")
robot_config = parse_robot_config(args.robot_config, args.robot_overrides) if args.robot_config else None
del args.robot_config, args.robot_overrides
convert_dataset(**vars(args), robot_config=robot_config)
if __name__ == "__main__":
main()

View File

@@ -13,7 +13,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import logging
import subprocess
import warnings
@@ -26,11 +25,47 @@ import pyarrow as pa
import torch
import torchvision
from datasets.features.features import register_feature
from PIL import Image
def load_from_videos(
item: dict[str, torch.Tensor],
video_frame_keys: list[str],
videos_dir: Path,
tolerance_s: float,
backend: str = "pyav",
):
"""Note: When using data workers (e.g. DataLoader with num_workers>0), do not call this function
in the main process (e.g. by using a second Dataloader with num_workers=0). It will result in a Segmentation Fault.
This probably happens because a memory reference to the video loader is created in the main process and a
subprocess fails to access it.
"""
# since video path already contains "videos" (e.g. videos_dir="data/videos", path="videos/episode_0.mp4")
data_dir = videos_dir.parent
for key in video_frame_keys:
if isinstance(item[key], list):
# load multiple frames at once (expected when delta_timestamps is not None)
timestamps = [frame["timestamp"] for frame in item[key]]
paths = [frame["path"] for frame in item[key]]
if len(set(paths)) > 1:
raise NotImplementedError("All video paths are expected to be the same for now.")
video_path = data_dir / paths[0]
frames = decode_video_frames_torchvision(video_path, timestamps, tolerance_s, backend)
item[key] = frames
else:
# load one frame
timestamps = [item[key]["timestamp"]]
video_path = data_dir / item[key]["path"]
frames = decode_video_frames_torchvision(video_path, timestamps, tolerance_s, backend)
item[key] = frames[0]
return item
def decode_video_frames_torchvision(
video_path: Path | str,
video_path: str,
timestamps: list[float],
tolerance_s: float,
backend: str = "pyav",
@@ -128,8 +163,8 @@ def decode_video_frames_torchvision(
def encode_video_frames(
imgs_dir: Path | str,
video_path: Path | str,
imgs_dir: Path,
video_path: Path,
fps: int,
vcodec: str = "libsvtav1",
pix_fmt: str = "yuv420p",
@@ -212,104 +247,3 @@ with warnings.catch_warnings():
)
# to make VideoFrame available in HuggingFace `datasets`
register_feature(VideoFrame, "VideoFrame")
def get_audio_info(video_path: Path | str) -> dict:
ffprobe_audio_cmd = [
"ffprobe",
"-v",
"error",
"-select_streams",
"a:0",
"-show_entries",
"stream=channels,codec_name,bit_rate,sample_rate,bit_depth,channel_layout,duration",
"-of",
"json",
str(video_path),
]
result = subprocess.run(ffprobe_audio_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
if result.returncode != 0:
raise RuntimeError(f"Error running ffprobe: {result.stderr}")
info = json.loads(result.stdout)
audio_stream_info = info["streams"][0] if info.get("streams") else None
if audio_stream_info is None:
return {"has_audio": False}
# Return the information, defaulting to None if no audio stream is present
return {
"has_audio": True,
"audio.channels": audio_stream_info.get("channels", None),
"audio.codec": audio_stream_info.get("codec_name", None),
"audio.bit_rate": int(audio_stream_info["bit_rate"]) if audio_stream_info.get("bit_rate") else None,
"audio.sample_rate": int(audio_stream_info["sample_rate"])
if audio_stream_info.get("sample_rate")
else None,
"audio.bit_depth": audio_stream_info.get("bit_depth", None),
"audio.channel_layout": audio_stream_info.get("channel_layout", None),
}
def get_video_info(video_path: Path | str) -> dict:
ffprobe_video_cmd = [
"ffprobe",
"-v",
"error",
"-select_streams",
"v:0",
"-show_entries",
"stream=r_frame_rate,width,height,codec_name,nb_frames,duration,pix_fmt",
"-of",
"json",
str(video_path),
]
result = subprocess.run(ffprobe_video_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
if result.returncode != 0:
raise RuntimeError(f"Error running ffprobe: {result.stderr}")
info = json.loads(result.stdout)
video_stream_info = info["streams"][0]
# Calculate fps from r_frame_rate
r_frame_rate = video_stream_info["r_frame_rate"]
num, denom = map(int, r_frame_rate.split("/"))
fps = num / denom
pixel_channels = get_video_pixel_channels(video_stream_info["pix_fmt"])
video_info = {
"video.fps": fps,
"video.height": video_stream_info["height"],
"video.width": video_stream_info["width"],
"video.channels": pixel_channels,
"video.codec": video_stream_info["codec_name"],
"video.pix_fmt": video_stream_info["pix_fmt"],
"video.is_depth_map": False,
**get_audio_info(video_path),
}
return video_info
def get_video_pixel_channels(pix_fmt: str) -> int:
if "gray" in pix_fmt or "depth" in pix_fmt or "monochrome" in pix_fmt:
return 1
elif "rgba" in pix_fmt or "yuva" in pix_fmt:
return 4
elif "rgb" in pix_fmt or "yuv" in pix_fmt:
return 3
else:
raise ValueError("Unknown format")
def get_image_pixel_channels(image: Image):
if image.mode == "L":
return 1 # Grayscale
elif image.mode == "LA":
return 2 # Grayscale + Alpha
elif image.mode == "RGB":
return 3 # RGB
elif image.mode == "RGBA":
return 4 # RGBA
else:
raise ValueError("Unknown format")

View File

@@ -39,7 +39,7 @@ def preprocess_observation(observations: dict[str, np.ndarray]) -> dict[str, Ten
# sanity check that images are channel last
_, h, w, c = img.shape
assert c < h and c < w, f"expect channel last images, but instead got {img.shape=}"
assert c < h and c < w, f"expect channel first images, but instead {img.shape}"
# sanity check that images are uint8
assert img.dtype == torch.uint8, f"expect torch.uint8, but instead {img.dtype=}"

View File

@@ -25,7 +25,6 @@ from glob import glob
from pathlib import Path
import torch
import wandb
from huggingface_hub.constants import SAFETENSORS_SINGLE_FILE
from omegaconf import DictConfig, OmegaConf
from termcolor import colored
@@ -108,6 +107,8 @@ class Logger:
self._wandb = None
else:
os.environ["WANDB_SILENT"] = "true"
import wandb
wandb_run_id = None
if cfg.resume:
wandb_run_id = get_wandb_run_id_from_filesystem(self.checkpoints_dir)
@@ -188,7 +189,7 @@ class Logger:
training_state["scheduler"] = scheduler.state_dict()
torch.save(training_state, save_dir / self.training_state_file_name)
def save_checkpoint(
def save_checkpont(
self,
train_step: int,
policy: Policy,
@@ -231,7 +232,7 @@ class Logger:
# TODO(alexander-soare): Add local text log.
if self._wandb is not None:
for k, v in d.items():
if not isinstance(v, (int, float, str, wandb.Table)):
if not isinstance(v, (int, float, str)):
logging.warning(
f'WandB logging of key "{k}" was ignored as its type is not handled by this wrapper.'
)

View File

@@ -67,7 +67,6 @@ class DiffusionConfig:
use_group_norm: Whether to replace batch normalization with group normalization in the backbone.
The group sizes are set to be about 16 (to be precise, feature_dim // 16).
spatial_softmax_num_keypoints: Number of keypoints for SpatialSoftmax.
use_separate_rgb_encoders_per_camera: Whether to use a separate RGB encoder for each camera view.
down_dims: Feature dimension for each stage of temporal downsampling in the diffusion modeling Unet.
You may provide a variable number of dimensions, therefore also controlling the degree of
downsampling.
@@ -131,7 +130,6 @@ class DiffusionConfig:
pretrained_backbone_weights: str | None = None
use_group_norm: bool = True
spatial_softmax_num_keypoints: int = 32
use_separate_rgb_encoder_per_camera: bool = False
# Unet.
down_dims: tuple[int, ...] = (512, 1024, 2048)
kernel_size: int = 5

View File

@@ -182,13 +182,8 @@ class DiffusionModel(nn.Module):
self._use_env_state = False
if num_images > 0:
self._use_images = True
if self.config.use_separate_rgb_encoder_per_camera:
encoders = [DiffusionRgbEncoder(config) for _ in range(num_images)]
self.rgb_encoder = nn.ModuleList(encoders)
global_cond_dim += encoders[0].feature_dim * num_images
else:
self.rgb_encoder = DiffusionRgbEncoder(config)
global_cond_dim += self.rgb_encoder.feature_dim * num_images
self.rgb_encoder = DiffusionRgbEncoder(config)
global_cond_dim += self.rgb_encoder.feature_dim * num_images
if "observation.environment_state" in config.input_shapes:
self._use_env_state = True
global_cond_dim += config.input_shapes["observation.environment_state"][0]
@@ -244,32 +239,16 @@ class DiffusionModel(nn.Module):
"""Encode image features and concatenate them all together along with the state vector."""
batch_size, n_obs_steps = batch["observation.state"].shape[:2]
global_cond_feats = [batch["observation.state"]]
# Extract image features.
# Extract image feature (first combine batch, sequence, and camera index dims).
if self._use_images:
if self.config.use_separate_rgb_encoder_per_camera:
# Combine batch and sequence dims while rearranging to make the camera index dimension first.
images_per_camera = einops.rearrange(batch["observation.images"], "b s n ... -> n (b s) ...")
img_features_list = torch.cat(
[
encoder(images)
for encoder, images in zip(self.rgb_encoder, images_per_camera, strict=True)
]
)
# Separate batch and sequence dims back out. The camera index dim gets absorbed into the
# feature dim (effectively concatenating the camera features).
img_features = einops.rearrange(
img_features_list, "(n b s) ... -> b s (n ...)", b=batch_size, s=n_obs_steps
)
else:
# Combine batch, sequence, and "which camera" dims before passing to shared encoder.
img_features = self.rgb_encoder(
einops.rearrange(batch["observation.images"], "b s n ... -> (b s n) ...")
)
# Separate batch dim and sequence dim back out. The camera index dim gets absorbed into the
# feature dim (effectively concatenating the camera features).
img_features = einops.rearrange(
img_features, "(b s n) ... -> b s (n ...)", b=batch_size, s=n_obs_steps
)
img_features = self.rgb_encoder(
einops.rearrange(batch["observation.images"], "b s n ... -> (b s n) ...")
)
# Separate batch dim and sequence dim back out. The camera index dim gets absorbed into the
# feature dim (effectively concatenating the camera features).
img_features = einops.rearrange(
img_features, "(b s n) ... -> b s (n ...)", b=batch_size, s=n_obs_steps
)
global_cond_feats.append(img_features)
if self._use_env_state:

View File

@@ -1,36 +0,0 @@
import json
import os
from dataclasses import asdict, dataclass
import torch
@dataclass
class ClassifierConfig:
"""Configuration for the Classifier model."""
num_classes: int = 2
hidden_dim: int = 256
dropout_rate: float = 0.1
model_name: str = "microsoft/resnet-50"
device: str = "cuda" if torch.cuda.is_available() else "mps"
model_type: str = "cnn" # "transformer" or "cnn"
def save_pretrained(self, save_dir):
"""Save config to json file."""
os.makedirs(save_dir, exist_ok=True)
# Convert to dict and save as JSON
config_dict = asdict(self)
with open(os.path.join(save_dir, "config.json"), "w") as f:
json.dump(config_dict, f, indent=2)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path):
"""Load config from json file."""
config_file = os.path.join(pretrained_model_name_or_path, "config.json")
with open(config_file) as f:
config_dict = json.load(f)
return cls(**config_dict)

View File

@@ -1,134 +0,0 @@
import logging
from typing import Optional
import torch
from huggingface_hub import PyTorchModelHubMixin
from torch import Tensor, nn
from transformers import AutoImageProcessor, AutoModel
from .configuration_classifier import ClassifierConfig
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
class ClassifierOutput:
"""Wrapper for classifier outputs with additional metadata."""
def __init__(
self, logits: Tensor, probabilities: Optional[Tensor] = None, hidden_states: Optional[Tensor] = None
):
self.logits = logits
self.probabilities = probabilities
self.hidden_states = hidden_states
class Classifier(
nn.Module,
PyTorchModelHubMixin,
# Add Hub metadata
library_name="lerobot",
repo_url="https://github.com/huggingface/lerobot",
tags=["robotics", "vision-classifier"],
):
"""Image classifier built on top of a pre-trained encoder."""
# Add name attribute for factory
name = "classifier"
def __init__(self, config: ClassifierConfig):
super().__init__()
self.config = config
self.processor = AutoImageProcessor.from_pretrained(self.config.model_name, trust_remote_code=True)
encoder = AutoModel.from_pretrained(self.config.model_name, trust_remote_code=True)
# Extract vision model if we're given a multimodal model
if hasattr(encoder, "vision_model"):
logging.info("Multimodal model detected - using vision encoder only")
self.encoder = encoder.vision_model
self.vision_config = encoder.config.vision_config
else:
self.encoder = encoder
self.vision_config = getattr(encoder, "config", None)
# Model type from config
self.is_cnn = self.config.model_type == "cnn"
# For CNNs, initialize backbone
if self.is_cnn:
self._setup_cnn_backbone()
self._freeze_encoder()
self._build_classifier_head()
def _setup_cnn_backbone(self):
"""Set up CNN encoder"""
if hasattr(self.encoder, "fc"):
self.feature_dim = self.encoder.fc.in_features
self.encoder = nn.Sequential(*list(self.encoder.children())[:-1])
elif hasattr(self.encoder.config, "hidden_sizes"):
self.feature_dim = self.encoder.config.hidden_sizes[-1] # Last channel dimension
else:
raise ValueError("Unsupported CNN architecture")
def _freeze_encoder(self) -> None:
"""Freeze the encoder parameters."""
for param in self.encoder.parameters():
param.requires_grad = False
def _build_classifier_head(self) -> None:
"""Initialize the classifier head architecture."""
# Get input dimension based on model type
if self.is_cnn:
input_dim = self.feature_dim
else: # Transformer models
if hasattr(self.encoder.config, "hidden_size"):
input_dim = self.encoder.config.hidden_size
else:
raise ValueError("Unsupported transformer architecture since hidden_size is not found")
self.classifier_head = nn.Sequential(
nn.Linear(input_dim, self.config.hidden_dim),
nn.Dropout(self.config.dropout_rate),
nn.LayerNorm(self.config.hidden_dim),
nn.ReLU(),
nn.Linear(self.config.hidden_dim, 1 if self.config.num_classes == 2 else self.config.num_classes),
)
def _get_encoder_output(self, x: torch.Tensor) -> torch.Tensor:
"""Extract the appropriate output from the encoder."""
# Process images with the processor (handles resizing and normalization)
processed = self.processor(
images=x, # LeRobotDataset already provides proper tensor format
return_tensors="pt",
)
processed = processed["pixel_values"].to(x.device)
with torch.no_grad():
if self.is_cnn:
# The HF ResNet applies pooling internally
outputs = self.encoder(processed)
# Get pooled output directly
features = outputs.pooler_output
if features.dim() > 2:
features = features.squeeze(-1).squeeze(-1)
return features
else: # Transformer models
outputs = self.encoder(processed)
if hasattr(outputs, "pooler_output") and outputs.pooler_output is not None:
return outputs.pooler_output
return outputs.last_hidden_state[:, 0, :]
def forward(self, x: torch.Tensor) -> ClassifierOutput:
"""Forward pass of the classifier."""
# For training, we expect input to be a tensor directly from LeRobotDataset
encoder_output = self._get_encoder_output(x)
logits = self.classifier_head(encoder_output)
if self.config.num_classes == 2:
logits = logits.squeeze(-1)
probabilities = torch.sigmoid(logits)
else:
probabilities = torch.softmax(logits, dim=-1)
return ClassifierOutput(logits=logits, probabilities=probabilities, hidden_states=encoder_output)

View File

@@ -1,23 +0,0 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
@dataclass
class HILSerlConfig:
pass

View File

@@ -1,29 +0,0 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch.nn as nn
from huggingface_hub import PyTorchModelHubMixin
class HILSerlPolicy(
nn.Module,
PyTorchModelHubMixin,
library_name="lerobot",
repo_url="https://github.com/huggingface/lerobot",
tags=["robotics", "hilserl"],
):
pass

View File

@@ -1,39 +0,0 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
@dataclass
class SACConfig:
discount = 0.99
temperature_init = 1.0
num_critics = 2
critic_lr = 3e-4
actor_lr = 3e-4
critic_network_kwargs = {
"hidden_dims": [256, 256],
"activate_final": True,
}
actor_network_kwargs = {
"hidden_dims": [256, 256],
"activate_final": True,
}
policy_kwargs = {
"tanh_squash_distribution": True,
"std_parameterization": "uniform",
}

View File

@@ -1,683 +0,0 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: (1) better device management
from collections import deque
from copy import deepcopy
from functools import partial
import einops
import torch
import torch.nn as nn
import torch.nn.functional as F # noqa: N812
from torch import Tensor
from huggingface_hub import PyTorchModelHubMixin
from lerobot.common.policies.normalize import Normalize, Unnormalize
from lerobot.common.policies.sac.configuration_sac import SACConfig
import numpy as np
from typing import Callable, Optional, Tuple, Sequence
class SACPolicy(
nn.Module,
PyTorchModelHubMixin,
library_name="lerobot",
repo_url="https://github.com/huggingface/lerobot",
tags=["robotics", "RL", "SAC"],
):
def __init__(
self, config: SACConfig | None = None, dataset_stats: dict[str, dict[str, Tensor]] | None = None
):
super().__init__()
if config is None:
config = SACConfig()
self.config = config
if config.input_normalization_modes is not None:
self.normalize_inputs = Normalize(
config.input_shapes, config.input_normalization_modes, dataset_stats
)
else:
self.normalize_inputs = nn.Identity()
self.normalize_targets = Normalize(
config.output_shapes, config.output_normalization_modes, dataset_stats
)
self.unnormalize_outputs = Unnormalize(
config.output_shapes, config.output_normalization_modes, dataset_stats
)
encoder = SACObservationEncoder(config)
# Define networks
critic_nets = []
for _ in range(config.num_critics):
critic_net = Critic(
encoder=encoder,
network=MLP(**config.critic_network_kwargs)
)
critic_nets.append(critic_net)
self.critic_ensemble = create_critic_ensemble(critic_nets, config.num_critics)
self.critic_target = deepcopy(self.critic_ensemble)
self.actor_network = Policy(
encoder=encoder,
network=MLP(**config.actor_network_kwargs),
action_dim=config.output_shapes["action"][0],
**config.policy_kwargs
)
self.temperature = LagrangeMultiplier(init_value=config.temperature_init)
def reset(self):
"""
Clear observation and action queues. Should be called on `env.reset()`
queues are populated during rollout of the policy, they contain the n latest observations and actions
"""
self._queues = {
"observation.state": deque(maxlen=1),
"action": deque(maxlen=1),
}
if self._use_image:
self._queues["observation.image"] = deque(maxlen=1)
if self._use_env_state:
self._queues["observation.environment_state"] = deque(maxlen=1)
@torch.no_grad()
def select_action(self, batch: dict[str, Tensor]) -> Tensor:
actions, _ = self.actor_network(batch['observations'])###
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor | float]:
"""Run the batch through the model and compute the loss.
Returns a dictionary with loss as a tensor, and other information as native floats.
"""
batch = self.normalize_inputs(batch)
# batch shape is (b, 2, ...) where index 1 returns the current observation and
# the next observation for caluculating the right td index.
actions = batch["action"][:, 0]
rewards = batch["next.reward"][:, 0]
observations = {}
next_observations = {}
for k in batch:
if k.startswith("observation."):
observations[k] = batch[k][:, 0]
next_observations[k] = batch[k][:, 1]
# perform image augmentation
# reward bias
# from HIL-SERL code base
# add_or_replace={"rewards": batch["rewards"] + self.config["reward_bias"]} in reward_batch
# calculate critics loss
# 1- compute actions from policy
action_preds, log_probs = self.actor_network(observations)
# 2- compute q targets
q_targets = self.target_qs(next_observations, action_preds)
# critics subsample size
min_q = q_targets.min(dim=0)
# backup entropy
td_target = rewards + self.discount * min_q
# 3- compute predicted qs
q_preds = self.critic_ensemble(observations, actions)
# 4- Calculate loss
# Compute state-action value loss (TD loss) for all of the Q functions in the ensemble.
critics_loss = (
F.mse_loss(
q_preds,
einops.repeat(td_target, "t b -> e t b", e=q_preds.shape[0]),
reduction="none",
).sum(0) # sum over ensemble
# `q_preds_ensemble` depends on the first observation and the actions.
* ~batch["observation.state_is_pad"][0]
* ~batch["action_is_pad"]
# q_targets depends on the reward and the next observations.
* ~batch["next.reward_is_pad"]
* ~batch["observation.state_is_pad"][1:]
).sum(0).mean()
# calculate actors loss
# 1- temperature
temperature = self.temperature()
# 2- get actions (batch_size, action_dim) and log probs (batch_size,)
actions, log_probs = self.actor_network(observations) \
# 3- get q-value predictions
with torch.no_grad():
q_preds = self.critic_ensemble(observations, actions, return_type="mean")
actor_loss = (
-(q_preds - temperature * log_probs).mean()
* ~batch["observation.state_is_pad"][0]
* ~batch["action_is_pad"]
).mean()
# calculate temperature loss
# 1- calculate entropy
entropy = -log_probs.mean()
temperature_loss = temperature * (entropy - self.target_entropy).mean()
loss = critics_loss + actor_loss + temperature_loss
return {
"critics_loss": critics_loss.item(),
"actor_loss": actor_loss.item(),
"temperature_loss": temperature_loss.item(),
"temperature": temperature.item(),
"entropy": entropy.item(),
"loss": loss,
}
def update(self):
self.critic_target.lerp_(self.critic_ensemble, self.config.critic_target_update_weight)
#for target_param, param in zip(self.critic_target.parameters(), self.critic_ensemble.parameters()):
# target_param.data.copy_(target_param.data * (1.0 - self.config.critic_target_update_weight) + param.data * self.critic_target_update_weight)
class MLP(nn.Module):
def __init__(
self,
config: SACConfig,
activations: Callable[[torch.Tensor], torch.Tensor] | str = nn.SiLU(),
activate_final: bool = False,
dropout_rate: Optional[float] = None,
):
super().__init__()
self.activate_final = config.activate_final
layers = []
for i, size in enumerate(config.network_hidden_dims):
layers.append(nn.Linear(config.network_hidden_dims[i-1] if i > 0 else config.network_hidden_dims[0], size))
if i + 1 < len(config.network_hidden_dims) or activate_final:
if dropout_rate is not None and dropout_rate > 0:
layers.append(nn.Dropout(p=dropout_rate))
layers.append(nn.LayerNorm(size))
layers.append(activations if isinstance(activations, nn.Module) else getattr(nn, activations)())
self.net = nn.Sequential(*layers)
def forward(self, x: torch.Tensor, train: bool = False) -> torch.Tensor:
# in training mode or not. TODO: find better way to do this
self.train(train)
return self.net(x)
class Critic(nn.Module):
def __init__(
self,
encoder: Optional[nn.Module],
network: nn.Module,
init_final: Optional[float] = None,
activate_final: bool = False,
device: str = "cuda"
):
super().__init__()
self.device = torch.device(device)
self.encoder = encoder
self.network = network
self.init_final = init_final
self.activate_final = activate_final
# Output layer
if init_final is not None:
if self.activate_final:
self.output_layer = nn.Linear(network.net[-3].out_features, 1)
else:
self.output_layer = nn.Linear(network.net[-2].out_features, 1)
nn.init.uniform_(self.output_layer.weight, -init_final, init_final)
nn.init.uniform_(self.output_layer.bias, -init_final, init_final)
else:
if self.activate_final:
self.output_layer = nn.Linear(network.net[-3].out_features, 1)
else:
self.output_layer = nn.Linear(network.net[-2].out_features, 1)
orthogonal_init()(self.output_layer.weight)
self.to(self.device)
def forward(
self,
observations: torch.Tensor,
actions: torch.Tensor,
train: bool = False
) -> torch.Tensor:
self.train(train)
observations = observations.to(self.device)
actions = actions.to(self.device)
if self.encoder is not None:
obs_enc = self.encoder(observations)
else:
obs_enc = observations
inputs = torch.cat([obs_enc, actions], dim=-1)
x = self.network(inputs)
value = self.output_layer(x)
return value.squeeze(-1)
def q_value_ensemble(
self,
observations: torch.Tensor,
actions: torch.Tensor,
train: bool = False
) -> torch.Tensor:
observations = observations.to(self.device)
actions = actions.to(self.device)
if len(actions.shape) == 3: # [batch_size, num_actions, action_dim]
batch_size, num_actions = actions.shape[:2]
obs_expanded = observations.unsqueeze(1).expand(-1, num_actions, -1)
obs_flat = obs_expanded.reshape(-1, observations.shape[-1])
actions_flat = actions.reshape(-1, actions.shape[-1])
q_values = self(obs_flat, actions_flat, train)
return q_values.reshape(batch_size, num_actions)
else:
return self(observations, actions, train)
class Policy(nn.Module):
def __init__(
self,
encoder: Optional[nn.Module],
network: nn.Module,
action_dim: int,
std_parameterization: str = "exp",
std_min: float = 1e-5,
std_max: float = 10.0,
tanh_squash_distribution: bool = False,
fixed_std: Optional[torch.Tensor] = None,
init_final: Optional[float] = None,
activate_final: bool = False,
device: str = "cuda"
):
super().__init__()
self.device = torch.device(device)
self.encoder = encoder
self.network = network
self.action_dim = action_dim
self.std_parameterization = std_parameterization
self.std_min = std_min
self.std_max = std_max
self.tanh_squash_distribution = tanh_squash_distribution
self.fixed_std = fixed_std.to(self.device) if fixed_std is not None else None
self.activate_final = activate_final
# Mean layer
if self.activate_final:
self.mean_layer = nn.Linear(network.net[-3].out_features, action_dim)
else:
self.mean_layer = nn.Linear(network.net[-2].out_features, action_dim)
if init_final is not None:
nn.init.uniform_(self.mean_layer.weight, -init_final, init_final)
nn.init.uniform_(self.mean_layer.bias, -init_final, init_final)
else:
orthogonal_init()(self.mean_layer.weight)
# Standard deviation layer or parameter
if fixed_std is None:
if std_parameterization == "uniform":
self.log_stds = nn.Parameter(torch.zeros(action_dim, device=self.device))
else:
if self.activate_final:
self.std_layer = nn.Linear(network.net[-3].out_features, action_dim)
else:
self.std_layer = nn.Linear(network.net[-2].out_features, action_dim)
if init_final is not None:
nn.init.uniform_(self.std_layer.weight, -init_final, init_final)
nn.init.uniform_(self.std_layer.bias, -init_final, init_final)
else:
orthogonal_init()(self.std_layer.weight)
self.to(self.device)
def forward(
self,
observations: torch.Tensor,
temperature: float = 1.0,
train: bool = False,
non_squash_distribution: bool = False
) -> torch.distributions.Distribution:
self.train(train)
# Encode observations if encoder exists
if self.encoder is not None:
with torch.set_grad_enabled(train):
obs_enc = self.encoder(observations, train=train)
else:
obs_enc = observations
# Get network outputs
outputs = self.network(obs_enc)
means = self.mean_layer(outputs)
# Compute standard deviations
if self.fixed_std is None:
if self.std_parameterization == "exp":
log_stds = self.std_layer(outputs)
stds = torch.exp(log_stds)
elif self.std_parameterization == "softplus":
stds = torch.nn.functional.softplus(self.std_layer(outputs))
elif self.std_parameterization == "uniform":
stds = torch.exp(self.log_stds).expand_as(means)
else:
raise ValueError(
f"Invalid std_parameterization: {self.std_parameterization}"
)
else:
assert self.std_parameterization == "fixed"
stds = self.fixed_std.expand_as(means)
# Clip standard deviations and scale with temperature
temperature = torch.tensor(temperature, device=self.device)
stds = torch.clamp(stds, self.std_min, self.std_max) * torch.sqrt(temperature)
# Create distribution
if self.tanh_squash_distribution and not non_squash_distribution:
distribution = TanhMultivariateNormalDiag(
loc=means,
scale_diag=stds,
)
else:
distribution = torch.distributions.Normal(
loc=means,
scale=stds,
)
return distribution
def get_features(self, observations: torch.Tensor) -> torch.Tensor:
"""Get encoded features from observations"""
observations = observations.to(self.device)
if self.encoder is not None:
with torch.no_grad():
return self.encoder(observations, train=False)
return observations
class SACObservationEncoder(nn.Module):
"""Encode image and/or state vector observations.
TODO(ke-wang): The original work allows for (1) stacking multiple history frames and (2) using pretrained resnet encoders.
"""
def __init__(self, config: SACConfig):
"""
Creates encoders for pixel and/or state modalities.
"""
super().__init__()
self.config = config
if "observation.image" in config.input_shapes:
self.image_enc_layers = nn.Sequential(
nn.Conv2d(
config.input_shapes["observation.image"][0], config.image_encoder_hidden_dim, 7, stride=2
),
nn.ReLU(),
nn.Conv2d(config.image_encoder_hidden_dim, config.image_encoder_hidden_dim, 5, stride=2),
nn.ReLU(),
nn.Conv2d(config.image_encoder_hidden_dim, config.image_encoder_hidden_dim, 3, stride=2),
nn.ReLU(),
nn.Conv2d(config.image_encoder_hidden_dim, config.image_encoder_hidden_dim, 3, stride=2),
nn.ReLU(),
)
dummy_batch = torch.zeros(1, *config.input_shapes["observation.image"])
with torch.inference_mode():
out_shape = self.image_enc_layers(dummy_batch).shape[1:]
self.image_enc_layers.extend(
nn.Sequential(
nn.Flatten(),
nn.Linear(np.prod(out_shape), config.latent_dim),
nn.LayerNorm(config.latent_dim),
nn.Tanh(),
)
)
if "observation.state" in config.input_shapes:
self.state_enc_layers = nn.Sequential(
nn.Linear(config.input_shapes["observation.state"][0], config.state_encoder_hidden_dim),
nn.ELU(),
nn.Linear(config.state_encoder_hidden_dim, config.latent_dim),
nn.LayerNorm(config.latent_dim),
nn.Tanh(),
)
if "observation.environment_state" in config.input_shapes:
self.env_state_enc_layers = nn.Sequential(
nn.Linear(
config.input_shapes["observation.environment_state"][0], config.state_encoder_hidden_dim
),
nn.ELU(),
nn.Linear(config.state_encoder_hidden_dim, config.latent_dim),
nn.LayerNorm(config.latent_dim),
nn.Tanh(),
)
def forward(self, obs_dict: dict[str, Tensor]) -> Tensor:
"""Encode the image and/or state vector.
Each modality is encoded into a feature vector of size (latent_dim,) and then a uniform mean is taken
over all features.
"""
feat = []
# Concatenate all images along the channel dimension.
image_keys = [k for k in self.config.input_shapes if k.startswith("observation.image")]
for image_key in image_keys:
feat.append(flatten_forward_unflatten(self.image_enc_layers, obs_dict[image_key]))
if "observation.environment_state" in self.config.input_shapes:
feat.append(self.env_state_enc_layers(obs_dict["observation.environment_state"]))
if "observation.state" in self.config.input_shapes:
feat.append(self.state_enc_layers(obs_dict["observation.state"]))
return torch.stack(feat, dim=0).mean(0)
class LagrangeMultiplier(nn.Module):
def __init__(
self,
init_value: float = 1.0,
constraint_shape: Sequence[int] = (),
device: str = "cuda"
):
super().__init__()
self.device = torch.device(device)
init_value = torch.log(torch.exp(torch.tensor(init_value, device=self.device)) - 1)
# Initialize the Lagrange multiplier as a parameter
self.lagrange = nn.Parameter(
torch.full(constraint_shape, init_value, dtype=torch.float32, device=self.device)
)
self.to(self.device)
def forward(
self,
lhs: Optional[torch.Tensor] = None,
rhs: Optional[torch.Tensor] = None
) -> torch.Tensor:
# Get the multiplier value based on parameterization
multiplier = torch.nn.functional.softplus(self.lagrange)
# Return the raw multiplier if no constraint values provided
if lhs is None:
return multiplier
# Move inputs to device
lhs = lhs.to(self.device)
if rhs is not None:
rhs = rhs.to(self.device)
# Use the multiplier to compute the Lagrange penalty
if rhs is None:
rhs = torch.zeros_like(lhs, device=self.device)
diff = lhs - rhs
assert diff.shape == multiplier.shape, f"Shape mismatch: {diff.shape} vs {multiplier.shape}"
return multiplier * diff
# The TanhMultivariateNormalDiag is a probability distribution that represents a transformed normal (Gaussian) distribution where:
# 1. The base distribution is a diagonal multivariate normal distribution
# 2. The samples from this normal distribution are transformed through a tanh function, which squashes the values to be between -1 and 1
# 3. Optionally, the values can be further transformed to fit within arbitrary bounds [low, high] using an affine transformation
# This type of distribution is commonly used in reinforcement learning, particularly for continuous action spaces
class TanhMultivariateNormalDiag(torch.distributions.TransformedDistribution):
def __init__(
self,
loc: torch.Tensor,
scale_diag: torch.Tensor,
low: Optional[torch.Tensor] = None,
high: Optional[torch.Tensor] = None,
):
# Create base normal distribution
base_distribution = torch.distributions.Normal(loc=loc, scale=scale_diag)
# Create list of transforms
transforms = []
# Add tanh transform
transforms.append(torch.distributions.transforms.TanhTransform())
# Add rescaling transform if bounds are provided
if low is not None and high is not None:
transforms.append(
torch.distributions.transforms.AffineTransform(
loc=(high + low) / 2,
scale=(high - low) / 2
)
)
# Initialize parent class
super().__init__(
base_distribution=base_distribution,
transforms=transforms
)
# Store parameters
self.loc = loc
self.scale_diag = scale_diag
self.low = low
self.high = high
def mode(self) -> torch.Tensor:
"""Get the mode of the transformed distribution"""
# The mode of a normal distribution is its mean
mode = self.loc
# Apply transforms
for transform in self.transforms:
mode = transform(mode)
return mode
def rsample(self, sample_shape=torch.Size()) -> torch.Tensor:
"""
Reparameterized sample from the distribution
"""
# Sample from base distribution
x = self.base_dist.rsample(sample_shape)
# Apply transforms
for transform in self.transforms:
x = transform(x)
return x
def log_prob(self, value: torch.Tensor) -> torch.Tensor:
"""
Compute log probability of a value
Includes the log det jacobian for the transforms
"""
# Initialize log prob
log_prob = torch.zeros_like(value[..., 0])
# Inverse transforms to get back to normal distribution
q = value
for transform in reversed(self.transforms):
q = transform.inv(q)
log_prob = log_prob - transform.log_abs_det_jacobian(q, transform(q))
# Add base distribution log prob
log_prob = log_prob + self.base_dist.log_prob(q).sum(-1)
return log_prob
def sample_and_log_prob(self, sample_shape=torch.Size()) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Sample from the distribution and compute log probability
"""
x = self.rsample(sample_shape)
log_prob = self.log_prob(x)
return x, log_prob
def entropy(self) -> torch.Tensor:
"""
Compute entropy of the distribution
"""
# Start with base distribution entropy
entropy = self.base_dist.entropy().sum(-1)
# Add log det jacobian for each transform
x = self.rsample()
for transform in self.transforms:
entropy = entropy + transform.log_abs_det_jacobian(x, transform(x))
x = transform(x)
return entropy
def create_critic_ensemble(critic_class, num_critics: int, device: str = "cuda") -> nn.ModuleList:
"""Creates an ensemble of critic networks"""
critics = nn.ModuleList([critic_class() for _ in range(num_critics)])
return critics.to(device)
def orthogonal_init():
return lambda x: torch.nn.init.orthogonal_(x, gain=1.0)
# borrowed from tdmpc
def flatten_forward_unflatten(fn: Callable[[Tensor], Tensor], image_tensor: Tensor) -> Tensor:
"""Helper to temporarily flatten extra dims at the start of the image tensor.
Args:
fn: Callable that the image tensor will be passed to. It should accept (B, C, H, W) and return
(B, *), where * is any number of dimensions.
image_tensor: An image tensor of shape (**, C, H, W), where ** is any number of dimensions and
can be more than 1 dimensions, generally different from *.
Returns:
A return value from the callable reshaped to (**, *).
"""
if image_tensor.ndim == 4:
return fn(image_tensor)
start_dims = image_tensor.shape[:-3]
inp = torch.flatten(image_tensor, end_dim=-4)
flat_out = fn(inp)
return torch.reshape(flat_out, (*start_dims, *flat_out.shape[1:]))

View File

@@ -5,99 +5,80 @@ This file contains utilities for recording frames from Intel Realsense cameras.
import argparse
import concurrent.futures
import logging
import math
import shutil
import threading
import time
import traceback
from collections import Counter
from dataclasses import dataclass, replace
from pathlib import Path
from threading import Thread
import cv2
import numpy as np
import pyrealsense2 as rs
from PIL import Image
from lerobot.common.robot_devices.utils import (
RobotDeviceAlreadyConnectedError,
RobotDeviceNotConnectedError,
busy_wait,
)
from lerobot.common.utils.utils import capture_timestamp_utc
from lerobot.scripts.control_robot import busy_wait
SERIAL_NUMBER_INDEX = 1
def find_cameras(raise_when_empty=True, mock=False) -> list[dict]:
def find_camera_indices(raise_when_empty=True) -> list[int]:
"""
Find the names and the serial numbers of the Intel RealSense cameras
Find the serial numbers of the Intel RealSense cameras
connected to the computer.
"""
if mock:
import tests.mock_pyrealsense2 as rs
else:
import pyrealsense2 as rs
cameras = []
camera_ids = []
for device in rs.context().query_devices():
serial_number = int(device.get_info(rs.camera_info(SERIAL_NUMBER_INDEX)))
name = device.get_info(rs.camera_info.name)
cameras.append(
{
"serial_number": serial_number,
"name": name,
}
)
camera_ids.append(serial_number)
if raise_when_empty and len(cameras) == 0:
if raise_when_empty and len(camera_ids) == 0:
raise OSError(
"Not a single camera was detected. Try re-plugging, or re-installing `librealsense` and its python wrapper `pyrealsense2`, or updating the firmware."
)
return cameras
return camera_ids
def save_image(img_array, serial_number, frame_index, images_dir):
def save_image(img_array, camera_idx, frame_index, images_dir):
try:
img = Image.fromarray(img_array)
path = images_dir / f"camera_{serial_number}_frame_{frame_index:06d}.png"
path = images_dir / f"camera_{camera_idx}_frame_{frame_index:06d}.png"
path.parent.mkdir(parents=True, exist_ok=True)
img.save(str(path), quality=100)
logging.info(f"Saved image: {path}")
except Exception as e:
logging.error(f"Failed to save image for camera {serial_number} frame {frame_index}: {e}")
logging.error(f"Failed to save image for camera {camera_idx} frame {frame_index}: {e}")
def save_images_from_cameras(
images_dir: Path,
serial_numbers: list[int] | None = None,
camera_ids: list[int] | None = None,
fps=None,
width=None,
height=None,
record_time_s=2,
mock=False,
):
"""
Initializes all the cameras and saves images to the directory. Useful to visually identify the camera
associated to a given serial number.
associated to a given camera index.
"""
if serial_numbers is None or len(serial_numbers) == 0:
camera_infos = find_cameras(mock=mock)
serial_numbers = [cam["serial_number"] for cam in camera_infos]
if mock:
import tests.mock_cv2 as cv2
else:
import cv2
if camera_ids is None:
camera_ids = find_camera_indices()
print("Connecting cameras")
cameras = []
for cam_sn in serial_numbers:
print(f"{cam_sn=}")
camera = IntelRealSenseCamera(cam_sn, fps=fps, width=width, height=height, mock=mock)
for cam_idx in camera_ids:
camera = IntelRealSenseCamera(cam_idx, fps=fps, width=width, height=height)
camera.connect()
print(
f"IntelRealSenseCamera({camera.serial_number}, fps={camera.fps}, width={camera.width}, height={camera.height}, color_mode={camera.color_mode})"
f"IntelRealSenseCamera({camera.camera_index}, fps={camera.fps}, width={camera.width}, height={camera.height}, color_mode={camera.color_mode})"
)
cameras.append(camera)
@@ -112,7 +93,7 @@ def save_images_from_cameras(
frame_index = 0
start_time = time.perf_counter()
try:
with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor:
with concurrent.futures.ThreadPoolExecutor(max_workers=4) as executor:
while True:
now = time.perf_counter()
@@ -122,13 +103,12 @@ def save_images_from_cameras(
image = camera.read() if fps is None else camera.async_read()
if image is None:
print("No Frame")
bgr_converted_image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
executor.submit(
save_image,
bgr_converted_image,
camera.serial_number,
camera.camera_index,
frame_index,
images_dir,
)
@@ -160,7 +140,6 @@ class IntelRealSenseCameraConfig:
IntelRealSenseCameraConfig(90, 640, 480)
IntelRealSenseCameraConfig(30, 1280, 720)
IntelRealSenseCameraConfig(30, 640, 480, use_depth=True)
IntelRealSenseCameraConfig(30, 640, 480, rotation=90)
```
"""
@@ -168,11 +147,8 @@ class IntelRealSenseCameraConfig:
width: int | None = None
height: int | None = None
color_mode: str = "rgb"
channels: int | None = None
use_depth: bool = False
force_hardware_reset: bool = True
rotation: int | None = None
mock: bool = False
def __post_init__(self):
if self.color_mode not in ["rgb", "bgr"]:
@@ -180,25 +156,19 @@ class IntelRealSenseCameraConfig:
f"`color_mode` is expected to be 'rgb' or 'bgr', but {self.color_mode} is provided."
)
self.channels = 3
at_least_one_is_not_none = self.fps is not None or self.width is not None or self.height is not None
at_least_one_is_none = self.fps is None or self.width is None or self.height is None
if at_least_one_is_not_none and at_least_one_is_none:
if (self.fps or self.width or self.height) and not (self.fps and self.width and self.height):
raise ValueError(
"For `fps`, `width` and `height`, either all of them need to be set, or none of them, "
f"but {self.fps=}, {self.width=}, {self.height=} were provided."
)
if self.rotation not in [-90, None, 90, 180]:
raise ValueError(f"`rotation` must be in [-90, None, 90, 180] (got {self.rotation})")
class IntelRealSenseCamera:
"""
The IntelRealSenseCamera class is similar to OpenCVCamera class but adds additional features for Intel Real Sense cameras:
- is instantiated with the serial number of the camera - won't randomly change as it can be the case of OpenCVCamera for Linux,
- can also be instantiated with the camera's name — if it's unique — using IntelRealSenseCamera.init_from_name(),
- camera_index corresponds to the serial number of the camera,
- camera_index won't randomly change as it can be the case of OpenCVCamera for Linux,
- read is more reliable than OpenCVCamera,
- depth map can be returned.
To find the camera indices of your cameras, you can run our utility script that will save a few frames for each camera:
@@ -211,10 +181,8 @@ class IntelRealSenseCamera:
Example of usage:
```python
# Instantiate with its serial number
camera = IntelRealSenseCamera(128422271347)
# Or by its name if it's unique
camera = IntelRealSenseCamera.init_from_name("Intel RealSense D405")
camera_index = 128422271347
camera = IntelRealSenseCamera(camera_index)
camera.connect()
color_image = camera.read()
# when done using the camera, consider disconnecting
@@ -223,19 +191,19 @@ class IntelRealSenseCamera:
Example of changing default fps, width, height and color_mode:
```python
camera = IntelRealSenseCamera(serial_number, fps=30, width=1280, height=720)
camera = IntelRealSenseCamera(camera_index, fps=30, width=1280, height=720)
camera = connect() # applies the settings, might error out if these settings are not compatible with the camera
camera = IntelRealSenseCamera(serial_number, fps=90, width=640, height=480)
camera = IntelRealSenseCamera(camera_index, fps=90, width=640, height=480)
camera = connect()
camera = IntelRealSenseCamera(serial_number, fps=90, width=640, height=480, color_mode="bgr")
camera = IntelRealSenseCamera(camera_index, fps=90, width=640, height=480, color_mode="bgr")
camera = connect()
```
Example of returning depth:
```python
camera = IntelRealSenseCamera(serial_number, use_depth=True)
camera = IntelRealSenseCamera(camera_index, use_depth=True)
camera.connect()
color_image, depth_map = camera.read()
```
@@ -243,7 +211,7 @@ class IntelRealSenseCamera:
def __init__(
self,
serial_number: int,
camera_index: int,
config: IntelRealSenseCameraConfig | None = None,
**kwargs,
):
@@ -253,15 +221,13 @@ class IntelRealSenseCamera:
# Overwrite the config arguments using kwargs
config = replace(config, **kwargs)
self.serial_number = serial_number
self.camera_index = camera_index
self.fps = config.fps
self.width = config.width
self.height = config.height
self.channels = config.channels
self.color_mode = config.color_mode
self.use_depth = config.use_depth
self.force_hardware_reset = config.force_hardware_reset
self.mock = config.mock
self.camera = None
self.is_connected = False
@@ -271,55 +237,14 @@ class IntelRealSenseCamera:
self.depth_map = None
self.logs = {}
if self.mock:
import tests.mock_cv2 as cv2
else:
import cv2
# TODO(alibets): Do we keep original width/height or do we define them after rotation?
self.rotation = None
if config.rotation == -90:
self.rotation = cv2.ROTATE_90_COUNTERCLOCKWISE
elif config.rotation == 90:
self.rotation = cv2.ROTATE_90_CLOCKWISE
elif config.rotation == 180:
self.rotation = cv2.ROTATE_180
@classmethod
def init_from_name(cls, name: str, config: IntelRealSenseCameraConfig | None = None, **kwargs):
camera_infos = find_cameras()
camera_names = [cam["name"] for cam in camera_infos]
this_name_count = Counter(camera_names)[name]
if this_name_count > 1:
# TODO(aliberts): Test this with multiple identical cameras (Aloha)
raise ValueError(
f"Multiple {name} cameras have been detected. Please use their serial number to instantiate them."
)
name_to_serial_dict = {cam["name"]: cam["serial_number"] for cam in camera_infos}
cam_sn = name_to_serial_dict[name]
if config is None:
config = IntelRealSenseCameraConfig()
# Overwrite the config arguments using kwargs
config = replace(config, **kwargs)
return cls(serial_number=cam_sn, config=config, **kwargs)
def connect(self):
if self.is_connected:
raise RobotDeviceAlreadyConnectedError(
f"IntelRealSenseCamera({self.serial_number}) is already connected."
f"IntelRealSenseCamera({self.camera_index}) is already connected."
)
if self.mock:
import tests.mock_pyrealsense2 as rs
else:
import pyrealsense2 as rs
config = rs.config()
config.enable_device(str(self.serial_number))
config.enable_device(str(self.camera_index))
if self.fps and self.width and self.height:
# TODO(rcadene): can we set rgb8 directly?
@@ -335,7 +260,7 @@ class IntelRealSenseCamera:
self.camera = rs.pipeline()
try:
profile = self.camera.start(config)
self.camera.start(config)
is_camera_open = True
except RuntimeError:
is_camera_open = False
@@ -344,41 +269,15 @@ class IntelRealSenseCamera:
# If the camera doesn't work, display the camera indices corresponding to
# valid cameras.
if not is_camera_open:
# Verify that the provided `serial_number` is valid before printing the traceback
camera_infos = find_cameras()
serial_numbers = [cam["serial_number"] for cam in camera_infos]
if self.serial_number not in serial_numbers:
# Verify that the provided `camera_index` is valid before printing the traceback
available_cam_ids = find_camera_indices()
if self.camera_index not in available_cam_ids:
raise ValueError(
f"`serial_number` is expected to be one of these available cameras {serial_numbers}, but {self.serial_number} is provided instead. "
"To find the serial number you should use, run `python lerobot/common/robot_devices/cameras/intelrealsense.py`."
f"`camera_index` is expected to be one of these available cameras {available_cam_ids}, but {self.camera_index} is provided instead. "
"To find the camera index you should use, run `python lerobot/common/robot_devices/cameras/intelrealsense.py`."
)
raise OSError(f"Can't access IntelRealSenseCamera({self.serial_number}).")
color_stream = profile.get_stream(rs.stream.color)
color_profile = color_stream.as_video_stream_profile()
actual_fps = color_profile.fps()
actual_width = color_profile.width()
actual_height = color_profile.height()
# Using `math.isclose` since actual fps can be a float (e.g. 29.9 instead of 30)
if self.fps is not None and not math.isclose(self.fps, actual_fps, rel_tol=1e-3):
# Using `OSError` since it's a broad that encompasses issues related to device communication
raise OSError(
f"Can't set {self.fps=} for IntelRealSenseCamera({self.serial_number}). Actual value is {actual_fps}."
)
if self.width is not None and self.width != actual_width:
raise OSError(
f"Can't set {self.width=} for IntelRealSenseCamera({self.serial_number}). Actual value is {actual_width}."
)
if self.height is not None and self.height != actual_height:
raise OSError(
f"Can't set {self.height=} for IntelRealSenseCamera({self.serial_number}). Actual value is {actual_height}."
)
self.fps = round(actual_fps)
self.width = round(actual_width)
self.height = round(actual_height)
raise OSError(f"Can't access IntelRealSenseCamera({self.camera_index}).")
self.is_connected = True
@@ -394,14 +293,9 @@ class IntelRealSenseCamera:
"""
if not self.is_connected:
raise RobotDeviceNotConnectedError(
f"IntelRealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
f"IntelRealSenseCamera({self.camera_index}) is not connected. Try running `camera.connect()` first."
)
if self.mock:
import tests.mock_cv2 as cv2
else:
import cv2
start_time = time.perf_counter()
frame = self.camera.wait_for_frames(timeout_ms=5000)
@@ -409,7 +303,7 @@ class IntelRealSenseCamera:
color_frame = frame.get_color_frame()
if not color_frame:
raise OSError(f"Can't capture color image from IntelRealSenseCamera({self.serial_number}).")
raise OSError(f"Can't capture color image from IntelRealSenseCamera({self.camera_index}).")
color_image = np.asanyarray(color_frame.get_data())
@@ -429,9 +323,6 @@ class IntelRealSenseCamera:
f"Can't capture color image with expected height and width ({self.height} x {self.width}). ({h} x {w}) returned instead."
)
if self.rotation is not None:
color_image = cv2.rotate(color_image, self.rotation)
# log the number of seconds it took to read the image
self.logs["delta_timestamp_s"] = time.perf_counter() - start_time
@@ -441,7 +332,7 @@ class IntelRealSenseCamera:
if self.use_depth:
depth_frame = frame.get_depth_frame()
if not depth_frame:
raise OSError(f"Can't capture depth image from IntelRealSenseCamera({self.serial_number}).")
raise OSError(f"Can't capture depth image from IntelRealSenseCamera({self.camera_index}).")
depth_map = np.asanyarray(depth_frame.get_data())
@@ -451,15 +342,12 @@ class IntelRealSenseCamera:
f"Can't capture depth map with expected height and width ({self.height} x {self.width}). ({h} x {w}) returned instead."
)
if self.rotation is not None:
depth_map = cv2.rotate(depth_map, self.rotation)
return color_image, depth_map
else:
return color_image
def read_loop(self):
while not self.stop_event.is_set():
while self.stop_event is None or not self.stop_event.is_set():
if self.use_depth:
self.color_image, self.depth_map = self.read()
else:
@@ -469,7 +357,7 @@ class IntelRealSenseCamera:
"""Access the latest color image"""
if not self.is_connected:
raise RobotDeviceNotConnectedError(
f"IntelRealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
f"IntelRealSenseCamera({self.camera_index}) is not connected. Try running `camera.connect()` first."
)
if self.thread is None:
@@ -480,7 +368,6 @@ class IntelRealSenseCamera:
num_tries = 0
while self.color_image is None:
# TODO(rcadene, aliberts): intelrealsense has diverged compared to opencv over here
num_tries += 1
time.sleep(1 / self.fps)
if num_tries > self.fps and (self.thread.ident is None or not self.thread.is_alive()):
@@ -496,7 +383,7 @@ class IntelRealSenseCamera:
def disconnect(self):
if not self.is_connected:
raise RobotDeviceNotConnectedError(
f"IntelRealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
f"IntelRealSenseCamera({self.camera_index}) is not connected. Try running `camera.connect()` first."
)
if self.thread is not None and self.thread.is_alive():
@@ -521,11 +408,11 @@ if __name__ == "__main__":
description="Save a few frames using `IntelRealSenseCamera` for all cameras connected to the computer, or a selected subset."
)
parser.add_argument(
"--serial-numbers",
"--camera-ids",
type=int,
nargs="*",
default=None,
help="List of serial numbers used to instantiate the `IntelRealSenseCamera`. If not provided, find and use all available camera indices.",
help="List of camera indices used to instantiate the `IntelRealSenseCamera`. If not provided, find and use all available camera indices.",
)
parser.add_argument(
"--fps",

View File

@@ -13,6 +13,7 @@ from dataclasses import dataclass, replace
from pathlib import Path
from threading import Thread
import cv2
import numpy as np
from PIL import Image
@@ -23,6 +24,10 @@ from lerobot.common.robot_devices.utils import (
)
from lerobot.common.utils.utils import capture_timestamp_utc
# Use 1 thread to avoid blocking the main thread. Especially useful during data collection
# when other threads are used to save the images.
cv2.setNumThreads(1)
# The maximum opencv device index depends on your operating system. For instance,
# if you have 3 cameras, they should be associated to index 0, 1, and 2. This is the case
# on MacOS. However, on Ubuntu, the indices are different like 6, 16, 23.
@@ -31,44 +36,20 @@ from lerobot.common.utils.utils import capture_timestamp_utc
MAX_OPENCV_INDEX = 60
def find_cameras(raise_when_empty=False, max_index_search_range=MAX_OPENCV_INDEX, mock=False) -> list[dict]:
cameras = []
def find_camera_indices(raise_when_empty=False, max_index_search_range=MAX_OPENCV_INDEX):
if platform.system() == "Linux":
# Linux uses camera ports
print("Linux detected. Finding available camera indices through scanning '/dev/video*' ports")
possible_ports = [str(port) for port in Path("/dev").glob("video*")]
ports = _find_cameras(possible_ports, mock=mock)
for port in ports:
cameras.append(
{
"port": port,
"index": int(port.removeprefix("/dev/video")),
}
)
possible_camera_ids = []
for port in Path("/dev").glob("video*"):
camera_idx = int(str(port).replace("/dev/video", ""))
possible_camera_ids.append(camera_idx)
else:
print(
"Mac or Windows detected. Finding available camera indices through "
f"scanning all indices from 0 to {MAX_OPENCV_INDEX}"
)
possible_indices = range(max_index_search_range)
indices = _find_cameras(possible_indices, mock=mock)
for index in indices:
cameras.append(
{
"port": None,
"index": index,
}
)
return cameras
def _find_cameras(
possible_camera_ids: list[int | str], raise_when_empty=False, mock=False
) -> list[int | str]:
if mock:
import tests.mock_cv2 as cv2
else:
import cv2
possible_camera_ids = range(max_index_search_range)
camera_ids = []
for camera_idx in possible_camera_ids:
@@ -89,16 +70,6 @@ def _find_cameras(
return camera_ids
def is_valid_unix_path(path: str) -> bool:
"""Note: if 'path' points to a symlink, this will return True only if the target exists"""
p = Path(path)
return p.is_absolute() and p.exists()
def get_camera_index_from_unix_port(port: Path) -> int:
return int(str(port.resolve()).removeprefix("/dev/video"))
def save_image(img_array, camera_index, frame_index, images_dir):
img = Image.fromarray(img_array)
path = images_dir / f"camera_{camera_index:02d}_frame_{frame_index:06d}.png"
@@ -107,26 +78,19 @@ def save_image(img_array, camera_index, frame_index, images_dir):
def save_images_from_cameras(
images_dir: Path,
camera_ids: list | None = None,
fps=None,
width=None,
height=None,
record_time_s=2,
mock=False,
images_dir: Path, camera_ids: list[int] | None = None, fps=None, width=None, height=None, record_time_s=2
):
"""
Initializes all the cameras and saves images to the directory. Useful to visually identify the camera
associated to a given camera index.
"""
if camera_ids is None or len(camera_ids) == 0:
camera_infos = find_cameras(mock=mock)
camera_ids = [cam["index"] for cam in camera_infos]
if camera_ids is None:
camera_ids = find_camera_indices()
print("Connecting cameras")
cameras = []
for cam_idx in camera_ids:
camera = OpenCVCamera(cam_idx, fps=fps, width=width, height=height, mock=mock)
camera = OpenCVCamera(cam_idx, fps=fps, width=width, height=height)
camera.connect()
print(
f"OpenCVCamera({camera.camera_index}, fps={camera.fps}, width={camera.width}, "
@@ -144,7 +108,7 @@ def save_images_from_cameras(
print(f"Saving images to {images_dir}")
frame_index = 0
start_time = time.perf_counter()
with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor:
with concurrent.futures.ThreadPoolExecutor(max_workers=4) as executor:
while True:
now = time.perf_counter()
@@ -165,11 +129,11 @@ def save_images_from_cameras(
dt_s = time.perf_counter() - now
busy_wait(1 / fps - dt_s)
print(f"Frame: {frame_index:04d}\tLatency (ms): {(time.perf_counter() - now) * 1000:.2f}")
if time.perf_counter() - start_time > record_time_s:
break
print(f"Frame: {frame_index:04d}\tLatency (ms): {(time.perf_counter() - now) * 1000:.2f}")
frame_index += 1
print(f"Images have been saved to {images_dir}")
@@ -192,9 +156,6 @@ class OpenCVCameraConfig:
width: int | None = None
height: int | None = None
color_mode: str = "rgb"
channels: int | None = None
rotation: int | None = None
mock: bool = False
def __post_init__(self):
if self.color_mode not in ["rgb", "bgr"]:
@@ -202,11 +163,6 @@ class OpenCVCameraConfig:
f"`color_mode` is expected to be 'rgb' or 'bgr', but {self.color_mode} is provided."
)
self.channels = 3
if self.rotation not in [-90, None, 90, 180]:
raise ValueError(f"`rotation` must be in [-90, None, 90, 180] (got {self.rotation})")
class OpenCVCamera:
"""
@@ -247,7 +203,7 @@ class OpenCVCamera:
```
"""
def __init__(self, camera_index: int | str, config: OpenCVCameraConfig | None = None, **kwargs):
def __init__(self, camera_index: int, config: OpenCVCameraConfig | None = None, **kwargs):
if config is None:
config = OpenCVCameraConfig()
@@ -255,25 +211,10 @@ class OpenCVCamera:
config = replace(config, **kwargs)
self.camera_index = camera_index
self.port = None
# Linux uses ports for connecting to cameras
if platform.system() == "Linux":
if isinstance(self.camera_index, int):
self.port = Path(f"/dev/video{self.camera_index}")
elif isinstance(self.camera_index, str) and is_valid_unix_path(self.camera_index):
self.port = Path(self.camera_index)
# Retrieve the camera index from a potentially symlinked path
self.camera_index = get_camera_index_from_unix_port(self.port)
else:
raise ValueError(f"Please check the provided camera_index: {camera_index}")
self.fps = config.fps
self.width = config.width
self.height = config.height
self.channels = config.channels
self.color_mode = config.color_mode
self.mock = config.mock
self.camera = None
self.is_connected = False
@@ -282,60 +223,43 @@ class OpenCVCamera:
self.color_image = None
self.logs = {}
if self.mock:
import tests.mock_cv2 as cv2
else:
import cv2
# TODO(aliberts): Do we keep original width/height or do we define them after rotation?
self.rotation = None
if config.rotation == -90:
self.rotation = cv2.ROTATE_90_COUNTERCLOCKWISE
elif config.rotation == 90:
self.rotation = cv2.ROTATE_90_CLOCKWISE
elif config.rotation == 180:
self.rotation = cv2.ROTATE_180
def connect(self):
if self.is_connected:
raise RobotDeviceAlreadyConnectedError(f"OpenCVCamera({self.camera_index}) is already connected.")
if self.mock:
import tests.mock_cv2 as cv2
else:
import cv2
# Use 1 thread to avoid blocking the main thread. Especially useful during data collection
# when other threads are used to save the images.
cv2.setNumThreads(1)
camera_idx = f"/dev/video{self.camera_index}" if platform.system() == "Linux" else self.camera_index
# First create a temporary camera trying to access `camera_index`,
# and verify it is a valid camera by calling `isOpened`.
tmp_camera = cv2.VideoCapture(camera_idx)
if platform.system() == "Linux":
# Linux uses ports for connecting to cameras
tmp_camera = cv2.VideoCapture(f"/dev/video{self.camera_index}")
else:
tmp_camera = cv2.VideoCapture(self.camera_index)
is_camera_open = tmp_camera.isOpened()
# Release camera to make it accessible for `find_camera_indices`
tmp_camera.release()
del tmp_camera
# If the camera doesn't work, display the camera indices corresponding to
# valid cameras.
if not is_camera_open:
# Verify that the provided `camera_index` is valid before printing the traceback
cameras_info = find_cameras()
available_cam_ids = [cam["index"] for cam in cameras_info]
available_cam_ids = find_camera_indices()
if self.camera_index not in available_cam_ids:
raise ValueError(
f"`camera_index` is expected to be one of these available cameras {available_cam_ids}, but {self.camera_index} is provided instead. "
"To find the camera index you should use, run `python lerobot/common/robot_devices/cameras/opencv.py`."
)
raise OSError(f"Can't access OpenCVCamera({camera_idx}).")
raise OSError(f"Can't access OpenCVCamera({self.camera_index}).")
# Secondly, create the camera that will be used downstream.
# Note: For some unknown reason, calling `isOpened` blocks the camera which then
# needs to be re-created.
self.camera = cv2.VideoCapture(camera_idx)
if platform.system() == "Linux":
self.camera = cv2.VideoCapture(f"/dev/video{self.camera_index}")
else:
self.camera = cv2.VideoCapture(self.camera_index)
if self.fps is not None:
self.camera.set(cv2.CAP_PROP_FPS, self.fps)
@@ -348,24 +272,22 @@ class OpenCVCamera:
actual_width = self.camera.get(cv2.CAP_PROP_FRAME_WIDTH)
actual_height = self.camera.get(cv2.CAP_PROP_FRAME_HEIGHT)
# Using `math.isclose` since actual fps can be a float (e.g. 29.9 instead of 30)
if self.fps is not None and not math.isclose(self.fps, actual_fps, rel_tol=1e-3):
# Using `OSError` since it's a broad that encompasses issues related to device communication
raise OSError(
f"Can't set {self.fps=} for OpenCVCamera({self.camera_index}). Actual value is {actual_fps}."
)
if self.width is not None and not math.isclose(self.width, actual_width, rel_tol=1e-3):
if self.width is not None and self.width != actual_width:
raise OSError(
f"Can't set {self.width=} for OpenCVCamera({self.camera_index}). Actual value is {actual_width}."
)
if self.height is not None and not math.isclose(self.height, actual_height, rel_tol=1e-3):
if self.height is not None and self.height != actual_height:
raise OSError(
f"Can't set {self.height=} for OpenCVCamera({self.camera_index}). Actual value is {actual_height}."
)
self.fps = round(actual_fps)
self.width = round(actual_width)
self.height = round(actual_height)
self.fps = actual_fps
self.width = actual_width
self.height = actual_height
self.is_connected = True
@@ -384,7 +306,6 @@ class OpenCVCamera:
start_time = time.perf_counter()
ret, color_image = self.camera.read()
if not ret:
raise OSError(f"Can't capture color image from camera {self.camera_index}.")
@@ -399,11 +320,6 @@ class OpenCVCamera:
# However, Deep Learning framework such as LeRobot uses RGB format as default to train neural networks,
# so we convert the image color from BGR to RGB.
if requested_color_mode == "rgb":
if self.mock:
import tests.mock_cv2 as cv2
else:
import cv2
color_image = cv2.cvtColor(color_image, cv2.COLOR_BGR2RGB)
h, w, _ = color_image.shape
@@ -412,25 +328,17 @@ class OpenCVCamera:
f"Can't capture color image with expected height and width ({self.height} x {self.width}). ({h} x {w}) returned instead."
)
if self.rotation is not None:
color_image = cv2.rotate(color_image, self.rotation)
# log the number of seconds it took to read the image
self.logs["delta_timestamp_s"] = time.perf_counter() - start_time
# log the utc time at which the image was received
self.logs["timestamp_utc"] = capture_timestamp_utc()
self.color_image = color_image
return color_image
def read_loop(self):
while not self.stop_event.is_set():
try:
self.color_image = self.read()
except Exception as e:
print(f"Error reading in thread: {e}")
while self.stop_event is None or not self.stop_event.is_set():
self.color_image = self.read()
def async_read(self):
if not self.is_connected:
@@ -445,14 +353,15 @@ class OpenCVCamera:
self.thread.start()
num_tries = 0
while True:
if self.color_image is not None:
return self.color_image
time.sleep(1 / self.fps)
while self.color_image is None:
num_tries += 1
if num_tries > self.fps * 2:
raise TimeoutError("Timed out waiting for async_read() to start.")
time.sleep(1 / self.fps)
if num_tries > self.fps and (self.thread.ident is None or not self.thread.is_alive()):
raise Exception(
"The thread responsible for `self.async_read()` took too much time to start. There might be an issue. Verify that `self.thread.start()` has been called."
)
return self.color_image
def disconnect(self):
if not self.is_connected:
@@ -460,14 +369,16 @@ class OpenCVCamera:
f"OpenCVCamera({self.camera_index}) is not connected. Try running `camera.connect()` first."
)
if self.thread is not None:
if self.thread is not None and self.thread.is_alive():
# wait for the thread to finish
self.stop_event.set()
self.thread.join() # wait for the thread to finish
self.thread.join()
self.thread = None
self.stop_event = None
self.camera.release()
self.camera = None
self.is_connected = False
def __del__(self):
@@ -513,7 +424,7 @@ if __name__ == "__main__":
parser.add_argument(
"--record-time-s",
type=float,
default=4.0,
default=2.0,
help="Set the number of seconds used to record the frames. By default, 2 seconds.",
)
args = parser.parse_args()

View File

@@ -1,8 +1,55 @@
from pathlib import Path
from typing import Protocol
import cv2
import einops
import numpy as np
def write_shape_on_image_inplace(image):
height, width = image.shape[:2]
text = f"Width: {width} Height: {height}"
# Define the font, scale, color, and thickness
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 1
color = (255, 0, 0) # Blue in BGR
thickness = 2
position = (10, height - 10) # 10 pixels from the bottom-left corner
cv2.putText(image, text, position, font, font_scale, color, thickness)
def save_color_image(image, path, write_shape=False):
path = Path(path)
path.parent.mkdir(parents=True, exist_ok=True)
if write_shape:
write_shape_on_image_inplace(image)
cv2.imwrite(str(path), image)
def save_depth_image(depth, path, write_shape=False):
path = Path(path)
path.parent.mkdir(parents=True, exist_ok=True)
# Apply colormap on depth image (image must be converted to 8-bit per pixel first)
depth_image = cv2.applyColorMap(cv2.convertScaleAbs(depth, alpha=0.03), cv2.COLORMAP_JET)
if write_shape:
write_shape_on_image_inplace(depth_image)
cv2.imwrite(str(path), depth_image)
def convert_torch_image_to_cv2(tensor, rgb_to_bgr=True):
assert tensor.ndim == 3
c, h, w = tensor.shape
assert c < h and c < w
color_image = einops.rearrange(tensor, "c h w -> h w c").numpy()
if rgb_to_bgr:
color_image = cv2.cvtColor(color_image, cv2.COLOR_RGB2BGR)
return color_image
# Defines a camera type
class Camera(Protocol):
def connect(self): ...

View File

@@ -1,382 +0,0 @@
########################################################################################
# Utilities
########################################################################################
import logging
import time
import traceback
from contextlib import nullcontext
from copy import copy
from functools import cache
import cv2
import torch
import tqdm
from deepdiff import DeepDiff
from termcolor import colored
from lerobot.common.datasets.image_writer import safe_stop_image_writer
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.datasets.utils import get_features_from_robot
from lerobot.common.policies.factory import make_policy
from lerobot.common.robot_devices.robots.utils import Robot
from lerobot.common.robot_devices.utils import busy_wait
from lerobot.common.utils.utils import get_safe_torch_device, init_hydra_config, set_global_seed
from lerobot.scripts.eval import get_pretrained_policy_path
def log_control_info(robot: Robot, dt_s, episode_index=None, frame_index=None, fps=None):
log_items = []
if episode_index is not None:
log_items.append(f"ep:{episode_index}")
if frame_index is not None:
log_items.append(f"frame:{frame_index}")
def log_dt(shortname, dt_val_s):
nonlocal log_items, fps
info_str = f"{shortname}:{dt_val_s * 1000:5.2f} ({1/ dt_val_s:3.1f}hz)"
if fps is not None:
actual_fps = 1 / dt_val_s
if actual_fps < fps - 1:
info_str = colored(info_str, "yellow")
log_items.append(info_str)
# total step time displayed in milliseconds and its frequency
log_dt("dt", dt_s)
# TODO(aliberts): move robot-specific logs logic in robot.print_logs()
if not robot.robot_type.startswith("stretch"):
for name in robot.leader_arms:
key = f"read_leader_{name}_pos_dt_s"
if key in robot.logs:
log_dt("dtRlead", robot.logs[key])
for name in robot.follower_arms:
key = f"write_follower_{name}_goal_pos_dt_s"
if key in robot.logs:
log_dt("dtWfoll", robot.logs[key])
key = f"read_follower_{name}_pos_dt_s"
if key in robot.logs:
log_dt("dtRfoll", robot.logs[key])
for name in robot.cameras:
key = f"read_camera_{name}_dt_s"
if key in robot.logs:
log_dt(f"dtR{name}", robot.logs[key])
info_str = " ".join(log_items)
logging.info(info_str)
@cache
def is_headless():
"""Detects if python is running without a monitor."""
try:
import pynput # noqa
return False
except Exception:
print(
"Error trying to import pynput. Switching to headless mode. "
"As a result, the video stream from the cameras won't be shown, "
"and you won't be able to change the control flow with keyboards. "
"For more info, see traceback below.\n"
)
traceback.print_exc()
print()
return True
def has_method(_object: object, method_name: str):
return hasattr(_object, method_name) and callable(getattr(_object, method_name))
def predict_action(observation, policy, device, use_amp):
observation = copy(observation)
with (
torch.inference_mode(),
torch.autocast(device_type=device.type) if device.type == "cuda" and use_amp else nullcontext(),
):
# Convert to pytorch format: channel first and float32 in [0,1] with batch dimension
for name in observation:
if "image" in name:
observation[name] = observation[name].type(torch.float32) / 255
observation[name] = observation[name].permute(2, 0, 1).contiguous()
observation[name] = observation[name].unsqueeze(0)
observation[name] = observation[name].to(device)
# Compute the next action with the policy
# based on the current observation
action = policy.select_action(observation)
# Remove batch dimension
action = action.squeeze(0)
# Move to cpu, if not already the case
action = action.to("cpu")
return action
def init_keyboard_listener(assign_rewards=False):
"""
Initializes a keyboard listener to enable early termination of an episode
or environment reset by pressing the right arrow key ('->'). This may require
sudo permissions to allow the terminal to monitor keyboard events.
Args:
assign_rewards (bool): If True, allows annotating the collected trajectory
with a binary reward at the end of the episode to indicate success.
"""
events = {}
events["exit_early"] = False
events["rerecord_episode"] = False
events["stop_recording"] = False
if assign_rewards:
events["next.reward"] = 0
if is_headless():
logging.warning(
"Headless environment detected. On-screen cameras display and keyboard inputs will not be available."
)
listener = None
return listener, events
# Only import pynput if not in a headless environment
from pynput import keyboard
def on_press(key):
try:
if key == keyboard.Key.right:
print("Right arrow key pressed. Exiting loop...")
events["exit_early"] = True
elif key == keyboard.Key.left:
print("Left arrow key pressed. Exiting loop and rerecord the last episode...")
events["rerecord_episode"] = True
events["exit_early"] = True
elif key == keyboard.Key.esc:
print("Escape key pressed. Stopping data recording...")
events["stop_recording"] = True
events["exit_early"] = True
elif assign_rewards and key == keyboard.Key.space:
events["next.reward"] = 1 if events["next.reward"] == 0 else 0
print(
"Space key pressed. Assigning new reward to the subsequent frames. New reward:",
events["next.reward"],
)
except Exception as e:
print(f"Error handling key press: {e}")
listener = keyboard.Listener(on_press=on_press)
listener.start()
return listener, events
def init_policy(pretrained_policy_name_or_path, policy_overrides):
"""Instantiate the policy and load fps, device and use_amp from config yaml"""
pretrained_policy_path = get_pretrained_policy_path(pretrained_policy_name_or_path)
hydra_cfg = init_hydra_config(pretrained_policy_path / "config.yaml", policy_overrides)
policy = make_policy(hydra_cfg=hydra_cfg, pretrained_policy_name_or_path=pretrained_policy_path)
# Check device is available
device = get_safe_torch_device(hydra_cfg.device, log=True)
use_amp = hydra_cfg.use_amp
policy_fps = hydra_cfg.env.fps
policy.eval()
policy.to(device)
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
set_global_seed(hydra_cfg.seed)
return policy, policy_fps, device, use_amp
def warmup_record(
robot,
events,
enable_teleoperation,
warmup_time_s,
display_cameras,
fps,
):
control_loop(
robot=robot,
control_time_s=warmup_time_s,
display_cameras=display_cameras,
events=events,
fps=fps,
teleoperate=enable_teleoperation,
)
def record_episode(
robot,
dataset,
events,
episode_time_s,
display_cameras,
policy,
device,
use_amp,
fps,
):
control_loop(
robot=robot,
control_time_s=episode_time_s,
display_cameras=display_cameras,
dataset=dataset,
events=events,
policy=policy,
device=device,
use_amp=use_amp,
fps=fps,
teleoperate=policy is None,
)
@safe_stop_image_writer
def control_loop(
robot,
control_time_s=None,
teleoperate=False,
display_cameras=False,
dataset: LeRobotDataset | None = None,
events=None,
policy=None,
device=None,
use_amp=None,
fps=None,
):
# TODO(rcadene): Add option to record logs
if not robot.is_connected:
robot.connect()
if events is None:
events = {"exit_early": False}
if control_time_s is None:
control_time_s = float("inf")
if teleoperate and policy is not None:
raise ValueError("When `teleoperate` is True, `policy` should be None.")
if dataset is not None and fps is not None and dataset.fps != fps:
raise ValueError(f"The dataset fps should be equal to requested fps ({dataset['fps']} != {fps}).")
timestamp = 0
start_episode_t = time.perf_counter()
while timestamp < control_time_s:
start_loop_t = time.perf_counter()
if teleoperate:
observation, action = robot.teleop_step(record_data=True)
else:
observation = robot.capture_observation()
if policy is not None:
pred_action = predict_action(observation, policy, device, use_amp)
# Action can eventually be clipped using `max_relative_target`,
# so action actually sent is saved in the dataset.
action = robot.send_action(pred_action)
action = {"action": action}
if dataset is not None:
frame = {**observation, **action}
if "next.reward" in events:
frame["next.reward"] = events["next.reward"]
dataset.add_frame(frame)
if display_cameras and not is_headless():
image_keys = [key for key in observation if "image" in key]
for key in image_keys:
cv2.imshow(key, cv2.cvtColor(observation[key].numpy(), cv2.COLOR_RGB2BGR))
cv2.waitKey(1)
if fps is not None:
dt_s = time.perf_counter() - start_loop_t
busy_wait(1 / fps - dt_s)
dt_s = time.perf_counter() - start_loop_t
log_control_info(robot, dt_s, fps=fps)
timestamp = time.perf_counter() - start_episode_t
if events["exit_early"]:
events["exit_early"] = False
break
def reset_environment(robot, events, reset_time_s):
# TODO(rcadene): refactor warmup_record and reset_environment
# TODO(alibets): allow for teleop during reset
if has_method(robot, "teleop_safety_stop"):
robot.teleop_safety_stop()
timestamp = 0
start_vencod_t = time.perf_counter()
if "next.reward" in events:
events["next.reward"] = 0
# Wait if necessary
with tqdm.tqdm(total=reset_time_s, desc="Waiting") as pbar:
while timestamp < reset_time_s:
time.sleep(1)
timestamp = time.perf_counter() - start_vencod_t
pbar.update(1)
if events["exit_early"]:
events["exit_early"] = False
break
def stop_recording(robot, listener, display_cameras):
robot.disconnect()
if not is_headless():
if listener is not None:
listener.stop()
if display_cameras:
cv2.destroyAllWindows()
def sanity_check_dataset_name(repo_id, policy):
_, dataset_name = repo_id.split("/")
# either repo_id doesnt start with "eval_" and there is no policy
# or repo_id starts with "eval_" and there is a policy
# Check if dataset_name starts with "eval_" but policy is missing
if dataset_name.startswith("eval_") and policy is None:
raise ValueError(
f"Your dataset name begins with 'eval_' ({dataset_name}), but no policy is provided."
)
# Check if dataset_name does not start with "eval_" but policy is provided
if not dataset_name.startswith("eval_") and policy is not None:
raise ValueError(
f"Your dataset name does not begin with 'eval_' ({dataset_name}), but a policy is provided ({policy})."
)
def sanity_check_dataset_robot_compatibility(
dataset: LeRobotDataset, robot: Robot, fps: int, use_videos: bool
) -> None:
fields = [
("robot_type", dataset.meta.robot_type, robot.robot_type),
("fps", dataset.fps, fps),
("features", dataset.features, get_features_from_robot(robot, use_videos)),
]
mismatches = []
for field, dataset_value, present_value in fields:
diff = DeepDiff(dataset_value, present_value, exclude_regex_paths=[r".*\['info'\]$"])
if diff:
mismatches.append(f"{field}: expected {present_value}, got {dataset_value}")
if mismatches:
raise ValueError(
"Dataset metadata compatibility check failed with mismatches:\n" + "\n".join(mismatches)
)

View File

@@ -4,9 +4,21 @@ import math
import time
import traceback
from copy import deepcopy
from pathlib import Path
import numpy as np
import tqdm
from dynamixel_sdk import (
COMM_SUCCESS,
DXL_HIBYTE,
DXL_HIWORD,
DXL_LOBYTE,
DXL_LOWORD,
GroupSyncRead,
GroupSyncWrite,
PacketHandler,
PortHandler,
)
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
from lerobot.common.utils.utils import capture_timestamp_utc
@@ -154,29 +166,24 @@ def convert_degrees_to_steps(degrees: float | np.ndarray, models: str | list[str
return steps
def convert_to_bytes(value, bytes, mock=False):
if mock:
return value
import dynamixel_sdk as dxl
def convert_to_bytes(value, bytes):
# Note: No need to convert back into unsigned int, since this byte preprocessing
# already handles it for us.
if bytes == 1:
data = [
dxl.DXL_LOBYTE(dxl.DXL_LOWORD(value)),
DXL_LOBYTE(DXL_LOWORD(value)),
]
elif bytes == 2:
data = [
dxl.DXL_LOBYTE(dxl.DXL_LOWORD(value)),
dxl.DXL_HIBYTE(dxl.DXL_LOWORD(value)),
DXL_LOBYTE(DXL_LOWORD(value)),
DXL_HIBYTE(DXL_LOWORD(value)),
]
elif bytes == 4:
data = [
dxl.DXL_LOBYTE(dxl.DXL_LOWORD(value)),
dxl.DXL_HIBYTE(dxl.DXL_LOWORD(value)),
dxl.DXL_LOBYTE(dxl.DXL_HIWORD(value)),
dxl.DXL_HIBYTE(dxl.DXL_HIWORD(value)),
DXL_LOBYTE(DXL_LOWORD(value)),
DXL_HIBYTE(DXL_LOWORD(value)),
DXL_LOBYTE(DXL_HIWORD(value)),
DXL_HIBYTE(DXL_HIWORD(value)),
]
else:
raise NotImplementedError(
@@ -228,6 +235,35 @@ def assert_same_address(model_ctrl_table, motor_models, data_name):
)
def find_available_ports():
ports = []
for path in Path("/dev").glob("tty*"):
ports.append(str(path))
return ports
def find_port():
print("Finding all available ports for the DynamixelMotorsBus.")
ports_before = find_available_ports()
print(ports_before)
print("Remove the usb cable from your DynamixelMotorsBus and press Enter when done.")
input()
time.sleep(0.5)
ports_after = find_available_ports()
ports_diff = list(set(ports_before) - set(ports_after))
if len(ports_diff) == 1:
port = ports_diff[0]
print(f"The port of this DynamixelMotorsBus is '{port}'")
print("Reconnect the usb cable.")
elif len(ports_diff) == 0:
raise OSError(f"Could not detect the port. No difference was found ({ports_diff}).")
else:
raise OSError(f"Could not detect the port. More than one port was found ({ports_diff}).")
class TorqueMode(enum.Enum):
ENABLED = 1
DISABLED = 0
@@ -260,8 +296,8 @@ class DynamixelMotorsBus:
A DynamixelMotorsBus instance requires a port (e.g. `DynamixelMotorsBus(port="/dev/tty.usbmodem575E0031751"`)).
To find the port, you can run our utility script:
```bash
python lerobot/scripts/find_motors_bus_port.py
>>> Finding all available ports for the MotorBus.
python lerobot/common/robot_devices/motors/dynamixel.py
>>> Finding all available ports for the DynamixelMotorsBus.
>>> ['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
>>> Remove the usb cable from your DynamixelMotorsBus and press Enter when done.
>>> The port of this DynamixelMotorsBus is /dev/tty.usbmodem575E0031751.
@@ -297,11 +333,9 @@ class DynamixelMotorsBus:
motors: dict[str, tuple[int, str]],
extra_model_control_table: dict[str, list[tuple]] | None = None,
extra_model_resolution: dict[str, int] | None = None,
mock=False,
):
self.port = port
self.motors = motors
self.mock = mock
self.model_ctrl_table = deepcopy(MODEL_CONTROL_TABLE)
if extra_model_control_table:
@@ -325,13 +359,8 @@ class DynamixelMotorsBus:
f"DynamixelMotorsBus({self.port}) is already connected. Do not call `motors_bus.connect()` twice."
)
if self.mock:
import tests.mock_dynamixel_sdk as dxl
else:
import dynamixel_sdk as dxl
self.port_handler = dxl.PortHandler(self.port)
self.packet_handler = dxl.PacketHandler(PROTOCOL_VERSION)
self.port_handler = PortHandler(self.port)
self.packet_handler = PacketHandler(PROTOCOL_VERSION)
try:
if not self.port_handler.openPort():
@@ -339,7 +368,7 @@ class DynamixelMotorsBus:
except Exception:
traceback.print_exc()
print(
"\nTry running `python lerobot/scripts/find_motors_bus_port.py` to make sure you are using the correct port.\n"
"\nTry running `python lerobot/common/robot_devices/motors/dynamixel.py` to make sure you are using the correct port.\n"
)
raise
@@ -348,18 +377,25 @@ class DynamixelMotorsBus:
self.port_handler.setPacketTimeoutMillis(TIMEOUT_MS)
# Set expected baudrate for the bus
self.set_bus_baudrate(BAUDRATE)
if not self.are_motors_configured():
input(
"\n/!\\ A configuration issue has been detected with your motors: \n"
"If it's the first time that you use these motors, press enter to configure your motors... but before "
"verify that all the cables are connected the proper way. If you find an issue, before making a modification, "
"kill the python process, unplug the power cord to not damage the motors, rewire correctly, then plug the power "
"again and relaunch the script.\n"
)
print()
self.configure_motors()
def reconnect(self):
if self.mock:
import tests.mock_dynamixel_sdk as dxl
else:
import dynamixel_sdk as dxl
self.port_handler = dxl.PortHandler(self.port)
self.packet_handler = dxl.PacketHandler(PROTOCOL_VERSION)
self.port_handler = PortHandler(self.port)
self.packet_handler = PacketHandler(PROTOCOL_VERSION)
if not self.port_handler.openPort():
raise OSError(f"Failed to open port '{self.port}'.")
self.is_connected = True
def are_motors_configured(self):
@@ -371,14 +407,120 @@ class DynamixelMotorsBus:
print(e)
return False
def find_motor_indices(self, possible_ids=None, num_retry=2):
def configure_motors(self):
# TODO(rcadene): This script assumes motors follow the X_SERIES baudrates
# TODO(rcadene): Refactor this function with intermediate high-level functions
print("Scanning all baudrates and motor indices")
all_baudrates = set(X_SERIES_BAUDRATE_TABLE.values())
ids_per_baudrate = {}
for baudrate in all_baudrates:
self.set_bus_baudrate(baudrate)
present_ids = self.find_motor_indices()
if len(present_ids) > 0:
ids_per_baudrate[baudrate] = present_ids
print(f"Motor indices detected: {ids_per_baudrate}")
print()
possible_baudrates = list(ids_per_baudrate.keys())
possible_ids = list({idx for sublist in ids_per_baudrate.values() for idx in sublist})
untaken_ids = list(set(range(MAX_ID_RANGE)) - set(possible_ids) - set(self.motor_indices))
# Connect successively one motor to the chain and write a unique random index for each
for i in range(len(self.motors)):
self.disconnect()
input(
"1. Unplug the power cord\n"
"2. Plug/unplug minimal number of cables to only have the first "
f"{i+1} motor(s) ({self.motor_names[:i+1]}) connected.\n"
"3. Re-plug the power cord\n"
"Press Enter to continue..."
)
print()
self.reconnect()
if i > 0:
try:
self._read_with_motor_ids(self.motor_models, untaken_ids[:i], "ID")
except ConnectionError:
print(f"Failed to read from {untaken_ids[:i+1]}. Make sure the power cord is plugged in.")
input("Press Enter to continue...")
print()
self.reconnect()
print("Scanning possible baudrates and motor indices")
motor_found = False
for baudrate in possible_baudrates:
self.set_bus_baudrate(baudrate)
present_ids = self.find_motor_indices(possible_ids)
if len(present_ids) == 1:
present_idx = present_ids[0]
print(f"Detected motor with index {present_idx}")
if baudrate != BAUDRATE:
print(f"Setting its baudrate to {BAUDRATE}")
baudrate_idx = list(X_SERIES_BAUDRATE_TABLE.values()).index(BAUDRATE)
# The write can fail, so we allow retries
for _ in range(NUM_WRITE_RETRY):
self._write_with_motor_ids(
self.motor_models, present_idx, "Baud_Rate", baudrate_idx
)
time.sleep(0.5)
self.set_bus_baudrate(BAUDRATE)
try:
present_baudrate_idx = self._read_with_motor_ids(
self.motor_models, present_idx, "Baud_Rate"
)
except ConnectionError:
print("Failed to write baudrate. Retrying.")
self.set_bus_baudrate(baudrate)
continue
break
else:
raise
if present_baudrate_idx != baudrate_idx:
raise OSError("Failed to write baudrate.")
print(f"Setting its index to a temporary untaken index ({untaken_ids[i]})")
self._write_with_motor_ids(self.motor_models, present_idx, "ID", untaken_ids[i])
present_idx = self._read_with_motor_ids(self.motor_models, untaken_ids[i], "ID")
if present_idx != untaken_ids[i]:
raise OSError("Failed to write index.")
motor_found = True
break
elif len(present_ids) > 1:
raise OSError(f"More than one motor detected ({present_ids}), but only one was expected.")
if not motor_found:
raise OSError(
"No motor found, but one new motor expected. Verify power cord is plugged in and retry."
)
print()
print(f"Setting expected motor indices: {self.motor_indices}")
self.set_bus_baudrate(BAUDRATE)
self._write_with_motor_ids(
self.motor_models, untaken_ids[: len(self.motors)], "ID", self.motor_indices
)
print()
if (self.read("ID") != self.motor_indices).any():
raise OSError("Failed to write motors indices.")
print("Configuration is done!")
def find_motor_indices(self, possible_ids=None):
if possible_ids is None:
possible_ids = range(MAX_ID_RANGE)
indices = []
for idx in tqdm.tqdm(possible_ids):
try:
present_idx = self.read_with_motor_ids(self.motor_models, [idx], "ID", num_retry=num_retry)[0]
present_idx = self._read_with_motor_ids(self.motor_models, [idx], "ID")[0]
except ConnectionError:
continue
@@ -638,12 +780,7 @@ class DynamixelMotorsBus:
values = np.round(values).astype(np.int32)
return values
def read_with_motor_ids(self, motor_models, motor_ids, data_name, num_retry=NUM_READ_RETRY):
if self.mock:
import tests.mock_dynamixel_sdk as dxl
else:
import dynamixel_sdk as dxl
def _read_with_motor_ids(self, motor_models, motor_ids, data_name):
return_list = True
if not isinstance(motor_ids, list):
return_list = False
@@ -651,16 +788,12 @@ class DynamixelMotorsBus:
assert_same_address(self.model_ctrl_table, self.motor_models, data_name)
addr, bytes = self.model_ctrl_table[motor_models[0]][data_name]
group = dxl.GroupSyncRead(self.port_handler, self.packet_handler, addr, bytes)
group = GroupSyncRead(self.port_handler, self.packet_handler, addr, bytes)
for idx in motor_ids:
group.addParam(idx)
for _ in range(num_retry):
comm = group.txRxPacket()
if comm == dxl.COMM_SUCCESS:
break
if comm != dxl.COMM_SUCCESS:
comm = group.txRxPacket()
if comm != COMM_SUCCESS:
raise ConnectionError(
f"Read failed due to communication error on port {self.port_handler.port_name} for indices {motor_ids}: "
f"{self.packet_handler.getTxRxResult(comm)}"
@@ -684,11 +817,6 @@ class DynamixelMotorsBus:
start_time = time.perf_counter()
if self.mock:
import tests.mock_dynamixel_sdk as dxl
else:
import dynamixel_sdk as dxl
if motor_names is None:
motor_names = self.motor_names
@@ -708,18 +836,16 @@ class DynamixelMotorsBus:
if data_name not in self.group_readers:
# create new group reader
self.group_readers[group_key] = dxl.GroupSyncRead(
self.port_handler, self.packet_handler, addr, bytes
)
self.group_readers[group_key] = GroupSyncRead(self.port_handler, self.packet_handler, addr, bytes)
for idx in motor_ids:
self.group_readers[group_key].addParam(idx)
for _ in range(NUM_READ_RETRY):
comm = self.group_readers[group_key].txRxPacket()
if comm == dxl.COMM_SUCCESS:
if comm == COMM_SUCCESS:
break
if comm != dxl.COMM_SUCCESS:
if comm != COMM_SUCCESS:
raise ConnectionError(
f"Read failed due to communication error on port {self.port} for group_key {group_key}: "
f"{self.packet_handler.getTxRxResult(comm)}"
@@ -749,12 +875,7 @@ class DynamixelMotorsBus:
return values
def write_with_motor_ids(self, motor_models, motor_ids, data_name, values, num_retry=NUM_WRITE_RETRY):
if self.mock:
import tests.mock_dynamixel_sdk as dxl
else:
import dynamixel_sdk as dxl
def _write_with_motor_ids(self, motor_models, motor_ids, data_name, values):
if not isinstance(motor_ids, list):
motor_ids = [motor_ids]
if not isinstance(values, list):
@@ -762,17 +883,13 @@ class DynamixelMotorsBus:
assert_same_address(self.model_ctrl_table, motor_models, data_name)
addr, bytes = self.model_ctrl_table[motor_models[0]][data_name]
group = dxl.GroupSyncWrite(self.port_handler, self.packet_handler, addr, bytes)
group = GroupSyncWrite(self.port_handler, self.packet_handler, addr, bytes)
for idx, value in zip(motor_ids, values, strict=True):
data = convert_to_bytes(value, bytes, self.mock)
data = convert_to_bytes(value, bytes)
group.addParam(idx, data)
for _ in range(num_retry):
comm = group.txPacket()
if comm == dxl.COMM_SUCCESS:
break
if comm != dxl.COMM_SUCCESS:
comm = group.txPacket()
if comm != COMM_SUCCESS:
raise ConnectionError(
f"Write failed due to communication error on port {self.port_handler.port_name} for indices {motor_ids}: "
f"{self.packet_handler.getTxRxResult(comm)}"
@@ -786,11 +903,6 @@ class DynamixelMotorsBus:
start_time = time.perf_counter()
if self.mock:
import tests.mock_dynamixel_sdk as dxl
else:
import dynamixel_sdk as dxl
if motor_names is None:
motor_names = self.motor_names
@@ -820,19 +932,19 @@ class DynamixelMotorsBus:
init_group = data_name not in self.group_readers
if init_group:
self.group_writers[group_key] = dxl.GroupSyncWrite(
self.group_writers[group_key] = GroupSyncWrite(
self.port_handler, self.packet_handler, addr, bytes
)
for idx, value in zip(motor_ids, values, strict=True):
data = convert_to_bytes(value, bytes, self.mock)
data = convert_to_bytes(value, bytes)
if init_group:
self.group_writers[group_key].addParam(idx, data)
else:
self.group_writers[group_key].changeParam(idx, data)
comm = self.group_writers[group_key].txPacket()
if comm != dxl.COMM_SUCCESS:
if comm != COMM_SUCCESS:
raise ConnectionError(
f"Write failed due to communication error on port {self.port} for group_key {group_key}: "
f"{self.packet_handler.getTxRxResult(comm)}"
@@ -865,3 +977,8 @@ class DynamixelMotorsBus:
def __del__(self):
if getattr(self, "is_connected", False):
self.disconnect()
if __name__ == "__main__":
# Helper to find the usb port associated to all your DynamixelMotorsBus.
find_port()

View File

@@ -1,887 +0,0 @@
import enum
import logging
import math
import time
import traceback
from copy import deepcopy
import numpy as np
import tqdm
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
from lerobot.common.utils.utils import capture_timestamp_utc
PROTOCOL_VERSION = 0
BAUDRATE = 1_000_000
TIMEOUT_MS = 1000
MAX_ID_RANGE = 252
# The following bounds define the lower and upper joints range (after calibration).
# For joints in degree (i.e. revolute joints), their nominal range is [-180, 180] degrees
# which corresponds to a half rotation on the left and half rotation on the right.
# Some joints might require higher range, so we allow up to [-270, 270] degrees until
# an error is raised.
LOWER_BOUND_DEGREE = -270
UPPER_BOUND_DEGREE = 270
# For joints in percentage (i.e. joints that move linearly like the prismatic joint of a gripper),
# their nominal range is [0, 100] %. For instance, for Aloha gripper, 0% is fully
# closed, and 100% is fully open. To account for slight calibration issue, we allow up to
# [-10, 110] until an error is raised.
LOWER_BOUND_LINEAR = -10
UPPER_BOUND_LINEAR = 110
HALF_TURN_DEGREE = 180
# See this link for STS3215 Memory Table:
# https://docs.google.com/spreadsheets/d/1GVs7W1VS1PqdhA1nW-abeyAHhTUxKUdR/edit?usp=sharing&ouid=116566590112741600240&rtpof=true&sd=true
# data_name: (address, size_byte)
SCS_SERIES_CONTROL_TABLE = {
"Model": (3, 2),
"ID": (5, 1),
"Baud_Rate": (6, 1),
"Return_Delay": (7, 1),
"Response_Status_Level": (8, 1),
"Min_Angle_Limit": (9, 2),
"Max_Angle_Limit": (11, 2),
"Max_Temperature_Limit": (13, 1),
"Max_Voltage_Limit": (14, 1),
"Min_Voltage_Limit": (15, 1),
"Max_Torque_Limit": (16, 2),
"Phase": (18, 1),
"Unloading_Condition": (19, 1),
"LED_Alarm_Condition": (20, 1),
"P_Coefficient": (21, 1),
"D_Coefficient": (22, 1),
"I_Coefficient": (23, 1),
"Minimum_Startup_Force": (24, 2),
"CW_Dead_Zone": (26, 1),
"CCW_Dead_Zone": (27, 1),
"Protection_Current": (28, 2),
"Angular_Resolution": (30, 1),
"Offset": (31, 2),
"Mode": (33, 1),
"Protective_Torque": (34, 1),
"Protection_Time": (35, 1),
"Overload_Torque": (36, 1),
"Speed_closed_loop_P_proportional_coefficient": (37, 1),
"Over_Current_Protection_Time": (38, 1),
"Velocity_closed_loop_I_integral_coefficient": (39, 1),
"Torque_Enable": (40, 1),
"Acceleration": (41, 1),
"Goal_Position": (42, 2),
"Goal_Time": (44, 2),
"Goal_Speed": (46, 2),
"Torque_Limit": (48, 2),
"Lock": (55, 1),
"Present_Position": (56, 2),
"Present_Speed": (58, 2),
"Present_Load": (60, 2),
"Present_Voltage": (62, 1),
"Present_Temperature": (63, 1),
"Status": (65, 1),
"Moving": (66, 1),
"Present_Current": (69, 2),
# Not in the Memory Table
"Maximum_Acceleration": (85, 2),
}
SCS_SERIES_BAUDRATE_TABLE = {
0: 1_000_000,
1: 500_000,
2: 250_000,
3: 128_000,
4: 115_200,
5: 57_600,
6: 38_400,
7: 19_200,
}
CALIBRATION_REQUIRED = ["Goal_Position", "Present_Position"]
CONVERT_UINT32_TO_INT32_REQUIRED = ["Goal_Position", "Present_Position"]
MODEL_CONTROL_TABLE = {
"scs_series": SCS_SERIES_CONTROL_TABLE,
"sts3215": SCS_SERIES_CONTROL_TABLE,
}
MODEL_RESOLUTION = {
"scs_series": 4096,
"sts3215": 4096,
}
MODEL_BAUDRATE_TABLE = {
"scs_series": SCS_SERIES_BAUDRATE_TABLE,
"sts3215": SCS_SERIES_BAUDRATE_TABLE,
}
# High number of retries is needed for feetech compared to dynamixel motors.
NUM_READ_RETRY = 20
NUM_WRITE_RETRY = 20
def convert_degrees_to_steps(degrees: float | np.ndarray, models: str | list[str]) -> np.ndarray:
"""This function converts the degree range to the step range for indicating motors rotation.
It assumes a motor achieves a full rotation by going from -180 degree position to +180.
The motor resolution (e.g. 4096) corresponds to the number of steps needed to achieve a full rotation.
"""
resolutions = [MODEL_RESOLUTION[model] for model in models]
steps = degrees / 180 * np.array(resolutions) / 2
steps = steps.astype(int)
return steps
def convert_to_bytes(value, bytes, mock=False):
if mock:
return value
import scservo_sdk as scs
# Note: No need to convert back into unsigned int, since this byte preprocessing
# already handles it for us.
if bytes == 1:
data = [
scs.SCS_LOBYTE(scs.SCS_LOWORD(value)),
]
elif bytes == 2:
data = [
scs.SCS_LOBYTE(scs.SCS_LOWORD(value)),
scs.SCS_HIBYTE(scs.SCS_LOWORD(value)),
]
elif bytes == 4:
data = [
scs.SCS_LOBYTE(scs.SCS_LOWORD(value)),
scs.SCS_HIBYTE(scs.SCS_LOWORD(value)),
scs.SCS_LOBYTE(scs.SCS_HIWORD(value)),
scs.SCS_HIBYTE(scs.SCS_HIWORD(value)),
]
else:
raise NotImplementedError(
f"Value of the number of bytes to be sent is expected to be in [1, 2, 4], but "
f"{bytes} is provided instead."
)
return data
def get_group_sync_key(data_name, motor_names):
group_key = f"{data_name}_" + "_".join(motor_names)
return group_key
def get_result_name(fn_name, data_name, motor_names):
group_key = get_group_sync_key(data_name, motor_names)
rslt_name = f"{fn_name}_{group_key}"
return rslt_name
def get_queue_name(fn_name, data_name, motor_names):
group_key = get_group_sync_key(data_name, motor_names)
queue_name = f"{fn_name}_{group_key}"
return queue_name
def get_log_name(var_name, fn_name, data_name, motor_names):
group_key = get_group_sync_key(data_name, motor_names)
log_name = f"{var_name}_{fn_name}_{group_key}"
return log_name
def assert_same_address(model_ctrl_table, motor_models, data_name):
all_addr = []
all_bytes = []
for model in motor_models:
addr, bytes = model_ctrl_table[model][data_name]
all_addr.append(addr)
all_bytes.append(bytes)
if len(set(all_addr)) != 1:
raise NotImplementedError(
f"At least two motor models use a different address for `data_name`='{data_name}' ({list(zip(motor_models, all_addr, strict=False))}). Contact a LeRobot maintainer."
)
if len(set(all_bytes)) != 1:
raise NotImplementedError(
f"At least two motor models use a different bytes representation for `data_name`='{data_name}' ({list(zip(motor_models, all_bytes, strict=False))}). Contact a LeRobot maintainer."
)
class TorqueMode(enum.Enum):
ENABLED = 1
DISABLED = 0
class DriveMode(enum.Enum):
NON_INVERTED = 0
INVERTED = 1
class CalibrationMode(enum.Enum):
# Joints with rotational motions are expressed in degrees in nominal range of [-180, 180]
DEGREE = 0
# Joints with linear motions (like gripper of Aloha) are experessed in nominal range of [0, 100]
LINEAR = 1
class JointOutOfRangeError(Exception):
def __init__(self, message="Joint is out of range"):
self.message = message
super().__init__(self.message)
class FeetechMotorsBus:
"""
The FeetechMotorsBus class allows to efficiently read and write to the attached motors. It relies on
the python feetech sdk to communicate with the motors. For more info, see the [feetech SDK Documentation](https://emanual.robotis.com/docs/en/software/feetech/feetech_sdk/sample_code/python_read_write_protocol_2_0/#python-read-write-protocol-20).
A FeetechMotorsBus instance requires a port (e.g. `FeetechMotorsBus(port="/dev/tty.usbmodem575E0031751"`)).
To find the port, you can run our utility script:
```bash
python lerobot/scripts/find_motors_bus_port.py
>>> Finding all available ports for the MotorsBus.
>>> ['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
>>> Remove the usb cable from your FeetechMotorsBus and press Enter when done.
>>> The port of this FeetechMotorsBus is /dev/tty.usbmodem575E0031751.
>>> Reconnect the usb cable.
```
Example of usage for 1 motor connected to the bus:
```python
motor_name = "gripper"
motor_index = 6
motor_model = "sts3215"
motors_bus = FeetechMotorsBus(
port="/dev/tty.usbmodem575E0031751",
motors={motor_name: (motor_index, motor_model)},
)
motors_bus.connect()
position = motors_bus.read("Present_Position")
# move from a few motor steps as an example
few_steps = 30
motors_bus.write("Goal_Position", position + few_steps)
# when done, consider disconnecting
motors_bus.disconnect()
```
"""
def __init__(
self,
port: str,
motors: dict[str, tuple[int, str]],
extra_model_control_table: dict[str, list[tuple]] | None = None,
extra_model_resolution: dict[str, int] | None = None,
mock=False,
):
self.port = port
self.motors = motors
self.mock = mock
self.model_ctrl_table = deepcopy(MODEL_CONTROL_TABLE)
if extra_model_control_table:
self.model_ctrl_table.update(extra_model_control_table)
self.model_resolution = deepcopy(MODEL_RESOLUTION)
if extra_model_resolution:
self.model_resolution.update(extra_model_resolution)
self.port_handler = None
self.packet_handler = None
self.calibration = None
self.is_connected = False
self.group_readers = {}
self.group_writers = {}
self.logs = {}
self.track_positions = {}
def connect(self):
if self.is_connected:
raise RobotDeviceAlreadyConnectedError(
f"FeetechMotorsBus({self.port}) is already connected. Do not call `motors_bus.connect()` twice."
)
if self.mock:
import tests.mock_scservo_sdk as scs
else:
import scservo_sdk as scs
self.port_handler = scs.PortHandler(self.port)
self.packet_handler = scs.PacketHandler(PROTOCOL_VERSION)
try:
if not self.port_handler.openPort():
raise OSError(f"Failed to open port '{self.port}'.")
except Exception:
traceback.print_exc()
print(
"\nTry running `python lerobot/scripts/find_motors_bus_port.py` to make sure you are using the correct port.\n"
)
raise
# Allow to read and write
self.is_connected = True
self.port_handler.setPacketTimeoutMillis(TIMEOUT_MS)
def reconnect(self):
if self.mock:
import tests.mock_scservo_sdk as scs
else:
import scservo_sdk as scs
self.port_handler = scs.PortHandler(self.port)
self.packet_handler = scs.PacketHandler(PROTOCOL_VERSION)
if not self.port_handler.openPort():
raise OSError(f"Failed to open port '{self.port}'.")
self.is_connected = True
def are_motors_configured(self):
# Only check the motor indices and not baudrate, since if the motor baudrates are incorrect,
# a ConnectionError will be raised anyway.
try:
return (self.motor_indices == self.read("ID")).all()
except ConnectionError as e:
print(e)
return False
def find_motor_indices(self, possible_ids=None, num_retry=2):
if possible_ids is None:
possible_ids = range(MAX_ID_RANGE)
indices = []
for idx in tqdm.tqdm(possible_ids):
try:
present_idx = self.read_with_motor_ids(self.motor_models, [idx], "ID", num_retry=num_retry)[0]
except ConnectionError:
continue
if idx != present_idx:
# sanity check
raise OSError(
"Motor index used to communicate through the bus is not the same as the one present in the motor memory. The motor memory might be damaged."
)
indices.append(idx)
return indices
def set_bus_baudrate(self, baudrate):
present_bus_baudrate = self.port_handler.getBaudRate()
if present_bus_baudrate != baudrate:
print(f"Setting bus baud rate to {baudrate}. Previously {present_bus_baudrate}.")
self.port_handler.setBaudRate(baudrate)
if self.port_handler.getBaudRate() != baudrate:
raise OSError("Failed to write bus baud rate.")
@property
def motor_names(self) -> list[str]:
return list(self.motors.keys())
@property
def motor_models(self) -> list[str]:
return [model for _, model in self.motors.values()]
@property
def motor_indices(self) -> list[int]:
return [idx for idx, _ in self.motors.values()]
def set_calibration(self, calibration: dict[str, list]):
self.calibration = calibration
def apply_calibration_autocorrect(self, values: np.ndarray | list, motor_names: list[str] | None):
"""This function apply the calibration, automatically detects out of range errors for motors values and attempt to correct.
For more info, see docstring of `apply_calibration` and `autocorrect_calibration`.
"""
try:
values = self.apply_calibration(values, motor_names)
except JointOutOfRangeError as e:
print(e)
self.autocorrect_calibration(values, motor_names)
values = self.apply_calibration(values, motor_names)
return values
def apply_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
"""Convert from unsigned int32 joint position range [0, 2**32[ to the universal float32 nominal degree range ]-180.0, 180.0[ with
a "zero position" at 0 degree.
Note: We say "nominal degree range" since the motors can take values outside this range. For instance, 190 degrees, if the motor
rotate more than a half a turn from the zero position. However, most motors can't rotate more than 180 degrees and will stay in this range.
Joints values are original in [0, 2**32[ (unsigned int32). Each motor are expected to complete a full rotation
when given a goal position that is + or - their resolution. For instance, feetech xl330-m077 have a resolution of 4096, and
at any position in their original range, let's say the position 56734, they complete a full rotation clockwise by moving to 60830,
or anticlockwise by moving to 52638. The position in the original range is arbitrary and might change a lot between each motor.
To harmonize between motors of the same model, different robots, or even models of different brands, we propose to work
in the centered nominal degree range ]-180, 180[.
"""
if motor_names is None:
motor_names = self.motor_names
# Convert from unsigned int32 original range [0, 2**32] to signed float32 range
values = values.astype(np.float32)
for i, name in enumerate(motor_names):
calib_idx = self.calibration["motor_names"].index(name)
calib_mode = self.calibration["calib_mode"][calib_idx]
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
drive_mode = self.calibration["drive_mode"][calib_idx]
homing_offset = self.calibration["homing_offset"][calib_idx]
_, model = self.motors[name]
resolution = self.model_resolution[model]
# Update direction of rotation of the motor to match between leader and follower.
# In fact, the motor of the leader for a given joint can be assembled in an
# opposite direction in term of rotation than the motor of the follower on the same joint.
if drive_mode:
values[i] *= -1
# Convert from range [-2**31, 2**31[ to
# nominal range ]-resolution, resolution[ (e.g. ]-2048, 2048[)
values[i] += homing_offset
# Convert from range ]-resolution, resolution[ to
# universal float32 centered degree range ]-180, 180[
values[i] = values[i] / (resolution // 2) * HALF_TURN_DEGREE
if (values[i] < LOWER_BOUND_DEGREE) or (values[i] > UPPER_BOUND_DEGREE):
raise JointOutOfRangeError(
f"Wrong motor position range detected for {name}. "
f"Expected to be in nominal range of [-{HALF_TURN_DEGREE}, {HALF_TURN_DEGREE}] degrees (a full rotation), "
f"with a maximum range of [{LOWER_BOUND_DEGREE}, {UPPER_BOUND_DEGREE}] degrees to account for joints that can rotate a bit more, "
f"but present value is {values[i]} degree. "
"This might be due to a cable connection issue creating an artificial 360 degrees jump in motor values. "
"You need to recalibrate by running: `python lerobot/scripts/control_robot.py calibrate`"
)
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
start_pos = self.calibration["start_pos"][calib_idx]
end_pos = self.calibration["end_pos"][calib_idx]
# Rescale the present position to a nominal range [0, 100] %,
# useful for joints with linear motions like Aloha gripper
values[i] = (values[i] - start_pos) / (end_pos - start_pos) * 100
if (values[i] < LOWER_BOUND_LINEAR) or (values[i] > UPPER_BOUND_LINEAR):
raise JointOutOfRangeError(
f"Wrong motor position range detected for {name}. "
f"Expected to be in nominal range of [0, 100] % (a full linear translation), "
f"with a maximum range of [{LOWER_BOUND_LINEAR}, {UPPER_BOUND_LINEAR}] % to account for some imprecision during calibration, "
f"but present value is {values[i]} %. "
"This might be due to a cable connection issue creating an artificial jump in motor values. "
"You need to recalibrate by running: `python lerobot/scripts/control_robot.py calibrate`"
)
return values
def autocorrect_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
"""This function automatically detects issues with values of motors after calibration, and correct for these issues.
Some motors might have values outside of expected maximum bounds after calibration.
For instance, for a joint in degree, its value can be outside [-270, 270] degrees, which is totally unexpected given
a nominal range of [-180, 180] degrees, which represents half a turn to the left or right starting from zero position.
Known issues:
#1: Motor value randomly shifts of a full turn, caused by hardware/connection errors.
#2: Motor internal homing offset is shifted of a full turn, caused by using default calibration (e.g Aloha).
#3: motor internal homing offset is shifted of less or more than a full turn, caused by using default calibration
or by human error during manual calibration.
Issues #1 and #2 can be solved by shifting the calibration homing offset by a full turn.
Issue #3 will be visually detected by user and potentially captured by the safety feature `max_relative_target`,
that will slow down the motor, raise an error asking to recalibrate. Manual recalibrating will solve the issue.
Note: A full turn corresponds to 360 degrees but also to 4096 steps for a motor resolution of 4096.
"""
if motor_names is None:
motor_names = self.motor_names
# Convert from unsigned int32 original range [0, 2**32] to signed float32 range
values = values.astype(np.float32)
for i, name in enumerate(motor_names):
calib_idx = self.calibration["motor_names"].index(name)
calib_mode = self.calibration["calib_mode"][calib_idx]
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
drive_mode = self.calibration["drive_mode"][calib_idx]
homing_offset = self.calibration["homing_offset"][calib_idx]
_, model = self.motors[name]
resolution = self.model_resolution[model]
if drive_mode:
values[i] *= -1
# Convert from initial range to range [-180, 180] degrees
calib_val = (values[i] + homing_offset) / (resolution // 2) * HALF_TURN_DEGREE
in_range = (calib_val > LOWER_BOUND_DEGREE) and (calib_val < UPPER_BOUND_DEGREE)
# Solve this inequality to find the factor to shift the range into [-180, 180] degrees
# values[i] = (values[i] + homing_offset + resolution * factor) / (resolution // 2) * HALF_TURN_DEGREE
# - HALF_TURN_DEGREE <= (values[i] + homing_offset + resolution * factor) / (resolution // 2) * HALF_TURN_DEGREE <= HALF_TURN_DEGREE
# (- HALF_TURN_DEGREE / HALF_TURN_DEGREE * (resolution // 2) - values[i] - homing_offset) / resolution <= factor <= (HALF_TURN_DEGREE / 180 * (resolution // 2) - values[i] - homing_offset) / resolution
low_factor = (
-HALF_TURN_DEGREE / HALF_TURN_DEGREE * (resolution // 2) - values[i] - homing_offset
) / resolution
upp_factor = (
HALF_TURN_DEGREE / HALF_TURN_DEGREE * (resolution // 2) - values[i] - homing_offset
) / resolution
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
start_pos = self.calibration["start_pos"][calib_idx]
end_pos = self.calibration["end_pos"][calib_idx]
# Convert from initial range to range [0, 100] in %
calib_val = (values[i] - start_pos) / (end_pos - start_pos) * 100
in_range = (calib_val > LOWER_BOUND_LINEAR) and (calib_val < UPPER_BOUND_LINEAR)
# Solve this inequality to find the factor to shift the range into [0, 100] %
# values[i] = (values[i] - start_pos + resolution * factor) / (end_pos + resolution * factor - start_pos - resolution * factor) * 100
# values[i] = (values[i] - start_pos + resolution * factor) / (end_pos - start_pos) * 100
# 0 <= (values[i] - start_pos + resolution * factor) / (end_pos - start_pos) * 100 <= 100
# (start_pos - values[i]) / resolution <= factor <= (end_pos - values[i]) / resolution
low_factor = (start_pos - values[i]) / resolution
upp_factor = (end_pos - values[i]) / resolution
if not in_range:
# Get first integer between the two bounds
if low_factor < upp_factor:
factor = math.ceil(low_factor)
if factor > upp_factor:
raise ValueError(f"No integer found between bounds [{low_factor=}, {upp_factor=}]")
else:
factor = math.ceil(upp_factor)
if factor > low_factor:
raise ValueError(f"No integer found between bounds [{low_factor=}, {upp_factor=}]")
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
out_of_range_str = f"{LOWER_BOUND_DEGREE} < {calib_val} < {UPPER_BOUND_DEGREE} degrees"
in_range_str = f"{LOWER_BOUND_DEGREE} < {calib_val} < {UPPER_BOUND_DEGREE} degrees"
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
out_of_range_str = f"{LOWER_BOUND_LINEAR} < {calib_val} < {UPPER_BOUND_LINEAR} %"
in_range_str = f"{LOWER_BOUND_LINEAR} < {calib_val} < {UPPER_BOUND_LINEAR} %"
logging.warning(
f"Auto-correct calibration of motor '{name}' by shifting value by {abs(factor)} full turns, "
f"from '{out_of_range_str}' to '{in_range_str}'."
)
# A full turn corresponds to 360 degrees but also to 4096 steps for a motor resolution of 4096.
self.calibration["homing_offset"][calib_idx] += resolution * factor
def revert_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
"""Inverse of `apply_calibration`."""
if motor_names is None:
motor_names = self.motor_names
for i, name in enumerate(motor_names):
calib_idx = self.calibration["motor_names"].index(name)
calib_mode = self.calibration["calib_mode"][calib_idx]
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
drive_mode = self.calibration["drive_mode"][calib_idx]
homing_offset = self.calibration["homing_offset"][calib_idx]
_, model = self.motors[name]
resolution = self.model_resolution[model]
# Convert from nominal 0-centered degree range [-180, 180] to
# 0-centered resolution range (e.g. [-2048, 2048] for resolution=4096)
values[i] = values[i] / HALF_TURN_DEGREE * (resolution // 2)
# Substract the homing offsets to come back to actual motor range of values
# which can be arbitrary.
values[i] -= homing_offset
# Remove drive mode, which is the rotation direction of the motor, to come back to
# actual motor rotation direction which can be arbitrary.
if drive_mode:
values[i] *= -1
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
start_pos = self.calibration["start_pos"][calib_idx]
end_pos = self.calibration["end_pos"][calib_idx]
# Convert from nominal lnear range of [0, 100] % to
# actual motor range of values which can be arbitrary.
values[i] = values[i] / 100 * (end_pos - start_pos) + start_pos
values = np.round(values).astype(np.int32)
return values
def avoid_rotation_reset(self, values, motor_names, data_name):
if data_name not in self.track_positions:
self.track_positions[data_name] = {
"prev": [None] * len(self.motor_names),
# Assume False at initialization
"below_zero": [False] * len(self.motor_names),
"above_max": [False] * len(self.motor_names),
}
track = self.track_positions[data_name]
if motor_names is None:
motor_names = self.motor_names
for i, name in enumerate(motor_names):
idx = self.motor_names.index(name)
if track["prev"][idx] is None:
track["prev"][idx] = values[i]
continue
# Detect a full rotation occured
if abs(track["prev"][idx] - values[i]) > 2048:
# Position went below 0 and got reset to 4095
if track["prev"][idx] < values[i]:
# So we set negative value by adding a full rotation
values[i] -= 4096
# Position went above 4095 and got reset to 0
elif track["prev"][idx] > values[i]:
# So we add a full rotation
values[i] += 4096
track["prev"][idx] = values[i]
return values
def read_with_motor_ids(self, motor_models, motor_ids, data_name, num_retry=NUM_READ_RETRY):
if self.mock:
import tests.mock_scservo_sdk as scs
else:
import scservo_sdk as scs
return_list = True
if not isinstance(motor_ids, list):
return_list = False
motor_ids = [motor_ids]
assert_same_address(self.model_ctrl_table, self.motor_models, data_name)
addr, bytes = self.model_ctrl_table[motor_models[0]][data_name]
group = scs.GroupSyncRead(self.port_handler, self.packet_handler, addr, bytes)
for idx in motor_ids:
group.addParam(idx)
for _ in range(num_retry):
comm = group.txRxPacket()
if comm == scs.COMM_SUCCESS:
break
if comm != scs.COMM_SUCCESS:
raise ConnectionError(
f"Read failed due to communication error on port {self.port_handler.port_name} for indices {motor_ids}: "
f"{self.packet_handler.getTxRxResult(comm)}"
)
values = []
for idx in motor_ids:
value = group.getData(idx, addr, bytes)
values.append(value)
if return_list:
return values
else:
return values[0]
def read(self, data_name, motor_names: str | list[str] | None = None):
if self.mock:
import tests.mock_scservo_sdk as scs
else:
import scservo_sdk as scs
if not self.is_connected:
raise RobotDeviceNotConnectedError(
f"FeetechMotorsBus({self.port}) is not connected. You need to run `motors_bus.connect()`."
)
start_time = time.perf_counter()
if motor_names is None:
motor_names = self.motor_names
if isinstance(motor_names, str):
motor_names = [motor_names]
motor_ids = []
models = []
for name in motor_names:
motor_idx, model = self.motors[name]
motor_ids.append(motor_idx)
models.append(model)
assert_same_address(self.model_ctrl_table, models, data_name)
addr, bytes = self.model_ctrl_table[model][data_name]
group_key = get_group_sync_key(data_name, motor_names)
if data_name not in self.group_readers:
# create new group reader
self.group_readers[group_key] = scs.GroupSyncRead(
self.port_handler, self.packet_handler, addr, bytes
)
for idx in motor_ids:
self.group_readers[group_key].addParam(idx)
for _ in range(NUM_READ_RETRY):
comm = self.group_readers[group_key].txRxPacket()
if comm == scs.COMM_SUCCESS:
break
if comm != scs.COMM_SUCCESS:
raise ConnectionError(
f"Read failed due to communication error on port {self.port} for group_key {group_key}: "
f"{self.packet_handler.getTxRxResult(comm)}"
)
values = []
for idx in motor_ids:
value = self.group_readers[group_key].getData(idx, addr, bytes)
values.append(value)
values = np.array(values)
# Convert to signed int to use range [-2048, 2048] for our motor positions.
if data_name in CONVERT_UINT32_TO_INT32_REQUIRED:
values = values.astype(np.int32)
if data_name in CALIBRATION_REQUIRED:
values = self.avoid_rotation_reset(values, motor_names, data_name)
if data_name in CALIBRATION_REQUIRED and self.calibration is not None:
values = self.apply_calibration_autocorrect(values, motor_names)
# log the number of seconds it took to read the data from the motors
delta_ts_name = get_log_name("delta_timestamp_s", "read", data_name, motor_names)
self.logs[delta_ts_name] = time.perf_counter() - start_time
# log the utc time at which the data was received
ts_utc_name = get_log_name("timestamp_utc", "read", data_name, motor_names)
self.logs[ts_utc_name] = capture_timestamp_utc()
return values
def write_with_motor_ids(self, motor_models, motor_ids, data_name, values, num_retry=NUM_WRITE_RETRY):
if self.mock:
import tests.mock_scservo_sdk as scs
else:
import scservo_sdk as scs
if not isinstance(motor_ids, list):
motor_ids = [motor_ids]
if not isinstance(values, list):
values = [values]
assert_same_address(self.model_ctrl_table, motor_models, data_name)
addr, bytes = self.model_ctrl_table[motor_models[0]][data_name]
group = scs.GroupSyncWrite(self.port_handler, self.packet_handler, addr, bytes)
for idx, value in zip(motor_ids, values, strict=True):
data = convert_to_bytes(value, bytes, self.mock)
group.addParam(idx, data)
for _ in range(num_retry):
comm = group.txPacket()
if comm == scs.COMM_SUCCESS:
break
if comm != scs.COMM_SUCCESS:
raise ConnectionError(
f"Write failed due to communication error on port {self.port_handler.port_name} for indices {motor_ids}: "
f"{self.packet_handler.getTxRxResult(comm)}"
)
def write(self, data_name, values: int | float | np.ndarray, motor_names: str | list[str] | None = None):
if not self.is_connected:
raise RobotDeviceNotConnectedError(
f"FeetechMotorsBus({self.port}) is not connected. You need to run `motors_bus.connect()`."
)
start_time = time.perf_counter()
if self.mock:
import tests.mock_scservo_sdk as scs
else:
import scservo_sdk as scs
if motor_names is None:
motor_names = self.motor_names
if isinstance(motor_names, str):
motor_names = [motor_names]
if isinstance(values, (int, float, np.integer)):
values = [int(values)] * len(motor_names)
values = np.array(values)
motor_ids = []
models = []
for name in motor_names:
motor_idx, model = self.motors[name]
motor_ids.append(motor_idx)
models.append(model)
if data_name in CALIBRATION_REQUIRED and self.calibration is not None:
values = self.revert_calibration(values, motor_names)
values = values.tolist()
assert_same_address(self.model_ctrl_table, models, data_name)
addr, bytes = self.model_ctrl_table[model][data_name]
group_key = get_group_sync_key(data_name, motor_names)
init_group = data_name not in self.group_readers
if init_group:
self.group_writers[group_key] = scs.GroupSyncWrite(
self.port_handler, self.packet_handler, addr, bytes
)
for idx, value in zip(motor_ids, values, strict=True):
data = convert_to_bytes(value, bytes, self.mock)
if init_group:
self.group_writers[group_key].addParam(idx, data)
else:
self.group_writers[group_key].changeParam(idx, data)
comm = self.group_writers[group_key].txPacket()
if comm != scs.COMM_SUCCESS:
raise ConnectionError(
f"Write failed due to communication error on port {self.port} for group_key {group_key}: "
f"{self.packet_handler.getTxRxResult(comm)}"
)
# log the number of seconds it took to write the data to the motors
delta_ts_name = get_log_name("delta_timestamp_s", "write", data_name, motor_names)
self.logs[delta_ts_name] = time.perf_counter() - start_time
# TODO(rcadene): should we log the time before sending the write command?
# log the utc time when the write has been completed
ts_utc_name = get_log_name("timestamp_utc", "write", data_name, motor_names)
self.logs[ts_utc_name] = capture_timestamp_utc()
def disconnect(self):
if not self.is_connected:
raise RobotDeviceNotConnectedError(
f"FeetechMotorsBus({self.port}) is not connected. Try running `motors_bus.connect()` first."
)
if self.port_handler is not None:
self.port_handler.closePort()
self.port_handler = None
self.packet_handler = None
self.group_readers = {}
self.group_writers = {}
self.is_connected = False
def __del__(self):
if getattr(self, "is_connected", False):
self.disconnect()

View File

@@ -1,130 +0,0 @@
"""Logic to calibrate a robot arm built with dynamixel motors"""
# TODO(rcadene, aliberts): move this logic into the robot code when refactoring
import numpy as np
from lerobot.common.robot_devices.motors.dynamixel import (
CalibrationMode,
TorqueMode,
convert_degrees_to_steps,
)
from lerobot.common.robot_devices.motors.utils import MotorsBus
URL_TEMPLATE = (
"https://raw.githubusercontent.com/huggingface/lerobot/main/media/{robot}/{arm}_{position}.webp"
)
# The following positions are provided in nominal degree range ]-180, +180[
# For more info on these constants, see comments in the code where they get used.
ZERO_POSITION_DEGREE = 0
ROTATED_POSITION_DEGREE = 90
def assert_drive_mode(drive_mode):
# `drive_mode` is in [0,1] with 0 means original rotation direction for the motor, and 1 means inverted.
if not np.all(np.isin(drive_mode, [0, 1])):
raise ValueError(f"`drive_mode` contains values other than 0 or 1: ({drive_mode})")
def apply_drive_mode(position, drive_mode):
assert_drive_mode(drive_mode)
# Convert `drive_mode` from [0, 1] with 0 indicates original rotation direction and 1 inverted,
# to [-1, 1] with 1 indicates original rotation direction and -1 inverted.
signed_drive_mode = -(drive_mode * 2 - 1)
position *= signed_drive_mode
return position
def compute_nearest_rounded_position(position, models):
delta_turn = convert_degrees_to_steps(ROTATED_POSITION_DEGREE, models)
nearest_pos = np.round(position.astype(float) / delta_turn) * delta_turn
return nearest_pos.astype(position.dtype)
def run_arm_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
"""This function ensures that a neural network trained on data collected on a given robot
can work on another robot. For instance before calibration, setting a same goal position
for each motor of two different robots will get two very different positions. But after calibration,
the two robots will move to the same position.To this end, this function computes the homing offset
and the drive mode for each motor of a given robot.
Homing offset is used to shift the motor position to a ]-2048, +2048[ nominal range (when the motor uses 2048 steps
to complete a half a turn). This range is set around an arbitrary "zero position" corresponding to all motor positions
being 0. During the calibration process, you will need to manually move the robot to this "zero position".
Drive mode is used to invert the rotation direction of the motor. This is useful when some motors have been assembled
in the opposite orientation for some robots. During the calibration process, you will need to manually move the robot
to the "rotated position".
After calibration, the homing offsets and drive modes are stored in a cache.
Example of usage:
```python
run_arm_calibration(arm, "koch", "left", "follower")
```
"""
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
raise ValueError("To run calibration, the torque must be disabled on all motors.")
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
print("\nMove arm to zero position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="zero"))
input("Press Enter to continue...")
# We arbitrarily chose our zero target position to be a straight horizontal position with gripper upwards and closed.
# It is easy to identify and all motors are in a "quarter turn" position. Once calibration is done, this position will
# correspond to every motor angle being 0. If you set all 0 as Goal Position, the arm will move in this position.
zero_target_pos = convert_degrees_to_steps(ZERO_POSITION_DEGREE, arm.motor_models)
# Compute homing offset so that `present_position + homing_offset ~= target_position`.
zero_pos = arm.read("Present_Position")
zero_nearest_pos = compute_nearest_rounded_position(zero_pos, arm.motor_models)
homing_offset = zero_target_pos - zero_nearest_pos
# The rotated target position corresponds to a rotation of a quarter turn from the zero position.
# This allows to identify the rotation direction of each motor.
# For instance, if the motor rotates 90 degree, and its value is -90 after applying the homing offset, then we know its rotation direction
# is inverted. However, for the calibration being successful, we need everyone to follow the same target position.
# Sometimes, there is only one possible rotation direction. For instance, if the gripper is closed, there is only one direction which
# corresponds to opening the gripper. When the rotation direction is ambiguous, we arbitrarely rotate clockwise from the point of view
# of the previous motor in the kinetic chain.
print("\nMove arm to rotated target position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rotated"))
input("Press Enter to continue...")
rotated_target_pos = convert_degrees_to_steps(ROTATED_POSITION_DEGREE, arm.motor_models)
# Find drive mode by rotating each motor by a quarter of a turn.
# Drive mode indicates if the motor rotation direction should be inverted (=1) or not (=0).
rotated_pos = arm.read("Present_Position")
drive_mode = (rotated_pos < zero_pos).astype(np.int32)
# Re-compute homing offset to take into account drive mode
rotated_drived_pos = apply_drive_mode(rotated_pos, drive_mode)
rotated_nearest_pos = compute_nearest_rounded_position(rotated_drived_pos, arm.motor_models)
homing_offset = rotated_target_pos - rotated_nearest_pos
print("\nMove arm to rest position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rest"))
input("Press Enter to continue...")
print()
# Joints with rotational motions are expressed in degrees in nominal range of [-180, 180]
calib_mode = [CalibrationMode.DEGREE.name] * len(arm.motor_names)
# TODO(rcadene): make type of joints (DEGREE or LINEAR) configurable from yaml?
if robot_type in ["aloha"] and "gripper" in arm.motor_names:
# Joints with linear motions (like gripper of Aloha) are experessed in nominal range of [0, 100]
calib_idx = arm.motor_names.index("gripper")
calib_mode[calib_idx] = CalibrationMode.LINEAR.name
calib_data = {
"homing_offset": homing_offset.tolist(),
"drive_mode": drive_mode.tolist(),
"start_pos": zero_pos.tolist(),
"end_pos": rotated_pos.tolist(),
"calib_mode": calib_mode,
"motor_names": arm.motor_names,
}
return calib_data

View File

@@ -1,9 +1,7 @@
import hydra
from omegaconf import DictConfig
from lerobot.common.robot_devices.robots.utils import Robot
def make_robot(cfg: DictConfig) -> Robot:
def make_robot(cfg: DictConfig):
robot = hydra.utils.instantiate(cfg)
return robot

View File

@@ -1,484 +0,0 @@
"""Logic to calibrate a robot arm built with feetech motors"""
# TODO(rcadene, aliberts): move this logic into the robot code when refactoring
import time
import numpy as np
from lerobot.common.robot_devices.motors.feetech import (
CalibrationMode,
TorqueMode,
convert_degrees_to_steps,
)
from lerobot.common.robot_devices.motors.utils import MotorsBus
URL_TEMPLATE = (
"https://raw.githubusercontent.com/huggingface/lerobot/main/media/{robot}/{arm}_{position}.webp"
)
# The following positions are provided in nominal degree range ]-180, +180[
# For more info on these constants, see comments in the code where they get used.
ZERO_POSITION_DEGREE = 0
ROTATED_POSITION_DEGREE = 90
def assert_drive_mode(drive_mode):
# `drive_mode` is in [0,1] with 0 means original rotation direction for the motor, and 1 means inverted.
if not np.all(np.isin(drive_mode, [0, 1])):
raise ValueError(f"`drive_mode` contains values other than 0 or 1: ({drive_mode})")
def apply_drive_mode(position, drive_mode):
assert_drive_mode(drive_mode)
# Convert `drive_mode` from [0, 1] with 0 indicates original rotation direction and 1 inverted,
# to [-1, 1] with 1 indicates original rotation direction and -1 inverted.
signed_drive_mode = -(drive_mode * 2 - 1)
position *= signed_drive_mode
return position
def move_until_block(arm, motor_name, positive_direction=True, while_move_hook=None):
count = 0
while True:
present_pos = arm.read("Present_Position", motor_name)
if positive_direction:
# Move +100 steps every time. Lower the steps to lower the speed at which the arm moves.
arm.write("Goal_Position", present_pos + 100, motor_name)
else:
arm.write("Goal_Position", present_pos - 100, motor_name)
if while_move_hook is not None:
while_move_hook()
present_pos = arm.read("Present_Position", motor_name).item()
present_speed = arm.read("Present_Speed", motor_name).item()
present_current = arm.read("Present_Current", motor_name).item()
# present_load = arm.read("Present_Load", motor_name).item()
# present_voltage = arm.read("Present_Voltage", motor_name).item()
# present_temperature = arm.read("Present_Temperature", motor_name).item()
# print(f"{present_pos=}")
# print(f"{present_speed=}")
# print(f"{present_current=}")
# print(f"{present_load=}")
# print(f"{present_voltage=}")
# print(f"{present_temperature=}")
if present_speed == 0 and present_current > 40:
count += 1
if count > 100 or present_current > 300:
return present_pos
else:
count = 0
def move_to_calibrate(
arm,
motor_name,
invert_drive_mode=False,
positive_first=True,
in_between_move_hook=None,
while_move_hook=None,
):
initial_pos = arm.read("Present_Position", motor_name)
if positive_first:
p_present_pos = move_until_block(
arm, motor_name, positive_direction=True, while_move_hook=while_move_hook
)
else:
n_present_pos = move_until_block(
arm, motor_name, positive_direction=False, while_move_hook=while_move_hook
)
if in_between_move_hook is not None:
in_between_move_hook()
if positive_first:
n_present_pos = move_until_block(
arm, motor_name, positive_direction=False, while_move_hook=while_move_hook
)
else:
p_present_pos = move_until_block(
arm, motor_name, positive_direction=True, while_move_hook=while_move_hook
)
zero_pos = (n_present_pos + p_present_pos) / 2
calib_data = {
"initial_pos": initial_pos,
"homing_offset": zero_pos if invert_drive_mode else -zero_pos,
"invert_drive_mode": invert_drive_mode,
"drive_mode": -1 if invert_drive_mode else 0,
"zero_pos": zero_pos,
"start_pos": n_present_pos if invert_drive_mode else p_present_pos,
"end_pos": p_present_pos if invert_drive_mode else n_present_pos,
}
return calib_data
def apply_offset(calib, offset):
calib["zero_pos"] += offset
if calib["drive_mode"]:
calib["homing_offset"] += offset
else:
calib["homing_offset"] -= offset
return calib
def run_arm_auto_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
if robot_type == "so100":
return run_arm_auto_calibration_so100(arm, robot_type, arm_name, arm_type)
elif robot_type == "moss":
return run_arm_auto_calibration_moss(arm, robot_type, arm_name, arm_type)
else:
raise ValueError(robot_type)
def run_arm_auto_calibration_so100(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
"""All the offsets and magic numbers are hand tuned, and are unique to SO-100 follower arms"""
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
raise ValueError("To run calibration, the torque must be disabled on all motors.")
if not (robot_type == "so100" and arm_type == "follower"):
raise NotImplementedError("Auto calibration only supports the follower of so100 arms for now.")
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
print("\nMove arm to initial position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="initial"))
input("Press Enter to continue...")
# Lower the acceleration of the motors (in [0,254])
initial_acceleration = arm.read("Acceleration")
arm.write("Lock", 0)
arm.write("Acceleration", 10)
time.sleep(1)
arm.write("Torque_Enable", TorqueMode.ENABLED.value)
print(f'{arm.read("Present_Position", "elbow_flex")=}')
calib = {}
init_wf_pos = arm.read("Present_Position", "wrist_flex")
init_sl_pos = arm.read("Present_Position", "shoulder_lift")
init_ef_pos = arm.read("Present_Position", "elbow_flex")
arm.write("Goal_Position", init_wf_pos - 800, "wrist_flex")
arm.write("Goal_Position", init_sl_pos + 150 + 1024, "shoulder_lift")
arm.write("Goal_Position", init_ef_pos - 2048, "elbow_flex")
time.sleep(2)
print("Calibrate shoulder_pan")
calib["shoulder_pan"] = move_to_calibrate(arm, "shoulder_pan")
arm.write("Goal_Position", calib["shoulder_pan"]["zero_pos"], "shoulder_pan")
time.sleep(1)
print("Calibrate gripper")
calib["gripper"] = move_to_calibrate(arm, "gripper", invert_drive_mode=True)
time.sleep(1)
print("Calibrate wrist_flex")
calib["wrist_flex"] = move_to_calibrate(arm, "wrist_flex")
calib["wrist_flex"] = apply_offset(calib["wrist_flex"], offset=80)
def in_between_move_hook():
nonlocal arm, calib
time.sleep(2)
ef_pos = arm.read("Present_Position", "elbow_flex")
sl_pos = arm.read("Present_Position", "shoulder_lift")
arm.write("Goal_Position", ef_pos + 1024, "elbow_flex")
arm.write("Goal_Position", sl_pos - 1024, "shoulder_lift")
time.sleep(2)
print("Calibrate elbow_flex")
calib["elbow_flex"] = move_to_calibrate(
arm, "elbow_flex", positive_first=False, in_between_move_hook=in_between_move_hook
)
calib["elbow_flex"] = apply_offset(calib["elbow_flex"], offset=80 - 1024)
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] + 1024 + 512, "elbow_flex")
time.sleep(1)
def in_between_move_hook():
nonlocal arm, calib
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"], "elbow_flex")
print("Calibrate shoulder_lift")
calib["shoulder_lift"] = move_to_calibrate(
arm,
"shoulder_lift",
invert_drive_mode=True,
positive_first=False,
in_between_move_hook=in_between_move_hook,
)
# add an 30 steps as offset to align with body
calib["shoulder_lift"] = apply_offset(calib["shoulder_lift"], offset=1024 - 50)
def while_move_hook():
nonlocal arm, calib
positions = {
"shoulder_lift": round(calib["shoulder_lift"]["zero_pos"] - 1600),
"elbow_flex": round(calib["elbow_flex"]["zero_pos"] + 1700),
"wrist_flex": round(calib["wrist_flex"]["zero_pos"] + 800),
"gripper": round(calib["gripper"]["end_pos"]),
}
arm.write("Goal_Position", list(positions.values()), list(positions.keys()))
arm.write("Goal_Position", round(calib["shoulder_lift"]["zero_pos"] - 1600), "shoulder_lift")
time.sleep(2)
arm.write("Goal_Position", round(calib["elbow_flex"]["zero_pos"] + 1700), "elbow_flex")
time.sleep(2)
arm.write("Goal_Position", round(calib["wrist_flex"]["zero_pos"] + 800), "wrist_flex")
time.sleep(2)
arm.write("Goal_Position", round(calib["gripper"]["end_pos"]), "gripper")
time.sleep(2)
print("Calibrate wrist_roll")
calib["wrist_roll"] = move_to_calibrate(
arm, "wrist_roll", invert_drive_mode=True, positive_first=False, while_move_hook=while_move_hook
)
arm.write("Goal_Position", calib["wrist_roll"]["zero_pos"], "wrist_roll")
time.sleep(1)
arm.write("Goal_Position", calib["gripper"]["start_pos"], "gripper")
time.sleep(1)
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"], "wrist_flex")
time.sleep(1)
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] + 2048, "elbow_flex")
arm.write("Goal_Position", calib["shoulder_lift"]["zero_pos"] - 2048, "shoulder_lift")
time.sleep(1)
arm.write("Goal_Position", calib["shoulder_pan"]["zero_pos"], "shoulder_pan")
time.sleep(1)
calib_modes = []
for name in arm.motor_names:
if name == "gripper":
calib_modes.append(CalibrationMode.LINEAR.name)
else:
calib_modes.append(CalibrationMode.DEGREE.name)
calib_dict = {
"homing_offset": [calib[name]["homing_offset"] for name in arm.motor_names],
"drive_mode": [calib[name]["drive_mode"] for name in arm.motor_names],
"start_pos": [calib[name]["start_pos"] for name in arm.motor_names],
"end_pos": [calib[name]["end_pos"] for name in arm.motor_names],
"calib_mode": calib_modes,
"motor_names": arm.motor_names,
}
# Re-enable original accerlation
arm.write("Lock", 0)
arm.write("Acceleration", initial_acceleration)
time.sleep(1)
return calib_dict
def run_arm_auto_calibration_moss(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
"""All the offsets and magic numbers are hand tuned, and are unique to SO-100 follower arms"""
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
raise ValueError("To run calibration, the torque must be disabled on all motors.")
if not (robot_type == "moss" and arm_type == "follower"):
raise NotImplementedError("Auto calibration only supports the follower of moss arms for now.")
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
print("\nMove arm to initial position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="initial"))
input("Press Enter to continue...")
# Lower the acceleration of the motors (in [0,254])
initial_acceleration = arm.read("Acceleration")
arm.write("Lock", 0)
arm.write("Acceleration", 10)
time.sleep(1)
arm.write("Torque_Enable", TorqueMode.ENABLED.value)
sl_pos = arm.read("Present_Position", "shoulder_lift")
arm.write("Goal_Position", sl_pos - 1024 - 450, "shoulder_lift")
ef_pos = arm.read("Present_Position", "elbow_flex")
arm.write("Goal_Position", ef_pos + 1024 + 450, "elbow_flex")
time.sleep(2)
calib = {}
print("Calibrate shoulder_pan")
calib["shoulder_pan"] = move_to_calibrate(arm, "shoulder_pan")
arm.write("Goal_Position", calib["shoulder_pan"]["zero_pos"], "shoulder_pan")
time.sleep(1)
print("Calibrate gripper")
calib["gripper"] = move_to_calibrate(arm, "gripper", invert_drive_mode=True)
time.sleep(1)
print("Calibrate wrist_flex")
calib["wrist_flex"] = move_to_calibrate(arm, "wrist_flex", invert_drive_mode=True)
calib["wrist_flex"] = apply_offset(calib["wrist_flex"], offset=-210 + 1024)
wr_pos = arm.read("Present_Position", "wrist_roll")
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 1024, "wrist_flex")
time.sleep(1)
arm.write("Goal_Position", wr_pos - 1024, "wrist_roll")
time.sleep(1)
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 2048, "wrist_flex")
time.sleep(1)
arm.write("Goal_Position", calib["gripper"]["end_pos"], "gripper")
time.sleep(1)
print("Calibrate wrist_roll")
calib["wrist_roll"] = move_to_calibrate(arm, "wrist_roll", invert_drive_mode=True)
calib["wrist_roll"] = apply_offset(calib["wrist_roll"], offset=790)
arm.write("Goal_Position", calib["wrist_roll"]["zero_pos"] - 1024, "wrist_roll")
arm.write("Goal_Position", calib["gripper"]["start_pos"], "gripper")
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 1024, "wrist_flex")
time.sleep(1)
arm.write("Goal_Position", calib["wrist_roll"]["zero_pos"], "wrist_roll")
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 2048, "wrist_flex")
def in_between_move_elbow_flex_hook():
nonlocal arm, calib
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"], "wrist_flex")
print("Calibrate elbow_flex")
calib["elbow_flex"] = move_to_calibrate(
arm,
"elbow_flex",
invert_drive_mode=True,
in_between_move_hook=in_between_move_elbow_flex_hook,
)
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 1024, "wrist_flex")
def in_between_move_shoulder_lift_hook():
nonlocal arm, calib
sl = arm.read("Present_Position", "shoulder_lift")
arm.write("Goal_Position", sl - 1500, "shoulder_lift")
time.sleep(1)
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] + 1536, "elbow_flex")
time.sleep(1)
arm.write("Goal_Position", calib["wrist_flex"]["start_pos"], "wrist_flex")
time.sleep(1)
print("Calibrate shoulder_lift")
calib["shoulder_lift"] = move_to_calibrate(
arm, "shoulder_lift", in_between_move_hook=in_between_move_shoulder_lift_hook
)
calib["shoulder_lift"] = apply_offset(calib["shoulder_lift"], offset=-1024)
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 1024, "wrist_flex")
time.sleep(1)
arm.write("Goal_Position", calib["shoulder_lift"]["zero_pos"] + 2048, "shoulder_lift")
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] - 1024 - 400, "elbow_flex")
time.sleep(2)
calib_modes = []
for name in arm.motor_names:
if name == "gripper":
calib_modes.append(CalibrationMode.LINEAR.name)
else:
calib_modes.append(CalibrationMode.DEGREE.name)
calib_dict = {
"homing_offset": [calib[name]["homing_offset"] for name in arm.motor_names],
"drive_mode": [calib[name]["drive_mode"] for name in arm.motor_names],
"start_pos": [calib[name]["start_pos"] for name in arm.motor_names],
"end_pos": [calib[name]["end_pos"] for name in arm.motor_names],
"calib_mode": calib_modes,
"motor_names": arm.motor_names,
}
# Re-enable original accerlation
arm.write("Lock", 0)
arm.write("Acceleration", initial_acceleration)
time.sleep(1)
return calib_dict
def run_arm_manual_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
"""This function ensures that a neural network trained on data collected on a given robot
can work on another robot. For instance before calibration, setting a same goal position
for each motor of two different robots will get two very different positions. But after calibration,
the two robots will move to the same position.To this end, this function computes the homing offset
and the drive mode for each motor of a given robot.
Homing offset is used to shift the motor position to a ]-2048, +2048[ nominal range (when the motor uses 2048 steps
to complete a half a turn). This range is set around an arbitrary "zero position" corresponding to all motor positions
being 0. During the calibration process, you will need to manually move the robot to this "zero position".
Drive mode is used to invert the rotation direction of the motor. This is useful when some motors have been assembled
in the opposite orientation for some robots. During the calibration process, you will need to manually move the robot
to the "rotated position".
After calibration, the homing offsets and drive modes are stored in a cache.
Example of usage:
```python
run_arm_calibration(arm, "so100", "left", "follower")
```
"""
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
raise ValueError("To run calibration, the torque must be disabled on all motors.")
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
print("\nMove arm to zero position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="zero"))
input("Press Enter to continue...")
# We arbitrarily chose our zero target position to be a straight horizontal position with gripper upwards and closed.
# It is easy to identify and all motors are in a "quarter turn" position. Once calibration is done, this position will
# correspond to every motor angle being 0. If you set all 0 as Goal Position, the arm will move in this position.
zero_target_pos = convert_degrees_to_steps(ZERO_POSITION_DEGREE, arm.motor_models)
# Compute homing offset so that `present_position + homing_offset ~= target_position`.
zero_pos = arm.read("Present_Position")
homing_offset = zero_target_pos - zero_pos
# The rotated target position corresponds to a rotation of a quarter turn from the zero position.
# This allows to identify the rotation direction of each motor.
# For instance, if the motor rotates 90 degree, and its value is -90 after applying the homing offset, then we know its rotation direction
# is inverted. However, for the calibration being successful, we need everyone to follow the same target position.
# Sometimes, there is only one possible rotation direction. For instance, if the gripper is closed, there is only one direction which
# corresponds to opening the gripper. When the rotation direction is ambiguous, we arbitrarely rotate clockwise from the point of view
# of the previous motor in the kinetic chain.
print("\nMove arm to rotated target position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rotated"))
input("Press Enter to continue...")
rotated_target_pos = convert_degrees_to_steps(ROTATED_POSITION_DEGREE, arm.motor_models)
# Find drive mode by rotating each motor by a quarter of a turn.
# Drive mode indicates if the motor rotation direction should be inverted (=1) or not (=0).
rotated_pos = arm.read("Present_Position")
drive_mode = (rotated_pos < zero_pos).astype(np.int32)
# Re-compute homing offset to take into account drive mode
rotated_drived_pos = apply_drive_mode(rotated_pos, drive_mode)
homing_offset = rotated_target_pos - rotated_drived_pos
print("\nMove arm to rest position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rest"))
input("Press Enter to continue...")
print()
# Joints with rotational motions are expressed in degrees in nominal range of [-180, 180]
calib_modes = []
for name in arm.motor_names:
if name == "gripper":
calib_modes.append(CalibrationMode.LINEAR.name)
else:
calib_modes.append(CalibrationMode.DEGREE.name)
calib_dict = {
"homing_offset": homing_offset.tolist(),
"drive_mode": drive_mode.tolist(),
"start_pos": zero_pos.tolist(),
"end_pos": rotated_pos.tolist(),
"calib_mode": calib_modes,
"motor_names": arm.motor_names,
}
return calib_dict

View File

@@ -1,9 +1,3 @@
"""Contains logic to instantiate a robot, read information from its motors and cameras,
and send orders to its motors.
"""
# TODO(rcadene, aliberts): reorganize the codebase into one file per robot, with the associated
# calibration procedure, to make it easy for people to add their own robot.
import json
import logging
import time
@@ -16,10 +10,138 @@ import numpy as np
import torch
from lerobot.common.robot_devices.cameras.utils import Camera
from lerobot.common.robot_devices.motors.dynamixel import (
CalibrationMode,
TorqueMode,
convert_degrees_to_steps,
)
from lerobot.common.robot_devices.motors.utils import MotorsBus
from lerobot.common.robot_devices.robots.utils import get_arm_id
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
########################################################################
# Calibration logic
########################################################################
URL_TEMPLATE = (
"https://raw.githubusercontent.com/huggingface/lerobot/main/media/{robot}/{arm}_{position}.webp"
)
# The following positions are provided in nominal degree range ]-180, +180[
# For more info on these constants, see comments in the code where they get used.
ZERO_POSITION_DEGREE = 0
ROTATED_POSITION_DEGREE = 90
def assert_drive_mode(drive_mode):
# `drive_mode` is in [0,1] with 0 means original rotation direction for the motor, and 1 means inverted.
if not np.all(np.isin(drive_mode, [0, 1])):
raise ValueError(f"`drive_mode` contains values other than 0 or 1: ({drive_mode})")
def apply_drive_mode(position, drive_mode):
assert_drive_mode(drive_mode)
# Convert `drive_mode` from [0, 1] with 0 indicates original rotation direction and 1 inverted,
# to [-1, 1] with 1 indicates original rotation direction and -1 inverted.
signed_drive_mode = -(drive_mode * 2 - 1)
position *= signed_drive_mode
return position
def compute_nearest_rounded_position(position, models):
delta_turn = convert_degrees_to_steps(ROTATED_POSITION_DEGREE, models)
nearest_pos = np.round(position.astype(float) / delta_turn) * delta_turn
return nearest_pos.astype(position.dtype)
def run_arm_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
"""This function ensures that a neural network trained on data collected on a given robot
can work on another robot. For instance before calibration, setting a same goal position
for each motor of two different robots will get two very different positions. But after calibration,
the two robots will move to the same position.To this end, this function computes the homing offset
and the drive mode for each motor of a given robot.
Homing offset is used to shift the motor position to a ]-2048, +2048[ nominal range (when the motor uses 2048 steps
to complete a half a turn). This range is set around an arbitrary "zero position" corresponding to all motor positions
being 0. During the calibration process, you will need to manually move the robot to this "zero position".
Drive mode is used to invert the rotation direction of the motor. This is useful when some motors have been assembled
in the opposite orientation for some robots. During the calibration process, you will need to manually move the robot
to the "rotated position".
After calibration, the homing offsets and drive modes are stored in a cache.
Example of usage:
```python
run_arm_calibration(arm, "koch", "left", "follower")
```
"""
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
raise ValueError("To run calibration, the torque must be disabled on all motors.")
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
print("\nMove arm to zero position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="zero"))
input("Press Enter to continue...")
# We arbitrarily chose our zero target position to be a straight horizontal position with gripper upwards and closed.
# It is easy to identify and all motors are in a "quarter turn" position. Once calibration is done, this position will
# correspond to every motor angle being 0. If you set all 0 as Goal Position, the arm will move in this position.
zero_target_pos = convert_degrees_to_steps(ZERO_POSITION_DEGREE, arm.motor_models)
# Compute homing offset so that `present_position + homing_offset ~= target_position`.
zero_pos = arm.read("Present_Position")
zero_nearest_pos = compute_nearest_rounded_position(zero_pos, arm.motor_models)
homing_offset = zero_target_pos - zero_nearest_pos
# The rotated target position corresponds to a rotation of a quarter turn from the zero position.
# This allows to identify the rotation direction of each motor.
# For instance, if the motor rotates 90 degree, and its value is -90 after applying the homing offset, then we know its rotation direction
# is inverted. However, for the calibration being successful, we need everyone to follow the same target position.
# Sometimes, there is only one possible rotation direction. For instance, if the gripper is closed, there is only one direction which
# corresponds to opening the gripper. When the rotation direction is ambiguous, we arbitrarely rotate clockwise from the point of view
# of the previous motor in the kinetic chain.
print("\nMove arm to rotated target position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rotated"))
input("Press Enter to continue...")
rotated_target_pos = convert_degrees_to_steps(ROTATED_POSITION_DEGREE, arm.motor_models)
# Find drive mode by rotating each motor by a quarter of a turn.
# Drive mode indicates if the motor rotation direction should be inverted (=1) or not (=0).
rotated_pos = arm.read("Present_Position")
drive_mode = (rotated_pos < zero_pos).astype(np.int32)
# Re-compute homing offset to take into account drive mode
rotated_drived_pos = apply_drive_mode(rotated_pos, drive_mode)
rotated_nearest_pos = compute_nearest_rounded_position(rotated_drived_pos, arm.motor_models)
homing_offset = rotated_target_pos - rotated_nearest_pos
print("\nMove arm to rest position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rest"))
input("Press Enter to continue...")
print()
# Joints with rotational motions are expressed in degrees in nominal range of [-180, 180]
calib_mode = [CalibrationMode.DEGREE.name] * len(arm.motor_names)
# TODO(rcadene): make type of joints (DEGREE or LINEAR) configurable from yaml?
if robot_type == "aloha" and "gripper" in arm.motor_names:
# Joints with linear motions (like gripper of Aloha) are experessed in nominal range of [0, 100]
calib_idx = arm.motor_names.index("gripper")
calib_mode[calib_idx] = CalibrationMode.LINEAR.name
calib_data = {
"homing_offset": homing_offset.tolist(),
"drive_mode": drive_mode.tolist(),
"start_pos": zero_pos.tolist(),
"end_pos": rotated_pos.tolist(),
"calib_mode": calib_mode,
"motor_names": arm.motor_names,
}
return calib_data
def ensure_safe_goal_position(
goal_pos: torch.Tensor, present_pos: torch.Tensor, max_relative_target: float | list[float]
@@ -41,6 +163,11 @@ def ensure_safe_goal_position(
return safe_goal_pos
########################################################################
# Manipulator robot
########################################################################
@dataclass
class ManipulatorRobotConfig:
"""
@@ -51,7 +178,7 @@ class ManipulatorRobotConfig:
"""
# Define all components of the robot
robot_type: str = "koch"
robot_type: str | None = None
leader_arms: dict[str, MotorsBus] = field(default_factory=lambda: {})
follower_arms: dict[str, MotorsBus] = field(default_factory=lambda: {})
cameras: dict[str, Camera] = field(default_factory=lambda: {})
@@ -80,10 +207,6 @@ class ManipulatorRobotConfig:
)
super().__setattr__(prop, val)
def __post_init__(self):
if self.robot_type not in ["koch", "koch_bimanual", "aloha", "so100", "moss"]:
raise ValueError(f"Provided robot type ({self.robot_type}) is not supported.")
class ManipulatorRobot:
# TODO(rcadene): Implement force feedback
@@ -226,61 +349,6 @@ class ManipulatorRobot:
self.is_connected = False
self.logs = {}
def get_motor_names(self, arm: dict[str, MotorsBus]) -> list:
return [f"{arm}_{motor}" for arm, bus in arm.items() for motor in bus.motors]
@property
def camera_features(self) -> dict:
cam_ft = {}
for cam_key, cam in self.cameras.items():
key = f"observation.images.{cam_key}"
cam_ft[key] = {
"shape": (cam.height, cam.width, cam.channels),
"names": ["height", "width", "channels"],
"info": None,
}
return cam_ft
@property
def motor_features(self) -> dict:
action_names = self.get_motor_names(self.leader_arms)
state_names = self.get_motor_names(self.leader_arms)
return {
"action": {
"dtype": "float32",
"shape": (len(action_names),),
"names": action_names,
},
"observation.state": {
"dtype": "float32",
"shape": (len(state_names),),
"names": state_names,
},
}
@property
def features(self):
return {**self.motor_features, **self.camera_features}
@property
def has_camera(self):
return len(self.cameras) > 0
@property
def num_cameras(self):
return len(self.cameras)
@property
def available_arms(self):
available_arms = []
for name in self.follower_arms:
arm_id = get_arm_id(name, "follower")
available_arms.append(arm_id)
for name in self.leader_arms:
arm_id = get_arm_id(name, "leader")
available_arms.append(arm_id)
return available_arms
def connect(self):
if self.is_connected:
raise RobotDeviceAlreadyConnectedError(
@@ -296,15 +364,9 @@ class ManipulatorRobot:
for name in self.follower_arms:
print(f"Connecting {name} follower arm.")
self.follower_arms[name].connect()
for name in self.leader_arms:
print(f"Connecting {name} leader arm.")
self.leader_arms[name].connect()
if self.robot_type in ["koch", "koch_bimanual", "aloha"]:
from lerobot.common.robot_devices.motors.dynamixel import TorqueMode
elif self.robot_type in ["so100", "moss"]:
from lerobot.common.robot_devices.motors.feetech import TorqueMode
# We assume that at connection time, arms are in a rest position, and torque can
# be safely disabled to run calibration and/or set robot preset configurations.
for name in self.follower_arms:
@@ -315,12 +377,12 @@ class ManipulatorRobot:
self.activate_calibration()
# Set robot preset (e.g. torque in leader gripper for Koch v1.1)
if self.robot_type in ["koch", "koch_bimanual"]:
if self.robot_type == "koch":
self.set_koch_robot_preset()
elif self.robot_type == "aloha":
self.set_aloha_robot_preset()
elif self.robot_type in ["so100", "moss"]:
self.set_so100_robot_preset()
else:
warnings.warn(f"No preset found for robot type: {self.robot_type}", stacklevel=1)
# Enable torque on all motors of the follower arms
for name in self.follower_arms:
@@ -328,22 +390,12 @@ class ManipulatorRobot:
self.follower_arms[name].write("Torque_Enable", 1)
if self.config.gripper_open_degree is not None:
if self.robot_type not in ["koch", "koch_bimanual"]:
raise NotImplementedError(
f"{self.robot_type} does not support position AND current control in the handle, which is require to set the gripper open."
)
# Set the leader arm in torque mode with the gripper motor set to an angle. This makes it possible
# to squeeze the gripper and have it spring back to an open position on its own.
for name in self.leader_arms:
self.leader_arms[name].write("Torque_Enable", 1, "gripper")
self.leader_arms[name].write("Goal_Position", self.config.gripper_open_degree, "gripper")
# Check both arms can be read
for name in self.follower_arms:
self.follower_arms[name].read("Present_Position")
for name in self.leader_arms:
self.leader_arms[name].read("Present_Position")
# Connect the cameras
for name in self.cameras:
self.cameras[name].connect()
@@ -364,20 +416,8 @@ class ManipulatorRobot:
with open(arm_calib_path) as f:
calibration = json.load(f)
else:
# TODO(rcadene): display a warning in __init__ if calibration file not available
print(f"Missing calibration file '{arm_calib_path}'")
if self.robot_type in ["koch", "koch_bimanual", "aloha"]:
from lerobot.common.robot_devices.robots.dynamixel_calibration import run_arm_calibration
calibration = run_arm_calibration(arm, self.robot_type, name, arm_type)
elif self.robot_type in ["so100", "moss"]:
from lerobot.common.robot_devices.robots.feetech_calibration import (
run_arm_manual_calibration,
)
calibration = run_arm_manual_calibration(arm, self.robot_type, name, arm_type)
calibration = run_arm_calibration(arm, self.robot_type, name, arm_type)
print(f"Calibration is done! Saving calibration file '{arm_calib_path}'")
arm_calib_path.parent.mkdir(parents=True, exist_ok=True)
@@ -395,8 +435,6 @@ class ManipulatorRobot:
def set_koch_robot_preset(self):
def set_operating_mode_(arm):
from lerobot.common.robot_devices.motors.dynamixel import TorqueMode
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
raise ValueError("To run set robot preset, the torque must be disabled on all motors.")
@@ -484,23 +522,6 @@ class ManipulatorRobot:
stacklevel=1,
)
def set_so100_robot_preset(self):
for name in self.follower_arms:
# Mode=0 for Position Control
self.follower_arms[name].write("Mode", 0)
# Set P_Coefficient to lower value to avoid shakiness (Default is 32)
self.follower_arms[name].write("P_Coefficient", 16)
# Set I_Coefficient and D_Coefficient to default value 0 and 32
self.follower_arms[name].write("I_Coefficient", 0)
self.follower_arms[name].write("D_Coefficient", 32)
# Close the write lock so that Maximum_Acceleration gets written to EPROM address,
# which is mandatory for Maximum_Acceleration to take effect after rebooting.
self.follower_arms[name].write("Lock", 0)
# Set Maximum_Acceleration to 254 to speedup acceleration and deceleration of
# the motors. Note: this configuration is not in the official STS3215 Memory Table
self.follower_arms[name].write("Maximum_Acceleration", 254)
self.follower_arms[name].write("Acceleration", 254)
def teleop_step(
self, record_data=False
) -> None | tuple[dict[str, torch.Tensor], dict[str, torch.Tensor]]:
@@ -660,10 +681,6 @@ class ManipulatorRobot:
return torch.cat(action_sent)
def print_logs(self):
pass
# TODO(aliberts): move robot-specific logs logic here
def disconnect(self):
if not self.is_connected:
raise RobotDeviceNotConnectedError(

View File

@@ -1,216 +0,0 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
from dataclasses import dataclass, field, replace
import torch
from stretch_body.gamepad_teleop import GamePadTeleop
from stretch_body.robot import Robot as StretchAPI
from stretch_body.robot_params import RobotParams
from lerobot.common.robot_devices.cameras.utils import Camera
@dataclass
class StretchRobotConfig:
robot_type: str | None = "stretch"
cameras: dict[str, Camera] = field(default_factory=lambda: {})
# TODO(aliberts): add feature with max_relative target
# TODO(aliberts): add comment on max_relative target
max_relative_target: list[float] | float | None = None
class StretchRobot(StretchAPI):
"""Wrapper of stretch_body.robot.Robot"""
def __init__(self, config: StretchRobotConfig | None = None, **kwargs):
super().__init__()
if config is None:
config = StretchRobotConfig()
# Overwrite config arguments using kwargs
self.config = replace(config, **kwargs)
self.robot_type = self.config.robot_type
self.cameras = self.config.cameras
self.is_connected = False
self.teleop = None
self.logs = {}
# TODO(aliberts): test this
RobotParams.set_logging_level("WARNING")
RobotParams.set_logging_formatter("brief_console_formatter")
self.state_keys = None
self.action_keys = None
def connect(self) -> None:
self.is_connected = self.startup()
if not self.is_connected:
print("Another process is already using Stretch. Try running 'stretch_free_robot_process.py'")
raise ConnectionError()
for name in self.cameras:
self.cameras[name].connect()
self.is_connected = self.is_connected and self.cameras[name].is_connected
if not self.is_connected:
print("Could not connect to the cameras, check that all cameras are plugged-in.")
raise ConnectionError()
self.run_calibration()
def run_calibration(self) -> None:
if not self.is_homed():
self.home()
def teleop_step(
self, record_data=False
) -> None | tuple[dict[str, torch.Tensor], dict[str, torch.Tensor]]:
# TODO(aliberts): return ndarrays instead of torch.Tensors
if not self.is_connected:
raise ConnectionError()
if self.teleop is None:
self.teleop = GamePadTeleop(robot_instance=False)
self.teleop.startup(robot=self)
before_read_t = time.perf_counter()
state = self.get_state()
action = self.teleop.gamepad_controller.get_state()
self.logs["read_pos_dt_s"] = time.perf_counter() - before_read_t
before_write_t = time.perf_counter()
self.teleop.do_motion(robot=self)
self.push_command()
self.logs["write_pos_dt_s"] = time.perf_counter() - before_write_t
if self.state_keys is None:
self.state_keys = list(state)
if not record_data:
return
state = torch.as_tensor(list(state.values()))
action = torch.as_tensor(list(action.values()))
# Capture images from cameras
images = {}
for name in self.cameras:
before_camread_t = time.perf_counter()
images[name] = self.cameras[name].async_read()
images[name] = torch.from_numpy(images[name])
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"]
self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - before_camread_t
# Populate output dictionnaries
obs_dict, action_dict = {}, {}
obs_dict["observation.state"] = state
action_dict["action"] = action
for name in self.cameras:
obs_dict[f"observation.images.{name}"] = images[name]
return obs_dict, action_dict
def get_state(self) -> dict:
status = self.get_status()
return {
"head_pan.pos": status["head"]["head_pan"]["pos"],
"head_tilt.pos": status["head"]["head_tilt"]["pos"],
"lift.pos": status["lift"]["pos"],
"arm.pos": status["arm"]["pos"],
"wrist_pitch.pos": status["end_of_arm"]["wrist_pitch"]["pos"],
"wrist_roll.pos": status["end_of_arm"]["wrist_roll"]["pos"],
"wrist_yaw.pos": status["end_of_arm"]["wrist_yaw"]["pos"],
"gripper.pos": status["end_of_arm"]["stretch_gripper"]["pos"],
"base_x.vel": status["base"]["x_vel"],
"base_y.vel": status["base"]["y_vel"],
"base_theta.vel": status["base"]["theta_vel"],
}
def capture_observation(self) -> dict:
# TODO(aliberts): return ndarrays instead of torch.Tensors
before_read_t = time.perf_counter()
state = self.get_state()
self.logs["read_pos_dt_s"] = time.perf_counter() - before_read_t
if self.state_keys is None:
self.state_keys = list(state)
state = torch.as_tensor(list(state.values()))
# Capture images from cameras
images = {}
for name in self.cameras:
before_camread_t = time.perf_counter()
images[name] = self.cameras[name].async_read()
images[name] = torch.from_numpy(images[name])
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"]
self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - before_camread_t
# Populate output dictionnaries
obs_dict = {}
obs_dict["observation.state"] = state
for name in self.cameras:
obs_dict[f"observation.images.{name}"] = images[name]
return obs_dict
def send_action(self, action: torch.Tensor) -> torch.Tensor:
# TODO(aliberts): return ndarrays instead of torch.Tensors
if not self.is_connected:
raise ConnectionError()
if self.teleop is None:
self.teleop = GamePadTeleop(robot_instance=False)
self.teleop.startup(robot=self)
if self.action_keys is None:
dummy_action = self.teleop.gamepad_controller.get_state()
self.action_keys = list(dummy_action.keys())
action_dict = dict(zip(self.action_keys, action.tolist(), strict=True))
before_write_t = time.perf_counter()
self.teleop.do_motion(state=action_dict, robot=self)
self.push_command()
self.logs["write_pos_dt_s"] = time.perf_counter() - before_write_t
# TODO(aliberts): return action_sent when motion is limited
return action
def print_logs(self) -> None:
pass
# TODO(aliberts): move robot-specific logs logic here
def teleop_safety_stop(self) -> None:
if self.teleop is not None:
self.teleop._safety_stop(robot=self)
def disconnect(self) -> None:
self.stop()
if self.teleop is not None:
self.teleop.gamepad_controller.stop()
self.teleop.stop()
if len(self.cameras) > 0:
for cam in self.cameras.values():
cam.disconnect()
self.is_connected = False
def __del__(self):
self.disconnect()

View File

@@ -9,13 +9,8 @@ def get_arm_id(name, arm_type):
class Robot(Protocol):
# TODO(rcadene, aliberts): Add unit test checking the protocol is implemented in the corresponding classes
robot_type: str
features: dict
def connect(self): ...
def init_teleop(self): ...
def run_calibration(self): ...
def teleop_step(self, record_data=False): ...
def capture_observation(self): ...
def send_action(self, action): ...
def disconnect(self): ...

View File

@@ -16,20 +16,6 @@ def busy_wait(seconds):
time.sleep(seconds)
def safe_disconnect(func):
# TODO(aliberts): Allow to pass custom exceptions
# (e.g. ThreadServiceExit, KeyboardInterrupt, SystemExit, UnpluggedError, DynamixelCommError)
def wrapper(robot, *args, **kwargs):
try:
return func(robot, *args, **kwargs)
except Exception as e:
if robot.is_connected:
robot.disconnect()
raise e
return wrapper
class RobotDeviceNotConnectedError(Exception):
"""Exception raised when the robot device is not connected."""

View File

@@ -16,7 +16,6 @@
import logging
import os
import os.path as osp
import platform
import random
from contextlib import contextmanager
from datetime import datetime, timezone
@@ -29,12 +28,6 @@ import torch
from omegaconf import DictConfig
def none_or_int(value):
if value == "None":
return None
return int(value)
def inside_slurm():
"""Check whether the python process was launched through slurm"""
# TODO(rcadene): return False for interactive mode `--pty bash`
@@ -190,30 +183,3 @@ def print_cuda_memory_usage():
def capture_timestamp_utc():
return datetime.now(timezone.utc)
def say(text, blocking=False):
# Check if mac, linux, or windows.
if platform.system() == "Darwin":
cmd = f'say "{text}"'
if not blocking:
cmd += " &"
elif platform.system() == "Linux":
cmd = f'spd-say "{text}"'
if blocking:
cmd += " --wait"
elif platform.system() == "Windows":
# TODO(rcadene): Make blocking option work for Windows
cmd = (
'PowerShell -Command "Add-Type -AssemblyName System.Speech; '
f"(New-Object System.Speech.Synthesis.SpeechSynthesizer).Speak('{text}')\""
)
os.system(cmd)
def log_say(text, play_sounds, blocking=False):
logging.info(text)
if play_sounds:
say(text, blocking)

View File

@@ -120,7 +120,7 @@ eval:
# `batch_size` specifies the number of environments to use in a gym.vector.VectorEnv.
batch_size: 1
# `use_async_envs` specifies whether to use asynchronous environments (multiprocessing).
use_async_envs: false
use_async_envs: true
wandb:
enable: false

View File

@@ -2,6 +2,11 @@
fps: 50
eval:
# `use_async_envs` specifies whether to use asynchronous environments (multiprocessing).
# set it to false to avoid some problems of the aloha env
use_async_envs: false
env:
name: aloha
task: AlohaInsertion-v0

View File

@@ -1,10 +0,0 @@
# @package _global_
fps: 30
env:
name: real_world
task: null
state_dim: 18
action_dim: 18
fps: ${fps}

View File

@@ -1,10 +0,0 @@
# @package _global_
fps: 30
env:
name: real_world
task: null
state_dim: 6
action_dim: 6
fps: ${fps}

View File

@@ -1,10 +0,0 @@
# @package _global_
fps: 30
env:
name: real_world
task: null
state_dim: 6
action_dim: 6
fps: ${fps}

View File

@@ -2,6 +2,11 @@
fps: 15
eval:
# `use_async_envs` specifies whether to use asynchronous environments (multiprocessing).
# set it to false to avoid some problems of the aloha env
use_async_envs: false
env:
name: xarm
task: XarmLift-v0

View File

@@ -95,7 +95,7 @@ policy:
n_vae_encoder_layers: 4
# Inference.
temporal_ensemble_coeff: null
temporal_ensemble_momentum: null
# Training and loss computation.
dropout: 0.1

View File

@@ -1,22 +1,16 @@
# @package _global_
# Use `act_aloha_real.yaml` to train on real-world datasets collected on Aloha or Aloha-2 robots.
# Compared to `act.yaml`, it contains 4 cameras (i.e. cam_right_wrist, cam_left_wrist, cam_high, cam_low) instead of 1 camera (i.e. top).
# Also, `training.eval_freq` is set to -1. This config is used to evaluate checkpoints at a certain frequency of training steps.
# When it is set to -1, it deactivates evaluation. This is because real-world evaluation is done through our `control_robot.py` script.
# Look at the documentation in header of `control_robot.py` for more information on how to collect data , train and evaluate a policy.
# Use `act_real.yaml` to train on real-world Aloha/Aloha2 datasets.
# Compared to `act.yaml`, it contains 4 cameras (i.e. cam_right_wrist, cam_left_wrist, images,
# cam_low) instead of 1 camera (i.e. top). Also, `training.eval_freq` is set to -1. This config is used
# to evaluate checkpoints at a certain frequency of training steps. When it is set to -1, it deactivates evaluation.
# This is because real-world evaluation is done through [dora-lerobot](https://github.com/dora-rs/dora-lerobot).
# Look at its README for more information on how to evaluate a checkpoint in the real-world.
#
# Example of usage for training and inference with `control_robot.py`:
# Example of usage for training:
# ```bash
# python lerobot/scripts/train.py \
# policy=act_aloha_real \
# env=aloha_real
# ```
#
# Example of usage for training and inference with [Dora-rs](https://github.com/dora-rs/dora-lerobot):
# ```bash
# python lerobot/scripts/train.py \
# policy=act_aloha_real \
# policy=act_real \
# env=dora_aloha_real
# ```
@@ -42,11 +36,10 @@ override_dataset_stats:
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
training:
offline_steps: 80000
offline_steps: 100000
online_steps: 0
eval_freq: -1
save_freq: 10000
log_freq: 100
save_freq: 20000
save_checkpoint: true
batch_size: 8
@@ -69,7 +62,7 @@ policy:
# Input / output structure.
n_obs_steps: 1
chunk_size: 100
chunk_size: 100 # chunk_size
n_action_steps: 100
input_shapes:

View File

@@ -1,37 +1,43 @@
# @package _global_
# Use `act_koch_real.yaml` to train on real-world datasets collected on Alexander Koch's robots.
# Compared to `act.yaml`, it contains 2 cameras (i.e. laptop, phone) instead of 1 camera (i.e. top).
# Also, `training.eval_freq` is set to -1. This config is used to evaluate checkpoints at a certain frequency of training steps.
# When it is set to -1, it deactivates evaluation. This is because real-world evaluation is done through our `control_robot.py` script.
# Look at the documentation in header of `control_robot.py` for more information on how to collect data , train and evaluate a policy.
# Use `act_real_no_state.yaml` to train on real-world Aloha/Aloha2 datasets when cameras are moving (e.g. wrist cameras)
# Compared to `act_real.yaml`, it is camera only and does not use the state as input which is vector of robot joint positions.
# We validated experimentaly that not using state reaches better success rate. Our hypothesis is that `act_real.yaml` might
# overfits to the state, because the images are more complex to learn from since they are moving.
#
# Example of usage for training:
# ```bash
# python lerobot/scripts/train.py \
# policy=act_koch_real \
# env=koch_real
# policy=act_real_no_state \
# env=dora_aloha_real
# ```
seed: 1000
dataset_repo_id: lerobot/moss_pick_place_lego
dataset_repo_id: lerobot/aloha_static_vinh_cup
override_dataset_stats:
observation.images.laptop:
observation.images.cam_right_wrist:
# stats from imagenet, since we use a pretrained vision model
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
observation.images.phone:
observation.images.cam_left_wrist:
# stats from imagenet, since we use a pretrained vision model
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
observation.images.cam_high:
# stats from imagenet, since we use a pretrained vision model
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
observation.images.cam_low:
# stats from imagenet, since we use a pretrained vision model
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
training:
offline_steps: 80000
offline_steps: 100000
online_steps: 0
eval_freq: -1
save_freq: 10000
log_freq: 100
save_freq: 20000
save_checkpoint: true
batch_size: 8
@@ -54,22 +60,24 @@ policy:
# Input / output structure.
n_obs_steps: 1
chunk_size: 100
chunk_size: 100 # chunk_size
n_action_steps: 100
input_shapes:
# TODO(rcadene, alexander-soare): add variables for height and width from the dataset/env?
observation.images.laptop: [3, 480, 640]
observation.images.phone: [3, 480, 640]
observation.state: ["${env.state_dim}"]
observation.images.cam_right_wrist: [3, 480, 640]
observation.images.cam_left_wrist: [3, 480, 640]
observation.images.cam_high: [3, 480, 640]
observation.images.cam_low: [3, 480, 640]
output_shapes:
action: ["${env.action_dim}"]
# Normalization / Unnormalization
input_normalization_modes:
observation.images.laptop: mean_std
observation.images.phone: mean_std
observation.state: mean_std
observation.images.cam_right_wrist: mean_std
observation.images.cam_left_wrist: mean_std
observation.images.cam_high: mean_std
observation.images.cam_low: mean_std
output_normalization_modes:
action: mean_std

View File

@@ -1,102 +0,0 @@
# @package _global_
# Use `act_koch_real.yaml` to train on real-world datasets collected on Alexander Koch's robots.
# Compared to `act.yaml`, it contains 2 cameras (i.e. laptop, phone) instead of 1 camera (i.e. top).
# Also, `training.eval_freq` is set to -1. This config is used to evaluate checkpoints at a certain frequency of training steps.
# When it is set to -1, it deactivates evaluation. This is because real-world evaluation is done through our `control_robot.py` script.
# Look at the documentation in header of `control_robot.py` for more information on how to collect data , train and evaluate a policy.
#
# Example of usage for training:
# ```bash
# python lerobot/scripts/train.py \
# policy=act_koch_real \
# env=koch_real
# ```
seed: 1000
dataset_repo_id: lerobot/so100_pick_place_lego
override_dataset_stats:
observation.images.laptop:
# stats from imagenet, since we use a pretrained vision model
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
observation.images.phone:
# stats from imagenet, since we use a pretrained vision model
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
training:
offline_steps: 80000
online_steps: 0
eval_freq: -1
save_freq: 10000
log_freq: 100
save_checkpoint: true
batch_size: 8
lr: 1e-5
lr_backbone: 1e-5
weight_decay: 1e-4
grad_clip_norm: 10
online_steps_between_rollouts: 1
delta_timestamps:
action: "[i / ${fps} for i in range(${policy.chunk_size})]"
eval:
n_episodes: 50
batch_size: 50
# See `configuration_act.py` for more details.
policy:
name: act
# Input / output structure.
n_obs_steps: 1
chunk_size: 100
n_action_steps: 100
input_shapes:
# TODO(rcadene, alexander-soare): add variables for height and width from the dataset/env?
observation.images.laptop: [3, 480, 640]
observation.images.phone: [3, 480, 640]
observation.state: ["${env.state_dim}"]
output_shapes:
action: ["${env.action_dim}"]
# Normalization / Unnormalization
input_normalization_modes:
observation.images.laptop: mean_std
observation.images.phone: mean_std
observation.state: mean_std
output_normalization_modes:
action: mean_std
# Architecture.
# Vision backbone.
vision_backbone: resnet18
pretrained_backbone_weights: ResNet18_Weights.IMAGENET1K_V1
replace_final_stride_with_dilation: false
# Transformer layers.
pre_norm: false
dim_model: 512
n_heads: 8
dim_feedforward: 3200
feedforward_activation: relu
n_encoder_layers: 4
# Note: Although the original ACT implementation has 7 for `n_decoder_layers`, there is a bug in the code
# that means only the first layer is used. Here we match the original implementation by setting this to 1.
# See this issue https://github.com/tonyzhaozh/act/issues/25#issue-2258740521.
n_decoder_layers: 1
# VAE.
use_vae: true
latent_dim: 32
n_vae_encoder_layers: 4
# Inference.
temporal_ensemble_coeff: null
# Training and loss computation.
dropout: 0.1
kl_weight: 10.0

View File

@@ -1,48 +0,0 @@
# @package _global_
defaults:
- _self_
seed: 13
dataset_repo_id: "dataset_repo_id"
train_split_proportion: 0.8
# Required by logger
env:
name: "classifier"
task: "binary_classification"
training:
num_epochs: 5
batch_size: 16
learning_rate: 1e-4
num_workers: 4
grad_clip_norm: 10
use_amp: true
log_freq: 1
eval_freq: 1 # How often to run validation (in epochs)
save_freq: 1 # How often to save checkpoints (in epochs)
save_checkpoint: true
image_key: "observation.images.phone"
label_key: "next.reward"
eval:
batch_size: 16
num_samples_to_log: 30 # Number of validation samples to log in the table
policy:
name: "hilserl/classifier"
model_name: "facebook/convnext-base-224"
model_type: "cnn"
wandb:
enable: false
project: "classifier-training"
entity: "wandb_entity"
job_name: "classifier_training_0"
disable_artifact: false
device: "mps"
resume: false
output_dir: "output"

View File

@@ -1,13 +1,11 @@
# [Aloha: A Low-Cost Hardware for Bimanual Teleoperation](https://www.trossenrobotics.com/aloha-stationary)
# Aloha: A Low-Cost Hardware for Bimanual Teleoperation
# https://aloha-2.github.io
# https://www.trossenrobotics.com/aloha-stationary
# Requires installing extras packages
# With pip: `pip install -e ".[dynamixel intelrealsense]"`
# With poetry: `poetry install --sync --extras "dynamixel intelrealsense"`
# See [tutorial](https://github.com/huggingface/lerobot/blob/main/examples/9_use_aloha.md)
_target_: lerobot.common.robot_devices.robots.manipulator.ManipulatorRobot
robot_type: aloha
# Specific to Aloha, LeRobot comes with default calibration files. Assuming the motors have been
@@ -93,25 +91,25 @@ follower_arms:
cameras:
cam_high:
_target_: lerobot.common.robot_devices.cameras.intelrealsense.IntelRealSenseCamera
serial_number: 128422271347
camera_index: 128422271347
fps: 30
width: 640
height: 480
cam_low:
_target_: lerobot.common.robot_devices.cameras.intelrealsense.IntelRealSenseCamera
serial_number: 130322270656
camera_index: 130322270656
fps: 30
width: 640
height: 480
cam_left_wrist:
_target_: lerobot.common.robot_devices.cameras.intelrealsense.IntelRealSenseCamera
serial_number: 218622272670
camera_index: 218622272670
fps: 30
width: 640
height: 480
cam_right_wrist:
_target_: lerobot.common.robot_devices.cameras.intelrealsense.IntelRealSenseCamera
serial_number: 130322272300
camera_index: 130322272300
fps: 30
width: 640
height: 480

View File

@@ -10,7 +10,7 @@ max_relative_target: null
leader_arms:
main:
_target_: lerobot.common.robot_devices.motors.dynamixel.DynamixelMotorsBus
port: /dev/tty.usbmodem58760430441
port: /dev/tty.usbmodem575E0031751
motors:
# name: (index, model)
shoulder_pan: [1, "xl330-m077"]
@@ -23,7 +23,7 @@ leader_arms:
follower_arms:
main:
_target_: lerobot.common.robot_devices.motors.dynamixel.DynamixelMotorsBus
port: /dev/tty.usbmodem585A0083391
port: /dev/tty.usbmodem575E0032081
motors:
# name: (index, model)
shoulder_pan: [1, "xl430-w250"]

View File

@@ -1,5 +1,5 @@
_target_: lerobot.common.robot_devices.robots.manipulator.ManipulatorRobot
robot_type: koch_bimanual
robot_type: koch
calibration_dir: .cache/calibration/koch_bimanual
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.

View File

@@ -1,56 +0,0 @@
# [Moss v1 robot arm](https://github.com/jess-moss/moss-robot-arms)
# Requires installing extras packages
# With pip: `pip install -e ".[feetech]"`
# With poetry: `poetry install --sync --extras "feetech"`
# See [tutorial](https://github.com/huggingface/lerobot/blob/main/examples/11_use_moss.md)
_target_: lerobot.common.robot_devices.robots.manipulator.ManipulatorRobot
robot_type: moss
calibration_dir: .cache/calibration/moss
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: null
leader_arms:
main:
_target_: lerobot.common.robot_devices.motors.feetech.FeetechMotorsBus
port: /dev/tty.usbmodem58760431091
motors:
# name: (index, model)
shoulder_pan: [1, "sts3215"]
shoulder_lift: [2, "sts3215"]
elbow_flex: [3, "sts3215"]
wrist_flex: [4, "sts3215"]
wrist_roll: [5, "sts3215"]
gripper: [6, "sts3215"]
follower_arms:
main:
_target_: lerobot.common.robot_devices.motors.feetech.FeetechMotorsBus
port: /dev/tty.usbmodem58760431191
motors:
# name: (index, model)
shoulder_pan: [1, "sts3215"]
shoulder_lift: [2, "sts3215"]
elbow_flex: [3, "sts3215"]
wrist_flex: [4, "sts3215"]
wrist_roll: [5, "sts3215"]
gripper: [6, "sts3215"]
cameras:
laptop:
_target_: lerobot.common.robot_devices.cameras.opencv.OpenCVCamera
camera_index: 0
fps: 30
width: 640
height: 480
phone:
_target_: lerobot.common.robot_devices.cameras.opencv.OpenCVCamera
camera_index: 1
fps: 30
width: 640
height: 480

View File

@@ -1,56 +0,0 @@
# [SO-100 robot arm](https://github.com/TheRobotStudio/SO-ARM100)
# Requires installing extras packages
# With pip: `pip install -e ".[feetech]"`
# With poetry: `poetry install --sync --extras "feetech"`
# See [tutorial](https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md)
_target_: lerobot.common.robot_devices.robots.manipulator.ManipulatorRobot
robot_type: so100
calibration_dir: .cache/calibration/so100
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: null
leader_arms:
main:
_target_: lerobot.common.robot_devices.motors.feetech.FeetechMotorsBus
port: /dev/tty.usbmodem58760433331
motors:
# name: (index, model)
shoulder_pan: [1, "sts3215"]
shoulder_lift: [2, "sts3215"]
elbow_flex: [3, "sts3215"]
wrist_flex: [4, "sts3215"]
wrist_roll: [5, "sts3215"]
gripper: [6, "sts3215"]
follower_arms:
main:
_target_: lerobot.common.robot_devices.motors.feetech.FeetechMotorsBus
port: /dev/tty.usbmodem585A0080971
motors:
# name: (index, model)
shoulder_pan: [1, "sts3215"]
shoulder_lift: [2, "sts3215"]
elbow_flex: [3, "sts3215"]
wrist_flex: [4, "sts3215"]
wrist_roll: [5, "sts3215"]
gripper: [6, "sts3215"]
cameras:
laptop:
_target_: lerobot.common.robot_devices.cameras.opencv.OpenCVCamera
camera_index: 0
fps: 30
width: 640
height: 480
phone:
_target_: lerobot.common.robot_devices.cameras.opencv.OpenCVCamera
camera_index: 1
fps: 30
width: 640
height: 480

View File

@@ -1,33 +0,0 @@
# [Stretch3 from Hello Robot](https://hello-robot.com/stretch-3-product)
# Requires installing extras packages
# With pip: `pip install -e ".[stretch]"`
# With poetry: `poetry install --sync --extras "stretch"`
# See [tutorial](https://github.com/huggingface/lerobot/blob/main/examples/8_use_stretch.md)
_target_: lerobot.common.robot_devices.robots.stretch.StretchRobot
robot_type: stretch3
cameras:
navigation:
_target_: lerobot.common.robot_devices.cameras.opencv.OpenCVCamera
camera_index: /dev/hello-nav-head-camera
fps: 10
width: 1280
height: 720
rotation: -90
head:
_target_: lerobot.common.robot_devices.cameras.intelrealsense.IntelRealSenseCamera.init_from_name
name: Intel RealSense D435I
fps: 30
width: 640
height: 480
rotation: 90
wrist:
_target_: lerobot.common.robot_devices.cameras.intelrealsense.IntelRealSenseCamera.init_from_name
name: Intel RealSense D405
fps: 30
width: 640
height: 480

View File

@@ -1,145 +0,0 @@
"""
This script configure a single motor at a time to a given ID and baudrate.
Example of usage:
```bash
python lerobot/scripts/configure_motor.py \
--port /dev/tty.usbmodem585A0080521 \
--brand feetech \
--model sts3215 \
--baudrate 1000000 \
--ID 1
```
"""
import argparse
import time
def configure_motor(port, brand, model, motor_idx_des, baudrate_des):
if brand == "feetech":
from lerobot.common.robot_devices.motors.feetech import MODEL_BAUDRATE_TABLE
from lerobot.common.robot_devices.motors.feetech import (
SCS_SERIES_BAUDRATE_TABLE as SERIES_BAUDRATE_TABLE,
)
from lerobot.common.robot_devices.motors.feetech import FeetechMotorsBus as MotorsBusClass
elif brand == "dynamixel":
from lerobot.common.robot_devices.motors.dynamixel import MODEL_BAUDRATE_TABLE
from lerobot.common.robot_devices.motors.dynamixel import (
X_SERIES_BAUDRATE_TABLE as SERIES_BAUDRATE_TABLE,
)
from lerobot.common.robot_devices.motors.dynamixel import DynamixelMotorsBus as MotorsBusClass
else:
raise ValueError(
f"Currently we do not support this motor brand: {brand}. We currently support feetech and dynamixel motors."
)
# Check if the provided model exists in the model_baud_rate_table
if model not in MODEL_BAUDRATE_TABLE:
raise ValueError(
f"Invalid model '{model}' for brand '{brand}'. Supported models: {list(MODEL_BAUDRATE_TABLE.keys())}"
)
# Setup motor names, indices, and models
motor_name = "motor"
motor_index_arbitrary = motor_idx_des # Use the motor ID passed via argument
motor_model = model # Use the motor model passed via argument
# Initialize the MotorBus with the correct port and motor configurations
motor_bus = MotorsBusClass(port=port, motors={motor_name: (motor_index_arbitrary, motor_model)})
# Try to connect to the motor bus and handle any connection-specific errors
try:
motor_bus.connect()
print(f"Connected on port {motor_bus.port}")
except OSError as e:
print(f"Error occurred when connecting to the motor bus: {e}")
return
# Motor bus is connected, proceed with the rest of the operations
try:
print("Scanning all baudrates and motor indices")
all_baudrates = set(SERIES_BAUDRATE_TABLE.values())
motor_index = -1 # Set the motor index to an out-of-range value.
for baudrate in all_baudrates:
motor_bus.set_bus_baudrate(baudrate)
present_ids = motor_bus.find_motor_indices(list(range(1, 10)))
if len(present_ids) > 1:
raise ValueError(
"Error: More than one motor ID detected. This script is designed to only handle one motor at a time. Please disconnect all but one motor."
)
if len(present_ids) == 1:
if motor_index != -1:
raise ValueError(
"Error: More than one motor ID detected. This script is designed to only handle one motor at a time. Please disconnect all but one motor."
)
motor_index = present_ids[0]
if motor_index == -1:
raise ValueError("No motors detected. Please ensure you have one motor connected.")
print(f"Motor index found at: {motor_index}")
if brand == "feetech":
# Allows ID and BAUDRATE to be written in memory
motor_bus.write_with_motor_ids(motor_bus.motor_models, motor_index, "Lock", 0)
if baudrate != baudrate_des:
print(f"Setting its baudrate to {baudrate_des}")
baudrate_idx = list(SERIES_BAUDRATE_TABLE.values()).index(baudrate_des)
# The write can fail, so we allow retries
motor_bus.write_with_motor_ids(motor_bus.motor_models, motor_index, "Baud_Rate", baudrate_idx)
time.sleep(0.5)
motor_bus.set_bus_baudrate(baudrate_des)
present_baudrate_idx = motor_bus.read_with_motor_ids(
motor_bus.motor_models, motor_index, "Baud_Rate", num_retry=2
)
if present_baudrate_idx != baudrate_idx:
raise OSError("Failed to write baudrate.")
print(f"Setting its index to desired index {motor_idx_des}")
motor_bus.write_with_motor_ids(motor_bus.motor_models, motor_index, "Lock", 0)
motor_bus.write_with_motor_ids(motor_bus.motor_models, motor_index, "ID", motor_idx_des)
present_idx = motor_bus.read_with_motor_ids(motor_bus.motor_models, motor_idx_des, "ID", num_retry=2)
if present_idx != motor_idx_des:
raise OSError("Failed to write index.")
if brand == "feetech":
# Set Maximum_Acceleration to 254 to speedup acceleration and deceleration of
# the motors. Note: this configuration is not in the official STS3215 Memory Table
motor_bus.write("Lock", 0)
motor_bus.write("Maximum_Acceleration", 254)
motor_bus.write("Goal_Position", 2048)
time.sleep(4)
print("Present Position", motor_bus.read("Present_Position"))
motor_bus.write("Offset", 0)
time.sleep(4)
print("Offset", motor_bus.read("Offset"))
except Exception as e:
print(f"Error occurred during motor configuration: {e}")
finally:
motor_bus.disconnect()
print("Disconnected from motor bus.")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--port", type=str, required=True, help="Motors bus port (e.g. dynamixel,feetech)")
parser.add_argument("--brand", type=str, required=True, help="Motor brand (e.g. dynamixel,feetech)")
parser.add_argument("--model", type=str, required=True, help="Motor model (e.g. xl330-m077,sts3215)")
parser.add_argument("--ID", type=int, required=True, help="Desired ID of the current motor (e.g. 1,2,3)")
parser.add_argument(
"--baudrate", type=int, default=1000000, help="Desired baudrate for the motor (default: 1000000)"
)
args = parser.parse_args()
configure_motor(args.port, args.brand, args.model, args.ID, args.baudrate)

View File

@@ -29,6 +29,7 @@ python lerobot/scripts/control_robot.py teleoperate \
```bash
python lerobot/scripts/control_robot.py record \
--fps 30 \
--root tmp/data \
--repo-id $USER/koch_test \
--num-episodes 1 \
--run-compute-stats 0
@@ -37,6 +38,7 @@ python lerobot/scripts/control_robot.py record \
- Visualize dataset:
```bash
python lerobot/scripts/visualize_dataset.py \
--root tmp/data \
--repo-id $USER/koch_test \
--episode-index 0
```
@@ -45,6 +47,7 @@ python lerobot/scripts/visualize_dataset.py \
```bash
python lerobot/scripts/control_robot.py replay \
--fps 30 \
--root tmp/data \
--repo-id $USER/koch_test \
--episode 0
```
@@ -54,6 +57,7 @@ python lerobot/scripts/control_robot.py replay \
```bash
python lerobot/scripts/control_robot.py record \
--fps 30 \
--root data \
--repo-id $USER/koch_pick_place_lego \
--num-episodes 50 \
--warmup-time-s 2 \
@@ -68,12 +72,12 @@ python lerobot/scripts/control_robot.py record \
- Tap escape key 'esc' to stop the data recording.
This might require a sudo permission to allow your terminal to monitor keyboard events.
**NOTE**: You can resume/continue data recording by running the same data recording command and adding `--resume 1`.
If the dataset you want to extend is not on the hub, you also need to add `--local-files-only 1`.
**NOTE**: You can resume/continue data recording by running the same data recording command twice.
To avoid resuming by deleting the dataset, use `--force-override 1`.
- Train on this dataset with the ACT policy:
```bash
python lerobot/scripts/train.py \
DATA_DIR=data python lerobot/scripts/train.py \
policy=act_koch_real \
env=koch_real \
dataset_repo_id=$USER/koch_pick_place_lego \
@@ -84,6 +88,7 @@ python lerobot/scripts/train.py \
```bash
python lerobot/scripts/control_robot.py record \
--fps 30 \
--root data \
--repo-id $USER/eval_act_koch_real \
--num-episodes 10 \
--warmup-time-s 2 \
@@ -94,51 +99,160 @@ python lerobot/scripts/control_robot.py record \
"""
import argparse
import concurrent.futures
import json
import logging
import os
import platform
import shutil
import time
import traceback
from contextlib import nullcontext
from functools import cache
from pathlib import Path
from typing import List
import cv2
import torch
import tqdm
from omegaconf import DictConfig
from PIL import Image
from termcolor import colored
# from safetensors.torch import load_file, save_file
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.robot_devices.control_utils import (
control_loop,
has_method,
init_keyboard_listener,
init_policy,
log_control_info,
record_episode,
reset_environment,
sanity_check_dataset_name,
sanity_check_dataset_robot_compatibility,
stop_recording,
warmup_record,
)
from lerobot.common.datasets.compute_stats import compute_stats
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION, LeRobotDataset
from lerobot.common.datasets.push_dataset_to_hub.aloha_hdf5_format import to_hf_dataset
from lerobot.common.datasets.push_dataset_to_hub.utils import concatenate_episodes, get_default_encoding
from lerobot.common.datasets.utils import calculate_episode_data_index, create_branch
from lerobot.common.datasets.video_utils import encode_video_frames
from lerobot.common.policies.factory import make_policy
from lerobot.common.robot_devices.robots.factory import make_robot
from lerobot.common.robot_devices.robots.utils import Robot
from lerobot.common.robot_devices.utils import busy_wait, safe_disconnect
from lerobot.common.utils.utils import init_hydra_config, init_logging, log_say, none_or_int
from lerobot.common.robot_devices.robots.utils import Robot, get_arm_id
from lerobot.common.robot_devices.utils import busy_wait
from lerobot.common.utils.utils import get_safe_torch_device, init_hydra_config, init_logging, set_global_seed
from lerobot.scripts.eval import get_pretrained_policy_path
from lerobot.scripts.push_dataset_to_hub import (
push_dataset_card_to_hub,
push_meta_data_to_hub,
push_videos_to_hub,
save_meta_data,
)
########################################################################################
# Utilities
########################################################################################
def say(text, blocking=False):
# Check if mac, linux, or windows.
if platform.system() == "Darwin":
cmd = f'say "{text}"'
elif platform.system() == "Linux":
cmd = f'spd-say "{text}"'
elif platform.system() == "Windows":
cmd = (
'PowerShell -Command "Add-Type -AssemblyName System.Speech; '
f"(New-Object System.Speech.Synthesis.SpeechSynthesizer).Speak('{text}')\""
)
if not blocking and platform.system() in ["Darwin", "Linux"]:
# TODO(rcadene): Make it work for Windows
# Use the ampersand to run command in the background
cmd += " &"
os.system(cmd)
def save_image(img_tensor, key, frame_index, episode_index, videos_dir):
img = Image.fromarray(img_tensor.numpy())
path = videos_dir / f"{key}_episode_{episode_index:06d}" / f"frame_{frame_index:06d}.png"
path.parent.mkdir(parents=True, exist_ok=True)
img.save(str(path), quality=100)
def none_or_int(value):
if value == "None":
return None
return int(value)
def log_control_info(robot, dt_s, episode_index=None, frame_index=None, fps=None):
log_items = []
if episode_index is not None:
log_items += [f"ep:{episode_index}"]
if frame_index is not None:
log_items += [f"frame:{frame_index}"]
def log_dt(shortname, dt_val_s):
nonlocal log_items
log_items += [f"{shortname}:{dt_val_s * 1000:5.2f} ({1/ dt_val_s:3.1f}hz)"]
# total step time displayed in milliseconds and its frequency
log_dt("dt", dt_s)
for name in robot.leader_arms:
key = f"read_leader_{name}_pos_dt_s"
if key in robot.logs:
log_dt("dtRlead", robot.logs[key])
for name in robot.follower_arms:
key = f"write_follower_{name}_goal_pos_dt_s"
if key in robot.logs:
log_dt("dtWfoll", robot.logs[key])
key = f"read_follower_{name}_pos_dt_s"
if key in robot.logs:
log_dt("dtRfoll", robot.logs[key])
for name in robot.cameras:
key = f"read_camera_{name}_dt_s"
if key in robot.logs:
log_dt(f"dtR{name}", robot.logs[key])
info_str = " ".join(log_items)
if fps is not None:
actual_fps = 1 / dt_s
if actual_fps < fps - 1:
info_str = colored(info_str, "yellow")
logging.info(info_str)
@cache
def is_headless():
"""Detects if python is running without a monitor."""
try:
import pynput # noqa
return False
except Exception:
print(
"Error trying to import pynput. Switching to headless mode. "
"As a result, the video stream from the cameras won't be shown, "
"and you won't be able to change the control flow with keyboards. "
"For more info, see traceback below.\n"
)
traceback.print_exc()
print()
return True
########################################################################################
# Control modes
########################################################################################
@safe_disconnect
def calibrate(robot: Robot, arms: list[str] | None):
# TODO(aliberts): move this code in robots' classes
if robot.robot_type.startswith("stretch"):
if not robot.is_connected:
robot.connect()
if not robot.is_homed():
robot.home()
return
available_arms = []
for name in robot.follower_arms:
arm_id = get_arm_id(name, "follower")
available_arms.append(arm_id)
for name in robot.leader_arms:
arm_id = get_arm_id(name, "leader")
available_arms.append(arm_id)
if arms is None:
arms = robot.available_arms
unknown_arms = [arm_id for arm_id in arms if arm_id not in available_arms]
unknown_arms = [arm_id for arm_id in arms if arm_id not in robot.available_arms]
available_arms_str = " ".join(robot.available_arms)
available_arms_str = " ".join(available_arms)
unknown_arms_str = " ".join(unknown_arms)
if arms is None or len(arms) == 0:
@@ -170,197 +284,430 @@ def calibrate(robot: Robot, arms: list[str] | None):
print("Calibration is done! You can now teleoperate and record datasets!")
@safe_disconnect
def teleoperate(
robot: Robot, fps: int | None = None, teleop_time_s: float | None = None, display_cameras: bool = False
):
control_loop(
robot,
control_time_s=teleop_time_s,
fps=fps,
teleoperate=True,
display_cameras=display_cameras,
)
def teleoperate(robot: Robot, fps: int | None = None, teleop_time_s: float | None = None):
# TODO(rcadene): Add option to record logs
if not robot.is_connected:
robot.connect()
start_teleop_t = time.perf_counter()
while True:
start_loop_t = time.perf_counter()
robot.teleop_step()
if fps is not None:
dt_s = time.perf_counter() - start_loop_t
busy_wait(1 / fps - dt_s)
dt_s = time.perf_counter() - start_loop_t
log_control_info(robot, dt_s, fps=fps)
if teleop_time_s is not None and time.perf_counter() - start_teleop_t > teleop_time_s:
break
@safe_disconnect
def record(
robot: Robot,
root: Path,
repo_id: str,
single_task: str,
pretrained_policy_name_or_path: str | None = None,
policy_overrides: List[str] | None = None,
assign_rewards: bool = False,
policy: torch.nn.Module | None = None,
hydra_cfg: DictConfig | None = None,
fps: int | None = None,
warmup_time_s: int | float = 2,
episode_time_s: int | float = 10,
reset_time_s: int | float = 5,
num_episodes: int = 50,
video: bool = True,
run_compute_stats: bool = True,
push_to_hub: bool = True,
tags: list[str] | None = None,
num_image_writer_processes: int = 0,
num_image_writer_threads_per_camera: int = 4,
display_cameras: bool = True,
play_sounds: bool = True,
resume: bool = False,
# TODO(rcadene, aliberts): remove local_files_only when refactor with dataset as argument
local_files_only: bool = False,
) -> LeRobotDataset:
root="data",
repo_id="lerobot/debug",
warmup_time_s=2,
episode_time_s=10,
reset_time_s=5,
num_episodes=50,
video=True,
run_compute_stats=True,
push_to_hub=True,
tags=None,
num_image_writers=8,
force_override=False,
):
# TODO(rcadene): Add option to record logs
listener = None
events = None
policy = None
device = None
use_amp = None
extra_features = (
{"next.reward": {"dtype": "int64", "shape": (1,), "names": None}} if assign_rewards else None
)
# TODO(rcadene): Clean this function via decomposition in higher level functions
if single_task:
task = single_task
else:
raise NotImplementedError("Only single-task recording is supported for now")
# Load pretrained policy
if pretrained_policy_name_or_path is not None:
policy, policy_fps, device, use_amp = init_policy(pretrained_policy_name_or_path, policy_overrides)
if fps is None:
fps = policy_fps
logging.warning(f"No fps provided, so using the fps from policy config ({policy_fps}).")
elif fps != policy_fps:
logging.warning(
f"There is a mismatch between the provided fps ({fps}) and the one from policy config ({policy_fps})."
)
if resume:
dataset = LeRobotDataset(
repo_id,
root=root,
local_files_only=local_files_only,
)
dataset.start_image_writer(
num_processes=num_image_writer_processes,
num_threads=num_image_writer_threads_per_camera * len(robot.cameras),
)
sanity_check_dataset_robot_compatibility(dataset, robot, fps, video)
else:
# Create empty dataset or load existing saved episodes
sanity_check_dataset_name(repo_id, policy)
dataset = LeRobotDataset.create(
repo_id,
fps,
root=root,
robot=robot,
use_videos=video,
image_writer_processes=num_image_writer_processes,
image_writer_threads=num_image_writer_threads_per_camera * len(robot.cameras),
features=extra_features,
_, dataset_name = repo_id.split("/")
if dataset_name.startswith("eval_") and policy is None:
raise ValueError(
f"Your dataset name begins by 'eval_' ({dataset_name}) but no policy is provided ({policy})."
)
if not video:
raise NotImplementedError()
if not robot.is_connected:
robot.connect()
listener, events = init_keyboard_listener(assign_rewards=assign_rewards)
# Execute a few seconds without recording to:
# 1. teleoperate the robot to move it in starting position if no policy provided,
# 2. give times to the robot devices to connect and start synchronizing,
# 3. place the cameras windows on screen
enable_teleoperation = policy is None
log_say("Warmup record", play_sounds)
warmup_record(robot, events, enable_teleoperation, warmup_time_s, display_cameras, fps)
local_dir = Path(root) / repo_id
if local_dir.exists() and force_override:
shutil.rmtree(local_dir)
if has_method(robot, "teleop_safety_stop"):
robot.teleop_safety_stop()
episodes_dir = local_dir / "episodes"
episodes_dir.mkdir(parents=True, exist_ok=True)
recorded_episodes = 0
while True:
if recorded_episodes >= num_episodes:
break
videos_dir = local_dir / "videos"
videos_dir.mkdir(parents=True, exist_ok=True)
# TODO(aliberts): add task prompt for multitask here. Might need to temporarily disable event if
# input() messes with them.
# if multi_task:
# task = input("Enter your task description: ")
# Logic to resume data recording
rec_info_path = episodes_dir / "data_recording_info.json"
if rec_info_path.exists():
with open(rec_info_path) as f:
rec_info = json.load(f)
episode_index = rec_info["last_episode_index"] + 1
else:
episode_index = 0
log_say(f"Recording episode {dataset.num_episodes}", play_sounds)
record_episode(
dataset=dataset,
robot=robot,
events=events,
episode_time_s=episode_time_s,
display_cameras=display_cameras,
policy=policy,
device=device,
use_amp=use_amp,
fps=fps,
if is_headless():
logging.info(
"Headless environment detected. On-screen cameras display and keyboard inputs will not be available."
)
# Execute a few seconds without recording to give time to manually reset the environment
# Current code logic doesn't allow to teleoperate during this time.
# TODO(rcadene): add an option to enable teleoperation during reset
# Skip reset for the last episode to be recorded
if not events["stop_recording"] and (
(dataset.num_episodes < num_episodes - 1) or events["rerecord_episode"]
):
log_say("Reset the environment", play_sounds)
reset_environment(robot, events, reset_time_s)
# Allow to exit early while recording an episode or resetting the environment,
# by tapping the right arrow key '->'. This might require a sudo permission
# to allow your terminal to monitor keyboard events.
exit_early = False
rerecord_episode = False
stop_recording = False
if events["rerecord_episode"]:
log_say("Re-record episode", play_sounds)
events["rerecord_episode"] = False
events["exit_early"] = False
dataset.clear_episode_buffer()
continue
# Only import pynput if not in a headless environment
if not is_headless():
from pynput import keyboard
dataset.save_episode(task)
recorded_episodes += 1
def on_press(key):
nonlocal exit_early, rerecord_episode, stop_recording
try:
if key == keyboard.Key.right:
print("Right arrow key pressed. Exiting loop...")
exit_early = True
elif key == keyboard.Key.left:
print("Left arrow key pressed. Exiting loop and rerecord the last episode...")
rerecord_episode = True
exit_early = True
elif key == keyboard.Key.esc:
print("Escape key pressed. Stopping data recording...")
stop_recording = True
exit_early = True
except Exception as e:
print(f"Error handling key press: {e}")
if events["stop_recording"]:
break
listener = keyboard.Listener(on_press=on_press)
listener.start()
log_say("Stop recording", play_sounds, blocking=True)
stop_recording(robot, listener, display_cameras)
# Load policy if any
if policy is not None:
# Check device is available
device = get_safe_torch_device(hydra_cfg.device, log=True)
policy.eval()
policy.to(device)
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
set_global_seed(hydra_cfg.seed)
# override fps using policy fps
fps = hydra_cfg.env.fps
# Execute a few seconds without recording data, to give times
# to the robot devices to connect and start synchronizing.
timestamp = 0
start_warmup_t = time.perf_counter()
is_warmup_print = False
while timestamp < warmup_time_s:
if not is_warmup_print:
logging.info("Warming up (no data recording)")
say("Warming up")
is_warmup_print = True
start_loop_t = time.perf_counter()
if policy is None:
observation, action = robot.teleop_step(record_data=True)
else:
observation = robot.capture_observation()
if not is_headless():
image_keys = [key for key in observation if "image" in key]
for key in image_keys:
cv2.imshow(key, cv2.cvtColor(observation[key].numpy(), cv2.COLOR_RGB2BGR))
cv2.waitKey(1)
dt_s = time.perf_counter() - start_loop_t
busy_wait(1 / fps - dt_s)
dt_s = time.perf_counter() - start_loop_t
log_control_info(robot, dt_s, fps=fps)
timestamp = time.perf_counter() - start_warmup_t
# Save images using threads to reach high fps (30 and more)
# Using `with` to exist smoothly if an execption is raised.
# Using only 4 worker threads to avoid blocking the main thread.
futures = []
with concurrent.futures.ThreadPoolExecutor(max_workers=num_image_writers) as executor:
# Start recording all episodes
while episode_index < num_episodes:
logging.info(f"Recording episode {episode_index}")
say(f"Recording episode {episode_index}")
ep_dict = {}
frame_index = 0
timestamp = 0
start_episode_t = time.perf_counter()
while timestamp < episode_time_s:
start_loop_t = time.perf_counter()
if policy is None:
observation, action = robot.teleop_step(record_data=True)
else:
observation = robot.capture_observation()
image_keys = [key for key in observation if "image" in key]
not_image_keys = [key for key in observation if "image" not in key]
for key in image_keys:
futures += [
executor.submit(
save_image, observation[key], key, frame_index, episode_index, videos_dir
)
]
if not is_headless():
image_keys = [key for key in observation if "image" in key]
for key in image_keys:
cv2.imshow(key, cv2.cvtColor(observation[key].numpy(), cv2.COLOR_RGB2BGR))
cv2.waitKey(1)
for key in not_image_keys:
if key not in ep_dict:
ep_dict[key] = []
ep_dict[key].append(observation[key])
if policy is not None:
with (
torch.inference_mode(),
torch.autocast(device_type=device.type)
if device.type == "cuda" and hydra_cfg.use_amp
else nullcontext(),
):
# Convert to pytorch format: channel first and float32 in [0,1] with batch dimension
for name in observation:
if "image" in name:
observation[name] = observation[name].type(torch.float32) / 255
observation[name] = observation[name].permute(2, 0, 1).contiguous()
observation[name] = observation[name].unsqueeze(0)
observation[name] = observation[name].to(device)
# Compute the next action with the policy
# based on the current observation
action = policy.select_action(observation)
# Remove batch dimension
action = action.squeeze(0)
# Move to cpu, if not already the case
action = action.to("cpu")
# Order the robot to move
action_sent = robot.send_action(action)
# Action can eventually be clipped using `max_relative_target`,
# so action actually sent is saved in the dataset.
action = {"action": action_sent}
for key in action:
if key not in ep_dict:
ep_dict[key] = []
ep_dict[key].append(action[key])
frame_index += 1
dt_s = time.perf_counter() - start_loop_t
busy_wait(1 / fps - dt_s)
dt_s = time.perf_counter() - start_loop_t
log_control_info(robot, dt_s, fps=fps)
timestamp = time.perf_counter() - start_episode_t
if exit_early:
exit_early = False
break
if not stop_recording:
# Start resetting env while the executor are finishing
logging.info("Reset the environment")
say("Reset the environment")
timestamp = 0
start_vencod_t = time.perf_counter()
# During env reset we save the data and encode the videos
num_frames = frame_index
for key in image_keys:
tmp_imgs_dir = videos_dir / f"{key}_episode_{episode_index:06d}"
fname = f"{key}_episode_{episode_index:06d}.mp4"
video_path = local_dir / "videos" / fname
if video_path.exists():
video_path.unlink()
# Store the reference to the video frame, even tho the videos are not yet encoded
ep_dict[key] = []
for i in range(num_frames):
ep_dict[key].append({"path": f"videos/{fname}", "timestamp": i / fps})
for key in not_image_keys:
ep_dict[key] = torch.stack(ep_dict[key])
for key in action:
ep_dict[key] = torch.stack(ep_dict[key])
ep_dict["episode_index"] = torch.tensor([episode_index] * num_frames)
ep_dict["frame_index"] = torch.arange(0, num_frames, 1)
ep_dict["timestamp"] = torch.arange(0, num_frames, 1) / fps
done = torch.zeros(num_frames, dtype=torch.bool)
done[-1] = True
ep_dict["next.done"] = done
ep_path = episodes_dir / f"episode_{episode_index}.pth"
print("Saving episode dictionary...")
torch.save(ep_dict, ep_path)
rec_info = {
"last_episode_index": episode_index,
}
with open(rec_info_path, "w") as f:
json.dump(rec_info, f)
is_last_episode = stop_recording or (episode_index == (num_episodes - 1))
# Wait if necessary
with tqdm.tqdm(total=reset_time_s, desc="Waiting") as pbar:
while timestamp < reset_time_s and not is_last_episode:
time.sleep(1)
timestamp = time.perf_counter() - start_vencod_t
pbar.update(1)
if exit_early:
exit_early = False
break
# Skip updating episode index which forces re-recording episode
if rerecord_episode:
rerecord_episode = False
continue
episode_index += 1
if is_last_episode:
logging.info("Done recording")
say("Done recording", blocking=True)
if not is_headless():
listener.stop()
logging.info("Waiting for threads writing the images on disk to terminate...")
for _ in tqdm.tqdm(
concurrent.futures.as_completed(futures), total=len(futures), desc="Writting images"
):
pass
break
robot.disconnect()
if not is_headless():
cv2.destroyAllWindows()
num_episodes = episode_index
logging.info("Encoding videos")
say("Encoding videos")
# Use ffmpeg to convert frames stored as png into mp4 videos
for episode_index in tqdm.tqdm(range(num_episodes)):
for key in image_keys:
tmp_imgs_dir = videos_dir / f"{key}_episode_{episode_index:06d}"
fname = f"{key}_episode_{episode_index:06d}.mp4"
video_path = local_dir / "videos" / fname
if video_path.exists():
# Skip if video is already encoded. Could be the case when resuming data recording.
continue
# note: `encode_video_frames` is a blocking call. Making it asynchronous shouldn't speedup encoding,
# since video encoding with ffmpeg is already using multithreading.
encode_video_frames(tmp_imgs_dir, video_path, fps, overwrite=True)
shutil.rmtree(tmp_imgs_dir)
logging.info("Concatenating episodes")
ep_dicts = []
for episode_index in tqdm.tqdm(range(num_episodes)):
ep_path = episodes_dir / f"episode_{episode_index}.pth"
ep_dict = torch.load(ep_path)
ep_dicts.append(ep_dict)
data_dict = concatenate_episodes(ep_dicts)
total_frames = data_dict["frame_index"].shape[0]
data_dict["index"] = torch.arange(0, total_frames, 1)
hf_dataset = to_hf_dataset(data_dict, video)
episode_data_index = calculate_episode_data_index(hf_dataset)
info = {
"codebase_version": CODEBASE_VERSION,
"fps": fps,
"video": video,
}
if video:
info["encoding"] = get_default_encoding()
lerobot_dataset = LeRobotDataset.from_preloaded(
repo_id=repo_id,
hf_dataset=hf_dataset,
episode_data_index=episode_data_index,
info=info,
videos_dir=videos_dir,
)
if run_compute_stats:
logging.info("Computing dataset statistics")
say("Computing dataset statistics")
stats = compute_stats(lerobot_dataset)
lerobot_dataset.stats = stats
else:
stats = {}
logging.info("Skipping computation of the dataset statistics")
dataset.consolidate(run_compute_stats)
hf_dataset = hf_dataset.with_format(None) # to remove transforms that cant be saved
hf_dataset.save_to_disk(str(local_dir / "train"))
meta_data_dir = local_dir / "meta_data"
save_meta_data(info, stats, episode_data_index, meta_data_dir)
if push_to_hub:
dataset.push_to_hub(tags=tags)
hf_dataset.push_to_hub(repo_id, revision="main")
push_meta_data_to_hub(repo_id, meta_data_dir, revision="main")
push_dataset_card_to_hub(repo_id, revision="main", tags=tags)
if video:
push_videos_to_hub(repo_id, videos_dir, revision="main")
create_branch(repo_id, repo_type="dataset", branch=CODEBASE_VERSION)
log_say("Exiting", play_sounds)
return dataset
logging.info("Exiting")
say("Exiting")
return lerobot_dataset
@safe_disconnect
def replay(
robot: Robot,
root: Path,
repo_id: str,
episode: int,
fps: int | None = None,
play_sounds: bool = True,
local_files_only: bool = False,
):
# TODO(rcadene, aliberts): refactor with control_loop, once `dataset` is an instance of LeRobotDataset
def replay(robot: Robot, episode: int, fps: int | None = None, root="data", repo_id="lerobot/debug"):
# TODO(rcadene): Add option to record logs
local_dir = Path(root) / repo_id
if not local_dir.exists():
raise ValueError(local_dir)
dataset = LeRobotDataset(repo_id, root=root, episodes=[episode], local_files_only=local_files_only)
actions = dataset.hf_dataset.select_columns("action")
dataset = LeRobotDataset(repo_id, root=root)
items = dataset.hf_dataset.select_columns("action")
from_idx = dataset.episode_data_index["from"][episode].item()
to_idx = dataset.episode_data_index["to"][episode].item()
if not robot.is_connected:
robot.connect()
log_say("Replaying episode", play_sounds, blocking=True)
for idx in range(dataset.num_frames):
logging.info("Replaying episode")
say("Replaying episode", blocking=True)
for idx in range(from_idx, to_idx):
start_episode_t = time.perf_counter()
action = actions[idx]["action"]
action = items[idx]["action"]
robot.send_action(action)
dt_s = time.perf_counter() - start_episode_t
@@ -401,34 +748,16 @@ if __name__ == "__main__":
parser_teleop.add_argument(
"--fps", type=none_or_int, default=None, help="Frames per second (set to None to disable)"
)
parser_teleop.add_argument(
"--display-cameras",
type=int,
default=1,
help="Display all cameras on screen (set to 1 to display or 0).",
)
parser_record = subparsers.add_parser("record", parents=[base_parser])
task_args = parser_record.add_mutually_exclusive_group(required=True)
parser_record.add_argument(
"--fps", type=none_or_int, default=None, help="Frames per second (set to None to disable)"
)
task_args.add_argument(
"--single-task",
type=str,
help="A short but accurate description of the task performed during the recording.",
)
# TODO(aliberts): add multi-task support
# task_args.add_argument(
# "--multi-task",
# type=int,
# help="You will need to enter the task performed at the start of each episode.",
# )
parser_record.add_argument(
"--root",
type=Path,
default=None,
help="Root directory where the dataset will be stored (e.g. 'dataset/path').",
default="data",
help="Root directory where the dataset will be stored locally at '{root}/{repo_id}' (e.g. 'data/hf_username/dataset_name').",
)
parser_record.add_argument(
"--repo-id",
@@ -436,12 +765,6 @@ if __name__ == "__main__":
default="lerobot/test",
help="Dataset identifier. By convention it should match '{hf_username}/{dataset_name}' (e.g. `lerobot/test`).",
)
parser_record.add_argument(
"--local-files-only",
type=int,
default=0,
help="Use local files only. By default, this script will try to fetch the dataset from the hub if it exists.",
)
parser_record.add_argument(
"--warmup-time-s",
type=int,
@@ -473,38 +796,23 @@ if __name__ == "__main__":
default=1,
help="Upload dataset to Hugging Face hub.",
)
# parser_record.add_argument(
# "--tags",
# type=str,
# nargs="*",
# help="Add tags to your dataset on the hub.",
# )
parser_record.add_argument(
"--num-image-writer-processes",
type=int,
default=0,
help=(
"Number of subprocesses handling the saving of frames as PNGs. Set to 0 to use threads only; "
"set to ≥1 to use subprocesses, each using threads to write images. The best number of processes "
"and threads depends on your system. We recommend 4 threads per camera with 0 processes. "
"If fps is unstable, adjust the thread count. If still unstable, try using 1 or more subprocesses."
),
"--tags",
type=str,
nargs="*",
help="Add tags to your dataset on the hub.",
)
parser_record.add_argument(
"--num-image-writer-threads-per-camera",
"--num-image-writers",
type=int,
default=4,
help=(
"Number of threads writing the frames as png images on disk, per camera. "
"Too many threads might cause unstable teleoperation fps due to main thread being blocked. "
"Not enough threads might cause low camera fps."
),
default=8,
help="Number of threads writing the frames as png images on disk. Don't set too much as you might get unstable fps due to main thread being blocked.",
)
parser_record.add_argument(
"--resume",
"--force-override",
type=int,
default=0,
help="Resume recording on an existing dataset.",
help="By default, data recording is resumed. When set to 1, delete the local directory and start data recording from scratch.",
)
parser_record.add_argument(
"-p",
@@ -521,12 +829,6 @@ if __name__ == "__main__":
nargs="*",
help="Any key=value arguments to override config values (use dots for.nested=overrides)",
)
parser_record.add_argument(
"--assign-rewards",
type=int,
default=0,
help="Enables the assignation of rewards to frames (by default no assignation). When enabled, assign a 0 reward to frames until the space bar is pressed which assign a 1 reward. Press the space bar a second time to assign a 0 reward. The reward assigned is reset to 0 when the episode ends.",
)
parser_replay = subparsers.add_parser("replay", parents=[base_parser])
parser_replay.add_argument(
@@ -535,8 +837,8 @@ if __name__ == "__main__":
parser_replay.add_argument(
"--root",
type=Path,
default=None,
help="Root directory where the dataset will be stored (e.g. 'dataset/path').",
default="data",
help="Root directory where the dataset will be stored locally at '{root}/{repo_id}' (e.g. 'data/hf_username/dataset_name').",
)
parser_replay.add_argument(
"--repo-id",
@@ -544,12 +846,6 @@ if __name__ == "__main__":
default="lerobot/test",
help="Dataset identifier. By convention it should match '{hf_username}/{dataset_name}' (e.g. `lerobot/test`).",
)
parser_replay.add_argument(
"--local-files-only",
type=int,
default=0,
help="Use local files only. By default, this script will try to fetch the dataset from the hub if it exists.",
)
parser_replay.add_argument("--episode", type=int, default=0, help="Index of the episode to replay.")
args = parser.parse_args()
@@ -574,7 +870,19 @@ if __name__ == "__main__":
teleoperate(robot, **kwargs)
elif control_mode == "record":
record(robot, **kwargs)
pretrained_policy_name_or_path = args.pretrained_policy_name_or_path
policy_overrides = args.policy_overrides
del kwargs["pretrained_policy_name_or_path"]
del kwargs["policy_overrides"]
policy_cfg = None
if pretrained_policy_name_or_path is not None:
pretrained_policy_path = get_pretrained_policy_path(pretrained_policy_name_or_path)
policy_cfg = init_hydra_config(pretrained_policy_path / "config.yaml", policy_overrides)
policy = make_policy(hydra_cfg=policy_cfg, pretrained_policy_name_or_path=pretrained_policy_path)
record(robot, policy, policy_cfg, **kwargs)
else:
record(robot, **kwargs)
elif control_mode == "replay":
replay(robot, **kwargs)

View File

@@ -1,546 +0,0 @@
"""
Utilities to control a robot in simulation.
Useful to record a dataset, replay a recorded episode and record an evaluation dataset.
Examples of usage:
- Unlimited teleoperation at a limited frequency of 30 Hz, to simulate data recording frequency.
You can modify this value depending on how fast your simulation can run:
```bash
python lerobot/scripts/control_robot.py teleoperate \
--fps 30 \
--robot-path lerobot/configs/robot/your_robot_config.yaml \
--sim-config lerobot/configs/env/your_sim_config.yaml
```
- Record one episode in order to test replay:
```bash
python lerobot/scripts/control_sim_robot.py record \
--robot-path lerobot/configs/robot/your_robot_config.yaml \
--sim-config lerobot/configs/env/your_sim_config.yaml \
--fps 30 \
--repo-id $USER/robot_sim_test \
--num-episodes 1 \
--run-compute-stats 0
```
Enable the --push-to-hub 1 to push the recorded dataset to the huggingface hub.
- Visualize dataset:
```bash
python lerobot/scripts/visualize_dataset.py \
--repo-id $USER/robot_sim_test \
--episode-index 0
```
- Replay a sequence of test episodes:
```bash
python lerobot/scripts/control_sim_robot.py replay \
--robot-path lerobot/configs/robot/your_robot_config.yaml \
--sim-config lerobot/configs/env/your_sim_config.yaml \
--fps 30 \
--repo-id $USER/robot_sim_test \
--episode 0
```
Note: The seed is saved, therefore, during replay we can load the same environment state as the one during collection.
- Record a full dataset in order to train a policy,
30 seconds of recording for each episode, and 10 seconds to reset the environment in between episodes:
```bash
python lerobot/scripts/control_sim_robot.py record \
--robot-path lerobot/configs/robot/your_robot_config.yaml \
--sim-config lerobot/configs/env/your_sim_config.yaml \
--fps 30 \
--repo-id $USER/robot_sim_test \
--num-episodes 50 \
--episode-time-s 30 \
```
**NOTE**: You can use your keyboard to control data recording flow.
- Tap right arrow key '->' to early exit while recording an episode and go to reseting the environment.
- Tap right arrow key '->' to early exit while reseting the environment and got to recording the next episode.
- Tap left arrow key '<-' to early exit and re-record the current episode.
- Tap escape key 'esc' to stop the data recording.
This might require a sudo permission to allow your terminal to monitor keyboard events.
**NOTE**: You can resume/continue data recording by running the same data recording command twice.
"""
import argparse
import importlib
import logging
import time
from pathlib import Path
import cv2
import gymnasium as gym
import numpy as np
import torch
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.robot_devices.control_utils import (
init_keyboard_listener,
init_policy,
is_headless,
log_control_info,
predict_action,
sanity_check_dataset_name,
sanity_check_dataset_robot_compatibility,
stop_recording,
)
from lerobot.common.robot_devices.robots.factory import make_robot
from lerobot.common.robot_devices.robots.utils import Robot
from lerobot.common.robot_devices.utils import busy_wait
from lerobot.common.utils.utils import init_hydra_config, init_logging, log_say
DEFAULT_FEATURES = {
"next.reward": {
"dtype": "float32",
"shape": (1,),
"names": None,
},
"next.success": {
"dtype": "bool",
"shape": (1,),
"names": None,
},
"seed": {
"dtype": "int64",
"shape": (1,),
"names": None,
},
"timestamp": {
"dtype": "float32",
"shape": (1,),
"names": None,
},
}
########################################################################################
# Utilities
########################################################################################
def none_or_int(value):
if value == "None":
return None
return int(value)
def init_sim_calibration(robot, cfg):
# Constants necessary for transforming the joint pos of the real robot to the sim
# depending on the robot discription used in that sim.
start_pos = np.array(robot.leader_arms.main.calibration["start_pos"])
axis_directions = np.array(cfg.get("axis_directions", [1]))
offsets = np.array(cfg.get("offsets", [0])) * np.pi
return {"start_pos": start_pos, "axis_directions": axis_directions, "offsets": offsets}
def real_positions_to_sim(real_positions, axis_directions, start_pos, offsets):
"""Counts - starting position -> radians -> align axes -> offset"""
return axis_directions * (real_positions - start_pos) * 2.0 * np.pi / 4096 + offsets
########################################################################################
# Control modes
########################################################################################
def teleoperate(env, robot: Robot, process_action_fn, teleop_time_s=None):
env = env()
env.reset()
start_teleop_t = time.perf_counter()
while True:
leader_pos = robot.leader_arms.main.read("Present_Position")
action = process_action_fn(leader_pos)
env.step(np.expand_dims(action, 0))
if teleop_time_s is not None and time.perf_counter() - start_teleop_t > teleop_time_s:
print("Teleoperation processes finished.")
break
def record(
env,
robot: Robot,
process_action_from_leader,
root: Path,
repo_id: str,
task: str,
fps: int | None = None,
tags: list[str] | None = None,
pretrained_policy_name_or_path: str = None,
policy_overrides: bool | None = None,
episode_time_s: int = 30,
num_episodes: int = 50,
video: bool = True,
push_to_hub: bool = True,
num_image_writer_processes: int = 0,
num_image_writer_threads_per_camera: int = 4,
display_cameras: bool = False,
play_sounds: bool = True,
resume: bool = False,
local_files_only: bool = False,
run_compute_stats: bool = True,
) -> LeRobotDataset:
# Load pretrained policy
policy = None
if pretrained_policy_name_or_path is not None:
policy, policy_fps, device, use_amp = init_policy(pretrained_policy_name_or_path, policy_overrides)
if fps is None:
fps = policy_fps
logging.warning(f"No fps provided, so using the fps from policy config ({policy_fps}).")
if policy is None and process_action_from_leader is None:
raise ValueError("Either policy or process_action_fn has to be set to enable control in sim.")
# initialize listener before sim env
listener, events = init_keyboard_listener()
# create sim env
env = env()
# Create empty dataset or load existing saved episodes
num_cameras = sum([1 if "image" in key else 0 for key in env.observation_space])
# get image keys
image_keys = [key for key in env.observation_space if "image" in key]
state_keys_dict = env_cfg.state_keys
if resume:
dataset = LeRobotDataset(
repo_id,
root=root,
local_files_only=local_files_only,
)
dataset.start_image_writer(
num_processes=num_image_writer_processes,
num_threads=num_image_writer_threads_per_camera * num_cameras,
)
sanity_check_dataset_robot_compatibility(dataset, robot, fps, video)
else:
features = DEFAULT_FEATURES
# add image keys to features
for key in image_keys:
shape = env.observation_space[key].shape
if not key.startswith("observation.image."):
key = "observation.image." + key
features[key] = {"dtype": "video", "names": ["channel", "height", "width"], "shape": shape}
for key, obs_key in state_keys_dict.items():
features[key] = {
"dtype": "float32",
"names": None,
"shape": env.observation_space[obs_key].shape,
}
features["action"] = {"dtype": "float32", "shape": env.action_space.shape, "names": None}
# Create empty dataset or load existing saved episodes
sanity_check_dataset_name(repo_id, policy)
dataset = LeRobotDataset.create(
repo_id,
fps,
root=root,
features=features,
use_videos=video,
image_writer_processes=num_image_writer_processes,
image_writer_threads=num_image_writer_threads_per_camera * num_cameras,
)
recorded_episodes = 0
while True:
log_say(f"Recording episode {dataset.num_episodes}", play_sounds)
if events is None:
events = {"exit_early": False}
if episode_time_s is None:
episode_time_s = float("inf")
timestamp = 0
start_episode_t = time.perf_counter()
seed = np.random.randint(0, 1e5)
observation, info = env.reset(seed=seed)
while timestamp < episode_time_s:
start_loop_t = time.perf_counter()
if policy is not None:
action = predict_action(observation, policy, device, use_amp)
else:
leader_pos = robot.leader_arms.main.read("Present_Position")
action = process_action_from_leader(leader_pos)
observation, reward, terminated, _, info = env.step(action)
success = info.get("is_success", False)
env_timestamp = info.get("timestamp", dataset.episode_buffer["size"] / fps)
frame = {
"action": torch.from_numpy(action),
"next.reward": reward,
"next.success": success,
"seed": seed,
"timestamp": env_timestamp,
}
for key in image_keys:
if not key.startswith("observation.image"):
frame["observation.image." + key] = observation[key]
else:
frame[key] = observation[key]
for key, obs_key in state_keys_dict.items():
frame[key] = torch.from_numpy(observation[obs_key])
dataset.add_frame(frame)
if display_cameras and not is_headless():
for key in image_keys:
cv2.imshow(key, cv2.cvtColor(observation[key], cv2.COLOR_RGB2BGR))
cv2.waitKey(1)
if fps is not None:
dt_s = time.perf_counter() - start_loop_t
busy_wait(1 / fps - dt_s)
dt_s = time.perf_counter() - start_loop_t
log_control_info(robot, dt_s, fps=fps)
timestamp = time.perf_counter() - start_episode_t
if events["exit_early"] or terminated:
events["exit_early"] = False
break
if events["rerecord_episode"]:
log_say("Re-record episode", play_sounds)
events["rerecord_episode"] = False
events["exit_early"] = False
dataset.clear_episode_buffer()
continue
dataset.save_episode(task=task)
recorded_episodes += 1
if events["stop_recording"] or recorded_episodes >= num_episodes:
break
else:
logging.info("Waiting for a few seconds before starting next episode recording...")
busy_wait(3)
log_say("Stop recording", play_sounds, blocking=True)
stop_recording(robot, listener, display_cameras)
if run_compute_stats:
logging.info("Computing dataset statistics")
dataset.consolidate(run_compute_stats)
if push_to_hub:
dataset.push_to_hub(tags=tags)
log_say("Exiting", play_sounds)
return dataset
def replay(
env, root: Path, repo_id: str, episode: int, fps: int | None = None, local_files_only: bool = True
):
env = env()
local_dir = Path(root) / repo_id
if not local_dir.exists():
raise ValueError(local_dir)
dataset = LeRobotDataset(repo_id, root=root, local_files_only=local_files_only)
items = dataset.hf_dataset.select_columns("action")
seeds = dataset.hf_dataset.select_columns("seed")["seed"]
from_idx = dataset.episode_data_index["from"][episode].item()
to_idx = dataset.episode_data_index["to"][episode].item()
env.reset(seed=seeds[from_idx].item())
logging.info("Replaying episode")
log_say("Replaying episode", play_sounds=True)
for idx in range(from_idx, to_idx):
start_episode_t = time.perf_counter()
action = items[idx]["action"]
env.step(action.unsqueeze(0).numpy())
dt_s = time.perf_counter() - start_episode_t
busy_wait(1 / fps - dt_s)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
subparsers = parser.add_subparsers(dest="mode", required=True)
# Set common options for all the subparsers
base_parser = argparse.ArgumentParser(add_help=False)
base_parser.add_argument(
"--robot-path",
type=str,
default="lerobot/configs/robot/koch.yaml",
help="Path to robot yaml file used to instantiate the robot using `make_robot` factory function.",
)
base_parser.add_argument(
"--sim-config",
help="Path to a yaml config you want to use for initializing a sim environment based on gym ",
)
parser_record = subparsers.add_parser("teleoperate", parents=[base_parser])
parser_record = subparsers.add_parser("record", parents=[base_parser])
parser_record.add_argument(
"--fps", type=none_or_int, default=None, help="Frames per second (set to None to disable)"
)
parser_record.add_argument(
"--root",
type=Path,
default=None,
help="Root directory where the dataset will be stored locally at '{root}/{repo_id}' (e.g. 'data/hf_username/dataset_name').",
)
parser_record.add_argument(
"--repo-id",
type=str,
default="lerobot/test",
help="Dataset identifier. By convention it should match '{hf_username}/{dataset_name}' (e.g. `lerobot/test`).",
)
parser_record.add_argument(
"--episode-time-s",
type=int,
default=60,
help="Number of seconds for data recording for each episode.",
)
parser_record.add_argument(
"--task",
type=str,
required=True,
help="A description of the task preformed during recording that can be used as a language instruction.",
)
parser_record.add_argument("--num-episodes", type=int, default=50, help="Number of episodes to record.")
parser_record.add_argument(
"--run-compute-stats",
type=int,
default=1,
help="By default, run the computation of the data statistics at the end of data collection. Compute intensive and not required to just replay an episode.",
)
parser_record.add_argument(
"--push-to-hub",
type=int,
default=1,
help="Upload dataset to Hugging Face hub.",
)
parser_record.add_argument(
"--tags",
type=str,
nargs="*",
help="Add tags to your dataset on the hub.",
)
parser_record.add_argument(
"--num-image-writer-processes",
type=int,
default=0,
help=(
"Number of subprocesses handling the saving of frames as PNGs. Set to 0 to use threads only; "
"set to ≥1 to use subprocesses, each using threads to write images. The best number of processes "
"and threads depends on your system. We recommend 4 threads per camera with 0 processes. "
"If fps is unstable, adjust the thread count. If still unstable, try using 1 or more subprocesses."
),
)
parser_record.add_argument(
"--num-image-writer-threads-per-camera",
type=int,
default=4,
help=(
"Number of threads writing the frames as png images on disk, per camera. "
"Too much threads might cause unstable teleoperation fps due to main thread being blocked. "
"Not enough threads might cause low camera fps."
),
)
parser_record.add_argument(
"--display-cameras",
type=int,
default=0,
help="Visualize image observations with opencv.",
)
parser_record.add_argument(
"--resume",
type=int,
default=0,
help="Resume recording on an existing dataset.",
)
parser_replay = subparsers.add_parser("replay", parents=[base_parser])
parser_replay.add_argument(
"--fps", type=none_or_int, default=None, help="Frames per second (set to None to disable)"
)
parser_replay.add_argument(
"--root",
type=Path,
default=None,
help="Root directory where the dataset will be stored locally (e.g. 'data/hf_username/dataset_name'). By default, stored in cache folder.",
)
parser_replay.add_argument(
"--repo-id",
type=str,
default="lerobot/test",
help="Dataset identifier. By convention it should match '{hf_username}/{dataset_name}' (e.g. `lerobot/test`).",
)
parser_replay.add_argument("--episode", type=int, default=0, help="Index of the episodes to replay.")
args = parser.parse_args()
init_logging()
control_mode = args.mode
robot_path = args.robot_path
env_config_path = args.sim_config
kwargs = vars(args)
del kwargs["mode"]
del kwargs["robot_path"]
del kwargs["sim_config"]
# make gym env
env_cfg = init_hydra_config(env_config_path)
importlib.import_module(f"gym_{env_cfg.env.name}")
def env_constructor():
return gym.make(env_cfg.env.handle, disable_env_checker=True, **env_cfg.env.gym)
robot = None
process_leader_actions_fn = None
if control_mode in ["teleoperate", "record"]:
# make robot
robot_overrides = ["~cameras", "~follower_arms"]
robot_cfg = init_hydra_config(robot_path, robot_overrides)
robot = make_robot(robot_cfg)
robot.connect()
calib_kwgs = init_sim_calibration(robot, env_cfg.calibration)
def process_leader_actions_fn(action):
return real_positions_to_sim(action, **calib_kwgs)
robot.leader_arms.main.calibration = None
if control_mode == "teleoperate":
teleoperate(env_constructor, robot, process_leader_actions_fn)
elif control_mode == "record":
record(env_constructor, robot, process_leader_actions_fn, **kwargs)
elif control_mode == "replay":
replay(env_constructor, **kwargs)
else:
raise ValueError(
f"Invalid control mode: '{control_mode}', only valid modes are teleoperate, record and replay."
)
if robot and robot.is_connected:
# Disconnect manually to avoid a "Core dump" during process
# termination due to camera threads not properly exiting.
robot.disconnect()

View File

@@ -57,7 +57,7 @@ import gymnasium as gym
import numpy as np
import torch
from huggingface_hub import snapshot_download
from huggingface_hub.errors import RepositoryNotFoundError
from huggingface_hub.utils._errors import RepositoryNotFoundError
from huggingface_hub.utils._validators import HFValidationError
from torch import Tensor, nn
from tqdm import trange
@@ -484,7 +484,7 @@ def main(
policy = make_policy(hydra_cfg=hydra_cfg, pretrained_policy_name_or_path=str(pretrained_policy_path))
else:
# Note: We need the dataset stats to pass to the policy's normalization modules.
policy = make_policy(hydra_cfg=hydra_cfg, dataset_stats=make_dataset(hydra_cfg).meta.stats)
policy = make_policy(hydra_cfg=hydra_cfg, dataset_stats=make_dataset(hydra_cfg).stats)
assert isinstance(policy, nn.Module)
policy.eval()

View File

@@ -1,335 +0,0 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Evaluate a policy by running rollouts on the real robot and computing metrics.
Usage examples: evaluate a checkpoint from the LeRobot training script for 10 episodes.
```
python lerobot/scripts/eval_on_robot.py \
-p outputs/train/model/checkpoints/005000/pretrained_model \
eval.n_episodes=10
```
**NOTE** (michel-aractingi): This script is incomplete and it is being prepared
for running training on the real robot.
"""
import argparse
import logging
import time
from copy import deepcopy
import numpy as np
import torch
from tqdm import trange
from lerobot.common.policies.policy_protocol import Policy
from lerobot.common.robot_devices.control_utils import busy_wait, is_headless
from lerobot.common.robot_devices.robots.factory import Robot, make_robot
from lerobot.common.utils.utils import (
init_hydra_config,
init_logging,
log_say,
)
def rollout(robot: Robot, policy: Policy, fps: int, control_time_s: float = 20, use_amp: bool = True) -> dict:
"""Run a batched policy rollout on the real robot.
The return dictionary contains:
"robot": A a dictionary of (batch, sequence + 1, *) tensors mapped to observation
keys. NOTE the that this has an extra sequence element relative to the other keys in the
dictionary. This is because an extra observation is included for after the environment is
terminated or truncated.
"action": A (batch, sequence, action_dim) tensor of actions applied based on the observations (not
including the last observations).
"reward": A (batch, sequence) tensor of rewards received for applying the actions.
"success": A (batch, sequence) tensor of success conditions (the only time this can be True is upon
environment termination/truncation).
"done": A (batch, sequence) tensor of **cumulative** done conditions. For any given batch element,
the first True is followed by True's all the way till the end. This can be used for masking
extraneous elements from the sequences above.
Args:
robot: The robot class that defines the interface with the real robot.
policy: The policy. Must be a PyTorch nn module.
Returns:
The dictionary described above.
"""
# assert isinstance(policy, nn.Module), "Policy must be a PyTorch nn module."
# device = get_device_from_parameters(policy)
# define keyboard listener
listener, events = init_keyboard_listener()
# Reset the policy. TODO (michel-aractingi) add real policy evaluation once the code is ready.
# policy.reset()
# Get observation from real robot
observation = robot.capture_observation()
# Calculate reward. TODO (michel-aractingi)
# in HIL-SERL it will be with a reward classifier
reward = calculate_reward(observation)
all_observations = []
all_actions = []
all_rewards = []
all_successes = []
start_episode_t = time.perf_counter()
timestamp = 0.0
while timestamp < control_time_s:
start_loop_t = time.perf_counter()
all_observations.append(deepcopy(observation))
# observation = {key: observation[key].to(device, non_blocking=True) for key in observation}
# Apply the next action.
while events["pause_policy"] and not events["human_intervention_step"]:
busy_wait(0.5)
if events["human_intervention_step"]:
# take over the robot's actions
observation, action = robot.teleop_step(record_data=True)
action = action["action"] # teleop step returns torch tensors but in a dict
else:
# explore with policy
with torch.inference_mode():
action = robot.follower_arms["main"].read("Present_Position")
action = torch.from_numpy(action)
robot.send_action(action)
# action = predict_action(observation, policy, device, use_amp)
observation = robot.capture_observation()
# Calculate reward
# in HIL-SERL it will be with a reward classifier
reward = calculate_reward(observation)
all_actions.append(action)
all_rewards.append(torch.from_numpy(reward))
all_successes.append(torch.tensor([False]))
dt_s = time.perf_counter() - start_loop_t
busy_wait(1 / fps - dt_s)
timestamp = time.perf_counter() - start_episode_t
if events["exit_early"]:
events["exit_early"] = False
events["human_intervention_step"] = False
events["pause_policy"] = False
break
all_observations.append(deepcopy(observation))
dones = torch.tensor([False] * len(all_actions))
dones[-1] = True
# Stack the sequence along the first dimension so that we have (batch, sequence, *) tensors.
ret = {
"action": torch.stack(all_actions, dim=1),
"next.reward": torch.stack(all_rewards, dim=1),
"next.success": torch.stack(all_successes, dim=1),
"done": dones,
}
stacked_observations = {}
for key in all_observations[0]:
stacked_observations[key] = torch.stack([obs[key] for obs in all_observations], dim=1)
ret["observation"] = stacked_observations
listener.stop()
return ret
def eval_policy(
robot: Robot,
policy: torch.nn.Module,
fps: float,
n_episodes: int,
control_time_s: int = 20,
use_amp: bool = True,
) -> dict:
"""
Args:
env: The batch of environments.
policy: The policy.
n_episodes: The number of episodes to evaluate.
Returns:
Dictionary with metrics and data regarding the rollouts.
"""
# TODO (michel-aractingi) comment this out for testing with a fixed policy
# assert isinstance(policy, Policy)
# policy.eval()
sum_rewards = []
max_rewards = []
successes = []
rollouts = []
start_eval = time.perf_counter()
progbar = trange(n_episodes, desc="Evaluating policy on real robot")
for _batch_idx in progbar:
rollout_data = rollout(robot, policy, fps, control_time_s, use_amp)
rollouts.append(rollout_data)
sum_rewards.append(sum(rollout_data["next.reward"]))
max_rewards.append(max(rollout_data["next.reward"]))
successes.append(rollout_data["next.success"][-1])
info = {
"per_episode": [
{
"episode_ix": i,
"sum_reward": sum_reward,
"max_reward": max_reward,
"pc_success": success * 100,
}
for i, (sum_reward, max_reward, success) in enumerate(
zip(
sum_rewards[:n_episodes],
max_rewards[:n_episodes],
successes[:n_episodes],
strict=False,
)
)
],
"aggregated": {
"avg_sum_reward": float(np.nanmean(torch.cat(sum_rewards[:n_episodes]))),
"avg_max_reward": float(np.nanmean(torch.cat(max_rewards[:n_episodes]))),
"pc_success": float(np.nanmean(torch.cat(successes[:n_episodes])) * 100),
"eval_s": time.time() - start_eval,
"eval_ep_s": (time.time() - start_eval) / n_episodes,
},
}
if robot.is_connected:
robot.disconnect()
return info
def calculate_reward(observation):
"""
Method to calculate reward function in some way.
In HIL-SERL this is done through defining a reward classifier
"""
# reward = reward_classifier(observation)
return np.array([0.0])
def init_keyboard_listener():
# Allow to exit early while recording an episode or resetting the environment,
# by tapping the right arrow key '->'. This might require a sudo permission
# to allow your terminal to monitor keyboard events.
events = {}
events["exit_early"] = False
events["rerecord_episode"] = False
events["pause_policy"] = False
events["human_intervention_step"] = False
if is_headless():
logging.warning(
"Headless environment detected. On-screen cameras display and keyboard inputs will not be available."
)
listener = None
return listener, events
# Only import pynput if not in a headless environment
from pynput import keyboard
def on_press(key):
try:
if key == keyboard.Key.right:
print("Right arrow key pressed. Exiting loop...")
events["exit_early"] = True
elif key == keyboard.Key.left:
print("Left arrow key pressed. Exiting loop and rerecord the last episode...")
events["rerecord_episode"] = True
events["exit_early"] = True
elif key == keyboard.Key.space:
# check if first space press then pause the policy for the user to get ready
# if second space press then the user is ready to start intervention
if not events["pause_policy"]:
print(
"Space key pressed. Human intervention required.\n"
"Place the leader in similar pose to the follower and press space again."
)
events["pause_policy"] = True
log_say("Human intervention stage. Get ready to take over.", play_sounds=True)
else:
events["human_intervention_step"] = True
print("Space key pressed. Human intervention starting.")
log_say("Starting human intervention.", play_sounds=True)
except Exception as e:
print(f"Error handling key press: {e}")
listener = keyboard.Listener(on_press=on_press)
listener.start()
return listener, events
if __name__ == "__main__":
init_logging()
parser = argparse.ArgumentParser(
description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter
)
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument(
"--robot-path",
type=str,
default="lerobot/configs/robot/koch.yaml",
help="Path to robot yaml file used to instantiate the robot using `make_robot` factory function.",
)
group.add_argument(
"--robot-overrides",
type=str,
nargs="*",
help="Any key=value arguments to override config values (use dots for.nested=overrides)",
)
group.add_argument(
"-p",
"--pretrained-policy-name-or-path",
help=(
"Either the repo ID of a model hosted on the Hub or a path to a directory containing weights "
"saved using `Policy.save_pretrained`. If not provided, the policy is initialized from scratch "
"(useful for debugging). This argument is mutually exclusive with `--config`."
),
)
group.add_argument(
"--config",
help=(
"Path to a yaml config you want to use for initializing a policy from scratch (useful for "
"debugging). This argument is mutually exclusive with `--pretrained-policy-name-or-path` (`-p`)."
),
)
parser.add_argument("--revision", help="Optionally provide the Hugging Face Hub revision ID.")
parser.add_argument(
"--out-dir",
help=(
"Where to save the evaluation outputs. If not provided, outputs are saved in "
"outputs/eval/{timestamp}_{env_name}_{policy_name}"
),
)
args = parser.parse_args()
robot_cfg = init_hydra_config(args.robot_path, args.robot_overrides)
robot = make_robot(robot_cfg)
if not robot.is_connected:
robot.connect()
eval_policy(robot, None, fps=40, n_episodes=2, control_time_s=100)

View File

@@ -1,42 +0,0 @@
import os
import time
from pathlib import Path
from serial.tools import list_ports # Part of pyserial library
def find_available_ports():
if os.name == "nt": # Windows
# List COM ports using pyserial
ports = [port.device for port in list_ports.comports()]
else: # Linux/macOS
# List /dev/tty* ports for Unix-based systems
ports = [str(path) for path in Path("/dev").glob("tty*")]
return ports
def find_port():
print("Finding all available ports for the MotorsBus.")
ports_before = find_available_ports()
print("Ports before disconnecting:", ports_before)
print("Remove the USB cable from your MotorsBus and press Enter when done.")
input() # Wait for user to disconnect the device
time.sleep(0.5) # Allow some time for port to be released
ports_after = find_available_ports()
ports_diff = list(set(ports_before) - set(ports_after))
if len(ports_diff) == 1:
port = ports_diff[0]
print(f"The port of this MotorsBus is '{port}'")
print("Reconnect the USB cable.")
elif len(ports_diff) == 0:
raise OSError(f"Could not detect the port. No difference was found ({ports_diff}).")
else:
raise OSError(f"Could not detect the port. More than one port was found ({ports_diff}).")
if __name__ == "__main__":
# Helper to find the USB port associated with your MotorsBus.
find_port()

View File

@@ -66,7 +66,7 @@ def get_from_raw_to_lerobot_format_fn(raw_format: str):
from lerobot.common.datasets.push_dataset_to_hub.umi_zarr_format import from_raw_to_lerobot_format
elif raw_format == "aloha_hdf5":
from lerobot.common.datasets.push_dataset_to_hub.aloha_hdf5_format import from_raw_to_lerobot_format
elif raw_format in ["rlds", "openx"]:
elif "openx_rlds" in raw_format:
from lerobot.common.datasets.push_dataset_to_hub.openx_rlds_format import from_raw_to_lerobot_format
elif raw_format == "dora_parquet":
from lerobot.common.datasets.push_dataset_to_hub.dora_parquet_format import from_raw_to_lerobot_format
@@ -117,14 +117,10 @@ def push_meta_data_to_hub(repo_id: str, meta_data_dir: str | Path, revision: str
def push_dataset_card_to_hub(
repo_id: str,
revision: str | None,
tags: list | None = None,
license: str = "apache-2.0",
**card_kwargs,
repo_id: str, revision: str | None, tags: list | None = None, text: str | None = None
):
"""Creates and pushes a LeRobotDataset Card with appropriate tags to easily find it on the hub."""
card = create_lerobot_dataset_card(tags=tags, license=license, **card_kwargs)
card = create_lerobot_dataset_card(tags=tags, text=text)
card.push_to_hub(repo_id=repo_id, repo_type="dataset", revision=revision)
@@ -204,14 +200,24 @@ def push_dataset_to_hub(
# convert dataset from original raw format to LeRobot format
from_raw_to_lerobot_format = get_from_raw_to_lerobot_format_fn(raw_format)
hf_dataset, episode_data_index, info = from_raw_to_lerobot_format(
raw_dir,
videos_dir,
fps,
video,
episodes,
encoding,
)
fmt_kwgs = {
"raw_dir": raw_dir,
"videos_dir": videos_dir,
"fps": fps,
"video": video,
"episodes": episodes,
"encoding": encoding,
}
if "openx_rlds." in raw_format:
# Support for official OXE dataset name inside `raw_format`.
# For instance, `raw_format="oxe_rlds"` uses the default formating (TODO what does that mean?),
# and `raw_format="oxe_rlds.bridge_orig"` uses the brdige_orig formating
_, openx_dataset_name = raw_format.split(".")
print(f"Converting dataset [{openx_dataset_name}] from 'openx_rlds' to LeRobot format.")
fmt_kwgs["openx_dataset_name"] = openx_dataset_name
hf_dataset, episode_data_index, info = from_raw_to_lerobot_format(**fmt_kwgs)
lerobot_dataset = LeRobotDataset.from_preloaded(
repo_id=repo_id,
@@ -254,7 +260,7 @@ def push_dataset_to_hub(
episode_index = 0
tests_videos_dir = tests_data_dir / repo_id / "videos"
tests_videos_dir.mkdir(parents=True, exist_ok=True)
for key in lerobot_dataset.camera_keys:
for key in lerobot_dataset.video_frame_keys:
fname = f"{key}_episode_{episode_index:06d}.mp4"
shutil.copy(videos_dir / fname, tests_videos_dir / fname)
@@ -280,7 +286,7 @@ def main():
"--raw-format",
type=str,
required=True,
help="Dataset type (e.g. `pusht_zarr`, `umi_zarr`, `aloha_hdf5`, `xarm_pkl`, `dora_parquet`, `rlds`, `openx`).",
help="Dataset type (e.g. `pusht_zarr`, `umi_zarr`, `aloha_hdf5`, `xarm_pkl`, `dora_parquet`, `openx_rlds`).",
)
parser.add_argument(
"--repo-id",

View File

@@ -171,9 +171,9 @@ def log_train_info(logger: Logger, info, step, cfg, dataset, is_online):
# A sample is an (observation,action) pair, where observation and action
# can be on multiple timestamps. In a batch, we have `batch_size`` number of samples.
num_samples = (step + 1) * cfg.training.batch_size
avg_samples_per_ep = dataset.num_frames / dataset.num_episodes
avg_samples_per_ep = dataset.num_samples / dataset.num_episodes
num_episodes = num_samples / avg_samples_per_ep
num_epochs = num_samples / dataset.num_frames
num_epochs = num_samples / dataset.num_samples
log_items = [
f"step:{format_big_number(step)}",
# number of samples seen during training
@@ -208,9 +208,9 @@ def log_eval_info(logger, info, step, cfg, dataset, is_online):
# A sample is an (observation,action) pair, where observation and action
# can be on multiple timestamps. In a batch, we have `batch_size`` number of samples.
num_samples = (step + 1) * cfg.training.batch_size
avg_samples_per_ep = dataset.num_frames / dataset.num_episodes
avg_samples_per_ep = dataset.num_samples / dataset.num_episodes
num_episodes = num_samples / avg_samples_per_ep
num_epochs = num_samples / dataset.num_frames
num_epochs = num_samples / dataset.num_samples
log_items = [
f"step:{format_big_number(step)}",
# number of samples seen during training
@@ -328,7 +328,7 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
logging.info("make_policy")
policy = make_policy(
hydra_cfg=cfg,
dataset_stats=offline_dataset.meta.stats if not cfg.resume else None,
dataset_stats=offline_dataset.stats if not cfg.resume else None,
pretrained_policy_name_or_path=str(logger.last_pretrained_model_dir) if cfg.resume else None,
)
assert isinstance(policy, nn.Module)
@@ -349,7 +349,7 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
logging.info(f"{cfg.env.task=}")
logging.info(f"{cfg.training.offline_steps=} ({format_big_number(cfg.training.offline_steps)})")
logging.info(f"{cfg.training.online_steps=}")
logging.info(f"{offline_dataset.num_frames=} ({format_big_number(offline_dataset.num_frames)})")
logging.info(f"{offline_dataset.num_samples=} ({format_big_number(offline_dataset.num_samples)})")
logging.info(f"{offline_dataset.num_episodes=}")
logging.info(f"{num_learnable_params=} ({format_big_number(num_learnable_params)})")
logging.info(f"{num_total_params=} ({format_big_number(num_total_params)})")
@@ -383,7 +383,7 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
logging.info(f"Checkpoint policy after step {step}")
# Note: Save with step as the identifier, and format it to have at least 6 digits but more if
# needed (choose 6 as a minimum for consistency without being overkill).
logger.save_checkpoint(
logger.save_checkpont(
step,
policy,
optimizer,
@@ -573,7 +573,7 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
online_drop_n_last_frames=cfg.training.get("drop_n_last_frames", 0) + 1,
online_sampling_ratio=cfg.training.online_sampling_ratio,
)
sampler.num_frames = len(concat_dataset)
sampler.num_samples = len(concat_dataset)
update_online_buffer_s = time.perf_counter() - start_update_buffer_time

View File

@@ -1,310 +0,0 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import time
from contextlib import nullcontext
from pathlib import Path
from pprint import pformat
import hydra
import torch
import torch.nn as nn
import wandb
from deepdiff import DeepDiff
from omegaconf import DictConfig, OmegaConf
from termcolor import colored
from torch import optim
from torch.cuda.amp import GradScaler
from torch.utils.data import DataLoader, WeightedRandomSampler, random_split
from tqdm import tqdm
from lerobot.common.datasets.factory import resolve_delta_timestamps
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.logger import Logger
from lerobot.common.policies.factory import _policy_cfg_from_hydra_cfg
from lerobot.common.policies.hilserl.classifier.configuration_classifier import ClassifierConfig
from lerobot.common.policies.hilserl.classifier.modeling_classifier import Classifier
from lerobot.common.utils.utils import (
format_big_number,
get_safe_torch_device,
init_hydra_config,
set_global_seed,
)
def get_model(cfg, logger):
classifier_config = _policy_cfg_from_hydra_cfg(ClassifierConfig, cfg)
model = Classifier(classifier_config)
if cfg.resume:
model.load_state_dict(Classifier.from_pretrained(str(logger.last_pretrained_model_dir)).state_dict())
return model
def create_balanced_sampler(dataset, cfg):
# Creates a weighted sampler to handle class imbalance
labels = torch.tensor([item[cfg.training.label_key] for item in dataset])
_, counts = torch.unique(labels, return_counts=True)
class_weights = 1.0 / counts.float()
sample_weights = class_weights[labels]
return WeightedRandomSampler(weights=sample_weights, num_samples=len(sample_weights), replacement=True)
def train_epoch(model, train_loader, criterion, optimizer, grad_scaler, device, logger, step, cfg):
# Single epoch training loop with AMP support and progress tracking
model.train()
correct = 0
total = 0
pbar = tqdm(train_loader, desc="Training")
for batch_idx, batch in enumerate(pbar):
start_time = time.perf_counter()
images = batch[cfg.training.image_key].to(device)
labels = batch[cfg.training.label_key].float().to(device)
# Forward pass with optional AMP
with torch.autocast(device_type=device.type) if cfg.training.use_amp else nullcontext():
outputs = model(images)
loss = criterion(outputs.logits, labels)
# Backward pass with gradient scaling if AMP enabled
optimizer.zero_grad()
if cfg.training.use_amp:
grad_scaler.scale(loss).backward()
grad_scaler.step(optimizer)
grad_scaler.update()
else:
loss.backward()
optimizer.step()
# Track metrics
if model.config.num_classes == 2:
predictions = (torch.sigmoid(outputs.logits) > 0.5).float()
else:
predictions = torch.argmax(outputs.logits, dim=1)
correct += (predictions == labels).sum().item()
total += labels.size(0)
current_acc = 100 * correct / total
train_info = {
"loss": loss.item(),
"accuracy": current_acc,
"dataloading_s": time.perf_counter() - start_time,
}
logger.log_dict(train_info, step + batch_idx, mode="train")
pbar.set_postfix({"loss": f"{loss.item():.4f}", "acc": f"{current_acc:.2f}%"})
def validate(model, val_loader, criterion, device, logger, cfg, num_samples_to_log=8):
# Validation loop with metric tracking and sample logging
model.eval()
correct = 0
total = 0
batch_start_time = time.perf_counter()
samples = []
running_loss = 0
with torch.no_grad(), torch.autocast(device_type=device.type) if cfg.training.use_amp else nullcontext():
for batch in tqdm(val_loader, desc="Validation"):
images = batch[cfg.training.image_key].to(device)
labels = batch[cfg.training.label_key].float().to(device)
outputs = model(images)
loss = criterion(outputs.logits, labels)
# Track metrics
if model.config.num_classes == 2:
predictions = (torch.sigmoid(outputs.logits) > 0.5).float()
else:
predictions = torch.argmax(outputs.logits, dim=1)
correct += (predictions == labels).sum().item()
total += labels.size(0)
running_loss += loss.item()
# Log sample predictions for visualization
if len(samples) < num_samples_to_log:
for i in range(min(num_samples_to_log - len(samples), len(images))):
if model.config.num_classes == 2:
confidence = round(outputs.probabilities[i].item(), 3)
else:
confidence = [round(prob, 3) for prob in outputs.probabilities[i].tolist()]
samples.append(
{
"image": wandb.Image(images[i].cpu()),
"true_label": labels[i].item(),
"predicted": predictions[i].item(),
"confidence": confidence,
}
)
accuracy = 100 * correct / total
avg_loss = running_loss / len(val_loader)
eval_info = {
"loss": avg_loss,
"accuracy": accuracy,
"eval_s": time.perf_counter() - batch_start_time,
"eval/prediction_samples": wandb.Table(
data=[[s["image"], s["true_label"], s["predicted"], f"{s['confidence']}"] for s in samples],
columns=["Image", "True Label", "Predicted", "Confidence"],
)
if logger._cfg.wandb.enable
else None,
}
return accuracy, eval_info
@hydra.main(version_base="1.2", config_path="../configs", config_name="hilserl_classifier")
def train(cfg: DictConfig) -> None:
# Main training pipeline with support for resuming training
logging.info(OmegaConf.to_yaml(cfg))
# Initialize training environment
device = get_safe_torch_device(cfg.device, log=True)
set_global_seed(cfg.seed)
out_dir = Path(cfg.output_dir)
out_dir.mkdir(parents=True, exist_ok=True)
logger = Logger(cfg, out_dir, cfg.wandb.job_name if cfg.wandb.enable else None)
# Setup dataset and dataloaders
dataset = LeRobotDataset(cfg.dataset_repo_id)
logging.info(f"Dataset size: {len(dataset)}")
train_size = int(cfg.train_split_proportion * len(dataset))
val_size = len(dataset) - train_size
train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
sampler = create_balanced_sampler(train_dataset, cfg)
train_loader = DataLoader(
train_dataset,
batch_size=cfg.training.batch_size,
num_workers=cfg.training.num_workers,
sampler=sampler,
pin_memory=True,
)
val_loader = DataLoader(
val_dataset,
batch_size=cfg.eval.batch_size,
shuffle=False,
num_workers=cfg.training.num_workers,
pin_memory=True,
)
# Resume training if requested
step = 0
best_val_acc = 0
if cfg.resume:
if not Logger.get_last_checkpoint_dir(out_dir).exists():
raise RuntimeError(
"You have set resume=True, but there is no model checkpoint in "
f"{Logger.get_last_checkpoint_dir(out_dir)}"
)
checkpoint_cfg_path = str(Logger.get_last_pretrained_model_dir(out_dir) / "config.yaml")
logging.info(
colored(
"You have set resume=True, indicating that you wish to resume a run",
color="yellow",
attrs=["bold"],
)
)
# Load and validate checkpoint configuration
checkpoint_cfg = init_hydra_config(checkpoint_cfg_path)
# Check for differences between the checkpoint configuration and provided configuration.
# Hack to resolve the delta_timestamps ahead of time in order to properly diff.
resolve_delta_timestamps(cfg)
diff = DeepDiff(OmegaConf.to_container(checkpoint_cfg), OmegaConf.to_container(cfg))
# Ignore the `resume` and parameters.
if "values_changed" in diff and "root['resume']" in diff["values_changed"]:
del diff["values_changed"]["root['resume']"]
if len(diff) > 0:
logging.warning(
"At least one difference was detected between the checkpoint configuration and "
f"the provided configuration: \n{pformat(diff)}\nNote that the checkpoint configuration "
"takes precedence.",
)
# Use the checkpoint config instead of the provided config (but keep `resume` parameter).
cfg = checkpoint_cfg
cfg.resume = True
# Initialize model and training components
model = get_model(cfg=cfg, logger=logger).to(device)
optimizer = optim.AdamW(model.parameters(), lr=cfg.training.learning_rate)
# Use BCEWithLogitsLoss for binary classification and CrossEntropyLoss for multi-class
criterion = nn.BCEWithLogitsLoss() if model.config.num_classes == 2 else nn.CrossEntropyLoss()
grad_scaler = GradScaler(enabled=cfg.training.use_amp)
# Log model parameters
num_learnable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
num_total_params = sum(p.numel() for p in model.parameters())
logging.info(f"Learnable parameters: {format_big_number(num_learnable_params)}")
logging.info(f"Total parameters: {format_big_number(num_total_params)}")
if cfg.resume:
step = logger.load_last_training_state(optimizer, None)
# Training loop with validation and checkpointing
for epoch in range(cfg.training.num_epochs):
logging.info(f"\nEpoch {epoch+1}/{cfg.training.num_epochs}")
train_epoch(model, train_loader, criterion, optimizer, grad_scaler, device, logger, step, cfg)
# Periodic validation
if cfg.training.eval_freq > 0 and (epoch + 1) % cfg.training.eval_freq == 0:
val_acc, eval_info = validate(
model,
val_loader,
criterion,
device,
logger,
cfg,
)
logger.log_dict(eval_info, step + len(train_loader), mode="eval")
# Save best model
if val_acc > best_val_acc:
best_val_acc = val_acc
logger.save_checkpoint(
train_step=step + len(train_loader),
policy=model,
optimizer=optimizer,
scheduler=None,
identifier="best",
)
# Periodic checkpointing
if cfg.training.save_checkpoint and (epoch + 1) % cfg.training.save_freq == 0:
logger.save_checkpoint(
train_step=step + len(train_loader),
policy=model,
optimizer=optimizer,
scheduler=None,
identifier=f"{epoch+1:06d}",
)
step += len(train_loader)
logging.info("Training completed")
if __name__ == "__main__":
train()

View File

@@ -100,7 +100,7 @@ def to_hwc_uint8_numpy(chw_float32_torch: torch.Tensor) -> np.ndarray:
def visualize_dataset(
dataset: LeRobotDataset,
repo_id: str,
episode_index: int,
batch_size: int = 32,
num_workers: int = 0,
@@ -108,6 +108,7 @@ def visualize_dataset(
web_port: int = 9090,
ws_port: int = 9087,
save: bool = False,
root: Path | None = None,
output_dir: Path | None = None,
) -> Path | None:
if save:
@@ -115,7 +116,8 @@ def visualize_dataset(
output_dir is not None
), "Set an output directory where to write .rrd files with `--output-dir path/to/directory`."
repo_id = dataset.repo_id
logging.info("Loading dataset")
dataset = LeRobotDataset(repo_id, root=root)
logging.info("Loading dataloader")
episode_sampler = EpisodeSampler(dataset, episode_index)
@@ -151,7 +153,7 @@ def visualize_dataset(
rr.set_time_seconds("timestamp", batch["timestamp"][i].item())
# display each camera image
for key in dataset.meta.camera_keys:
for key in dataset.camera_keys:
# TODO(rcadene): add `.compress()`? is it lossless?
rr.log(key, rr.Image(to_hwc_uint8_numpy(batch[key][i])))
@@ -207,17 +209,11 @@ def main():
required=True,
help="Episode to visualize.",
)
parser.add_argument(
"--local-files-only",
type=int,
default=0,
help="Use local files only. By default, this script will try to fetch the dataset from the hub if it exists.",
)
parser.add_argument(
"--root",
type=Path,
default=None,
help="Root directory for the dataset stored locally (e.g. `--root data`). By default, the dataset will be loaded from hugging face cache folder, or downloaded from the hub if available.",
help="Root directory for a dataset stored locally (e.g. `--root data`). By default, the dataset will be loaded from hugging face cache folder, or downloaded from the hub if available.",
)
parser.add_argument(
"--output-dir",
@@ -272,15 +268,7 @@ def main():
)
args = parser.parse_args()
kwargs = vars(args)
repo_id = kwargs.pop("repo_id")
root = kwargs.pop("root")
local_files_only = kwargs.pop("local_files_only")
logging.info("Loading dataset")
dataset = LeRobotDataset(repo_id, root=root, local_files_only=local_files_only)
visualize_dataset(dataset, **vars(args))
visualize_dataset(**vars(args))
if __name__ == "__main__":

View File

@@ -93,17 +93,18 @@ def run_server(
def show_episode(dataset_namespace, dataset_name, episode_id):
dataset_info = {
"repo_id": dataset.repo_id,
"num_samples": dataset.num_frames,
"num_samples": dataset.num_samples,
"num_episodes": dataset.num_episodes,
"fps": dataset.fps,
}
video_paths = [dataset.meta.get_video_file_path(episode_id, key) for key in dataset.meta.video_keys]
tasks = dataset.meta.episodes[episode_id]["tasks"]
video_paths = get_episode_video_paths(dataset, episode_id)
language_instruction = get_episode_language_instruction(dataset, episode_id)
videos_info = [
{"url": url_for("static", filename=video_path), "filename": video_path.name}
{"url": url_for("static", filename=video_path), "filename": Path(video_path).name}
for video_path in video_paths
]
videos_info[0]["language_instruction"] = tasks
if language_instruction:
videos_info[0]["language_instruction"] = language_instruction
ep_csv_url = url_for("static", filename=get_ep_csv_fname(episode_id))
return render_template(
@@ -130,16 +131,16 @@ def write_episode_data_csv(output_dir, file_name, episode_index, dataset):
from_idx = dataset.episode_data_index["from"][episode_index]
to_idx = dataset.episode_data_index["to"][episode_index]
has_state = "observation.state" in dataset.features
has_action = "action" in dataset.features
has_state = "observation.state" in dataset.hf_dataset.features
has_action = "action" in dataset.hf_dataset.features
# init header of csv with state and action names
header = ["timestamp"]
if has_state:
dim_state = dataset.meta.shapes["observation.state"][0]
dim_state = len(dataset.hf_dataset["observation.state"][0])
header += [f"state_{i}" for i in range(dim_state)]
if has_action:
dim_action = dataset.meta.shapes["action"][0]
dim_action = len(dataset.hf_dataset["action"][0])
header += [f"action_{i}" for i in range(dim_action)]
columns = ["timestamp"]
@@ -171,12 +172,27 @@ def get_episode_video_paths(dataset: LeRobotDataset, ep_index: int) -> list[str]
first_frame_idx = dataset.episode_data_index["from"][ep_index].item()
return [
dataset.hf_dataset.select_columns(key)[first_frame_idx][key]["path"]
for key in dataset.meta.video_keys
for key in dataset.video_frame_keys
]
def get_episode_language_instruction(dataset: LeRobotDataset, ep_index: int) -> list[str]:
# check if the dataset has language instructions
if "language_instruction" not in dataset.hf_dataset.features:
return None
# get first frame index
first_frame_idx = dataset.episode_data_index["from"][ep_index].item()
language_instruction = dataset.hf_dataset[first_frame_idx]["language_instruction"]
# TODO (michel-aractingi) hack to get the sentence, some strings in openx are badly stored
# with the tf.tensor appearing in the string
return language_instruction.removeprefix("tf.Tensor(b'").removesuffix("', shape=(), dtype=string)")
def visualize_dataset_html(
dataset: LeRobotDataset,
repo_id: str,
root: Path | None = None,
episodes: list[int] = None,
output_dir: Path | None = None,
serve: bool = True,
@@ -186,11 +202,13 @@ def visualize_dataset_html(
) -> Path | None:
init_logging()
if len(dataset.meta.image_keys) > 0:
raise NotImplementedError(f"Image keys ({dataset.meta.image_keys=}) are currently not supported.")
dataset = LeRobotDataset(repo_id, root=root)
if not dataset.video:
raise NotImplementedError(f"Image datasets ({dataset.video=}) are currently not supported.")
if output_dir is None:
output_dir = f"outputs/visualize_dataset_html/{dataset.repo_id}"
output_dir = f"outputs/visualize_dataset_html/{repo_id}"
output_dir = Path(output_dir)
if output_dir.exists():
@@ -207,7 +225,7 @@ def visualize_dataset_html(
static_dir.mkdir(parents=True, exist_ok=True)
ln_videos_dir = static_dir / "videos"
if not ln_videos_dir.exists():
ln_videos_dir.symlink_to((dataset.root / "videos").resolve())
ln_videos_dir.symlink_to(dataset.videos_dir.resolve())
template_dir = Path(__file__).resolve().parent.parent / "templates"
@@ -234,12 +252,6 @@ def main():
required=True,
help="Name of hugging face repositery containing a LeRobotDataset dataset (e.g. `lerobot/pusht` for https://huggingface.co/datasets/lerobot/pusht).",
)
parser.add_argument(
"--local-files-only",
type=int,
default=0,
help="Use local files only. By default, this script will try to fetch the dataset from the hub if it exists.",
)
parser.add_argument(
"--root",
type=Path,
@@ -285,13 +297,7 @@ def main():
)
args = parser.parse_args()
kwargs = vars(args)
repo_id = kwargs.pop("repo_id")
root = kwargs.pop("root")
local_files_only = kwargs.pop("local_files_only")
dataset = LeRobotDataset(repo_id, root=root, local_files_only=local_files_only)
visualize_dataset_html(dataset, **kwargs)
visualize_dataset_html(**vars(args))
if __name__ == "__main__":

View File

@@ -157,7 +157,7 @@ def visualize_transforms(cfg, output_dir: Path, n_examples: int = 5):
output_dir.mkdir(parents=True, exist_ok=True)
# Get 1st frame from 1st camera of 1st episode
original_frame = dataset[0][dataset.meta.camera_keys[0]]
original_frame = dataset[0][dataset.camera_keys[0]]
to_pil(original_frame).save(output_dir / "original_frame.png", quality=100)
print("\nOriginal frame saved to:")
print(f" {output_dir / 'original_frame.png'}.")

View File

@@ -35,7 +35,7 @@
<ul>
<li>
Number of samples/frames: {{ dataset_info.num_frames }}
Number of samples/frames: {{ dataset_info.num_samples }}
</li>
<li>
Number of episodes: {{ dataset_info.num_episodes }}
@@ -82,22 +82,13 @@
Episode {{ episode_id }}
</h1>
<!-- Error message -->
<div class="font-medium text-orange-700 hidden" :class="{ 'hidden': !videoCodecError }">
<p>Videos could NOT play because <a href="https://en.wikipedia.org/wiki/AV1" target="_blank" class="underline">AV1</a> decoding is not available on your browser.</p>
<ul class="list-decimal list-inside">
<li>If iPhone: <span class="italic">It is supported with A17 chip or higher.</span></li>
<li>If Mac with Safari: <span class="italic">It is supported on most browsers except Safari with M1 chip or higher and on Safari with M3 chip or higher.</span></li>
<li>Other: <span class="italic">Contact the maintainers on LeRobot discord channel:</span> <a href="https://discord.com/invite/s3KuuzsPFb" target="_blank" class="underline">https://discord.com/invite/s3KuuzsPFb</a></li>
</ul>
</div>
<!-- Videos -->
<div class="flex flex-wrap gap-1">
<p x-show="videoCodecError" class="font-medium text-orange-700">Videos could NOT play because <a href="https://en.wikipedia.org/wiki/AV1" target="_blank" class="underline">AV1</a> decoding is not available on your browser. Learn more about <a href="https://huggingface.co/blog/video-encoding" target="_blank" class="underline">LeRobot video encoding</a>.</p>
{% for video_info in videos_info %}
<div x-show="!videoCodecError" class="max-w-96">
<p class="text-sm text-gray-300 bg-gray-800 px-2 rounded-t-xl truncate">{{ video_info.filename }}</p>
<video muted loop type="video/mp4" class="object-contain w-full h-full" @canplaythrough="videoCanPlay" @timeupdate="() => {
<video muted loop type="video/mp4" class="min-w-64" @canplaythrough="videoCanPlay" @timeupdate="() => {
if (video.duration) {
const time = video.currentTime;
const pc = (100 / video.duration) * time;
@@ -250,7 +241,7 @@
if(!canPlayVideos){
this.videoCodecError = true;
}
// process CSV data
this.videos = document.querySelectorAll('video');
this.video = this.videos[0];

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.9 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 185 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 464 KiB

Some files were not shown because too many files have changed in this diff Show More