Compare commits

..

1 Commits

Author SHA1 Message Date
Quentin Gallouédec
783a40c9d4 pretrained config for act 2024-04-25 16:06:57 +02:00
703 changed files with 9578 additions and 11940 deletions

View File

@@ -1,142 +0,0 @@
# Misc
.git
tmp
wandb
data
outputs
.vscode
rl
media
# Logging
logs
# HPC
nautilus/*.yaml
*.key
# Slurm
sbatch*.sh
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
pip-wheel-metadata/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
!tests/data
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
.python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/

4
.gitattributes vendored
View File

@@ -1,6 +1,2 @@
*.memmap filter=lfs diff=lfs merge=lfs -text
*.stl filter=lfs diff=lfs merge=lfs -text
*.safetensors filter=lfs diff=lfs merge=lfs -text
*.mp4 filter=lfs diff=lfs merge=lfs -text
*.arrow filter=lfs diff=lfs merge=lfs -text
*.json filter=lfs diff=lfs merge=lfs -text

View File

@@ -1,34 +1,15 @@
## What this does
Explain what this PR does. Feel free to tag your PR with the appropriate label(s).
# What does this PR do?
Examples:
| Title | Label |
|----------------------|-----------------|
| Fixes #[issue] | (🐛 Bug) |
| Adds new dataset | (🗃️ Dataset) |
| Optimizes something | (⚡️ Performance) |
Example: Fixes # (issue)
## How it was tested
Explain/show how you tested your changes.
Examples:
- Added `test_something` in `tests/test_stuff.py`.
- Added `new_feature` and checked that training converges with policy X on dataset/environment Y.
- Optimized `some_function`, it now runs X times faster than previously.
## Before submitting
- Read the [contributor guideline](https://github.com/huggingface/lerobot/blob/main/CONTRIBUTING.md#submitting-a-pull-request-pr).
- Provide a minimal code example for the reviewer to checkout & try.
- Explain how you tested your changes.
## How to checkout & try? (for the reviewer)
Provide a simple way for the reviewer to try out your changes.
Examples:
```bash
DATA_DIR=tests/data pytest -sx tests/test_stuff.py::test_something
```
```bash
python lerobot/scripts/train.py --some.option=true
```
## Who can review?
## SECTION TO REMOVE BEFORE SUBMITTING YOUR PR
**Note**: Anyone in the community is free to review the PR once the tests have passed. Feel free to tag
Anyone in the community is free to review the PR once the tests have passed. Feel free to tag
members/contributors who may be interested in your PR. Try to avoid tagging more than 3 people.
**Note**: Before submitting this PR, please read the [contributor guideline](https://github.com/huggingface/lerobot/blob/main/CONTRIBUTING.md#submitting-a-pull-request-pr).

3917
.github/poetry/cpu/poetry.lock generated vendored Normal file

File diff suppressed because it is too large Load Diff

107
.github/poetry/cpu/pyproject.toml vendored Normal file
View File

@@ -0,0 +1,107 @@
[tool.poetry]
name = "lerobot"
version = "0.1.0"
description = "🤗 LeRobot: State-of-the-art Machine Learning for Real-World Robotics in Pytorch"
authors = [
"Rémi Cadène <re.cadene@gmail.com>",
"Alexander Soare <alexander.soare159@gmail.com>",
"Quentin Gallouédec <quentin.gallouedec@ec-lyon.fr>",
"Simon Alibert <alibert.sim@gmail.com>",
"Thomas Wolf <thomaswolfcontact@gmail.com>",
]
repository = "https://github.com/huggingface/lerobot"
readme = "README.md"
license = "Apache-2.0"
classifiers=[
"Development Status :: 3 - Alpha",
"Intended Audience :: Developers",
"Intended Audience :: Education",
"Intended Audience :: Science/Research",
"Topic :: Software Development :: Build Tools",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"License :: OSI Approved :: Apache Software License",
"Programming Language :: Python :: 3.10",
]
packages = [{include = "lerobot"}]
[tool.poetry.dependencies]
python = "^3.10"
termcolor = "^2.4.0"
omegaconf = "^2.3.0"
wandb = "^0.16.3"
imageio = {extras = ["ffmpeg"], version = "^2.34.0"}
gdown = "^5.1.0"
hydra-core = "^1.3.2"
einops = "^0.7.0"
pymunk = "^6.6.0"
zarr = "^2.17.0"
numba = "^0.59.0"
torch = {version = "^2.2.1", source = "torch-cpu"}
opencv-python = "^4.9.0.80"
diffusers = "^0.26.3"
torchvision = {version = "^0.17.1", source = "torch-cpu"}
h5py = "^3.10.0"
huggingface-hub = "^0.21.4"
robomimic = "0.2.0"
gymnasium = "^0.29.1"
cmake = "^3.29.0.1"
gym-pusht = { git = "git@github.com:huggingface/gym-pusht.git", optional = true}
gym-xarm = { git = "git@github.com:huggingface/gym-xarm.git", optional = true}
gym-aloha = { git = "git@github.com:huggingface/gym-aloha.git", optional = true}
pre-commit = {version = "^3.7.0", optional = true}
debugpy = {version = "^1.8.1", optional = true}
pytest = {version = "^8.1.0", optional = true}
pytest-cov = {version = "^5.0.0", optional = true}
datasets = "^2.19.0"
[tool.poetry.extras]
pusht = ["gym-pusht"]
xarm = ["gym-xarm"]
aloha = ["gym-aloha"]
dev = ["pre-commit", "debugpy"]
test = ["pytest", "pytest-cov"]
[[tool.poetry.source]]
name = "torch-cpu"
url = "https://download.pytorch.org/whl/cpu"
priority = "supplemental"
[tool.ruff]
line-length = 110
target-version = "py310"
exclude = [
".bzr",
".direnv",
".eggs",
".git",
".git-rewrite",
".hg",
".mypy_cache",
".nox",
".pants.d",
".pytype",
".ruff_cache",
".svn",
".tox",
".venv",
"__pypackages__",
"_build",
"buck-out",
"build",
"dist",
"node_modules",
"venv",
]
[tool.ruff.lint]
select = ["E4", "E7", "E9", "F", "I", "N", "B", "C4", "SIM"]
[build-system]
requires = ["poetry-core>=1.5.0"]
build-backend = "poetry.core.masonry.api"

View File

@@ -1,139 +0,0 @@
# Inspired by
# https://github.com/huggingface/peft/blob/main/.github/workflows/build_docker_images.yml
name: Builds
on:
workflow_dispatch:
workflow_call:
schedule:
- cron: "0 1 * * *"
env:
PYTHON_VERSION: "3.10"
# CI_SLACK_CHANNEL: ${{ secrets.CI_DOCKER_CHANNEL }}
jobs:
latest-cpu:
name: CPU
runs-on: ubuntu-latest
steps:
- name: Cleanup disk
run: |
sudo df -h
# sudo ls -l /usr/local/lib/
# sudo ls -l /usr/share/
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo rm -rf /usr/local/lib/android
sudo rm -rf /usr/share/dotnet
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo df -h
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Check out code
uses: actions/checkout@v4
- name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
- name: Build and Push CPU
uses: docker/build-push-action@v5
with:
context: .
file: ./docker/lerobot-cpu/Dockerfile
push: true
tags: huggingface/lerobot-cpu
build-args: PYTHON_VERSION=${{ env.PYTHON_VERSION }}
# - name: Post to a Slack channel
# id: slack
# #uses: slackapi/slack-github-action@v1.25.0
# uses: slackapi/slack-github-action@6c661ce58804a1a20f6dc5fbee7f0381b469e001
# with:
# # Slack channel id, channel name, or user id to post message.
# # See also: https://api.slack.com/methods/chat.postMessage#channels
# channel-id: ${{ env.CI_SLACK_CHANNEL }}
# # For posting a rich message using Block Kit
# payload: |
# {
# "text": "lerobot-cpu Docker Image build result: ${{ job.status }}\n${{ github.event.pull_request.html_url || github.event.head_commit.url }}",
# "blocks": [
# {
# "type": "section",
# "text": {
# "type": "mrkdwn",
# "text": "lerobot-cpu Docker Image build result: ${{ job.status }}\n${{ github.event.pull_request.html_url || github.event.head_commit.url }}"
# }
# }
# ]
# }
# env:
# SLACK_BOT_TOKEN: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
latest-cuda:
name: GPU
runs-on: ubuntu-latest
steps:
- name: Cleanup disk
run: |
sudo df -h
# sudo ls -l /usr/local/lib/
# sudo ls -l /usr/share/
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo rm -rf /usr/local/lib/android
sudo rm -rf /usr/share/dotnet
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo df -h
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Check out code
uses: actions/checkout@v4
- name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
- name: Build and Push GPU
uses: docker/build-push-action@v5
with:
context: .
file: ./docker/lerobot-gpu/Dockerfile
push: true
tags: huggingface/lerobot-gpu
build-args: PYTHON_VERSION=${{ env.PYTHON_VERSION }}
# - name: Post to a Slack channel
# id: slack
# #uses: slackapi/slack-github-action@v1.25.0
# uses: slackapi/slack-github-action@6c661ce58804a1a20f6dc5fbee7f0381b469e001
# with:
# # Slack channel id, channel name, or user id to post message.
# # See also: https://api.slack.com/methods/chat.postMessage#channels
# channel-id: ${{ env.CI_SLACK_CHANNEL }}
# # For posting a rich message using Block Kit
# payload: |
# {
# "text": "lerobot-gpu Docker Image build result: ${{ job.status }}\n${{ github.event.pull_request.html_url || github.event.head_commit.url }}",
# "blocks": [
# {
# "type": "section",
# "text": {
# "type": "mrkdwn",
# "text": "lerobot-gpu Docker Image build result: ${{ job.status }}\n${{ github.event.pull_request.html_url || github.event.head_commit.url }}"
# }
# }
# ]
# }
# env:
# SLACK_BOT_TOKEN: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}

View File

@@ -1,79 +0,0 @@
# Inspired by
# https://github.com/huggingface/peft/blob/main/.github/workflows/nightly.yml
name: Nightly
on:
workflow_dispatch:
schedule:
- cron: "0 2 * * *"
env:
DATA_DIR: tests/data
# SLACK_API_TOKEN: ${{ secrets.SLACK_API_TOKEN }}
jobs:
run_all_tests_cpu:
name: CPU
strategy:
fail-fast: false
runs-on: ubuntu-latest
container:
image: huggingface/lerobot-cpu:latest
options: --shm-size "16gb"
credentials:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
defaults:
run:
shell: bash
working-directory: /lerobot
steps:
- name: Tests
env:
DATA_DIR: tests/data
run: pytest -v --cov=./lerobot --disable-warnings tests
- name: Tests end-to-end
env:
DATA_DIR: tests/data
run: make test-end-to-end
run_all_tests_single_gpu:
name: GPU
strategy:
fail-fast: false
runs-on: [single-gpu, nvidia-gpu, t4, ci]
env:
CUDA_VISIBLE_DEVICES: "0"
TEST_TYPE: "single_gpu"
container:
image: huggingface/lerobot-gpu:latest
options: --gpus all --shm-size "16gb"
credentials:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
defaults:
run:
shell: bash
working-directory: /lerobot
steps:
- name: Nvidia-smi
run: nvidia-smi
- name: Test
run: pytest -v --cov=./lerobot --cov-report=xml --disable-warnings tests
# TODO(aliberts): Link with HF Codecov account
# - name: Upload coverage reports to Codecov with GitHub Action
# uses: codecov/codecov-action@v4
# with:
# files: ./coverage.xml
# verbose: true
- name: Tests end-to-end
run: make test-end-to-end
# - name: Generate Report
# if: always()
# run: |
# pip install slack_sdk tabulate
# python scripts/log_reports.py >> $GITHUB_STEP_SUMMARY

View File

@@ -1,56 +0,0 @@
name: Quality
on:
workflow_dispatch:
workflow_call:
pull_request:
branches:
- main
push:
branches:
- main
env:
PYTHON_VERSION: "3.10"
jobs:
style:
name: Style
runs-on: ubuntu-latest
steps:
- name: Checkout Repository
uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: ${{ env.PYTHON_VERSION }}
- name: Get Ruff Version from pre-commit-config.yaml
id: get-ruff-version
run: |
RUFF_VERSION=$(awk '/repo: https:\/\/github.com\/astral-sh\/ruff-pre-commit/{flag=1;next}/rev:/{if(flag){print $2;exit}}' .pre-commit-config.yaml)
echo "RUFF_VERSION=${RUFF_VERSION}" >> $GITHUB_ENV
- name: Install Ruff
run: python -m pip install "ruff==${{ env.RUFF_VERSION }}"
- name: Ruff check
run: ruff check
- name: Ruff format
run: ruff format --diff
poetry_check:
name: Poetry check
runs-on: ubuntu-latest
steps:
- name: Checkout Repository
uses: actions/checkout@v3
- name: Install poetry
run: pipx install poetry
- name: Poetry check
run: poetry check

View File

@@ -1,77 +0,0 @@
# Inspired by
# https://github.com/huggingface/peft/blob/main/.github/workflows/test-docker-build.yml
name: Test Dockerfiles
on:
pull_request:
branches:
- main
paths:
# Run only when DockerFile files are modified
- "docker/**"
env:
PYTHON_VERSION: "3.10"
jobs:
get_changed_files:
name: Detect modified Dockerfiles
runs-on: ubuntu-latest
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
steps:
- name: Check out code
uses: actions/checkout@v4
- name: Get changed files
id: changed-files
uses: tj-actions/changed-files@v44
with:
files: docker/**
json: "true"
- name: Run step if only the files listed above change
if: steps.changed-files.outputs.any_changed == 'true'
id: set-matrix
env:
ALL_CHANGED_FILES: ${{ steps.changed-files.outputs.all_changed_files }}
run: |
echo "matrix=${{ steps.changed-files.outputs.all_changed_files}}" >> $GITHUB_OUTPUT
build_modified_dockerfiles:
name: Build modified Docker images
needs: get_changed_files
runs-on: ubuntu-latest
if: ${{ needs.get_changed_files.outputs.matrix }} != ''
strategy:
fail-fast: false
matrix:
docker-file: ${{ fromJson(needs.get_changed_files.outputs.matrix) }}
steps:
- name: Cleanup disk
run: |
sudo df -h
# sudo ls -l /usr/local/lib/
# sudo ls -l /usr/share/
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo rm -rf /usr/local/lib/android
sudo rm -rf /usr/share/dotnet
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo df -h
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Check out code
uses: actions/checkout@v4
- name: Build Docker image
uses: docker/build-push-action@v5
with:
file: ${{ matrix.docker-file }}
context: .
push: False
build-args: PYTHON_VERSION=${{ env.PYTHON_VERSION }}

View File

@@ -4,125 +4,210 @@ on:
pull_request:
branches:
- main
paths:
- "lerobot/**"
- "tests/**"
- "examples/**"
- ".github/**"
- "poetry.lock"
types: [opened, synchronize, reopened, labeled]
push:
branches:
- main
paths:
- "lerobot/**"
- "tests/**"
- "examples/**"
- ".github/**"
- "poetry.lock"
jobs:
pytest:
name: Pytest
tests:
if: |
${{ github.event_name == 'pull_request' && contains(github.event.pull_request.labels.*.name, 'CI') }} ||
${{ github.event_name == 'push' }}
runs-on: ubuntu-latest
env:
POETRY_VERSION: 1.8.2
DATA_DIR: tests/data
MUJOCO_GL: egl
steps:
- uses: actions/checkout@v4
#----------------------------------------------
# check-out repo and set-up python
#----------------------------------------------
- name: Check out repository
uses: actions/checkout@v4
with:
lfs: true # Ensure LFS files are pulled
lfs: true
- name: Install EGL
- name: Set up python
id: setup-python
uses: actions/setup-python@v5
with:
python-version: '3.10'
- name: Add SSH key for installing envs
uses: webfactory/ssh-agent@v0.9.0
with:
ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }}
#----------------------------------------------
# install & configure poetry
#----------------------------------------------
- name: Load cached Poetry installation
id: restore-poetry-cache
uses: actions/cache/restore@v3
with:
path: ~/.local
key: poetry-${{ env.POETRY_VERSION }}
- name: Install Poetry
if: steps.restore-poetry-cache.outputs.cache-hit != 'true'
uses: snok/install-poetry@v1
with:
version: ${{ env.POETRY_VERSION }}
virtualenvs-create: true
installer-parallel: true
- name: Save cached Poetry installation
if: |
steps.restore-poetry-cache.outputs.cache-hit != 'true' &&
github.ref_name == 'main'
id: save-poetry-cache
uses: actions/cache/save@v3
with:
path: ~/.local
key: poetry-${{ env.POETRY_VERSION }}
- name: Configure Poetry
run: poetry config virtualenvs.in-project true
#----------------------------------------------
# install dependencies
#----------------------------------------------
# TODO(aliberts): move to gpu runners
- name: Select cpu dependencies # HACK
run: cp -t . .github/poetry/cpu/pyproject.toml .github/poetry/cpu/poetry.lock
- name: Load cached venv
id: restore-dependencies-cache
uses: actions/cache/restore@v3
with:
path: .venv
key: venv-${{ steps.setup-python.outputs.python-version }}-${{ env.POETRY_VERSION }}-${{ hashFiles('**/poetry.lock') }}
- name: Install dependencies
if: steps.restore-dependencies-cache.outputs.cache-hit != 'true'
env:
TMPDIR: ~/tmp
TEMP: ~/tmp
TMP: ~/tmp
run: |
mkdir ~/tmp
poetry install --no-interaction --no-root --all-extras
- name: Save cached venv
if: |
steps.restore-dependencies-cache.outputs.cache-hit != 'true' &&
github.ref_name == 'main'
id: save-dependencies-cache
uses: actions/cache/save@v3
with:
path: .venv
key: venv-${{ steps.setup-python.outputs.python-version }}-${{ env.POETRY_VERSION }}-${{ hashFiles('**/poetry.lock') }}
- name: Install libegl1-mesa-dev (to use MUJOCO_GL=egl)
run: sudo apt-get update && sudo apt-get install -y libegl1-mesa-dev
- name: Install poetry
#----------------------------------------------
# install project
#----------------------------------------------
- name: Install project
run: poetry install --no-interaction --all-extras
#----------------------------------------------
# run tests & coverage
#----------------------------------------------
- name: Run tests
run: |
pipx install poetry && poetry config virtualenvs.in-project true
echo "${{ github.workspace }}/.venv/bin" >> $GITHUB_PATH
source .venv/bin/activate
pytest -v --cov=./lerobot --cov-report=xml tests
- name: Set up Python 3.10
uses: actions/setup-python@v5
with:
python-version: "3.10"
cache: "poetry"
# TODO(aliberts): Link with HF Codecov account
# - name: Upload coverage reports to Codecov with GitHub Action
# uses: codecov/codecov-action@v4
# with:
# files: ./coverage.xml
# verbose: true
- name: Install poetry dependencies
#----------------------------------------------
# run end-to-end tests
#----------------------------------------------
- name: Test train ACT on ALOHA end-to-end
run: |
poetry install --all-extras
source .venv/bin/activate
python lerobot/scripts/train.py \
policy=act \
env=aloha \
wandb.enable=False \
offline_steps=2 \
online_steps=0 \
eval_episodes=1 \
device=cpu \
save_model=true \
save_freq=2 \
policy.n_action_steps=20 \
policy.chunk_size=20 \
policy.batch_size=2 \
hydra.run.dir=tests/outputs/act/
- name: Test with pytest
- name: Test eval ACT on ALOHA end-to-end
run: |
pytest tests -v --cov=./lerobot --durations=0 \
-W ignore::DeprecationWarning:imageio_ffmpeg._utils:7 \
-W ignore::UserWarning:torch.utils.data.dataloader:558 \
-W ignore::UserWarning:gymnasium.utils.env_checker:247 \
&& rm -rf tests/outputs outputs
source .venv/bin/activate
python lerobot/scripts/eval.py \
--config tests/outputs/act/.hydra/config.yaml \
eval_episodes=1 \
env.episode_length=8 \
device=cpu \
policy.pretrained_model_path=tests/outputs/act/models/2.pt
pytest-minimal:
name: Pytest (minimal install)
runs-on: ubuntu-latest
env:
DATA_DIR: tests/data
MUJOCO_GL: egl
steps:
- uses: actions/checkout@v4
with:
lfs: true # Ensure LFS files are pulled
- name: Install poetry
- name: Test train Diffusion on PushT end-to-end
run: |
pipx install poetry && poetry config virtualenvs.in-project true
echo "${{ github.workspace }}/.venv/bin" >> $GITHUB_PATH
source .venv/bin/activate
python lerobot/scripts/train.py \
policy=diffusion \
env=pusht \
wandb.enable=False \
offline_steps=2 \
online_steps=0 \
eval_episodes=1 \
device=cpu \
save_model=true \
save_freq=2 \
policy.batch_size=2 \
hydra.run.dir=tests/outputs/diffusion/
- name: Set up Python 3.10
uses: actions/setup-python@v5
with:
python-version: "3.10"
- name: Install poetry dependencies
- name: Test eval Diffusion on PushT end-to-end
run: |
poetry install --extras "test"
source .venv/bin/activate
python lerobot/scripts/eval.py \
--config tests/outputs/diffusion/.hydra/config.yaml \
eval_episodes=1 \
env.episode_length=8 \
device=cpu \
policy.pretrained_model_path=tests/outputs/diffusion/models/2.pt
- name: Test with pytest
- name: Test train TDMPC on Simxarm end-to-end
run: |
pytest tests -v --cov=./lerobot --durations=0 \
-W ignore::DeprecationWarning:imageio_ffmpeg._utils:7 \
-W ignore::UserWarning:torch.utils.data.dataloader:558 \
-W ignore::UserWarning:gymnasium.utils.env_checker:247 \
&& rm -rf tests/outputs outputs
source .venv/bin/activate
python lerobot/scripts/train.py \
policy=tdmpc \
env=xarm \
wandb.enable=False \
offline_steps=1 \
online_steps=2 \
eval_episodes=1 \
env.episode_length=2 \
device=cpu \
save_model=true \
save_freq=2 \
policy.batch_size=2 \
hydra.run.dir=tests/outputs/tdmpc/
end-to-end:
name: End-to-end
runs-on: ubuntu-latest
env:
DATA_DIR: tests/data
MUJOCO_GL: egl
steps:
- uses: actions/checkout@v4
with:
lfs: true # Ensure LFS files are pulled
- name: Install EGL
run: sudo apt-get update && sudo apt-get install -y libegl1-mesa-dev
- name: Install poetry
- name: Test eval TDMPC on Simxarm end-to-end
run: |
pipx install poetry && poetry config virtualenvs.in-project true
echo "${{ github.workspace }}/.venv/bin" >> $GITHUB_PATH
- name: Set up Python 3.10
uses: actions/setup-python@v5
with:
python-version: "3.10"
cache: "poetry"
- name: Install poetry dependencies
run: |
poetry install --all-extras
- name: Test end-to-end
run: |
make test-end-to-end \
&& rm -rf outputs
source .venv/bin/activate
python lerobot/scripts/eval.py \
--config tests/outputs/tdmpc/.hydra/config.yaml \
eval_episodes=1 \
env.episode_length=8 \
device=cpu \
policy.pretrained_model_path=tests/outputs/tdmpc/models/2.pt

1
.gitignore vendored
View File

@@ -6,7 +6,6 @@ data
outputs
.vscode
rl
.DS_Store
# HPC
nautilus/*.yaml

View File

@@ -1,4 +1,4 @@
exclude: ^(tests/data)
exclude: ^(data/|tests/data)
default_language_version:
python: python3.10
repos:
@@ -18,7 +18,7 @@ repos:
hooks:
- id: pyupgrade
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.4.3
rev: v0.3.7
hooks:
- id: ruff
args: [--fix]

View File

@@ -129,38 +129,41 @@ Follow these steps to start contributing:
🚨 **Do not** work on the `main` branch.
4. for development, we use `poetry` instead of just `pip` to easily track our dependencies.
4. Instead of using `pip` directly, we use `poetry` for development purposes to easily track our dependencies.
If you don't have it already, follow the [instructions](https://python-poetry.org/docs/#installation) to install it.
Set up a development environment with conda or miniconda:
Set up a development environment by running the following command in a conda or a virtual environment you've created for working on this library:
Install the project with dev dependencies and all environments:
```bash
conda create -y -n lerobot-dev python=3.10 && conda activate lerobot-dev
poetry install --sync --with dev --all-extras
```
This command should be run when pulling code with and updated version of `pyproject.toml` and `poetry.lock` in order to synchronize your virtual environment with the dependencies.
To develop on 🤗 LeRobot, you will at least need to install the `dev` and `test` extras dependencies along with the core library:
To selectively install environments (for example aloha and pusht) use:
```bash
poetry install --sync --extras "dev test"
poetry install --sync --with dev --extras "aloha pusht"
```
You can also install the project with all its dependencies (including environments):
```bash
poetry install --sync --all-extras
```
> **Note:** If you don't install simulation environments with `--all-extras`, the tests that require them will be skipped when running the pytest suite locally. However, they *will* be tested in the CI. In general, we advise you to install everything and test locally before pushing.
Whichever command you chose to install the project (e.g. `poetry install --sync --all-extras`), you should run it again when pulling code with an updated version of `pyproject.toml` and `poetry.lock` in order to synchronize your virtual environment with the new dependencies.
The equivalent of `pip install some-package`, would just be:
```bash
poetry add some-package
```
When making changes to the poetry sections of the `pyproject.toml`, you should run the following command to lock dependencies.
When changes are made to the poetry sections of the `pyproject.toml`, you should run the following command to lock dependencies.
```bash
poetry lock --no-update
```
**NOTE:** Currently, to ensure the CI works properly, any new package must also be added in the CPU-only environment dedicated to the CI. To do this, you should create a separate environment and add the new package there as well. For example:
```bash
# Add the new package to your main poetry env
poetry add some-package
# Add the same package to the CPU-only env dedicated to CI
conda create -y -n lerobot-ci python=3.10
conda activate lerobot-ci
cd .github/poetry/cpu
poetry add some-package
```
5. Develop the features on your branch.
As you work on the features, you should make sure that the test suite
@@ -195,11 +198,6 @@ Follow these steps to start contributing:
git commit
```
Note, if you already commited some changes that have a wrong formatting, you can use:
```bash
pre-commit run --all-files
```
Please write [good commit messages](https://chris.beams.io/posts/git-commit/).
It is a good idea to sync your copy of the code with the original

144
Makefile
View File

@@ -1,144 +0,0 @@
.PHONY: tests
PYTHON_PATH := $(shell which python)
# If Poetry is installed, redefine PYTHON_PATH to use the Poetry-managed Python
POETRY_CHECK := $(shell command -v poetry)
ifneq ($(POETRY_CHECK),)
PYTHON_PATH := $(shell poetry run which python)
endif
export PATH := $(dir $(PYTHON_PATH)):$(PATH)
build-cpu:
docker build -t lerobot:latest -f docker/lerobot-cpu/Dockerfile .
build-gpu:
docker build -t lerobot:latest -f docker/lerobot-gpu/Dockerfile .
test-end-to-end:
${MAKE} test-act-ete-train
${MAKE} test-act-ete-eval
${MAKE} test-act-ete-train-amp
${MAKE} test-act-ete-eval-amp
${MAKE} test-diffusion-ete-train
${MAKE} test-diffusion-ete-eval
${MAKE} test-tdmpc-ete-train
${MAKE} test-tdmpc-ete-eval
${MAKE} test-default-ete-eval
test-act-ete-train:
python lerobot/scripts/train.py \
policy=act \
policy.dim_model=64 \
env=aloha \
wandb.enable=False \
training.offline_steps=2 \
training.online_steps=0 \
eval.n_episodes=1 \
eval.batch_size=1 \
device=cpu \
training.save_model=true \
training.save_freq=2 \
policy.n_action_steps=20 \
policy.chunk_size=20 \
training.batch_size=2 \
hydra.run.dir=tests/outputs/act/
test-act-ete-eval:
python lerobot/scripts/eval.py \
-p tests/outputs/act/checkpoints/000002 \
eval.n_episodes=1 \
eval.batch_size=1 \
env.episode_length=8 \
device=cpu \
test-act-ete-train-amp:
python lerobot/scripts/train.py \
policy=act \
policy.dim_model=64 \
env=aloha \
wandb.enable=False \
training.offline_steps=2 \
training.online_steps=0 \
eval.n_episodes=1 \
eval.batch_size=1 \
device=cpu \
training.save_model=true \
training.save_freq=2 \
policy.n_action_steps=20 \
policy.chunk_size=20 \
training.batch_size=2 \
hydra.run.dir=tests/outputs/act/ \
use_amp=true
test-act-ete-eval-amp:
python lerobot/scripts/eval.py \
-p tests/outputs/act/checkpoints/000002 \
eval.n_episodes=1 \
eval.batch_size=1 \
env.episode_length=8 \
device=cpu \
use_amp=true
test-diffusion-ete-train:
python lerobot/scripts/train.py \
policy=diffusion \
policy.down_dims=\[64,128,256\] \
policy.diffusion_step_embed_dim=32 \
policy.num_inference_steps=10 \
env=pusht \
wandb.enable=False \
training.offline_steps=2 \
training.online_steps=0 \
eval.n_episodes=1 \
eval.batch_size=1 \
device=cpu \
training.save_model=true \
training.save_freq=2 \
training.batch_size=2 \
hydra.run.dir=tests/outputs/diffusion/
test-diffusion-ete-eval:
python lerobot/scripts/eval.py \
-p tests/outputs/diffusion/checkpoints/000002 \
eval.n_episodes=1 \
eval.batch_size=1 \
env.episode_length=8 \
device=cpu \
# TODO(alexander-soare): Restore online_steps to 2 when it is reinstated.
test-tdmpc-ete-train:
python lerobot/scripts/train.py \
policy=tdmpc \
env=xarm \
env.task=XarmLift-v0 \
dataset_repo_id=lerobot/xarm_lift_medium \
wandb.enable=False \
training.offline_steps=2 \
training.online_steps=0 \
eval.n_episodes=1 \
eval.batch_size=1 \
env.episode_length=2 \
device=cpu \
training.save_model=true \
training.save_freq=2 \
training.batch_size=2 \
hydra.run.dir=tests/outputs/tdmpc/
test-tdmpc-ete-eval:
python lerobot/scripts/eval.py \
-p tests/outputs/tdmpc/checkpoints/000002 \
eval.n_episodes=1 \
eval.batch_size=1 \
env.episode_length=8 \
device=cpu \
test-default-ete-eval:
python lerobot/scripts/eval.py \
--config lerobot/configs/default.yaml \
eval.n_episodes=1 \
eval.batch_size=1 \
env.episode_length=8 \
device=cpu \

227
README.md
View File

@@ -10,7 +10,7 @@
<div align="center">
[![Tests](https://github.com/huggingface/lerobot/actions/workflows/nightly-tests.yml/badge.svg?branch=main)](https://github.com/huggingface/lerobot/actions/workflows/nightly-tests.yml?query=branch%3Amain)
[![Tests](https://github.com/huggingface/lerobot/actions/workflows/test.yml/badge.svg?branch=main)](https://github.com/huggingface/lerobot/actions/workflows/test.yml?query=branch%3Amain)
[![Coverage](https://codecov.io/gh/huggingface/lerobot/branch/main/graph/badge.svg?token=TODO)](https://codecov.io/gh/huggingface/lerobot)
[![Python versions](https://img.shields.io/pypi/pyversions/lerobot)](https://www.python.org/downloads/)
[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/huggingface/lerobot/blob/main/LICENSE)
@@ -29,15 +29,15 @@
---
🤗 LeRobot aims to provide models, datasets, and tools for real-world robotics in PyTorch. The goal is to lower the barrier to entry to robotics so that everyone can contribute and benefit from sharing datasets and pretrained models.
🤗 LeRobot aims to provide models, datasets, and tools for real-world robotics in PyTorch. The goal is to lower the barrier for entry to robotics so that everyone can contribute and benefit from sharing datasets and pretrained models.
🤗 LeRobot contains state-of-the-art approaches that have been shown to transfer to the real-world with a focus on imitation learning and reinforcement learning.
🤗 LeRobot already provides a set of pretrained models, datasets with human collected demonstrations, and simulation environments to get started without assembling a robot. In the coming weeks, the plan is to add more and more support for real-world robotics on the most affordable and capable robots out there.
🤗 LeRobot already provides a set of pretrained models, datasets with human collected demonstrations, and simulated environments so that everyone can get started. In the coming weeks, the plan is to add more and more support for real-world robotics on the most affordable and capable robots out there.
🤗 LeRobot hosts pretrained models and datasets on this Hugging Face community page: [huggingface.co/lerobot](https://huggingface.co/lerobot)
🤗 LeRobot hosts pretrained models and datasets on this HuggingFace community page: [huggingface.co/lerobot](https://huggingface.co/lerobot)
#### Examples of pretrained models on simulation environments
#### Examples of pretrained models and environments
<table>
<tr>
@@ -54,11 +54,10 @@
### Acknowledgment
- Thanks to Tony Zaho, Zipeng Fu and colleagues for open sourcing ACT policy, ALOHA environments and datasets. Ours are adapted from [ALOHA](https://tonyzhaozh.github.io/aloha) and [Mobile ALOHA](https://mobile-aloha.github.io).
- Thanks to Cheng Chi, Zhenjia Xu and colleagues for open sourcing Diffusion policy, Pusht environment and datasets, as well as UMI datasets. Ours are adapted from [Diffusion Policy](https://diffusion-policy.cs.columbia.edu) and [UMI Gripper](https://umi-gripper.github.io).
- Thanks to Nicklas Hansen, Yunhai Feng and colleagues for open sourcing TDMPC policy, Simxarm environments and datasets. Ours are adapted from [TDMPC](https://github.com/nicklashansen/tdmpc) and [FOWM](https://www.yunhaifeng.com/FOWM).
- Thanks to Antonio Loquercio and Ashish Kumar for their early support.
- ACT policy and ALOHA environment are adapted from [ALOHA](https://tonyzhaozh.github.io/aloha/)
- Diffusion policy and Pusht environment are adapted from [Diffusion Policy](https://diffusion-policy.cs.columbia.edu/)
- TDMPC policy and Simxarm environment are adapted from [FOWM](https://www.yunhaifeng.com/FOWM/)
- Abstractions and utilities for Reinforcement Learning come from [TorchRL](https://github.com/pytorch/rl)
## Installation
@@ -74,7 +73,7 @@ conda create -y -n lerobot python=3.10 && conda activate lerobot
Install 🤗 LeRobot:
```bash
pip install .
python -m pip install .
```
For simulations, 🤗 LeRobot comes with gymnasium environments that can be installed as extras:
@@ -84,21 +83,18 @@ For simulations, 🤗 LeRobot comes with gymnasium environments that can be inst
For instance, to install 🤗 LeRobot with aloha and pusht, use:
```bash
pip install ".[aloha, pusht]"
python -m pip install ".[aloha, pusht]"
```
To use [Weights and Biases](https://docs.wandb.ai/quickstart) for experiment tracking, log in with
To use [Weights and Biases](https://docs.wandb.ai/quickstart) for experiments tracking, log in with
```bash
wandb login
```
(note: you will also need to enable WandB in the configuration. See below.)
## Walkthrough
```
.
├── examples # contains demonstration examples, start here to learn about LeRobot
├── lerobot
| ├── configs # contains hydra yaml files with all options that you can override in the command line
| | ├── default.yaml # selected by default, it loads pusht environment and diffusion policy
@@ -107,84 +103,69 @@ wandb login
| ├── common # contains classes and utilities
| | ├── datasets # various datasets of human demonstrations: aloha, pusht, xarm
| | ├── envs # various sim environments: aloha, pusht, xarm
| | ── policies # various policies: act, diffusion, tdmpc
| | └── utils # various utilities
| └── scripts # contains functions to execute via command line
| ├── eval.py # load policy and evaluate it on an environment
| ── train.py # train a policy via imitation learning and/or reinforcement learning
| ├── push_dataset_to_hub.py # convert your dataset into LeRobot dataset format and upload it to the Hugging Face hub
| └── visualize_dataset.py # load a dataset and render its demonstrations
| | ── policies # various policies: act, diffusion, tdmpc
| └── scripts # contains functions to execute via command line
| ├── visualize_dataset.py # load a dataset and render its demonstrations
| ├── eval.py # load policy and evaluate it on an environment
| ── train.py # train a policy via imitation learning and/or reinforcement learning
├── outputs # contains results of scripts execution: logs, videos, model checkpoints
├── .github
| └── workflows
| └── test.yml # defines install settings for continuous integration and specifies end-to-end tests
└── tests # contains pytest utilities for continuous integration
```
### Visualize datasets
Check out [example 1](./examples/1_load_lerobot_dataset.py) that illustrates how to use our dataset class which automatically download data from the Hugging Face hub.
Check out [examples](./examples) to see how you can import our dataset class, download the data from the HuggingFace hub and use our rendering utilities.
You can also locally visualize episodes from a dataset by executing our script from the command line:
Or you can achieve the same result by executing our script from the command line:
```bash
python lerobot/scripts/visualize_dataset.py \
--repo-id lerobot/pusht \
--episode-index 0
env=pusht \
hydra.run.dir=outputs/visualize_dataset/example
# >>> ['outputs/visualize_dataset/example/episode_0.mp4']
```
It will open `rerun.io` and display the camera streams, robot states and actions, like this:
https://github-production-user-asset-6210df.s3.amazonaws.com/4681518/328035972-fd46b787-b532-47e2-bb6f-fd536a55a7ed.mov?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAVCODYLSA53PQK4ZA%2F20240505%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20240505T172924Z&X-Amz-Expires=300&X-Amz-Signature=d680b26c532eeaf80740f08af3320d22ad0b8a4e4da1bcc4f33142c15b509eda&X-Amz-SignedHeaders=host&actor_id=24889239&key_id=0&repo_id=748713144
Our script can also visualize datasets stored on a distant server. See `python lerobot/scripts/visualize_dataset.py --help` for more instructions.
### Evaluate a pretrained policy
Check out [example 2](./examples/2_evaluate_pretrained_policy.py) that illustrates how to download a pretrained policy from Hugging Face hub, and run an evaluation on its corresponding environment.
Check out [examples](./examples) to see how you can load a pretrained policy from HuggingFace hub, load up the corresponding environment and model, and run an evaluation.
We also provide a more capable script to parallelize the evaluation over multiple environments during the same rollout. Here is an example with a pretrained model hosted on [lerobot/diffusion_pusht](https://huggingface.co/lerobot/diffusion_pusht):
Or you can achieve the same result by executing our script from the command line:
```bash
python lerobot/scripts/eval.py \
-p lerobot/diffusion_pusht \
eval.n_episodes=10 \
eval.batch_size=10
--hub-id lerobot/diffusion_policy_pusht_image \
eval_episodes=10 \
hydra.run.dir=outputs/eval/example_hub
```
Note: After training your own policy, you can re-evaluate the checkpoints with:
After training your own policy, you can also re-evaluate the checkpoints with:
```bash
python lerobot/scripts/eval.py \
-p PATH/TO/TRAIN/OUTPUT/FOLDER
--config PATH/TO/FOLDER/config.yaml \
policy.pretrained_model_path=PATH/TO/FOLDER/weights.pth \
eval_episodes=10 \
hydra.run.dir=outputs/eval/example_dir
```
See `python lerobot/scripts/eval.py --help` for more instructions.
### Train your own policy
Check out [example 3](./examples/3_train_policy.py) that illustrates how to start training a model.
Check out [examples](./examples) to see how you can start training a model on a dataset, which will be automatically downloaded if needed.
In general, you can use our training script to easily train any policy. Here is an example of training the ACT policy on trajectories collected by humans on the Aloha simulation environment for the insertion task:
In general, you can use our training script to easily train any policy on any environment:
```bash
python lerobot/scripts/train.py \
policy=act \
env=aloha \
env.task=AlohaInsertion-v0 \
dataset_repo_id=lerobot/aloha_sim_insertion_human \
env=aloha \
task=sim_insertion \
repo_id=lerobot/aloha_sim_insertion_scripted \
policy=act \
hydra.run.dir=outputs/train/aloha_act
```
The experiment directory is automatically generated and will show up in yellow in your terminal. It looks like `outputs/train/2024-05-05/20-21-12_aloha_act_default`. You can manually specify an experiment directory by adding this argument to the `train.py` python command:
```bash
hydra.run.dir=your/new/experiment/dir
```
To use wandb for logging training and evaluation curves, make sure you've run `wandb login` as a one-time setup step. Then, when running the training command above, enable WandB in the configuration by adding:
```bash
wandb.enable=true
```
A link to the wandb logs for the run will also show up in yellow in your terminal. Here is an example of what they look like in your browser:
![](media/wandb.png)
Note: For efficiency, during training every checkpoint is evaluated on a low number of episodes. After training, you may want to re-evaluate your best checkpoints on more episodes or change the evaluation settings. See `python lerobot/scripts/eval.py --help` for more instructions.
After training, you may want to revisit model evaluation to change the evaluation settings. In fact, during training every checkpoint is already evaluated but on a low number of episodes for efficiency. Check out [example](./examples) to evaluate any model checkpoint on more episodes to increase statistical significance.
## Contribute
@@ -192,40 +173,105 @@ If you would like to contribute to 🤗 LeRobot, please check out our [contribut
### Add a new dataset
To add a dataset to the hub, you need to login using a write-access token, which can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens):
```python
# TODO(rcadene, AdilZouitine): rewrite this section
```
To add a dataset to the hub, first login and use a token generated from [huggingface settings](https://huggingface.co/settings/tokens) with write access:
```bash
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
```
Then move your dataset folder in `data` directory (e.g. `data/aloha_static_pingpong_test`), and push your dataset to the hub with:
Then you can upload it to the hub with:
```bash
python lerobot/scripts/push_dataset_to_hub.py \
--data-dir data \
--dataset-id aloha_static_pingpong_test \
--raw-format aloha_hdf5 \
--community-id lerobot
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli upload $HF_USER/$DATASET data/$DATASET \
--repo-type dataset \
--revision v1.0
```
See `python lerobot/scripts/push_dataset_to_hub.py --help` for more instructions.
You will need to set the corresponding version as a default argument in your dataset class:
```python
version: str | None = "v1.1",
```
See: [`lerobot/common/datasets/pusht.py`](https://github.com/Cadene/lerobot/blob/main/lerobot/common/datasets/pusht.py)
If your dataset format is not supported, implement your own in `lerobot/common/datasets/push_dataset_to_hub/${raw_format}_format.py` by copying examples like [pusht_zarr](https://github.com/huggingface/lerobot/blob/main/lerobot/common/datasets/push_dataset_to_hub/pusht_zarr_format.py), [umi_zarr](https://github.com/huggingface/lerobot/blob/main/lerobot/common/datasets/push_dataset_to_hub/umi_zarr_format.py), [aloha_hdf5](https://github.com/huggingface/lerobot/blob/main/lerobot/common/datasets/push_dataset_to_hub/aloha_hdf5_format.py), or [xarm_pkl](https://github.com/huggingface/lerobot/blob/main/lerobot/common/datasets/push_dataset_to_hub/xarm_pkl_format.py).
For instance, for [lerobot/pusht](https://huggingface.co/datasets/lerobot/pusht), we used:
```bash
HF_USER=lerobot
DATASET=pusht
```
If you want to improve an existing dataset, you can download it locally with:
```bash
mkdir -p data/$DATASET
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download ${HF_USER}/$DATASET \
--repo-type dataset \
--local-dir data/$DATASET \
--local-dir-use-symlinks=False \
--revision v1.0
```
Iterate on your code and dataset with:
```bash
DATA_DIR=data python train.py
```
Upload a new version (v2.0 or v1.1 if the changes are respectively more or less significant):
```bash
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli upload $HF_USER/$DATASET data/$DATASET \
--repo-type dataset \
--revision v1.1 \
--delete "*"
```
Then you will need to set the corresponding version as a default argument in your dataset class:
```python
version: str | None = "v1.1",
```
See: [`lerobot/common/datasets/pusht.py`](https://github.com/Cadene/lerobot/blob/main/lerobot/common/datasets/pusht.py)
Finally, you might want to mock the dataset if you need to update the unit tests as well:
```bash
python tests/scripts/mock_dataset.py --in-data-dir data/$DATASET --out-data-dir tests/data/$DATASET
```
### Add a pretrained policy
Once you have trained a policy you may upload it to the Hugging Face hub using a hub id that looks like `${hf_user}/${repo_name}` (e.g. [lerobot/diffusion_pusht](https://huggingface.co/lerobot/diffusion_pusht)).
You first need to find the checkpoint located inside your experiment directory (e.g. `outputs/train/2024-05-05/20-21-12_aloha_act_default/checkpoints/002500`). It should contain:
- `config.json`: A serialized version of the policy configuration (following the policy's dataclass config).
- `model.safetensors`: A set of `torch.nn.Module` parameters, saved in [Hugging Face Safetensors](https://huggingface.co/docs/safetensors/index) format.
- `config.yaml`: A consolidated Hydra training configuration containing the policy, environment, and dataset configs. The policy configuration should match `config.json` exactly. The environment config is useful for anyone who wants to evaluate your policy. The dataset config just serves as a paper trail for reproducibility.
To upload these to the hub, run the following:
```bash
huggingface-cli upload ${hf_user}/${repo_name} path/to/checkpoint/dir
```python
# TODO(rcadene, alexander-soare): rewrite this section
```
See [eval.py](https://github.com/huggingface/lerobot/blob/main/lerobot/scripts/eval.py) for an example of how other people may use your policy.
Once you have trained a policy you may upload it to the HuggingFace hub.
Firstly, make sure you have a model repository set up on the hub. The hub ID looks like HF_USER/REPO_NAME.
Secondly, assuming you have trained a policy, you need:
- `config.yaml` which you can get from the `.hydra` directory of your training output folder.
- `model.pt` which should be one of the saved models in the `models` directory of your training output folder (they won't be named `model.pt` but you will need to choose one).
To upload these to the hub, prepare a folder with the following structure (you can use symlinks rather than copying):
```
to_upload
├── config.yaml
└── model.pt
```
With the folder prepared, run the following with a desired revision ID.
```bash
huggingface-cli upload $HUB_ID to_upload --revision $REVISION_ID
```
If you want this to be the default revision also run the following (don't worry, it won't upload the files again; it will just adjust the file pointers):
```bash
huggingface-cli upload $HUB_ID to_upload
```
See `eval.py` for an example of how a user may use your policy.
### Improve your code with profiling
@@ -252,14 +298,9 @@ with profile(
# insert code to profile, potentially whole body of eval_policy function
```
## Citation
If you want, you can cite this work with:
```
@misc{cadene2024lerobot,
author = {Cadene, Remi and Alibert, Simon and Soare, Alexander and Gallouedec, Quentin and Zouitine, Adil and Wolf, Thomas},
title = {LeRobot: State-of-the-art Machine Learning for Real-World Robotics in Pytorch},
howpublished = "\url{https://github.com/huggingface/lerobot}",
year = {2024}
}
```bash
python lerobot/scripts/eval.py \
--config outputs/pusht/.hydra/config.yaml \
pretrained_model_path=outputs/pusht/model.pt \
eval_episodes=7
```

View File

@@ -1,31 +0,0 @@
# Configure image
ARG PYTHON_VERSION=3.10
FROM python:${PYTHON_VERSION}-slim
ARG PYTHON_VERSION
ARG DEBIAN_FRONTEND=noninteractive
# Install apt dependencies
RUN apt-get update && apt-get install -y --no-install-recommends \
build-essential cmake \
libglib2.0-0 libgl1-mesa-glx libegl1-mesa \
&& apt-get clean && rm -rf /var/lib/apt/lists/*
# Create virtual environment
RUN ln -s /usr/bin/python${PYTHON_VERSION} /usr/bin/python
RUN python -m venv /opt/venv
ENV PATH="/opt/venv/bin:$PATH"
RUN echo "source /opt/venv/bin/activate" >> /root/.bashrc
# Install LeRobot
COPY . /lerobot
WORKDIR /lerobot
RUN pip install --upgrade --no-cache-dir pip
RUN pip install --no-cache-dir ".[test, aloha, xarm, pusht]" \
--extra-index-url https://download.pytorch.org/whl/cpu
# Set EGL as the rendering backend for MuJoCo
ENV MUJOCO_GL="egl"
# Execute in bash shell rather than python
CMD ["/bin/bash"]

View File

@@ -1,33 +0,0 @@
FROM nvidia/cuda:12.4.1-base-ubuntu22.04
# Configure image
ARG PYTHON_VERSION=3.10
ARG DEBIAN_FRONTEND=noninteractive
# Install apt dependencies
RUN apt-get update && apt-get install -y --no-install-recommends \
build-essential cmake \
git git-lfs openssh-client \
nano vim ffmpeg \
htop atop nvtop \
sed gawk grep curl wget \
tcpdump sysstat screen \
libglib2.0-0 libgl1-mesa-glx libegl1-mesa \
python${PYTHON_VERSION} python${PYTHON_VERSION}-venv \
&& apt-get clean && rm -rf /var/lib/apt/lists/*
# Create virtual environment
RUN ln -s /usr/bin/python${PYTHON_VERSION} /usr/bin/python
RUN python -m venv /opt/venv
ENV PATH="/opt/venv/bin:$PATH"
RUN echo "source /opt/venv/bin/activate" >> /root/.bashrc
# Install LeRobot
RUN git lfs install
RUN git clone https://github.com/huggingface/lerobot.git
WORKDIR /lerobot
RUN pip install --upgrade --no-cache-dir pip
RUN pip install --no-cache-dir ".[test, aloha, xarm, pusht]"
# Set EGL as the rendering backend for MuJoCo
ENV MUJOCO_GL="egl"

View File

@@ -0,0 +1,550 @@
"""
This file contains all obsolete download scripts. They are centralized here to not have to load
useless dependencies when using datasets.
"""
import io
import json
import pickle
import shutil
from pathlib import Path
import einops
import h5py
import numpy as np
import torch
import tqdm
from datasets import Dataset, Features, Image, Sequence, Value
from huggingface_hub import HfApi
from PIL import Image as PILImage
from safetensors.torch import save_file
from lerobot.common.datasets.utils import compute_stats, flatten_dict, hf_transform_to_torch
def download_and_upload(root, revision, dataset_id):
# TODO(rcadene, adilzouitine): add community_id/user_id (e.g. "lerobot", "cadene") or repo_id (e.g. "lerobot/pusht")
if "pusht" in dataset_id:
download_and_upload_pusht(root, revision, dataset_id)
elif "xarm" in dataset_id:
download_and_upload_xarm(root, revision, dataset_id)
elif "aloha" in dataset_id:
download_and_upload_aloha(root, revision, dataset_id)
else:
raise ValueError(dataset_id)
def download_and_extract_zip(url: str, destination_folder: Path) -> bool:
import zipfile
import requests
print(f"downloading from {url}")
response = requests.get(url, stream=True)
if response.status_code == 200:
total_size = int(response.headers.get("content-length", 0))
progress_bar = tqdm.tqdm(total=total_size, unit="B", unit_scale=True)
zip_file = io.BytesIO()
for chunk in response.iter_content(chunk_size=1024):
if chunk:
zip_file.write(chunk)
progress_bar.update(len(chunk))
progress_bar.close()
zip_file.seek(0)
with zipfile.ZipFile(zip_file, "r") as zip_ref:
zip_ref.extractall(destination_folder)
return True
else:
return False
def concatenate_episodes(ep_dicts):
data_dict = {}
keys = ep_dicts[0].keys()
for key in keys:
if torch.is_tensor(ep_dicts[0][key][0]):
data_dict[key] = torch.cat([ep_dict[key] for ep_dict in ep_dicts])
else:
if key not in data_dict:
data_dict[key] = []
for ep_dict in ep_dicts:
for x in ep_dict[key]:
data_dict[key].append(x)
total_frames = data_dict["frame_index"].shape[0]
data_dict["index"] = torch.arange(0, total_frames, 1)
return data_dict
def push_to_hub(hf_dataset, episode_data_index, info, stats, root, revision, dataset_id):
# push to main to indicate latest version
hf_dataset.push_to_hub(f"lerobot/{dataset_id}", token=True)
# push to version branch
hf_dataset.push_to_hub(f"lerobot/{dataset_id}", token=True, revision=revision)
# create and store meta_data
meta_data_dir = root / dataset_id / "meta_data"
meta_data_dir.mkdir(parents=True, exist_ok=True)
api = HfApi()
# info
info_path = meta_data_dir / "info.json"
with open(str(info_path), "w") as f:
json.dump(info, f, indent=4)
api.upload_file(
path_or_fileobj=info_path,
path_in_repo=str(info_path).replace(f"{root}/{dataset_id}", ""),
repo_id=f"lerobot/{dataset_id}",
repo_type="dataset",
)
api.upload_file(
path_or_fileobj=info_path,
path_in_repo=str(info_path).replace(f"{root}/{dataset_id}", ""),
repo_id=f"lerobot/{dataset_id}",
repo_type="dataset",
revision=revision,
)
# stats
stats_path = meta_data_dir / "stats.safetensors"
save_file(flatten_dict(stats), stats_path)
api.upload_file(
path_or_fileobj=stats_path,
path_in_repo=str(stats_path).replace(f"{root}/{dataset_id}", ""),
repo_id=f"lerobot/{dataset_id}",
repo_type="dataset",
)
api.upload_file(
path_or_fileobj=stats_path,
path_in_repo=str(stats_path).replace(f"{root}/{dataset_id}", ""),
repo_id=f"lerobot/{dataset_id}",
repo_type="dataset",
revision=revision,
)
# episode_data_index
episode_data_index = {key: torch.tensor(episode_data_index[key]) for key in episode_data_index}
ep_data_idx_path = meta_data_dir / "episode_data_index.safetensors"
save_file(episode_data_index, ep_data_idx_path)
api.upload_file(
path_or_fileobj=ep_data_idx_path,
path_in_repo=str(ep_data_idx_path).replace(f"{root}/{dataset_id}", ""),
repo_id=f"lerobot/{dataset_id}",
repo_type="dataset",
)
api.upload_file(
path_or_fileobj=ep_data_idx_path,
path_in_repo=str(ep_data_idx_path).replace(f"{root}/{dataset_id}", ""),
repo_id=f"lerobot/{dataset_id}",
repo_type="dataset",
revision=revision,
)
# copy in tests folder, the first episode and the meta_data directory
num_items_first_ep = episode_data_index["to"][0] - episode_data_index["from"][0]
hf_dataset.select(range(num_items_first_ep)).with_format("torch").save_to_disk(
f"tests/data/lerobot/{dataset_id}/train"
)
if Path(f"tests/data/lerobot/{dataset_id}/meta_data").exists():
shutil.rmtree(f"tests/data/lerobot/{dataset_id}/meta_data")
shutil.copytree(meta_data_dir, f"tests/data/lerobot/{dataset_id}/meta_data")
def download_and_upload_pusht(root, revision, dataset_id="pusht", fps=10):
try:
import pymunk
from gym_pusht.envs.pusht import PushTEnv, pymunk_to_shapely
from lerobot.common.datasets._diffusion_policy_replay_buffer import (
ReplayBuffer as DiffusionPolicyReplayBuffer,
)
except ModuleNotFoundError as e:
print("`gym_pusht` is not installed. Please install it with `pip install 'lerobot[gym_pusht]'`")
raise e
# as define in env
success_threshold = 0.95 # 95% coverage,
pusht_url = "https://diffusion-policy.cs.columbia.edu/data/training/pusht.zip"
pusht_zarr = Path("pusht/pusht_cchi_v7_replay.zarr")
root = Path(root)
raw_dir = root / f"{dataset_id}_raw"
zarr_path = (raw_dir / pusht_zarr).resolve()
if not zarr_path.is_dir():
raw_dir.mkdir(parents=True, exist_ok=True)
download_and_extract_zip(pusht_url, raw_dir)
# load
dataset_dict = DiffusionPolicyReplayBuffer.copy_from_path(zarr_path) # , keys=['img', 'state', 'action'])
episode_ids = torch.from_numpy(dataset_dict.get_episode_idxs())
num_episodes = dataset_dict.meta["episode_ends"].shape[0]
assert len(
{dataset_dict[key].shape[0] for key in dataset_dict.keys()} # noqa: SIM118
), "Some data type dont have the same number of total frames."
# TODO: verify that goal pose is expected to be fixed
goal_pos_angle = np.array([256, 256, np.pi / 4]) # x, y, theta (in radians)
goal_body = PushTEnv.get_goal_pose_body(goal_pos_angle)
imgs = torch.from_numpy(dataset_dict["img"]) # b h w c
states = torch.from_numpy(dataset_dict["state"])
actions = torch.from_numpy(dataset_dict["action"])
ep_dicts = []
episode_data_index = {"from": [], "to": []}
id_from = 0
for episode_id in tqdm.tqdm(range(num_episodes)):
id_to = dataset_dict.meta["episode_ends"][episode_id]
num_frames = id_to - id_from
assert (episode_ids[id_from:id_to] == episode_id).all()
image = imgs[id_from:id_to]
assert image.min() >= 0.0
assert image.max() <= 255.0
image = image.type(torch.uint8)
state = states[id_from:id_to]
agent_pos = state[:, :2]
block_pos = state[:, 2:4]
block_angle = state[:, 4]
reward = torch.zeros(num_frames)
success = torch.zeros(num_frames, dtype=torch.bool)
done = torch.zeros(num_frames, dtype=torch.bool)
for i in range(num_frames):
space = pymunk.Space()
space.gravity = 0, 0
space.damping = 0
# Add walls.
walls = [
PushTEnv.add_segment(space, (5, 506), (5, 5), 2),
PushTEnv.add_segment(space, (5, 5), (506, 5), 2),
PushTEnv.add_segment(space, (506, 5), (506, 506), 2),
PushTEnv.add_segment(space, (5, 506), (506, 506), 2),
]
space.add(*walls)
block_body = PushTEnv.add_tee(space, block_pos[i].tolist(), block_angle[i].item())
goal_geom = pymunk_to_shapely(goal_body, block_body.shapes)
block_geom = pymunk_to_shapely(block_body, block_body.shapes)
intersection_area = goal_geom.intersection(block_geom).area
goal_area = goal_geom.area
coverage = intersection_area / goal_area
reward[i] = np.clip(coverage / success_threshold, 0, 1)
success[i] = coverage > success_threshold
# last step of demonstration is considered done
done[-1] = True
ep_dict = {
"observation.image": [PILImage.fromarray(x.numpy()) for x in image],
"observation.state": agent_pos,
"action": actions[id_from:id_to],
"episode_index": torch.tensor([episode_id] * num_frames, dtype=torch.int),
"frame_index": torch.arange(0, num_frames, 1),
"timestamp": torch.arange(0, num_frames, 1) / fps,
# "next.observation.image": image[1:],
# "next.observation.state": agent_pos[1:],
# TODO(rcadene): verify that reward and done are aligned with image and agent_pos
"next.reward": torch.cat([reward[1:], reward[[-1]]]),
"next.done": torch.cat([done[1:], done[[-1]]]),
"next.success": torch.cat([success[1:], success[[-1]]]),
}
ep_dicts.append(ep_dict)
episode_data_index["from"].append(id_from)
episode_data_index["to"].append(id_from + num_frames)
id_from += num_frames
data_dict = concatenate_episodes(ep_dicts)
features = {
"observation.image": Image(),
"observation.state": Sequence(
length=data_dict["observation.state"].shape[1], feature=Value(dtype="float32", id=None)
),
"action": Sequence(length=data_dict["action"].shape[1], feature=Value(dtype="float32", id=None)),
"episode_index": Value(dtype="int64", id=None),
"frame_index": Value(dtype="int64", id=None),
"timestamp": Value(dtype="float32", id=None),
"next.reward": Value(dtype="float32", id=None),
"next.done": Value(dtype="bool", id=None),
"next.success": Value(dtype="bool", id=None),
"index": Value(dtype="int64", id=None),
}
features = Features(features)
hf_dataset = Dataset.from_dict(data_dict, features=features)
hf_dataset.set_transform(hf_transform_to_torch)
info = {
"fps": fps,
}
stats = compute_stats(hf_dataset)
push_to_hub(hf_dataset, episode_data_index, info, stats, root, revision, dataset_id)
def download_and_upload_xarm(root, revision, dataset_id, fps=15):
root = Path(root)
raw_dir = root / "xarm_datasets_raw"
if not raw_dir.exists():
import zipfile
import gdown
raw_dir.mkdir(parents=True, exist_ok=True)
# from https://github.com/fyhMer/fowm/blob/main/scripts/download_datasets.py
url = "https://drive.google.com/uc?id=1nhxpykGtPDhmQKm-_B8zBSywVRdgeVya"
zip_path = raw_dir / "data.zip"
gdown.download(url, str(zip_path), quiet=False)
print("Extracting...")
with zipfile.ZipFile(str(zip_path), "r") as zip_f:
for member in zip_f.namelist():
if member.startswith("data/xarm") and member.endswith(".pkl"):
print(member)
zip_f.extract(member=member)
zip_path.unlink()
dataset_path = root / f"{dataset_id}" / "buffer.pkl"
print(f"Using offline dataset '{dataset_path}'")
with open(dataset_path, "rb") as f:
dataset_dict = pickle.load(f)
ep_dicts = []
episode_data_index = {"from": [], "to": []}
id_from = 0
id_to = 0
episode_id = 0
total_frames = dataset_dict["actions"].shape[0]
for i in tqdm.tqdm(range(total_frames)):
id_to += 1
if not dataset_dict["dones"][i]:
continue
num_frames = id_to - id_from
image = torch.tensor(dataset_dict["observations"]["rgb"][id_from:id_to])
image = einops.rearrange(image, "b c h w -> b h w c")
state = torch.tensor(dataset_dict["observations"]["state"][id_from:id_to])
action = torch.tensor(dataset_dict["actions"][id_from:id_to])
# TODO(rcadene): we have a missing last frame which is the observation when the env is done
# it is critical to have this frame for tdmpc to predict a "done observation/state"
# next_image = torch.tensor(dataset_dict["next_observations"]["rgb"][id_from:id_to])
# next_state = torch.tensor(dataset_dict["next_observations"]["state"][id_from:id_to])
next_reward = torch.tensor(dataset_dict["rewards"][id_from:id_to])
next_done = torch.tensor(dataset_dict["dones"][id_from:id_to])
ep_dict = {
"observation.image": [PILImage.fromarray(x.numpy()) for x in image],
"observation.state": state,
"action": action,
"episode_index": torch.tensor([episode_id] * num_frames, dtype=torch.int),
"frame_index": torch.arange(0, num_frames, 1),
"timestamp": torch.arange(0, num_frames, 1) / fps,
# "next.observation.image": next_image,
# "next.observation.state": next_state,
"next.reward": next_reward,
"next.done": next_done,
}
ep_dicts.append(ep_dict)
episode_data_index["from"].append(id_from)
episode_data_index["to"].append(id_from + num_frames)
id_from = id_to
episode_id += 1
data_dict = concatenate_episodes(ep_dicts)
features = {
"observation.image": Image(),
"observation.state": Sequence(
length=data_dict["observation.state"].shape[1], feature=Value(dtype="float32", id=None)
),
"action": Sequence(length=data_dict["action"].shape[1], feature=Value(dtype="float32", id=None)),
"episode_index": Value(dtype="int64", id=None),
"frame_index": Value(dtype="int64", id=None),
"timestamp": Value(dtype="float32", id=None),
"next.reward": Value(dtype="float32", id=None),
"next.done": Value(dtype="bool", id=None),
#'next.success': Value(dtype='bool', id=None),
"index": Value(dtype="int64", id=None),
}
features = Features(features)
hf_dataset = Dataset.from_dict(data_dict, features=features)
hf_dataset.set_transform(hf_transform_to_torch)
info = {
"fps": fps,
}
stats = compute_stats(hf_dataset)
push_to_hub(hf_dataset, episode_data_index, info, stats, root, revision, dataset_id)
def download_and_upload_aloha(root, revision, dataset_id, fps=50):
folder_urls = {
"aloha_sim_insertion_human": "https://drive.google.com/drive/folders/1RgyD0JgTX30H4IM5XZn8I3zSV_mr8pyF",
"aloha_sim_insertion_scripted": "https://drive.google.com/drive/folders/1TsojQQSXtHEoGnqgJ3gmpPQR2DPLtS2N",
"aloha_sim_transfer_cube_human": "https://drive.google.com/drive/folders/1sc-E4QYW7A0o23m1u2VWNGVq5smAsfCo",
"aloha_sim_transfer_cube_scripted": "https://drive.google.com/drive/folders/1aRyoOhQwxhyt1J8XgEig4s6kzaw__LXj",
}
ep48_urls = {
"aloha_sim_insertion_human": "https://drive.google.com/file/d/18Cudl6nikDtgRolea7je8iF_gGKzynOP/view?usp=drive_link",
"aloha_sim_insertion_scripted": "https://drive.google.com/file/d/1wfMSZ24oOh5KR_0aaP3Cnu_c4ZCveduB/view?usp=drive_link",
"aloha_sim_transfer_cube_human": "https://drive.google.com/file/d/18smMymtr8tIxaNUQ61gW6dG50pt3MvGq/view?usp=drive_link",
"aloha_sim_transfer_cube_scripted": "https://drive.google.com/file/d/1pnGIOd-E4-rhz2P3VxpknMKRZCoKt6eI/view?usp=drive_link",
}
ep49_urls = {
"aloha_sim_insertion_human": "https://drive.google.com/file/d/1C1kZYyROzs-PrLc0SkDgUgMi4-L3lauE/view?usp=drive_link",
"aloha_sim_insertion_scripted": "https://drive.google.com/file/d/17EuCUWS6uCCr6yyNzpXdcdE-_TTNCKtf/view?usp=drive_link",
"aloha_sim_transfer_cube_human": "https://drive.google.com/file/d/1Nk7l53d9sJoGDBKAOnNrExX5nLacATc6/view?usp=drive_link",
"aloha_sim_transfer_cube_scripted": "https://drive.google.com/file/d/1GKReZHrXU73NMiC5zKCq_UtqPVtYq8eo/view?usp=drive_link",
}
num_episodes = {
"aloha_sim_insertion_human": 50,
"aloha_sim_insertion_scripted": 50,
"aloha_sim_transfer_cube_human": 50,
"aloha_sim_transfer_cube_scripted": 50,
}
episode_len = {
"aloha_sim_insertion_human": 500,
"aloha_sim_insertion_scripted": 400,
"aloha_sim_transfer_cube_human": 400,
"aloha_sim_transfer_cube_scripted": 400,
}
cameras = {
"aloha_sim_insertion_human": ["top"],
"aloha_sim_insertion_scripted": ["top"],
"aloha_sim_transfer_cube_human": ["top"],
"aloha_sim_transfer_cube_scripted": ["top"],
}
root = Path(root)
raw_dir = root / f"{dataset_id}_raw"
if not raw_dir.is_dir():
import gdown
assert dataset_id in folder_urls
assert dataset_id in ep48_urls
assert dataset_id in ep49_urls
raw_dir.mkdir(parents=True, exist_ok=True)
gdown.download_folder(folder_urls[dataset_id], output=str(raw_dir))
# because of the 50 files limit per directory, two files episode 48 and 49 were missing
gdown.download(ep48_urls[dataset_id], output=str(raw_dir / "episode_48.hdf5"), fuzzy=True)
gdown.download(ep49_urls[dataset_id], output=str(raw_dir / "episode_49.hdf5"), fuzzy=True)
ep_dicts = []
episode_data_index = {"from": [], "to": []}
id_from = 0
for ep_id in tqdm.tqdm(range(num_episodes[dataset_id])):
ep_path = raw_dir / f"episode_{ep_id}.hdf5"
with h5py.File(ep_path, "r") as ep:
num_frames = ep["/action"].shape[0]
assert episode_len[dataset_id] == num_frames
# last step of demonstration is considered done
done = torch.zeros(num_frames, dtype=torch.bool)
done[-1] = True
state = torch.from_numpy(ep["/observations/qpos"][:])
action = torch.from_numpy(ep["/action"][:])
ep_dict = {}
for cam in cameras[dataset_id]:
image = torch.from_numpy(ep[f"/observations/images/{cam}"][:]) # b h w c
# image = einops.rearrange(image, "b h w c -> b c h w").contiguous()
ep_dict[f"observation.images.{cam}"] = [PILImage.fromarray(x.numpy()) for x in image]
# ep_dict[f"next.observation.images.{cam}"] = image
ep_dict.update(
{
"observation.state": state,
"action": action,
"episode_index": torch.tensor([ep_id] * num_frames),
"frame_index": torch.arange(0, num_frames, 1),
"timestamp": torch.arange(0, num_frames, 1) / fps,
# "next.observation.state": state,
# TODO(rcadene): compute reward and success
# "next.reward": reward,
"next.done": done,
# "next.success": success,
}
)
assert isinstance(ep_id, int)
ep_dicts.append(ep_dict)
episode_data_index["from"].append(id_from)
episode_data_index["to"].append(id_from + num_frames)
id_from += num_frames
data_dict = concatenate_episodes(ep_dicts)
features = {
"observation.images.top": Image(),
"observation.state": Sequence(
length=data_dict["observation.state"].shape[1], feature=Value(dtype="float32", id=None)
),
"action": Sequence(length=data_dict["action"].shape[1], feature=Value(dtype="float32", id=None)),
"episode_index": Value(dtype="int64", id=None),
"frame_index": Value(dtype="int64", id=None),
"timestamp": Value(dtype="float32", id=None),
#'next.reward': Value(dtype='float32', id=None),
"next.done": Value(dtype="bool", id=None),
#'next.success': Value(dtype='bool', id=None),
"index": Value(dtype="int64", id=None),
}
features = Features(features)
hf_dataset = Dataset.from_dict(data_dict, features=features)
hf_dataset.set_transform(hf_transform_to_torch)
info = {
"fps": fps,
}
stats = compute_stats(hf_dataset)
push_to_hub(hf_dataset, episode_data_index, info, stats, root, revision, dataset_id)
if __name__ == "__main__":
root = "data"
revision = "v1.1"
dataset_ids = [
"pusht",
"xarm_lift_medium",
"xarm_lift_medium_replay",
"xarm_push_medium",
"xarm_push_medium_replay",
"aloha_sim_insertion_human",
"aloha_sim_insertion_scripted",
"aloha_sim_transfer_cube_human",
"aloha_sim_transfer_cube_scripted",
]
for dataset_id in dataset_ids:
download_and_upload(root, revision, dataset_id)

View File

@@ -0,0 +1,69 @@
"""
This script demonstrates the visualization of various robotic datasets from Hugging Face hub.
It covers the steps from loading the datasets, filtering specific episodes, and converting the frame data to MP4 videos.
Importantly, the dataset format is agnostic to any deep learning library and doesn't require using `lerobot` functions.
It is compatible with pytorch, jax, numpy, etc.
As an example, this script saves frames of episode number 5 of the PushT dataset to a mp4 video and saves the result here:
`outputs/examples/1_visualize_hugging_face_datasets/episode_5.mp4`
This script supports several Hugging Face datasets, among which:
1. [Pusht](https://huggingface.co/datasets/lerobot/pusht)
2. [Xarm Lift Medium](https://huggingface.co/datasets/lerobot/xarm_lift_medium)
3. [Xarm Lift Medium Replay](https://huggingface.co/datasets/lerobot/xarm_lift_medium_replay)
4. [Xarm Push Medium](https://huggingface.co/datasets/lerobot/xarm_push_medium)
5. [Xarm Push Medium Replay](https://huggingface.co/datasets/lerobot/xarm_push_medium_replay)
6. [Aloha Sim Insertion Human](https://huggingface.co/datasets/lerobot/aloha_sim_insertion_human)
7. [Aloha Sim Insertion Scripted](https://huggingface.co/datasets/lerobot/aloha_sim_insertion_scripted)
8. [Aloha Sim Transfer Cube Human](https://huggingface.co/datasets/lerobot/aloha_sim_transfer_cube_human)
9. [Aloha Sim Transfer Cube Scripted](https://huggingface.co/datasets/lerobot/aloha_sim_transfer_cube_scripted)
To try a different Hugging Face dataset, you can replace this line:
```python
hf_dataset, fps = load_dataset("lerobot/pusht", split="train"), 10
```
by one of these:
```python
hf_dataset, fps = load_dataset("lerobot/xarm_lift_medium", split="train"), 15
hf_dataset, fps = load_dataset("lerobot/xarm_lift_medium_replay", split="train"), 15
hf_dataset, fps = load_dataset("lerobot/xarm_push_medium", split="train"), 15
hf_dataset, fps = load_dataset("lerobot/xarm_push_medium_replay", split="train"), 15
hf_dataset, fps = load_dataset("lerobot/aloha_sim_insertion_human", split="train"), 50
hf_dataset, fps = load_dataset("lerobot/aloha_sim_insertion_scripted", split="train"), 50
hf_dataset, fps = load_dataset("lerobot/aloha_sim_transfer_cube_human", split="train"), 50
hf_dataset, fps = load_dataset("lerobot/aloha_sim_transfer_cube_scripted", split="train"), 50
```
"""
# TODO(rcadene): remove this example file of using hf_dataset
from pathlib import Path
import imageio
from datasets import load_dataset
# TODO(rcadene): list available datasets on lerobot page using `datasets`
# download/load hugging face dataset in pyarrow format
hf_dataset, fps = load_dataset("lerobot/pusht", split="train", revision="v1.1"), 10
# display name of dataset and its features
# TODO(rcadene): update to make the print pretty
print(f"{hf_dataset=}")
print(f"{hf_dataset.features=}")
# display useful statistics about frames and episodes, which are sequences of frames from the same video
print(f"number of frames: {len(hf_dataset)=}")
print(f"number of episodes: {len(hf_dataset.unique('episode_index'))=}")
print(
f"average number of frames per episode: {len(hf_dataset) / len(hf_dataset.unique('episode_index')):.3f}"
)
# select the frames belonging to episode number 5
hf_dataset = hf_dataset.filter(lambda frame: frame["episode_index"] == 5)
# load all frames of episode 5 in RAM in PIL format
frames = hf_dataset["observation.image"]
# save episode frames to a mp4 video
Path("outputs/examples/1_load_hugging_face_dataset").mkdir(parents=True, exist_ok=True)
imageio.mimsave("outputs/examples/1_load_hugging_face_dataset/episode_5.mp4", frames, fps=fps)

View File

@@ -1,91 +0,0 @@
"""
This script demonstrates the use of `LeRobotDataset` class for handling and processing robotic datasets from Hugging Face.
It illustrates how to load datasets, manipulate them, and apply transformations suitable for machine learning tasks in PyTorch.
Features included in this script:
- Loading a dataset and accessing its properties.
- Filtering data by episode number.
- Converting tensor data for visualization.
- Saving video files from dataset frames.
- Using advanced dataset features like timestamp-based frame selection.
- Demonstrating compatibility with PyTorch DataLoader for batch processing.
The script ends with examples of how to batch process data using PyTorch's DataLoader.
"""
from pathlib import Path
from pprint import pprint
import imageio
import torch
import lerobot
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
print("List of available datasets:")
pprint(lerobot.available_datasets)
# Let's take one for this example
repo_id = "lerobot/pusht"
# You can easily load a dataset from a Hugging Face repository
dataset = LeRobotDataset(repo_id)
# LeRobotDataset is actually a thin wrapper around an underlying Hugging Face dataset
# (see https://huggingface.co/docs/datasets/index for more information).
print(dataset)
print(dataset.hf_dataset)
# And provides additional utilities for robotics and compatibility with Pytorch
print(f"\naverage number of frames per episode: {dataset.num_samples / dataset.num_episodes:.3f}")
print(f"frames per second used during data collection: {dataset.fps=}")
print(f"keys to access images from cameras: {dataset.camera_keys=}\n")
# Access frame indexes associated to first episode
episode_index = 0
from_idx = dataset.episode_data_index["from"][episode_index].item()
to_idx = dataset.episode_data_index["to"][episode_index].item()
# LeRobot datasets actually subclass PyTorch datasets so you can do everything you know and love from working
# with the latter, like iterating through the dataset. Here we grab all the image frames.
frames = [dataset[idx]["observation.image"] for idx in range(from_idx, to_idx)]
# Video frames are now float32 in range [0,1] channel first (c,h,w) to follow pytorch convention. To visualize
# them, we convert to uint8 in range [0,255]
frames = [(frame * 255).type(torch.uint8) for frame in frames]
# and to channel last (h,w,c).
frames = [frame.permute((1, 2, 0)).numpy() for frame in frames]
# Finally, we save the frames to a mp4 video for visualization.
Path("outputs/examples/1_load_lerobot_dataset").mkdir(parents=True, exist_ok=True)
imageio.mimsave("outputs/examples/1_load_lerobot_dataset/episode_0.mp4", frames, fps=dataset.fps)
# For many machine learning applications we need to load the history of past observations or trajectories of
# future actions. Our datasets can load previous and future frames for each key/modality, using timestamps
# differences with the current loaded frame. For instance:
delta_timestamps = {
# loads 4 images: 1 second before current frame, 500 ms before, 200 ms before, and current frame
"observation.image": [-1, -0.5, -0.20, 0],
# loads 8 state vectors: 1.5 seconds before, 1 second before, ... 20 ms, 10 ms, and current frame
"observation.state": [-1.5, -1, -0.5, -0.20, -0.10, -0.02, -0.01, 0],
# loads 64 action vectors: current frame, 1 frame in the future, 2 frames, ... 63 frames in the future
"action": [t / dataset.fps for t in range(64)],
}
dataset = LeRobotDataset(repo_id, delta_timestamps=delta_timestamps)
print(f"\n{dataset[0]['observation.image'].shape=}") # (4,c,h,w)
print(f"{dataset[0]['observation.state'].shape=}") # (8,c)
print(f"{dataset[0]['action'].shape=}\n") # (64,c)
# Finally, our datasets are fully compatible with PyTorch dataloaders and samplers because they are just
# PyTorch datasets.
dataloader = torch.utils.data.DataLoader(
dataset,
num_workers=0,
batch_size=32,
shuffle=True,
)
for batch in dataloader:
print(f"{batch['observation.image'].shape=}") # (32,4,c,h,w)
print(f"{batch['observation.state'].shape=}") # (32,8,c)
print(f"{batch['action'].shape=}") # (32,64,c)
break

View File

@@ -1,112 +0,0 @@
"""
This scripts demonstrates how to evaluate a pretrained policy from the HuggingFace Hub or from your local
training outputs directory. In the latter case, you might want to run examples/3_train_policy.py first.
"""
from pathlib import Path
import gym_pusht # noqa: F401
import gymnasium as gym
import imageio
import numpy
import torch
from huggingface_hub import snapshot_download
from lerobot.common.policies.diffusion.modeling_diffusion import DiffusionPolicy
# Create a directory to store the video of the evaluation
output_directory = Path("outputs/eval/example_pusht_diffusion")
output_directory.mkdir(parents=True, exist_ok=True)
device = torch.device("cuda")
# Download the diffusion policy for pusht environment
pretrained_policy_path = Path(snapshot_download("lerobot/diffusion_pusht"))
# OR uncomment the following to evaluate a policy from the local outputs/train folder.
# pretrained_policy_path = Path("outputs/train/example_pusht_diffusion")
policy = DiffusionPolicy.from_pretrained(pretrained_policy_path)
policy.eval()
policy.to(device)
# Initialize evaluation environment to render two observation types:
# an image of the scene and state/position of the agent. The environment
# also automatically stops running after 300 interactions/steps.
env = gym.make(
"gym_pusht/PushT-v0",
obs_type="pixels_agent_pos",
max_episode_steps=300,
)
# Reset the policy and environmens to prepare for rollout
policy.reset()
numpy_observation, info = env.reset(seed=42)
# Prepare to collect every rewards and all the frames of the episode,
# from initial state to final state.
rewards = []
frames = []
# Render frame of the initial state
frames.append(env.render())
step = 0
done = False
while not done:
# Prepare observation for the policy running in Pytorch
state = torch.from_numpy(numpy_observation["agent_pos"])
image = torch.from_numpy(numpy_observation["pixels"])
# Convert to float32 with image from channel first in [0,255]
# to channel last in [0,1]
state = state.to(torch.float32)
image = image.to(torch.float32) / 255
image = image.permute(2, 0, 1)
# Send data tensors from CPU to GPU
state = state.to(device, non_blocking=True)
image = image.to(device, non_blocking=True)
# Add extra (empty) batch dimension, required to forward the policy
state = state.unsqueeze(0)
image = image.unsqueeze(0)
# Create the policy input dictionary
observation = {
"observation.state": state,
"observation.image": image,
}
# Predict the next action with respect to the current observation
with torch.inference_mode():
action = policy.select_action(observation)
# Prepare the action for the environment
numpy_action = action.squeeze(0).to("cpu").numpy()
# Step through the environment and receive a new observation
numpy_observation, reward, terminated, truncated, info = env.step(numpy_action)
print(f"{step=} {reward=} {terminated=}")
# Keep track of all the rewards and frames
rewards.append(reward)
frames.append(env.render())
# The rollout is considered done when the success state is reach (i.e. terminated is True),
# or the maximum number of iterations is reached (i.e. truncated is True)
done = terminated | truncated | done
step += 1
if terminated:
print("Success!")
else:
print("Failure!")
# Get the speed of environment (i.e. its number of frames per second).
fps = env.metadata["render_fps"]
# Encode all frames into a mp4 video.
video_path = output_directory / "rollout.mp4"
imageio.mimsave(str(video_path), numpy.stack(frames), fps=fps)
print(f"Video of the evaluation is available in '{video_path}'.")

View File

@@ -0,0 +1,91 @@
"""
This script demonstrates the use of `LeRobotDataset` class for handling and processing robotic datasets from Hugging Face.
It illustrates how to load datasets, manipulate them, and apply transformations suitable for machine learning tasks in PyTorch.
Features included in this script:
- Loading a dataset and accessing its properties.
- Filtering data by episode number.
- Converting tensor data for visualization.
- Saving video files from dataset frames.
- Using advanced dataset features like timestamp-based frame selection.
- Demonstrating compatibility with PyTorch DataLoader for batch processing.
The script ends with examples of how to batch process data using PyTorch's DataLoader.
"""
from pathlib import Path
import imageio
import torch
import lerobot
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
print("List of available datasets", lerobot.available_datasets)
# # >>> ['lerobot/aloha_sim_insertion_human', 'lerobot/aloha_sim_insertion_scripted',
# # 'lerobot/aloha_sim_transfer_cube_human', 'lerobot/aloha_sim_transfer_cube_scripted',
# # 'lerobot/pusht', 'lerobot/xarm_lift_medium']
repo_id = "lerobot/pusht"
# You can easily load a dataset from a Hugging Face repositery
dataset = LeRobotDataset(repo_id)
# LeRobotDataset is actually a thin wrapper around an underlying Hugging Face dataset (see https://huggingface.co/docs/datasets/index for more information).
# TODO(rcadene): update to make the print pretty
print(f"{dataset=}")
print(f"{dataset.hf_dataset=}")
# and provides additional utilities for robotics and compatibility with pytorch
print(f"number of samples/frames: {dataset.num_samples=}")
print(f"number of episodes: {dataset.num_episodes=}")
print(f"average number of frames per episode: {dataset.num_samples / dataset.num_episodes:.3f}")
print(f"frames per second used during data collection: {dataset.fps=}")
print(f"keys to access images from cameras: {dataset.image_keys=}")
# While the LeRobotDataset adds helpers for working within our library, we still expose the underling Hugging Face dataset.
# It may be freely replaced or modified in place. Here we use the filtering to keep only frames from episode 5.
# TODO(rcadene): remove this example of accessing hf_dataset
dataset.hf_dataset = dataset.hf_dataset.filter(lambda frame: frame["episode_index"] == 5)
# LeRobot datsets actually subclass PyTorch datasets. So you can do everything you know and love from working with the latter, for example: iterating through the dataset. Here we grab all the image frames.
frames = [sample["observation.image"] for sample in dataset]
# but frames are now float32 range [0,1] channel first (c,h,w) to follow pytorch convention,
# to view them, we convert to uint8 range [0,255]
frames = [(frame * 255).type(torch.uint8) for frame in frames]
# and to channel last (h,w,c)
frames = [frame.permute((1, 2, 0)).numpy() for frame in frames]
# and finally save them to a mp4 video
Path("outputs/examples/2_load_lerobot_dataset").mkdir(parents=True, exist_ok=True)
imageio.mimsave("outputs/examples/2_load_lerobot_dataset/episode_5.mp4", frames, fps=dataset.fps)
# For many machine learning applications we need to load histories of past observations, or trajectorys of future actions. Our datasets can load previous and future frames for each key/modality,
# using timestamps differences with the current loaded frame. For instance:
delta_timestamps = {
# loads 4 images: 1 second before current frame, 500 ms before, 200 ms before, and current frame
"observation.image": [-1, -0.5, -0.20, 0],
# loads 8 state vectors: 1.5 seconds before, 1 second before, ... 20 ms, 10 ms, and current frame
"observation.state": [-1.5, -1, -0.5, -0.20, -0.10, -0.02, -0.01, 0],
# loads 64 action vectors: current frame, 1 frame in the future, 2 frames, ... 63 frames in the future
"action": [t / dataset.fps for t in range(64)],
}
dataset = LeRobotDataset(repo_id, delta_timestamps=delta_timestamps)
print(f"{dataset[0]['observation.image'].shape=}") # (4,c,h,w)
print(f"{dataset[0]['observation.state'].shape=}") # (8,c)
print(f"{dataset[0]['action'].shape=}") # (64,c)
# Finally, our datasets are fully compatible with PyTorch dataloaders and samplers
# because they are just PyTorch datasets.
dataloader = torch.utils.data.DataLoader(
dataset,
num_workers=0,
batch_size=32,
shuffle=True,
)
for batch in dataloader:
print(f"{batch['observation.image'].shape=}") # (32,4,c,h,w)
print(f"{batch['observation.state'].shape=}") # (32,8,c)
print(f"{batch['action'].shape=}") # (32,64,c)
break

View File

@@ -0,0 +1,38 @@
"""
This scripts demonstrates how to evaluate a pretrained policy from the HuggingFace Hub or from your local
training outputs directory. In the latter case, you might want to run examples/3_train_policy.py first.
"""
from pathlib import Path
from huggingface_hub import snapshot_download
from lerobot.common.utils.utils import init_hydra_config
from lerobot.scripts.eval import eval
# Get a pretrained policy from the hub.
# TODO(alexander-soare): This no longer works until we upload a new model that uses the current configs.
hub_id = "lerobot/diffusion_policy_pusht_image"
folder = Path(snapshot_download(hub_id))
# OR uncomment the following to evaluate a policy from the local outputs/train folder.
# folder = Path("outputs/train/example_pusht_diffusion")
config_path = folder / "config.yaml"
weights_path = folder / "model.pt"
# Override some config parameters to do with evaluation.
overrides = [
f"policy.pretrained_model_path={weights_path}",
"eval_episodes=10",
"rollout_batch_size=10",
"device=cuda",
]
# Create a Hydra config.
cfg = init_hydra_config(config_path, overrides)
# Evaluate the policy and save the outputs including metrics and videos.
eval(
cfg,
out_dir=f"outputs/eval/example_{cfg.env.name}_{cfg.policy.name}",
)

View File

@@ -1,90 +0,0 @@
"""This script demonstrates how to slice a dataset and calculate the loss on a subset of the data.
This technique can be useful for debugging and testing purposes, as well as identifying whether a policy
is learning effectively.
Furthermore, relying on validation loss to evaluate performance is generally not considered a good practice,
especially in the context of imitation learning. The most reliable approach is to evaluate the policy directly
on the target environment, whether that be in simulation or the real world.
"""
import math
from pathlib import Path
import torch
from huggingface_hub import snapshot_download
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.policies.diffusion.modeling_diffusion import DiffusionPolicy
device = torch.device("cuda")
# Download the diffusion policy for pusht environment
pretrained_policy_path = Path(snapshot_download("lerobot/diffusion_pusht"))
# OR uncomment the following to evaluate a policy from the local outputs/train folder.
# pretrained_policy_path = Path("outputs/train/example_pusht_diffusion")
policy = DiffusionPolicy.from_pretrained(pretrained_policy_path)
policy.eval()
policy.to(device)
# Set up the dataset.
delta_timestamps = {
# Load the previous image and state at -0.1 seconds before current frame,
# then load current image and state corresponding to 0.0 second.
"observation.image": [-0.1, 0.0],
"observation.state": [-0.1, 0.0],
# Load the previous action (-0.1), the next action to be executed (0.0),
# and 14 future actions with a 0.1 seconds spacing. All these actions will be
# used to calculate the loss.
"action": [-0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4],
}
# Load the last 10% of episodes of the dataset as a validation set.
# - Load full dataset
full_dataset = LeRobotDataset("lerobot/pusht", split="train")
# - Calculate train and val subsets
num_train_episodes = math.floor(full_dataset.num_episodes * 90 / 100)
num_val_episodes = full_dataset.num_episodes - num_train_episodes
print(f"Number of episodes in full dataset: {full_dataset.num_episodes}")
print(f"Number of episodes in training dataset (90% subset): {num_train_episodes}")
print(f"Number of episodes in validation dataset (10% subset): {num_val_episodes}")
# - Get first frame index of the validation set
first_val_frame_index = full_dataset.episode_data_index["from"][num_train_episodes].item()
# - Load frames subset belonging to validation set using the `split` argument.
# It utilizes the `datasets` library's syntax for slicing datasets.
# For more information on the Slice API, please see:
# https://huggingface.co/docs/datasets/v2.19.0/loading#slice-splits
train_dataset = LeRobotDataset(
"lerobot/pusht", split=f"train[:{first_val_frame_index}]", delta_timestamps=delta_timestamps
)
val_dataset = LeRobotDataset(
"lerobot/pusht", split=f"train[{first_val_frame_index}:]", delta_timestamps=delta_timestamps
)
print(f"Number of frames in training dataset (90% subset): {len(train_dataset)}")
print(f"Number of frames in validation dataset (10% subset): {len(val_dataset)}")
# Create dataloader for evaluation.
val_dataloader = torch.utils.data.DataLoader(
val_dataset,
num_workers=4,
batch_size=64,
shuffle=False,
pin_memory=device != torch.device("cpu"),
drop_last=False,
)
# Run validation loop.
loss_cumsum = 0
n_examples_evaluated = 0
for batch in val_dataloader:
batch = {k: v.to(device, non_blocking=True) for k, v in batch.items()}
output_dict = policy.forward(batch)
loss_cumsum += output_dict["loss"].item()
n_examples_evaluated += batch["index"].shape[0]
# Calculate the average loss over the validation set.
average_loss = loss_cumsum / n_examples_evaluated
print(f"Average loss on validation set: {average_loss:.4f}")

View File

@@ -4,53 +4,45 @@ Once you have trained a model with this script, you can try to evaluate it on
examples/2_evaluate_pretrained_policy.py
"""
import os
from pathlib import Path
import torch
from omegaconf import OmegaConf
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.datasets.factory import make_dataset
from lerobot.common.policies.diffusion.configuration_diffusion import DiffusionConfig
from lerobot.common.policies.diffusion.modeling_diffusion import DiffusionPolicy
from lerobot.common.utils.utils import init_hydra_config
# Create a directory to store the training checkpoint.
output_directory = Path("outputs/train/example_pusht_diffusion")
output_directory.mkdir(parents=True, exist_ok=True)
os.makedirs(output_directory, exist_ok=True)
# Number of offline training steps (we'll only do offline training for this example.)
# Number of offline training steps (we'll only do offline training for this example.
# Adjust as you prefer. 5000 steps are needed to get something worth evaluating.
training_steps = 5000
device = torch.device("cuda")
log_freq = 250
# Set up the dataset.
delta_timestamps = {
# Load the previous image and state at -0.1 seconds before current frame,
# then load current image and state corresponding to 0.0 second.
"observation.image": [-0.1, 0.0],
"observation.state": [-0.1, 0.0],
# Load the previous action (-0.1), the next action to be executed (0.0),
# and 14 future actions with a 0.1 seconds spacing. All these actions will be
# used to supervise the policy.
"action": [-0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4],
}
dataset = LeRobotDataset("lerobot/pusht", delta_timestamps=delta_timestamps)
hydra_cfg = init_hydra_config("lerobot/configs/default.yaml", overrides=["env=pusht"])
dataset = make_dataset(hydra_cfg)
# Set up the the policy.
# Policies are initialized with a configuration class, in this case `DiffusionConfig`.
# For this example, no arguments need to be passed because the defaults are set up for PushT.
# If you're doing something different, you will likely need to change at least some of the defaults.
cfg = DiffusionConfig()
policy = DiffusionPolicy(cfg, dataset_stats=dataset.stats)
# TODO(alexander-soare): Remove LR scheduler from the policy.
policy = DiffusionPolicy(cfg, lr_scheduler_num_training_steps=training_steps, dataset_stats=dataset.stats)
policy.train()
policy.to(device)
optimizer = torch.optim.Adam(policy.parameters(), lr=1e-4)
# Create dataloader for offline training.
dataloader = torch.utils.data.DataLoader(
dataset,
num_workers=4,
batch_size=64,
batch_size=cfg.batch_size,
shuffle=True,
pin_memory=device != torch.device("cpu"),
drop_last=True,
@@ -62,18 +54,14 @@ done = False
while not done:
for batch in dataloader:
batch = {k: v.to(device, non_blocking=True) for k, v in batch.items()}
output_dict = policy.forward(batch)
loss = output_dict["loss"]
loss.backward()
optimizer.step()
optimizer.zero_grad()
info = policy.update(batch)
if step % log_freq == 0:
print(f"step: {step} loss: {loss.item():.3f}")
print(f"step: {step} loss: {info['loss']:.3f} update_time: {info['update_s']:.3f} (seconds)")
step += 1
if step >= training_steps:
done = True
break
# Save a policy checkpoint.
policy.save_pretrained(output_directory)
# Save the policy and configuration for later use.
policy.save(output_directory / "model.pt")
OmegaConf.save(hydra_cfg, output_directory / "config.yaml")

View File

@@ -1,18 +1,3 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file contains lists of available environments, dataset and policies to reflect the current state of LeRobot library.
We do not want to import all the dependencies, but instead we keep it lightweight to ensure fast access to these variables.
@@ -24,7 +9,6 @@ Example:
print(lerobot.available_tasks_per_env)
print(lerobot.available_datasets)
print(lerobot.available_datasets_per_env)
print(lerobot.available_real_world_datasets)
print(lerobot.available_policies)
print(lerobot.available_policies_per_env)
```
@@ -41,8 +25,6 @@ When implementing a new policy class (e.g. `DiffusionPolicy`) follow these steps
- Update variables in `tests/test_available.py` by importing your new Policy class
"""
import itertools
from lerobot.__version__ import __version__ # noqa: F401
available_tasks_per_env = {
@@ -61,52 +43,16 @@ available_datasets_per_env = {
"lerobot/aloha_sim_insertion_scripted",
"lerobot/aloha_sim_transfer_cube_human",
"lerobot/aloha_sim_transfer_cube_scripted",
"lerobot/aloha_sim_insertion_human_image",
"lerobot/aloha_sim_insertion_scripted_image",
"lerobot/aloha_sim_transfer_cube_human_image",
"lerobot/aloha_sim_transfer_cube_scripted_image",
],
"pusht": ["lerobot/pusht", "lerobot/pusht_image"],
"pusht": ["lerobot/pusht"],
"xarm": [
"lerobot/xarm_lift_medium",
"lerobot/xarm_lift_medium_replay",
"lerobot/xarm_push_medium",
"lerobot/xarm_push_medium_replay",
"lerobot/xarm_lift_medium_image",
"lerobot/xarm_lift_medium_replay_image",
"lerobot/xarm_push_medium_image",
"lerobot/xarm_push_medium_replay_image",
],
}
available_real_world_datasets = [
"lerobot/aloha_mobile_cabinet",
"lerobot/aloha_mobile_chair",
"lerobot/aloha_mobile_elevator",
"lerobot/aloha_mobile_shrimp",
"lerobot/aloha_mobile_wash_pan",
"lerobot/aloha_mobile_wipe_wine",
"lerobot/aloha_static_battery",
"lerobot/aloha_static_candy",
"lerobot/aloha_static_coffee",
"lerobot/aloha_static_coffee_new",
"lerobot/aloha_static_cups_open",
"lerobot/aloha_static_fork_pick_up",
"lerobot/aloha_static_pingpong_test",
"lerobot/aloha_static_pro_pencil",
"lerobot/aloha_static_screw_driver",
"lerobot/aloha_static_tape",
"lerobot/aloha_static_thread_velcro",
"lerobot/aloha_static_towel",
"lerobot/aloha_static_vinh_cup",
"lerobot/aloha_static_vinh_cup_left",
"lerobot/aloha_static_ziploc_slide",
"lerobot/umi_cup_in_the_wild",
]
available_datasets = list(
itertools.chain(*available_datasets_per_env.values(), available_real_world_datasets)
)
available_datasets = [dataset for datasets in available_datasets_per_env.values() for dataset in datasets]
available_policies = [
"act",

View File

@@ -1,18 +1,3 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""To enable `lerobot.__version__`"""
from importlib.metadata import PackageNotFoundError, version

View File

@@ -1,18 +1,3 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Helper code for loading PushT dataset from Diffusion Policy (https://diffusion-policy.cs.columbia.edu/)
Copied from the original Diffusion Policy repository and used in our `download_and_upload_dataset.py` script.

View File

@@ -1,334 +0,0 @@
# Video benchmark
## Questions
What is the optimal trade-off between:
- maximizing loading time with random access,
- minimizing memory space on disk,
- maximizing success rate of policies?
How to encode videos?
- How much compression (`-crf`)? Low compression with `0`, normal compression with `20` or extreme with `56`?
- What pixel format to use (`-pix_fmt`)? `yuv444p` or `yuv420p`?
- How many key frames (`-g`)? A key frame every `10` frames?
How to decode videos?
- Which `decoder`? `torchvision`, `torchaudio`, `ffmpegio`, `decord`, or `nvc`?
## Metrics
**Percentage of data compression (higher is better)**
`compression_factor` is the ratio of the memory space on disk taken by the original images to encode, to the memory space taken by the encoded video. For instance, `compression_factor=4` means that the video takes 4 times less memory space on disk compared to the original images.
**Percentage of loading time (higher is better)**
`load_time_factor` is the ratio of the time it takes to load original images at given timestamps, to the time it takes to decode the exact same frames from the video. Higher is better. For instance, `load_time_factor=0.5` means that decoding from video is 2 times slower than loading the original images.
**Average L2 error per pixel (lower is better)**
`avg_per_pixel_l2_error` is the average L2 error between each decoded frame and its corresponding original image over all requested timestamps, and also divided by the number of pixels in the image to be comparable when switching to different image sizes.
**Loss of a pretrained policy (higher is better)** (not available)
`loss_pretrained` is the result of evaluating with the selected encoding/decoding settings a policy pretrained on original images. It is easier to understand than `avg_l2_error`.
**Success rate after retraining (higher is better)** (not available)
`success_rate` is the result of training and evaluating a policy with the selected encoding/decoding settings. It is the most difficult metric to get but also the very best.
## Variables
**Image content**
We don't expect the same optimal settings for a dataset of images from a simulation, or from real-world in an appartment, or in a factory, or outdoor, etc. Hence, we run this benchmark on two datasets: `pusht` (simulation) and `umi` (real-world outdoor).
**Requested timestamps**
In this benchmark, we focus on the loading time of random access, so we are not interested in sequentially loading all frames of a video like in a movie. However, the number of consecutive timestamps requested and their spacing can greatly affect the `load_time_factor`. In fact, it is expected to get faster loading time by decoding a large number of consecutive frames from a video, than to load the same data from individual images. To reflect our robotics use case, we consider a few settings:
- `single_frame`: 1 frame,
- `2_frames`: 2 consecutive frames (e.g. `[t, t + 1 / fps]`),
- `2_frames_4_space`: 2 consecutive frames with 4 frames of spacing (e.g `[t, t + 4 / fps]`),
**Data augmentations**
We might revisit this benchmark and find better settings if we train our policies with various data augmentations to make them more robust (e.g. robust to color changes, compression, etc.).
## Results
**`decoder`**
| repo_id | decoder | load_time_factor | avg_per_pixel_l2_error |
| --- | --- | --- | --- |
| lerobot/pusht | <span style="color: #32CD32;">torchvision</span> | 0.166 | 0.0000119 |
| lerobot/pusht | ffmpegio | 0.009 | 0.0001182 |
| lerobot/pusht | torchaudio | 0.138 | 0.0000359 |
| lerobot/umi_cup_in_the_wild | <span style="color: #32CD32;">torchvision</span> | 0.174 | 0.0000174 |
| lerobot/umi_cup_in_the_wild | ffmpegio | 0.010 | 0.0000735 |
| lerobot/umi_cup_in_the_wild | torchaudio | 0.154 | 0.0000340 |
### `1_frame`
**`pix_fmt`**
| repo_id | pix_fmt | compression_factor | load_time_factor | avg_per_pixel_l2_error |
| --- | --- | --- | --- | --- |
| lerobot/pusht | yuv420p | 3.788 | 0.224 | 0.0000760 |
| lerobot/pusht | yuv444p | 3.646 | 0.185 | 0.0000443 |
| lerobot/umi_cup_in_the_wild | yuv420p | 14.391 | 0.388 | 0.0000469 |
| lerobot/umi_cup_in_the_wild | yuv444p | 14.932 | 0.329 | 0.0000397 |
**`g`**
| repo_id | g | compression_factor | load_time_factor | avg_per_pixel_l2_error |
| --- | --- | --- | --- | --- |
| lerobot/pusht | 1 | 2.543 | 0.204 | 0.0000556 |
| lerobot/pusht | 2 | 3.646 | 0.182 | 0.0000443 |
| lerobot/pusht | 3 | 4.431 | 0.174 | 0.0000450 |
| lerobot/pusht | 4 | 5.103 | 0.163 | 0.0000448 |
| lerobot/pusht | 5 | 5.625 | 0.163 | 0.0000436 |
| lerobot/pusht | 6 | 5.974 | 0.155 | 0.0000427 |
| lerobot/pusht | 10 | 6.814 | 0.130 | 0.0000410 |
| lerobot/pusht | 15 | 7.431 | 0.105 | 0.0000406 |
| lerobot/pusht | 20 | 7.662 | 0.097 | 0.0000400 |
| lerobot/pusht | 40 | 8.163 | 0.061 | 0.0000405 |
| lerobot/pusht | 100 | 8.761 | 0.039 | 0.0000422 |
| lerobot/pusht | None | 8.909 | 0.024 | 0.0000431 |
| lerobot/umi_cup_in_the_wild | 1 | 14.411 | 0.444 | 0.0000601 |
| lerobot/umi_cup_in_the_wild | 2 | 14.932 | 0.345 | 0.0000397 |
| lerobot/umi_cup_in_the_wild | 3 | 20.174 | 0.282 | 0.0000416 |
| lerobot/umi_cup_in_the_wild | 4 | 24.889 | 0.271 | 0.0000415 |
| lerobot/umi_cup_in_the_wild | 5 | 28.825 | 0.260 | 0.0000415 |
| lerobot/umi_cup_in_the_wild | 6 | 31.635 | 0.249 | 0.0000415 |
| lerobot/umi_cup_in_the_wild | 10 | 39.418 | 0.195 | 0.0000399 |
| lerobot/umi_cup_in_the_wild | 15 | 44.577 | 0.169 | 0.0000394 |
| lerobot/umi_cup_in_the_wild | 20 | 47.907 | 0.140 | 0.0000390 |
| lerobot/umi_cup_in_the_wild | 40 | 52.554 | 0.096 | 0.0000384 |
| lerobot/umi_cup_in_the_wild | 100 | 58.241 | 0.046 | 0.0000390 |
| lerobot/umi_cup_in_the_wild | None | 60.530 | 0.022 | 0.0000400 |
**`crf`**
| repo_id | crf | compression_factor | load_time_factor | avg_per_pixel_l2_error |
| --- | --- | --- | --- | --- |
| lerobot/pusht | 0 | 1.699 | 0.175 | 0.0000035 |
| lerobot/pusht | 5 | 1.409 | 0.181 | 0.0000080 |
| lerobot/pusht | 10 | 1.842 | 0.172 | 0.0000123 |
| lerobot/pusht | 15 | 2.322 | 0.187 | 0.0000211 |
| lerobot/pusht | 20 | 3.050 | 0.181 | 0.0000346 |
| lerobot/pusht | None | 3.646 | 0.189 | 0.0000443 |
| lerobot/pusht | 25 | 3.969 | 0.186 | 0.0000521 |
| lerobot/pusht | 30 | 5.687 | 0.184 | 0.0000850 |
| lerobot/pusht | 40 | 10.818 | 0.193 | 0.0001726 |
| lerobot/pusht | 50 | 18.185 | 0.183 | 0.0002606 |
| lerobot/umi_cup_in_the_wild | 0 | 1.918 | 0.165 | 0.0000056 |
| lerobot/umi_cup_in_the_wild | 5 | 3.207 | 0.171 | 0.0000111 |
| lerobot/umi_cup_in_the_wild | 10 | 4.818 | 0.212 | 0.0000153 |
| lerobot/umi_cup_in_the_wild | 15 | 7.329 | 0.261 | 0.0000218 |
| lerobot/umi_cup_in_the_wild | 20 | 11.361 | 0.312 | 0.0000317 |
| lerobot/umi_cup_in_the_wild | None | 14.932 | 0.339 | 0.0000397 |
| lerobot/umi_cup_in_the_wild | 25 | 17.741 | 0.297 | 0.0000452 |
| lerobot/umi_cup_in_the_wild | 30 | 27.983 | 0.406 | 0.0000629 |
| lerobot/umi_cup_in_the_wild | 40 | 82.449 | 0.468 | 0.0001184 |
| lerobot/umi_cup_in_the_wild | 50 | 186.145 | 0.515 | 0.0001879 |
**best**
| repo_id | compression_factor | load_time_factor | avg_per_pixel_l2_error |
| --- | --- | --- | --- |
| lerobot/pusht | 3.646 | 0.188 | 0.0000443 |
| lerobot/umi_cup_in_the_wild | 14.932 | 0.339 | 0.0000397 |
### `2_frames`
**`pix_fmt`**
| repo_id | pix_fmt | compression_factor | load_time_factor | avg_per_pixel_l2_error |
| --- | --- | --- | --- | --- |
| lerobot/pusht | yuv420p | 3.788 | 0.314 | 0.0000799 |
| lerobot/pusht | yuv444p | 3.646 | 0.303 | 0.0000496 |
| lerobot/umi_cup_in_the_wild | yuv420p | 14.391 | 0.642 | 0.0000503 |
| lerobot/umi_cup_in_the_wild | yuv444p | 14.932 | 0.529 | 0.0000436 |
**`g`**
| repo_id | g | compression_factor | load_time_factor | avg_per_pixel_l2_error |
| --- | --- | --- | --- | --- |
| lerobot/pusht | 1 | 2.543 | 0.308 | 0.0000599 |
| lerobot/pusht | 2 | 3.646 | 0.279 | 0.0000496 |
| lerobot/pusht | 3 | 4.431 | 0.259 | 0.0000498 |
| lerobot/pusht | 4 | 5.103 | 0.243 | 0.0000501 |
| lerobot/pusht | 5 | 5.625 | 0.235 | 0.0000492 |
| lerobot/pusht | 6 | 5.974 | 0.230 | 0.0000481 |
| lerobot/pusht | 10 | 6.814 | 0.194 | 0.0000468 |
| lerobot/pusht | 15 | 7.431 | 0.152 | 0.0000460 |
| lerobot/pusht | 20 | 7.662 | 0.151 | 0.0000455 |
| lerobot/pusht | 40 | 8.163 | 0.095 | 0.0000454 |
| lerobot/pusht | 100 | 8.761 | 0.062 | 0.0000472 |
| lerobot/pusht | None | 8.909 | 0.037 | 0.0000479 |
| lerobot/umi_cup_in_the_wild | 1 | 14.411 | 0.638 | 0.0000625 |
| lerobot/umi_cup_in_the_wild | 2 | 14.932 | 0.537 | 0.0000436 |
| lerobot/umi_cup_in_the_wild | 3 | 20.174 | 0.493 | 0.0000437 |
| lerobot/umi_cup_in_the_wild | 4 | 24.889 | 0.458 | 0.0000446 |
| lerobot/umi_cup_in_the_wild | 5 | 28.825 | 0.438 | 0.0000445 |
| lerobot/umi_cup_in_the_wild | 6 | 31.635 | 0.424 | 0.0000444 |
| lerobot/umi_cup_in_the_wild | 10 | 39.418 | 0.345 | 0.0000435 |
| lerobot/umi_cup_in_the_wild | 15 | 44.577 | 0.313 | 0.0000417 |
| lerobot/umi_cup_in_the_wild | 20 | 47.907 | 0.264 | 0.0000421 |
| lerobot/umi_cup_in_the_wild | 40 | 52.554 | 0.185 | 0.0000414 |
| lerobot/umi_cup_in_the_wild | 100 | 58.241 | 0.090 | 0.0000420 |
| lerobot/umi_cup_in_the_wild | None | 60.530 | 0.042 | 0.0000424 |
**`crf`**
| repo_id | crf | compression_factor | load_time_factor | avg_per_pixel_l2_error |
| --- | --- | --- | --- | --- |
| lerobot/pusht | 0 | 1.699 | 0.302 | 0.0000097 |
| lerobot/pusht | 5 | 1.409 | 0.287 | 0.0000142 |
| lerobot/pusht | 10 | 1.842 | 0.283 | 0.0000184 |
| lerobot/pusht | 15 | 2.322 | 0.305 | 0.0000268 |
| lerobot/pusht | 20 | 3.050 | 0.285 | 0.0000402 |
| lerobot/pusht | None | 3.646 | 0.285 | 0.0000496 |
| lerobot/pusht | 25 | 3.969 | 0.293 | 0.0000572 |
| lerobot/pusht | 30 | 5.687 | 0.293 | 0.0000893 |
| lerobot/pusht | 40 | 10.818 | 0.319 | 0.0001762 |
| lerobot/pusht | 50 | 18.185 | 0.304 | 0.0002626 |
| lerobot/umi_cup_in_the_wild | 0 | 1.918 | 0.235 | 0.0000112 |
| lerobot/umi_cup_in_the_wild | 5 | 3.207 | 0.261 | 0.0000166 |
| lerobot/umi_cup_in_the_wild | 10 | 4.818 | 0.333 | 0.0000207 |
| lerobot/umi_cup_in_the_wild | 15 | 7.329 | 0.406 | 0.0000267 |
| lerobot/umi_cup_in_the_wild | 20 | 11.361 | 0.489 | 0.0000361 |
| lerobot/umi_cup_in_the_wild | None | 14.932 | 0.537 | 0.0000436 |
| lerobot/umi_cup_in_the_wild | 25 | 17.741 | 0.578 | 0.0000487 |
| lerobot/umi_cup_in_the_wild | 30 | 27.983 | 0.453 | 0.0000655 |
| lerobot/umi_cup_in_the_wild | 40 | 82.449 | 0.767 | 0.0001192 |
| lerobot/umi_cup_in_the_wild | 50 | 186.145 | 0.816 | 0.0001881 |
**best**
| repo_id | compression_factor | load_time_factor | avg_per_pixel_l2_error |
| --- | --- | --- | --- |
| lerobot/pusht | 3.646 | 0.283 | 0.0000496 |
| lerobot/umi_cup_in_the_wild | 14.932 | 0.543 | 0.0000436 |
### `2_frames_4_space`
**`pix_fmt`**
| repo_id | pix_fmt | compression_factor | load_time_factor | avg_per_pixel_l2_error |
| --- | --- | --- | --- | --- |
| lerobot/pusht | yuv420p | 3.788 | 0.257 | 0.0000855 |
| lerobot/pusht | yuv444p | 3.646 | 0.261 | 0.0000556 |
| lerobot/umi_cup_in_the_wild | yuv420p | 14.391 | 0.493 | 0.0000476 |
| lerobot/umi_cup_in_the_wild | yuv444p | 14.932 | 0.371 | 0.0000404 |
**`g`**
| repo_id | g | compression_factor | load_time_factor | avg_per_pixel_l2_error |
| --- | --- | --- | --- | --- |
| lerobot/pusht | 1 | 2.543 | 0.226 | 0.0000670 |
| lerobot/pusht | 2 | 3.646 | 0.222 | 0.0000556 |
| lerobot/pusht | 3 | 4.431 | 0.217 | 0.0000567 |
| lerobot/pusht | 4 | 5.103 | 0.204 | 0.0000555 |
| lerobot/pusht | 5 | 5.625 | 0.179 | 0.0000556 |
| lerobot/pusht | 6 | 5.974 | 0.188 | 0.0000544 |
| lerobot/pusht | 10 | 6.814 | 0.160 | 0.0000531 |
| lerobot/pusht | 15 | 7.431 | 0.150 | 0.0000521 |
| lerobot/pusht | 20 | 7.662 | 0.123 | 0.0000519 |
| lerobot/pusht | 40 | 8.163 | 0.092 | 0.0000519 |
| lerobot/pusht | 100 | 8.761 | 0.053 | 0.0000533 |
| lerobot/pusht | None | 8.909 | 0.034 | 0.0000541 |
| lerobot/umi_cup_in_the_wild | 1 | 14.411 | 0.409 | 0.0000607 |
| lerobot/umi_cup_in_the_wild | 2 | 14.932 | 0.381 | 0.0000404 |
| lerobot/umi_cup_in_the_wild | 3 | 20.174 | 0.355 | 0.0000418 |
| lerobot/umi_cup_in_the_wild | 4 | 24.889 | 0.346 | 0.0000425 |
| lerobot/umi_cup_in_the_wild | 5 | 28.825 | 0.354 | 0.0000419 |
| lerobot/umi_cup_in_the_wild | 6 | 31.635 | 0.336 | 0.0000419 |
| lerobot/umi_cup_in_the_wild | 10 | 39.418 | 0.314 | 0.0000402 |
| lerobot/umi_cup_in_the_wild | 15 | 44.577 | 0.269 | 0.0000397 |
| lerobot/umi_cup_in_the_wild | 20 | 47.907 | 0.246 | 0.0000395 |
| lerobot/umi_cup_in_the_wild | 40 | 52.554 | 0.171 | 0.0000390 |
| lerobot/umi_cup_in_the_wild | 100 | 58.241 | 0.091 | 0.0000399 |
| lerobot/umi_cup_in_the_wild | None | 60.530 | 0.043 | 0.0000409 |
**`crf`**
| repo_id | crf | compression_factor | load_time_factor | avg_per_pixel_l2_error |
| --- | --- | --- | --- | --- |
| lerobot/pusht | 0 | 1.699 | 0.212 | 0.0000193 |
| lerobot/pusht | 5 | 1.409 | 0.211 | 0.0000232 |
| lerobot/pusht | 10 | 1.842 | 0.199 | 0.0000270 |
| lerobot/pusht | 15 | 2.322 | 0.198 | 0.0000347 |
| lerobot/pusht | 20 | 3.050 | 0.211 | 0.0000469 |
| lerobot/pusht | None | 3.646 | 0.206 | 0.0000556 |
| lerobot/pusht | 25 | 3.969 | 0.210 | 0.0000626 |
| lerobot/pusht | 30 | 5.687 | 0.223 | 0.0000927 |
| lerobot/pusht | 40 | 10.818 | 0.227 | 0.0001763 |
| lerobot/pusht | 50 | 18.185 | 0.223 | 0.0002625 |
| lerobot/umi_cup_in_the_wild | 0 | 1.918 | 0.147 | 0.0000071 |
| lerobot/umi_cup_in_the_wild | 5 | 3.207 | 0.182 | 0.0000125 |
| lerobot/umi_cup_in_the_wild | 10 | 4.818 | 0.222 | 0.0000166 |
| lerobot/umi_cup_in_the_wild | 15 | 7.329 | 0.270 | 0.0000229 |
| lerobot/umi_cup_in_the_wild | 20 | 11.361 | 0.325 | 0.0000326 |
| lerobot/umi_cup_in_the_wild | None | 14.932 | 0.362 | 0.0000404 |
| lerobot/umi_cup_in_the_wild | 25 | 17.741 | 0.390 | 0.0000459 |
| lerobot/umi_cup_in_the_wild | 30 | 27.983 | 0.437 | 0.0000633 |
| lerobot/umi_cup_in_the_wild | 40 | 82.449 | 0.499 | 0.0001186 |
| lerobot/umi_cup_in_the_wild | 50 | 186.145 | 0.564 | 0.0001879 |
**best**
| repo_id | compression_factor | load_time_factor | avg_per_pixel_l2_error |
| --- | --- | --- | --- |
| lerobot/pusht | 3.646 | 0.224 | 0.0000556 |
| lerobot/umi_cup_in_the_wild | 14.932 | 0.368 | 0.0000404 |
### `6_frames`
**`pix_fmt`**
| repo_id | pix_fmt | compression_factor | load_time_factor | avg_per_pixel_l2_error |
| --- | --- | --- | --- | --- |
| lerobot/pusht | yuv420p | 3.788 | 0.660 | 0.0000839 |
| lerobot/pusht | yuv444p | 3.646 | 0.546 | 0.0000542 |
| lerobot/umi_cup_in_the_wild | yuv420p | 14.391 | 1.225 | 0.0000497 |
| lerobot/umi_cup_in_the_wild | yuv444p | 14.932 | 0.908 | 0.0000428 |
**`g`**
| repo_id | g | compression_factor | load_time_factor | avg_per_pixel_l2_error |
| --- | --- | --- | --- | --- |
| lerobot/pusht | 1 | 2.543 | 0.552 | 0.0000646 |
| lerobot/pusht | 2 | 3.646 | 0.534 | 0.0000542 |
| lerobot/pusht | 3 | 4.431 | 0.563 | 0.0000546 |
| lerobot/pusht | 4 | 5.103 | 0.537 | 0.0000545 |
| lerobot/pusht | 5 | 5.625 | 0.477 | 0.0000532 |
| lerobot/pusht | 6 | 5.974 | 0.515 | 0.0000530 |
| lerobot/pusht | 10 | 6.814 | 0.410 | 0.0000512 |
| lerobot/pusht | 15 | 7.431 | 0.405 | 0.0000503 |
| lerobot/pusht | 20 | 7.662 | 0.345 | 0.0000500 |
| lerobot/pusht | 40 | 8.163 | 0.247 | 0.0000496 |
| lerobot/pusht | 100 | 8.761 | 0.147 | 0.0000510 |
| lerobot/pusht | None | 8.909 | 0.100 | 0.0000519 |
| lerobot/umi_cup_in_the_wild | 1 | 14.411 | 0.997 | 0.0000620 |
| lerobot/umi_cup_in_the_wild | 2 | 14.932 | 0.911 | 0.0000428 |
| lerobot/umi_cup_in_the_wild | 3 | 20.174 | 0.869 | 0.0000433 |
| lerobot/umi_cup_in_the_wild | 4 | 24.889 | 0.874 | 0.0000438 |
| lerobot/umi_cup_in_the_wild | 5 | 28.825 | 0.864 | 0.0000439 |
| lerobot/umi_cup_in_the_wild | 6 | 31.635 | 0.834 | 0.0000440 |
| lerobot/umi_cup_in_the_wild | 10 | 39.418 | 0.781 | 0.0000421 |
| lerobot/umi_cup_in_the_wild | 15 | 44.577 | 0.679 | 0.0000411 |
| lerobot/umi_cup_in_the_wild | 20 | 47.907 | 0.652 | 0.0000410 |
| lerobot/umi_cup_in_the_wild | 40 | 52.554 | 0.465 | 0.0000404 |
| lerobot/umi_cup_in_the_wild | 100 | 58.241 | 0.245 | 0.0000413 |
| lerobot/umi_cup_in_the_wild | None | 60.530 | 0.116 | 0.0000417 |
**`crf`**
| repo_id | crf | compression_factor | load_time_factor | avg_per_pixel_l2_error |
| --- | --- | --- | --- | --- |
| lerobot/pusht | 0 | 1.699 | 0.534 | 0.0000163 |
| lerobot/pusht | 5 | 1.409 | 0.524 | 0.0000205 |
| lerobot/pusht | 10 | 1.842 | 0.510 | 0.0000245 |
| lerobot/pusht | 15 | 2.322 | 0.512 | 0.0000324 |
| lerobot/pusht | 20 | 3.050 | 0.508 | 0.0000452 |
| lerobot/pusht | None | 3.646 | 0.518 | 0.0000542 |
| lerobot/pusht | 25 | 3.969 | 0.534 | 0.0000616 |
| lerobot/pusht | 30 | 5.687 | 0.530 | 0.0000927 |
| lerobot/pusht | 40 | 10.818 | 0.552 | 0.0001777 |
| lerobot/pusht | 50 | 18.185 | 0.564 | 0.0002644 |
| lerobot/umi_cup_in_the_wild | 0 | 1.918 | 0.401 | 0.0000101 |
| lerobot/umi_cup_in_the_wild | 5 | 3.207 | 0.499 | 0.0000156 |
| lerobot/umi_cup_in_the_wild | 10 | 4.818 | 0.599 | 0.0000197 |
| lerobot/umi_cup_in_the_wild | 15 | 7.329 | 0.704 | 0.0000258 |
| lerobot/umi_cup_in_the_wild | 20 | 11.361 | 0.834 | 0.0000352 |
| lerobot/umi_cup_in_the_wild | None | 14.932 | 0.925 | 0.0000428 |
| lerobot/umi_cup_in_the_wild | 25 | 17.741 | 0.978 | 0.0000480 |
| lerobot/umi_cup_in_the_wild | 30 | 27.983 | 1.088 | 0.0000648 |
| lerobot/umi_cup_in_the_wild | 40 | 82.449 | 1.324 | 0.0001190 |
| lerobot/umi_cup_in_the_wild | 50 | 186.145 | 1.436 | 0.0001880 |
**best**
| repo_id | compression_factor | load_time_factor | avg_per_pixel_l2_error |
| --- | --- | --- | --- |
| lerobot/pusht | 3.646 | 0.546 | 0.0000542 |
| lerobot/umi_cup_in_the_wild | 14.932 | 0.934 | 0.0000428 |

View File

@@ -1,372 +0,0 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import random
import shutil
import subprocess
import time
from pathlib import Path
import einops
import numpy
import PIL
import torch
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.datasets.video_utils import (
decode_video_frames_torchvision,
)
def get_directory_size(directory):
total_size = 0
# Iterate over all files and subdirectories recursively
for item in directory.rglob("*"):
if item.is_file():
# Add the file size to the total
total_size += item.stat().st_size
return total_size
def run_video_benchmark(
output_dir,
cfg,
timestamps_mode,
seed=1337,
):
output_dir = Path(output_dir)
if output_dir.exists():
shutil.rmtree(output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
repo_id = cfg["repo_id"]
# TODO(rcadene): rewrite with hardcoding of original images and episodes
dataset = LeRobotDataset(repo_id)
# Get fps
fps = dataset.fps
# we only load first episode
ep_num_images = dataset.episode_data_index["to"][0].item()
# Save/Load image directory for the first episode
imgs_dir = Path(f"tmp/data/images/{repo_id}/observation.image_episode_000000")
if not imgs_dir.exists():
imgs_dir.mkdir(parents=True, exist_ok=True)
hf_dataset = dataset.hf_dataset.with_format(None)
imgs_dataset = hf_dataset.select_columns("observation.image")
for i, item in enumerate(imgs_dataset):
img = item["observation.image"]
img.save(str(imgs_dir / f"frame_{i:06d}.png"), quality=100)
if i >= ep_num_images - 1:
break
sum_original_frames_size_bytes = get_directory_size(imgs_dir)
# Encode images into video
video_path = output_dir / "episode_0.mp4"
g = cfg.get("g")
crf = cfg.get("crf")
pix_fmt = cfg["pix_fmt"]
cmd = f"ffmpeg -r {fps} "
cmd += "-f image2 "
cmd += "-loglevel error "
cmd += f"-i {str(imgs_dir / 'frame_%06d.png')} "
cmd += "-vcodec libx264 "
if g is not None:
cmd += f"-g {g} " # ensures at least 1 keyframe every 10 frames
# cmd += "-keyint_min 10 " set a minimum of 10 frames between 2 key frames
# cmd += "-sc_threshold 0 " disable scene change detection to lower the number of key frames
if crf is not None:
cmd += f"-crf {crf} "
cmd += f"-pix_fmt {pix_fmt} "
cmd += f"{str(video_path)}"
subprocess.run(cmd.split(" "), check=True)
video_size_bytes = video_path.stat().st_size
# Set decoder
decoder = cfg["decoder"]
decoder_kwgs = cfg["decoder_kwgs"]
device = cfg["device"]
if decoder == "torchvision":
decode_frames_fn = decode_video_frames_torchvision
else:
raise ValueError(decoder)
# Estimate average loading time
def load_original_frames(imgs_dir, timestamps):
frames = []
for ts in timestamps:
idx = int(ts * fps)
frame = PIL.Image.open(imgs_dir / f"frame_{idx:06d}.png")
frame = torch.from_numpy(numpy.array(frame))
frame = frame.type(torch.float32) / 255
frame = einops.rearrange(frame, "h w c -> c h w")
frames.append(frame)
return frames
list_avg_load_time = []
list_avg_load_time_from_images = []
per_pixel_l2_errors = []
random.seed(seed)
for t in range(50):
# test loading 2 frames that are 4 frames appart, which might be a common setting
ts = random.randint(fps, ep_num_images - fps) / fps
if timestamps_mode == "1_frame":
timestamps = [ts]
elif timestamps_mode == "2_frames":
timestamps = [ts - 1 / fps, ts]
elif timestamps_mode == "2_frames_4_space":
timestamps = [ts - 4 / fps, ts]
elif timestamps_mode == "6_frames":
timestamps = [ts - i / fps for i in range(6)][::-1]
else:
raise ValueError(timestamps_mode)
num_frames = len(timestamps)
start_time_s = time.monotonic()
frames = decode_frames_fn(
video_path, timestamps=timestamps, tolerance_s=1e-4, device=device, **decoder_kwgs
)
avg_load_time = (time.monotonic() - start_time_s) / num_frames
list_avg_load_time.append(avg_load_time)
start_time_s = time.monotonic()
original_frames = load_original_frames(imgs_dir, timestamps)
avg_load_time_from_images = (time.monotonic() - start_time_s) / num_frames
list_avg_load_time_from_images.append(avg_load_time_from_images)
# Estimate average L2 error between original frames and decoded frames
for i, ts in enumerate(timestamps):
# are_close = torch.allclose(frames[i], original_frames[i], atol=0.02)
num_pixels = original_frames[i].numel()
per_pixel_l2_error = torch.norm(frames[i] - original_frames[i], p=2).item() / num_pixels
# save decoded frames
if t == 0:
frame_hwc = (frames[i].permute((1, 2, 0)) * 255).type(torch.uint8).cpu().numpy()
PIL.Image.fromarray(frame_hwc).save(output_dir / f"frame_{i:06d}.png")
# save original_frames
idx = int(ts * fps)
if t == 0:
original_frame = PIL.Image.open(imgs_dir / f"frame_{idx:06d}.png")
original_frame.save(output_dir / f"original_frame_{i:06d}.png")
per_pixel_l2_errors.append(per_pixel_l2_error)
avg_load_time = float(numpy.array(list_avg_load_time).mean())
avg_load_time_from_images = float(numpy.array(list_avg_load_time_from_images).mean())
avg_per_pixel_l2_error = float(numpy.array(per_pixel_l2_errors).mean())
# Save benchmark info
info = {
"sum_original_frames_size_bytes": sum_original_frames_size_bytes,
"video_size_bytes": video_size_bytes,
"avg_load_time_from_images": avg_load_time_from_images,
"avg_load_time": avg_load_time,
"compression_factor": sum_original_frames_size_bytes / video_size_bytes,
"load_time_factor": avg_load_time_from_images / avg_load_time,
"avg_per_pixel_l2_error": avg_per_pixel_l2_error,
}
with open(output_dir / "info.json", "w") as f:
json.dump(info, f)
return info
def display_markdown_table(headers, rows):
for i, row in enumerate(rows):
new_row = []
for col in row:
if col is None:
new_col = "None"
elif isinstance(col, float):
new_col = f"{col:.3f}"
if new_col == "0.000":
new_col = f"{col:.7f}"
elif isinstance(col, int):
new_col = f"{col}"
else:
new_col = col
new_row.append(new_col)
rows[i] = new_row
header_line = "| " + " | ".join(headers) + " |"
separator_line = "| " + " | ".join(["---" for _ in headers]) + " |"
body_lines = ["| " + " | ".join(row) + " |" for row in rows]
markdown_table = "\n".join([header_line, separator_line] + body_lines)
print(markdown_table)
print()
def load_info(out_dir):
with open(out_dir / "info.json") as f:
info = json.load(f)
return info
def main():
out_dir = Path("tmp/run_video_benchmark")
dry_run = False
repo_ids = ["lerobot/pusht", "lerobot/umi_cup_in_the_wild"]
timestamps_modes = [
"1_frame",
"2_frames",
"2_frames_4_space",
"6_frames",
]
for timestamps_mode in timestamps_modes:
bench_dir = out_dir / timestamps_mode
print(f"### `{timestamps_mode}`")
print()
print("**`pix_fmt`**")
headers = ["repo_id", "pix_fmt", "compression_factor", "load_time_factor", "avg_per_pixel_l2_error"]
rows = []
for repo_id in repo_ids:
for pix_fmt in ["yuv420p", "yuv444p"]:
cfg = {
"repo_id": repo_id,
# video encoding
"g": 2,
"crf": None,
"pix_fmt": pix_fmt,
# video decoding
"device": "cpu",
"decoder": "torchvision",
"decoder_kwgs": {},
}
if not dry_run:
run_video_benchmark(bench_dir / repo_id / f"torchvision_{pix_fmt}", cfg, timestamps_mode)
info = load_info(bench_dir / repo_id / f"torchvision_{pix_fmt}")
rows.append(
[
repo_id,
pix_fmt,
info["compression_factor"],
info["load_time_factor"],
info["avg_per_pixel_l2_error"],
]
)
display_markdown_table(headers, rows)
print("**`g`**")
headers = ["repo_id", "g", "compression_factor", "load_time_factor", "avg_per_pixel_l2_error"]
rows = []
for repo_id in repo_ids:
for g in [1, 2, 3, 4, 5, 6, 10, 15, 20, 40, 100, None]:
cfg = {
"repo_id": repo_id,
# video encoding
"g": g,
"pix_fmt": "yuv444p",
# video decoding
"device": "cpu",
"decoder": "torchvision",
"decoder_kwgs": {},
}
if not dry_run:
run_video_benchmark(bench_dir / repo_id / f"torchvision_g_{g}", cfg, timestamps_mode)
info = load_info(bench_dir / repo_id / f"torchvision_g_{g}")
rows.append(
[
repo_id,
g,
info["compression_factor"],
info["load_time_factor"],
info["avg_per_pixel_l2_error"],
]
)
display_markdown_table(headers, rows)
print("**`crf`**")
headers = ["repo_id", "crf", "compression_factor", "load_time_factor", "avg_per_pixel_l2_error"]
rows = []
for repo_id in repo_ids:
for crf in [0, 5, 10, 15, 20, None, 25, 30, 40, 50]:
cfg = {
"repo_id": repo_id,
# video encoding
"g": 2,
"crf": crf,
"pix_fmt": "yuv444p",
# video decoding
"device": "cpu",
"decoder": "torchvision",
"decoder_kwgs": {},
}
if not dry_run:
run_video_benchmark(bench_dir / repo_id / f"torchvision_crf_{crf}", cfg, timestamps_mode)
info = load_info(bench_dir / repo_id / f"torchvision_crf_{crf}")
rows.append(
[
repo_id,
crf,
info["compression_factor"],
info["load_time_factor"],
info["avg_per_pixel_l2_error"],
]
)
display_markdown_table(headers, rows)
print("**best**")
headers = ["repo_id", "compression_factor", "load_time_factor", "avg_per_pixel_l2_error"]
rows = []
for repo_id in repo_ids:
cfg = {
"repo_id": repo_id,
# video encoding
"g": 2,
"crf": None,
"pix_fmt": "yuv444p",
# video decoding
"device": "cpu",
"decoder": "torchvision",
"decoder_kwgs": {},
}
if not dry_run:
run_video_benchmark(bench_dir / repo_id / "torchvision_best", cfg, timestamps_mode)
info = load_info(bench_dir / repo_id / "torchvision_best")
rows.append(
[
repo_id,
info["compression_factor"],
info["load_time_factor"],
info["avg_per_pixel_l2_error"],
]
)
display_markdown_table(headers, rows)
if __name__ == "__main__":
main()

View File

@@ -1,37 +1,25 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
from pathlib import Path
import torch
from omegaconf import OmegaConf
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
DATA_DIR = Path(os.environ["DATA_DIR"]) if "DATA_DIR" in os.environ else None
def make_dataset(
cfg,
split="train",
):
if cfg.env.name not in cfg.dataset_repo_id:
if cfg.env.name not in cfg.dataset.repo_id:
logging.warning(
f"There might be a mismatch between your training dataset ({cfg.dataset_repo_id=}) and your "
f"environment ({cfg.env.name=})."
f"There might be a mismatch between your training dataset ({cfg.dataset.repo_id=}) and your environment ({cfg.env.name=})."
)
delta_timestamps = cfg.training.get("delta_timestamps")
delta_timestamps = cfg.policy.get("delta_timestamps")
if delta_timestamps is not None:
for key in delta_timestamps:
if isinstance(delta_timestamps[key], str):
@@ -40,8 +28,9 @@ def make_dataset(
# TODO(rcadene): add data augmentations
dataset = LeRobotDataset(
cfg.dataset_repo_id,
cfg.dataset.repo_id,
split=split,
root=DATA_DIR,
delta_timestamps=delta_timestamps,
)

View File

@@ -1,46 +1,23 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from pathlib import Path
import datasets
import torch
from lerobot.common.datasets.utils import (
calculate_episode_data_index,
load_episode_data_index,
load_hf_dataset,
load_info,
load_previous_and_future_frames,
load_stats,
load_videos,
reset_episode_index,
)
from lerobot.common.datasets.video_utils import VideoFrame, load_from_videos
DATA_DIR = Path(os.environ["DATA_DIR"]) if "DATA_DIR" in os.environ else None
CODEBASE_VERSION = "v1.4"
class LeRobotDataset(torch.utils.data.Dataset):
def __init__(
self,
repo_id: str,
version: str | None = CODEBASE_VERSION,
root: Path | None = DATA_DIR,
version: str | None = "v1.1",
root: Path | None = None,
split: str = "train",
transform: callable = None,
delta_timestamps: dict[list[float]] | None = None,
@@ -53,77 +30,27 @@ class LeRobotDataset(torch.utils.data.Dataset):
self.transform = transform
self.delta_timestamps = delta_timestamps
# load data from hub or locally when root is provided
# TODO(rcadene, aliberts): implement faster transfer
# https://huggingface.co/docs/huggingface_hub/en/guides/download#faster-downloads
self.hf_dataset = load_hf_dataset(repo_id, version, root, split)
if split == "train":
self.episode_data_index = load_episode_data_index(repo_id, version, root)
else:
self.episode_data_index = calculate_episode_data_index(self.hf_dataset)
self.hf_dataset = reset_episode_index(self.hf_dataset)
self.episode_data_index = load_episode_data_index(repo_id, version, root)
self.stats = load_stats(repo_id, version, root)
self.info = load_info(repo_id, version, root)
if self.video:
self.videos_dir = load_videos(repo_id, version, root)
@property
def fps(self) -> int:
"""Frames per second used during data collection."""
return self.info["fps"]
@property
def video(self) -> bool:
"""Returns True if this dataset loads video frames from mp4 files.
Returns False if it only loads images from png files.
"""
return self.info.get("video", False)
@property
def features(self) -> datasets.Features:
return self.hf_dataset.features
@property
def camera_keys(self) -> list[str]:
"""Keys to access image and video stream from cameras."""
keys = []
for key, feats in self.hf_dataset.features.items():
if isinstance(feats, (datasets.Image, VideoFrame)):
keys.append(key)
return keys
@property
def video_frame_keys(self) -> list[str]:
"""Keys to access video frames that requires to be decoded into images.
Note: It is empty if the dataset contains images only,
or equal to `self.cameras` if the dataset contains videos only,
or can even be a subset of `self.cameras` in a case of a mixed image/video dataset.
"""
video_frame_keys = []
for key, feats in self.hf_dataset.features.items():
if isinstance(feats, VideoFrame):
video_frame_keys.append(key)
return video_frame_keys
def image_keys(self) -> list[str]:
return [key for key, feats in self.hf_dataset.features.items() if isinstance(feats, datasets.Image)]
@property
def num_samples(self) -> int:
"""Number of samples/frames."""
return len(self.hf_dataset)
@property
def num_episodes(self) -> int:
"""Number of episodes."""
return len(self.hf_dataset.unique("episode_index"))
@property
def tolerance_s(self) -> float:
"""Tolerance in seconds used to discard loaded frames when their timestamps
are not close enough from the requested frames. It is only used when `delta_timestamps`
is provided or when loading video frames from mp4 files.
"""
# 1e-4 to account for possible numerical error
return 1 / self.fps - 1e-4
def __len__(self):
return self.num_samples
@@ -136,65 +63,10 @@ class LeRobotDataset(torch.utils.data.Dataset):
self.hf_dataset,
self.episode_data_index,
self.delta_timestamps,
self.tolerance_s,
)
if self.video:
item = load_from_videos(
item,
self.video_frame_keys,
self.videos_dir,
self.tolerance_s,
tol=1 / self.fps - 1e-4, # 1e-4 to account for possible numerical error
)
if self.transform is not None:
item = self.transform(item)
return item
def __repr__(self):
return (
f"{self.__class__.__name__}(\n"
f" Repository ID: '{self.repo_id}',\n"
f" Version: '{self.version}',\n"
f" Split: '{self.split}',\n"
f" Number of Samples: {self.num_samples},\n"
f" Number of Episodes: {self.num_episodes},\n"
f" Type: {'video (.mp4)' if self.video else 'image (.png)'},\n"
f" Recorded Frames per Second: {self.fps},\n"
f" Camera Keys: {self.camera_keys},\n"
f" Video Frame Keys: {self.video_frame_keys if self.video else 'N/A'},\n"
f" Transformations: {self.transform},\n"
f")"
)
@classmethod
def from_preloaded(
cls,
repo_id: str,
version: str | None = CODEBASE_VERSION,
root: Path | None = None,
split: str = "train",
transform: callable = None,
delta_timestamps: dict[list[float]] | None = None,
# additional preloaded attributes
hf_dataset=None,
episode_data_index=None,
stats=None,
info=None,
videos_dir=None,
):
# create an empty object of type LeRobotDataset
obj = cls.__new__(cls)
obj.repo_id = repo_id
obj.version = version
obj.root = root
obj.split = split
obj.transform = transform
obj.delta_timestamps = delta_timestamps
obj.hf_dataset = hf_dataset
obj.episode_data_index = episode_data_index
obj.stats = stats
obj.info = info
obj.videos_dir = videos_dir
return obj

View File

@@ -1,85 +0,0 @@
https://drive.google.com/file/d/1_SOJkgfP5yZyVjMhTt3nwhvyUjcnlI51/view?usp=drive_link
https://drive.google.com/file/d/1rmgN8UUzph1qwJnzG1d-uOafodn-gLvb/view?usp=drive_link
https://drive.google.com/file/d/1NYQ-XxsBVinB6dUoZmVWweT83367P3i2/view?usp=drive_link
https://drive.google.com/file/d/1oAv_j74zxxCJieMG7r5Vl2BeHK1__3s3/view?usp=drive_link
https://drive.google.com/file/d/1wFUJQROsrTJt64YRuIeExhFjr2wnK5uu/view?usp=drive_link
https://drive.google.com/file/d/1KzL3Tt0Le7jVl58XVRUcmigmXjyiuhbK/view?usp=drive_link
https://drive.google.com/file/d/1qy_YBladeHtianSSGtgAPSHtMin7msvf/view?usp=drive_link
https://drive.google.com/file/d/1rA_F0V_qL_nyuC_0aBKCisF4-0TIkF2Y/view?usp=drive_link
https://drive.google.com/file/d/1hw-8qMpz9VgSt62XoASqNRuPECpCwJQP/view?usp=drive_link
https://drive.google.com/file/d/1BpHOl9rKMzdvNGka6js7C0s40hH6vnDA/view?usp=drive_link
https://drive.google.com/file/d/1PazhkhiDnJ-OUMyDVDFxEZNKQQqHiNWS/view?usp=drive_link
https://drive.google.com/file/d/1lZ665R6ATl57dypxH4dGJ2NSt6XYnbuz/view?usp=drive_link
https://drive.google.com/file/d/1V9HzLaf-tlG15wUzT7KrTDCS_z1vi5NV/view?usp=drive_link
https://drive.google.com/file/d/1aKauWiXoKqbNwn_2xs4MrmLlaNYlVNmO/view?usp=drive_link
https://drive.google.com/file/d/1WVD5DFhriO1YmmOgiVHhacR6HWoTPxav/view?usp=drive_link
https://drive.google.com/file/d/1_X43WgeBAsfkhH9EmpyPki8U9joMeAGC/view?usp=drive_link
https://drive.google.com/file/d/1t8x0GqWoNKWtnBsB7_D40Z34nL9ak4kf/view?usp=drive_link
https://drive.google.com/file/d/15V_f26WaKOXjKnq2T3HRWAmtQUi4lbu2/view?usp=drive_link
https://drive.google.com/file/d/11VFIAsiSDsMOBANgrOcZBpKB9AFWnLy7/view?usp=drive_link
https://drive.google.com/file/d/1M0NS7vVaxJv3FHnuRYtdwTFYF7We4LxP/view?usp=drive_link
https://drive.google.com/file/d/1mR0OItTNqFnVLoczcyKYlm6drAy778lO/view?usp=drive_link
https://drive.google.com/file/d/1NbVFWDQAh-z4JJ4D-Zw6Lps9kdvpqh2j/view?usp=drive_link
https://drive.google.com/file/d/1JQoZGBzl4W3QG26-n39tefcGN0fDRMbB/view?usp=drive_link
https://drive.google.com/file/d/1VBjHl-TvZpncopvasIP5G9gecbB2a5f6/view?usp=drive_link
https://drive.google.com/file/d/1VzSf6zaB21nahm7MsPwroXbJ84NIwq0b/view?usp=drive_link
https://drive.google.com/file/d/1OtNnfMEydNtZOcivs4k6E_uJSpf8PkGy/view?usp=drive_link
https://drive.google.com/file/d/14nVvpvsrFr_03Pa_N7MKzwnRwibOUYM6/view?usp=drive_link
https://drive.google.com/file/d/1M8li6duiO2r3lv_9HhF_XJn0oZUIEK5F/view?usp=drive_link
https://drive.google.com/file/d/1Cpzea6fO14lxAaNfSBifqoa4ekhCiLD1/view?usp=drive_link
https://drive.google.com/file/d/1mbxRTm5vlbsY9UJ0jfjM6j9D7kPJjBpG/view?usp=drive_link
https://drive.google.com/file/d/1RXD1i6IfWsHRlCxVmG04h2h5Ycm_WwZN/view?usp=drive_link
https://drive.google.com/file/d/1QFqFSwDGOk1BkgGmqgCcc2BRWnJ6R3MA/view?usp=drive_link
https://drive.google.com/file/d/1bFqWR8DQM0ZUxxtS2bl-RANQvukeFLzp/view?usp=drive_link
https://drive.google.com/file/d/1pR-rH3yNGoyPdD4hJ6-3lXQ-PstBx9du/view?usp=drive_link
https://drive.google.com/file/d/107OAwLY-hva9HeQLIK7VCh-ytdDabVjr/view?usp=drive_link
https://drive.google.com/file/d/1Tpl08QOaSZ37GTO4awFWSdD8wBR9xdlT/view?usp=drive_link
https://drive.google.com/file/d/1MR164AOM-0S1T6RX8xKTV2IHyaCvpqAW/view?usp=drive_link
https://drive.google.com/file/d/1_wknJfVnStIhJ82lU_QtcrwahsqYIsr8/view?usp=drive_link
https://drive.google.com/file/d/1ZuEktWrbYkTx0l5pj3WiZ2CJrfbDOHNo/view?usp=drive_link
https://drive.google.com/file/d/15G_10hkkkq6yxvyI5NGZirlF-RzduR2F/view?usp=drive_link
https://drive.google.com/file/d/1DBKxg3ONqh7dhLuX6oh1Yyo2x383V1Hp/view?usp=drive_link
https://drive.google.com/file/d/1B5iDBkTUr5vopDddV_fHud18SqAHhauS/view?usp=drive_link
https://drive.google.com/file/d/1acwFV0eenRkki1QcjSKH5xqOtys-P3Pr/view?usp=drive_link
https://drive.google.com/file/d/1S47BI83xyrh-FKXsvAQqer98Biu_p8XK/view?usp=drive_link
https://drive.google.com/file/d/1JL6DmBZl3uyq9dyLfgSqtGF06e7E9JwM/view?usp=drive_link
https://drive.google.com/file/d/16WvRS4Kjog8Pxgr0E3sGGnI01YwL9Uql/view?usp=drive_link
https://drive.google.com/file/d/12ttGqL33IPWg0-s1SD44rr22M6LiSQBr/view?usp=drive_link
https://drive.google.com/file/d/1OyZqqnldTU_DliRbr6x0C4a_iWPwIN7j/view?usp=drive_link
https://drive.google.com/file/d/1oYk00IpLnR9fesLfD15Ebe7nVBffEbcS/view?usp=drive_link
https://drive.google.com/file/d/1eyE2-MQduCEqCd-5_kl5zsoOEERAzpZD/view?usp=drive_link
https://drive.google.com/file/d/1ir1Ya-vO0d97pfvbePlUeuKTTRc0qIMU/view?usp=drive_link
https://drive.google.com/file/d/1hOi-JnqlMt47gVnLZHMTqeojyYVErohl/view?usp=drive_link
https://drive.google.com/file/d/1NFFw5_PqigQ7xGqsL-MNq2B1r5yAscCf/view?usp=drive_link
https://drive.google.com/file/d/1uftq1-Zlh8d2sNLWrlVcKYQUwZTD7o24/view?usp=drive_link
https://drive.google.com/file/d/1-ax19dSLPacVgk000T-m3l4flPcg07pM/view?usp=drive_link
https://drive.google.com/file/d/126y-lgn86-ZmCz8hooF1THKJGGObw3OB/view?usp=drive_link
https://drive.google.com/file/d/1JiDniK0VmDIkk92AbBILb8J2Ba59PWML/view?usp=drive_link
https://drive.google.com/file/d/1kr8nPIRljiU0R4J9SMgj80o1FPQxzu9z/view?usp=drive_link
https://drive.google.com/file/d/1bbThWRij1pKBh_kFgV8FwK0sXtTHBoLX/view?usp=drive_link
https://drive.google.com/file/d/1WenzDW6lxk1xkOFm-OiGFfc0ROskAuKU/view?usp=drive_link
https://drive.google.com/file/d/1MiKRzuzUn1yN-k_6kPJJzIGy7dT-nnsD/view?usp=drive_link
https://drive.google.com/file/d/17rRg2tcmB-gNhQ0KoZJQmNfyFeoij1jH/view?usp=drive_link
https://drive.google.com/file/d/11mokBpvrY3ld6sY5WztREtJ1jgqfQV70/view?usp=drive_link
https://drive.google.com/file/d/1Il_6IOx9NDp1bX_KHizJfBwzTufTmn86/view?usp=drive_link
https://drive.google.com/file/d/1KswtJGsxJ7eeBDAmNA_aeLjOxcH6MIxa/view?usp=drive_link
https://drive.google.com/file/d/1gzMhi5uWu4C3Y6WbQ3L-08V96GxTZrRR/view?usp=drive_link
https://drive.google.com/file/d/1nRQFtaBxfUCYc2W90Qibh0kHCt6YQCfc/view?usp=drive_link
https://drive.google.com/file/d/1vs-gyW-KheqHbUATwAhA2mmR9GOGw7f_/view?usp=drive_link
https://drive.google.com/file/d/1MuxzGOA2fgLaHryq82KkQumtuRJGcUOC/view?usp=drive_link
https://drive.google.com/file/d/1IIwxZnGlqrXLUXqG6yMO0r7uhCvhpk9e/view?usp=drive_link
https://drive.google.com/file/d/1vE7XPyaFcXP4DtTY5Y9WKIt7zWgmX-Cr/view?usp=drive_link
https://drive.google.com/file/d/1j-bIV09gr21RC3-x1N_pK4RPLV3fmWKz/view?usp=drive_link
https://drive.google.com/file/d/1t3nW1rD3S-EL0Oymb5U7ZAj5UMkydkln/view?usp=drive_link
https://drive.google.com/file/d/14hbfHCdMKtJZ41F9CQReMec2jeRFTOqR/view?usp=drive_link
https://drive.google.com/file/d/1x-hUyOSne5BW0AzQ3W6_Pf4g5yXQWi9M/view?usp=drive_link
https://drive.google.com/file/d/1sw9JqRg6E-3P84I3ZhzTrJMu0vuiaMmP/view?usp=drive_link
https://drive.google.com/file/d/1LuqhQlL4MGZhB_6THmkovRxrlP26BbdC/view?usp=drive_link
https://drive.google.com/file/d/15C5K6v_lkjnMSmUvVyqHQKwh2N166e7K/view?usp=drive_link
https://drive.google.com/file/d/1ns_9eSsQeeoZ10nlbkLy8tu0GmJFSnkt/view?usp=drive_link
https://drive.google.com/file/d/1NpzWJeK6CqjxzjIMYe6aYdX8xGsQwD4o/view?usp=drive_link
https://drive.google.com/file/d/1NMLezwufKJ9_8xTc9KQThSzVVD71B9Ui/view?usp=drive_link
https://drive.google.com/file/d/1aa71DCUqs6oXlIxX35jgsmsgm-NlDxPV/view?usp=drive_link
https://drive.google.com/file/d/1UJzkIZzAL0j-D5YQBnoq7mHvttASy12O/view?usp=drive_link
https://drive.google.com/file/d/1nPgx36HIJFb7oI94VbRzWjpPP2GANxzG/view?usp=drive_link
https://drive.google.com/file/d/1NovAP-KVJjqcuvWy3d6G4ptGGAIDqcCx/view?usp=drive_link

View File

@@ -1,55 +0,0 @@
https://drive.google.com/file/d/11M3Ye0r5agMaaicPbVGD0q2Hb3rGklbb/view?usp=drive_link
https://drive.google.com/file/d/1-tx7SvYYgSvXCvnf_EI2OVdwK-CkFY6S/view?usp=drive_link
https://drive.google.com/file/d/1EWJunmOpMHaU1hE106wwpbkGYcjQXYAF/view?usp=drive_link
https://drive.google.com/file/d/1IDn95Z7FSiCckrSENtGV4u3RyFHNQSDY/view?usp=drive_link
https://drive.google.com/file/d/1CwzvWj1i7QOtqrZvsCZ6BdZaKNDfpN32/view?usp=drive_link
https://drive.google.com/file/d/1HvAvlhm77nAD3Td24QPSeq8lw-Rl_aOh/view?usp=drive_link
https://drive.google.com/file/d/1t-suKYOPhXH666RpAYNRp2QU_DOy3AeM/view?usp=drive_link
https://drive.google.com/file/d/18xpKgWh7RWyjMN5PkLTOo-AxsAadAuRw/view?usp=drive_link
https://drive.google.com/file/d/1oci5Eto-ztv-AQNz8EnwZveBIhxvk-xJ/view?usp=drive_link
https://drive.google.com/file/d/1Y-t_4vxdE6NpHO0DLJR8f3mD0Q-Wj5-c/view?usp=drive_link
https://drive.google.com/file/d/1lylRqbbbB8bgtpsBWMPACmHJreuKmllv/view?usp=drive_link
https://drive.google.com/file/d/1yliSyMig_NXShWfQx6qyW7Ijf2Y5lFK6/view?usp=drive_link
https://drive.google.com/file/d/1XXhwJsJbeb7KXAooGvJapnm9bjnGUmxS/view?usp=drive_link
https://drive.google.com/file/d/1_xs1f3hW2JArKyvfF7UWubWjyROGTLs6/view?usp=drive_link
https://drive.google.com/file/d/1WVEHpr6EqKCZbkHapQSTXJq4xE4SWFT-/view?usp=drive_link
https://drive.google.com/file/d/1RqOHv9pEQGvW8NUA7ynffFmG999TL_Az/view?usp=drive_link
https://drive.google.com/file/d/1cu5AgD2gh-uA3PFJmzxxzNaF3qOSlYY1/view?usp=drive_link
https://drive.google.com/file/d/1SsrXqiPclNrnYToPZ9Uq-k3y0C4qdHT1/view?usp=drive_link
https://drive.google.com/file/d/1-J7EXf0vjkLIfSqT8ICEsP6CTjzSLBop/view?usp=drive_link
https://drive.google.com/file/d/11O7ewUmoZXfyyKjy_6B5RW4DpjICxqBT/view?usp=drive_link
https://drive.google.com/file/d/1iic44kZoCsjNsfAz2cMstZ9-WQvAhblF/view?usp=drive_link
https://drive.google.com/file/d/1yLV1lVX-2WnWQldGlnQZ0x7QBuDiVkL3/view?usp=drive_link
https://drive.google.com/file/d/1Tybp9ru98TTbGn4eyROpUQwDFuALWXmk/view?usp=drive_link
https://drive.google.com/file/d/13E9OTMiipVJByDs5-J19oWwAz7l94LTN/view?usp=drive_link
https://drive.google.com/file/d/1EeTpJQdMSliw4JzSMtJ6CyTvVdexjM4M/view?usp=drive_link
https://drive.google.com/file/d/1NHyNwoFqzeAu-1_PSpq5JfxaiD_xbpn9/view?usp=drive_link
https://drive.google.com/file/d/1fJcS0phDp4xm_FyGaJ5wr9Pe4KqtHaxD/view?usp=drive_link
https://drive.google.com/file/d/12AqrLUaewDPEcFRqPZeZFb_TQ0Lfi3At/view?usp=drive_link
https://drive.google.com/file/d/1x_hd4Qsq1oJS-aj2t3qM7WbbV7KZj05b/view?usp=drive_link
https://drive.google.com/file/d/14OUSUArmsB068hs6BuEIXQhI1Cyz8Sf0/view?usp=drive_link
https://drive.google.com/file/d/16zlzh1T5zeUJQnFf382NXkFEKEnDub4O/view?usp=drive_link
https://drive.google.com/file/d/1IbDltmN-NEFCNtr1TO4ILxEgQ94rtjWv/view?usp=drive_link
https://drive.google.com/file/d/15gmlf8Gx9455pZ1AlqcCSwh3nDPxMzSr/view?usp=drive_link
https://drive.google.com/file/d/1qHpRL1oZfIMo_vxnm8qfwQ-7l0BZIVva/view?usp=drive_link
https://drive.google.com/file/d/1H1xskIgiFZivkYn23rMzH3xePGOh3VTC/view?usp=drive_link
https://drive.google.com/file/d/1avls6Pv0kYiCMNVknbc1zQsgy64MUDMM/view?usp=drive_link
https://drive.google.com/file/d/1MmWVgCj5khc8KMIifmt3EzF1o-CtPyyn/view?usp=drive_link
https://drive.google.com/file/d/1U0kCc_xqW0WNppf4sbnK14euWKdPZtzB/view?usp=drive_link
https://drive.google.com/file/d/16CaEyQscOuhLj23PEGDTL9DeyNkohkMn/view?usp=drive_link
https://drive.google.com/file/d/1Iu8uM6UUJ0zW8tvN-9UiOe_4oSNzEutg/view?usp=drive_link
https://drive.google.com/file/d/1UImqiBaIxCR-1DNJaZhHqeHhaySOtVIr/view?usp=drive_link
https://drive.google.com/file/d/1VpU2V_leIoRIyv_lAvE7eLHBG8DxCTnp/view?usp=drive_link
https://drive.google.com/file/d/1_Q8J27OT3Xby7QY6yHvIJauFRWEMxkRm/view?usp=drive_link
https://drive.google.com/file/d/1bantmVo1L9Xz4tbiNw_a1UC2Z_HPO1wT/view?usp=drive_link
https://drive.google.com/file/d/1IRIXMJMCBDkBjbaHvAlEiBogSvZ1jK_3/view?usp=drive_link
https://drive.google.com/file/d/1mAHXKjiFbjwydypW2t5Lv8_H5x6nHegl/view?usp=drive_link
https://drive.google.com/file/d/1SfyY796fLrBCMY39OcyuxZafqSCRZPZk/view?usp=drive_link
https://drive.google.com/file/d/1X-44sZ8CcfzIskc0dvSx882o1yFhHaZB/view?usp=drive_link
https://drive.google.com/file/d/1BOIWCCCk6DLD4Bmvc75ZbbLi9AQm-1ao/view?usp=drive_link
https://drive.google.com/file/d/1RuyDtRE1kk76sw-wP8vx5SgLoPF3PA_H/view?usp=drive_link
https://drive.google.com/file/d/1c4eoQiBbGuy3CTAQDUSkd84Ponh1roAQ/view?usp=drive_link
https://drive.google.com/file/d/19PXB9z4Ljq6dsbf9TqcOrrP5SRbw2Tc_/view?usp=drive_link
https://drive.google.com/file/d/1nn1VVZVoIXWdYDozR7XHXE4mPLQG80PQ/view?usp=drive_link
https://drive.google.com/file/d/1MBdFGOKPV8GUhwoSsJ_Ky3qAMLM2Bv3K/view?usp=drive_link
https://drive.google.com/file/d/1of3k_M-7Nh3I1TndcWedxK4ca9dn8Sc5/view?usp=drive_link

View File

@@ -1,20 +0,0 @@
https://drive.google.com/file/d/12ctkOAdkCNGN1JLbZb5ww3XTBn2LFpGI/view?usp=drive_link
https://drive.google.com/file/d/1G_Vd46_4fq6O64gHHjUbJX5Ld44ZZx0y/view?usp=drive_link
https://drive.google.com/file/d/1uKgUy73B3xBogQAOUhfZjO0X5qZGsi2c/view?usp=drive_link
https://drive.google.com/file/d/1fu9cIrfI-fE2LhdGUxbx7-8Ci_PF8Ypm/view?usp=drive_link
https://drive.google.com/file/d/1Ygk9ZPJzx8xw2A9JF3NHbJ44TqnvSTQR/view?usp=drive_link
https://drive.google.com/file/d/18m5xPuccNsEB20WPshm3zhxmXc6k63ED/view?usp=drive_link
https://drive.google.com/file/d/1DiqqxC44rriviRQpqogcv0-EB-Y6nr9g/view?usp=drive_link
https://drive.google.com/file/d/1qPdaoTVDizJXkfXLioWU7iJ8hqCXSyOQ/view?usp=drive_link
https://drive.google.com/file/d/1Fj9kIA_mG7f67WFfACJEaZ7izcHG7vUm/view?usp=drive_link
https://drive.google.com/file/d/1WpYehZnI2P7dUdJPfkE-ij1rqCnjZEbB/view?usp=drive_link
https://drive.google.com/file/d/1_zwWkT4jPyzB38STWb6whlzsPzXmfA9r/view?usp=drive_link
https://drive.google.com/file/d/1U6-J4I_fPlSFFGfhZPxS5_YzKXwXIZYp/view?usp=drive_link
https://drive.google.com/file/d/1pRhxxcTfZp5tQo_EScvJUwfc3amiS6Vk/view?usp=drive_link
https://drive.google.com/file/d/1lWLntqra83RlYU_gN7Vostnfydf6gutd/view?usp=drive_link
https://drive.google.com/file/d/1vIBKo0x-NYEHV1FvRpco1lQMpRdAWAIL/view?usp=drive_link
https://drive.google.com/file/d/1pdrLV3JTQou_XH0Aap61Ssf60iVKm1jJ/view?usp=drive_link
https://drive.google.com/file/d/1QTsLoQ7SwmKdQHjBGVDaR2uTwfFwtrOf/view?usp=drive_link
https://drive.google.com/file/d/1Gytai8M_12J36GY6L_TulEcOC-035jwS/view?usp=drive_link
https://drive.google.com/file/d/14LJudNc629NT-i8xreXtzl27ce_DxOFJ/view?usp=drive_link
https://drive.google.com/file/d/1sBvPCODbzxGAI0S3lgN5cSG9Go3lRi00/view?usp=drive_link

View File

@@ -1,18 +0,0 @@
https://drive.google.com/file/d/1MJn9GbC8p9lN4gC9KDMLEkTkP_gGpXj0/view?usp=drive_link
https://drive.google.com/file/d/1-4LXgjl7ZCOgp-8GCJmFRD8OeqN5Jf7-/view?usp=drive_link
https://drive.google.com/file/d/1Ho06Ce0SPbqU3juaMxNUwAt3zCRLGC8W/view?usp=drive_link
https://drive.google.com/file/d/1ivHoj7_7olBSxH-Y8kqXEW7ttITK-45j/view?usp=drive_link
https://drive.google.com/file/d/1qjY4hM_IvZ8cq2II_n9MeJbvyeuN4oBP/view?usp=drive_link
https://drive.google.com/file/d/1rKVhO_f92-7sw13T8hTVrza3B9oAVgoy/view?usp=drive_link
https://drive.google.com/file/d/1pcLPHO8fBkc1-CRa88tyQtEueE4xiXNi/view?usp=drive_link
https://drive.google.com/file/d/1Vev_chCsIeEdvQ8poEYNsOJFGy_QU8kZ/view?usp=drive_link
https://drive.google.com/file/d/1l5G4zpRkxSLCQjvGPYSN4zfCvVRQuzMz/view?usp=drive_link
https://drive.google.com/file/d/14vgthE1eoakXkr2-DRw50E6lAqYOiUuE/view?usp=drive_link
https://drive.google.com/file/d/17nPSmKKmgQ2B7zkzWrZYiLM3RBuFod82/view?usp=drive_link
https://drive.google.com/file/d/1QcDsxplVvb_ID9BVrihl5FvlC-j7waXi/view?usp=drive_link
https://drive.google.com/file/d/18pEejBpI-eEVaWAAjBCyC0vgbX3T1Esj/view?usp=drive_link
https://drive.google.com/file/d/1H8eH6_IRODtEFT6WoM77ltR5OoOrqXmI/view?usp=drive_link
https://drive.google.com/file/d/1IWlpFRZhoxyG4nS13CWK4leZVk5wbNx4/view?usp=drive_link
https://drive.google.com/file/d/1PbZA8_OCGmMLxNP9xbkLRSChniL4uGxl/view?usp=drive_link
https://drive.google.com/file/d/1p9XAdmG2f_WeflNO4DIJ_tr1rK6M9B4B/view?usp=drive_link
https://drive.google.com/file/d/1nS59Et1cNAvKo3Y4SeSGRuZD5TvBbCF3/view?usp=drive_link

View File

@@ -1 +0,0 @@
https://drive.google.com/drive/folders/1S8eFg98IaGAIKVZ8QFWG1bx4mHa-O204

View File

@@ -1,4 +0,0 @@
https://drive.google.com/drive/folders/1tC_g1AJ8lglBLY-fjsQrG6DMBa3Ucp-0
https://drive.google.com/file/d/1fG_Yi2MJrFjiUVN3XoiWXLtTxHlwwaDv/view?usp=drive_link
https://drive.google.com/file/d/1WX32VWfzzX3Blmd06DRxLwFbMJfVe7P4/view?usp=drive_link
https://drive.google.com/file/d/18onsX3vXg3xkFwP5bVUCjdV4n9TRn0C9/view?usp=drive_link

View File

@@ -1,3 +0,0 @@
https://drive.google.com/drive/folders/1RgyD0JgTX30H4IM5XZn8I3zSV_mr8pyF
https://drive.google.com/file/d/18Cudl6nikDtgRolea7je8iF_gGKzynOP/view?usp=drive_link
https://drive.google.com/file/d/1C1kZYyROzs-PrLc0SkDgUgMi4-L3lauE/view?usp=drive_link

View File

@@ -1,3 +0,0 @@
https://drive.google.com/drive/folders/1TsojQQSXtHEoGnqgJ3gmpPQR2DPLtS2N
https://drive.google.com/file/d/1wfMSZ24oOh5KR_0aaP3Cnu_c4ZCveduB/view?usp=drive_link
https://drive.google.com/file/d/17EuCUWS6uCCr6yyNzpXdcdE-_TTNCKtf/view?usp=drive_link

View File

@@ -1,3 +0,0 @@
https://drive.google.com/drive/folders/1sc-E4QYW7A0o23m1u2VWNGVq5smAsfCo
https://drive.google.com/file/d/18smMymtr8tIxaNUQ61gW6dG50pt3MvGq/view?usp=drive_link
https://drive.google.com/file/d/1Nk7l53d9sJoGDBKAOnNrExX5nLacATc6/view?usp=drive_link

View File

@@ -1,3 +0,0 @@
https://drive.google.com/drive/folders/1aRyoOhQwxhyt1J8XgEig4s6kzaw__LXj
https://drive.google.com/file/d/1pnGIOd-E4-rhz2P3VxpknMKRZCoKt6eI/view?usp=drive_link
https://drive.google.com/file/d/1GKReZHrXU73NMiC5zKCq_UtqPVtYq8eo/view?usp=drive_link

View File

@@ -1,2 +0,0 @@
https://drive.google.com/drive/folders/19qS_n7vKgDcPeTMnvDHQ5-n73xEbJz5D
https://drive.google.com/file/d/1oC31By0A2bsBeHyUwBdQw1z4ng6yi9Za/view?usp=drive_link

View File

@@ -1,2 +0,0 @@
https://drive.google.com/drive/folders/1m5rQ6UVH8Q9RQp_6c0CxkQ88-L-ScO7q
https://drive.google.com/file/d/1wHz2qcmwcVG0C0CZ9MjQDQcmj4OY9_a3/view?usp=drive_link

View File

@@ -1,2 +0,0 @@
https://drive.google.com/drive/folders/1seQGay470nGQ-knBI5TjsTr8iL9Qws5q
https://drive.google.com/file/d/1T89hSX5U99wLGvGTE7yUBaQPOpyj6Sai/view?usp=drive_link

View File

@@ -1,2 +0,0 @@
https://drive.google.com/drive/folders/1t3eDc5Rg0DveyRe8oTm6Dia_FYU5mXyf
https://drive.google.com/file/d/1TXFaduTakvS0ZWJqKCX-HIvYglum_5CY/view?usp=drive_link

View File

@@ -1,2 +0,0 @@
https://drive.google.com/drive/folders/1Z9X3DNzd6LS0FFjQemNUMoMA5yk5VQOh
https://drive.google.com/file/d/1Wlyc0vTkjXuWB6zbaVOWhEfD7BmPgUV_/view?usp=drive_link

View File

@@ -1,53 +0,0 @@
https://drive.google.com/drive/folders/1DYgB4ifX4uIid9m9jnC0Zdz8Nf7ZC0fc
https://drive.google.com/file/d/1Eb-NRNk_FmVleCbU_Ng5Y4dfcjTKN7Rv/view?usp=drive_link
https://drive.google.com/file/d/1dkhjEADakT-44l9jf-nK4x89kr4yG_qb/view?usp=drive_link
https://drive.google.com/file/d/14hDhgcZkVqNExGb4tIXpSjMshhqZETch/view?usp=drive_link
https://drive.google.com/file/d/1zVMEHpHbuNyP5A_lYU7RPSLB-4V0yfZw/view?usp=drive_link
https://drive.google.com/file/d/1JtgDjBvy7FnRpFzrx_foC3quorYQFAR-/view?usp=drive_link
https://drive.google.com/file/d/1EHdneB6F-PP0dQlX8qPaXbxmKoBy_YwO/view?usp=drive_link
https://drive.google.com/file/d/17Z0jjVBy1OPKREPu77_n_rQzorDiapji/view?usp=drive_link
https://drive.google.com/file/d/1F4i23qPJ_qTf5jWjfLo4ARGJChznYWt3/view?usp=drive_link
https://drive.google.com/file/d/1kZtXWM3uS0-rLblydBfJ0mMcVnMMXw9w/view?usp=drive_link
https://drive.google.com/file/d/1mNODox87xFfY5Z_o5mcLsr8SHb39jDik/view?usp=drive_link
https://drive.google.com/file/d/1Ob44VdmEUA93FKDECiRb5Ogz2xQg5IWp/view?usp=drive_link
https://drive.google.com/file/d/1fdQLdjj3Cwv33R1wZhfrLz9Del8mqgHb/view?usp=drive_link
https://drive.google.com/file/d/1Yu3L3ft21zP__XL8pCfhb788ZleuW1n5/view?usp=drive_link
https://drive.google.com/file/d/1ozBBWXVZ9hXDh9ooHUNroHdYm8UDqnhJ/view?usp=drive_link
https://drive.google.com/file/d/1o0TGqvfWw_Lunxb5ubKDS21Lr_WC0h75/view?usp=drive_link
https://drive.google.com/file/d/1jZnd5eP5L6BH5l98BPN6OnoQx3fu8e9n/view?usp=drive_link
https://drive.google.com/file/d/1S5sYbz8wcLYp0V67v13i4PRcBxodn4Hg/view?usp=drive_link
https://drive.google.com/file/d/1rFeg_x6ftJYwPtBv34D3h2L2cpDLeR4G/view?usp=drive_link
https://drive.google.com/file/d/1GvS3lcm4o6nm_scUk0XxKeVFNmzjucDZ/view?usp=drive_link
https://drive.google.com/file/d/1-9i0riphC7NhhDahcQfD1QoBXP5gF90A/view?usp=drive_link
https://drive.google.com/file/d/15p_IqGsMbKuvzMS872THAZr-3SBtb1Fr/view?usp=drive_link
https://drive.google.com/file/d/1ToyYcBfJL8gbQn0q_59zPLsFmm7dmMJo/view?usp=drive_link
https://drive.google.com/file/d/1e_7PNH7CYafE4pAebP7ZdI7XFbmEcy_i/view?usp=drive_link
https://drive.google.com/file/d/1JoabvGVsIQdug2xOhUIhetEIyDM91y_Y/view?usp=drive_link
https://drive.google.com/file/d/1kOMw1y0lmnVaCjwZICfzCsx6e0Z8MNGR/view?usp=drive_link
https://drive.google.com/file/d/16it_wd1JOevUQTK2_CvF_pBACTgpIPgM/view?usp=drive_link
https://drive.google.com/file/d/1IRcCj9HnJSfbyMgr5XEERGlEnWeZQwOc/view?usp=drive_link
https://drive.google.com/file/d/1Z2dIJfq_S3liGmPN9Rphvkmucnmw7tlb/view?usp=drive_link
https://drive.google.com/file/d/1J3NoAjzndGx9yNyaBOJHdNny1epzUoBt/view?usp=drive_link
https://drive.google.com/file/d/18nOvxV1k8FSmBrhT4TPo2sKKSZXougyx/view?usp=drive_link
https://drive.google.com/file/d/1CT8FxclafFMjSd7gCWVw3VSeryeiF04i/view?usp=drive_link
https://drive.google.com/file/d/16M9KVqQMFfSsXfypK0bocFft8Nz3j2Rt/view?usp=drive_link
https://drive.google.com/file/d/18QPVkw6bj6HW8LTPrQLWrrUX4R6RcF42/view?usp=drive_link
https://drive.google.com/file/d/1hQTVtA5hBTE_StXpJafTZJ3tgt2VQQ_t/view?usp=drive_link
https://drive.google.com/file/d/1Dn-d5g69H6EgAWgsFdrcbJKtz7ySsCQ8/view?usp=drive_link
https://drive.google.com/file/d/13hMr16483P7ALYv73yMRUN37fJdVQM62/view?usp=drive_link
https://drive.google.com/file/d/1848yN3XMN5zJMEgApt6KzrWgfRPfimtv/view?usp=drive_link
https://drive.google.com/file/d/1oAD9kSnS0fTgj-CjD4u9VdZ5X67IOIMa/view?usp=drive_link
https://drive.google.com/file/d/1ilzIWLCCG5b_KgF5s0wdN2I5-lFNpwC1/view?usp=drive_link
https://drive.google.com/file/d/1rjsT2YBjnidxod1s9s-myAYz8boHr-WB/view?usp=drive_link
https://drive.google.com/file/d/18Gg48HTub15bd8qzbhiCUufbVy0fbN5G/view?usp=drive_link
https://drive.google.com/file/d/1WsSnQSqmMTVSRwrhT1Y-v782My2zcjLm/view?usp=drive_link
https://drive.google.com/file/d/1ea9ZCvoyc-xqiFXgeDcA_mOWsw7VUuoi/view?usp=drive_link
https://drive.google.com/file/d/1wv1v3-XhPgbNzp62BXbJTDzMPu2tlDUc/view?usp=drive_link
https://drive.google.com/file/d/18-ikzt8LoZ83Gi3goKCELs4U4z8hrRoF/view?usp=drive_link
https://drive.google.com/file/d/16Bjhp7JNCXkGuLvyNcZowAx3W-Y-15DV/view?usp=drive_link
https://drive.google.com/file/d/1Gc-KRI-xwcp1fMR55ugbrLg_5y3SPde-/view?usp=drive_link
https://drive.google.com/file/d/1oP72Q386Z4Sy5MMm-t5yNogIe5Van_9k/view?usp=drive_link
https://drive.google.com/file/d/112T90eDUDVH-SyOV7UnZl5bscAH2hcfq/view?usp=drive_link
https://drive.google.com/file/d/1y-uKOesRRhjgDtFbG_j65f4SGg0v8XDg/view?usp=drive_link
https://drive.google.com/file/d/1LOP05OagoI3km-ZKQBrS204A85UVk7Ok/view?usp=drive_link
https://drive.google.com/file/d/1QkHQKgasVzWsmdPvkXgGhWyQ84d93_Az/view?usp=drive_link

View File

@@ -1 +0,0 @@
https://drive.google.com/drive/folders/1Ut2cv6o6Pkfgg46DgwVUM7Z5PkNG8eJ-

View File

@@ -1 +0,0 @@
https://drive.google.com/drive/folders/1FqxPV0PgvgIu8XFjtvZSPSExuNcxVVAY

View File

@@ -1,2 +0,0 @@
https://drive.google.com/drive/folders/1SKtG0ct9q0nVdYssJNMWSOjikcXliT58
https://drive.google.com/file/d/1nchD21O30B3i3LDoqramo1zgW5YvpJIN/view?usp=drive_link

View File

@@ -1,2 +0,0 @@
https://drive.google.com/drive/folders/1_4DHf2cma0xsChLQFghwigX6Ukti5-zQ
https://drive.google.com/file/d/1_8vS4hDNDgUQY-SmekrNaa7dF67QJYU-/view?usp=drive_link

View File

@@ -1,2 +0,0 @@
https://drive.google.com/drive/folders/1_4DHf2cma0xsChLQFghwigX6Ukti5-zQ
https://drive.google.com/file/d/1_8vS4hDNDgUQY-SmekrNaa7dF67QJYU-/view?usp=drive_link

View File

@@ -1,2 +0,0 @@
https://drive.google.com/drive/folders/1fAD7vkyTGTFB_nGXIKofCU1U05oE3MFv
https://drive.google.com/file/d/1XzyQ2B6LLvcurIonOpEu4nij2qwNWshH/view?usp=drive_link

View File

@@ -1,53 +0,0 @@
https://drive.google.com/drive/folders/13EQsVsnxT86K20QAoyE_YpsFbQ7fZQdu
https://drive.google.com/file/d/1-W_JHghZG65FNTVhw1SXhtQrazdLL3Ue/view?usp=drive_link
https://drive.google.com/file/d/1VwRJgdWUo-2nQaNM7Bs77-fsm8iwUxEo/view?usp=drive_link
https://drive.google.com/file/d/1wFzGRo5iYA13WLi6IV1ry64RyahQBFio/view?usp=drive_link
https://drive.google.com/file/d/1IKtQzQ-n-UTv64hYpReu2R4cqUvmNQqD/view?usp=drive_link
https://drive.google.com/file/d/1GicVci9OiuuZZH79i5Mg7AtWod94MzwT/view?usp=drive_link
https://drive.google.com/file/d/1JVnIoR7EIQp70T4eAf9RX65JcTrzsjQc/view?usp=drive_link
https://drive.google.com/file/d/1W2xr4h23ucjPrc-mBEeqnACsfaImpc0p/view?usp=drive_link
https://drive.google.com/file/d/10xj_0V7A07o3uCa7v5omUrTC0YlPW8H3/view?usp=drive_link
https://drive.google.com/file/d/1FOc3EMaCy8Mb0_a7PuXLAwKwvxkbKmwU/view?usp=drive_link
https://drive.google.com/file/d/143PgDXBcf2GQ0Q07ZPMVMfBgZDd5sLJG/view?usp=drive_link
https://drive.google.com/file/d/1pE5Tyj0LlGbGWvUzuhixp86Ibu55Ez3I/view?usp=drive_link
https://drive.google.com/file/d/141668b1VzX80ncrVJPzhkoAeIFB4MEK9/view?usp=drive_link
https://drive.google.com/file/d/1bw12lo37p1ZvRvErHsll7cEYi2OxscvZ/view?usp=drive_link
https://drive.google.com/file/d/1zfnMFvbgBjl6SzYhksbaOzfbwLrCN6tb/view?usp=drive_link
https://drive.google.com/file/d/1-GIszA6mUJMaNB-tdh9r9skc77SWA0VX/view?usp=drive_link
https://drive.google.com/file/d/1fTB0zWFYU6zh4IIUFT2zX_OkwYqmElwY/view?usp=drive_link
https://drive.google.com/file/d/1gPIPNKGmrO9c7gKF7SP0SuUYbIBBq8z1/view?usp=drive_link
https://drive.google.com/file/d/12JeJ-dQd5lYyn6PlDOGdE-ChVeiZ-Uv0/view?usp=drive_link
https://drive.google.com/file/d/100_20cgCqerU6qoh3TfTbwLy9mlDAFEG/view?usp=drive_link
https://drive.google.com/file/d/111oAGJ76ku_pYgbBoIdZAC1_XEQcPI__/view?usp=drive_link
https://drive.google.com/file/d/1UhC8L-354ZQ2gblPFGI35EMsVwfpuKa0/view?usp=drive_link
https://drive.google.com/file/d/1sIXQSgUR_xdrNtGrL6QGBnkLMKErsIp1/view?usp=drive_link
https://drive.google.com/file/d/16Ax77bDSIXnsn4GFL8XYKKT1P6bPpfMd/view?usp=drive_link
https://drive.google.com/file/d/1pgRVYwwVIsWq_qsWqZpe1UBzZfF5Fa9D/view?usp=drive_link
https://drive.google.com/file/d/1jtimaZkWsY1P5gC2bbS64H_WCUU7HXN2/view?usp=drive_link
https://drive.google.com/file/d/1N6Bh02P-RiTEgtx1YH1Db_X3TGpP-X_r/view?usp=drive_link
https://drive.google.com/file/d/14Fy8EwJ8d9Vh97Yt1VOvUChSCrfIjBij/view?usp=drive_link
https://drive.google.com/file/d/1IRuv42dvIMPuKhcMZmuXaBjJ-lPFOmQd/view?usp=drive_link
https://drive.google.com/file/d/16XWzNY2D8ucVVn5geBgsVdhm3ppO4que/view?usp=drive_link
https://drive.google.com/file/d/1xsVOoQgthK_L_SDrmq_JvQgUpAvPEAY8/view?usp=drive_link
https://drive.google.com/file/d/1bZbw66DyEMvnJnzkdUUNbKjvNKg8KFYM/view?usp=drive_link
https://drive.google.com/file/d/1CyTVkdrNGGpouCXr4CfhKbMzE6Ah3oo3/view?usp=drive_link
https://drive.google.com/file/d/1hDRyeM-XEDpHXpptbT8LvNnlQUR3PWOh/view?usp=drive_link
https://drive.google.com/file/d/1XhHWxbra8Iy5irQZ83IvxwaJqHq9x4s1/view?usp=drive_link
https://drive.google.com/file/d/1haZcn6aM1o4JlmP9tJj3x2enrxiPaDSD/view?usp=drive_link
https://drive.google.com/file/d/1ypDyuUTbljaBZ34f-t7lj3O_0bRmyX2n/view?usp=drive_link
https://drive.google.com/file/d/1ILEEZo_tA9_ChIAprr2mPaNVKZi5vXsO/view?usp=drive_link
https://drive.google.com/file/d/1U7nVYFaGE8vVTfLCW33D74xOjDcqfgyJ/view?usp=drive_link
https://drive.google.com/file/d/1rZ93_rmCov5SMDxPkfM3qthcRELZrQX6/view?usp=drive_link
https://drive.google.com/file/d/1mYO1b_csddtyE3qT6cwLiw-m2w2_1Lxh/view?usp=drive_link
https://drive.google.com/file/d/1xz7Q5x2jikY8wJQjMRQpRws6AnfWlHm5/view?usp=drive_link
https://drive.google.com/file/d/1OO8GaO-0FrSZRd1kxMYwBmubyiLOWnbl/view?usp=drive_link
https://drive.google.com/file/d/1EXn4NVDmf-4_HCy34mYwT-vwK2CFI9ev/view?usp=drive_link
https://drive.google.com/file/d/10hH70XhXRL9C5SnAG4toHtfHqfJUJo4H/view?usp=drive_link
https://drive.google.com/file/d/18tiBcxea0guUai4lwsXQvt0q2LZ8ZnnJ/view?usp=drive_link
https://drive.google.com/file/d/1Q8R8qv37vk5PQ5kQ2ibx6BFLOySD0VpX/view?usp=drive_link
https://drive.google.com/file/d/17aNriHzjhdibCyuUjQoMFZqjybJZtggG/view?usp=drive_link
https://drive.google.com/file/d/1LVjEYHSdeKm6CotU1QguIeNEPaIaFl_1/view?usp=drive_link
https://drive.google.com/file/d/1ufAhE_EkgJ85slg2EW8aW_grOzE_Lmxd/view?usp=drive_link
https://drive.google.com/file/d/1wtzLtXrkw9eXRGESTPIOlpl1tInu-b2m/view?usp=drive_link
https://drive.google.com/file/d/1Mk5qvVtD_QHwGOUApRq76TUw2T5THu6f/view?usp=drive_link
https://drive.google.com/file/d/1y1WQ3hboWVJ68KEYQQ3OhreGuaUpSgwc/view?usp=drive_link

View File

@@ -1,52 +0,0 @@
https://drive.google.com/drive/folders/1dxWh6YFZUDt6qXIoxgD9bla3CiFjZ11C
https://drive.google.com/file/d/1hNBJN00SCAlOl0ZEgm7RRGbAGDjyBs0p/view?usp=drive_link
https://drive.google.com/file/d/17He0CVwXGeoMmXg4SHKo-osNn7YPKVL7/view?usp=drive_link
https://drive.google.com/file/d/1laNKUVID1x2CV6a2O2WQjwFewKu4lidL/view?usp=drive_link
https://drive.google.com/file/d/1pNf36xbZJGRArYLmNAvRj5y6CoqdC6kB/view?usp=drive_link
https://drive.google.com/file/d/1_4E1-y3JXk5I0ebycLYM70YDPK9g52gZ/view?usp=drive_link
https://drive.google.com/file/d/1PHfzhGPdbolKyOpS3FnR2w7Q8zUlJXSk/view?usp=drive_link
https://drive.google.com/file/d/17ls2PPN-Pi3tEuK059cwV2_iDT8aGhOO/view?usp=drive_link
https://drive.google.com/file/d/1LWsg6PmCT00Kv_N_slrmcwKmQPGoBT3k/view?usp=drive_link
https://drive.google.com/file/d/12LckrchoHTUVH7rxi8J7zD9dA19GXvoW/view?usp=drive_link
https://drive.google.com/file/d/1VqrJKjAIkj5gtFXL69grdSeu9CyaqnSw/view?usp=drive_link
https://drive.google.com/file/d/1g5rQYDBZvW-kUtYPeyF3qmd53v6k7kXu/view?usp=drive_link
https://drive.google.com/file/d/10kUgaSJ0TS7teaG83G3Rf_DG4XGrBt6A/view?usp=drive_link
https://drive.google.com/file/d/1je9XmneZQZvTma5adMJICUPDovW3ppei/view?usp=drive_link
https://drive.google.com/file/d/1v28r6bedwZGbUPVVTVImXhK-42XdtGfj/view?usp=drive_link
https://drive.google.com/file/d/1-TEEx9sGVvzMMaNXYfQMtY2JJ6cvl0dT/view?usp=drive_link
https://drive.google.com/file/d/1YdBKdJFP9rJWBUX7qrOYL_gfUA8o6J9M/view?usp=drive_link
https://drive.google.com/file/d/1X9vffwQHNUSKLXr2RlYNtbWDIFCIDfdF/view?usp=drive_link
https://drive.google.com/file/d/11hqesqa5kvEe5FABUnZRcvmOhR373cYM/view?usp=drive_link
https://drive.google.com/file/d/1ltTTECjEcbQPgS3UPRgMzaE2x9n6H7dC/view?usp=drive_link
https://drive.google.com/file/d/1Zxqfa29JdwT-bfMpivi6IG2vz34d21dD/view?usp=drive_link
https://drive.google.com/file/d/11LQlVxS5hz494dYUJ_PNRPx2NHIJbQns/view?usp=drive_link
https://drive.google.com/file/d/1i1JhNtnZpO_E8rAv8gxBP3ZTZRvcvsZi/view?usp=drive_link
https://drive.google.com/file/d/11jOXAr2EULUO4Qkm748634lg4UUFho5U/view?usp=drive_link
https://drive.google.com/file/d/1rj67wur8DdB_Pipwx24bY43xu4X1eQ5e/view?usp=drive_link
https://drive.google.com/file/d/15ZTm6lO6f_JQy_4SNfrOu3iPYn1Ro8mh/view?usp=drive_link
https://drive.google.com/file/d/1q4gBtqWPJtCwXEvknGgN0WHGp7Vfn1b9/view?usp=drive_link
https://drive.google.com/file/d/1t17keyre47AYqm8GgXiQ7EcvcUkeSiDQ/view?usp=drive_link
https://drive.google.com/file/d/1OYUPGxtZgOF86Ng_BEOTXm_XOYpuQPsO/view?usp=drive_link
https://drive.google.com/file/d/1cBjbGHi3dwWHtx6r9EQJi0JT_CE3LuHt/view?usp=drive_link
https://drive.google.com/file/d/14qaMyF0mcbCB-fCYKNyo5_2NahSC6D5u/view?usp=drive_link
https://drive.google.com/file/d/12FgX86eA7Y5co9ULBVK80XMsiKQSs-Ri/view?usp=drive_link
https://drive.google.com/file/d/1yvoHWidf-jdBVw6qCCXOFfkVwKj_2hPk/view?usp=drive_link
https://drive.google.com/file/d/1a2SugsSDlC8UtUrFzp-_KAwyZckQOvdQ/view?usp=drive_link
https://drive.google.com/file/d/1l8pILBFSAosypWJMza2K09Vm7rug9axm/view?usp=drive_link
https://drive.google.com/file/d/1hfPQ8dBCk97PnOhq6_MIISm3IEzcOxJG/view?usp=drive_link
https://drive.google.com/file/d/1PPAUwlJCFKpms8cqF_k1v2_fCgDBOc3S/view?usp=drive_link
https://drive.google.com/file/d/1lVKQZeqFfK3amEmLuFhYLUFQ2eyE8rOW/view?usp=drive_link
https://drive.google.com/file/d/1K9iPMLfDowcIFoyzpvgn88dQ6x6kVwNG/view?usp=drive_link
https://drive.google.com/file/d/1PNvMqG9tL7QxeLaYBGHiWYR6SYb5iIct/view?usp=drive_link
https://drive.google.com/file/d/1xkRtzbvIkUsylx9hrFLGQsJn0h1EYu-5/view?usp=drive_link
https://drive.google.com/file/d/1nxMRrJlSayjDIfr5CmHO1NzAw3COhsLi/view?usp=drive_link
https://drive.google.com/file/d/1Qs3WEyMGrmagiHIkkFEueWNnJhkUeR1s/view?usp=drive_link
https://drive.google.com/file/d/1D-G2_Q0SS3M8zyJbg_XzkF2ANPw1HTuX/view?usp=drive_link
https://drive.google.com/file/d/1mdmJsDGO-YtJAOF_yPKl6lq4PJOIbQhT/view?usp=drive_link
https://drive.google.com/file/d/11m9bwfop_sPmnQr_8amB6EEsrbAeG_z5/view?usp=drive_link
https://drive.google.com/file/d/19tyYt5FMn5kru0g9o2nMJhKPnsDqkIZv/view?usp=drive_link
https://drive.google.com/file/d/1XvTpUdsVTZ-vydvdYYmynbma--HfUGSl/view?usp=drive_link
https://drive.google.com/file/d/1MO3hFu68J6NohTzr9aB_fY02VA6QSOqj/view?usp=drive_link
https://drive.google.com/file/d/1Lh-UjwAk__04YOTWINF_QGVU8SjetVaY/view?usp=drive_link
https://drive.google.com/file/d/1jkSOUwZV5GJ7rZlVeErjcu0DBQs8Np0d/view?usp=drive_link
https://drive.google.com/file/d/1VIN1eLI-93WrVQwCjsv6XQr353DqqBYA/view?usp=drive_link

View File

@@ -1,8 +0,0 @@
https://drive.google.com/drive/folders/1EgKar7rWBmTIRmeJYZciSwjZx3uP2mHO
https://drive.google.com/file/d/12eYWQO15atK2hBjXhynPJd9MKAj_42pz/view?usp=drive_link
https://drive.google.com/file/d/1Ul4oEeICJDjgfYTl4H1uaisTzVYIM6wd/view?usp=drive_link
https://drive.google.com/file/d/1WSF-OG8lKSe2wVYCv5D1aJNipxpgddk-/view?usp=drive_link
https://drive.google.com/file/d/1_ppD5j5sFh26aWW0JmhLzJMeNB-lCArk/view?usp=drive_link
https://drive.google.com/file/d/1WUp846dgWXYhu4oJfhHxiU6YL_7N6s4W/view?usp=drive_link
https://drive.google.com/file/d/1HRZNAIoAQw_uYiPwnBvtBioQoqiqoXdA/view?usp=drive_link
https://drive.google.com/file/d/1hedGq-QDMnIn8GlXXBC3GiEJ_Y-LTxyt/view?usp=drive_link

View File

@@ -1,169 +0,0 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file contains all obsolete download scripts. They are centralized here to not have to load
useless dependencies when using datasets.
"""
import io
import logging
import shutil
from pathlib import Path
import tqdm
from huggingface_hub import snapshot_download
def download_raw(raw_dir, dataset_id):
if "aloha" in dataset_id or "image" in dataset_id:
download_hub(raw_dir, dataset_id)
elif "pusht" in dataset_id:
download_pusht(raw_dir)
elif "xarm" in dataset_id:
download_xarm(raw_dir)
elif "umi" in dataset_id:
download_umi(raw_dir)
else:
raise ValueError(dataset_id)
def download_and_extract_zip(url: str, destination_folder: Path) -> bool:
import zipfile
import requests
print(f"downloading from {url}")
response = requests.get(url, stream=True)
if response.status_code == 200:
total_size = int(response.headers.get("content-length", 0))
progress_bar = tqdm.tqdm(total=total_size, unit="B", unit_scale=True)
zip_file = io.BytesIO()
for chunk in response.iter_content(chunk_size=1024):
if chunk:
zip_file.write(chunk)
progress_bar.update(len(chunk))
progress_bar.close()
zip_file.seek(0)
with zipfile.ZipFile(zip_file, "r") as zip_ref:
zip_ref.extractall(destination_folder)
def download_pusht(raw_dir: str):
pusht_url = "https://diffusion-policy.cs.columbia.edu/data/training/pusht.zip"
raw_dir = Path(raw_dir)
raw_dir.mkdir(parents=True, exist_ok=True)
download_and_extract_zip(pusht_url, raw_dir)
# file is created inside a useful "pusht" directory, so we move it out and delete the dir
zarr_path = raw_dir / "pusht_cchi_v7_replay.zarr"
shutil.move(raw_dir / "pusht" / "pusht_cchi_v7_replay.zarr", zarr_path)
shutil.rmtree(raw_dir / "pusht")
def download_xarm(raw_dir: Path):
"""Download all xarm datasets at once"""
import zipfile
import gdown
raw_dir = Path(raw_dir)
raw_dir.mkdir(parents=True, exist_ok=True)
# from https://github.com/fyhMer/fowm/blob/main/scripts/download_datasets.py
url = "https://drive.google.com/uc?id=1nhxpykGtPDhmQKm-_B8zBSywVRdgeVya"
zip_path = raw_dir / "data.zip"
gdown.download(url, str(zip_path), quiet=False)
print("Extracting...")
with zipfile.ZipFile(str(zip_path), "r") as zip_f:
for pkl_path in zip_f.namelist():
if pkl_path.startswith("data/xarm") and pkl_path.endswith(".pkl"):
zip_f.extract(member=pkl_path)
# move to corresponding raw directory
extract_dir = pkl_path.replace("/buffer.pkl", "")
raw_pkl_path = raw_dir / "buffer.pkl"
shutil.move(pkl_path, raw_pkl_path)
shutil.rmtree(extract_dir)
zip_path.unlink()
def download_hub(raw_dir: Path, dataset_id: str):
raw_dir = Path(raw_dir)
raw_dir.mkdir(parents=True, exist_ok=True)
logging.info(f"Start downloading from huggingface.co/cadene for {dataset_id}")
snapshot_download(f"cadene/{dataset_id}_raw", repo_type="dataset", local_dir=raw_dir)
logging.info(f"Finish downloading from huggingface.co/cadene for {dataset_id}")
def download_umi(raw_dir: Path):
url_cup_in_the_wild = "https://real.stanford.edu/umi/data/zarr_datasets/cup_in_the_wild.zarr.zip"
zarr_path = raw_dir / "cup_in_the_wild.zarr"
raw_dir = Path(raw_dir)
raw_dir.mkdir(parents=True, exist_ok=True)
download_and_extract_zip(url_cup_in_the_wild, zarr_path)
if __name__ == "__main__":
data_dir = Path("data")
dataset_ids = [
"pusht_image",
"xarm_lift_medium_image",
"xarm_lift_medium_replay_image",
"xarm_push_medium_image",
"xarm_push_medium_replay_image",
"aloha_sim_insertion_human_image",
"aloha_sim_insertion_scripted_image",
"aloha_sim_transfer_cube_human_image",
"aloha_sim_transfer_cube_scripted_image",
"pusht",
"xarm_lift_medium",
"xarm_lift_medium_replay",
"xarm_push_medium",
"xarm_push_medium_replay",
"aloha_sim_insertion_human",
"aloha_sim_insertion_scripted",
"aloha_sim_transfer_cube_human",
"aloha_sim_transfer_cube_scripted",
"aloha_mobile_cabinet",
"aloha_mobile_chair",
"aloha_mobile_elevator",
"aloha_mobile_shrimp",
"aloha_mobile_wash_pan",
"aloha_mobile_wipe_wine",
"aloha_static_battery",
"aloha_static_candy",
"aloha_static_coffee",
"aloha_static_coffee_new",
"aloha_static_cups_open",
"aloha_static_fork_pick_up",
"aloha_static_pingpong_test",
"aloha_static_pro_pencil",
"aloha_static_screw_driver",
"aloha_static_tape",
"aloha_static_thread_velcro",
"aloha_static_towel",
"aloha_static_vinh_cup",
"aloha_static_vinh_cup_left",
"aloha_static_ziploc_slide",
"umi_cup_in_the_wild",
]
for dataset_id in dataset_ids:
raw_dir = data_dir / f"{dataset_id}_raw"
download_raw(raw_dir, dataset_id)

View File

@@ -1,326 +0,0 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# imagecodecs/numcodecs.py
# Copyright (c) 2021-2022, Christoph Gohlke
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# Copied from: https://github.com/real-stanford/universal_manipulation_interface/blob/298776ce251f33b6b3185a98d6e7d1f9ad49168b/diffusion_policy/codecs/imagecodecs_numcodecs.py#L1
"""Additional numcodecs implemented using imagecodecs."""
__version__ = "2022.9.26"
__all__ = ("register_codecs",)
import imagecodecs
import numpy
from numcodecs.abc import Codec
from numcodecs.registry import get_codec, register_codec
# TODO (azouitine): Remove useless codecs
def protective_squeeze(x: numpy.ndarray):
"""
Squeeze dim only if it's not the last dim.
Image dim expected to be *, H, W, C
"""
img_shape = x.shape[-3:]
if len(x.shape) > 3:
n_imgs = numpy.prod(x.shape[:-3])
if n_imgs > 1:
img_shape = (-1,) + img_shape
return x.reshape(img_shape)
def get_default_image_compressor(**kwargs):
if imagecodecs.JPEGXL:
# has JPEGXL
this_kwargs = {
"effort": 3,
"distance": 0.3,
# bug in libjxl, invalid codestream for non-lossless
# when decoding speed > 1
"decodingspeed": 1,
}
this_kwargs.update(kwargs)
return JpegXl(**this_kwargs)
else:
this_kwargs = {"level": 50}
this_kwargs.update(kwargs)
return Jpeg2k(**this_kwargs)
class Jpeg2k(Codec):
"""JPEG 2000 codec for numcodecs."""
codec_id = "imagecodecs_jpeg2k"
def __init__(
self,
level=None,
codecformat=None,
colorspace=None,
tile=None,
reversible=None,
bitspersample=None,
resolutions=None,
numthreads=None,
verbose=0,
):
self.level = level
self.codecformat = codecformat
self.colorspace = colorspace
self.tile = None if tile is None else tuple(tile)
self.reversible = reversible
self.bitspersample = bitspersample
self.resolutions = resolutions
self.numthreads = numthreads
self.verbose = verbose
def encode(self, buf):
buf = protective_squeeze(numpy.asarray(buf))
return imagecodecs.jpeg2k_encode(
buf,
level=self.level,
codecformat=self.codecformat,
colorspace=self.colorspace,
tile=self.tile,
reversible=self.reversible,
bitspersample=self.bitspersample,
resolutions=self.resolutions,
numthreads=self.numthreads,
verbose=self.verbose,
)
def decode(self, buf, out=None):
return imagecodecs.jpeg2k_decode(buf, verbose=self.verbose, numthreads=self.numthreads, out=out)
class JpegXl(Codec):
"""JPEG XL codec for numcodecs."""
codec_id = "imagecodecs_jpegxl"
def __init__(
self,
# encode
level=None,
effort=None,
distance=None,
lossless=None,
decodingspeed=None,
photometric=None,
planar=None,
usecontainer=None,
# decode
index=None,
keeporientation=None,
# both
numthreads=None,
):
"""
Return JPEG XL image from numpy array.
Float must be in nominal range 0..1.
Currently L, LA, RGB, RGBA images are supported in contig mode.
Extra channels are only supported for grayscale images in planar mode.
Parameters
----------
level : Default to None, i.e. not overwriting lossess and decodingspeed options.
When < 0: Use lossless compression
When in [0,1,2,3,4]: Sets the decoding speed tier for the provided options.
Minimum is 0 (slowest to decode, best quality/density), and maximum
is 4 (fastest to decode, at the cost of some quality/density).
effort : Default to 3.
Sets encoder effort/speed level without affecting decoding speed.
Valid values are, from faster to slower speed: 1:lightning 2:thunder
3:falcon 4:cheetah 5:hare 6:wombat 7:squirrel 8:kitten 9:tortoise.
Speed: lightning, thunder, falcon, cheetah, hare, wombat, squirrel, kitten, tortoise
control the encoder effort in ascending order.
This also affects memory usage: using lower effort will typically reduce memory
consumption during encoding.
lightning and thunder are fast modes useful for lossless mode (modular).
falcon disables all of the following tools.
cheetah enables coefficient reordering, context clustering, and heuristics for selecting DCT sizes and quantization steps.
hare enables Gaborish filtering, chroma from luma, and an initial estimate of quantization steps.
wombat enables error diffusion quantization and full DCT size selection heuristics.
squirrel (default) enables dots, patches, and spline detection, and full context clustering.
kitten optimizes the adaptive quantization for a psychovisual metric.
tortoise enables a more thorough adaptive quantization search.
distance : Default to 1.0
Sets the distance level for lossy compression: target max butteraugli distance,
lower = higher quality. Range: 0 .. 15. 0.0 = mathematically lossless
(however, use JxlEncoderSetFrameLossless instead to use true lossless,
as setting distance to 0 alone is not the only requirement).
1.0 = visually lossless. Recommended range: 0.5 .. 3.0.
lossess : Default to False.
Use lossess encoding.
decodingspeed : Default to 0.
Duplicate to level. [0,4]
photometric : Return JxlColorSpace value.
Default logic is quite complicated but works most of the time.
Accepted value:
int: [-1,3]
str: ['RGB',
'WHITEISZERO', 'MINISWHITE',
'BLACKISZERO', 'MINISBLACK', 'GRAY',
'XYB', 'KNOWN']
planar : Enable multi-channel mode.
Default to false.
usecontainer :
Forces the encoder to use the box-based container format (BMFF)
even when not necessary.
When using JxlEncoderUseBoxes, JxlEncoderStoreJPEGMetadata or
JxlEncoderSetCodestreamLevel with level 10, the encoder will
automatically also use the container format, it is not necessary
to use JxlEncoderUseContainer for those use cases.
By default this setting is disabled.
index : Selectively decode frames for animation.
Default to 0, decode all frames.
When set to > 0, decode that frame index only.
keeporientation :
Enables or disables preserving of as-in-bitstream pixeldata orientation.
Some images are encoded with an Orientation tag indicating that the
decoder must perform a rotation and/or mirroring to the encoded image data.
If skip_reorientation is JXL_FALSE (the default): the decoder will apply
the transformation from the orientation setting, hence rendering the image
according to its specified intent. When producing a JxlBasicInfo, the decoder
will always set the orientation field to JXL_ORIENT_IDENTITY (matching the
returned pixel data) and also align xsize and ysize so that they correspond
to the width and the height of the returned pixel data.
If skip_reorientation is JXL_TRUE: the decoder will skip applying the
transformation from the orientation setting, returning the image in
the as-in-bitstream pixeldata orientation. This may be faster to decode
since the decoder doesnt have to apply the transformation, but can
cause wrong display of the image if the orientation tag is not correctly
taken into account by the user.
By default, this option is disabled, and the returned pixel data is
re-oriented according to the images Orientation setting.
threads : Default to 1.
If <= 0, use all cores.
If > 32, clipped to 32.
"""
self.level = level
self.effort = effort
self.distance = distance
self.lossless = bool(lossless)
self.decodingspeed = decodingspeed
self.photometric = photometric
self.planar = planar
self.usecontainer = usecontainer
self.index = index
self.keeporientation = keeporientation
self.numthreads = numthreads
def encode(self, buf):
# TODO: only squeeze all but last dim
buf = protective_squeeze(numpy.asarray(buf))
return imagecodecs.jpegxl_encode(
buf,
level=self.level,
effort=self.effort,
distance=self.distance,
lossless=self.lossless,
decodingspeed=self.decodingspeed,
photometric=self.photometric,
planar=self.planar,
usecontainer=self.usecontainer,
numthreads=self.numthreads,
)
def decode(self, buf, out=None):
return imagecodecs.jpegxl_decode(
buf,
index=self.index,
keeporientation=self.keeporientation,
numthreads=self.numthreads,
out=out,
)
def _flat(out):
"""Return numpy array as contiguous view of bytes if possible."""
if out is None:
return None
view = memoryview(out)
if view.readonly or not view.contiguous:
return None
return view.cast("B")
def register_codecs(codecs=None, force=False, verbose=True):
"""Register codecs in this module with numcodecs."""
for name, cls in globals().items():
if not hasattr(cls, "codec_id") or name == "Codec":
continue
if codecs is not None and cls.codec_id not in codecs:
continue
try:
try: # noqa: SIM105
get_codec({"id": cls.codec_id})
except TypeError:
# registered, but failed
pass
except ValueError:
# not registered yet
pass
else:
if not force:
if verbose:
log_warning(f"numcodec {cls.codec_id!r} already registered")
continue
if verbose:
log_warning(f"replacing registered numcodec {cls.codec_id!r}")
register_codec(cls)
def log_warning(msg, *args, **kwargs):
"""Log message with level WARNING."""
import logging
logging.getLogger(__name__).warning(msg, *args, **kwargs)

View File

@@ -1,214 +0,0 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Contains utilities to process raw data format of HDF5 files like in: https://github.com/tonyzhaozh/act
"""
import gc
import shutil
from pathlib import Path
import h5py
import numpy as np
import torch
import tqdm
from datasets import Dataset, Features, Image, Sequence, Value
from PIL import Image as PILImage
from lerobot.common.datasets.push_dataset_to_hub.utils import concatenate_episodes, save_images_concurrently
from lerobot.common.datasets.utils import (
hf_transform_to_torch,
)
from lerobot.common.datasets.video_utils import VideoFrame, encode_video_frames
def get_cameras(hdf5_data):
# ignore depth channel, not currently handled
# TODO(rcadene): add depth
rgb_cameras = [key for key in hdf5_data["/observations/images"].keys() if "depth" not in key] # noqa: SIM118
return rgb_cameras
def check_format(raw_dir) -> bool:
# only frames from simulation are uncompressed
compressed_images = "sim" not in raw_dir.name
hdf5_paths = list(raw_dir.glob("episode_*.hdf5"))
assert len(hdf5_paths) != 0
for hdf5_path in hdf5_paths:
with h5py.File(hdf5_path, "r") as data:
assert "/action" in data
assert "/observations/qpos" in data
assert data["/action"].ndim == 2
assert data["/observations/qpos"].ndim == 2
num_frames = data["/action"].shape[0]
assert num_frames == data["/observations/qpos"].shape[0]
for camera in get_cameras(data):
assert num_frames == data[f"/observations/images/{camera}"].shape[0]
if compressed_images:
assert data[f"/observations/images/{camera}"].ndim == 2
else:
assert data[f"/observations/images/{camera}"].ndim == 4
b, h, w, c = data[f"/observations/images/{camera}"].shape
assert c < h and c < w, f"Expect (h,w,c) image format but ({h=},{w=},{c=}) provided."
def load_from_raw(raw_dir, out_dir, fps, video, debug):
# only frames from simulation are uncompressed
compressed_images = "sim" not in raw_dir.name
hdf5_files = list(raw_dir.glob("*.hdf5"))
ep_dicts = []
episode_data_index = {"from": [], "to": []}
id_from = 0
for ep_idx, ep_path in tqdm.tqdm(enumerate(hdf5_files), total=len(hdf5_files)):
with h5py.File(ep_path, "r") as ep:
num_frames = ep["/action"].shape[0]
# last step of demonstration is considered done
done = torch.zeros(num_frames, dtype=torch.bool)
done[-1] = True
state = torch.from_numpy(ep["/observations/qpos"][:])
action = torch.from_numpy(ep["/action"][:])
if "/observations/qvel" in ep:
velocity = torch.from_numpy(ep["/observations/qvel"][:])
if "/observations/effort" in ep:
effort = torch.from_numpy(ep["/observations/effort"][:])
ep_dict = {}
for camera in get_cameras(ep):
img_key = f"observation.images.{camera}"
if compressed_images:
import cv2
# load one compressed image after the other in RAM and uncompress
imgs_array = []
for data in ep[f"/observations/images/{camera}"]:
imgs_array.append(cv2.imdecode(data, 1))
imgs_array = np.array(imgs_array)
else:
# load all images in RAM
imgs_array = ep[f"/observations/images/{camera}"][:]
if video:
# save png images in temporary directory
tmp_imgs_dir = out_dir / "tmp_images"
save_images_concurrently(imgs_array, tmp_imgs_dir)
# encode images to a mp4 video
fname = f"{img_key}_episode_{ep_idx:06d}.mp4"
video_path = out_dir / "videos" / fname
encode_video_frames(tmp_imgs_dir, video_path, fps)
# clean temporary images directory
shutil.rmtree(tmp_imgs_dir)
# store the reference to the video frame
ep_dict[img_key] = [
{"path": f"videos/{fname}", "timestamp": i / fps} for i in range(num_frames)
]
else:
ep_dict[img_key] = [PILImage.fromarray(x) for x in imgs_array]
ep_dict["observation.state"] = state
if "/observations/velocity" in ep:
ep_dict["observation.velocity"] = velocity
if "/observations/effort" in ep:
ep_dict["observation.effort"] = effort
ep_dict["action"] = action
ep_dict["episode_index"] = torch.tensor([ep_idx] * num_frames)
ep_dict["frame_index"] = torch.arange(0, num_frames, 1)
ep_dict["timestamp"] = torch.arange(0, num_frames, 1) / fps
ep_dict["next.done"] = done
# TODO(rcadene): add reward and success by computing them in sim
assert isinstance(ep_idx, int)
ep_dicts.append(ep_dict)
episode_data_index["from"].append(id_from)
episode_data_index["to"].append(id_from + num_frames)
id_from += num_frames
gc.collect()
# process first episode only
if debug:
break
data_dict = concatenate_episodes(ep_dicts)
return data_dict, episode_data_index
def to_hf_dataset(data_dict, video) -> Dataset:
features = {}
keys = [key for key in data_dict if "observation.images." in key]
for key in keys:
if video:
features[key] = VideoFrame()
else:
features[key] = Image()
features["observation.state"] = Sequence(
length=data_dict["observation.state"].shape[1], feature=Value(dtype="float32", id=None)
)
if "observation.velocity" in data_dict:
features["observation.velocity"] = Sequence(
length=data_dict["observation.velocity"].shape[1], feature=Value(dtype="float32", id=None)
)
if "observation.effort" in data_dict:
features["observation.effort"] = Sequence(
length=data_dict["observation.effort"].shape[1], feature=Value(dtype="float32", id=None)
)
features["action"] = Sequence(
length=data_dict["action"].shape[1], feature=Value(dtype="float32", id=None)
)
features["episode_index"] = Value(dtype="int64", id=None)
features["frame_index"] = Value(dtype="int64", id=None)
features["timestamp"] = Value(dtype="float32", id=None)
features["next.done"] = Value(dtype="bool", id=None)
features["index"] = Value(dtype="int64", id=None)
hf_dataset = Dataset.from_dict(data_dict, features=Features(features))
hf_dataset.set_transform(hf_transform_to_torch)
return hf_dataset
def from_raw_to_lerobot_format(raw_dir: Path, out_dir: Path, fps=None, video=True, debug=False):
# sanity check
check_format(raw_dir)
if fps is None:
fps = 50
data_dir, episode_data_index = load_from_raw(raw_dir, out_dir, fps, video, debug)
hf_dataset = to_hf_dataset(data_dir, video)
info = {
"fps": fps,
"video": video,
}
return hf_dataset, episode_data_index, info

View File

@@ -1,161 +0,0 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from copy import deepcopy
from math import ceil
import datasets
import einops
import torch
import tqdm
from datasets import Image
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.datasets.video_utils import VideoFrame
def get_stats_einops_patterns(dataset: LeRobotDataset | datasets.Dataset, num_workers=0):
"""These einops patterns will be used to aggregate batches and compute statistics.
Note: We assume the images are in channel first format
"""
dataloader = torch.utils.data.DataLoader(
dataset,
num_workers=num_workers,
batch_size=2,
shuffle=False,
)
batch = next(iter(dataloader))
stats_patterns = {}
for key, feats_type in dataset.features.items():
# sanity check that tensors are not float64
assert batch[key].dtype != torch.float64
if isinstance(feats_type, (VideoFrame, Image)):
# sanity check that images are channel first
_, c, h, w = batch[key].shape
assert c < h and c < w, f"expect channel first images, but instead {batch[key].shape}"
# sanity check that images are float32 in range [0,1]
assert batch[key].dtype == torch.float32, f"expect torch.float32, but instead {batch[key].dtype=}"
assert batch[key].max() <= 1, f"expect pixels lower than 1, but instead {batch[key].max()=}"
assert batch[key].min() >= 0, f"expect pixels greater than 1, but instead {batch[key].min()=}"
stats_patterns[key] = "b c h w -> c 1 1"
elif batch[key].ndim == 2:
stats_patterns[key] = "b c -> c "
elif batch[key].ndim == 1:
stats_patterns[key] = "b -> 1"
else:
raise ValueError(f"{key}, {feats_type}, {batch[key].shape}")
return stats_patterns
def compute_stats(
dataset: LeRobotDataset | datasets.Dataset, batch_size=32, num_workers=16, max_num_samples=None
):
if max_num_samples is None:
max_num_samples = len(dataset)
# for more info on why we need to set the same number of workers, see `load_from_videos`
stats_patterns = get_stats_einops_patterns(dataset, num_workers)
# mean and std will be computed incrementally while max and min will track the running value.
mean, std, max, min = {}, {}, {}, {}
for key in stats_patterns:
mean[key] = torch.tensor(0.0).float()
std[key] = torch.tensor(0.0).float()
max[key] = torch.tensor(-float("inf")).float()
min[key] = torch.tensor(float("inf")).float()
def create_seeded_dataloader(dataset, batch_size, seed):
generator = torch.Generator()
generator.manual_seed(seed)
dataloader = torch.utils.data.DataLoader(
dataset,
num_workers=num_workers,
batch_size=batch_size,
shuffle=True,
drop_last=False,
generator=generator,
)
return dataloader
# Note: Due to be refactored soon. The point of storing `first_batch` is to make sure we don't get
# surprises when rerunning the sampler.
first_batch = None
running_item_count = 0 # for online mean computation
dataloader = create_seeded_dataloader(dataset, batch_size, seed=1337)
for i, batch in enumerate(
tqdm.tqdm(dataloader, total=ceil(max_num_samples / batch_size), desc="Compute mean, min, max")
):
this_batch_size = len(batch["index"])
running_item_count += this_batch_size
if first_batch is None:
first_batch = deepcopy(batch)
for key, pattern in stats_patterns.items():
batch[key] = batch[key].float()
# Numerically stable update step for mean computation.
batch_mean = einops.reduce(batch[key], pattern, "mean")
# Hint: to update the mean we need x̄ₙ = (Nₙ₋₁x̄ₙ₋₁ + Bₙxₙ) / Nₙ, where the subscript represents
# the update step, N is the running item count, B is this batch size, x̄ is the running mean,
# and x is the current batch mean. Some rearrangement is then required to avoid risking
# numerical overflow. Another hint: Nₙ₋₁ = Nₙ - Bₙ. Rearrangement yields
# x̄ₙ = x̄ₙ₋₁ + Bₙ * (xₙ - x̄ₙ₋₁) / Nₙ
mean[key] = mean[key] + this_batch_size * (batch_mean - mean[key]) / running_item_count
max[key] = torch.maximum(max[key], einops.reduce(batch[key], pattern, "max"))
min[key] = torch.minimum(min[key], einops.reduce(batch[key], pattern, "min"))
if i == ceil(max_num_samples / batch_size) - 1:
break
first_batch_ = None
running_item_count = 0 # for online std computation
dataloader = create_seeded_dataloader(dataset, batch_size, seed=1337)
for i, batch in enumerate(
tqdm.tqdm(dataloader, total=ceil(max_num_samples / batch_size), desc="Compute std")
):
this_batch_size = len(batch["index"])
running_item_count += this_batch_size
# Sanity check to make sure the batches are still in the same order as before.
if first_batch_ is None:
first_batch_ = deepcopy(batch)
for key in stats_patterns:
assert torch.equal(first_batch_[key], first_batch[key])
for key, pattern in stats_patterns.items():
batch[key] = batch[key].float()
# Numerically stable update step for mean computation (where the mean is over squared
# residuals).See notes in the mean computation loop above.
batch_std = einops.reduce((batch[key] - mean[key]) ** 2, pattern, "mean")
std[key] = std[key] + this_batch_size * (batch_std - std[key]) / running_item_count
if i == ceil(max_num_samples / batch_size) - 1:
break
for key in stats_patterns:
std[key] = torch.sqrt(std[key])
stats = {}
for key in stats_patterns:
stats[key] = {
"mean": mean[key],
"std": std[key],
"max": max[key],
"min": min[key],
}
return stats

View File

@@ -1,229 +0,0 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Process zarr files formatted like in: https://github.com/real-stanford/diffusion_policy"""
import shutil
from pathlib import Path
import numpy as np
import torch
import tqdm
import zarr
from datasets import Dataset, Features, Image, Sequence, Value
from PIL import Image as PILImage
from lerobot.common.datasets.push_dataset_to_hub.utils import concatenate_episodes, save_images_concurrently
from lerobot.common.datasets.utils import (
hf_transform_to_torch,
)
from lerobot.common.datasets.video_utils import VideoFrame, encode_video_frames
def check_format(raw_dir):
zarr_path = raw_dir / "pusht_cchi_v7_replay.zarr"
zarr_data = zarr.open(zarr_path, mode="r")
required_datasets = {
"data/action",
"data/img",
"data/keypoint",
"data/n_contacts",
"data/state",
"meta/episode_ends",
}
for dataset in required_datasets:
assert dataset in zarr_data
nb_frames = zarr_data["data/img"].shape[0]
required_datasets.remove("meta/episode_ends")
assert all(nb_frames == zarr_data[dataset].shape[0] for dataset in required_datasets)
def load_from_raw(raw_dir, out_dir, fps, video, debug):
try:
import pymunk
from gym_pusht.envs.pusht import PushTEnv, pymunk_to_shapely
from lerobot.common.datasets.push_dataset_to_hub._diffusion_policy_replay_buffer import (
ReplayBuffer as DiffusionPolicyReplayBuffer,
)
except ModuleNotFoundError as e:
print("`gym_pusht` is not installed. Please install it with `pip install 'lerobot[gym_pusht]'`")
raise e
# as define in gmy-pusht env: https://github.com/huggingface/gym-pusht/blob/e0684ff988d223808c0a9dcfaba9dc4991791370/gym_pusht/envs/pusht.py#L174
success_threshold = 0.95 # 95% coverage,
zarr_path = raw_dir / "pusht_cchi_v7_replay.zarr"
zarr_data = DiffusionPolicyReplayBuffer.copy_from_path(zarr_path)
episode_ids = torch.from_numpy(zarr_data.get_episode_idxs())
num_episodes = zarr_data.meta["episode_ends"].shape[0]
assert len(
{zarr_data[key].shape[0] for key in zarr_data.keys()} # noqa: SIM118
), "Some data type dont have the same number of total frames."
# TODO(rcadene): verify that goal pose is expected to be fixed
goal_pos_angle = np.array([256, 256, np.pi / 4]) # x, y, theta (in radians)
goal_body = PushTEnv.get_goal_pose_body(goal_pos_angle)
imgs = torch.from_numpy(zarr_data["img"]) # b h w c
states = torch.from_numpy(zarr_data["state"])
actions = torch.from_numpy(zarr_data["action"])
ep_dicts = []
episode_data_index = {"from": [], "to": []}
id_from = 0
for ep_idx in tqdm.tqdm(range(num_episodes)):
id_to = zarr_data.meta["episode_ends"][ep_idx]
num_frames = id_to - id_from
# sanity check
assert (episode_ids[id_from:id_to] == ep_idx).all()
# get image
image = imgs[id_from:id_to]
assert image.min() >= 0.0
assert image.max() <= 255.0
image = image.type(torch.uint8)
# get state
state = states[id_from:id_to]
agent_pos = state[:, :2]
block_pos = state[:, 2:4]
block_angle = state[:, 4]
# get reward, success, done
reward = torch.zeros(num_frames)
success = torch.zeros(num_frames, dtype=torch.bool)
done = torch.zeros(num_frames, dtype=torch.bool)
for i in range(num_frames):
space = pymunk.Space()
space.gravity = 0, 0
space.damping = 0
# Add walls.
walls = [
PushTEnv.add_segment(space, (5, 506), (5, 5), 2),
PushTEnv.add_segment(space, (5, 5), (506, 5), 2),
PushTEnv.add_segment(space, (506, 5), (506, 506), 2),
PushTEnv.add_segment(space, (5, 506), (506, 506), 2),
]
space.add(*walls)
block_body = PushTEnv.add_tee(space, block_pos[i].tolist(), block_angle[i].item())
goal_geom = pymunk_to_shapely(goal_body, block_body.shapes)
block_geom = pymunk_to_shapely(block_body, block_body.shapes)
intersection_area = goal_geom.intersection(block_geom).area
goal_area = goal_geom.area
coverage = intersection_area / goal_area
reward[i] = np.clip(coverage / success_threshold, 0, 1)
success[i] = coverage > success_threshold
# last step of demonstration is considered done
done[-1] = True
ep_dict = {}
imgs_array = [x.numpy() for x in image]
img_key = "observation.image"
if video:
# save png images in temporary directory
tmp_imgs_dir = out_dir / "tmp_images"
save_images_concurrently(imgs_array, tmp_imgs_dir)
# encode images to a mp4 video
fname = f"{img_key}_episode_{ep_idx:06d}.mp4"
video_path = out_dir / "videos" / fname
encode_video_frames(tmp_imgs_dir, video_path, fps)
# clean temporary images directory
shutil.rmtree(tmp_imgs_dir)
# store the reference to the video frame
ep_dict[img_key] = [{"path": f"videos/{fname}", "timestamp": i / fps} for i in range(num_frames)]
else:
ep_dict[img_key] = [PILImage.fromarray(x) for x in imgs_array]
ep_dict["observation.state"] = agent_pos
ep_dict["action"] = actions[id_from:id_to]
ep_dict["episode_index"] = torch.tensor([ep_idx] * num_frames, dtype=torch.int64)
ep_dict["frame_index"] = torch.arange(0, num_frames, 1)
ep_dict["timestamp"] = torch.arange(0, num_frames, 1) / fps
# ep_dict["next.observation.image"] = image[1:],
# ep_dict["next.observation.state"] = agent_pos[1:],
# TODO(rcadene)] = verify that reward and done are aligned with image and agent_pos
ep_dict["next.reward"] = torch.cat([reward[1:], reward[[-1]]])
ep_dict["next.done"] = torch.cat([done[1:], done[[-1]]])
ep_dict["next.success"] = torch.cat([success[1:], success[[-1]]])
ep_dicts.append(ep_dict)
episode_data_index["from"].append(id_from)
episode_data_index["to"].append(id_from + num_frames)
id_from += num_frames
# process first episode only
if debug:
break
data_dict = concatenate_episodes(ep_dicts)
return data_dict, episode_data_index
def to_hf_dataset(data_dict, video):
features = {}
if video:
features["observation.image"] = VideoFrame()
else:
features["observation.image"] = Image()
features["observation.state"] = Sequence(
length=data_dict["observation.state"].shape[1], feature=Value(dtype="float32", id=None)
)
features["action"] = Sequence(
length=data_dict["action"].shape[1], feature=Value(dtype="float32", id=None)
)
features["episode_index"] = Value(dtype="int64", id=None)
features["frame_index"] = Value(dtype="int64", id=None)
features["timestamp"] = Value(dtype="float32", id=None)
features["next.reward"] = Value(dtype="float32", id=None)
features["next.done"] = Value(dtype="bool", id=None)
features["next.success"] = Value(dtype="bool", id=None)
features["index"] = Value(dtype="int64", id=None)
hf_dataset = Dataset.from_dict(data_dict, features=Features(features))
hf_dataset.set_transform(hf_transform_to_torch)
return hf_dataset
def from_raw_to_lerobot_format(raw_dir: Path, out_dir: Path, fps=None, video=True, debug=False):
# sanity check
check_format(raw_dir)
if fps is None:
fps = 10
data_dict, episode_data_index = load_from_raw(raw_dir, out_dir, fps, video, debug)
hf_dataset = to_hf_dataset(data_dict, video)
info = {
"fps": fps,
"video": video,
}
return hf_dataset, episode_data_index, info

View File

@@ -1,222 +0,0 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Process UMI (Universal Manipulation Interface) data stored in Zarr format like in: https://github.com/real-stanford/universal_manipulation_interface"""
import logging
import shutil
from pathlib import Path
import numpy as np
import torch
import tqdm
import zarr
from datasets import Dataset, Features, Image, Sequence, Value
from PIL import Image as PILImage
from lerobot.common.datasets.push_dataset_to_hub._umi_imagecodecs_numcodecs import register_codecs
from lerobot.common.datasets.push_dataset_to_hub.utils import concatenate_episodes, save_images_concurrently
from lerobot.common.datasets.utils import (
hf_transform_to_torch,
)
from lerobot.common.datasets.video_utils import VideoFrame, encode_video_frames
def check_format(raw_dir) -> bool:
zarr_path = raw_dir / "cup_in_the_wild.zarr"
zarr_data = zarr.open(zarr_path, mode="r")
required_datasets = {
"data/robot0_demo_end_pose",
"data/robot0_demo_start_pose",
"data/robot0_eef_pos",
"data/robot0_eef_rot_axis_angle",
"data/robot0_gripper_width",
"meta/episode_ends",
"data/camera0_rgb",
}
for dataset in required_datasets:
if dataset not in zarr_data:
return False
# mandatory to access zarr_data
register_codecs()
nb_frames = zarr_data["data/camera0_rgb"].shape[0]
required_datasets.remove("meta/episode_ends")
assert all(nb_frames == zarr_data[dataset].shape[0] for dataset in required_datasets)
def get_episode_idxs(episode_ends: np.ndarray) -> np.ndarray:
# Optimized and simplified version of this function: https://github.com/real-stanford/universal_manipulation_interface/blob/298776ce251f33b6b3185a98d6e7d1f9ad49168b/diffusion_policy/common/replay_buffer.py#L374
from numba import jit
@jit(nopython=True)
def _get_episode_idxs(episode_ends):
result = np.zeros((episode_ends[-1],), dtype=np.int64)
start_idx = 0
for episode_number, end_idx in enumerate(episode_ends):
result[start_idx:end_idx] = episode_number
start_idx = end_idx
return result
return _get_episode_idxs(episode_ends)
def load_from_raw(raw_dir, out_dir, fps, video, debug):
zarr_path = raw_dir / "cup_in_the_wild.zarr"
zarr_data = zarr.open(zarr_path, mode="r")
# We process the image data separately because it is too large to fit in memory
end_pose = torch.from_numpy(zarr_data["data/robot0_demo_end_pose"][:])
start_pos = torch.from_numpy(zarr_data["data/robot0_demo_start_pose"][:])
eff_pos = torch.from_numpy(zarr_data["data/robot0_eef_pos"][:])
eff_rot_axis_angle = torch.from_numpy(zarr_data["data/robot0_eef_rot_axis_angle"][:])
gripper_width = torch.from_numpy(zarr_data["data/robot0_gripper_width"][:])
states_pos = torch.cat([eff_pos, eff_rot_axis_angle], dim=1)
states = torch.cat([states_pos, gripper_width], dim=1)
episode_ends = zarr_data["meta/episode_ends"][:]
num_episodes = episode_ends.shape[0]
episode_ids = torch.from_numpy(get_episode_idxs(episode_ends))
# We convert it in torch tensor later because the jit function does not support torch tensors
episode_ends = torch.from_numpy(episode_ends)
ep_dicts = []
episode_data_index = {"from": [], "to": []}
id_from = 0
for ep_idx in tqdm.tqdm(range(num_episodes)):
id_to = episode_ends[ep_idx]
num_frames = id_to - id_from
# sanity heck
assert (episode_ids[id_from:id_to] == ep_idx).all()
# TODO(rcadene): save temporary images of the episode?
state = states[id_from:id_to]
ep_dict = {}
# load 57MB of images in RAM (400x224x224x3 uint8)
imgs_array = zarr_data["data/camera0_rgb"][id_from:id_to]
img_key = "observation.image"
if video:
# save png images in temporary directory
tmp_imgs_dir = out_dir / "tmp_images"
save_images_concurrently(imgs_array, tmp_imgs_dir)
# encode images to a mp4 video
fname = f"{img_key}_episode_{ep_idx:06d}.mp4"
video_path = out_dir / "videos" / fname
encode_video_frames(tmp_imgs_dir, video_path, fps)
# clean temporary images directory
shutil.rmtree(tmp_imgs_dir)
# store the reference to the video frame
ep_dict[img_key] = [{"path": f"videos/{fname}", "timestamp": i / fps} for i in range(num_frames)]
else:
ep_dict[img_key] = [PILImage.fromarray(x) for x in imgs_array]
ep_dict["observation.state"] = state
ep_dict["episode_index"] = torch.tensor([ep_idx] * num_frames, dtype=torch.int64)
ep_dict["frame_index"] = torch.arange(0, num_frames, 1)
ep_dict["timestamp"] = torch.arange(0, num_frames, 1) / fps
ep_dict["episode_data_index_from"] = torch.tensor([id_from] * num_frames)
ep_dict["episode_data_index_to"] = torch.tensor([id_from + num_frames] * num_frames)
ep_dict["end_pose"] = end_pose[id_from:id_to]
ep_dict["start_pos"] = start_pos[id_from:id_to]
ep_dict["gripper_width"] = gripper_width[id_from:id_to]
ep_dicts.append(ep_dict)
episode_data_index["from"].append(id_from)
episode_data_index["to"].append(id_from + num_frames)
id_from += num_frames
# process first episode only
if debug:
break
data_dict = concatenate_episodes(ep_dicts)
total_frames = id_from
data_dict["index"] = torch.arange(0, total_frames, 1)
return data_dict, episode_data_index
def to_hf_dataset(data_dict, video):
features = {}
if video:
features["observation.image"] = VideoFrame()
else:
features["observation.image"] = Image()
features["observation.state"] = Sequence(
length=data_dict["observation.state"].shape[1], feature=Value(dtype="float32", id=None)
)
features["episode_index"] = Value(dtype="int64", id=None)
features["frame_index"] = Value(dtype="int64", id=None)
features["timestamp"] = Value(dtype="float32", id=None)
features["index"] = Value(dtype="int64", id=None)
features["episode_data_index_from"] = Value(dtype="int64", id=None)
features["episode_data_index_to"] = Value(dtype="int64", id=None)
# `start_pos` and `end_pos` respectively represent the positions of the end-effector
# at the beginning and the end of the episode.
# `gripper_width` indicates the distance between the grippers, and this value is included
# in the state vector, which comprises the concatenation of the end-effector position
# and gripper width.
features["end_pose"] = Sequence(
length=data_dict["end_pose"].shape[1], feature=Value(dtype="float32", id=None)
)
features["start_pos"] = Sequence(
length=data_dict["start_pos"].shape[1], feature=Value(dtype="float32", id=None)
)
features["gripper_width"] = Sequence(
length=data_dict["gripper_width"].shape[1], feature=Value(dtype="float32", id=None)
)
hf_dataset = Dataset.from_dict(data_dict, features=Features(features))
hf_dataset.set_transform(hf_transform_to_torch)
return hf_dataset
def from_raw_to_lerobot_format(raw_dir: Path, out_dir: Path, fps=None, video=True, debug=False):
# sanity check
check_format(raw_dir)
if fps is None:
# For umi cup in the wild: https://arxiv.org/pdf/2402.10329#table.caption.16
fps = 10
if not video:
logging.warning(
"Generating UMI dataset without `video=True` creates ~150GB on disk and requires ~80GB in RAM."
)
data_dict, episode_data_index = load_from_raw(raw_dir, out_dir, fps, video, debug)
hf_dataset = to_hf_dataset(data_dict, video)
info = {
"fps": fps,
"video": video,
}
return hf_dataset, episode_data_index, info

View File

@@ -1,53 +0,0 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from concurrent.futures import ThreadPoolExecutor
from pathlib import Path
import numpy
import PIL
import torch
def concatenate_episodes(ep_dicts):
data_dict = {}
keys = ep_dicts[0].keys()
for key in keys:
if torch.is_tensor(ep_dicts[0][key][0]):
data_dict[key] = torch.cat([ep_dict[key] for ep_dict in ep_dicts])
else:
if key not in data_dict:
data_dict[key] = []
for ep_dict in ep_dicts:
for x in ep_dict[key]:
data_dict[key].append(x)
total_frames = data_dict["frame_index"].shape[0]
data_dict["index"] = torch.arange(0, total_frames, 1)
return data_dict
def save_images_concurrently(imgs_array: numpy.array, out_dir: Path, max_workers: int = 4):
out_dir = Path(out_dir)
out_dir.mkdir(parents=True, exist_ok=True)
def save_image(img_array, i, out_dir):
img = PIL.Image.fromarray(img_array)
img.save(str(out_dir / f"frame_{i:06d}.png"), quality=100)
num_images = len(imgs_array)
with ThreadPoolExecutor(max_workers=max_workers) as executor:
[executor.submit(save_image, imgs_array[i], i, out_dir) for i in range(num_images)]

View File

@@ -1,178 +0,0 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Process pickle files formatted like in: https://github.com/fyhMer/fowm"""
import pickle
import shutil
from pathlib import Path
import einops
import torch
import tqdm
from datasets import Dataset, Features, Image, Sequence, Value
from PIL import Image as PILImage
from lerobot.common.datasets.push_dataset_to_hub.utils import concatenate_episodes, save_images_concurrently
from lerobot.common.datasets.utils import (
hf_transform_to_torch,
)
from lerobot.common.datasets.video_utils import VideoFrame, encode_video_frames
def check_format(raw_dir):
keys = {"actions", "rewards", "dones"}
nested_keys = {"observations": {"rgb", "state"}, "next_observations": {"rgb", "state"}}
xarm_files = list(raw_dir.glob("*.pkl"))
assert len(xarm_files) > 0
with open(xarm_files[0], "rb") as f:
dataset_dict = pickle.load(f)
assert isinstance(dataset_dict, dict)
assert all(k in dataset_dict for k in keys)
# Check for consistent lengths in nested keys
expected_len = len(dataset_dict["actions"])
assert all(len(dataset_dict[key]) == expected_len for key in keys if key in dataset_dict)
for key, subkeys in nested_keys.items():
nested_dict = dataset_dict.get(key, {})
assert all(len(nested_dict[subkey]) == expected_len for subkey in subkeys if subkey in nested_dict)
def load_from_raw(raw_dir, out_dir, fps, video, debug):
pkl_path = raw_dir / "buffer.pkl"
with open(pkl_path, "rb") as f:
pkl_data = pickle.load(f)
ep_dicts = []
episode_data_index = {"from": [], "to": []}
id_from = 0
id_to = 0
ep_idx = 0
total_frames = pkl_data["actions"].shape[0]
for i in tqdm.tqdm(range(total_frames)):
id_to += 1
if not pkl_data["dones"][i]:
continue
num_frames = id_to - id_from
image = torch.tensor(pkl_data["observations"]["rgb"][id_from:id_to])
image = einops.rearrange(image, "b c h w -> b h w c")
state = torch.tensor(pkl_data["observations"]["state"][id_from:id_to])
action = torch.tensor(pkl_data["actions"][id_from:id_to])
# TODO(rcadene): we have a missing last frame which is the observation when the env is done
# it is critical to have this frame for tdmpc to predict a "done observation/state"
# next_image = torch.tensor(pkl_data["next_observations"]["rgb"][id_from:id_to])
# next_state = torch.tensor(pkl_data["next_observations"]["state"][id_from:id_to])
next_reward = torch.tensor(pkl_data["rewards"][id_from:id_to])
next_done = torch.tensor(pkl_data["dones"][id_from:id_to])
ep_dict = {}
imgs_array = [x.numpy() for x in image]
img_key = "observation.image"
if video:
# save png images in temporary directory
tmp_imgs_dir = out_dir / "tmp_images"
save_images_concurrently(imgs_array, tmp_imgs_dir)
# encode images to a mp4 video
fname = f"{img_key}_episode_{ep_idx:06d}.mp4"
video_path = out_dir / "videos" / fname
encode_video_frames(tmp_imgs_dir, video_path, fps)
# clean temporary images directory
shutil.rmtree(tmp_imgs_dir)
# store the reference to the video frame
ep_dict[img_key] = [{"path": f"videos/{fname}", "timestamp": i / fps} for i in range(num_frames)]
else:
ep_dict[img_key] = [PILImage.fromarray(x) for x in imgs_array]
ep_dict["observation.state"] = state
ep_dict["action"] = action
ep_dict["episode_index"] = torch.tensor([ep_idx] * num_frames, dtype=torch.int64)
ep_dict["frame_index"] = torch.arange(0, num_frames, 1)
ep_dict["timestamp"] = torch.arange(0, num_frames, 1) / fps
# ep_dict["next.observation.image"] = next_image
# ep_dict["next.observation.state"] = next_state
ep_dict["next.reward"] = next_reward
ep_dict["next.done"] = next_done
ep_dicts.append(ep_dict)
episode_data_index["from"].append(id_from)
episode_data_index["to"].append(id_from + num_frames)
id_from = id_to
ep_idx += 1
# process first episode only
if debug:
break
data_dict = concatenate_episodes(ep_dicts)
return data_dict, episode_data_index
def to_hf_dataset(data_dict, video):
features = {}
if video:
features["observation.image"] = VideoFrame()
else:
features["observation.image"] = Image()
features["observation.state"] = Sequence(
length=data_dict["observation.state"].shape[1], feature=Value(dtype="float32", id=None)
)
features["action"] = Sequence(
length=data_dict["action"].shape[1], feature=Value(dtype="float32", id=None)
)
features["episode_index"] = Value(dtype="int64", id=None)
features["frame_index"] = Value(dtype="int64", id=None)
features["timestamp"] = Value(dtype="float32", id=None)
features["next.reward"] = Value(dtype="float32", id=None)
features["next.done"] = Value(dtype="bool", id=None)
features["index"] = Value(dtype="int64", id=None)
# TODO(rcadene): add success
# features["next.success"] = Value(dtype='bool', id=None)
hf_dataset = Dataset.from_dict(data_dict, features=Features(features))
hf_dataset.set_transform(hf_transform_to_torch)
return hf_dataset
def from_raw_to_lerobot_format(raw_dir: Path, out_dir: Path, fps=None, video=True, debug=False):
# sanity check
check_format(raw_dir)
if fps is None:
fps = 15
data_dict, episode_data_index = load_from_raw(raw_dir, out_dir, fps, video, debug)
hf_dataset = to_hf_dataset(data_dict, video)
info = {
"fps": fps,
"video": video,
}
return hf_dataset, episode_data_index, info

View File

@@ -1,27 +1,14 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import re
from copy import deepcopy
from math import ceil
from pathlib import Path
from typing import Dict
import datasets
import einops
import torch
from datasets import load_dataset, load_from_disk
from huggingface_hub import hf_hub_download, snapshot_download
import tqdm
from datasets import Image, load_dataset, load_from_disk
from huggingface_hub import hf_hub_download
from PIL import Image as PILImage
from safetensors.torch import load_file
from torchvision import transforms
@@ -70,9 +57,6 @@ def hf_transform_to_torch(items_dict):
if isinstance(first_item, PILImage.Image):
to_tensor = transforms.ToTensor()
items_dict[key] = [to_tensor(img) for img in items_dict[key]]
elif isinstance(first_item, dict) and "path" in first_item and "timestamp" in first_item:
# video frame will be processed downstream
pass
else:
items_dict[key] = [torch.tensor(x) for x in items_dict[key]]
return items_dict
@@ -81,23 +65,7 @@ def hf_transform_to_torch(items_dict):
def load_hf_dataset(repo_id, version, root, split) -> datasets.Dataset:
"""hf_dataset contains all the observations, states, actions, rewards, etc."""
if root is not None:
hf_dataset = load_from_disk(str(Path(root) / repo_id / "train"))
# TODO(rcadene): clean this which enables getting a subset of dataset
if split != "train":
if "%" in split:
raise NotImplementedError(f"We dont support splitting based on percentage for now ({split}).")
match_from = re.search(r"train\[(\d+):\]", split)
match_to = re.search(r"train\[:(\d+)\]", split)
if match_from:
from_frame_index = int(match_from.group(1))
hf_dataset = hf_dataset.select(range(from_frame_index, len(hf_dataset)))
elif match_to:
to_frame_index = int(match_to.group(1))
hf_dataset = hf_dataset.select(range(to_frame_index))
else:
raise ValueError(
f'`split` ({split}) should either be "train", "train[INT:]", or "train[:INT]"'
)
hf_dataset = load_from_disk(str(Path(root) / repo_id / split))
else:
hf_dataset = load_dataset(repo_id, revision=version, split=split)
hf_dataset.set_transform(hf_transform_to_torch)
@@ -159,29 +127,17 @@ def load_info(repo_id, version, root) -> dict:
return info
def load_videos(repo_id, version, root) -> Path:
if root is not None:
path = Path(root) / repo_id / "videos"
else:
# TODO(rcadene): we download the whole repo here. see if we can avoid this
repo_dir = snapshot_download(repo_id, repo_type="dataset", revision=version)
path = Path(repo_dir) / "videos"
return path
def load_previous_and_future_frames(
item: dict[str, torch.Tensor],
hf_dataset: datasets.Dataset,
episode_data_index: dict[str, torch.Tensor],
delta_timestamps: dict[str, list[float]],
tolerance_s: float,
tol: float,
) -> dict[torch.Tensor]:
"""
Given a current item in the dataset containing a timestamp (e.g. 0.6 seconds), and a list of time differences of
some modalities (e.g. delta_timestamps={"observation.image": [-0.8, -0.2, 0, 0.2]}), this function computes for each
given modality (e.g. "observation.image") a list of query timestamps (e.g. [-0.2, 0.4, 0.6, 0.8]) and loads the closest
frames in the dataset.
given modality a list of query timestamps (e.g. [-0.2, 0.4, 0.6, 0.8]) and loads the closest frames in the dataset.
Importantly, when no frame can be found around a query timestamp within a specified tolerance window, this function
raises an AssertionError. When a timestamp is queried before the first available timestamp of the episode or after
@@ -200,7 +156,7 @@ def load_previous_and_future_frames(
They indicate the start index and end index of each episode in the dataset.
- delta_timestamps (dict): A dictionary containing lists of delta timestamps for each possible modality to be
retrieved. These deltas are added to the item timestamp to form the query timestamps.
- tolerance_s (float, optional): The tolerance level (in seconds) used to determine if a data point is close enough to the query
- tol (float, optional): The tolerance level used to determine if a data point is close enough to the query
timestamp by asserting `tol > difference`. It is suggested to set `tol` to a smaller value than the
smallest expected inter-frame period, but large enough to account for jitter.
@@ -238,11 +194,11 @@ def load_previous_and_future_frames(
# TODO(rcadene): synchronize timestamps + interpolation if needed
is_pad = min_ > tolerance_s
is_pad = min_ > tol
# check violated query timestamps are all outside the episode range
assert ((query_ts[is_pad] < ep_first_ts) | (ep_last_ts < query_ts[is_pad])).all(), (
f"One or several timestamps unexpectedly violate the tolerance ({min_} > {tolerance_s=}) inside episode range."
f"One or several timestamps unexpectedly violate the tolerance ({min_} > {tol=}) inside episode range."
"This might be due to synchronization issues with timestamps during data collection."
)
@@ -251,94 +207,143 @@ def load_previous_and_future_frames(
# load frames modality
item[key] = hf_dataset.select_columns(key)[data_ids][key]
if isinstance(item[key][0], dict) and "path" in item[key][0]:
# video mode where frame are expressed as dict of path and timestamp
item[key] = item[key]
else:
item[key] = torch.stack(item[key])
item[key] = torch.stack(item[key])
item[f"{key}_is_pad"] = is_pad
return item
def calculate_episode_data_index(hf_dataset: datasets.Dataset) -> Dict[str, torch.Tensor]:
"""
Calculate episode data index for the provided HuggingFace Dataset. Relies on episode_index column of hf_dataset.
def get_stats_einops_patterns(hf_dataset):
"""These einops patterns will be used to aggregate batches and compute statistics.
Parameters:
- hf_dataset (datasets.Dataset): A HuggingFace dataset containing the episode index.
Returns:
- episode_data_index: A dictionary containing the data index for each episode. The dictionary has two keys:
- "from": A tensor containing the starting index of each episode.
- "to": A tensor containing the ending index of each episode.
Note: We assume the images of `hf_dataset` are in channel first format
"""
episode_data_index = {"from": [], "to": []}
current_episode = None
"""
The episode_index is a list of integers, each representing the episode index of the corresponding example.
For instance, the following is a valid episode_index:
[0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2]
dataloader = torch.utils.data.DataLoader(
hf_dataset,
num_workers=0,
batch_size=2,
shuffle=False,
)
batch = next(iter(dataloader))
Below, we iterate through the episode_index and populate the episode_data_index dictionary with the starting and
ending index of each episode. For the episode_index above, the episode_data_index dictionary will look like this:
{
"from": [0, 3, 7],
"to": [3, 7, 12]
}
"""
if len(hf_dataset) == 0:
episode_data_index = {
"from": torch.tensor([]),
"to": torch.tensor([]),
}
return episode_data_index
for idx, episode_idx in enumerate(hf_dataset["episode_index"]):
if episode_idx != current_episode:
# We encountered a new episode, so we append its starting location to the "from" list
episode_data_index["from"].append(idx)
# If this is not the first episode, we append the ending location of the previous episode to the "to" list
if current_episode is not None:
episode_data_index["to"].append(idx)
# Let's keep track of the current episode index
current_episode = episode_idx
stats_patterns = {}
for key, feats_type in hf_dataset.features.items():
# sanity check that tensors are not float64
assert batch[key].dtype != torch.float64
if isinstance(feats_type, Image):
# sanity check that images are channel first
_, c, h, w = batch[key].shape
assert c < h and c < w, f"expect channel first images, but instead {batch[key].shape}"
# sanity check that images are float32 in range [0,1]
assert batch[key].dtype == torch.float32, f"expect torch.float32, but instead {batch[key].dtype=}"
assert batch[key].max() <= 1, f"expect pixels lower than 1, but instead {batch[key].max()=}"
assert batch[key].min() >= 0, f"expect pixels greater than 1, but instead {batch[key].min()=}"
stats_patterns[key] = "b c h w -> c 1 1"
elif batch[key].ndim == 2:
stats_patterns[key] = "b c -> c "
elif batch[key].ndim == 1:
stats_patterns[key] = "b -> 1"
else:
# We are still in the same episode, so there is nothing for us to do here
pass
# We have reached the end of the dataset, so we append the ending location of the last episode to the "to" list
episode_data_index["to"].append(idx + 1)
raise ValueError(f"{key}, {feats_type}, {batch[key].shape}")
for k in ["from", "to"]:
episode_data_index[k] = torch.tensor(episode_data_index[k])
return episode_data_index
return stats_patterns
def reset_episode_index(hf_dataset: datasets.Dataset) -> datasets.Dataset:
"""
Reset the `episode_index` of the provided HuggingFace Dataset.
def compute_stats(hf_dataset, batch_size=32, max_num_samples=None):
if max_num_samples is None:
max_num_samples = len(hf_dataset)
`episode_data_index` (and related functionality such as `load_previous_and_future_frames`) requires the
`episode_index` to be sorted, continuous (1,1,1 and not 1,2,1) and start at 0.
stats_patterns = get_stats_einops_patterns(hf_dataset)
This brings the `episode_index` to the required format.
"""
if len(hf_dataset) == 0:
return hf_dataset
unique_episode_idxs = torch.stack(hf_dataset["episode_index"]).unique().tolist()
episode_idx_to_reset_idx_mapping = {
ep_id: reset_ep_id for reset_ep_id, ep_id in enumerate(unique_episode_idxs)
}
# mean and std will be computed incrementally while max and min will track the running value.
mean, std, max, min = {}, {}, {}, {}
for key in stats_patterns:
mean[key] = torch.tensor(0.0).float()
std[key] = torch.tensor(0.0).float()
max[key] = torch.tensor(-float("inf")).float()
min[key] = torch.tensor(float("inf")).float()
def modify_ep_idx_func(example):
example["episode_index"] = episode_idx_to_reset_idx_mapping[example["episode_index"].item()]
return example
def create_seeded_dataloader(hf_dataset, batch_size, seed):
generator = torch.Generator()
generator.manual_seed(seed)
dataloader = torch.utils.data.DataLoader(
hf_dataset,
num_workers=4,
batch_size=batch_size,
shuffle=True,
drop_last=False,
generator=generator,
)
return dataloader
hf_dataset = hf_dataset.map(modify_ep_idx_func)
return hf_dataset
# Note: Due to be refactored soon. The point of storing `first_batch` is to make sure we don't get
# surprises when rerunning the sampler.
first_batch = None
running_item_count = 0 # for online mean computation
dataloader = create_seeded_dataloader(hf_dataset, batch_size, seed=1337)
for i, batch in enumerate(
tqdm.tqdm(dataloader, total=ceil(max_num_samples / batch_size), desc="Compute mean, min, max")
):
this_batch_size = len(batch["index"])
running_item_count += this_batch_size
if first_batch is None:
first_batch = deepcopy(batch)
for key, pattern in stats_patterns.items():
batch[key] = batch[key].float()
# Numerically stable update step for mean computation.
batch_mean = einops.reduce(batch[key], pattern, "mean")
# Hint: to update the mean we need x̄ₙ = (Nₙ₋₁x̄ₙ₋₁ + Bₙxₙ) / Nₙ, where the subscript represents
# the update step, N is the running item count, B is this batch size, x̄ is the running mean,
# and x is the current batch mean. Some rearrangement is then required to avoid risking
# numerical overflow. Another hint: Nₙ₋₁ = Nₙ - Bₙ. Rearrangement yields
# x̄ₙ = x̄ₙ₋₁ + Bₙ * (xₙ - x̄ₙ₋₁) / Nₙ
mean[key] = mean[key] + this_batch_size * (batch_mean - mean[key]) / running_item_count
max[key] = torch.maximum(max[key], einops.reduce(batch[key], pattern, "max"))
min[key] = torch.minimum(min[key], einops.reduce(batch[key], pattern, "min"))
if i == ceil(max_num_samples / batch_size) - 1:
break
first_batch_ = None
running_item_count = 0 # for online std computation
dataloader = create_seeded_dataloader(hf_dataset, batch_size, seed=1337)
for i, batch in enumerate(
tqdm.tqdm(dataloader, total=ceil(max_num_samples / batch_size), desc="Compute std")
):
this_batch_size = len(batch["index"])
running_item_count += this_batch_size
# Sanity check to make sure the batches are still in the same order as before.
if first_batch_ is None:
first_batch_ = deepcopy(batch)
for key in stats_patterns:
assert torch.equal(first_batch_[key], first_batch[key])
for key, pattern in stats_patterns.items():
batch[key] = batch[key].float()
# Numerically stable update step for mean computation (where the mean is over squared
# residuals).See notes in the mean computation loop above.
batch_std = einops.reduce((batch[key] - mean[key]) ** 2, pattern, "mean")
std[key] = std[key] + this_batch_size * (batch_std - std[key]) / running_item_count
if i == ceil(max_num_samples / batch_size) - 1:
break
for key in stats_patterns:
std[key] = torch.sqrt(std[key])
stats = {}
for key in stats_patterns:
stats[key] = {
"mean": mean[key],
"std": std[key],
"max": max[key],
"min": min[key],
}
return stats
def cycle(iterable):

View File

@@ -1,202 +0,0 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import subprocess
import warnings
from dataclasses import dataclass, field
from pathlib import Path
from typing import Any, ClassVar
import pyarrow as pa
import torch
import torchvision
from datasets.features.features import register_feature
def load_from_videos(
item: dict[str, torch.Tensor], video_frame_keys: list[str], videos_dir: Path, tolerance_s: float
):
"""Note: When using data workers (e.g. DataLoader with num_workers>0), do not call this function
in the main process (e.g. by using a second Dataloader with num_workers=0). It will result in a Segmentation Fault.
This probably happens because a memory reference to the video loader is created in the main process and a
subprocess fails to access it.
"""
# since video path already contains "videos" (e.g. videos_dir="data/videos", path="videos/episode_0.mp4")
data_dir = videos_dir.parent
for key in video_frame_keys:
if isinstance(item[key], list):
# load multiple frames at once (expected when delta_timestamps is not None)
timestamps = [frame["timestamp"] for frame in item[key]]
paths = [frame["path"] for frame in item[key]]
if len(set(paths)) > 1:
raise NotImplementedError("All video paths are expected to be the same for now.")
video_path = data_dir / paths[0]
frames = decode_video_frames_torchvision(video_path, timestamps, tolerance_s)
item[key] = frames
else:
# load one frame
timestamps = [item[key]["timestamp"]]
video_path = data_dir / item[key]["path"]
frames = decode_video_frames_torchvision(video_path, timestamps, tolerance_s)
item[key] = frames[0]
return item
def decode_video_frames_torchvision(
video_path: str,
timestamps: list[float],
tolerance_s: float,
device: str = "cpu",
log_loaded_timestamps: bool = False,
):
"""Loads frames associated to the requested timestamps of a video
Note: Video benefits from inter-frame compression. Instead of storing every frame individually,
the encoder stores a reference frame (or a key frame) and subsequent frames as differences relative to
that key frame. As a consequence, to access a requested frame, we need to load the preceding key frame,
and all subsequent frames until reaching the requested frame. The number of key frames in a video
can be adjusted during encoding to take into account decoding time and video size in bytes.
"""
video_path = str(video_path)
# set backend
keyframes_only = False
if device == "cpu":
# explicitely use pyav
torchvision.set_video_backend("pyav")
keyframes_only = True # pyav doesnt support accuracte seek
elif device == "cuda":
# TODO(rcadene, aliberts): implement video decoding with GPU
# torchvision.set_video_backend("cuda")
# torchvision.set_video_backend("video_reader")
# requires installing torchvision from source, see: https://github.com/pytorch/vision/blob/main/torchvision/csrc/io/decoder/gpu/README.rst
# check possible bug: https://github.com/pytorch/vision/issues/7745
raise NotImplementedError(
"Video decoding on gpu with cuda is currently not supported. Use `device='cpu'`."
)
else:
raise ValueError(device)
# set a video stream reader
# TODO(rcadene): also load audio stream at the same time
reader = torchvision.io.VideoReader(video_path, "video")
# set the first and last requested timestamps
# Note: previous timestamps are usually loaded, since we need to access the previous key frame
first_ts = timestamps[0]
last_ts = timestamps[-1]
# access closest key frame of the first requested frame
# Note: closest key frame timestamp is usally smaller than `first_ts` (e.g. key frame can be the first frame of the video)
# for details on what `seek` is doing see: https://pyav.basswood-io.com/docs/stable/api/container.html?highlight=inputcontainer#av.container.InputContainer.seek
reader.seek(first_ts, keyframes_only=keyframes_only)
# load all frames until last requested frame
loaded_frames = []
loaded_ts = []
for frame in reader:
current_ts = frame["pts"]
if log_loaded_timestamps:
logging.info(f"frame loaded at timestamp={current_ts:.4f}")
loaded_frames.append(frame["data"])
loaded_ts.append(current_ts)
if current_ts >= last_ts:
break
reader.container.close()
reader = None
query_ts = torch.tensor(timestamps)
loaded_ts = torch.tensor(loaded_ts)
# compute distances between each query timestamp and timestamps of all loaded frames
dist = torch.cdist(query_ts[:, None], loaded_ts[:, None], p=1)
min_, argmin_ = dist.min(1)
is_within_tol = min_ < tolerance_s
assert is_within_tol.all(), (
f"One or several query timestamps unexpectedly violate the tolerance ({min_[~is_within_tol]} > {tolerance_s=})."
"It means that the closest frame that can be loaded from the video is too far away in time."
"This might be due to synchronization issues with timestamps during data collection."
"To be safe, we advise to ignore this item during training."
)
# get closest frames to the query timestamps
closest_frames = torch.stack([loaded_frames[idx] for idx in argmin_])
closest_ts = loaded_ts[argmin_]
if log_loaded_timestamps:
logging.info(f"{closest_ts=}")
# convert to the pytorch format which is float32 in [0,1] range (and channel first)
closest_frames = closest_frames.type(torch.float32) / 255
assert len(timestamps) == len(closest_frames)
return closest_frames
def encode_video_frames(imgs_dir: Path, video_path: Path, fps: int):
"""More info on ffmpeg arguments tuning on `lerobot/common/datasets/_video_benchmark/README.md`"""
video_path = Path(video_path)
video_path.parent.mkdir(parents=True, exist_ok=True)
ffmpeg_cmd = (
f"ffmpeg -r {fps} "
"-f image2 "
"-loglevel error "
f"-i {str(imgs_dir / 'frame_%06d.png')} "
"-vcodec libx264 "
"-g 2 "
"-pix_fmt yuv444p "
f"{str(video_path)}"
)
subprocess.run(ffmpeg_cmd.split(" "), check=True)
@dataclass
class VideoFrame:
# TODO(rcadene, lhoestq): move to Hugging Face `datasets` repo
"""
Provides a type for a dataset containing video frames.
Example:
```python
data_dict = [{"image": {"path": "videos/episode_0.mp4", "timestamp": 0.3}}]
features = {"image": VideoFrame()}
Dataset.from_dict(data_dict, features=Features(features))
```
"""
pa_type: ClassVar[Any] = pa.struct({"path": pa.string(), "timestamp": pa.float32()})
_type: str = field(default="VideoFrame", init=False, repr=False)
def __call__(self):
return self.pa_type
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore",
"'register_feature' is experimental and might be subject to breaking changes in the future.",
category=UserWarning,
)
# to make VideoFrame available in HuggingFace `datasets`
register_feature(VideoFrame, "VideoFrame")

View File

@@ -1,32 +1,13 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
import gymnasium as gym
from omegaconf import DictConfig
def make_env(cfg: DictConfig, n_envs: int | None = None) -> gym.vector.VectorEnv:
"""Makes a gym vector environment according to the evaluation config.
n_envs can be used to override eval.batch_size in the configuration. Must be at least 1.
def make_env(cfg, num_parallel_envs=0) -> gym.Env | gym.vector.SyncVectorEnv:
"""
Note: When `num_parallel_envs > 0`, this function returns a `SyncVectorEnv` which takes batched action as input and
returns batched observation, reward, terminated, truncated of `num_parallel_envs` items.
"""
if n_envs is not None and n_envs < 1:
raise ValueError("`n_envs must be at least 1")
kwargs = {
"obs_type": "pixels_agent_pos",
"render_mode": "rgb_array",
@@ -47,13 +28,16 @@ def make_env(cfg: DictConfig, n_envs: int | None = None) -> gym.vector.VectorEnv
gym_handle = f"{package_name}/{cfg.env.task}"
# batched version of the env that returns an observation of shape (b, c)
env_cls = gym.vector.AsyncVectorEnv if cfg.eval.use_async_envs else gym.vector.SyncVectorEnv
env = env_cls(
[
lambda: gym.make(gym_handle, disable_env_checker=True, **kwargs)
for _ in range(n_envs if n_envs is not None else cfg.eval.batch_size)
]
)
if num_parallel_envs == 0:
# non-batched version of the env that returns an observation of shape (c)
env = gym.make(gym_handle, disable_env_checker=True, **kwargs)
else:
# batched version of the env that returns an observation of shape (b, c)
env = gym.vector.SyncVectorEnv(
[
lambda: gym.make(gym_handle, disable_env_checker=True, **kwargs)
for _ in range(num_parallel_envs)
]
)
return env

View File

@@ -1,38 +1,15 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import einops
import numpy as np
import torch
from torch import Tensor
def preprocess_observation(observations: dict[str, np.ndarray]) -> dict[str, Tensor]:
"""Convert environment observation to LeRobot format observation.
Args:
observation: Dictionary of observation batches from a Gym vector environment.
Returns:
Dictionary of observation batches with keys renamed to LeRobot format and values as tensors.
"""
def preprocess_observation(observation):
# map to expected inputs for the policy
return_observations = {}
obs = {}
if isinstance(observations["pixels"], dict):
imgs = {f"observation.images.{key}": img for key, img in observations["pixels"].items()}
if isinstance(observation["pixels"], dict):
imgs = {f"observation.images.{key}": img for key, img in observation["pixels"].items()}
else:
imgs = {"observation.image": observations["pixels"]}
imgs = {"observation.image": observation["pixels"]}
for imgkey, img in imgs.items():
img = torch.from_numpy(img)
@@ -49,10 +26,17 @@ def preprocess_observation(observations: dict[str, np.ndarray]) -> dict[str, Ten
img = img.type(torch.float32)
img /= 255
return_observations[imgkey] = img
obs[imgkey] = img
# TODO(rcadene): enable pixels only baseline with `obs_type="pixels"` in environment by removing
# requirement for "agent_pos"
return_observations["observation.state"] = torch.from_numpy(observations["agent_pos"]).float()
# TODO(rcadene): enable pixels only baseline with `obs_type="pixels"` in environment by removing requirement for "agent_pos"
obs["observation.state"] = torch.from_numpy(observation["agent_pos"]).float()
return return_observations
return obs
def postprocess_action(action):
action = action.to("cpu").numpy()
assert (
action.ndim == 2
), "we assume dimensions are respectively the number of parallel envs, action dimensions"
return action

View File

@@ -1,41 +1,19 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO(rcadene, alexander-soare): clean this file
"""Borrowed from https://github.com/fyhMer/fowm/blob/main/src/logger.py"""
import logging
import os
from pathlib import Path
from huggingface_hub.constants import SAFETENSORS_SINGLE_FILE
from omegaconf import OmegaConf
from termcolor import colored
from lerobot.common.policies.policy_protocol import Policy
def log_output_dir(out_dir):
logging.info(colored("Output dir:", "yellow", attrs=["bold"]) + f" {out_dir}")
def cfg_to_group(cfg, return_list=False):
"""Return a group name for logging. Optionally returns group name as list."""
"""Return a wandb-safe group name for logging. Optionally returns group name as list."""
# lst = [cfg.task, cfg.modality, re.sub("[^0-9a-zA-Z]+", "-", cfg.exp_name)]
lst = [
f"policy:{cfg.policy.name}",
f"dataset:{cfg.dataset_repo_id}",
f"env:{cfg.env.name}",
f"seed:{cfg.seed}",
]
@@ -49,11 +27,11 @@ class Logger:
self._log_dir = Path(log_dir)
self._log_dir.mkdir(parents=True, exist_ok=True)
self._job_name = job_name
self._model_dir = self._log_dir / "checkpoints"
self._model_dir = self._log_dir / "models"
self._buffer_dir = self._log_dir / "buffers"
self._save_model = cfg.training.save_model
self._save_model = cfg.save_model
self._disable_wandb_artifact = cfg.wandb.disable_artifact
self._save_buffer = cfg.training.get("save_buffer", False)
self._save_buffer = cfg.save_buffer
self._group = cfg_to_group(cfg)
self._seed = cfg.seed
self._cfg = cfg
@@ -89,30 +67,27 @@ class Logger:
logging.info(f"Track this run --> {colored(wandb.run.get_url(), 'yellow', attrs=['bold'])}")
self._wandb = wandb
def save_model(self, policy: Policy, identifier):
def save_model(self, policy, identifier):
if self._save_model:
self._model_dir.mkdir(parents=True, exist_ok=True)
save_dir = self._model_dir / str(identifier)
policy.save_pretrained(save_dir)
# Also save the full Hydra config for the env configuration.
OmegaConf.save(self._cfg, save_dir / "config.yaml")
fp = self._model_dir / f"{str(identifier)}.pt"
policy.save(fp)
if self._wandb and not self._disable_wandb_artifact:
# note wandb artifact does not accept ":" or "/" in its name
# note wandb artifact does not accept ":" in its name
artifact = self._wandb.Artifact(
f"{self._group.replace(':', '_').replace('/', '_')}-{self._seed}-{identifier}",
self._group.replace(":", "_") + "-" + str(self._seed) + "-" + str(identifier),
type="model",
)
artifact.add_file(save_dir / SAFETENSORS_SINGLE_FILE)
artifact.add_file(fp)
self._wandb.log_artifact(artifact)
def save_buffer(self, buffer, identifier):
self._buffer_dir.mkdir(parents=True, exist_ok=True)
fp = self._buffer_dir / f"{str(identifier)}.pkl"
buffer.save(fp)
if self._wandb and not self._disable_wandb_artifact:
# note wandb artifact does not accept ":" or "/" in its name
if self._wandb:
artifact = self._wandb.Artifact(
f"{self._group.replace(':', '_').replace('/', '_')}-{self._seed}-{identifier}",
self._group + "-" + str(self._seed) + "-" + str(identifier),
type="buffer",
)
artifact.add_file(fp)
@@ -130,14 +105,9 @@ class Logger:
assert mode in {"train", "eval"}
if self._wandb is not None:
for k, v in d.items():
if not isinstance(v, (int, float, str)):
logging.warning(
f'WandB logging of key "{k}" was ignored as its type is not handled by this wrapper.'
)
continue
self._wandb.log({f"{mode}/{k}": v}, step=step)
def log_video(self, video_path: str, step: int, mode: str = "train"):
def log_video(self, video, step, mode="train"):
assert mode in {"train", "eval"}
wandb_video = self._wandb.Video(video_path, fps=self._cfg.fps, format="mp4")
wandb_video = self._wandb.Video(video, fps=self._cfg.fps, format="mp4")
self._wandb.log({f"{mode}/video": wandb_video}, step=step)

View File

@@ -1,23 +1,7 @@
#!/usr/bin/env python
# Copyright 2024 Tony Z. Zhao and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from transformers.configuration_utils import PretrainedConfig
@dataclass
class ACTConfig:
class ActionChunkingTransformerConfig(PretrainedConfig):
"""Configuration class for the Action Chunking Transformers policy.
Defaults are configured for training on bimanual Aloha tasks like "insertion" or "transfer".
@@ -37,24 +21,23 @@ class ACTConfig:
The key represents the input data name, and the value is a list indicating the dimensions
of the corresponding data. For example, "observation.images.top" refers to an input from the
"top" camera with dimensions [3, 96, 96], indicating it has three color channels and 96x96 resolution.
Importantly, shapes doesn't include batch dimension or temporal dimension.
Importantly, shapes doesnt include batch dimension or temporal dimension.
output_shapes: A dictionary defining the shapes of the output data for the policy.
The key represents the output data name, and the value is a list indicating the dimensions
of the corresponding data. For example, "action" refers to an output shape of [14], indicating
14-dimensional actions. Importantly, shapes doesn't include batch dimension or temporal dimension.
input_normalization_modes: A dictionary with key representing the modality (e.g. "observation.state"),
and the value specifies the normalization mode to apply. The two available modes are "mean_std"
which subtracts the mean and divides by the standard deviation and "min_max" which rescale in a
[-1, 1] range.
output_normalization_modes: Similar dictionary as `normalize_input_modes`, but to unnormalize to the
original scale. Note that this is also used for normalizing the training targets.
14-dimensional actions. Importantly, shapes doesnt include batch dimension or temporal dimension.
normalize_input_modes: A dictionary with key represents the modality (e.g. "observation.state"),
and the value specifies the normalization mode to apply. The two availables
modes are "mean_std" which substracts the mean and divide by the standard
deviation and "min_max" which rescale in a [-1, 1] range.
unnormalize_output_modes: Similar dictionary as `normalize_input_modes`, but to unormalize in original scale.
vision_backbone: Name of the torchvision resnet backbone to use for encoding images.
pretrained_backbone_weights: Pretrained weights from torchvision to initalize the backbone.
`None` means no pretrained weights.
use_pretrained_backbone: Whether the backbone should be initialized with pretrained weights from
torchvision.
replace_final_stride_with_dilation: Whether to replace the ResNet's final 2x2 stride with a dilated
convolution.
pre_norm: Whether to use "pre-norm" in the transformer blocks.
dim_model: The transformer blocks' main hidden dimension.
d_model: The transformer blocks' main hidden dimension.
n_heads: The number of heads to use in the transformer blocks' multi-head attention.
dim_feedforward: The dimension to expand the transformer's hidden dimension to in the feed-forward
layers.
@@ -66,62 +49,59 @@ class ACTConfig:
documentation in the policy class).
latent_dim: The VAE's latent dimension.
n_vae_encoder_layers: The number of transformer layers to use for the VAE's encoder.
temporal_ensemble_momentum: Exponential moving average (EMA) momentum parameter (α) for ensembling
actions for a given time step over multiple policy invocations. Updates are calculated as:
x⁻ₙ = αx⁻ₙ₋₁ + (1-α)xₙ. Note that the ACT paper and original ACT code describes a different
parameter here: they refer to a weighting scheme wᵢ = exp(-m⋅i) and set m = 0.01. With our
formulation, this is equivalent to α = exp(-0.01) ≈ 0.99. When this parameter is provided, we
require `n_action_steps == 1` (since we need to query the policy every step anyway).
use_temporal_aggregation: Whether to blend the actions of multiple policy invocations for any given
environment step.
dropout: Dropout to use in the transformer layers (see code for details).
kl_weight: The weight to use for the KL-divergence component of the loss if the variational objective
is enabled. Loss is then calculated as: `reconstruction_loss + kl_weight * kld_loss`.
"""
Example:
```python
>>> from lerobot import ActionChunkingTransformerConfig
>>> # Initializing an ACT style configuration
>>> configuration = ActionChunkingTransformerConfig()
>>> # Initializing a model (with random weights) from the ACT style configuration
>>> model = ActionChunkingTransformerPolicy(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
# Input / output structure.
n_obs_steps: int = 1
chunk_size: int = 100
n_action_steps: int = 100
input_shapes: dict[str, list[int]] = field(
default_factory=lambda: {
"observation.images.top": [3, 480, 640],
"observation.state": [14],
}
)
output_shapes: dict[str, list[int]] = field(
default_factory=lambda: {
"action": [14],
}
)
input_shapes: dict[str, list[str]] = {
"observation.images.top": [3, 480, 640],
"observation.state": [14],
}
output_shapes: dict[str, list[str]] = {"action": [14]}
# Normalization / Unnormalization
input_normalization_modes: dict[str, str] = field(
default_factory=lambda: {
"observation.images.top": "mean_std",
"observation.state": "mean_std",
}
)
output_normalization_modes: dict[str, str] = field(
default_factory=lambda: {
"action": "mean_std",
}
)
normalize_input_modes: dict[str, str] = {
"observation.image": "mean_std",
"observation.state": "mean_std",
}
unnormalize_output_modes: dict[str, str] = {"action": "mean_std"}
# Architecture.
# Vision backbone.
vision_backbone: str = "resnet18"
pretrained_backbone_weights: str | None = "ResNet18_Weights.IMAGENET1K_V1"
use_pretrained_backbone: bool = True
replace_final_stride_with_dilation: int = False
# Transformer layers.
pre_norm: bool = False
dim_model: int = 512
d_model: int = 512
n_heads: int = 8
dim_feedforward: int = 3200
feedforward_activation: str = "relu"
n_encoder_layers: int = 4
# Note: Although the original ACT implementation has 7 for `n_decoder_layers`, there is a bug in the code
# that means only the first layer is used. Here we match the original implementation by setting this to 1.
# See this issue https://github.com/tonyzhaozh/act/issues/25#issue-2258740521.
n_decoder_layers: int = 1
# VAE.
use_vae: bool = True
@@ -129,23 +109,29 @@ class ACTConfig:
n_vae_encoder_layers: int = 4
# Inference.
temporal_ensemble_momentum: float | None = None
use_temporal_aggregation: bool = False
# Training and loss computation.
dropout: float = 0.1
kl_weight: float = 10.0
# ---
# TODO(alexander-soare): Remove these from the policy config.
batch_size: int = 8
lr: float = 1e-5
lr_backbone: float = 1e-5
weight_decay: float = 1e-4
grad_clip_norm: float = 10
utd: int = 1
def __post_init__(self):
"""Input validation (not exhaustive)."""
if not self.vision_backbone.startswith("resnet"):
raise ValueError(
f"`vision_backbone` must be one of the ResNet variants. Got {self.vision_backbone}."
)
if self.temporal_ensemble_momentum is not None and self.n_action_steps > 1:
raise NotImplementedError(
"`n_action_steps` must be 1 when using temporal ensembling. This is "
"because the policy needs to be queried every step to compute the ensembled action."
)
if self.use_temporal_aggregation:
raise NotImplementedError("Temporal aggregation is not yet implemented.")
if self.n_action_steps > self.chunk_size:
raise ValueError(
f"The chunk size is the upper bound for the number of action steps per model invocation. Got "
@@ -155,3 +141,10 @@ class ACTConfig:
raise ValueError(
f"Multiple observation steps not handled yet. Got `nobs_steps={self.n_obs_steps}`"
)
# Check that there is only one image.
# TODO(alexander-soare): generalize this to multiple images.
if (
sum(k.startswith("observation.images.") for k in self.input_shapes) != 1
or "observation.images.top" not in self.input_shapes
):
raise ValueError('For now, only "observation.images.top" is accepted for an image input.')

View File

@@ -1,18 +1,3 @@
#!/usr/bin/env python
# Copyright 2024 Tony Z. Zhao and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Action Chunking Transformer Policy
As per Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware (https://arxiv.org/abs/2304.13705).
@@ -20,6 +5,7 @@ The majority of changes here involve removing unused code, unifying naming, and
"""
import math
import time
from collections import deque
from itertools import chain
from typing import Callable
@@ -29,139 +15,18 @@ import numpy as np
import torch
import torch.nn.functional as F # noqa: N812
import torchvision
from huggingface_hub import PyTorchModelHubMixin
from torch import Tensor, nn
from torchvision.models._utils import IntermediateLayerGetter
from torchvision.ops.misc import FrozenBatchNorm2d
from lerobot.common.policies.act.configuration_act import ACTConfig
from lerobot.common.policies.act.configuration_act import ActionChunkingTransformerConfig
from lerobot.common.policies.normalize import Normalize, Unnormalize
class ACTPolicy(nn.Module, PyTorchModelHubMixin):
class ActionChunkingTransformerPolicy(nn.Module):
"""
Action Chunking Transformer Policy as per Learning Fine-Grained Bimanual Manipulation with Low-Cost
Hardware (paper: https://arxiv.org/abs/2304.13705, code: https://github.com/tonyzhaozh/act)
"""
name = "act"
def __init__(
self,
config: ACTConfig | None = None,
dataset_stats: dict[str, dict[str, Tensor]] | None = None,
):
"""
Args:
config: Policy configuration class instance or None, in which case the default instantiation of
the configuration class is used.
dataset_stats: Dataset statistics to be used for normalization. If not passed here, it is expected
that they will be passed with a call to `load_state_dict` before the policy is used.
"""
super().__init__()
if config is None:
config = ACTConfig()
self.config: ACTConfig = config
self.normalize_inputs = Normalize(
config.input_shapes, config.input_normalization_modes, dataset_stats
)
self.normalize_targets = Normalize(
config.output_shapes, config.output_normalization_modes, dataset_stats
)
self.unnormalize_outputs = Unnormalize(
config.output_shapes, config.output_normalization_modes, dataset_stats
)
self.model = ACT(config)
self.expected_image_keys = [k for k in config.input_shapes if k.startswith("observation.image")]
self.reset()
def reset(self):
"""This should be called whenever the environment is reset."""
if self.config.temporal_ensemble_momentum is not None:
self._ensembled_actions = None
else:
self._action_queue = deque([], maxlen=self.config.n_action_steps)
@torch.no_grad
def select_action(self, batch: dict[str, Tensor]) -> Tensor:
"""Select a single action given environment observations.
This method wraps `select_actions` in order to return one action at a time for execution in the
environment. It works by managing the actions in a queue and only calling `select_actions` when the
queue is empty.
"""
self.eval()
batch = self.normalize_inputs(batch)
batch["observation.images"] = torch.stack([batch[k] for k in self.expected_image_keys], dim=-4)
# If we are doing temporal ensembling, keep track of the exponential moving average (EMA), and return
# the first action.
if self.config.temporal_ensemble_momentum is not None:
actions = self.model(batch)[0] # (batch_size, chunk_size, action_dim)
actions = self.unnormalize_outputs({"action": actions})["action"]
if self._ensembled_actions is None:
# Initializes `self._ensembled_action` to the sequence of actions predicted during the first
# time step of the episode.
self._ensembled_actions = actions.clone()
else:
# self._ensembled_actions will have shape (batch_size, chunk_size - 1, action_dim). Compute
# the EMA update for those entries.
alpha = self.config.temporal_ensemble_momentum
self._ensembled_actions = alpha * self._ensembled_actions + (1 - alpha) * actions[:, :-1]
# The last action, which has no prior moving average, needs to get concatenated onto the end.
self._ensembled_actions = torch.cat([self._ensembled_actions, actions[:, -1:]], dim=1)
# "Consume" the first action.
action, self._ensembled_actions = self._ensembled_actions[:, 0], self._ensembled_actions[:, 1:]
return action
# Action queue logic for n_action_steps > 1. When the action_queue is depleted, populate it by
# querying the policy.
if len(self._action_queue) == 0:
actions = self.model(batch)[0][:, : self.config.n_action_steps]
# TODO(rcadene): make _forward return output dictionary?
actions = self.unnormalize_outputs({"action": actions})["action"]
# `self.model.forward` returns a (batch_size, n_action_steps, action_dim) tensor, but the queue
# effectively has shape (n_action_steps, batch_size, *), hence the transpose.
self._action_queue.extend(actions.transpose(0, 1))
return self._action_queue.popleft()
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
"""Run the batch through the model and compute the loss for training or validation."""
batch = self.normalize_inputs(batch)
batch["observation.images"] = torch.stack([batch[k] for k in self.expected_image_keys], dim=-4)
batch = self.normalize_targets(batch)
actions_hat, (mu_hat, log_sigma_x2_hat) = self.model(batch)
l1_loss = (
F.l1_loss(batch["action"], actions_hat, reduction="none") * ~batch["action_is_pad"].unsqueeze(-1)
).mean()
loss_dict = {"l1_loss": l1_loss.item()}
if self.config.use_vae:
# Calculate Dₖₗ(latent_pdf || standard_normal). Note: After computing the KL-divergence for
# each dimension independently, we sum over the latent dimension to get the total
# KL-divergence per batch element, then take the mean over the batch.
# (See App. B of https://arxiv.org/abs/1312.6114 for more details).
mean_kld = (
(-0.5 * (1 + log_sigma_x2_hat - mu_hat.pow(2) - (log_sigma_x2_hat).exp())).sum(-1).mean()
)
loss_dict["kld_loss"] = mean_kld.item()
loss_dict["loss"] = l1_loss + mean_kld * self.config.kl_weight
else:
loss_dict["loss"] = l1_loss
return loss_dict
class ACT(nn.Module):
"""Action Chunking Transformer: The underlying neural network for ACTPolicy.
Note: In this code we use the terms `vae_encoder`, 'encoder', `decoder`. The meanings are as follows.
- The `vae_encoder` is, as per the literature around variational auto-encoders (VAE), the part of the
@@ -188,43 +53,55 @@ class ACT(nn.Module):
│ encoder │ │ │ │Transf.│ │
│ │ │ │ │encoder│ │
└───▲─────┘ │ │ │ │ │
│ │ │ └──▲──┘ │
│ │ │
inputs └─────┼──┘ │ image emb.
state emb.
│ │ │ └──▲──┘ │
│ │ │
inputs └─────┼─────┘
└───────────────────────┘
"""
def __init__(self, config: ACTConfig):
name = "act"
def __init__(self, cfg: ActionChunkingTransformerConfig | None = None, dataset_stats=None):
"""
Args:
cfg: Policy configuration class instance or None, in which case the default instantiation of the
configuration class is used.
"""
super().__init__()
self.config = config
if cfg is None:
cfg = ActionChunkingTransformerConfig()
self.cfg = cfg
self.normalize_inputs = Normalize(cfg.input_shapes, cfg.normalize_input_modes, dataset_stats)
self.unnormalize_outputs = Unnormalize(cfg.output_shapes, cfg.unnormalize_output_modes, dataset_stats)
# BERT style VAE encoder with input [cls, *joint_space_configuration, *action_sequence].
# The cls token forms parameters of the latent's distribution (like this [*means, *log_variances]).
if self.config.use_vae:
self.vae_encoder = ACTEncoder(config)
self.vae_encoder_cls_embed = nn.Embedding(1, config.dim_model)
if self.cfg.use_vae:
self.vae_encoder = _TransformerEncoder(cfg)
self.vae_encoder_cls_embed = nn.Embedding(1, cfg.d_model)
# Projection layer for joint-space configuration to hidden dimension.
self.vae_encoder_robot_state_input_proj = nn.Linear(
config.input_shapes["observation.state"][0], config.dim_model
cfg.input_shapes["observation.state"][0], cfg.d_model
)
# Projection layer for action (joint-space target) to hidden dimension.
self.vae_encoder_action_input_proj = nn.Linear(
config.input_shapes["observation.state"][0], config.dim_model
cfg.input_shapes["observation.state"][0], cfg.d_model
)
self.latent_dim = config.latent_dim
self.latent_dim = cfg.latent_dim
# Projection layer from the VAE encoder's output to the latent distribution's parameter space.
self.vae_encoder_latent_output_proj = nn.Linear(config.dim_model, self.latent_dim * 2)
self.vae_encoder_latent_output_proj = nn.Linear(cfg.d_model, self.latent_dim * 2)
# Fixed sinusoidal positional embedding the whole input to the VAE encoder. Unsqueeze for batch
# dimension.
self.register_buffer(
"vae_encoder_pos_enc",
create_sinusoidal_pos_embedding(1 + 1 + config.chunk_size, config.dim_model).unsqueeze(0),
_create_sinusoidal_position_embedding(1 + 1 + cfg.chunk_size, cfg.d_model).unsqueeze(0),
)
# Backbone for image feature extraction.
backbone_model = getattr(torchvision.models, config.vision_backbone)(
replace_stride_with_dilation=[False, False, config.replace_final_stride_with_dilation],
weights=config.pretrained_backbone_weights,
backbone_model = getattr(torchvision.models, cfg.vision_backbone)(
replace_stride_with_dilation=[False, False, cfg.replace_final_stride_with_dilation],
pretrained=cfg.use_pretrained_backbone,
norm_layer=FrozenBatchNorm2d,
)
# Note: The assumption here is that we are using a ResNet model (and hence layer4 is the final feature
@@ -233,30 +110,47 @@ class ACT(nn.Module):
self.backbone = IntermediateLayerGetter(backbone_model, return_layers={"layer4": "feature_map"})
# Transformer (acts as VAE decoder when training with the variational objective).
self.encoder = ACTEncoder(config)
self.decoder = ACTDecoder(config)
self.encoder = _TransformerEncoder(cfg)
self.decoder = _TransformerDecoder(cfg)
# Transformer encoder input projections. The tokens will be structured like
# [latent, robot_state, image_feature_map_pixels].
self.encoder_robot_state_input_proj = nn.Linear(
config.input_shapes["observation.state"][0], config.dim_model
)
self.encoder_latent_input_proj = nn.Linear(self.latent_dim, config.dim_model)
self.encoder_robot_state_input_proj = nn.Linear(cfg.input_shapes["observation.state"][0], cfg.d_model)
self.encoder_latent_input_proj = nn.Linear(self.latent_dim, cfg.d_model)
self.encoder_img_feat_input_proj = nn.Conv2d(
backbone_model.fc.in_features, config.dim_model, kernel_size=1
backbone_model.fc.in_features, cfg.d_model, kernel_size=1
)
# Transformer encoder positional embeddings.
self.encoder_robot_and_latent_pos_embed = nn.Embedding(2, config.dim_model)
self.encoder_cam_feat_pos_embed = ACTSinusoidalPositionEmbedding2d(config.dim_model // 2)
self.encoder_robot_and_latent_pos_embed = nn.Embedding(2, cfg.d_model)
self.encoder_cam_feat_pos_embed = _SinusoidalPositionEmbedding2D(cfg.d_model // 2)
# Transformer decoder.
# Learnable positional embedding for the transformer's decoder (in the style of DETR object queries).
self.decoder_pos_embed = nn.Embedding(config.chunk_size, config.dim_model)
self.decoder_pos_embed = nn.Embedding(cfg.chunk_size, cfg.d_model)
# Final action regression head on the output of the transformer's decoder.
self.action_head = nn.Linear(config.dim_model, config.output_shapes["action"][0])
self.action_head = nn.Linear(cfg.d_model, cfg.output_shapes["action"][0])
self._reset_parameters()
self._create_optimizer()
def _create_optimizer(self):
optimizer_params_dicts = [
{
"params": [
p for n, p in self.named_parameters() if not n.startswith("backbone") and p.requires_grad
]
},
{
"params": [
p for n, p in self.named_parameters() if n.startswith("backbone") and p.requires_grad
],
"lr": self.cfg.lr_backbone,
},
]
self.optimizer = torch.optim.AdamW(
optimizer_params_dicts, lr=self.cfg.lr, weight_decay=self.cfg.weight_decay
)
def _reset_parameters(self):
"""Xavier-uniform initialization of the transformer parameters as in the original code."""
@@ -264,7 +158,102 @@ class ACT(nn.Module):
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward(self, batch: dict[str, Tensor]) -> tuple[Tensor, tuple[Tensor, Tensor] | tuple[None, None]]:
def reset(self):
"""This should be called whenever the environment is reset."""
if self.cfg.n_action_steps is not None:
self._action_queue = deque([], maxlen=self.cfg.n_action_steps)
@torch.no_grad
def select_action(self, batch: dict[str, Tensor], **_) -> Tensor:
"""Select a single action given environment observations.
This method wraps `select_actions` in order to return one action at a time for execution in the
environment. It works by managing the actions in a queue and only calling `select_actions` when the
queue is empty.
"""
self.eval()
batch = self.normalize_inputs(batch)
if len(self._action_queue) == 0:
# `_forward` returns a (batch_size, n_action_steps, action_dim) tensor, but the queue effectively
# has shape (n_action_steps, batch_size, *), hence the transpose.
actions = self._forward(batch)[0][: self.cfg.n_action_steps]
# TODO(rcadene): make _forward return output dictionary?
actions = self.unnormalize_outputs({"action": actions})["action"]
self._action_queue.extend(actions.transpose(0, 1))
return self._action_queue.popleft()
def forward(self, batch, **_) -> dict[str, Tensor]:
"""Run the batch through the model and compute the loss for training or validation."""
actions_hat, (mu_hat, log_sigma_x2_hat) = self._forward(batch)
l1_loss = (
F.l1_loss(batch["action"], actions_hat, reduction="none") * ~batch["action_is_pad"].unsqueeze(-1)
).mean()
loss_dict = {"l1_loss": l1_loss}
if self.cfg.use_vae:
# Calculate Dₖₗ(latent_pdf || standard_normal). Note: After computing the KL-divergence for
# each dimension independently, we sum over the latent dimension to get the total
# KL-divergence per batch element, then take the mean over the batch.
# (See App. B of https://arxiv.org/abs/1312.6114 for more details).
mean_kld = (
(-0.5 * (1 + log_sigma_x2_hat - mu_hat.pow(2) - (log_sigma_x2_hat).exp())).sum(-1).mean()
)
loss_dict["kld_loss"] = mean_kld
loss_dict["loss"] = l1_loss + mean_kld * self.cfg.kl_weight
else:
loss_dict["loss"] = l1_loss
return loss_dict
def update(self, batch, **_) -> dict:
"""Run the model in train mode, compute the loss, and do an optimization step."""
start_time = time.time()
self.train()
batch = self.normalize_inputs(batch)
loss_dict = self.forward(batch)
# TODO(rcadene): self.unnormalize_outputs(out_dict)
loss = loss_dict["loss"]
loss.backward()
grad_norm = torch.nn.utils.clip_grad_norm_(
self.parameters(), self.cfg.grad_clip_norm, error_if_nonfinite=False
)
self.optimizer.step()
self.optimizer.zero_grad()
info = {
"loss": loss.item(),
"grad_norm": float(grad_norm),
"lr": self.cfg.lr,
"update_s": time.time() - start_time,
}
return info
def _stack_images(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
"""Stacks all the images in a batch and puts them in a new key: "observation.images".
This function expects `batch` to have (at least):
{
"observation.state": (B, state_dim) batch of robot states.
"observation.images.{name}": (B, C, H, W) tensor of images.
}
"""
# Stack images in the order dictated by input_shapes.
batch["observation.images"] = torch.stack(
[batch[k] for k in self.cfg.input_shapes if k.startswith("observation.images.")],
dim=-4,
)
def _forward(self, batch: dict[str, Tensor]) -> tuple[Tensor, tuple[Tensor, Tensor] | tuple[None, None]]:
"""A forward pass through the Action Chunking Transformer (with optional VAE encoder).
`batch` should have the following structure:
@@ -280,15 +269,17 @@ class ACT(nn.Module):
Tuple containing the latent PDF's parameters (mean, log(σ²)) both as (B, L) tensors where L is the
latent dimension.
"""
if self.config.use_vae and self.training:
if self.cfg.use_vae and self.training:
assert (
"action" in batch
), "actions must be provided when using the variational objective in training mode."
self._stack_images(batch)
batch_size = batch["observation.state"].shape[0]
# Prepare the latent for input to the transformer encoder.
if self.config.use_vae and "action" in batch:
if self.cfg.use_vae and "action" in batch:
# Prepare the input to the VAE encoder: [cls, *joint_space_configuration, *action_sequence].
cls_embed = einops.repeat(
self.vae_encoder_cls_embed.weight, "1 d -> b 1 d", b=batch_size
@@ -333,18 +324,18 @@ class ACT(nn.Module):
all_cam_features.append(cam_features)
all_cam_pos_embeds.append(cam_pos_embed)
# Concatenate camera observation feature maps and positional embeddings along the width dimension.
encoder_in = torch.cat(all_cam_features, axis=-1)
cam_pos_embed = torch.cat(all_cam_pos_embeds, axis=-1)
encoder_in = torch.cat(all_cam_features, axis=3)
cam_pos_embed = torch.cat(all_cam_pos_embeds, axis=3)
# Get positional embeddings for robot state and latent.
robot_state_embed = self.encoder_robot_state_input_proj(batch["observation.state"]) # (B, C)
latent_embed = self.encoder_latent_input_proj(latent_sample) # (B, C)
robot_state_embed = self.encoder_robot_state_input_proj(batch["observation.state"])
latent_embed = self.encoder_latent_input_proj(latent_sample)
# Stack encoder input and positional embeddings moving to (S, B, C).
encoder_in = torch.cat(
[
torch.stack([latent_embed, robot_state_embed], axis=0),
einops.rearrange(encoder_in, "b c h w -> (h w) b c"),
encoder_in.flatten(2).permute(2, 0, 1),
]
)
pos_embed = torch.cat(
@@ -358,7 +349,7 @@ class ACT(nn.Module):
# Forward pass through the transformer modules.
encoder_out = self.encoder(encoder_in, pos_embed=pos_embed)
decoder_in = torch.zeros(
(self.config.chunk_size, batch_size, self.config.dim_model),
(self.cfg.chunk_size, batch_size, self.cfg.d_model),
dtype=pos_embed.dtype,
device=pos_embed.device,
)
@@ -376,14 +367,21 @@ class ACT(nn.Module):
return actions, (mu, log_sigma_x2)
def save(self, fp):
torch.save(self.state_dict(), fp)
class ACTEncoder(nn.Module):
def load(self, fp):
d = torch.load(fp)
self.load_state_dict(d)
class _TransformerEncoder(nn.Module):
"""Convenience module for running multiple encoder layers, maybe followed by normalization."""
def __init__(self, config: ACTConfig):
def __init__(self, cfg: ActionChunkingTransformerConfig):
super().__init__()
self.layers = nn.ModuleList([ACTEncoderLayer(config) for _ in range(config.n_encoder_layers)])
self.norm = nn.LayerNorm(config.dim_model) if config.pre_norm else nn.Identity()
self.layers = nn.ModuleList([_TransformerEncoderLayer(cfg) for _ in range(cfg.n_encoder_layers)])
self.norm = nn.LayerNorm(cfg.d_model) if cfg.pre_norm else nn.Identity()
def forward(self, x: Tensor, pos_embed: Tensor | None = None) -> Tensor:
for layer in self.layers:
@@ -392,23 +390,23 @@ class ACTEncoder(nn.Module):
return x
class ACTEncoderLayer(nn.Module):
def __init__(self, config: ACTConfig):
class _TransformerEncoderLayer(nn.Module):
def __init__(self, cfg: ActionChunkingTransformerConfig):
super().__init__()
self.self_attn = nn.MultiheadAttention(config.dim_model, config.n_heads, dropout=config.dropout)
self.self_attn = nn.MultiheadAttention(cfg.d_model, cfg.n_heads, dropout=cfg.dropout)
# Feed forward layers.
self.linear1 = nn.Linear(config.dim_model, config.dim_feedforward)
self.dropout = nn.Dropout(config.dropout)
self.linear2 = nn.Linear(config.dim_feedforward, config.dim_model)
self.linear1 = nn.Linear(cfg.d_model, cfg.dim_feedforward)
self.dropout = nn.Dropout(cfg.dropout)
self.linear2 = nn.Linear(cfg.dim_feedforward, cfg.d_model)
self.norm1 = nn.LayerNorm(config.dim_model)
self.norm2 = nn.LayerNorm(config.dim_model)
self.dropout1 = nn.Dropout(config.dropout)
self.dropout2 = nn.Dropout(config.dropout)
self.norm1 = nn.LayerNorm(cfg.d_model)
self.norm2 = nn.LayerNorm(cfg.d_model)
self.dropout1 = nn.Dropout(cfg.dropout)
self.dropout2 = nn.Dropout(cfg.dropout)
self.activation = get_activation_fn(config.feedforward_activation)
self.pre_norm = config.pre_norm
self.activation = _get_activation_fn(cfg.feedforward_activation)
self.pre_norm = cfg.pre_norm
def forward(self, x, pos_embed: Tensor | None = None) -> Tensor:
skip = x
@@ -430,12 +428,12 @@ class ACTEncoderLayer(nn.Module):
return x
class ACTDecoder(nn.Module):
def __init__(self, config: ACTConfig):
class _TransformerDecoder(nn.Module):
def __init__(self, cfg: ActionChunkingTransformerConfig):
"""Convenience module for running multiple decoder layers followed by normalization."""
super().__init__()
self.layers = nn.ModuleList([ACTDecoderLayer(config) for _ in range(config.n_decoder_layers)])
self.norm = nn.LayerNorm(config.dim_model)
self.layers = nn.ModuleList([_TransformerDecoderLayer(cfg) for _ in range(cfg.n_decoder_layers)])
self.norm = nn.LayerNorm(cfg.d_model)
def forward(
self,
@@ -453,26 +451,26 @@ class ACTDecoder(nn.Module):
return x
class ACTDecoderLayer(nn.Module):
def __init__(self, config: ACTConfig):
class _TransformerDecoderLayer(nn.Module):
def __init__(self, cfg: ActionChunkingTransformerConfig):
super().__init__()
self.self_attn = nn.MultiheadAttention(config.dim_model, config.n_heads, dropout=config.dropout)
self.multihead_attn = nn.MultiheadAttention(config.dim_model, config.n_heads, dropout=config.dropout)
self.self_attn = nn.MultiheadAttention(cfg.d_model, cfg.n_heads, dropout=cfg.dropout)
self.multihead_attn = nn.MultiheadAttention(cfg.d_model, cfg.n_heads, dropout=cfg.dropout)
# Feed forward layers.
self.linear1 = nn.Linear(config.dim_model, config.dim_feedforward)
self.dropout = nn.Dropout(config.dropout)
self.linear2 = nn.Linear(config.dim_feedforward, config.dim_model)
self.linear1 = nn.Linear(cfg.d_model, cfg.dim_feedforward)
self.dropout = nn.Dropout(cfg.dropout)
self.linear2 = nn.Linear(cfg.dim_feedforward, cfg.d_model)
self.norm1 = nn.LayerNorm(config.dim_model)
self.norm2 = nn.LayerNorm(config.dim_model)
self.norm3 = nn.LayerNorm(config.dim_model)
self.dropout1 = nn.Dropout(config.dropout)
self.dropout2 = nn.Dropout(config.dropout)
self.dropout3 = nn.Dropout(config.dropout)
self.norm1 = nn.LayerNorm(cfg.d_model)
self.norm2 = nn.LayerNorm(cfg.d_model)
self.norm3 = nn.LayerNorm(cfg.d_model)
self.dropout1 = nn.Dropout(cfg.dropout)
self.dropout2 = nn.Dropout(cfg.dropout)
self.dropout3 = nn.Dropout(cfg.dropout)
self.activation = get_activation_fn(config.feedforward_activation)
self.pre_norm = config.pre_norm
self.activation = _get_activation_fn(cfg.feedforward_activation)
self.pre_norm = cfg.pre_norm
def maybe_add_pos_embed(self, tensor: Tensor, pos_embed: Tensor | None) -> Tensor:
return tensor if pos_embed is None else tensor + pos_embed
@@ -525,7 +523,7 @@ class ACTDecoderLayer(nn.Module):
return x
def create_sinusoidal_pos_embedding(num_positions: int, dimension: int) -> Tensor:
def _create_sinusoidal_position_embedding(num_positions: int, dimension: int) -> Tensor:
"""1D sinusoidal positional embeddings as in Attention is All You Need.
Args:
@@ -543,7 +541,7 @@ def create_sinusoidal_pos_embedding(num_positions: int, dimension: int) -> Tenso
return torch.from_numpy(sinusoid_table).float()
class ACTSinusoidalPositionEmbedding2d(nn.Module):
class _SinusoidalPositionEmbedding2D(nn.Module):
"""2D sinusoidal positional embeddings similar to what's presented in Attention Is All You Need.
The variation is that the position indices are normalized in [0, 2π] (not quite: the lower bound is 1/H
@@ -597,7 +595,7 @@ class ACTSinusoidalPositionEmbedding2d(nn.Module):
return pos_embed
def get_activation_fn(activation: str) -> Callable:
def _get_activation_fn(activation: str) -> Callable:
"""Return an activation function given a string."""
if activation == "relu":
return F.relu

View File

@@ -1,25 +1,9 @@
#!/usr/bin/env python
# Copyright 2024 Columbia Artificial Intelligence, Robotics Lab,
# and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
@dataclass
class DiffusionConfig:
"""Configuration class for DiffusionPolicy.
"""Configuration class for Diffusion Policy.
Defaults are configured for training with PushT providing proprioceptive and single camera observations.
@@ -41,19 +25,18 @@ class DiffusionConfig:
The key represents the output data name, and the value is a list indicating the dimensions
of the corresponding data. For example, "action" refers to an output shape of [14], indicating
14-dimensional actions. Importantly, shapes doesnt include batch dimension or temporal dimension.
input_normalization_modes: A dictionary with key representing the modality (e.g. "observation.state"),
and the value specifies the normalization mode to apply. The two available modes are "mean_std"
which subtracts the mean and divides by the standard deviation and "min_max" which rescale in a
[-1, 1] range.
output_normalization_modes: Similar dictionary as `normalize_input_modes`, but to unnormalize to the
original scale. Note that this is also used for normalizing the training targets.
normalize_input_modes: A dictionary with key represents the modality (e.g. "observation.state"),
and the value specifies the normalization mode to apply. The two availables
modes are "mean_std" which substracts the mean and divide by the standard
deviation and "min_max" which rescale in a [-1, 1] range.
unnormalize_output_modes: Similar dictionary as `normalize_input_modes`, but to unormalize in original scale.
vision_backbone: Name of the torchvision resnet backbone to use for encoding images.
crop_shape: (H, W) shape to crop images to as a preprocessing step for the vision backbone. Must fit
within the image size. If None, no cropping is done.
crop_is_random: Whether the crop should be random at training time (it's always a center crop in eval
mode).
pretrained_backbone_weights: Pretrained weights from torchvision to initalize the backbone.
`None` means no pretrained weights.
use_pretrained_backbone: Whether the backbone should be initialized with pretrained weights from
torchvision.
use_group_norm: Whether to replace batch normalization with group normalization in the backbone.
The group sizes are set to be about 16 (to be precise, feature_dim // 16).
spatial_softmax_num_keypoints: Number of keypoints for SpatialSoftmax.
@@ -67,7 +50,6 @@ class DiffusionConfig:
use_film_scale_modulation: FiLM (https://arxiv.org/abs/1709.07871) is used for the Unet conditioning.
Bias modulation is used be default, while this parameter indicates whether to also use scale
modulation.
noise_scheduler_type: Name of the noise scheduler to use. Supported options: ["DDPM", "DDIM"].
num_train_timesteps: Number of diffusion steps for the forward diffusion schedule.
beta_schedule: Name of the diffusion beta schedule as per DDPMScheduler from Hugging Face diffusers.
beta_start: Beta value for the first forward-diffusion step.
@@ -81,9 +63,6 @@ class DiffusionConfig:
clip_sample_range: The magnitude of the clipping range as described above.
num_inference_steps: Number of reverse diffusion steps to use at inference time (steps are evenly
spaced). If not provided, this defaults to be the same as `num_train_timesteps`.
do_mask_loss_for_padding: Whether to mask the loss when there are copy-padded actions. See
`LeRobotDataset` and `load_previous_and_future_frames` for mor information. Note, this defaults
to False as the original Diffusion Policy implementation does the same.
"""
# Inputs / output structure.
@@ -91,33 +70,37 @@ class DiffusionConfig:
horizon: int = 16
n_action_steps: int = 8
input_shapes: dict[str, list[int]] = field(
input_shapes: dict[str, list[str]] = field(
default_factory=lambda: {
"observation.image": [3, 96, 96],
"observation.state": [2],
}
)
output_shapes: dict[str, list[int]] = field(
output_shapes: dict[str, list[str]] = field(
default_factory=lambda: {
"action": [2],
}
)
# Normalization / Unnormalization
input_normalization_modes: dict[str, str] = field(
normalize_input_modes: dict[str, str] = field(
default_factory=lambda: {
"observation.image": "mean_std",
"observation.state": "min_max",
}
)
output_normalization_modes: dict[str, str] = field(default_factory=lambda: {"action": "min_max"})
unnormalize_output_modes: dict[str, str] = field(
default_factory=lambda: {
"action": "min_max",
}
)
# Architecture / modeling.
# Vision backbone.
vision_backbone: str = "resnet18"
crop_shape: tuple[int, int] | None = (84, 84)
crop_is_random: bool = True
pretrained_backbone_weights: str | None = None
use_pretrained_backbone: bool = False
use_group_norm: bool = True
spatial_softmax_num_keypoints: int = 32
# Unet.
@@ -127,7 +110,6 @@ class DiffusionConfig:
diffusion_step_embed_dim: int = 128
use_film_scale_modulation: bool = True
# Noise scheduler.
noise_scheduler_type: str = "DDPM"
num_train_timesteps: int = 100
beta_schedule: str = "squaredcos_cap_v2"
beta_start: float = 0.0001
@@ -139,8 +121,23 @@ class DiffusionConfig:
# Inference
num_inference_steps: int | None = None
# Loss computation
do_mask_loss_for_padding: bool = False
# ---
# TODO(alexander-soare): Remove these from the policy config.
batch_size: int = 64
grad_clip_norm: int = 10
lr: float = 1.0e-4
lr_scheduler: str = "cosine"
lr_warmup_steps: int = 500
adam_betas: tuple[float, float] = (0.95, 0.999)
adam_eps: float = 1.0e-8
adam_weight_decay: float = 1.0e-6
utd: int = 1
use_ema: bool = True
ema_update_after_step: int = 0
ema_min_alpha: float = 0.0
ema_max_alpha: float = 0.9999
ema_inv_gamma: float = 1.0
ema_power: float = 0.75
def __post_init__(self):
"""Input validation (not exhaustive)."""
@@ -148,30 +145,17 @@ class DiffusionConfig:
raise ValueError(
f"`vision_backbone` must be one of the ResNet variants. Got {self.vision_backbone}."
)
# There should only be one image key.
image_keys = {k for k in self.input_shapes if k.startswith("observation.image")}
if len(image_keys) != 1:
raise ValueError(
f"{self.__class__.__name__} only handles one image for now. Got image keys {image_keys}."
)
image_key = next(iter(image_keys))
if (
self.crop_shape[0] > self.input_shapes[image_key][1]
or self.crop_shape[1] > self.input_shapes[image_key][2]
self.crop_shape[0] > self.input_shapes["observation.image"][1]
or self.crop_shape[1] > self.input_shapes["observation.image"][2]
):
raise ValueError(
f"`crop_shape` should fit within `input_shapes[{image_key}]`. Got {self.crop_shape} "
f"for `crop_shape` and {self.input_shapes[image_key]} for "
"`input_shapes[{image_key}]`."
f'`crop_shape` should fit within `input_shapes["observation.image"]`. Got {self.crop_shape} '
f'for `crop_shape` and {self.input_shapes["observation.image"]} for '
'`input_shapes["observation.image"]`.'
)
supported_prediction_types = ["epsilon", "sample"]
if self.prediction_type not in supported_prediction_types:
raise ValueError(
f"`prediction_type` must be one of {supported_prediction_types}. Got {self.prediction_type}."
)
supported_noise_schedulers = ["DDPM", "DDIM"]
if self.noise_scheduler_type not in supported_noise_schedulers:
raise ValueError(
f"`noise_scheduler_type` must be one of {supported_noise_schedulers}. "
f"Got {self.noise_scheduler_type}."
)

View File

@@ -1,39 +1,29 @@
#!/usr/bin/env python
# Copyright 2024 Columbia Artificial Intelligence, Robotics Lab,
# and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Diffusion Policy as per "Diffusion Policy: Visuomotor Policy Learning via Action Diffusion"
TODO(alexander-soare):
- Remove reliance on Robomimic for SpatialSoftmax.
- Remove reliance on diffusers for DDPMScheduler and LR scheduler.
- Make compatible with multiple image keys.
- Move EMA out of policy.
- Consolidate _DiffusionUnetImagePolicy into DiffusionPolicy.
- One more pass on comments and documentation.
"""
import copy
import logging
import math
import time
from collections import deque
from typing import Callable
import einops
import numpy as np
import torch
import torch.nn.functional as F # noqa: N812
import torchvision
from diffusers.schedulers.scheduling_ddim import DDIMScheduler
from diffusers.optimization import get_scheduler
from diffusers.schedulers.scheduling_ddpm import DDPMScheduler
from huggingface_hub import PyTorchModelHubMixin
from robomimic.models.base_nets import SpatialSoftmax
from torch import Tensor, nn
from torch.nn.modules.batchnorm import _BatchNorm
from lerobot.common.policies.diffusion.configuration_diffusion import DiffusionConfig
from lerobot.common.policies.normalize import Normalize, Unnormalize
@@ -44,7 +34,7 @@ from lerobot.common.policies.utils import (
)
class DiffusionPolicy(nn.Module, PyTorchModelHubMixin):
class DiffusionPolicy(nn.Module):
"""
Diffusion Policy as per "Diffusion Policy: Visuomotor Policy Learning via Action Diffusion"
(paper: https://arxiv.org/abs/2303.04137, code: https://github.com/real-stanford/diffusion_policy).
@@ -53,56 +43,66 @@ class DiffusionPolicy(nn.Module, PyTorchModelHubMixin):
name = "diffusion"
def __init__(
self,
config: DiffusionConfig | None = None,
dataset_stats: dict[str, dict[str, Tensor]] | None = None,
self, cfg: DiffusionConfig | None, lr_scheduler_num_training_steps: int = 0, dataset_stats=None
):
"""
Args:
config: Policy configuration class instance or None, in which case the default instantiation of
the configuration class is used.
dataset_stats: Dataset statistics to be used for normalization. If not passed here, it is expected
that they will be passed with a call to `load_state_dict` before the policy is used.
cfg: Policy configuration class instance or None, in which case the default instantiation of the
configuration class is used.
"""
super().__init__()
if config is None:
config = DiffusionConfig()
self.config = config
self.normalize_inputs = Normalize(
config.input_shapes, config.input_normalization_modes, dataset_stats
)
self.normalize_targets = Normalize(
config.output_shapes, config.output_normalization_modes, dataset_stats
)
self.unnormalize_outputs = Unnormalize(
config.output_shapes, config.output_normalization_modes, dataset_stats
)
# TODO(alexander-soare): LR scheduler will be removed.
assert lr_scheduler_num_training_steps > 0
if cfg is None:
cfg = DiffusionConfig()
self.cfg = cfg
self.normalize_inputs = Normalize(cfg.input_shapes, cfg.normalize_input_modes, dataset_stats)
self.unnormalize_outputs = Unnormalize(cfg.output_shapes, cfg.unnormalize_output_modes, dataset_stats)
# queues are populated during rollout of the policy, they contain the n latest observations and actions
self._queues = None
self.diffusion = DiffusionModel(config)
self.diffusion = _DiffusionUnetImagePolicy(cfg)
image_keys = [k for k in config.input_shapes if k.startswith("observation.image")]
# Note: This check is covered in the post-init of the config but have a sanity check just in case.
if len(image_keys) != 1:
raise NotImplementedError(
f"{self.__class__.__name__} only handles one image for now. Got image keys {image_keys}."
)
self.input_image_key = image_keys[0]
# TODO(alexander-soare): This should probably be managed outside of the policy class.
self.ema_diffusion = None
self.ema = None
if self.cfg.use_ema:
self.ema_diffusion = copy.deepcopy(self.diffusion)
self.ema = _EMA(cfg, model=self.ema_diffusion)
self.reset()
# TODO(alexander-soare): Move optimizer out of policy.
self.optimizer = torch.optim.Adam(
self.diffusion.parameters(), cfg.lr, cfg.adam_betas, cfg.adam_eps, cfg.adam_weight_decay
)
# TODO(alexander-soare): Move LR scheduler out of policy.
# TODO(rcadene): modify lr scheduler so that it doesn't depend on epochs but steps
self.global_step = 0
# configure lr scheduler
self.lr_scheduler = get_scheduler(
cfg.lr_scheduler,
optimizer=self.optimizer,
num_warmup_steps=cfg.lr_warmup_steps,
num_training_steps=lr_scheduler_num_training_steps,
# pytorch assumes stepping LRScheduler every epoch
# however huggingface diffusers steps it every batch
last_epoch=self.global_step - 1,
)
def reset(self):
"""Clear observation and action queues. Should be called on `env.reset()`"""
"""
Clear observation and action queues. Should be called on `env.reset()`
"""
self._queues = {
"observation.image": deque(maxlen=self.config.n_obs_steps),
"observation.state": deque(maxlen=self.config.n_obs_steps),
"action": deque(maxlen=self.config.n_action_steps),
"observation.image": deque(maxlen=self.cfg.n_obs_steps),
"observation.state": deque(maxlen=self.cfg.n_obs_steps),
"action": deque(maxlen=self.cfg.n_action_steps),
}
@torch.no_grad
def select_action(self, batch: dict[str, Tensor]) -> Tensor:
def select_action(self, batch: dict[str, Tensor], **_) -> Tensor:
"""Select a single action given environment observations.
This method handles caching a history of observations and an action trajectory generated by the
@@ -122,16 +122,25 @@ class DiffusionPolicy(nn.Module, PyTorchModelHubMixin):
Note that this means we require: `n_action_steps < horizon - n_obs_steps + 1`. Also, note that
"horizon" may not the best name to describe what the variable actually means, because this period is
actually measured from the first observation which (if `n_obs_steps` > 1) happened in the past.
Note: this method uses the ema model weights if self.training == False, otherwise the non-ema model
weights.
"""
assert "observation.image" in batch
assert "observation.state" in batch
assert len(batch) == 2
batch = self.normalize_inputs(batch)
batch["observation.image"] = batch[self.input_image_key]
self._queues = populate_queues(self._queues, batch)
if len(self._queues["action"]) == 0:
# stack n latest observations from the queue
batch = {k: torch.stack(list(self._queues[k]), dim=1) for k in batch if k in self._queues}
actions = self.diffusion.generate_actions(batch)
batch = {key: torch.stack(list(self._queues[key]), dim=1) for key in batch}
if not self.training and self.ema_diffusion is not None:
actions = self.ema_diffusion.generate_actions(batch)
else:
actions = self.diffusion.generate_actions(batch)
# TODO(rcadene): make above methods return output dictionary?
actions = self.unnormalize_outputs({"action": actions})["action"]
@@ -141,55 +150,86 @@ class DiffusionPolicy(nn.Module, PyTorchModelHubMixin):
action = self._queues["action"].popleft()
return action
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
def forward(self, batch: dict[str, Tensor], **_) -> dict[str, Tensor]:
"""Run the batch through the model and compute the loss for training or validation."""
batch = self.normalize_inputs(batch)
batch["observation.image"] = batch[self.input_image_key]
batch = self.normalize_targets(batch)
loss = self.diffusion.compute_loss(batch)
return {"loss": loss}
def update(self, batch: dict[str, Tensor], **_) -> dict:
"""Run the model in train mode, compute the loss, and do an optimization step."""
start_time = time.time()
def _make_noise_scheduler(name: str, **kwargs: dict) -> DDPMScheduler | DDIMScheduler:
"""
Factory for noise scheduler instances of the requested type. All kwargs are passed
to the scheduler.
"""
if name == "DDPM":
return DDPMScheduler(**kwargs)
elif name == "DDIM":
return DDIMScheduler(**kwargs)
else:
raise ValueError(f"Unsupported noise scheduler type {name}")
self.diffusion.train()
batch = self.normalize_inputs(batch)
loss = self.forward(batch)["loss"]
loss.backward()
# TODO(rcadene): self.unnormalize_outputs(out_dict)
grad_norm = torch.nn.utils.clip_grad_norm_(
self.diffusion.parameters(),
self.cfg.grad_clip_norm,
error_if_nonfinite=False,
)
self.optimizer.step()
self.optimizer.zero_grad()
self.lr_scheduler.step()
if self.ema is not None:
self.ema.step(self.diffusion)
info = {
"loss": loss.item(),
"grad_norm": float(grad_norm),
"lr": self.lr_scheduler.get_last_lr()[0],
"update_s": time.time() - start_time,
}
return info
def save(self, fp):
torch.save(self.state_dict(), fp)
def load(self, fp):
d = torch.load(fp)
missing_keys, unexpected_keys = self.load_state_dict(d, strict=False)
if len(missing_keys) > 0:
assert all(k.startswith("ema_diffusion.") for k in missing_keys)
logging.warning(
"DiffusionPolicy.load expected ema parameters in loaded state dict but none were found."
)
assert len(unexpected_keys) == 0
class DiffusionModel(nn.Module):
def __init__(self, config: DiffusionConfig):
class _DiffusionUnetImagePolicy(nn.Module):
def __init__(self, cfg: DiffusionConfig):
super().__init__()
self.config = config
self.cfg = cfg
self.rgb_encoder = DiffusionRgbEncoder(config)
self.unet = DiffusionConditionalUnet1d(
config,
global_cond_dim=(config.output_shapes["action"][0] + self.rgb_encoder.feature_dim)
* config.n_obs_steps,
self.rgb_encoder = _RgbEncoder(cfg)
self.unet = _ConditionalUnet1D(
cfg,
global_cond_dim=(cfg.output_shapes["action"][0] + self.rgb_encoder.feature_dim) * cfg.n_obs_steps,
)
self.noise_scheduler = _make_noise_scheduler(
config.noise_scheduler_type,
num_train_timesteps=config.num_train_timesteps,
beta_start=config.beta_start,
beta_end=config.beta_end,
beta_schedule=config.beta_schedule,
clip_sample=config.clip_sample,
clip_sample_range=config.clip_sample_range,
prediction_type=config.prediction_type,
self.noise_scheduler = DDPMScheduler(
num_train_timesteps=cfg.num_train_timesteps,
beta_start=cfg.beta_start,
beta_end=cfg.beta_end,
beta_schedule=cfg.beta_schedule,
variance_type="fixed_small",
clip_sample=cfg.clip_sample,
clip_sample_range=cfg.clip_sample_range,
prediction_type=cfg.prediction_type,
)
if config.num_inference_steps is None:
if cfg.num_inference_steps is None:
self.num_inference_steps = self.noise_scheduler.config.num_train_timesteps
else:
self.num_inference_steps = config.num_inference_steps
self.num_inference_steps = cfg.num_inference_steps
# ========= inference ============
def conditional_sample(
@@ -200,7 +240,7 @@ class DiffusionModel(nn.Module):
# Sample prior.
sample = torch.randn(
size=(batch_size, self.config.horizon, self.config.output_shapes["action"][0]),
size=(batch_size, self.cfg.horizon, self.cfg.output_shapes["action"][0]),
dtype=dtype,
device=device,
generator=generator,
@@ -222,14 +262,15 @@ class DiffusionModel(nn.Module):
def generate_actions(self, batch: dict[str, Tensor]) -> Tensor:
"""
This function expects `batch` to have:
This function expects `batch` to have (at least):
{
"observation.state": (B, n_obs_steps, state_dim)
"observation.image": (B, n_obs_steps, C, H, W)
}
"""
assert set(batch).issuperset({"observation.state", "observation.image"})
batch_size, n_obs_steps = batch["observation.state"].shape[:2]
assert n_obs_steps == self.config.n_obs_steps
assert n_obs_steps == self.cfg.n_obs_steps
# Extract image feature (first combine batch and sequence dims).
img_features = self.rgb_encoder(einops.rearrange(batch["observation.image"], "b n ... -> (b n) ..."))
@@ -242,10 +283,10 @@ class DiffusionModel(nn.Module):
sample = self.conditional_sample(batch_size, global_cond=global_cond)
# `horizon` steps worth of actions (from the first observation).
actions = sample[..., : self.config.output_shapes["action"][0]]
actions = sample[..., : self.cfg.output_shapes["action"][0]]
# Extract `n_action_steps` steps worth of actions (from the current observation).
start = n_obs_steps - 1
end = start + self.config.n_action_steps
end = start + self.cfg.n_action_steps
actions = actions[:, start:end]
return actions
@@ -264,8 +305,8 @@ class DiffusionModel(nn.Module):
assert set(batch).issuperset({"observation.state", "observation.image", "action", "action_is_pad"})
batch_size, n_obs_steps = batch["observation.state"].shape[:2]
horizon = batch["action"].shape[1]
assert horizon == self.config.horizon
assert n_obs_steps == self.config.n_obs_steps
assert horizon == self.cfg.horizon
assert n_obs_steps == self.cfg.n_obs_steps
# Extract image feature (first combine batch and sequence dims).
img_features = self.rgb_encoder(einops.rearrange(batch["observation.image"], "b n ... -> (b n) ..."))
@@ -294,123 +335,52 @@ class DiffusionModel(nn.Module):
# Compute the loss.
# The target is either the original trajectory, or the noise.
if self.config.prediction_type == "epsilon":
if self.cfg.prediction_type == "epsilon":
target = eps
elif self.config.prediction_type == "sample":
elif self.cfg.prediction_type == "sample":
target = batch["action"]
else:
raise ValueError(f"Unsupported prediction type {self.config.prediction_type}")
raise ValueError(f"Unsupported prediction type {self.cfg.prediction_type}")
loss = F.mse_loss(pred, target, reduction="none")
# Mask loss wherever the action is padded with copies (edges of the dataset trajectory).
if self.config.do_mask_loss_for_padding and "action_is_pad" in batch:
if "action_is_pad" in batch:
in_episode_bound = ~batch["action_is_pad"]
loss = loss * in_episode_bound.unsqueeze(-1)
return loss.mean()
class SpatialSoftmax(nn.Module):
"""
Spatial Soft Argmax operation described in "Deep Spatial Autoencoders for Visuomotor Learning" by Finn et al.
(https://arxiv.org/pdf/1509.06113). A minimal port of the robomimic implementation.
At a high level, this takes 2D feature maps (from a convnet/ViT) and returns the "center of mass"
of activations of each channel, i.e., keypoints in the image space for the policy to focus on.
Example: take feature maps of size (512x10x12). We generate a grid of normalized coordinates (10x12x2):
-----------------------------------------------------
| (-1., -1.) | (-0.82, -1.) | ... | (1., -1.) |
| (-1., -0.78) | (-0.82, -0.78) | ... | (1., -0.78) |
| ... | ... | ... | ... |
| (-1., 1.) | (-0.82, 1.) | ... | (1., 1.) |
-----------------------------------------------------
This is achieved by applying channel-wise softmax over the activations (512x120) and computing the dot
product with the coordinates (120x2) to get expected points of maximal activation (512x2).
The example above results in 512 keypoints (corresponding to the 512 input channels). We can optionally
provide num_kp != None to control the number of keypoints. This is achieved by a first applying a learnable
linear mapping (in_channels, H, W) -> (num_kp, H, W).
"""
def __init__(self, input_shape, num_kp=None):
"""
Args:
input_shape (list): (C, H, W) input feature map shape.
num_kp (int): number of keypoints in output. If None, output will have the same number of channels as input.
"""
super().__init__()
assert len(input_shape) == 3
self._in_c, self._in_h, self._in_w = input_shape
if num_kp is not None:
self.nets = torch.nn.Conv2d(self._in_c, num_kp, kernel_size=1)
self._out_c = num_kp
else:
self.nets = None
self._out_c = self._in_c
# we could use torch.linspace directly but that seems to behave slightly differently than numpy
# and causes a small degradation in pc_success of pre-trained models.
pos_x, pos_y = np.meshgrid(np.linspace(-1.0, 1.0, self._in_w), np.linspace(-1.0, 1.0, self._in_h))
pos_x = torch.from_numpy(pos_x.reshape(self._in_h * self._in_w, 1)).float()
pos_y = torch.from_numpy(pos_y.reshape(self._in_h * self._in_w, 1)).float()
# register as buffer so it's moved to the correct device.
self.register_buffer("pos_grid", torch.cat([pos_x, pos_y], dim=1))
def forward(self, features: Tensor) -> Tensor:
"""
Args:
features: (B, C, H, W) input feature maps.
Returns:
(B, K, 2) image-space coordinates of keypoints.
"""
if self.nets is not None:
features = self.nets(features)
# [B, K, H, W] -> [B * K, H * W] where K is number of keypoints
features = features.reshape(-1, self._in_h * self._in_w)
# 2d softmax normalization
attention = F.softmax(features, dim=-1)
# [B * K, H * W] x [H * W, 2] -> [B * K, 2] for spatial coordinate mean in x and y dimensions
expected_xy = attention @ self.pos_grid
# reshape to [B, K, 2]
feature_keypoints = expected_xy.view(-1, self._out_c, 2)
return feature_keypoints
class DiffusionRgbEncoder(nn.Module):
class _RgbEncoder(nn.Module):
"""Encoder an RGB image into a 1D feature vector.
Includes the ability to normalize and crop the image first.
"""
def __init__(self, config: DiffusionConfig):
def __init__(self, cfg: DiffusionConfig):
super().__init__()
# Set up optional preprocessing.
if config.crop_shape is not None:
if cfg.crop_shape is not None:
self.do_crop = True
# Always use center crop for eval
self.center_crop = torchvision.transforms.CenterCrop(config.crop_shape)
if config.crop_is_random:
self.maybe_random_crop = torchvision.transforms.RandomCrop(config.crop_shape)
self.center_crop = torchvision.transforms.CenterCrop(cfg.crop_shape)
if cfg.crop_is_random:
self.maybe_random_crop = torchvision.transforms.RandomCrop(cfg.crop_shape)
else:
self.maybe_random_crop = self.center_crop
else:
self.do_crop = False
# Set up backbone.
backbone_model = getattr(torchvision.models, config.vision_backbone)(
weights=config.pretrained_backbone_weights
backbone_model = getattr(torchvision.models, cfg.vision_backbone)(
pretrained=cfg.use_pretrained_backbone
)
# Note: This assumes that the layer4 feature map is children()[-3]
# TODO(alexander-soare): Use a safer alternative.
self.backbone = nn.Sequential(*(list(backbone_model.children())[:-2]))
if config.use_group_norm:
if config.pretrained_backbone_weights:
if cfg.use_group_norm:
if cfg.use_pretrained_backbone:
raise ValueError(
"You can't replace BatchNorm in a pretrained model without ruining the weights!"
)
@@ -422,18 +392,13 @@ class DiffusionRgbEncoder(nn.Module):
# Set up pooling and final layers.
# Use a dry run to get the feature map shape.
# The dummy input should take the number of image channels from `config.input_shapes` and it should
# use the height and width from `config.crop_shape`.
image_keys = [k for k in config.input_shapes if k.startswith("observation.image")]
assert len(image_keys) == 1
image_key = image_keys[0]
dummy_input = torch.zeros(size=(1, config.input_shapes[image_key][0], *config.crop_shape))
with torch.inference_mode():
dummy_feature_map = self.backbone(dummy_input)
feature_map_shape = tuple(dummy_feature_map.shape[1:])
self.pool = SpatialSoftmax(feature_map_shape, num_kp=config.spatial_softmax_num_keypoints)
self.feature_dim = config.spatial_softmax_num_keypoints * 2
self.out = nn.Linear(config.spatial_softmax_num_keypoints * 2, self.feature_dim)
feat_map_shape = tuple(
self.backbone(torch.zeros(size=(1, *cfg.input_shapes["observation.image"]))).shape[1:]
)
self.pool = SpatialSoftmax(feat_map_shape, num_kp=cfg.spatial_softmax_num_keypoints)
self.feature_dim = cfg.spatial_softmax_num_keypoints * 2
self.out = nn.Linear(cfg.spatial_softmax_num_keypoints * 2, self.feature_dim)
self.relu = nn.ReLU()
def forward(self, x: Tensor) -> Tensor:
@@ -490,7 +455,7 @@ def _replace_submodules(
return root_module
class DiffusionSinusoidalPosEmb(nn.Module):
class _SinusoidalPosEmb(nn.Module):
"""1D sinusoidal positional embeddings as in Attention is All You Need."""
def __init__(self, dim: int):
@@ -507,7 +472,7 @@ class DiffusionSinusoidalPosEmb(nn.Module):
return emb
class DiffusionConv1dBlock(nn.Module):
class _Conv1dBlock(nn.Module):
"""Conv1d --> GroupNorm --> Mish"""
def __init__(self, inp_channels, out_channels, kernel_size, n_groups=8):
@@ -523,40 +488,40 @@ class DiffusionConv1dBlock(nn.Module):
return self.block(x)
class DiffusionConditionalUnet1d(nn.Module):
class _ConditionalUnet1D(nn.Module):
"""A 1D convolutional UNet with FiLM modulation for conditioning.
Note: this removes local conditioning as compared to the original diffusion policy code.
"""
def __init__(self, config: DiffusionConfig, global_cond_dim: int):
def __init__(self, cfg: DiffusionConfig, global_cond_dim: int):
super().__init__()
self.config = config
self.cfg = cfg
# Encoder for the diffusion timestep.
self.diffusion_step_encoder = nn.Sequential(
DiffusionSinusoidalPosEmb(config.diffusion_step_embed_dim),
nn.Linear(config.diffusion_step_embed_dim, config.diffusion_step_embed_dim * 4),
_SinusoidalPosEmb(cfg.diffusion_step_embed_dim),
nn.Linear(cfg.diffusion_step_embed_dim, cfg.diffusion_step_embed_dim * 4),
nn.Mish(),
nn.Linear(config.diffusion_step_embed_dim * 4, config.diffusion_step_embed_dim),
nn.Linear(cfg.diffusion_step_embed_dim * 4, cfg.diffusion_step_embed_dim),
)
# The FiLM conditioning dimension.
cond_dim = config.diffusion_step_embed_dim + global_cond_dim
cond_dim = cfg.diffusion_step_embed_dim + global_cond_dim
# In channels / out channels for each downsampling block in the Unet's encoder. For the decoder, we
# just reverse these.
in_out = [(config.output_shapes["action"][0], config.down_dims[0])] + list(
zip(config.down_dims[:-1], config.down_dims[1:], strict=True)
in_out = [(cfg.output_shapes["action"][0], cfg.down_dims[0])] + list(
zip(cfg.down_dims[:-1], cfg.down_dims[1:], strict=True)
)
# Unet encoder.
common_res_block_kwargs = {
"cond_dim": cond_dim,
"kernel_size": config.kernel_size,
"n_groups": config.n_groups,
"use_film_scale_modulation": config.use_film_scale_modulation,
"kernel_size": cfg.kernel_size,
"n_groups": cfg.n_groups,
"use_film_scale_modulation": cfg.use_film_scale_modulation,
}
self.down_modules = nn.ModuleList([])
for ind, (dim_in, dim_out) in enumerate(in_out):
@@ -564,8 +529,8 @@ class DiffusionConditionalUnet1d(nn.Module):
self.down_modules.append(
nn.ModuleList(
[
DiffusionConditionalResidualBlock1d(dim_in, dim_out, **common_res_block_kwargs),
DiffusionConditionalResidualBlock1d(dim_out, dim_out, **common_res_block_kwargs),
_ConditionalResidualBlock1D(dim_in, dim_out, **common_res_block_kwargs),
_ConditionalResidualBlock1D(dim_out, dim_out, **common_res_block_kwargs),
# Downsample as long as it is not the last block.
nn.Conv1d(dim_out, dim_out, 3, 2, 1) if not is_last else nn.Identity(),
]
@@ -575,12 +540,8 @@ class DiffusionConditionalUnet1d(nn.Module):
# Processing in the middle of the auto-encoder.
self.mid_modules = nn.ModuleList(
[
DiffusionConditionalResidualBlock1d(
config.down_dims[-1], config.down_dims[-1], **common_res_block_kwargs
),
DiffusionConditionalResidualBlock1d(
config.down_dims[-1], config.down_dims[-1], **common_res_block_kwargs
),
_ConditionalResidualBlock1D(cfg.down_dims[-1], cfg.down_dims[-1], **common_res_block_kwargs),
_ConditionalResidualBlock1D(cfg.down_dims[-1], cfg.down_dims[-1], **common_res_block_kwargs),
]
)
@@ -592,8 +553,8 @@ class DiffusionConditionalUnet1d(nn.Module):
nn.ModuleList(
[
# dim_in * 2, because it takes the encoder's skip connection as well
DiffusionConditionalResidualBlock1d(dim_in * 2, dim_out, **common_res_block_kwargs),
DiffusionConditionalResidualBlock1d(dim_out, dim_out, **common_res_block_kwargs),
_ConditionalResidualBlock1D(dim_in * 2, dim_out, **common_res_block_kwargs),
_ConditionalResidualBlock1D(dim_out, dim_out, **common_res_block_kwargs),
# Upsample as long as it is not the last block.
nn.ConvTranspose1d(dim_out, dim_out, 4, 2, 1) if not is_last else nn.Identity(),
]
@@ -601,8 +562,8 @@ class DiffusionConditionalUnet1d(nn.Module):
)
self.final_conv = nn.Sequential(
DiffusionConv1dBlock(config.down_dims[0], config.down_dims[0], kernel_size=config.kernel_size),
nn.Conv1d(config.down_dims[0], config.output_shapes["action"][0], 1),
_Conv1dBlock(cfg.down_dims[0], cfg.down_dims[0], kernel_size=cfg.kernel_size),
nn.Conv1d(cfg.down_dims[0], cfg.output_shapes["action"][0], 1),
)
def forward(self, x: Tensor, timestep: Tensor | int, global_cond=None) -> Tensor:
@@ -650,7 +611,7 @@ class DiffusionConditionalUnet1d(nn.Module):
return x
class DiffusionConditionalResidualBlock1d(nn.Module):
class _ConditionalResidualBlock1D(nn.Module):
"""ResNet style 1D convolutional block with FiLM modulation for conditioning."""
def __init__(
@@ -669,13 +630,13 @@ class DiffusionConditionalResidualBlock1d(nn.Module):
self.use_film_scale_modulation = use_film_scale_modulation
self.out_channels = out_channels
self.conv1 = DiffusionConv1dBlock(in_channels, out_channels, kernel_size, n_groups=n_groups)
self.conv1 = _Conv1dBlock(in_channels, out_channels, kernel_size, n_groups=n_groups)
# FiLM modulation (https://arxiv.org/abs/1709.07871) outputs per-channel bias and (maybe) scale.
cond_channels = out_channels * 2 if use_film_scale_modulation else out_channels
self.cond_encoder = nn.Sequential(nn.Mish(), nn.Linear(cond_dim, cond_channels))
self.conv2 = DiffusionConv1dBlock(out_channels, out_channels, kernel_size, n_groups=n_groups)
self.conv2 = _Conv1dBlock(out_channels, out_channels, kernel_size, n_groups=n_groups)
# A final convolution for dimension matching the residual (if needed).
self.residual_conv = (
@@ -706,3 +667,67 @@ class DiffusionConditionalResidualBlock1d(nn.Module):
out = self.conv2(out)
out = out + self.residual_conv(x)
return out
class _EMA:
"""
Exponential Moving Average of models weights
"""
def __init__(self, cfg: DiffusionConfig, model: nn.Module):
"""
@crowsonkb's notes on EMA Warmup:
If gamma=1 and power=1, implements a simple average. gamma=1, power=2/3 are good values for models you plan
to train for a million or more steps (reaches decay factor 0.999 at 31.6K steps, 0.9999 at 1M steps),
gamma=1, power=3/4 for models you plan to train for less (reaches decay factor 0.999 at 10K steps, 0.9999
at 215.4k steps).
Args:
inv_gamma (float): Inverse multiplicative factor of EMA warmup. Default: 1.
power (float): Exponential factor of EMA warmup. Default: 2/3.
min_alpha (float): The minimum EMA decay rate. Default: 0.
"""
self.averaged_model = model
self.averaged_model.eval()
self.averaged_model.requires_grad_(False)
self.update_after_step = cfg.ema_update_after_step
self.inv_gamma = cfg.ema_inv_gamma
self.power = cfg.ema_power
self.min_alpha = cfg.ema_min_alpha
self.max_alpha = cfg.ema_max_alpha
self.alpha = 0.0
self.optimization_step = 0
def get_decay(self, optimization_step):
"""
Compute the decay factor for the exponential moving average.
"""
step = max(0, optimization_step - self.update_after_step - 1)
value = 1 - (1 + step / self.inv_gamma) ** -self.power
if step <= 0:
return 0.0
return max(self.min_alpha, min(value, self.max_alpha))
@torch.no_grad()
def step(self, new_model):
self.alpha = self.get_decay(self.optimization_step)
for module, ema_module in zip(new_model.modules(), self.averaged_model.modules(), strict=True):
# Iterate over immediate parameters only.
for param, ema_param in zip(
module.parameters(recurse=False), ema_module.parameters(recurse=False), strict=True
):
if isinstance(param, dict):
raise RuntimeError("Dict parameter not supported")
if isinstance(module, _BatchNorm) or not param.requires_grad:
# Copy BatchNorm parameters, and non-trainable parameters directly.
ema_param.copy_(param.to(dtype=ema_param.dtype).data)
else:
ema_param.mul_(self.alpha)
ema_param.add_(param.data.to(dtype=ema_param.dtype), alpha=1 - self.alpha)
self.optimization_step += 1

View File

@@ -1,33 +1,15 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import logging
from omegaconf import DictConfig, OmegaConf
from lerobot.common.policies.policy_protocol import Policy
from lerobot.common.utils.utils import get_safe_torch_device
def _policy_cfg_from_hydra_cfg(policy_cfg_class, hydra_cfg):
expected_kwargs = set(inspect.signature(policy_cfg_class).parameters)
if not set(hydra_cfg.policy).issuperset(expected_kwargs):
logging.warning(
f"Hydra config is missing arguments: {set(expected_kwargs).difference(hydra_cfg.policy)}"
)
assert set(hydra_cfg.policy).issuperset(
expected_kwargs
), f"Hydra config is missing arguments: {set(expected_kwargs).difference(hydra_cfg.policy)}"
policy_cfg = policy_cfg_class(
**{
k: v
@@ -38,60 +20,42 @@ def _policy_cfg_from_hydra_cfg(policy_cfg_class, hydra_cfg):
return policy_cfg
def get_policy_and_config_classes(name: str) -> tuple[Policy, object]:
"""Get the policy's class and config class given a name (matching the policy class' `name` attribute)."""
if name == "tdmpc":
from lerobot.common.policies.tdmpc.configuration_tdmpc import TDMPCConfig
from lerobot.common.policies.tdmpc.modeling_tdmpc import TDMPCPolicy
def make_policy(hydra_cfg: DictConfig, dataset_stats=None):
if hydra_cfg.policy.name == "tdmpc":
from lerobot.common.policies.tdmpc.policy import TDMPCPolicy
return TDMPCPolicy, TDMPCConfig
elif name == "diffusion":
policy = TDMPCPolicy(
hydra_cfg.policy,
n_obs_steps=hydra_cfg.n_obs_steps,
n_action_steps=hydra_cfg.n_action_steps,
device=hydra_cfg.device,
)
elif hydra_cfg.policy.name == "diffusion":
from lerobot.common.policies.diffusion.configuration_diffusion import DiffusionConfig
from lerobot.common.policies.diffusion.modeling_diffusion import DiffusionPolicy
return DiffusionPolicy, DiffusionConfig
elif name == "act":
from lerobot.common.policies.act.configuration_act import ACTConfig
from lerobot.common.policies.act.modeling_act import ACTPolicy
policy_cfg = _policy_cfg_from_hydra_cfg(DiffusionConfig, hydra_cfg)
policy = DiffusionPolicy(policy_cfg, hydra_cfg.offline_steps, dataset_stats)
policy.to(get_safe_torch_device(hydra_cfg.device))
elif hydra_cfg.policy.name == "act":
from lerobot.common.policies.act.configuration_act import ActionChunkingTransformerConfig
from lerobot.common.policies.act.modeling_act import ActionChunkingTransformerPolicy
return ACTPolicy, ACTConfig
policy_cfg = _policy_cfg_from_hydra_cfg(ActionChunkingTransformerConfig, hydra_cfg)
policy = ActionChunkingTransformerPolicy(policy_cfg, dataset_stats)
policy.to(get_safe_torch_device(hydra_cfg.device))
else:
raise NotImplementedError(f"Policy with name {name} is not implemented.")
raise ValueError(hydra_cfg.policy.name)
def make_policy(
hydra_cfg: DictConfig, pretrained_policy_name_or_path: str | None = None, dataset_stats=None
) -> Policy:
"""Make an instance of a policy class.
Args:
hydra_cfg: A parsed Hydra configuration (see scripts). If `pretrained_policy_name_or_path` is
provided, only `hydra_cfg.policy.name` is used while everything else is ignored.
pretrained_policy_name_or_path: Either the repo ID of a model hosted on the Hub or a path to a
directory containing weights saved using `Policy.save_pretrained`. Note that providing this
argument overrides everything in `hydra_cfg.policy` apart from `hydra_cfg.policy.name`.
dataset_stats: Dataset statistics to use for (un)normalization of inputs/outputs in the policy. Must
be provided when initializing a new policy, and must not be provided when loading a pretrained
policy. Therefore, this argument is mutually exclusive with `pretrained_policy_name_or_path`.
"""
if not (pretrained_policy_name_or_path is None) ^ (dataset_stats is None):
raise ValueError("Only one of `pretrained_policy_name_or_path` and `dataset_stats` may be provided.")
policy_cls, policy_cfg_class = get_policy_and_config_classes(hydra_cfg.policy.name)
policy_cfg = _policy_cfg_from_hydra_cfg(policy_cfg_class, hydra_cfg)
if pretrained_policy_name_or_path is None:
# Make a fresh policy.
policy = policy_cls(policy_cfg, dataset_stats)
else:
# Load a pretrained policy and override the config if needed (for example, if there are inference-time
# hyperparameters that we want to vary).
# TODO(alexander-soare): This hack makes use of huggingface_hub's tooling to load the policy with, pretrained
# weights which are then loaded into a fresh policy with the desired config. This PR in huggingface_hub should
# make it possible to avoid the hack: https://github.com/huggingface/huggingface_hub/pull/2274.
policy = policy_cls(policy_cfg)
policy.load_state_dict(policy_cls.from_pretrained(pretrained_policy_name_or_path).state_dict())
policy.to(get_safe_torch_device(hydra_cfg.device))
if hydra_cfg.policy.pretrained_model_path:
# TODO(rcadene): hack for old pretrained models from fowm
if hydra_cfg.policy.name == "tdmpc" and "fowm" in hydra_cfg.policy.pretrained_model_path:
if "offline" in hydra_cfg.policy.pretrained_model_path:
policy.step[0] = 25000
elif "final" in hydra_cfg.policy.pretrained_model_path:
policy.step[0] = 100000
else:
raise NotImplementedError()
policy.load(hydra_cfg.policy.pretrained_model_path)
return policy

View File

@@ -1,36 +1,27 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from torch import Tensor, nn
from torch import nn
def create_stats_buffers(
shapes: dict[str, list[int]],
modes: dict[str, str],
stats: dict[str, dict[str, Tensor]] | None = None,
) -> dict[str, dict[str, nn.ParameterDict]]:
def create_stats_buffers(shapes, modes, stats=None):
"""
Create buffers per modality (e.g. "observation.image", "action") containing their mean, std, min, max
statistics.
Create buffers per modality (e.g. "observation.image", "action") containing their mean, std, min, max statistics.
Args: (see Normalize and Unnormalize)
Parameters:
shapes (dict): A dictionary where keys are input modalities (e.g. "observation.image") and values are their shapes (e.g. `[3,96,96]`]).
These shapes are used to create the tensor buffer containing mean, std, min, max statistics. If the provided `shapes` contain keys related to images, the shape is adjusted to be invariant to height
and width, assuming a channel-first (c, h, w) format.
modes (dict): A dictionary where keys are output modalities (e.g. "observation.image") and values are their normalization modes among:
- "mean_std": substract the mean and divide by standard deviation.
- "min_max": map to [-1, 1] range.
stats (dict, optional): A dictionary where keys are output modalities (e.g. "observation.image") and values are dictionaries of statistic types and their values
(e.g. `{"mean": torch.randn(3,1,1)}, "std": torch.randn(3,1,1)}`). If provided, as expected for training the model for the first time,
these statistics will overwrite the default buffers. If not provided, as expected for finetuning or evaluation, the default buffers should to be
be overwritten by a call to `policy.load_state_dict(state_dict)`. That way, initializing the dataset is not needed to get the stats, since
they are already in the policy state_dict.
Returns:
dict: A dictionary where keys are modalities and values are `nn.ParameterDict` containing
`nn.Parameters` set to `requires_grad=False`, suitable to not be updated during backpropagation.
dict: A dictionary where keys are modalities and values are `nn.ParameterDict` containing `nn.Parameters` set to
`requires_grad=False`, suitable to not be updated during backpropagation.
"""
stats_buffers = {}
@@ -72,119 +63,36 @@ def create_stats_buffers(
)
if stats is not None:
# Note: The clone is needed to make sure that the logic in save_pretrained doesn't see duplicated
# tensors anywhere (for example, when we use the same stats for normalization and
# unnormalization). See the logic here
# https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/py_src/safetensors/torch.py#L97.
if mode == "mean_std":
buffer["mean"].data = stats[key]["mean"].clone()
buffer["std"].data = stats[key]["std"].clone()
buffer["mean"].data = stats[key]["mean"]
buffer["std"].data = stats[key]["std"]
elif mode == "min_max":
buffer["min"].data = stats[key]["min"].clone()
buffer["max"].data = stats[key]["max"].clone()
buffer["min"].data = stats[key]["min"]
buffer["max"].data = stats[key]["max"]
stats_buffers[key] = buffer
return stats_buffers
def _no_stats_error_str(name: str) -> str:
return (
f"`{name}` is infinity. You should either initialize with `stats` as an argument, or use a "
"pretrained model."
)
class Normalize(nn.Module):
"""Normalizes data (e.g. "observation.image") for more stable and faster convergence during training."""
def __init__(
self,
shapes: dict[str, list[int]],
modes: dict[str, str],
stats: dict[str, dict[str, Tensor]] | None = None,
):
"""
Args:
shapes (dict): A dictionary where keys are input modalities (e.g. "observation.image") and values
are their shapes (e.g. `[3,96,96]`]). These shapes are used to create the tensor buffer containing
mean, std, min, max statistics. If the provided `shapes` contain keys related to images, the shape
is adjusted to be invariant to height and width, assuming a channel-first (c, h, w) format.
modes (dict): A dictionary where keys are output modalities (e.g. "observation.image") and values
are their normalization modes among:
- "mean_std": subtract the mean and divide by standard deviation.
- "min_max": map to [-1, 1] range.
stats (dict, optional): A dictionary where keys are output modalities (e.g. "observation.image")
and values are dictionaries of statistic types and their values (e.g.
`{"mean": torch.randn(3,1,1)}, "std": torch.randn(3,1,1)}`). If provided, as expected for
training the model for the first time, these statistics will overwrite the default buffers. If
not provided, as expected for finetuning or evaluation, the default buffers should to be
overwritten by a call to `policy.load_state_dict(state_dict)`. That way, initializing the
dataset is not needed to get the stats, since they are already in the policy state_dict.
"""
super().__init__()
self.shapes = shapes
self.modes = modes
self.stats = stats
stats_buffers = create_stats_buffers(shapes, modes, stats)
for key, buffer in stats_buffers.items():
setattr(self, "buffer_" + key.replace(".", "_"), buffer)
# TODO(rcadene): should we remove torch.no_grad?
@torch.no_grad
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
for key, mode in self.modes.items():
buffer = getattr(self, "buffer_" + key.replace(".", "_"))
if mode == "mean_std":
mean = buffer["mean"]
std = buffer["std"]
assert not torch.isinf(mean).any(), _no_stats_error_str("mean")
assert not torch.isinf(std).any(), _no_stats_error_str("std")
batch[key] = (batch[key] - mean) / (std + 1e-8)
elif mode == "min_max":
min = buffer["min"]
max = buffer["max"]
assert not torch.isinf(min).any(), _no_stats_error_str("min")
assert not torch.isinf(max).any(), _no_stats_error_str("max")
# normalize to [0,1]
batch[key] = (batch[key] - min) / (max - min)
# normalize to [-1, 1]
batch[key] = batch[key] * 2 - 1
else:
raise ValueError(mode)
return batch
class Unnormalize(nn.Module):
"""
Similar to `Normalize` but unnormalizes output data (e.g. `{"action": torch.randn(b,c)}`) in their
original range used by the environment.
Normalizes the input data (e.g. "observation.image") for more stable and faster convergence during training.
Parameters:
shapes (dict): A dictionary where keys are input modalities (e.g. "observation.image") and values are their shapes (e.g. `[3,96,96]`]).
These shapes are used to create the tensor buffer containing mean, std, min, max statistics. If the provided `shapes` contain keys related to images, the shape is adjusted to be invariant to height
and width, assuming a channel-first (c, h, w) format.
modes (dict): A dictionary where keys are output modalities (e.g. "observation.image") and values are their normalization modes among:
- "mean_std": substract the mean and divide by standard deviation.
- "min_max": map to [-1, 1] range.
stats (dict, optional): A dictionary where keys are output modalities (e.g. "observation.image") and values are dictionaries of statistic types and their values
(e.g. `{"mean": torch.randn(3,1,1)}, "std": torch.randn(3,1,1)}`). If provided, as expected for training the model for the first time,
these statistics will overwrite the default buffers. If not provided, as expected for finetuning or evaluation, the default buffers should to be
be overwritten by a call to `policy.load_state_dict(state_dict)`. That way, initializing the dataset is not needed to get the stats, since
they are already in the policy state_dict.
"""
def __init__(
self,
shapes: dict[str, list[int]],
modes: dict[str, str],
stats: dict[str, dict[str, Tensor]] | None = None,
):
"""
Args:
shapes (dict): A dictionary where keys are input modalities (e.g. "observation.image") and values
are their shapes (e.g. `[3,96,96]`]). These shapes are used to create the tensor buffer containing
mean, std, min, max statistics. If the provided `shapes` contain keys related to images, the shape
is adjusted to be invariant to height and width, assuming a channel-first (c, h, w) format.
modes (dict): A dictionary where keys are output modalities (e.g. "observation.image") and values
are their normalization modes among:
- "mean_std": subtract the mean and divide by standard deviation.
- "min_max": map to [-1, 1] range.
stats (dict, optional): A dictionary where keys are output modalities (e.g. "observation.image")
and values are dictionaries of statistic types and their values (e.g.
`{"mean": torch.randn(3,1,1)}, "std": torch.randn(3,1,1)}`). If provided, as expected for
training the model for the first time, these statistics will overwrite the default buffers. If
not provided, as expected for finetuning or evaluation, the default buffers should to be
overwritten by a call to `policy.load_state_dict(state_dict)`. That way, initializing the
dataset is not needed to get the stats, since they are already in the policy state_dict.
"""
def __init__(self, shapes, modes, stats=None):
super().__init__()
self.shapes = shapes
self.modes = modes
@@ -196,21 +104,91 @@ class Unnormalize(nn.Module):
# TODO(rcadene): should we remove torch.no_grad?
@torch.no_grad
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
def forward(self, batch):
for key, mode in self.modes.items():
buffer = getattr(self, "buffer_" + key.replace(".", "_"))
if mode == "mean_std":
mean = buffer["mean"]
std = buffer["std"]
assert not torch.isinf(mean).any(), _no_stats_error_str("mean")
assert not torch.isinf(std).any(), _no_stats_error_str("std")
assert not torch.isinf(
mean
).any(), "`mean` is infinity. You forgot to initialize with `stats` as argument, or called `policy.load_state_dict`."
assert not torch.isinf(
std
).any(), "`std` is infinity. You forgot to initialize with `stats` as argument, or called `policy.load_state_dict`."
batch[key] = (batch[key] - mean) / (std + 1e-8)
elif mode == "min_max":
min = buffer["min"]
max = buffer["max"]
assert not torch.isinf(
min
).any(), "`min` is infinity. You forgot to initialize with `stats` as argument, or called `policy.load_state_dict`."
assert not torch.isinf(
max
).any(), "`max` is infinity. You forgot to initialize with `stats` as argument, or called `policy.load_state_dict`."
# normalize to [0,1]
batch[key] = (batch[key] - min) / (max - min)
# normalize to [-1, 1]
batch[key] = batch[key] * 2 - 1
else:
raise ValueError(mode)
return batch
class Unnormalize(nn.Module):
"""
Similar to `Normalize` but unnormalizes output data (e.g. `{"action": torch.randn(b,c)}`) in their original range used by the environment.
Parameters:
shapes (dict): A dictionary where keys are output modalities (e.g. "action") and values are their shapes (e.g. [10]).
These shapes are used to create the tensor buffer containing mean, std, min, max statistics. If the provided `shapes` contain keys related to images, the shape is adjusted to be invariant to height
and width, assuming a channel-first (c, h, w) format.
modes (dict): A dictionary where keys are output modalities (e.g. "action") and values are their unnormalization modes among:
- "mean_std": multiply by standard deviation and add mean
- "min_max": go from [-1, 1] range to original range.
stats (dict, optional): A dictionary where keys are output modalities (e.g. "action") and values are dictionaries of statistic types and their values
(e.g. `{"max": torch.tensor(1)}, "min": torch.tensor(0)}`). If provided, as expected for training the model for the first time,
these statistics will overwrite the default buffers. If not provided, as expected for finetuning or evaluation, the default buffers should to be
be overwritten by a call to `policy.load_state_dict(state_dict)`. That way, initializing the dataset is not needed to get the stats, since
they are already in the policy state_dict.
"""
def __init__(self, shapes, modes, stats=None):
super().__init__()
self.shapes = shapes
self.modes = modes
self.stats = stats
# `self.buffer_observation_state["mean"]` contains `torch.tensor(state_dim)`
stats_buffers = create_stats_buffers(shapes, modes, stats)
for key, buffer in stats_buffers.items():
setattr(self, "buffer_" + key.replace(".", "_"), buffer)
# TODO(rcadene): should we remove torch.no_grad?
@torch.no_grad
def forward(self, batch):
for key, mode in self.modes.items():
buffer = getattr(self, "buffer_" + key.replace(".", "_"))
if mode == "mean_std":
mean = buffer["mean"]
std = buffer["std"]
assert not torch.isinf(
mean
).any(), "`mean` is infinity. You forgot to initialize with `stats` as argument, or called `policy.load_state_dict`."
assert not torch.isinf(
std
).any(), "`std` is infinity. You forgot to initialize with `stats` as argument, or called `policy.load_state_dict`."
batch[key] = batch[key] * std + mean
elif mode == "min_max":
min = buffer["min"]
max = buffer["max"]
assert not torch.isinf(min).any(), _no_stats_error_str("min")
assert not torch.isinf(max).any(), _no_stats_error_str("max")
assert not torch.isinf(
min
).any(), "`min` is infinity. You forgot to initialize with `stats` as argument, or called `policy.load_state_dict`."
assert not torch.isinf(
max
).any(), "`max` is infinity. You forgot to initialize with `stats` as argument, or called `policy.load_state_dict`."
batch[key] = (batch[key] + 1) / 2
batch[key] = batch[key] * (max - min) + min
else:

View File

@@ -1,18 +1,3 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A protocol that all policies should follow.
This provides a mechanism for type-hinting and isinstance checks without requiring the policies classes
@@ -29,21 +14,10 @@ from torch import Tensor
@runtime_checkable
class Policy(Protocol):
"""The required interface for implementing a policy.
We also expect all policies to subclass torch.nn.Module and PyTorchModelHubMixin.
"""
"""The required interface for implementing a policy."""
name: str
def __init__(self, cfg, dataset_stats: dict[str, dict[str, Tensor]] | None = None):
"""
Args:
cfg: Policy configuration class instance or None, in which case the default instantiation of the
configuration class is used.
dataset_stats: Dataset statistics to be used for normalization.
"""
def reset(self):
"""To be called whenever the environment is reset.
@@ -53,8 +27,7 @@ class Policy(Protocol):
def forward(self, batch: dict[str, Tensor]) -> dict:
"""Run the batch through the model and compute the loss for training or validation.
Returns a dictionary with "loss" and potentially other information. Apart from "loss" which is a Tensor, all
other items should be logging-friendly, native Python types.
Returns a dictionary with "loss" and maybe other information.
"""
def select_action(self, batch: dict[str, Tensor]):
@@ -64,12 +37,9 @@ class Policy(Protocol):
with caching.
"""
def update(self, batch):
"""Does compute_loss then an optimization step.
@runtime_checkable
class PolicyWithUpdate(Policy, Protocol):
def update(self):
"""An update method that is to be called after a training optimization step.
Implements an additional updates the model parameters may need (for example, doing an EMA step for a
target model, or incrementing an internal buffer).
TODO(alexander-soare): We will move the optimization step back into the training loop, so this will
disappear.
"""

View File

@@ -1,172 +0,0 @@
#!/usr/bin/env python
# Copyright 2024 Nicklas Hansen, Xiaolong Wang, Hao Su,
# and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
@dataclass
class TDMPCConfig:
"""Configuration class for TDMPCPolicy.
Defaults are configured for training with xarm_lift_medium_replay providing proprioceptive and single
camera observations.
The parameters you will most likely need to change are the ones which depend on the environment / sensors.
Those are: `input_shapes`, `output_shapes`, and perhaps `max_random_shift`.
Args:
n_action_repeats: The number of times to repeat the action returned by the planning. (hint: Google
action repeats in Q-learning or ask your favorite chatbot)
horizon: Horizon for model predictive control.
input_normalization_modes: A dictionary with key representing the modality (e.g. "observation.state"),
and the value specifies the normalization mode to apply. The two available modes are "mean_std"
which subtracts the mean and divides by the standard deviation and "min_max" which rescale in a
[-1, 1] range. Note that here this defaults to None meaning inputs are not normalized. This is to
match the original implementation.
output_normalization_modes: Similar dictionary as `normalize_input_modes`, but to unnormalize to the
original scale. Note that this is also used for normalizing the training targets. NOTE: Clipping
to [-1, +1] is used during MPPI/CEM. Therefore, it is recommended that you stick with "min_max"
normalization mode here.
image_encoder_hidden_dim: Number of channels for the convolutional layers used for image encoding.
state_encoder_hidden_dim: Hidden dimension for MLP used for state vector encoding.
latent_dim: Observation's latent embedding dimension.
q_ensemble_size: Number of Q function estimators to use in an ensemble for uncertainty estimation.
mlp_dim: Hidden dimension of MLPs used for modelling the dynamics encoder, reward function, policy
(π), Q ensemble, and V.
discount: Discount factor (γ) to use for the reinforcement learning formalism.
use_mpc: Whether to use model predictive control. The alternative is to just sample the policy model
(π) for each step.
cem_iterations: Number of iterations for the MPPI/CEM loop in MPC.
max_std: Maximum standard deviation for actions sampled from the gaussian PDF in CEM.
min_std: Minimum standard deviation for noise applied to actions sampled from the policy model (π).
Doubles up as the minimum standard deviation for actions sampled from the gaussian PDF in CEM.
n_gaussian_samples: Number of samples to draw from the gaussian distribution every CEM iteration. Must
be non-zero.
n_pi_samples: Number of samples to draw from the policy / world model rollout every CEM iteration. Can
be zero.
uncertainty_regularizer_coeff: Coefficient for the uncertainty regularization used when estimating
trajectory values (this is the λ coeffiecient in eqn 4 of FOWM).
n_elites: The number of elite samples to use for updating the gaussian parameters every CEM iteration.
elite_weighting_temperature: The temperature to use for softmax weighting (by trajectory value) of the
elites, when updating the gaussian parameters for CEM.
gaussian_mean_momentum: Momentum (α) used for EMA updates of the mean parameter μ of the gaussian
parameters optimized in CEM. Updates are calculated as μ⁻ ← αμ⁻ + (1-α)μ.
max_random_shift_ratio: Maximum random shift (as a proportion of the image size) to apply to the
image(s) (in units of pixels) for training-time augmentation. If set to 0, no such augmentation
is applied. Note that the input images are assumed to be square for this augmentation.
reward_coeff: Loss weighting coefficient for the reward regression loss.
expectile_weight: Weighting (τ) used in expectile regression for the state value function (V).
v_pred < v_target is weighted by τ and v_pred >= v_target is weighted by (1-τ). τ is expected to
be in [0, 1]. Setting τ closer to 1 results in a more "optimistic" V. This is sensible to do
because v_target is obtained by evaluating the learned state-action value functions (Q) with
in-sample actions that may not be always optimal.
value_coeff: Loss weighting coefficient for both the state-action value (Q) TD loss, and the state
value (V) expectile regression loss.
consistency_coeff: Loss weighting coefficient for the consistency loss.
advantage_scaling: A factor by which the advantages are scaled prior to exponentiation for advantage
weighted regression of the policy (π) estimator parameters. Note that the exponentiated advantages
are clamped at 100.0.
pi_coeff: Loss weighting coefficient for the action regression loss.
temporal_decay_coeff: Exponential decay coefficient for decaying the loss coefficient for future time-
steps. Hint: each loss computation involves `horizon` steps worth of actions starting from the
current time step.
target_model_momentum: Momentum (α) used for EMA updates of the target models. Updates are calculated
as ϕ ← αϕ + (1-α)θ where ϕ are the parameters of the target model and θ are the parameters of the
model being trained.
"""
# Input / output structure.
n_action_repeats: int = 2
horizon: int = 5
input_shapes: dict[str, list[int]] = field(
default_factory=lambda: {
"observation.image": [3, 84, 84],
"observation.state": [4],
}
)
output_shapes: dict[str, list[int]] = field(
default_factory=lambda: {
"action": [4],
}
)
# Normalization / Unnormalization
input_normalization_modes: dict[str, str] | None = None
output_normalization_modes: dict[str, str] = field(
default_factory=lambda: {"action": "min_max"},
)
# Architecture / modeling.
# Neural networks.
image_encoder_hidden_dim: int = 32
state_encoder_hidden_dim: int = 256
latent_dim: int = 50
q_ensemble_size: int = 5
mlp_dim: int = 512
# Reinforcement learning.
discount: float = 0.9
# Inference.
use_mpc: bool = True
cem_iterations: int = 6
max_std: float = 2.0
min_std: float = 0.05
n_gaussian_samples: int = 512
n_pi_samples: int = 51
uncertainty_regularizer_coeff: float = 1.0
n_elites: int = 50
elite_weighting_temperature: float = 0.5
gaussian_mean_momentum: float = 0.1
# Training and loss computation.
max_random_shift_ratio: float = 0.0476
# Loss coefficients.
reward_coeff: float = 0.5
expectile_weight: float = 0.9
value_coeff: float = 0.1
consistency_coeff: float = 20.0
advantage_scaling: float = 3.0
pi_coeff: float = 0.5
temporal_decay_coeff: float = 0.5
# Target model.
target_model_momentum: float = 0.995
def __post_init__(self):
"""Input validation (not exhaustive)."""
# There should only be one image key.
image_keys = {k for k in self.input_shapes if k.startswith("observation.image")}
if len(image_keys) != 1:
raise ValueError(
f"{self.__class__.__name__} only handles one image for now. Got image keys {image_keys}."
)
image_key = next(iter(image_keys))
if self.input_shapes[image_key][-2] != self.input_shapes[image_key][-1]:
# TODO(alexander-soare): This limitation is solely because of code in the random shift
# augmentation. It should be able to be removed.
raise ValueError(
f"Only square images are handled now. Got image shape {self.input_shapes[image_key]}."
)
if self.n_gaussian_samples <= 0:
raise ValueError(
f"The number of guassian samples for CEM should be non-zero. Got `{self.n_gaussian_samples=}`"
)
if self.output_normalization_modes != {"action": "min_max"}:
raise ValueError(
"TD-MPC assumes the action space dimensions to all be in [-1, 1]. Therefore it is strongly "
f"advised that you stick with the default. See {self.__class__.__name__} docstring for more "
"information."
)

View File

@@ -0,0 +1,576 @@
import os
import pickle
import re
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F # noqa: N812
from torch import distributions as pyd
from torch.distributions.utils import _standard_normal
DEFAULT_ACT_FN = nn.Mish()
def __REDUCE__(b): # noqa: N802, N807
return "mean" if b else "none"
def l1(pred, target, reduce=False):
"""Computes the L1-loss between predictions and targets."""
return F.l1_loss(pred, target, reduction=__REDUCE__(reduce))
def mse(pred, target, reduce=False):
"""Computes the MSE loss between predictions and targets."""
return F.mse_loss(pred, target, reduction=__REDUCE__(reduce))
def l2_expectile(diff, expectile=0.7, reduce=False):
weight = torch.where(diff > 0, expectile, (1 - expectile))
loss = weight * (diff**2)
reduction = __REDUCE__(reduce)
if reduction == "mean":
return torch.mean(loss)
elif reduction == "sum":
return torch.sum(loss)
return loss
def _get_out_shape(in_shape, layers):
"""Utility function. Returns the output shape of a network for a given input shape."""
x = torch.randn(*in_shape).unsqueeze(0)
return (nn.Sequential(*layers) if isinstance(layers, list) else layers)(x).squeeze(0).shape
def gaussian_logprob(eps, log_std):
"""Compute Gaussian log probability."""
residual = (-0.5 * eps.pow(2) - log_std).sum(-1, keepdim=True)
return residual - 0.5 * np.log(2 * np.pi) * eps.size(-1)
def squash(mu, pi, log_pi):
"""Apply squashing function."""
mu = torch.tanh(mu)
pi = torch.tanh(pi)
log_pi -= torch.log(F.relu(1 - pi.pow(2)) + 1e-6).sum(-1, keepdim=True)
return mu, pi, log_pi
def orthogonal_init(m):
"""Orthogonal layer initialization."""
if isinstance(m, nn.Linear):
nn.init.orthogonal_(m.weight.data)
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Conv2d):
gain = nn.init.calculate_gain("relu")
nn.init.orthogonal_(m.weight.data, gain)
if m.bias is not None:
nn.init.zeros_(m.bias)
def ema(m, m_target, tau):
"""Update slow-moving average of online network (target network) at rate tau."""
with torch.no_grad():
# TODO(rcadene, aliberts): issue with strict=False
# for p, p_target in zip(m.parameters(), m_target.parameters(), strict=False):
# p_target.data.lerp_(p.data, tau)
m_params_iter = iter(m.parameters())
m_target_params_iter = iter(m_target.parameters())
while True:
try:
p = next(m_params_iter)
p_target = next(m_target_params_iter)
p_target.data.lerp_(p.data, tau)
except StopIteration:
# If any iterator is exhausted, exit the loop
break
def set_requires_grad(net, value):
"""Enable/disable gradients for a given (sub)network."""
for param in net.parameters():
param.requires_grad_(value)
class TruncatedNormal(pyd.Normal):
"""Utility class implementing the truncated normal distribution."""
default_sample_shape = torch.Size()
def __init__(self, loc, scale, low=-1.0, high=1.0, eps=1e-6):
super().__init__(loc, scale, validate_args=False)
self.low = low
self.high = high
self.eps = eps
def _clamp(self, x):
clamped_x = torch.clamp(x, self.low + self.eps, self.high - self.eps)
x = x - x.detach() + clamped_x.detach()
return x
def sample(self, clip=None, sample_shape=default_sample_shape):
shape = self._extended_shape(sample_shape)
eps = _standard_normal(shape, dtype=self.loc.dtype, device=self.loc.device)
eps *= self.scale
if clip is not None:
eps = torch.clamp(eps, -clip, clip)
x = self.loc + eps
return self._clamp(x)
class NormalizeImg(nn.Module):
"""Normalizes pixel observations to [0,1) range."""
def __init__(self):
super().__init__()
def forward(self, x):
return x.div(255.0)
class Flatten(nn.Module):
"""Flattens its input to a (batched) vector."""
def __init__(self):
super().__init__()
def forward(self, x):
return x.view(x.size(0), -1)
def enc(cfg):
obs_shape = {
"rgb": (3, cfg.img_size, cfg.img_size),
"state": (cfg.state_dim,),
}
"""Returns a TOLD encoder."""
pixels_enc_layers, state_enc_layers = None, None
if cfg.modality in {"pixels", "all"}:
C = int(3 * cfg.frame_stack) # noqa: N806
pixels_enc_layers = [
NormalizeImg(),
nn.Conv2d(C, cfg.num_channels, 7, stride=2),
nn.ReLU(),
nn.Conv2d(cfg.num_channels, cfg.num_channels, 5, stride=2),
nn.ReLU(),
nn.Conv2d(cfg.num_channels, cfg.num_channels, 3, stride=2),
nn.ReLU(),
nn.Conv2d(cfg.num_channels, cfg.num_channels, 3, stride=2),
nn.ReLU(),
]
out_shape = _get_out_shape((C, cfg.img_size, cfg.img_size), pixels_enc_layers)
pixels_enc_layers.extend(
[
Flatten(),
nn.Linear(np.prod(out_shape), cfg.latent_dim),
nn.LayerNorm(cfg.latent_dim),
nn.Sigmoid(),
]
)
if cfg.modality == "pixels":
return ConvExt(nn.Sequential(*pixels_enc_layers))
if cfg.modality in {"state", "all"}:
state_dim = obs_shape[0] if cfg.modality == "state" else obs_shape["state"][0]
state_enc_layers = [
nn.Linear(state_dim, cfg.enc_dim),
nn.ELU(),
nn.Linear(cfg.enc_dim, cfg.latent_dim),
nn.LayerNorm(cfg.latent_dim),
nn.Sigmoid(),
]
if cfg.modality == "state":
return nn.Sequential(*state_enc_layers)
else:
raise NotImplementedError
encoders = {}
for k in obs_shape:
if k == "state":
encoders[k] = nn.Sequential(*state_enc_layers)
elif k.endswith("rgb"):
encoders[k] = ConvExt(nn.Sequential(*pixels_enc_layers))
else:
raise NotImplementedError
return Multiplexer(nn.ModuleDict(encoders))
def mlp(in_dim, mlp_dim, out_dim, act_fn=DEFAULT_ACT_FN):
"""Returns an MLP."""
if isinstance(mlp_dim, int):
mlp_dim = [mlp_dim, mlp_dim]
return nn.Sequential(
nn.Linear(in_dim, mlp_dim[0]),
nn.LayerNorm(mlp_dim[0]),
act_fn,
nn.Linear(mlp_dim[0], mlp_dim[1]),
nn.LayerNorm(mlp_dim[1]),
act_fn,
nn.Linear(mlp_dim[1], out_dim),
)
def dynamics(in_dim, mlp_dim, out_dim, act_fn=DEFAULT_ACT_FN):
"""Returns a dynamics network."""
return nn.Sequential(
mlp(in_dim, mlp_dim, out_dim, act_fn),
nn.LayerNorm(out_dim),
nn.Sigmoid(),
)
def q(cfg):
action_dim = cfg.action_dim
"""Returns a Q-function that uses Layer Normalization."""
return nn.Sequential(
nn.Linear(cfg.latent_dim + action_dim, cfg.mlp_dim),
nn.LayerNorm(cfg.mlp_dim),
nn.Tanh(),
nn.Linear(cfg.mlp_dim, cfg.mlp_dim),
nn.ELU(),
nn.Linear(cfg.mlp_dim, 1),
)
def v(cfg):
"""Returns a state value function that uses Layer Normalization."""
return nn.Sequential(
nn.Linear(cfg.latent_dim, cfg.mlp_dim),
nn.LayerNorm(cfg.mlp_dim),
nn.Tanh(),
nn.Linear(cfg.mlp_dim, cfg.mlp_dim),
nn.ELU(),
nn.Linear(cfg.mlp_dim, 1),
)
def aug(cfg):
obs_shape = {
"rgb": (3, cfg.img_size, cfg.img_size),
"state": (4,),
}
"""Multiplex augmentation"""
if cfg.modality == "state":
return nn.Identity()
elif cfg.modality == "pixels":
return RandomShiftsAug(cfg)
else:
augs = {}
for k in obs_shape:
if k == "state":
augs[k] = nn.Identity()
elif k.endswith("rgb"):
augs[k] = RandomShiftsAug(cfg)
else:
raise NotImplementedError
return Multiplexer(nn.ModuleDict(augs))
class ConvExt(nn.Module):
"""Auxiliary conv net accommodating high-dim input"""
def __init__(self, conv):
super().__init__()
self.conv = conv
def forward(self, x):
if x.ndim > 4:
batch_shape = x.shape[:-3]
out = self.conv(x.view(-1, *x.shape[-3:]))
out = out.view(*batch_shape, *out.shape[1:])
else:
out = self.conv(x)
return out
class Multiplexer(nn.Module):
"""Model multiplexer"""
def __init__(self, choices):
super().__init__()
self.choices = choices
def forward(self, x, key=None):
if isinstance(x, dict):
if key is not None:
return self.choices[key](x)
return {k: self.choices[k](_x) for k, _x in x.items()}
return self.choices(x)
class RandomShiftsAug(nn.Module):
"""
Random shift image augmentation.
Adapted from https://github.com/facebookresearch/drqv2
"""
def __init__(self, cfg):
super().__init__()
assert cfg.modality in {"pixels", "all"}
self.pad = int(cfg.img_size / 21)
def forward(self, x):
n, c, h, w = x.size()
assert h == w
padding = tuple([self.pad] * 4)
x = F.pad(x, padding, "replicate")
eps = 1.0 / (h + 2 * self.pad)
arange = torch.linspace(
-1.0 + eps,
1.0 - eps,
h + 2 * self.pad,
device=x.device,
dtype=torch.float32,
)[:h]
arange = arange.unsqueeze(0).repeat(h, 1).unsqueeze(2)
base_grid = torch.cat([arange, arange.transpose(1, 0)], dim=2)
base_grid = base_grid.unsqueeze(0).repeat(n, 1, 1, 1)
shift = torch.randint(
0,
2 * self.pad + 1,
size=(n, 1, 1, 2),
device=x.device,
dtype=torch.float32,
)
shift *= 2.0 / (h + 2 * self.pad)
grid = base_grid + shift
return F.grid_sample(x, grid, padding_mode="zeros", align_corners=False)
# TODO(aliberts): remove class
# class Episode:
# """Storage object for a single episode."""
# def __init__(self, cfg, init_obs):
# action_dim = cfg.action_dim
# self.cfg = cfg
# self.device = torch.device(cfg.buffer_device)
# if cfg.modality in {"pixels", "state"}:
# dtype = torch.float32 if cfg.modality == "state" else torch.uint8
# self.obses = torch.empty(
# (cfg.episode_length + 1, *init_obs.shape),
# dtype=dtype,
# device=self.device,
# )
# self.obses[0] = torch.tensor(init_obs, dtype=dtype, device=self.device)
# elif cfg.modality == "all":
# self.obses = {}
# for k, v in init_obs.items():
# assert k in {"rgb", "state"}
# dtype = torch.float32 if k == "state" else torch.uint8
# self.obses[k] = torch.empty(
# (cfg.episode_length + 1, *v.shape), dtype=dtype, device=self.device
# )
# self.obses[k][0] = torch.tensor(v, dtype=dtype, device=self.device)
# else:
# raise ValueError
# self.actions = torch.empty((cfg.episode_length, action_dim), dtype=torch.float32, device=self.device)
# self.rewards = torch.empty((cfg.episode_length,), dtype=torch.float32, device=self.device)
# self.dones = torch.empty((cfg.episode_length,), dtype=torch.bool, device=self.device)
# self.masks = torch.empty((cfg.episode_length,), dtype=torch.float32, device=self.device)
# self.cumulative_reward = 0
# self.done = False
# self.success = False
# self._idx = 0
# def __len__(self):
# return self._idx
# @classmethod
# def from_trajectory(cls, cfg, obses, actions, rewards, dones=None, masks=None):
# """Constructs an episode from a trajectory."""
# if cfg.modality in {"pixels", "state"}:
# episode = cls(cfg, obses[0])
# episode.obses[1:] = torch.tensor(obses[1:], dtype=episode.obses.dtype, device=episode.device)
# elif cfg.modality == "all":
# episode = cls(cfg, {k: v[0] for k, v in obses.items()})
# for k in obses:
# episode.obses[k][1:] = torch.tensor(
# obses[k][1:], dtype=episode.obses[k].dtype, device=episode.device
# )
# else:
# raise NotImplementedError
# episode.actions = torch.tensor(actions, dtype=episode.actions.dtype, device=episode.device)
# episode.rewards = torch.tensor(rewards, dtype=episode.rewards.dtype, device=episode.device)
# episode.dones = (
# torch.tensor(dones, dtype=episode.dones.dtype, device=episode.device)
# if dones is not None
# else torch.zeros_like(episode.dones)
# )
# episode.masks = (
# torch.tensor(masks, dtype=episode.masks.dtype, device=episode.device)
# if masks is not None
# else torch.ones_like(episode.masks)
# )
# episode.cumulative_reward = torch.sum(episode.rewards)
# episode.done = True
# episode._idx = cfg.episode_length
# return episode
# @property
# def first(self):
# return len(self) == 0
# def __add__(self, transition):
# self.add(*transition)
# return self
# def add(self, obs, action, reward, done, mask=1.0, success=False):
# """Add a transition into the episode."""
# if isinstance(obs, dict):
# for k, v in obs.items():
# self.obses[k][self._idx + 1] = torch.tensor(
# v, dtype=self.obses[k].dtype, device=self.obses[k].device
# )
# else:
# self.obses[self._idx + 1] = torch.tensor(obs, dtype=self.obses.dtype, device=self.obses.device)
# self.actions[self._idx] = action
# self.rewards[self._idx] = reward
# self.dones[self._idx] = done
# self.masks[self._idx] = mask
# self.cumulative_reward += reward
# self.done = done
# self.success = self.success or success
# self._idx += 1
def get_dataset_dict(cfg, env, return_reward_normalizer=False):
"""Construct a dataset for env"""
required_keys = [
"observations",
"next_observations",
"actions",
"rewards",
"dones",
"masks",
]
if cfg.task.startswith("xarm"):
dataset_path = os.path.join(cfg.dataset_dir, "buffer.pkl")
print(f"Using offline dataset '{dataset_path}'")
with open(dataset_path, "rb") as f:
dataset_dict = pickle.load(f)
for k in required_keys:
if k not in dataset_dict and k[:-1] in dataset_dict:
dataset_dict[k] = dataset_dict.pop(k[:-1])
elif cfg.task.startswith("legged"):
dataset_path = os.path.join(cfg.dataset_dir, "buffer.pkl")
print(f"Using offline dataset '{dataset_path}'")
with open(dataset_path, "rb") as f:
dataset_dict = pickle.load(f)
dataset_dict["actions"] /= env.unwrapped.clip_actions
print(f"clip_actions={env.unwrapped.clip_actions}")
else:
import d4rl
dataset_dict = d4rl.qlearning_dataset(env)
dones = np.full_like(dataset_dict["rewards"], False, dtype=bool)
for i in range(len(dones) - 1):
if (
np.linalg.norm(dataset_dict["observations"][i + 1] - dataset_dict["next_observations"][i])
> 1e-6
or dataset_dict["terminals"][i] == 1.0
):
dones[i] = True
dones[-1] = True
dataset_dict["masks"] = 1.0 - dataset_dict["terminals"]
del dataset_dict["terminals"]
for k, v in dataset_dict.items():
dataset_dict[k] = v.astype(np.float32)
dataset_dict["dones"] = dones
if cfg.is_data_clip:
lim = 1 - cfg.data_clip_eps
dataset_dict["actions"] = np.clip(dataset_dict["actions"], -lim, lim)
reward_normalizer = get_reward_normalizer(cfg, dataset_dict)
dataset_dict["rewards"] = reward_normalizer(dataset_dict["rewards"])
for key in required_keys:
assert key in dataset_dict, f"Missing `{key}` in dataset."
if return_reward_normalizer:
return dataset_dict, reward_normalizer
return dataset_dict
def get_trajectory_boundaries_and_returns(dataset):
"""
Split dataset into trajectories and compute returns
"""
episode_starts = [0]
episode_ends = []
episode_return = 0
episode_returns = []
n_transitions = len(dataset["rewards"])
for i in range(n_transitions):
episode_return += dataset["rewards"][i]
if dataset["dones"][i]:
episode_returns.append(episode_return)
episode_ends.append(i + 1)
if i + 1 < n_transitions:
episode_starts.append(i + 1)
episode_return = 0.0
return episode_starts, episode_ends, episode_returns
def normalize_returns(dataset, scaling=1000):
"""
Normalize returns in the dataset
"""
(_, _, episode_returns) = get_trajectory_boundaries_and_returns(dataset)
dataset["rewards"] /= np.max(episode_returns) - np.min(episode_returns)
dataset["rewards"] *= scaling
return dataset
def get_reward_normalizer(cfg, dataset):
"""
Get a reward normalizer for the dataset
"""
if cfg.task.startswith("xarm"):
return lambda x: x
elif "maze" in cfg.task:
return lambda x: x - 1.0
elif cfg.task.split("-")[0] in ["hopper", "halfcheetah", "walker2d"]:
(_, _, episode_returns) = get_trajectory_boundaries_and_returns(dataset)
return lambda x: x / (np.max(episode_returns) - np.min(episode_returns)) * 1000.0
elif hasattr(cfg, "reward_scale"):
return lambda x: x * cfg.reward_scale
return lambda x: x
def linear_schedule(schdl, step):
"""
Outputs values following a linear decay schedule.
Adapted from https://github.com/facebookresearch/drqv2
"""
try:
return float(schdl)
except ValueError:
match = re.match(r"linear\((.+),(.+),(.+),(.+)\)", schdl)
if match:
init, final, start, end = (float(g) for g in match.groups())
mix = np.clip((step - start) / (end - start), 0.0, 1.0)
return (1.0 - mix) * init + mix * final
match = re.match(r"linear\((.+),(.+),(.+)\)", schdl)
if match:
init, final, duration = (float(g) for g in match.groups())
mix = np.clip(step / duration, 0.0, 1.0)
return (1.0 - mix) * init + mix * final
raise NotImplementedError(schdl)

View File

@@ -1,810 +0,0 @@
#!/usr/bin/env python
# Copyright 2024 Nicklas Hansen, Xiaolong Wang, Hao Su,
# and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Implementation of Finetuning Offline World Models in the Real World.
The comments in this code may sometimes refer to these references:
TD-MPC paper: Temporal Difference Learning for Model Predictive Control (https://arxiv.org/abs/2203.04955)
FOWM paper: Finetuning Offline World Models in the Real World (https://arxiv.org/abs/2310.16029)
TODO(alexander-soare): Make rollout work for batch sizes larger than 1.
TODO(alexander-soare): Use batch-first throughout.
"""
# ruff: noqa: N806
import logging
from collections import deque
from copy import deepcopy
from functools import partial
from typing import Callable
import einops
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F # noqa: N812
from huggingface_hub import PyTorchModelHubMixin
from torch import Tensor
from lerobot.common.policies.normalize import Normalize, Unnormalize
from lerobot.common.policies.tdmpc.configuration_tdmpc import TDMPCConfig
from lerobot.common.policies.utils import get_device_from_parameters, populate_queues
class TDMPCPolicy(nn.Module, PyTorchModelHubMixin):
"""Implementation of TD-MPC learning + inference.
Please note several warnings for this policy.
- Evaluation of pretrained weights created with the original FOWM code
(https://github.com/fyhMer/fowm) works as expected. To be precise: we trained and evaluated a
model with the FOWM code for the xarm_lift_medium_replay dataset. We ported the weights across
to LeRobot, and were able to evaluate with the same success metric. BUT, we had to use inter-
process communication to use the xarm environment from FOWM. This is because our xarm
environment uses newer dependencies and does not match the environment in FOWM. See
https://github.com/huggingface/lerobot/pull/103 for implementation details.
- We have NOT checked that training on LeRobot reproduces SOTA results. This is a TODO.
- Our current xarm datasets were generated using the environment from FOWM. Therefore they do not
match our xarm environment.
"""
name = "tdmpc"
def __init__(
self, config: TDMPCConfig | None = None, dataset_stats: dict[str, dict[str, Tensor]] | None = None
):
"""
Args:
config: Policy configuration class instance or None, in which case the default instantiation of
the configuration class is used.
dataset_stats: Dataset statistics to be used for normalization. If not passed here, it is expected
that they will be passed with a call to `load_state_dict` before the policy is used.
"""
super().__init__()
logging.warning(
"""
Please note several warnings for this policy.
- Evaluation of pretrained weights created with the original FOWM code
(https://github.com/fyhMer/fowm) works as expected. To be precise: we trained and evaluated a
model with the FOWM code for the xarm_lift_medium_replay dataset. We ported the weights across
to LeRobot, and were able to evaluate with the same success metric. BUT, we had to use inter-
process communication to use the xarm environment from FOWM. This is because our xarm
environment uses newer dependencies and does not match the environment in FOWM. See
https://github.com/huggingface/lerobot/pull/103 for implementation details.
- We have NOT checked that training on LeRobot reproduces SOTA results. This is a TODO.
- Our current xarm datasets were generated using the environment from FOWM. Therefore they do not
match our xarm environment.
"""
)
if config is None:
config = TDMPCConfig()
self.config = config
self.model = TDMPCTOLD(config)
self.model_target = deepcopy(self.model)
for param in self.model_target.parameters():
param.requires_grad = False
if config.input_normalization_modes is not None:
self.normalize_inputs = Normalize(
config.input_shapes, config.input_normalization_modes, dataset_stats
)
else:
self.normalize_inputs = nn.Identity()
self.normalize_targets = Normalize(
config.output_shapes, config.output_normalization_modes, dataset_stats
)
self.unnormalize_outputs = Unnormalize(
config.output_shapes, config.output_normalization_modes, dataset_stats
)
image_keys = [k for k in config.input_shapes if k.startswith("observation.image")]
# Note: This check is covered in the post-init of the config but have a sanity check just in case.
assert len(image_keys) == 1
self.input_image_key = image_keys[0]
self.reset()
def reset(self):
"""
Clear observation and action queues. Clear previous means for warm starting of MPPI/CEM. Should be
called on `env.reset()`
"""
self._queues = {
"observation.image": deque(maxlen=1),
"observation.state": deque(maxlen=1),
"action": deque(maxlen=self.config.n_action_repeats),
}
# Previous mean obtained from the cross-entropy method (CEM) used during MPC. It is used to warm start
# CEM for the next step.
self._prev_mean: torch.Tensor | None = None
@torch.no_grad()
def select_action(self, batch: dict[str, Tensor]):
"""Select a single action given environment observations."""
batch = self.normalize_inputs(batch)
batch["observation.image"] = batch[self.input_image_key]
self._queues = populate_queues(self._queues, batch)
# When the action queue is depleted, populate it again by querying the policy.
if len(self._queues["action"]) == 0:
batch = {key: torch.stack(list(self._queues[key]), dim=1) for key in batch}
# Remove the time dimensions as it is not handled yet.
for key in batch:
assert batch[key].shape[1] == 1
batch[key] = batch[key][:, 0]
# NOTE: Order of observations matters here.
z = self.model.encode({k: batch[k] for k in ["observation.image", "observation.state"]})
if self.config.use_mpc:
batch_size = batch["observation.image"].shape[0]
# Batch processing is not handled in MPC mode, so process the batch in a loop.
action = [] # will be a batch of actions for one step
for i in range(batch_size):
# Note: self.plan does not handle batches, hence the squeeze.
action.append(self.plan(z[i]))
action = torch.stack(action)
else:
# Plan with the policy (π) alone.
action = self.model.pi(z)
self.unnormalize_outputs({"action": action})["action"]
for _ in range(self.config.n_action_repeats):
self._queues["action"].append(action)
action = self._queues["action"].popleft()
return torch.clamp(action, -1, 1)
@torch.no_grad()
def plan(self, z: Tensor) -> Tensor:
"""Plan next action using TD-MPC inference.
Args:
z: (latent_dim,) tensor for the initial state.
Returns:
(action_dim,) tensor for the next action.
TODO(alexander-soare) Extend this to be able to work with batches.
"""
device = get_device_from_parameters(self)
# Sample Nπ trajectories from the policy.
pi_actions = torch.empty(
self.config.horizon,
self.config.n_pi_samples,
self.config.output_shapes["action"][0],
device=device,
)
if self.config.n_pi_samples > 0:
_z = einops.repeat(z, "d -> n d", n=self.config.n_pi_samples)
for t in range(self.config.horizon):
# Note: Adding a small amount of noise here doesn't hurt during inference and may even be
# helpful for CEM.
pi_actions[t] = self.model.pi(_z, self.config.min_std)
_z = self.model.latent_dynamics(_z, pi_actions[t])
# In the CEM loop we will need this for a call to estimate_value with the gaussian sampled
# trajectories.
z = einops.repeat(z, "d -> n d", n=self.config.n_gaussian_samples + self.config.n_pi_samples)
# Model Predictive Path Integral (MPPI) with the cross-entropy method (CEM) as the optimization
# algorithm.
# The initial mean and standard deviation for the cross-entropy method (CEM).
mean = torch.zeros(self.config.horizon, self.config.output_shapes["action"][0], device=device)
# Maybe warm start CEM with the mean from the previous step.
if self._prev_mean is not None:
mean[:-1] = self._prev_mean[1:]
std = self.config.max_std * torch.ones_like(mean)
for _ in range(self.config.cem_iterations):
# Randomly sample action trajectories for the gaussian distribution.
std_normal_noise = torch.randn(
self.config.horizon,
self.config.n_gaussian_samples,
self.config.output_shapes["action"][0],
device=std.device,
)
gaussian_actions = torch.clamp(mean.unsqueeze(1) + std.unsqueeze(1) * std_normal_noise, -1, 1)
# Compute elite actions.
actions = torch.cat([gaussian_actions, pi_actions], dim=1)
value = self.estimate_value(z, actions).nan_to_num_(0)
elite_idxs = torch.topk(value, self.config.n_elites, dim=0).indices
elite_value, elite_actions = value[elite_idxs], actions[:, elite_idxs]
# Update guassian PDF parameters to be the (weighted) mean and standard deviation of the elites.
max_value = elite_value.max(0)[0]
# The weighting is a softmax over trajectory values. Note that this is not the same as the usage
# of Ω in eqn 4 of the TD-MPC paper. Instead it is the normalized version of it: s = Ω/ΣΩ. This
# makes the equations: μ = Σ(s⋅Γ), σ = Σ(s⋅(Γ-μ)²).
score = torch.exp(self.config.elite_weighting_temperature * (elite_value - max_value))
score /= score.sum()
_mean = torch.sum(einops.rearrange(score, "n -> n 1") * elite_actions, dim=1)
_std = torch.sqrt(
torch.sum(
einops.rearrange(score, "n -> n 1")
* (elite_actions - einops.rearrange(_mean, "h d -> h 1 d")) ** 2,
dim=1,
)
)
# Update mean with an exponential moving average, and std with a direct replacement.
mean = (
self.config.gaussian_mean_momentum * mean + (1 - self.config.gaussian_mean_momentum) * _mean
)
std = _std.clamp_(self.config.min_std, self.config.max_std)
# Keep track of the mean for warm-starting subsequent steps.
self._prev_mean = mean
# Randomly select one of the elite actions from the last iteration of MPPI/CEM using the softmax
# scores from the last iteration.
actions = elite_actions[:, torch.multinomial(score, 1).item()]
# Select only the first action
action = actions[0]
return action
@torch.no_grad()
def estimate_value(self, z: Tensor, actions: Tensor):
"""Estimates the value of a trajectory as per eqn 4 of the FOWM paper.
Args:
z: (batch, latent_dim) tensor of initial latent states.
actions: (horizon, batch, action_dim) tensor of action trajectories.
Returns:
(batch,) tensor of values.
"""
# Initialize return and running discount factor.
G, running_discount = 0, 1
# Iterate over the actions in the trajectory to simulate the trajectory using the latent dynamics
# model. Keep track of return.
for t in range(actions.shape[0]):
# We will compute the reward in a moment. First compute the uncertainty regularizer from eqn 4
# of the FOWM paper.
if self.config.uncertainty_regularizer_coeff > 0:
regularization = -(
self.config.uncertainty_regularizer_coeff * self.model.Qs(z, actions[t]).std(0)
)
else:
regularization = 0
# Estimate the next state (latent) and reward.
z, reward = self.model.latent_dynamics_and_reward(z, actions[t])
# Update the return and running discount.
G += running_discount * (reward + regularization)
running_discount *= self.config.discount
# Add the estimated value of the final state (using the minimum for a conservative estimate).
# Do so by predicting the next action, then taking a minimum over the ensemble of state-action value
# estimators.
# Note: This small amount of added noise seems to help a bit at inference time as observed by success
# metrics over 50 episodes of xarm_lift_medium_replay.
next_action = self.model.pi(z, self.config.min_std) # (batch, action_dim)
terminal_values = self.model.Qs(z, next_action) # (ensemble, batch)
# Randomly choose 2 of the Qs for terminal value estimation (as in App C. of the FOWM paper).
if self.config.q_ensemble_size > 2:
G += (
running_discount
* torch.min(terminal_values[torch.randint(0, self.config.q_ensemble_size, size=(2,))], dim=0)[
0
]
)
else:
G += running_discount * torch.min(terminal_values, dim=0)[0]
# Finally, also regularize the terminal value.
if self.config.uncertainty_regularizer_coeff > 0:
G -= running_discount * self.config.uncertainty_regularizer_coeff * terminal_values.std(0)
return G
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
"""Run the batch through the model and compute the loss."""
device = get_device_from_parameters(self)
batch = self.normalize_inputs(batch)
batch["observation.image"] = batch[self.input_image_key]
batch = self.normalize_targets(batch)
info = {}
# (b, t) -> (t, b)
for key in batch:
if batch[key].ndim > 1:
batch[key] = batch[key].transpose(1, 0)
action = batch["action"] # (t, b)
reward = batch["next.reward"] # (t,)
observations = {k: v for k, v in batch.items() if k.startswith("observation.")}
# Apply random image augmentations.
if self.config.max_random_shift_ratio > 0:
observations["observation.image"] = flatten_forward_unflatten(
partial(random_shifts_aug, max_random_shift_ratio=self.config.max_random_shift_ratio),
observations["observation.image"],
)
# Get the current observation for predicting trajectories, and all future observations for use in
# the latent consistency loss and TD loss.
current_observation, next_observations = {}, {}
for k in observations:
current_observation[k] = observations[k][0]
next_observations[k] = observations[k][1:]
horizon = next_observations["observation.image"].shape[0]
# Run latent rollout using the latent dynamics model and policy model.
# Note this has shape `horizon+1` because there are `horizon` actions and a current `z`. Each action
# gives us a next `z`.
batch_size = batch["index"].shape[0]
z_preds = torch.empty(horizon + 1, batch_size, self.config.latent_dim, device=device)
z_preds[0] = self.model.encode(current_observation)
reward_preds = torch.empty_like(reward, device=device)
for t in range(horizon):
z_preds[t + 1], reward_preds[t] = self.model.latent_dynamics_and_reward(z_preds[t], action[t])
# Compute Q and V value predictions based on the latent rollout.
q_preds_ensemble = self.model.Qs(z_preds[:-1], action) # (ensemble, horizon, batch)
v_preds = self.model.V(z_preds[:-1])
info.update({"Q": q_preds_ensemble.mean().item(), "V": v_preds.mean().item()})
# Compute various targets with stopgrad.
with torch.no_grad():
# Latent state consistency targets.
z_targets = self.model_target.encode(next_observations)
# State-action value targets (or TD targets) as in eqn 3 of the FOWM. Unlike TD-MPC which uses the
# learned state-action value function in conjunction with the learned policy: Q(z, π(z)), FOWM
# uses a learned state value function: V(z). This means the TD targets only depend on in-sample
# actions (not actions estimated by π).
# Note: Here we do not use self.model_target, but self.model. This is to follow the original code
# and the FOWM paper.
q_targets = reward + self.config.discount * self.model.V(self.model.encode(next_observations))
# From eqn 3 of FOWM. These appear as Q(z, a). Here we call them v_targets to emphasize that we
# are using them to compute loss for V.
v_targets = self.model_target.Qs(z_preds[:-1].detach(), action, return_min=True)
# Compute losses.
# Exponentially decay the loss weight with respect to the timestep. Steps that are more distant in the
# future have less impact on the loss. Note: unsqueeze will let us broadcast to (seq, batch).
temporal_loss_coeffs = torch.pow(
self.config.temporal_decay_coeff, torch.arange(horizon, device=device)
).unsqueeze(-1)
# Compute consistency loss as MSE loss between latents predicted from the rollout and latents
# predicted from the (target model's) observation encoder.
consistency_loss = (
(
temporal_loss_coeffs
* F.mse_loss(z_preds[1:], z_targets, reduction="none").mean(dim=-1)
# `z_preds` depends on the current observation and the actions.
* ~batch["observation.state_is_pad"][0]
* ~batch["action_is_pad"]
# `z_targets` depends on the next observation.
* ~batch["observation.state_is_pad"][1:]
)
.sum(0)
.mean()
)
# Compute the reward loss as MSE loss between rewards predicted from the rollout and the dataset
# rewards.
reward_loss = (
(
temporal_loss_coeffs
* F.mse_loss(reward_preds, reward, reduction="none")
* ~batch["next.reward_is_pad"]
# `reward_preds` depends on the current observation and the actions.
* ~batch["observation.state_is_pad"][0]
* ~batch["action_is_pad"]
)
.sum(0)
.mean()
)
# Compute state-action value loss (TD loss) for all of the Q functions in the ensemble.
q_value_loss = (
(
F.mse_loss(
q_preds_ensemble,
einops.repeat(q_targets, "t b -> e t b", e=q_preds_ensemble.shape[0]),
reduction="none",
).sum(0) # sum over ensemble
# `q_preds_ensemble` depends on the first observation and the actions.
* ~batch["observation.state_is_pad"][0]
* ~batch["action_is_pad"]
# q_targets depends on the reward and the next observations.
* ~batch["next.reward_is_pad"]
* ~batch["observation.state_is_pad"][1:]
)
.sum(0)
.mean()
)
# Compute state value loss as in eqn 3 of FOWM.
diff = v_targets - v_preds
# Expectile loss penalizes:
# - `v_preds < v_targets` with weighting `expectile_weight`
# - `v_preds >= v_targets` with weighting `1 - expectile_weight`
raw_v_value_loss = torch.where(
diff > 0, self.config.expectile_weight, (1 - self.config.expectile_weight)
) * (diff**2)
v_value_loss = (
(
temporal_loss_coeffs
* raw_v_value_loss
# `v_targets` depends on the first observation and the actions, as does `v_preds`.
* ~batch["observation.state_is_pad"][0]
* ~batch["action_is_pad"]
)
.sum(0)
.mean()
)
# Calculate the advantage weighted regression loss for π as detailed in FOWM 3.1.
# We won't need these gradients again so detach.
z_preds = z_preds.detach()
# Use stopgrad for the advantage calculation.
with torch.no_grad():
advantage = self.model_target.Qs(z_preds[:-1], action, return_min=True) - self.model.V(
z_preds[:-1]
)
info["advantage"] = advantage[0]
# (t, b)
exp_advantage = torch.clamp(torch.exp(advantage * self.config.advantage_scaling), max=100.0)
action_preds = self.model.pi(z_preds[:-1]) # (t, b, a)
# Calculate the MSE between the actions and the action predictions.
# Note: FOWM's original code calculates the log probability (wrt to a unit standard deviation
# gaussian) and sums over the action dimension. Computing the log probability amounts to multiplying
# the MSE by 0.5 and adding a constant offset (the log(2*pi) term) . Here we drop the constant offset
# as it doesn't change the optimization step, and we drop the 0.5 as we instead make a configuration
# parameter for it (see below where we compute the total loss).
mse = F.mse_loss(action_preds, action, reduction="none").sum(-1) # (t, b)
# NOTE: The original implementation does not take the sum over the temporal dimension like with the
# other losses.
# TODO(alexander-soare): Take the sum over the temporal dimension and check that training still works
# as well as expected.
pi_loss = (
exp_advantage
* mse
* temporal_loss_coeffs
# `action_preds` depends on the first observation and the actions.
* ~batch["observation.state_is_pad"][0]
* ~batch["action_is_pad"]
).mean()
loss = (
self.config.consistency_coeff * consistency_loss
+ self.config.reward_coeff * reward_loss
+ self.config.value_coeff * q_value_loss
+ self.config.value_coeff * v_value_loss
+ self.config.pi_coeff * pi_loss
)
info.update(
{
"consistency_loss": consistency_loss.item(),
"reward_loss": reward_loss.item(),
"Q_value_loss": q_value_loss.item(),
"V_value_loss": v_value_loss.item(),
"pi_loss": pi_loss.item(),
"loss": loss,
"sum_loss": loss.item() * self.config.horizon,
}
)
# Undo (b, t) -> (t, b).
for key in batch:
if batch[key].ndim > 1:
batch[key] = batch[key].transpose(1, 0)
return info
def update(self):
"""Update the target model's parameters with an EMA step."""
# Note a minor variation with respect to the original FOWM code. Here they do this based on an EMA
# update frequency parameter which is set to 2 (every 2 steps an update is done). To simplify the code
# we update every step and adjust the decay parameter `alpha` accordingly (0.99 -> 0.995)
update_ema_parameters(self.model_target, self.model, self.config.target_model_momentum)
class TDMPCTOLD(nn.Module):
"""Task-Oriented Latent Dynamics (TOLD) model used in TD-MPC."""
def __init__(self, config: TDMPCConfig):
super().__init__()
self.config = config
self._encoder = TDMPCObservationEncoder(config)
self._dynamics = nn.Sequential(
nn.Linear(config.latent_dim + config.output_shapes["action"][0], config.mlp_dim),
nn.LayerNorm(config.mlp_dim),
nn.Mish(),
nn.Linear(config.mlp_dim, config.mlp_dim),
nn.LayerNorm(config.mlp_dim),
nn.Mish(),
nn.Linear(config.mlp_dim, config.latent_dim),
nn.LayerNorm(config.latent_dim),
nn.Sigmoid(),
)
self._reward = nn.Sequential(
nn.Linear(config.latent_dim + config.output_shapes["action"][0], config.mlp_dim),
nn.LayerNorm(config.mlp_dim),
nn.Mish(),
nn.Linear(config.mlp_dim, config.mlp_dim),
nn.LayerNorm(config.mlp_dim),
nn.Mish(),
nn.Linear(config.mlp_dim, 1),
)
self._pi = nn.Sequential(
nn.Linear(config.latent_dim, config.mlp_dim),
nn.LayerNorm(config.mlp_dim),
nn.Mish(),
nn.Linear(config.mlp_dim, config.mlp_dim),
nn.LayerNorm(config.mlp_dim),
nn.Mish(),
nn.Linear(config.mlp_dim, config.output_shapes["action"][0]),
)
self._Qs = nn.ModuleList(
[
nn.Sequential(
nn.Linear(config.latent_dim + config.output_shapes["action"][0], config.mlp_dim),
nn.LayerNorm(config.mlp_dim),
nn.Tanh(),
nn.Linear(config.mlp_dim, config.mlp_dim),
nn.ELU(),
nn.Linear(config.mlp_dim, 1),
)
for _ in range(config.q_ensemble_size)
]
)
self._V = nn.Sequential(
nn.Linear(config.latent_dim, config.mlp_dim),
nn.LayerNorm(config.mlp_dim),
nn.Tanh(),
nn.Linear(config.mlp_dim, config.mlp_dim),
nn.ELU(),
nn.Linear(config.mlp_dim, 1),
)
self._init_weights()
def _init_weights(self):
"""Initialize model weights.
Orthogonal initialization for all linear and convolutional layers' weights (apart from final layers
of reward network and Q networks which get zero initialization).
Zero initialization for all linear and convolutional layers' biases.
"""
def _apply_fn(m):
if isinstance(m, nn.Linear):
nn.init.orthogonal_(m.weight.data)
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Conv2d):
gain = nn.init.calculate_gain("relu")
nn.init.orthogonal_(m.weight.data, gain)
if m.bias is not None:
nn.init.zeros_(m.bias)
self.apply(_apply_fn)
for m in [self._reward, *self._Qs]:
assert isinstance(
m[-1], nn.Linear
), "Sanity check. The last linear layer needs 0 initialization on weights."
nn.init.zeros_(m[-1].weight)
nn.init.zeros_(m[-1].bias) # this has already been done, but keep this line here for good measure
def encode(self, obs: dict[str, Tensor]) -> Tensor:
"""Encodes an observation into its latent representation."""
return self._encoder(obs)
def latent_dynamics_and_reward(self, z: Tensor, a: Tensor) -> tuple[Tensor, Tensor]:
"""Predict the next state's latent representation and the reward given a current latent and action.
Args:
z: (*, latent_dim) tensor for the current state's latent representation.
a: (*, action_dim) tensor for the action to be applied.
Returns:
A tuple containing:
- (*, latent_dim) tensor for the next state's latent representation.
- (*,) tensor for the estimated reward.
"""
x = torch.cat([z, a], dim=-1)
return self._dynamics(x), self._reward(x).squeeze(-1)
def latent_dynamics(self, z: Tensor, a: Tensor) -> Tensor:
"""Predict the next state's latent representation given a current latent and action.
Args:
z: (*, latent_dim) tensor for the current state's latent representation.
a: (*, action_dim) tensor for the action to be applied.
Returns:
(*, latent_dim) tensor for the next state's latent representation.
"""
x = torch.cat([z, a], dim=-1)
return self._dynamics(x)
def pi(self, z: Tensor, std: float = 0.0) -> Tensor:
"""Samples an action from the learned policy.
The policy can also have added (truncated) Gaussian noise injected for encouraging exploration when
generating rollouts for online training.
Args:
z: (*, latent_dim) tensor for the current state's latent representation.
std: The standard deviation of the injected noise.
Returns:
(*, action_dim) tensor for the sampled action.
"""
action = torch.tanh(self._pi(z))
if std > 0:
std = torch.ones_like(action) * std
action += torch.randn_like(action) * std
return action
def V(self, z: Tensor) -> Tensor: # noqa: N802
"""Predict state value (V).
Args:
z: (*, latent_dim) tensor for the current state's latent representation.
Returns:
(*,) tensor of estimated state values.
"""
return self._V(z).squeeze(-1)
def Qs(self, z: Tensor, a: Tensor, return_min: bool = False) -> Tensor: # noqa: N802
"""Predict state-action value for all of the learned Q functions.
Args:
z: (*, latent_dim) tensor for the current state's latent representation.
a: (*, action_dim) tensor for the action to be applied.
return_min: Set to true for implementing the detail in App. C of the FOWM paper: randomly select
2 of the Qs and return the minimum
Returns:
(q_ensemble, *) tensor for the value predictions of each learned Q function in the ensemble OR
(*,) tensor if return_min=True.
"""
x = torch.cat([z, a], dim=-1)
if not return_min:
return torch.stack([q(x).squeeze(-1) for q in self._Qs], dim=0)
else:
if len(self._Qs) > 2: # noqa: SIM108
Qs = [self._Qs[i] for i in np.random.choice(len(self._Qs), size=2)]
else:
Qs = self._Qs
return torch.stack([q(x).squeeze(-1) for q in Qs], dim=0).min(dim=0)[0]
class TDMPCObservationEncoder(nn.Module):
"""Encode image and/or state vector observations."""
def __init__(self, config: TDMPCConfig):
"""
Creates encoders for pixel and/or state modalities.
TODO(alexander-soare): The original work allows for multiple images by concatenating them along the
channel dimension. Re-implement this capability.
"""
super().__init__()
self.config = config
if "observation.image" in config.input_shapes:
self.image_enc_layers = nn.Sequential(
nn.Conv2d(
config.input_shapes["observation.image"][0], config.image_encoder_hidden_dim, 7, stride=2
),
nn.ReLU(),
nn.Conv2d(config.image_encoder_hidden_dim, config.image_encoder_hidden_dim, 5, stride=2),
nn.ReLU(),
nn.Conv2d(config.image_encoder_hidden_dim, config.image_encoder_hidden_dim, 3, stride=2),
nn.ReLU(),
nn.Conv2d(config.image_encoder_hidden_dim, config.image_encoder_hidden_dim, 3, stride=2),
nn.ReLU(),
)
dummy_batch = torch.zeros(1, *config.input_shapes["observation.image"])
with torch.inference_mode():
out_shape = self.image_enc_layers(dummy_batch).shape[1:]
self.image_enc_layers.extend(
nn.Sequential(
nn.Flatten(),
nn.Linear(np.prod(out_shape), config.latent_dim),
nn.LayerNorm(config.latent_dim),
nn.Sigmoid(),
)
)
if "observation.state" in config.input_shapes:
self.state_enc_layers = nn.Sequential(
nn.Linear(config.input_shapes["observation.state"][0], config.state_encoder_hidden_dim),
nn.ELU(),
nn.Linear(config.state_encoder_hidden_dim, config.latent_dim),
nn.LayerNorm(config.latent_dim),
nn.Sigmoid(),
)
def forward(self, obs_dict: dict[str, Tensor]) -> Tensor:
"""Encode the image and/or state vector.
Each modality is encoded into a feature vector of size (latent_dim,) and then a uniform mean is taken
over all features.
"""
feat = []
if "observation.image" in self.config.input_shapes:
feat.append(flatten_forward_unflatten(self.image_enc_layers, obs_dict["observation.image"]))
if "observation.state" in self.config.input_shapes:
feat.append(self.state_enc_layers(obs_dict["observation.state"]))
return torch.stack(feat, dim=0).mean(0)
def random_shifts_aug(x: Tensor, max_random_shift_ratio: float) -> Tensor:
"""Randomly shifts images horizontally and vertically.
Adapted from https://github.com/facebookresearch/drqv2
"""
b, _, h, w = x.size()
assert h == w, "non-square images not handled yet"
pad = int(round(max_random_shift_ratio * h))
x = F.pad(x, tuple([pad] * 4), "replicate")
eps = 1.0 / (h + 2 * pad)
arange = torch.linspace(
-1.0 + eps,
1.0 - eps,
h + 2 * pad,
device=x.device,
dtype=torch.float32,
)[:h]
arange = einops.repeat(arange, "w -> h w 1", h=h)
base_grid = torch.cat([arange, arange.transpose(1, 0)], dim=2)
base_grid = einops.repeat(base_grid, "h w c -> b h w c", b=b)
# A random shift in units of pixels and within the boundaries of the padding.
shift = torch.randint(
0,
2 * pad + 1,
size=(b, 1, 1, 2),
device=x.device,
dtype=torch.float32,
)
shift *= 2.0 / (h + 2 * pad)
grid = base_grid + shift
return F.grid_sample(x, grid, padding_mode="zeros", align_corners=False)
def update_ema_parameters(ema_net: nn.Module, net: nn.Module, alpha: float):
"""Update EMA parameters in place with ema_param <- alpha * ema_param + (1 - alpha) * param."""
for ema_module, module in zip(ema_net.modules(), net.modules(), strict=True):
for (n_p_ema, p_ema), (n_p, p) in zip(
ema_module.named_parameters(recurse=False), module.named_parameters(recurse=False), strict=True
):
assert n_p_ema == n_p, "Parameter names don't match for EMA model update"
if isinstance(p, dict):
raise RuntimeError("Dict parameter not supported")
if isinstance(module, nn.modules.batchnorm._BatchNorm) or not p.requires_grad:
# Copy BatchNorm parameters, and non-trainable parameters directly.
p_ema.copy_(p.to(dtype=p_ema.dtype).data)
with torch.no_grad():
p_ema.mul_(alpha)
p_ema.add_(p.to(dtype=p_ema.dtype).data, alpha=1 - alpha)
def flatten_forward_unflatten(fn: Callable[[Tensor], Tensor], image_tensor: Tensor) -> Tensor:
"""Helper to temporarily flatten extra dims at the start of the image tensor.
Args:
fn: Callable that the image tensor will be passed to. It should accept (B, C, H, W) and return
(B, *), where * is any number of dimensions.
image_tensor: An image tensor of shape (**, C, H, W), where ** is any number of dimensions, generally
different from *.
Returns:
A return value from the callable reshaped to (**, *).
"""
if image_tensor.ndim == 4:
return fn(image_tensor)
start_dims = image_tensor.shape[:-3]
inp = torch.flatten(image_tensor, end_dim=-4)
flat_out = fn(inp)
return torch.reshape(flat_out, (*start_dims, *flat_out.shape[1:]))

View File

@@ -0,0 +1,495 @@
# ruff: noqa: N806
import time
from collections import deque
from copy import deepcopy
import einops
import numpy as np
import torch
import torch.nn as nn
import lerobot.common.policies.tdmpc.helper as h
from lerobot.common.policies.utils import populate_queues
from lerobot.common.utils.utils import get_safe_torch_device
FIRST_FRAME = 0
class TOLD(nn.Module):
"""Task-Oriented Latent Dynamics (TOLD) model used in TD-MPC."""
def __init__(self, cfg):
super().__init__()
action_dim = cfg.action_dim
self.cfg = cfg
self._encoder = h.enc(cfg)
self._dynamics = h.dynamics(cfg.latent_dim + action_dim, cfg.mlp_dim, cfg.latent_dim)
self._reward = h.mlp(cfg.latent_dim + action_dim, cfg.mlp_dim, 1)
self._pi = h.mlp(cfg.latent_dim, cfg.mlp_dim, action_dim)
self._Qs = nn.ModuleList([h.q(cfg) for _ in range(cfg.num_q)])
self._V = h.v(cfg)
self.apply(h.orthogonal_init)
for m in [self._reward, *self._Qs]:
m[-1].weight.data.fill_(0)
m[-1].bias.data.fill_(0)
def track_q_grad(self, enable=True):
"""Utility function. Enables/disables gradient tracking of Q-networks."""
for m in self._Qs:
h.set_requires_grad(m, enable)
def track_v_grad(self, enable=True):
"""Utility function. Enables/disables gradient tracking of Q-networks."""
if hasattr(self, "_V"):
h.set_requires_grad(self._V, enable)
def encode(self, obs):
"""Encodes an observation into its latent representation."""
out = self._encoder(obs)
if isinstance(obs, dict):
# fusion
out = torch.stack([v for k, v in out.items()]).mean(dim=0)
return out
def next(self, z, a):
"""Predicts next latent state (d) and single-step reward (R)."""
x = torch.cat([z, a], dim=-1)
return self._dynamics(x), self._reward(x)
def next_dynamics(self, z, a):
"""Predicts next latent state (d)."""
x = torch.cat([z, a], dim=-1)
return self._dynamics(x)
def pi(self, z, std=0):
"""Samples an action from the learned policy (pi)."""
mu = torch.tanh(self._pi(z))
if std > 0:
std = torch.ones_like(mu) * std
return h.TruncatedNormal(mu, std).sample(clip=0.3)
return mu
def V(self, z): # noqa: N802
"""Predict state value (V)."""
return self._V(z)
def Q(self, z, a, return_type): # noqa: N802
"""Predict state-action value (Q)."""
assert return_type in {"min", "avg", "all"}
x = torch.cat([z, a], dim=-1)
if return_type == "all":
return torch.stack([q(x) for q in self._Qs], dim=0)
idxs = np.random.choice(self.cfg.num_q, 2, replace=False)
Q1, Q2 = self._Qs[idxs[0]](x), self._Qs[idxs[1]](x)
return torch.min(Q1, Q2) if return_type == "min" else (Q1 + Q2) / 2
class TDMPCPolicy(nn.Module):
"""Implementation of TD-MPC learning + inference."""
name = "tdmpc"
def __init__(self, cfg, n_obs_steps, n_action_steps, device):
super().__init__()
self.action_dim = cfg.action_dim
self.cfg = cfg
self.n_obs_steps = n_obs_steps
self.n_action_steps = n_action_steps
self.device = get_safe_torch_device(device)
self.std = h.linear_schedule(cfg.std_schedule, 0)
self.model = TOLD(cfg)
self.model.to(self.device)
self.model_target = deepcopy(self.model)
self.optim = torch.optim.Adam(self.model.parameters(), lr=self.cfg.lr)
self.pi_optim = torch.optim.Adam(self.model._pi.parameters(), lr=self.cfg.lr)
# self.bc_optim = torch.optim.Adam(self.model.parameters(), lr=self.cfg.lr)
self.model.eval()
self.model_target.eval()
self.register_buffer("step", torch.zeros(1))
def state_dict(self):
"""Retrieve state dict of TOLD model, including slow-moving target network."""
return {
"model": self.model.state_dict(),
"model_target": self.model_target.state_dict(),
}
def save(self, fp):
"""Save state dict of TOLD model to filepath."""
torch.save(self.state_dict(), fp)
def load(self, fp):
"""Load a saved state dict from filepath into current agent."""
d = torch.load(fp)
self.model.load_state_dict(d["model"])
self.model_target.load_state_dict(d["model_target"])
def reset(self):
"""
Clear observation and action queues. Should be called on `env.reset()`
"""
self._queues = {
"observation.image": deque(maxlen=self.n_obs_steps),
"observation.state": deque(maxlen=self.n_obs_steps),
"action": deque(maxlen=self.n_action_steps),
}
@torch.no_grad()
def select_action(self, batch, step):
assert "observation.image" in batch
assert "observation.state" in batch
assert len(batch) == 2
self._queues = populate_queues(self._queues, batch)
t0 = step == 0
self.eval()
if len(self._queues["action"]) == 0:
batch = {key: torch.stack(list(self._queues[key]), dim=1) for key in batch}
if self.n_obs_steps == 1:
# hack to remove the time dimension
for key in batch:
assert batch[key].shape[1] == 1
batch[key] = batch[key][:, 0]
actions = []
batch_size = batch["observation.image"].shape[0]
for i in range(batch_size):
obs = {
"rgb": batch["observation.image"][[i]],
"state": batch["observation.state"][[i]],
}
# Note: unsqueeze needed because `act` still uses non-batch logic.
action = self.act(obs, t0=t0, step=self.step)
actions.append(action)
action = torch.stack(actions)
# tdmpc returns an action for 1 timestep only, so we copy it over `n_action_steps` time
if i in range(self.n_action_steps):
self._queues["action"].append(action)
action = self._queues["action"].popleft()
return action
@torch.no_grad()
def act(self, obs, t0=False, step=None):
"""Take an action. Uses either MPC or the learned policy, depending on the self.cfg.mpc flag."""
obs = {k: o.detach() for k, o in obs.items()} if isinstance(obs, dict) else obs.detach()
z = self.model.encode(obs)
if self.cfg.mpc:
a = self.plan(z, t0=t0, step=step)
else:
a = self.model.pi(z, self.cfg.min_std * self.model.training).squeeze(0)
return a
@torch.no_grad()
def estimate_value(self, z, actions, horizon):
"""Estimate value of a trajectory starting at latent state z and executing given actions."""
G, discount = 0, 1
for t in range(horizon):
if self.cfg.uncertainty_cost > 0:
G -= (
discount
* self.cfg.uncertainty_cost
* self.model.Q(z, actions[t], return_type="all").std(dim=0)
)
z, reward = self.model.next(z, actions[t])
G += discount * reward
discount *= self.cfg.discount
pi = self.model.pi(z, self.cfg.min_std)
G += discount * self.model.Q(z, pi, return_type="min")
if self.cfg.uncertainty_cost > 0:
G -= discount * self.cfg.uncertainty_cost * self.model.Q(z, pi, return_type="all").std(dim=0)
return G
@torch.no_grad()
def plan(self, z, step=None, t0=True):
"""
Plan next action using TD-MPC inference.
z: latent state.
step: current time step. determines e.g. planning horizon.
t0: whether current step is the first step of an episode.
"""
# during eval: eval_mode: uniform sampling and action noise is disabled during evaluation.
assert step is not None
# Seed steps
if step < self.cfg.seed_steps and self.model.training:
return torch.empty(self.action_dim, dtype=torch.float32, device=self.device).uniform_(-1, 1)
# Sample policy trajectories
horizon = int(min(self.cfg.horizon, h.linear_schedule(self.cfg.horizon_schedule, step)))
num_pi_trajs = int(self.cfg.mixture_coef * self.cfg.num_samples)
if num_pi_trajs > 0:
pi_actions = torch.empty(horizon, num_pi_trajs, self.action_dim, device=self.device)
_z = z.repeat(num_pi_trajs, 1)
for t in range(horizon):
pi_actions[t] = self.model.pi(_z, self.cfg.min_std)
_z = self.model.next_dynamics(_z, pi_actions[t])
# Initialize state and parameters
z = z.repeat(self.cfg.num_samples + num_pi_trajs, 1)
mean = torch.zeros(horizon, self.action_dim, device=self.device)
std = self.cfg.max_std * torch.ones(horizon, self.action_dim, device=self.device)
if not t0 and hasattr(self, "_prev_mean"):
mean[:-1] = self._prev_mean[1:]
# Iterate CEM
for _ in range(self.cfg.iterations):
actions = torch.clamp(
mean.unsqueeze(1)
+ std.unsqueeze(1)
* torch.randn(horizon, self.cfg.num_samples, self.action_dim, device=std.device),
-1,
1,
)
if num_pi_trajs > 0:
actions = torch.cat([actions, pi_actions], dim=1)
# Compute elite actions
value = self.estimate_value(z, actions, horizon).nan_to_num_(0)
elite_idxs = torch.topk(value.squeeze(1), self.cfg.num_elites, dim=0).indices
elite_value, elite_actions = value[elite_idxs], actions[:, elite_idxs]
# Update parameters
max_value = elite_value.max(0)[0]
score = torch.exp(self.cfg.temperature * (elite_value - max_value))
score /= score.sum(0)
_mean = torch.sum(score.unsqueeze(0) * elite_actions, dim=1) / (score.sum(0) + 1e-9)
_std = torch.sqrt(
torch.sum(
score.unsqueeze(0) * (elite_actions - _mean.unsqueeze(1)) ** 2,
dim=1,
)
/ (score.sum(0) + 1e-9)
)
_std = _std.clamp_(self.std, self.cfg.max_std)
mean, std = self.cfg.momentum * mean + (1 - self.cfg.momentum) * _mean, _std
# Outputs
# TODO(rcadene): remove numpy with
# # Convert score tensor to probabilities using softmax
# probabilities = torch.softmax(score, dim=0)
# # Generate a random sample index based on the probabilities
# sample_index = torch.multinomial(probabilities, 1).item()
score = score.squeeze(1).cpu().numpy()
actions = elite_actions[:, np.random.choice(np.arange(score.shape[0]), p=score)]
self._prev_mean = mean
mean, std = actions[0], _std[0]
a = mean
if self.model.training:
a += std * torch.randn(self.action_dim, device=std.device)
return torch.clamp(a, -1, 1)
def update_pi(self, zs, acts=None):
"""Update policy using a sequence of latent states."""
self.pi_optim.zero_grad(set_to_none=True)
self.model.track_q_grad(False)
self.model.track_v_grad(False)
info = {}
# Advantage Weighted Regression
assert acts is not None
vs = self.model.V(zs)
qs = self.model_target.Q(zs, acts, return_type="min")
adv = qs - vs
exp_a = torch.exp(adv * self.cfg.A_scaling)
exp_a = torch.clamp(exp_a, max=100.0)
log_probs = h.gaussian_logprob(self.model.pi(zs) - acts, 0)
rho = torch.pow(self.cfg.rho, torch.arange(len(qs), device=self.device))
pi_loss = -((exp_a * log_probs).mean(dim=(1, 2)) * rho).mean()
info["adv"] = adv[0]
pi_loss.backward()
torch.nn.utils.clip_grad_norm_(
self.model._pi.parameters(),
self.cfg.grad_clip_norm,
error_if_nonfinite=False,
)
self.pi_optim.step()
self.model.track_q_grad(True)
self.model.track_v_grad(True)
info["pi_loss"] = pi_loss.item()
return pi_loss.item(), info
@torch.no_grad()
def _td_target(self, next_z, reward, mask):
"""Compute the TD-target from a reward and the observation at the following time step."""
next_v = self.model.V(next_z)
td_target = reward + self.cfg.discount * mask * next_v.squeeze(2)
return td_target
def forward(self, batch, step):
# TODO(alexander-soare): Refactor TDMPC and make it comply with the policy interface documentation.
raise NotImplementedError()
def update(self, batch, step):
"""Main update function. Corresponds to one iteration of the model learning."""
start_time = time.time()
batch_size = batch["index"].shape[0]
# TODO(rcadene): convert tdmpc with (batch size, time/horizon, channels)
# instead of currently (time/horizon, batch size, channels) which is not the pytorch convention
# batch size b = 256, time/horizon t = 5
# b t ... -> t b ...
for key in batch:
if batch[key].ndim > 1:
batch[key] = batch[key].transpose(1, 0)
action = batch["action"]
reward = batch["next.reward"]
# idxs = batch["index"] # TODO(rcadene): use idxs to update sampling weights
done = torch.zeros_like(reward, dtype=torch.bool, device=reward.device)
mask = torch.ones_like(reward, dtype=torch.bool, device=reward.device)
weights = torch.ones(batch_size, dtype=torch.bool, device=reward.device)
obses = {
"rgb": batch["observation.image"],
"state": batch["observation.state"],
}
shapes = {}
for k in obses:
shapes[k] = obses[k].shape
obses[k] = einops.rearrange(obses[k], "t b ... -> (t b) ... ")
# Apply augmentations
aug_tf = h.aug(self.cfg)
obses = aug_tf(obses)
for k in obses:
t, b = shapes[k][:2]
obses[k] = einops.rearrange(obses[k], "(t b) ... -> t b ... ", b=b, t=t)
obs, next_obses = {}, {}
for k in obses:
obs[k] = obses[k][0]
next_obses[k] = obses[k][1:].clone()
horizon = next_obses["rgb"].shape[0]
loss_mask = torch.ones_like(mask, device=self.device)
for t in range(1, horizon):
loss_mask[t] = loss_mask[t - 1] * (~done[t - 1])
self.optim.zero_grad(set_to_none=True)
self.std = h.linear_schedule(self.cfg.std_schedule, step)
self.model.train()
data_s = time.time() - start_time
# Compute targets
with torch.no_grad():
next_z = self.model.encode(next_obses)
z_targets = self.model_target.encode(next_obses)
td_targets = self._td_target(next_z, reward, mask)
# Latent rollout
zs = torch.empty(horizon + 1, batch_size, self.cfg.latent_dim, device=self.device)
reward_preds = torch.empty_like(reward, device=self.device)
assert reward.shape[0] == horizon
z = self.model.encode(obs)
zs[0] = z
value_info = {"Q": 0.0, "V": 0.0}
for t in range(horizon):
z, reward_pred = self.model.next(z, action[t])
zs[t + 1] = z
reward_preds[t] = reward_pred.squeeze(1)
with torch.no_grad():
v_target = self.model_target.Q(zs[:-1].detach(), action, return_type="min")
# Predictions
qs = self.model.Q(zs[:-1], action, return_type="all")
qs = qs.squeeze(3)
value_info["Q"] = qs.mean().item()
v = self.model.V(zs[:-1])
value_info["V"] = v.mean().item()
# Losses
rho = torch.pow(self.cfg.rho, torch.arange(horizon, device=self.device)).view(-1, 1)
consistency_loss = (rho * torch.mean(h.mse(zs[1:], z_targets), dim=2) * loss_mask).sum(dim=0)
reward_loss = (rho * h.mse(reward_preds, reward) * loss_mask).sum(dim=0)
q_value_loss, priority_loss = 0, 0
for q in range(self.cfg.num_q):
q_value_loss += (rho * h.mse(qs[q], td_targets) * loss_mask).sum(dim=0)
priority_loss += (rho * h.l1(qs[q], td_targets) * loss_mask).sum(dim=0)
expectile = h.linear_schedule(self.cfg.expectile, step)
v_value_loss = (rho * h.l2_expectile(v_target - v, expectile=expectile).squeeze(2) * loss_mask).sum(
dim=0
)
total_loss = (
self.cfg.consistency_coef * consistency_loss
+ self.cfg.reward_coef * reward_loss
+ self.cfg.value_coef * q_value_loss
+ self.cfg.value_coef * v_value_loss
)
weighted_loss = (total_loss * weights).mean()
weighted_loss.register_hook(lambda grad: grad * (1 / self.cfg.horizon))
has_nan = torch.isnan(weighted_loss).item()
if has_nan:
print(f"weighted_loss has nan: {total_loss=} {weights=}")
else:
weighted_loss.backward()
grad_norm = torch.nn.utils.clip_grad_norm_(
self.model.parameters(), self.cfg.grad_clip_norm, error_if_nonfinite=False
)
self.optim.step()
# TODO(rcadene): implement PrioritizedSampling by modifying sampler.weights with priorities computed by a criterion
# if self.cfg.per:
# # Update priorities
# priorities = priority_loss.clamp(max=1e4).detach()
# has_nan = torch.isnan(priorities).any().item()
# if has_nan:
# print(f"priorities has nan: {priorities=}")
# else:
# replay_buffer.update_priority(
# idxs[:num_slices],
# priorities[:num_slices],
# )
# if demo_batch_size > 0:
# demo_buffer.update_priority(demo_idxs, priorities[num_slices:])
# Update policy + target network
_, pi_update_info = self.update_pi(zs[:-1].detach(), acts=action)
if step % self.cfg.update_freq == 0:
h.ema(self.model._encoder, self.model_target._encoder, self.cfg.tau)
h.ema(self.model._Qs, self.model_target._Qs, self.cfg.tau)
self.model.eval()
info = {
"consistency_loss": float(consistency_loss.mean().item()),
"reward_loss": float(reward_loss.mean().item()),
"Q_value_loss": float(q_value_loss.mean().item()),
"V_value_loss": float(v_value_loss.mean().item()),
"sum_loss": float(total_loss.mean().item()),
"loss": float(weighted_loss.mean().item()),
"grad_norm": float(grad_norm),
"lr": self.cfg.lr,
"data_s": data_s,
"update_s": time.time() - start_time,
}
# info["demo_batch_size"] = demo_batch_size
info["expectile"] = expectile
info.update(value_info)
info.update(pi_update_info)
self.step[0] = step
return info

View File

@@ -1,28 +1,9 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from torch import nn
def populate_queues(queues, batch):
for key in batch:
# Ignore keys not in the queues already (leaving the responsibility to the caller to make sure the
# queues have the keys they want).
if key not in queues:
continue
if len(queues[key]) != queues[key].maxlen:
# initialize by copying the first observation several times until the queue is full
while len(queues[key]) != queues[key].maxlen:

View File

@@ -1,18 +1,3 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
import logging

View File

@@ -1,27 +0,0 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
import imageio
def write_video(video_path, stacked_frames, fps):
# Filter out DeprecationWarnings raised from pkg_resources
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore", "pkg_resources is deprecated as an API", category=DeprecationWarning
)
imageio.mimsave(video_path, stacked_frames, fps=fps)

View File

@@ -1,25 +1,8 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os.path as osp
import random
from contextlib import contextmanager
from datetime import datetime
from pathlib import Path
from typing import Generator
import hydra
import numpy as np
@@ -56,31 +39,6 @@ def set_global_seed(seed):
torch.cuda.manual_seed_all(seed)
@contextmanager
def seeded_context(seed: int) -> Generator[None, None, None]:
"""Set the seed when entering a context, and restore the prior random state at exit.
Example usage:
```
a = random.random() # produces some random number
with seeded_context(1337):
b = random.random() # produces some other random number
c = random.random() # produces yet another random number, but the same it would have if we never made `b`
```
"""
random_state = random.getstate()
np_random_state = np.random.get_state()
torch_random_state = torch.random.get_rng_state()
torch_cuda_random_state = torch.cuda.random.get_rng_state()
set_global_seed(seed)
yield None
random.setstate(random_state)
np.random.set_state(np_random_state)
torch.random.set_rng_state(torch_random_state)
torch.cuda.random.set_rng_state(torch_cuda_random_state)
def init_logging():
def custom_format(record):
dt = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
@@ -134,8 +92,7 @@ def init_hydra_config(config_path: str, overrides: list[str] | None = None) -> D
hydra.core.global_hydra.GlobalHydra.instance().clear()
# Hydra needs a path relative to this file.
hydra.initialize(
str(_relative_path_between(Path(config_path).absolute().parent, Path(__file__).absolute().parent)),
version_base="1.2",
str(_relative_path_between(Path(config_path).absolute().parent, Path(__file__).absolute().parent))
)
cfg = hydra.compose(Path(config_path).stem, overrides)
return cfg

View File

@@ -9,37 +9,34 @@ hydra:
job:
name: default
seed: 1337
# batch size for TorchRL SerialEnv. Each underlying env will get the seed = seed + env_index
# NOTE: only diffusion policy supports rollout_batch_size > 1
rollout_batch_size: 1
device: cuda # cpu
# `use_amp` determines whether to use Automatic Mixed Precision (AMP) for training and evaluation. With AMP,
# automatic gradient scaling is used.
use_amp: false
# `seed` is used for training (eg: model initialization, dataset shuffling)
# AND for the evaluation environments.
seed: ???
dataset_repo_id: lerobot/pusht
prefetch: 4
eval_freq: ???
save_freq: ???
eval_episodes: ???
save_video: false
save_model: false
save_buffer: false
train_steps: ???
fps: ???
training:
offline_steps: ???
# NOTE: `online_steps` is not implemented yet. It's here as a placeholder.
online_steps: ???
online_steps_between_rollouts: ???
online_sampling_ratio: 0.5
# `online_env_seed` is used for environments for online training data rollouts.
online_env_seed: ???
eval_freq: ???
save_freq: ???
log_freq: 250
save_model: true
offline_prioritized_sampler: true
eval:
n_episodes: 1
# `batch_size` specifies the number of environments to use in a gym.vector.VectorEnv.
batch_size: 1
# `use_async_envs` specifies whether to use asynchronous environments (multiprocessing).
use_async_envs: false
dataset:
repo_id: ???
n_action_steps: ???
n_obs_steps: ???
env: ???
policy: ???
wandb:
enable: false
enable: true
# Set to true to disable saving an artifact despite save_model == True
disable_artifact: false
project: lerobot

View File

@@ -1,7 +1,18 @@
# @package _global_
eval_episodes: 50
eval_freq: 7500
save_freq: 75000
log_freq: 250
# TODO: same as xarm, need to adjust
offline_steps: 25000
online_steps: 25000
fps: 50
dataset:
repo_id: lerobot/aloha_sim_insertion_human
env:
name: aloha
task: AlohaInsertion-v0

View File

@@ -1,7 +1,18 @@
# @package _global_
eval_episodes: 50
eval_freq: 7500
save_freq: 75000
log_freq: 250
# TODO: same as xarm, need to adjust
offline_steps: 25000
online_steps: 25000
fps: 10
dataset:
repo_id: lerobot/pusht
env:
name: pusht
task: PushT-v0

View File

@@ -1,7 +1,17 @@
# @package _global_
eval_episodes: 20
eval_freq: 1000
save_freq: 10000
log_freq: 50
offline_steps: 25000
online_steps: 25000
fps: 15
dataset:
repo_id: lerobot/xarm_lift_medium
env:
name: xarm
task: XarmLift-v0

View File

@@ -1,7 +1,15 @@
# @package _global_
seed: 1000
dataset_repo_id: lerobot/aloha_sim_insertion_human
offline_steps: 80000
online_steps: 0
eval_episodes: 1
eval_freq: 10000
save_freq: 100000
log_freq: 250
n_obs_steps: 1
# when temporal_agg=False, n_action_steps=horizon
override_dataset_stats:
observation.images.top:
@@ -9,34 +17,14 @@ override_dataset_stats:
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
training:
offline_steps: 80000
online_steps: 0
eval_freq: 10000
save_freq: 100000
log_freq: 250
save_model: true
batch_size: 8
lr: 1e-5
lr_backbone: 1e-5
weight_decay: 1e-4
grad_clip_norm: 10
online_steps_between_rollouts: 1
delta_timestamps:
action: "[i / ${fps} for i in range(${policy.chunk_size})]"
eval:
n_episodes: 50
batch_size: 50
# See `configuration_act.py` for more details.
policy:
name: act
pretrained_model_path:
# Input / output structure.
n_obs_steps: 1
n_obs_steps: ${n_obs_steps}
chunk_size: 100 # chunk_size
n_action_steps: 100
@@ -48,27 +36,24 @@ policy:
action: ["${env.action_dim}"]
# Normalization / Unnormalization
input_normalization_modes:
normalize_input_modes:
observation.images.top: mean_std
observation.state: mean_std
output_normalization_modes:
unnormalize_output_modes:
action: mean_std
# Architecture.
# Vision backbone.
vision_backbone: resnet18
pretrained_backbone_weights: ResNet18_Weights.IMAGENET1K_V1
use_pretrained_backbone: true
replace_final_stride_with_dilation: false
# Transformer layers.
pre_norm: false
dim_model: 512
d_model: 512
n_heads: 8
dim_feedforward: 3200
feedforward_activation: relu
n_encoder_layers: 4
# Note: Although the original ACT implementation has 7 for `n_decoder_layers`, there is a bug in the code
# that means only the first layer is used. Here we match the original implementation by setting this to 1.
# See this issue https://github.com/tonyzhaozh/act/issues/25#issue-2258740521.
n_decoder_layers: 1
# VAE.
use_vae: true
@@ -76,8 +61,20 @@ policy:
n_vae_encoder_layers: 4
# Inference.
temporal_ensemble_momentum: null
use_temporal_aggregation: false
# Training and loss computation.
dropout: 0.1
kl_weight: 10.0
# ---
# TODO(alexander-soare): Remove these from the policy config.
batch_size: 8
lr: 1e-5
lr_backbone: 1e-5
weight_decay: 1e-4
grad_clip_norm: 10
utd: 1
delta_timestamps:
action: "[i / ${fps} for i in range(${policy.chunk_size})]"

View File

@@ -1,11 +1,22 @@
# @package _global_
# Defaults for training for the PushT dataset as per https://github.com/real-stanford/diffusion_policy.
# Note: We do not track EMA model weights as we discovered it does not improve the results. See
# https://github.com/huggingface/lerobot/pull/134 for more details.
seed: 100000
dataset_repo_id: lerobot/pusht
horizon: 16
n_obs_steps: 2
n_action_steps: 8
dataset_obs_steps: ${n_obs_steps}
past_action_visible: False
keypoint_visible_rate: 1.0
eval_episodes: 50
eval_freq: 5000
save_freq: 5000
log_freq: 250
offline_steps: 200000
online_steps: 0
offline_prioritized_sampler: true
override_dataset_stats:
# TODO(rcadene, alexander-soare): should we remove image stats as well? do we use a pretrained vision model?
@@ -21,40 +32,15 @@ override_dataset_stats:
min: [12.0, 25.0]
max: [511.0, 511.0]
training:
offline_steps: 200000
online_steps: 0
eval_freq: 5000
save_freq: 5000
log_freq: 250
save_model: true
batch_size: 64
grad_clip_norm: 10
lr: 1.0e-4
lr_scheduler: cosine
lr_warmup_steps: 500
adam_betas: [0.95, 0.999]
adam_eps: 1.0e-8
adam_weight_decay: 1.0e-6
online_steps_between_rollouts: 1
delta_timestamps:
observation.image: "[i / ${fps} for i in range(1 - ${policy.n_obs_steps}, 1)]"
observation.state: "[i / ${fps} for i in range(1 - ${policy.n_obs_steps}, 1)]"
action: "[i / ${fps} for i in range(1 - ${policy.n_obs_steps}, 1 - ${policy.n_obs_steps} + ${policy.horizon})]"
eval:
n_episodes: 50
batch_size: 50
policy:
name: diffusion
pretrained_model_path:
# Input / output structure.
n_obs_steps: 2
horizon: 16
n_action_steps: 8
n_obs_steps: ${n_obs_steps}
horizon: ${horizon}
n_action_steps: ${n_action_steps}
input_shapes:
# TODO(rcadene, alexander-soare): add variables for height and width from the dataset/env?
@@ -64,10 +50,10 @@ policy:
action: ["${env.action_dim}"]
# Normalization / Unnormalization
input_normalization_modes:
normalize_input_modes:
observation.image: mean_std
observation.state: min_max
output_normalization_modes:
unnormalize_output_modes:
action: min_max
# Architecture / modeling.
@@ -75,7 +61,7 @@ policy:
vision_backbone: resnet18
crop_shape: [84, 84]
crop_is_random: True
pretrained_backbone_weights: null
use_pretrained_backbone: false
use_group_norm: True
spatial_softmax_num_keypoints: 32
# Unet.
@@ -85,7 +71,6 @@ policy:
diffusion_step_embed_dim: 128
use_film_scale_modulation: True
# Noise scheduler.
noise_scheduler_type: DDPM
num_train_timesteps: 100
beta_schedule: squaredcos_cap_v2
beta_start: 0.0001
@@ -97,5 +82,25 @@ policy:
# Inference
num_inference_steps: 100
# Loss computation
do_mask_loss_for_padding: false
# ---
# TODO(alexander-soare): Remove these from the policy config.
batch_size: 64
grad_clip_norm: 10
lr: 1.0e-4
lr_scheduler: cosine
lr_warmup_steps: 500
adam_betas: [0.95, 0.999]
adam_eps: 1.0e-8
adam_weight_decay: 1.0e-6
utd: 1
use_ema: true
ema_update_after_step: 0
ema_min_alpha: 0.0
ema_max_alpha: 0.9999
ema_inv_gamma: 1.0
ema_power: 0.75
delta_timestamps:
observation.image: "[i / ${fps} for i in range(1 - ${n_obs_steps}, 1)]"
observation.state: "[i / ${fps} for i in range(1 - ${n_obs_steps}, 1)]"
action: "[i / ${fps} for i in range(1 - ${n_obs_steps}, 1 - ${n_obs_steps} + ${policy.horizon})]"

View File

@@ -1,79 +1,85 @@
# @package _global_
seed: 1
dataset_repo_id: lerobot/xarm_lift_medium
training:
offline_steps: 25000
# TODO(alexander-soare): uncomment when online training gets reinstated
online_steps: 0 # 25000 not implemented yet
eval_freq: 5000
online_steps_between_rollouts: 1
online_sampling_ratio: 0.5
online_env_seed: 10000
batch_size: 256
grad_clip_norm: 10.0
lr: 3e-4
delta_timestamps:
observation.image: "[i / ${fps} for i in range(${policy.horizon} + 1)]"
observation.state: "[i / ${fps} for i in range(${policy.horizon} + 1)]"
action: "[i / ${fps} for i in range(${policy.horizon})]"
next.reward: "[i / ${fps} for i in range(${policy.horizon})]"
n_action_steps: 2
n_obs_steps: 1
policy:
name: tdmpc
pretrained_model_path:
reward_scale: 1.0
# Input / output structure.
n_action_repeats: 2
horizon: 5
input_shapes:
# TODO(rcadene, alexander-soare): add variables for height and width from the dataset/env?
observation.image: [3, 84, 84]
observation.state: ["${env.state_dim}"]
output_shapes:
action: ["${env.action_dim}"]
# Normalization / Unnormalization
input_normalization_modes: null
output_normalization_modes:
action: min_max
# Architecture / modeling.
# Neural networks.
image_encoder_hidden_dim: 32
state_encoder_hidden_dim: 256
latent_dim: 50
q_ensemble_size: 5
mlp_dim: 512
# Reinforcement learning.
episode_length: ${env.episode_length}
discount: 0.9
modality: 'all'
# Inference.
use_mpc: false
cem_iterations: 6
max_std: 2.0
# pixels
frame_stack: 1
num_channels: 32
img_size: ${env.image_size}
state_dim: ${env.action_dim}
action_dim: ${env.action_dim}
# planning
mpc: true
iterations: 6
num_samples: 512
num_elites: 50
mixture_coef: 0.1
min_std: 0.05
n_gaussian_samples: 512
n_pi_samples: 51
uncertainty_regularizer_coeff: 1.0
n_elites: 50
elite_weighting_temperature: 0.5
gaussian_mean_momentum: 0.1
max_std: 2.0
temperature: 0.5
momentum: 0.1
uncertainty_cost: 1
# Training and loss computation.
max_random_shift_ratio: 0.0476
# Loss coefficients.
reward_coeff: 0.5
expectile_weight: 0.9
value_coeff: 0.1
consistency_coeff: 20.0
advantage_scaling: 3.0
pi_coeff: 0.5
temporal_decay_coeff: 0.5
# Target model.
target_model_momentum: 0.995
# actor
log_std_min: -10
log_std_max: 2
# learning
batch_size: 256
max_buffer_size: 10000
horizon: 5
reward_coef: 0.5
value_coef: 0.1
consistency_coef: 20
rho: 0.5
kappa: 0.1
lr: 3e-4
std_schedule: ${policy.min_std}
horizon_schedule: ${policy.horizon}
per: true
per_alpha: 0.6
per_beta: 0.4
grad_clip_norm: 10
seed_steps: 0
update_freq: 2
tau: 0.01
utd: 1
# offline rl
# dataset_dir: ???
data_first_percent: 1.0
is_data_clip: true
data_clip_eps: 1e-5
expectile: 0.9
A_scaling: 3.0
# offline->online
offline_steps: ${offline_steps}
pretrained_model_path: ""
# pretrained_model_path: "/home/rcadene/code/fowm/logs/xarm_lift/all/default/2/models/offline.pt"
# pretrained_model_path: "/home/rcadene/code/fowm/logs/xarm_lift/all/default/2/models/final.pt"
balanced_sampling: true
demo_schedule: 0.5
# architecture
enc_dim: 256
num_q: 5
mlp_dim: 512
latent_dim: 50
delta_timestamps:
observation.image: "[i / ${fps} for i in range(6)]"
observation.state: "[i / ${fps} for i in range(6)]"
action: "[i / ${fps} for i in range(5)]"
next.reward: "[i / ${fps} for i in range(5)]"

View File

@@ -1,340 +0,0 @@
"""Compare two policies on based on metrics computed from an eval.
Usage example:
You just made changes to a policy and you want to assess its new performance against
the reference policy (i.e. before your changes).
```
python lerobot/scripts/compare_policies.py \
output/eval/ref_policy/eval_info.json \
output/eval/new_policy/eval_info.json
```
This script can accept `eval_info.json` dicts with identical seeds between each eval episode of ref_policy and
new_policy (paired-samples) or from evals performed with different seeds (independent samples).
The script will first perform normality tests to determine if parametric tests can be used or not, then
evaluate if policies metrics are significantly different using the appropriate tests.
CAVEATS: by default, this script will compare seeds numbers to determine if samples can be considered paired.
If changes have been made to this environment in-between the ref_policy eval and the new_policy eval, you
should use the `--independent` flag to override this and not pair the samples even if they have identical
seeds.
"""
import argparse
import json
import logging
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as stats
from scipy.stats import anderson, kstest, mannwhitneyu, normaltest, shapiro, ttest_ind, ttest_rel, wilcoxon
from statsmodels.stats.contingency_tables import mcnemar
from termcolor import colored
from terminaltables import AsciiTable
def init_logging() -> None:
logging.basicConfig(
level=logging.INFO,
format="%(message)s",
handlers=[logging.StreamHandler()],
)
logging.getLogger("matplotlib.font_manager").disabled = True
def log_section(title: str) -> None:
section_title = f"\n{'-'*21}\n {title.center(19)} \n{'-'*21}"
logging.info(section_title)
def log_test(msg: str, p_value: float):
if p_value < 0.01:
color, interpretation = "red", "H_0 Rejected"
elif 0.01 <= p_value < 0.05:
color, interpretation = "yellow", "Inconclusive"
else:
color, interpretation = "green", "H_0 Not Rejected"
logging.info(
f"{msg}, p-value = {colored(f'{p_value:.3f}', color)} -> {colored(f'{interpretation}', color, attrs=['bold'])}"
)
def get_eval_info_episodes(eval_info_path: Path) -> dict:
with open(eval_info_path) as f:
eval_info = json.load(f)
return {
"sum_rewards": np.array([ep_stat["sum_reward"] for ep_stat in eval_info["per_episode"]]),
"max_rewards": np.array([ep_stat["max_reward"] for ep_stat in eval_info["per_episode"]]),
"successes": np.array([ep_stat["success"] for ep_stat in eval_info["per_episode"]]),
"seeds": [ep_stat["seed"] for ep_stat in eval_info["per_episode"]],
"num_episodes": len(eval_info["per_episode"]),
}
def append_table_metric(table: list, metric: str, ref_sample: dict, new_sample: dict, mean_std: bool = False):
if mean_std:
ref_metric = f"{np.mean(ref_sample[metric]):.3f} ({np.std(ref_sample[metric]):.3f})"
new_metric = f"{np.mean(new_sample[metric]):.3f} ({np.std(new_sample[metric]):.3f})"
row_header = f"{metric} - mean (std)"
else:
ref_metric = ref_sample[metric]
new_metric = new_sample[metric]
row_header = metric
row = [row_header, ref_metric, new_metric]
table.append(row)
return table
def cohens_d(x, y):
return (np.mean(x) - np.mean(y)) / np.sqrt((np.std(x, ddof=1) ** 2 + np.std(y, ddof=1) ** 2) / 2)
def normality_tests(array: np.ndarray, name: str):
ap_stat, ap_p = normaltest(array)
sw_stat, sw_p = shapiro(array)
ks_stat, ks_p = kstest(array, "norm", args=(np.mean(array), np.std(array)))
ad_stat = anderson(array)
log_test(f"{name} - D'Agostino and Pearson test: statistic = {ap_stat:.3f}", ap_p)
log_test(f"{name} - Shapiro-Wilk test: statistic = {sw_stat:.3f}", sw_p)
log_test(f"{name} - Kolmogorov-Smirnov test: statistic = {ks_stat:.3f}", ks_p)
logging.info(f"{name} - Anderson-Darling test: statistic = {ad_stat.statistic:.3f}")
for i in range(len(ad_stat.critical_values)):
cv, sl = ad_stat.critical_values[i], ad_stat.significance_level[i]
logging.info(f" Critical value at {sl}%: {cv:.3f}")
return sw_p > 0.05 and ks_p > 0.05
def perform_tests(ref_sample: dict, new_sample: dict, output_dir: Path, independent: bool = False):
seeds_a, seeds_b = ref_sample["seeds"], new_sample["seeds"]
if (seeds_a == seeds_b) and not independent:
logging.info("\nSamples are paired (identical seeds).")
paired = True
else:
logging.info("\nSamples are considered independent (seeds are different).")
paired = False
table_data = [["Metric", "Ref.", "New"]]
table_data = append_table_metric(table_data, "num_episodes", ref_sample, new_sample)
table_data = append_table_metric(table_data, "successes", ref_sample, new_sample, mean_std=True)
table_data = append_table_metric(table_data, "max_rewards", ref_sample, new_sample, mean_std=True)
table_data = append_table_metric(table_data, "sum_rewards", ref_sample, new_sample, mean_std=True)
table = AsciiTable(table_data)
print(table.table)
log_section("Effect Size")
d_max_reward = cohens_d(ref_sample["max_rewards"], new_sample["max_rewards"])
d_sum_reward = cohens_d(ref_sample["sum_rewards"], new_sample["sum_rewards"])
logging.info(f"Cohen's d for Max Reward: {d_max_reward:.3f}")
logging.info(f"Cohen's d for Sum Reward: {d_sum_reward:.3f}")
if paired:
paired_sample_tests(ref_sample, new_sample)
else:
independent_sample_tests(ref_sample, new_sample)
output_dir.mkdir(exist_ok=True, parents=True)
plot_boxplot(
ref_sample["max_rewards"],
new_sample["max_rewards"],
["Ref Sample Max Reward", "New Sample Max Reward"],
"Boxplot of Max Rewards",
f"{output_dir}/boxplot_max_reward.png",
)
plot_boxplot(
ref_sample["sum_rewards"],
new_sample["sum_rewards"],
["Ref Sample Sum Reward", "New Sample Sum Reward"],
"Boxplot of Sum Rewards",
f"{output_dir}/boxplot_sum_reward.png",
)
plot_histogram(
ref_sample["max_rewards"],
new_sample["max_rewards"],
["Ref Sample Max Reward", "New Sample Max Reward"],
"Histogram of Max Rewards",
f"{output_dir}/histogram_max_reward.png",
)
plot_histogram(
ref_sample["sum_rewards"],
new_sample["sum_rewards"],
["Ref Sample Sum Reward", "New Sample Sum Reward"],
"Histogram of Sum Rewards",
f"{output_dir}/histogram_sum_reward.png",
)
plot_qqplot(
ref_sample["max_rewards"],
"Q-Q Plot of Ref Sample Max Rewards",
f"{output_dir}/qqplot_sample_a_max_reward.png",
)
plot_qqplot(
new_sample["max_rewards"],
"Q-Q Plot of New Sample Max Rewards",
f"{output_dir}/qqplot_sample_b_max_reward.png",
)
plot_qqplot(
ref_sample["sum_rewards"],
"Q-Q Plot of Ref Sample Sum Rewards",
f"{output_dir}/qqplot_sample_a_sum_reward.png",
)
plot_qqplot(
new_sample["sum_rewards"],
"Q-Q Plot of New Sample Sum Rewards",
f"{output_dir}/qqplot_sample_b_sum_reward.png",
)
def paired_sample_tests(ref_sample: dict, new_sample: dict):
log_section("Normality tests")
max_reward_diff = ref_sample["max_rewards"] - new_sample["max_rewards"]
sum_reward_diff = ref_sample["sum_rewards"] - new_sample["sum_rewards"]
normal_max_reward_diff = normality_tests(max_reward_diff, "Max Reward Difference")
normal_sum_reward_diff = normality_tests(sum_reward_diff, "Sum Reward Difference")
log_section("Paired-sample tests")
if normal_max_reward_diff:
t_stat_max_reward, p_val_max_reward = ttest_rel(ref_sample["max_rewards"], new_sample["max_rewards"])
log_test(f"Paired t-test for Max Reward: t-statistic = {t_stat_max_reward:.3f}", p_val_max_reward)
else:
w_stat_max_reward, p_wilcox_max_reward = wilcoxon(
ref_sample["max_rewards"], new_sample["max_rewards"]
)
log_test(f"Wilcoxon test for Max Reward: statistic = {w_stat_max_reward:.3f}", p_wilcox_max_reward)
if normal_sum_reward_diff:
t_stat_sum_reward, p_val_sum_reward = ttest_rel(ref_sample["sum_rewards"], new_sample["sum_rewards"])
log_test(f"Paired t-test for Sum Reward: t-statistic = {t_stat_sum_reward:.3f}", p_val_sum_reward)
else:
w_stat_sum_reward, p_wilcox_sum_reward = wilcoxon(
ref_sample["sum_rewards"], new_sample["sum_rewards"]
)
log_test(f"Wilcoxon test for Sum Reward: statistic = {w_stat_sum_reward:.3f}", p_wilcox_sum_reward)
table = np.array(
[
[
np.sum((ref_sample["successes"] == 1) & (new_sample["successes"] == 1)),
np.sum((ref_sample["successes"] == 1) & (new_sample["successes"] == 0)),
],
[
np.sum((ref_sample["successes"] == 0) & (new_sample["successes"] == 1)),
np.sum((ref_sample["successes"] == 0) & (new_sample["successes"] == 0)),
],
]
)
mcnemar_result = mcnemar(table, exact=True)
log_test(f"McNemar's test for Success: statistic = {mcnemar_result.statistic:.3f}", mcnemar_result.pvalue)
def independent_sample_tests(ref_sample: dict, new_sample: dict):
log_section("Normality tests")
normal_max_rewards_a = normality_tests(ref_sample["max_rewards"], "Max Rewards Ref Sample")
normal_max_rewards_b = normality_tests(new_sample["max_rewards"], "Max Rewards New Sample")
normal_sum_rewards_a = normality_tests(ref_sample["sum_rewards"], "Sum Rewards Ref Sample")
normal_sum_rewards_b = normality_tests(new_sample["sum_rewards"], "Sum Rewards New Sample")
log_section("Independent samples tests")
table = [["Test", "max_rewards", "sum_rewards"]]
if normal_max_rewards_a and normal_max_rewards_b:
table = append_independent_test(
table, ref_sample, new_sample, ttest_ind, "Two-Sample t-test", kwargs={"equal_var": False}
)
t_stat_max_reward, p_val_max_reward = ttest_ind(
ref_sample["max_rewards"], new_sample["max_rewards"], equal_var=False
)
log_test(f"Two-Sample t-test for Max Reward: t-statistic = {t_stat_max_reward:.3f}", p_val_max_reward)
else:
table = append_independent_test(table, ref_sample, new_sample, mannwhitneyu, "Mann-Whitney U")
u_stat_max_reward, p_u_max_reward = mannwhitneyu(ref_sample["max_rewards"], new_sample["max_rewards"])
log_test(f"Mann-Whitney U test for Max Reward: U-statistic = {u_stat_max_reward:.3f}", p_u_max_reward)
if normal_sum_rewards_a and normal_sum_rewards_b:
t_stat_sum_reward, p_val_sum_reward = ttest_ind(
ref_sample["sum_rewards"], new_sample["sum_rewards"], equal_var=False
)
log_test(f"Two-Sample t-test for Sum Reward: t-statistic = {t_stat_sum_reward:.3f}", p_val_sum_reward)
else:
u_stat_sum_reward, p_u_sum_reward = mannwhitneyu(ref_sample["sum_rewards"], new_sample["sum_rewards"])
log_test(f"Mann-Whitney U test for Sum Reward: U-statistic = {u_stat_sum_reward:.3f}", p_u_sum_reward)
table = AsciiTable(table)
print(table.table)
def append_independent_test(
table: list,
ref_sample: dict,
new_sample: dict,
test: callable,
test_name: str,
kwargs: dict | None = None,
) -> list:
kwargs = {} if kwargs is None else kwargs
row = [f"{test_name}: p-value ≥ alpha"]
for metric in table[0][1:]:
_, p_val = test(ref_sample[metric], new_sample[metric], **kwargs)
alpha = 0.05
status = "" if p_val >= alpha else ""
row.append(f"{status} {p_val:.3f}{alpha}")
table.append(row)
return table
def plot_boxplot(data_a: np.ndarray, data_b: np.ndarray, labels: list[str], title: str, filename: str):
plt.boxplot([data_a, data_b], labels=labels)
plt.title(title)
plt.savefig(filename)
plt.close()
def plot_histogram(data_a: np.ndarray, data_b: np.ndarray, labels: list[str], title: str, filename: str):
plt.hist(data_a, bins=30, alpha=0.7, label=labels[0])
plt.hist(data_b, bins=30, alpha=0.7, label=labels[1])
plt.title(title)
plt.legend()
plt.savefig(filename)
plt.close()
def plot_qqplot(data: np.ndarray, title: str, filename: str):
stats.probplot(data, dist="norm", plot=plt)
plt.title(title)
plt.savefig(filename)
plt.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter
)
parser.add_argument("ref_sample_path", type=Path, help="Path to the reference sample JSON file.")
parser.add_argument("new_sample_path", type=Path, help="Path to the new sample JSON file.")
parser.add_argument(
"--independent",
action="store_true",
help="Ignore seeds and consider samples to be independent (unpaired).",
)
parser.add_argument(
"--output_dir",
type=Path,
default=Path("outputs/compare/"),
help="Directory to save the output results. Defaults to outputs/compare/",
)
args = parser.parse_args()
init_logging()
ref_sample = get_eval_info_episodes(args.ref_sample_path)
new_sample = get_eval_info_episodes(args.new_sample_path)
perform_tests(ref_sample, new_sample, args.output_dir, args.independent)

View File

@@ -1,18 +1,3 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import platform
import huggingface_hub

View File

@@ -1,44 +1,30 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Evaluate a policy on an environment by running rollouts and computing metrics.
Usage examples:
The script may be run in one of two ways:
You want to evaluate a model from the hub (eg: https://huggingface.co/lerobot/diffusion_pusht)
for 10 episodes.
1. By providing the path to a config file with the --config argument.
2. By providing a HuggingFace Hub ID with the --hub-id argument. You may also provide a revision number with the
--revision argument.
```
python lerobot/scripts/eval.py -p lerobot/diffusion_pusht eval.n_episodes=10
```
In either case, it is possible to override config arguments by adding a list of config.key=value arguments.
OR, you want to evaluate a model checkpoint from the LeRobot training script for 10 episodes.
Examples:
You have a specific config file to go with trained model weights, and want to run 10 episodes.
```
python lerobot/scripts/eval.py \
-p outputs/train/diffusion_pusht/checkpoints/005000 \
eval.n_episodes=10
--config PATH/TO/FOLDER/config.yaml \
policy.pretrained_model_path=PATH/TO/FOLDER/weights.pth \
eval_episodes=10
```
Note that in both examples, the repo/folder should contain at least `config.json`, `config.yaml` and
`model.safetensors`.
You have a HuggingFace Hub ID, you know which revision you want, and want to run 10 episodes (note that in this case,
you don't need to specify which weights to use):
Note the formatting for providing the number of episodes. Generally, you may provide any number of arguments
with `qualified.parameter.name=value`. In this case, the parameter eval.n_episodes appears as `n_episodes`
nested under `eval` in the `config.yaml` found at
https://huggingface.co/lerobot/diffusion_pusht/tree/main.
```
python lerobot/scripts/eval.py --hub-id HUB/ID --revision v1.0 eval_episodes=10
```
"""
import argparse
@@ -46,331 +32,290 @@ import json
import logging
import threading
import time
from contextlib import nullcontext
from copy import deepcopy
from datetime import datetime as dt
from pathlib import Path
from typing import Callable
import einops
import gymnasium as gym
import imageio
import numpy as np
import torch
from datasets import Dataset, Features, Image, Sequence, Value, concatenate_datasets
from datasets import Dataset, Features, Image, Sequence, Value
from huggingface_hub import snapshot_download
from huggingface_hub.utils._errors import RepositoryNotFoundError
from huggingface_hub.utils._validators import HFValidationError
from PIL import Image as PILImage
from torch import Tensor
from tqdm import trange
from lerobot.common.datasets.factory import make_dataset
from lerobot.common.datasets.utils import hf_transform_to_torch
from lerobot.common.envs.factory import make_env
from lerobot.common.envs.utils import preprocess_observation
from lerobot.common.envs.utils import postprocess_action, preprocess_observation
from lerobot.common.logger import log_output_dir
from lerobot.common.policies.factory import make_policy
from lerobot.common.policies.policy_protocol import Policy
from lerobot.common.policies.utils import get_device_from_parameters
from lerobot.common.utils.io_utils import write_video
from lerobot.common.utils.utils import get_safe_torch_device, init_hydra_config, init_logging, set_global_seed
def rollout(
env: gym.vector.VectorEnv,
policy: Policy,
seeds: list[int] | None = None,
return_observations: bool = False,
render_callback: Callable[[gym.vector.VectorEnv], None] | None = None,
enable_progbar: bool = False,
) -> dict:
"""Run a batched policy rollout once through a batch of environments.
Note that all environments in the batch are run until the last environment is done. This means some
data will probably need to be discarded (for environments that aren't the first one to be done).
The return dictionary contains:
(optional) "observation": A a dictionary of (batch, sequence + 1, *) tensors mapped to observation
keys. NOTE the that this has an extra sequence element relative to the other keys in the
dictionary. This is because an extra observation is included for after the environment is
terminated or truncated.
"action": A (batch, sequence, action_dim) tensor of actions applied based on the observations (not
including the last observations).
"reward": A (batch, sequence) tensor of rewards received for applying the actions.
"success": A (batch, sequence) tensor of success conditions (the only time this can be True is upon
environment termination/truncation).
"don": A (batch, sequence) tensor of **cumulative** done conditions. For any given batch element,
the first True is followed by True's all the way till the end. This can be used for masking
extraneous elements from the sequences above.
Args:
env: The batch of environments.
policy: The policy.
seeds: The environments are seeded once at the start of the rollout. If provided, this argument
specifies the seeds for each of the environments.
return_observations: Whether to include all observations in the returned rollout data. Observations
are returned optionally because they typically take more memory to cache. Defaults to False.
render_callback: Optional rendering callback to be used after the environments are reset, and after
every step.
enable_progbar: Enable a progress bar over rollout steps.
Returns:
The dictionary described above.
"""
device = get_device_from_parameters(policy)
# Reset the policy and environments.
policy.reset()
observation, info = env.reset(seed=seeds)
if render_callback is not None:
render_callback(env)
all_observations = []
all_actions = []
all_rewards = []
all_successes = []
all_dones = []
step = 0
# Keep track of which environments are done.
done = np.array([False] * env.num_envs)
max_steps = env.call("_max_episode_steps")[0]
progbar = trange(
max_steps,
desc=f"Running rollout with at most {max_steps} steps",
disable=not enable_progbar,
leave=False,
)
while not np.all(done):
# Numpy array to tensor and changing dictionary keys to LeRobot policy format.
observation = preprocess_observation(observation)
if return_observations:
all_observations.append(deepcopy(observation))
observation = {key: observation[key].to(device, non_blocking=True) for key in observation}
with torch.inference_mode():
action = policy.select_action(observation)
# Convert to CPU / numpy.
action = action.to("cpu").numpy()
assert action.ndim == 2, "Action dimensions should be (batch, action_dim)"
# Apply the next action.
observation, reward, terminated, truncated, info = env.step(action)
if render_callback is not None:
render_callback(env)
# VectorEnv stores is_success in `info["final_info"][env_index]["is_success"]`. "final_info" isn't
# available of none of the envs finished.
if "final_info" in info:
successes = [info["is_success"] if info is not None else False for info in info["final_info"]]
else:
successes = [False] * env.num_envs
# Keep track of which environments are done so far.
done = terminated | truncated | done
all_actions.append(torch.from_numpy(action))
all_rewards.append(torch.from_numpy(reward))
all_dones.append(torch.from_numpy(done))
all_successes.append(torch.tensor(successes))
step += 1
running_success_rate = (
einops.reduce(torch.stack(all_successes, dim=1), "b n -> b", "any").numpy().mean()
)
progbar.set_postfix({"running_success_rate": f"{running_success_rate.item() * 100:.1f}%"})
progbar.update()
# Track the final observation.
if return_observations:
observation = preprocess_observation(observation)
all_observations.append(deepcopy(observation))
# Stack the sequence along the first dimension so that we have (batch, sequence, *) tensors.
ret = {
"action": torch.stack(all_actions, dim=1),
"reward": torch.stack(all_rewards, dim=1),
"success": torch.stack(all_successes, dim=1),
"done": torch.stack(all_dones, dim=1),
}
if return_observations:
stacked_observations = {}
for key in all_observations[0]:
stacked_observations[key] = torch.stack([obs[key] for obs in all_observations], dim=1)
ret["observation"] = stacked_observations
return ret
def write_video(video_path, stacked_frames, fps):
imageio.mimsave(video_path, stacked_frames, fps=fps)
def eval_policy(
env: gym.vector.VectorEnv,
policy: torch.nn.Module,
n_episodes: int,
max_episodes_rendered: int = 0,
video_dir: Path | None = None,
video_dir: Path = None,
return_episode_data: bool = False,
start_seed: int | None = None,
enable_progbar: bool = False,
enable_inner_progbar: bool = False,
) -> dict:
seed=None,
):
"""
Args:
env: The batch of environments.
policy: The policy.
n_episodes: The number of episodes to evaluate.
max_episodes_rendered: Maximum number of episodes to render into videos.
video_dir: Where to save rendered videos.
return_episode_data: Whether to return episode data for online training. Incorporates the data into
the "episodes" key of the returned dictionary.
start_seed: The first seed to use for the first individual rollout. For all subsequent rollouts the
seed is incremented by 1. If not provided, the environments are not manually seeded.
enable_progbar: Enable progress bar over batches.
enable_inner_progbar: Enable progress bar over steps in each batch.
Returns:
Dictionary with metrics and data regarding the rollouts.
set `return_episode_data` to return a Hugging Face dataset object in an "episodes" key of the return dict.
"""
fps = env.unwrapped.metadata["render_fps"]
if policy is not None:
policy.eval()
device = "cpu" if policy is None else next(policy.parameters()).device
start = time.time()
policy.eval()
# Determine how many batched rollouts we need to get n_episodes. Note that if n_episodes is not evenly
# divisible by env.num_envs we end up discarding some data in the last batch.
n_batches = n_episodes // env.num_envs + int((n_episodes % env.num_envs) != 0)
# Keep track of some metrics.
sum_rewards = []
max_rewards = []
all_successes = []
all_seeds = []
seeds = []
threads = [] # for video saving threads
n_episodes_rendered = 0 # for saving the correct number of videos
episode_counter = 0 # for saving the correct number of videos
# Callback for visualization.
def render_frame(env: gym.vector.VectorEnv):
num_episodes = len(env.envs)
# TODO(alexander-soare): if num_episodes is not evenly divisible by the batch size, this will do more work than
# needed as I'm currently taking a ceil.
ep_frames = []
def render_frame(env):
# noqa: B023
if n_episodes_rendered >= max_episodes_rendered:
return
n_to_render_now = min(max_episodes_rendered - n_episodes_rendered, env.num_envs)
if isinstance(env, gym.vector.SyncVectorEnv):
ep_frames.append(np.stack([env.envs[i].render() for i in range(n_to_render_now)])) # noqa: B023
elif isinstance(env, gym.vector.AsyncVectorEnv):
# Here we must render all frames and discard any we don't need.
ep_frames.append(np.stack(env.call("render")[:n_to_render_now]))
eps_rendered = min(max_episodes_rendered, len(env.envs))
visu = np.stack([env.envs[i].render() for i in range(eps_rendered)])
ep_frames.append(visu) # noqa: B023
for _ in range(num_episodes):
seeds.append("TODO")
if hasattr(policy, "reset"):
policy.reset()
else:
logging.warning(
f"Policy {policy} doesnt have a `reset` method. It is required if the policy relies on an internal state during rollout."
)
# reset the environment
observation, info = env.reset(seed=seed)
if max_episodes_rendered > 0:
video_paths: list[str] = []
render_frame(env)
observations = []
actions = []
# episode
# frame_id
# timestamp
rewards = []
successes = []
dones = []
done = torch.tensor([False for _ in env.envs])
step = 0
max_steps = env.envs[0]._max_episode_steps
progbar = trange(max_steps, desc=f"Running eval with {max_steps} steps (maximum) per rollout.")
while not done.all():
# format from env keys to lerobot keys
observation = preprocess_observation(observation)
if return_episode_data:
observations.append(deepcopy(observation))
# send observation to device/gpu
observation = {key: observation[key].to(device, non_blocking=True) for key in observation}
# get the next action for the environment
with torch.inference_mode():
action = policy.select_action(observation, step=step)
# convert to cpu numpy
action = postprocess_action(action)
# apply the next action
observation, reward, terminated, truncated, info = env.step(action)
if max_episodes_rendered > 0:
render_frame(env)
# TODO(rcadene): implement a wrapper over env to return torch tensors in float32 (and cuda?)
action = torch.from_numpy(action)
reward = torch.from_numpy(reward)
terminated = torch.from_numpy(terminated)
truncated = torch.from_numpy(truncated)
# environment is considered done (no more steps), when success state is reached (terminated is True),
# or time limit is reached (truncated is True), or it was previsouly done.
done = terminated | truncated | done
if "final_info" in info:
# VectorEnv stores is_success into `info["final_info"][env_id]["is_success"]` instead of `info["is_success"]`
success = [
env_info["is_success"] if env_info is not None else False for env_info in info["final_info"]
]
else:
success = [False for _ in env.envs]
success = torch.tensor(success)
actions.append(action)
rewards.append(reward)
dones.append(done)
successes.append(success)
step += 1
progbar.update()
env.close()
# add the last observation when the env is done
if return_episode_data:
observation = preprocess_observation(observation)
observations.append(deepcopy(observation))
if return_episode_data:
episode_data: dict | None = None
new_obses = {}
for key in observations[0].keys(): # noqa: SIM118
new_obses[key] = torch.stack([obs[key] for obs in observations], dim=1)
observations = new_obses
actions = torch.stack(actions, dim=1)
rewards = torch.stack(rewards, dim=1)
successes = torch.stack(successes, dim=1)
dones = torch.stack(dones, dim=1)
progbar = trange(n_batches, desc="Stepping through eval batches", disable=not enable_progbar)
for batch_ix in progbar:
# Cache frames for rendering videos. Each item will be (b, h, w, c), and the list indexes the rollout
# step.
if max_episodes_rendered > 0:
ep_frames: list[np.ndarray] = []
# Figure out where in each rollout sequence the first done condition was encountered (results after
# this won't be included).
# Note: this assumes that the shape of the done key is (batch_size, max_steps).
# Note: this relies on a property of argmax: that it returns the first occurrence as a tiebreaker.
done_indices = torch.argmax(dones.to(int), axis=1) # (batch_size, rollout_steps)
expand_done_indices = done_indices[:, None].expand(-1, step)
expand_step_indices = torch.arange(step)[None, :].expand(num_episodes, -1)
mask = (expand_step_indices <= expand_done_indices).int() # (batch_size, rollout_steps)
batch_sum_reward = einops.reduce((rewards * mask), "b n -> b", "sum")
batch_max_reward = einops.reduce((rewards * mask), "b n -> b", "max")
batch_success = einops.reduce((successes * mask), "b n -> b", "any")
sum_rewards.extend(batch_sum_reward.tolist())
max_rewards.extend(batch_max_reward.tolist())
all_successes.extend(batch_success.tolist())
seeds = range(start_seed + (batch_ix * env.num_envs), start_seed + ((batch_ix + 1) * env.num_envs))
rollout_data = rollout(
env,
policy,
seeds=seeds,
return_observations=return_episode_data,
render_callback=render_frame if max_episodes_rendered > 0 else None,
enable_progbar=enable_inner_progbar,
)
# Figure out where in each rollout sequence the first done condition was encountered (results after
# this won't be included).
n_steps = rollout_data["done"].shape[1]
# Note: this relies on a property of argmax: that it returns the first occurrence as a tiebreaker.
done_indices = torch.argmax(rollout_data["done"].to(int), axis=1) # (batch_size, rollout_steps)
# Make a mask with shape (batch, n_steps) to mask out rollout data after the first done
# (batch-element-wise). Note the `done_indices + 1` to make sure to keep the data from the done step.
mask = (torch.arange(n_steps) <= einops.repeat(done_indices + 1, "b -> b s", s=n_steps)).int()
# Extend metrics.
batch_sum_rewards = einops.reduce((rollout_data["reward"] * mask), "b n -> b", "sum")
sum_rewards.extend(batch_sum_rewards.tolist())
batch_max_rewards = einops.reduce((rollout_data["reward"] * mask), "b n -> b", "max")
max_rewards.extend(batch_max_rewards.tolist())
batch_successes = einops.reduce((rollout_data["success"] * mask), "b n -> b", "any")
all_successes.extend(batch_successes.tolist())
all_seeds.extend(seeds)
# similar logic is implemented when datasets are pushed to hub (see: `push_to_hub`)
ep_dicts = []
episode_data_index = {"from": [], "to": []}
num_episodes = dones.shape[0]
total_frames = 0
id_from = 0
for ep_id in range(num_episodes):
num_frames = done_indices[ep_id].item() + 1
total_frames += num_frames
# TODO(rcadene): We need to add a missing last frame which is the observation
# of a done state. it is critical to have this frame for tdmpc to predict a "done observation/state"
if return_episode_data:
this_episode_data = _compile_episode_data(
rollout_data,
done_indices,
start_episode_index=batch_ix * env.num_envs,
start_data_index=(
0 if episode_data is None else (episode_data["episode_data_index"]["to"][-1].item())
),
fps=env.unwrapped.metadata["render_fps"],
)
if episode_data is None:
episode_data = this_episode_data
ep_dict = {
"action": actions[ep_id, :num_frames],
"episode_index": torch.tensor([ep_id] * num_frames),
"frame_index": torch.arange(0, num_frames, 1),
"timestamp": torch.arange(0, num_frames, 1) / fps,
"next.done": dones[ep_id, :num_frames],
"next.reward": rewards[ep_id, :num_frames].type(torch.float32),
}
for key in observations:
ep_dict[key] = observations[key][ep_id][:num_frames]
ep_dicts.append(ep_dict)
episode_data_index["from"].append(id_from)
episode_data_index["to"].append(id_from + num_frames)
id_from += num_frames
# similar logic is implemented in dataset preprocessing
if return_episode_data:
data_dict = {}
keys = ep_dicts[0].keys()
for key in keys:
if "image" not in key:
data_dict[key] = torch.cat([x[key] for x in ep_dicts])
else:
# Some sanity checks to make sure we are not correctly compiling the data.
assert (
episode_data["hf_dataset"]["episode_index"][-1] + 1
== this_episode_data["hf_dataset"]["episode_index"][0]
)
assert (
episode_data["hf_dataset"]["index"][-1] + 1 == this_episode_data["hf_dataset"]["index"][0]
)
assert torch.equal(
episode_data["episode_data_index"]["to"][-1],
this_episode_data["episode_data_index"]["from"][0],
)
# Concatenate the episode data.
episode_data = {
"hf_dataset": concatenate_datasets(
[episode_data["hf_dataset"], this_episode_data["hf_dataset"]]
),
"episode_data_index": {
k: torch.cat(
[
episode_data["episode_data_index"][k],
this_episode_data["episode_data_index"][k],
]
)
for k in ["from", "to"]
},
}
if key not in data_dict:
data_dict[key] = []
for ep_dict in ep_dicts:
for img in ep_dict[key]:
# sanity check that images are channel first
c, h, w = img.shape
assert c < h and c < w, f"expect channel first images, but instead {img.shape}"
# Maybe render video for visualization.
if max_episodes_rendered > 0 and len(ep_frames) > 0:
batch_stacked_frames = np.stack(ep_frames, axis=1) # (b, t, *)
for stacked_frames, done_index in zip(
batch_stacked_frames, done_indices.flatten().tolist(), strict=False
):
if n_episodes_rendered >= max_episodes_rendered:
break
video_dir.mkdir(parents=True, exist_ok=True)
video_path = video_dir / f"eval_episode_{n_episodes_rendered}.mp4"
video_paths.append(str(video_path))
thread = threading.Thread(
target=write_video,
args=(
str(video_path),
stacked_frames[: done_index + 1], # + 1 to capture the last observation
env.unwrapped.metadata["render_fps"],
),
)
thread.start()
threads.append(thread)
n_episodes_rendered += 1
# sanity check that images are float32 in range [0,1]
assert img.dtype == torch.float32, f"expect torch.float32, but instead {img.dtype=}"
assert img.max() <= 1, f"expect pixels lower than 1, but instead {img.max()=}"
assert img.min() >= 0, f"expect pixels greater than 1, but instead {img.min()=}"
progbar.set_postfix(
{"running_success_rate": f"{np.mean(all_successes[:n_episodes]).item() * 100:.1f}%"}
# from float32 in range [0,1] to uint8 in range [0,255]
img *= 255
img = img.type(torch.uint8)
# convert to channel last and numpy as expected by PIL
img = PILImage.fromarray(img.permute(1, 2, 0).numpy())
data_dict[key].append(img)
data_dict["index"] = torch.arange(0, total_frames, 1)
episode_data_index["from"] = torch.tensor(episode_data_index["from"])
episode_data_index["to"] = torch.tensor(episode_data_index["to"])
# TODO(rcadene): clean this
features = {}
for key in observations:
if "image" in key:
features[key] = Image()
else:
features[key] = Sequence(
length=data_dict[key].shape[1], feature=Value(dtype="float32", id=None)
)
features.update(
{
"action": Sequence(
length=data_dict["action"].shape[1], feature=Value(dtype="float32", id=None)
),
"episode_index": Value(dtype="int64", id=None),
"frame_index": Value(dtype="int64", id=None),
"timestamp": Value(dtype="float32", id=None),
"next.reward": Value(dtype="float32", id=None),
"next.done": Value(dtype="bool", id=None),
#'next.success': Value(dtype='bool', id=None),
"index": Value(dtype="int64", id=None),
}
)
features = Features(features)
hf_dataset = Dataset.from_dict(data_dict, features=features)
hf_dataset.set_transform(hf_transform_to_torch)
if max_episodes_rendered > 0:
batch_stacked_frames = np.stack(ep_frames, 1) # (b, t, *)
for stacked_frames, done_index in zip(
batch_stacked_frames, done_indices.flatten().tolist(), strict=False
):
if episode_counter >= max_episodes_rendered:
continue
video_dir.mkdir(parents=True, exist_ok=True)
video_path = video_dir / f"eval_episode_{episode_counter}.mp4"
thread = threading.Thread(
target=write_video,
args=(str(video_path), stacked_frames[:done_index], fps),
)
thread.start()
threads.append(thread)
episode_counter += 1
videos = einops.rearrange(batch_stacked_frames, "b t h w c -> b t c h w")
# Wait till all video rendering threads are done.
for thread in threads:
thread.join()
# Compile eval info.
info = {
"per_episode": [
{
@@ -382,210 +327,80 @@ def eval_policy(
}
for i, (sum_reward, max_reward, success, seed) in enumerate(
zip(
sum_rewards[:n_episodes],
max_rewards[:n_episodes],
all_successes[:n_episodes],
all_seeds[:n_episodes],
sum_rewards[:num_episodes],
max_rewards[:num_episodes],
all_successes[:num_episodes],
seeds[:num_episodes],
strict=True,
)
)
],
"aggregated": {
"avg_sum_reward": float(np.nanmean(sum_rewards[:n_episodes])),
"avg_max_reward": float(np.nanmean(max_rewards[:n_episodes])),
"pc_success": float(np.nanmean(all_successes[:n_episodes]) * 100),
"avg_sum_reward": float(np.nanmean(sum_rewards[:num_episodes])),
"avg_max_reward": float(np.nanmean(max_rewards[:num_episodes])),
"pc_success": float(np.nanmean(all_successes[:num_episodes]) * 100),
"eval_s": time.time() - start,
"eval_ep_s": (time.time() - start) / n_episodes,
"eval_ep_s": (time.time() - start) / num_episodes,
},
}
if return_episode_data:
info["episodes"] = episode_data
info["episodes"] = {
"hf_dataset": hf_dataset,
"episode_data_index": episode_data_index,
}
if max_episodes_rendered > 0:
info["video_paths"] = video_paths
info["videos"] = videos
return info
def _compile_episode_data(
rollout_data: dict, done_indices: Tensor, start_episode_index: int, start_data_index: int, fps: float
) -> dict:
"""Convenience function for `eval_policy(return_episode_data=True)`
Compiles all the rollout data into a Hugging Face dataset.
Similar logic is implemented when datasets are pushed to hub (see: `push_to_hub`).
"""
ep_dicts = []
episode_data_index = {"from": [], "to": []}
total_frames = 0
data_index_from = start_data_index
for ep_ix in range(rollout_data["action"].shape[0]):
num_frames = done_indices[ep_ix].item() + 1 # + 1 to include the first done frame
total_frames += num_frames
# TODO(rcadene): We need to add a missing last frame which is the observation
# of a done state. it is critical to have this frame for tdmpc to predict a "done observation/state"
ep_dict = {
"action": rollout_data["action"][ep_ix, :num_frames],
"episode_index": torch.tensor([start_episode_index + ep_ix] * num_frames),
"frame_index": torch.arange(0, num_frames, 1),
"timestamp": torch.arange(0, num_frames, 1) / fps,
"next.done": rollout_data["done"][ep_ix, :num_frames],
"next.reward": rollout_data["reward"][ep_ix, :num_frames].type(torch.float32),
}
for key in rollout_data["observation"]:
ep_dict[key] = rollout_data["observation"][key][ep_ix][:num_frames]
ep_dicts.append(ep_dict)
episode_data_index["from"].append(data_index_from)
episode_data_index["to"].append(data_index_from + num_frames)
data_index_from += num_frames
data_dict = {}
for key in ep_dicts[0]:
if "image" not in key:
data_dict[key] = torch.cat([x[key] for x in ep_dicts])
else:
if key not in data_dict:
data_dict[key] = []
for ep_dict in ep_dicts:
for img in ep_dict[key]:
# sanity check that images are channel first
c, h, w = img.shape
assert c < h and c < w, f"expect channel first images, but instead {img.shape}"
# sanity check that images are float32 in range [0,1]
assert img.dtype == torch.float32, f"expect torch.float32, but instead {img.dtype=}"
assert img.max() <= 1, f"expect pixels lower than 1, but instead {img.max()=}"
assert img.min() >= 0, f"expect pixels greater than 1, but instead {img.min()=}"
# from float32 in range [0,1] to uint8 in range [0,255]
img *= 255
img = img.type(torch.uint8)
# convert to channel last and numpy as expected by PIL
img = PILImage.fromarray(img.permute(1, 2, 0).numpy())
data_dict[key].append(img)
data_dict["index"] = torch.arange(start_data_index, start_data_index + total_frames, 1)
episode_data_index["from"] = torch.tensor(episode_data_index["from"])
episode_data_index["to"] = torch.tensor(episode_data_index["to"])
# TODO(rcadene): clean this
features = {}
for key in rollout_data["observation"]:
if "image" in key:
features[key] = Image()
else:
features[key] = Sequence(length=data_dict[key].shape[1], feature=Value(dtype="float32", id=None))
features.update(
{
"action": Sequence(length=data_dict["action"].shape[1], feature=Value(dtype="float32", id=None)),
"episode_index": Value(dtype="int64", id=None),
"frame_index": Value(dtype="int64", id=None),
"timestamp": Value(dtype="float32", id=None),
"next.reward": Value(dtype="float32", id=None),
"next.done": Value(dtype="bool", id=None),
#'next.success': Value(dtype='bool', id=None),
"index": Value(dtype="int64", id=None),
}
)
features = Features(features)
hf_dataset = Dataset.from_dict(data_dict, features=features)
hf_dataset.set_transform(hf_transform_to_torch)
return {
"hf_dataset": hf_dataset,
"episode_data_index": episode_data_index,
}
def eval(
pretrained_policy_path: str | None = None,
hydra_cfg_path: str | None = None,
config_overrides: list[str] | None = None,
):
assert (pretrained_policy_path is None) ^ (hydra_cfg_path is None)
if hydra_cfg_path is None:
hydra_cfg = init_hydra_config(pretrained_policy_path / "config.yaml", config_overrides)
else:
hydra_cfg = init_hydra_config(hydra_cfg_path, config_overrides)
out_dir = (
f"outputs/eval/{dt.now().strftime('%Y-%m-%d/%H-%M-%S')}_{hydra_cfg.env.name}_{hydra_cfg.policy.name}"
)
def eval(cfg: dict, out_dir=None):
if out_dir is None:
raise NotImplementedError()
init_logging()
# Check device is available
device = get_safe_torch_device(hydra_cfg.device, log=True)
get_safe_torch_device(cfg.device, log=True)
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
set_global_seed(hydra_cfg.seed)
set_global_seed(cfg.seed)
log_output_dir(out_dir)
logging.info("Making environment.")
env = make_env(hydra_cfg)
env = make_env(cfg, num_parallel_envs=cfg.eval_episodes)
logging.info("Making policy.")
if hydra_cfg_path is None:
policy = make_policy(hydra_cfg=hydra_cfg, pretrained_policy_name_or_path=pretrained_policy_path)
else:
# Note: We need the dataset stats to pass to the policy's normalization modules.
policy = make_policy(hydra_cfg=hydra_cfg, dataset_stats=make_dataset(hydra_cfg).stats)
policy.eval()
policy = make_policy(cfg)
with torch.no_grad(), torch.autocast(device_type=device.type) if hydra_cfg.use_amp else nullcontext():
info = eval_policy(
env,
policy,
hydra_cfg.eval.n_episodes,
max_episodes_rendered=10,
video_dir=Path(out_dir) / "eval",
start_seed=hydra_cfg.seed,
enable_progbar=True,
enable_inner_progbar=True,
)
info = eval_policy(
env,
policy,
max_episodes_rendered=10,
video_dir=Path(out_dir) / "eval",
return_episode_data=False,
seed=cfg.seed,
)
print(info["aggregated"])
# Save info
with open(Path(out_dir) / "eval_info.json", "w") as f:
# remove pytorch tensors which are not serializable to save the evaluation results only
del info["videos"]
json.dump(info, f, indent=2)
env.close()
logging.info("End of eval")
if __name__ == "__main__":
init_logging()
parser = argparse.ArgumentParser(
description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter
)
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument(
"-p",
"--pretrained-policy-name-or-path",
help=(
"Either the repo ID of a model hosted on the Hub or a path to a directory containing weights "
"saved using `Policy.save_pretrained`. If not provided, the policy is initialized from scratch "
"(useful for debugging). This argument is mutually exclusive with `--config`."
),
)
group.add_argument(
"--config",
help=(
"Path to a yaml config you want to use for initializing a policy from scratch (useful for "
"debugging). This argument is mutually exclusive with `--pretrained-policy-name-or-path` (`-p`)."
),
)
parser.add_argument("--revision", help="Optionally provide the Hugging Face Hub revision ID.")
group.add_argument("--config", help="Path to a specific yaml config you want to use.")
group.add_argument("--hub-id", help="HuggingFace Hub ID for a pretrained model.")
parser.add_argument("--revision", help="Optionally provide the HuggingFace Hub revision ID.")
parser.add_argument(
"overrides",
nargs="*",
@@ -593,29 +408,16 @@ if __name__ == "__main__":
)
args = parser.parse_args()
if args.pretrained_policy_name_or_path is None:
eval(hydra_cfg_path=args.config, config_overrides=args.overrides)
else:
try:
pretrained_policy_path = Path(
snapshot_download(args.pretrained_policy_name_or_path, revision=args.revision)
)
except (HFValidationError, RepositoryNotFoundError) as e:
if isinstance(e, HFValidationError):
error_message = (
"The provided pretrained_policy_name_or_path is not a valid Hugging Face Hub repo ID."
)
else:
error_message = (
"The provided pretrained_policy_name_or_path was not found on the Hugging Face Hub."
)
if args.config is not None:
# Note: For the config_path, Hydra wants a path relative to this script file.
cfg = init_hydra_config(args.config, args.overrides)
elif args.hub_id is not None:
folder = Path(snapshot_download(args.hub_id, revision=args.revision))
cfg = init_hydra_config(
folder / "config.yaml", [f"policy.pretrained_model_path={folder / 'model.pt'}", *args.overrides]
)
logging.warning(f"{error_message} Treating it as a local directory.")
pretrained_policy_path = Path(args.pretrained_policy_name_or_path)
if not pretrained_policy_path.is_dir() or not pretrained_policy_path.exists():
raise ValueError(
"The provided pretrained_policy_name_or_path is not a valid/existing Hugging Face Hub "
"repo ID, nor is it an existing local directory."
)
eval(pretrained_policy_path=pretrained_policy_path, config_overrides=args.overrides)
eval(
cfg,
out_dir=f"outputs/eval/{dt.now().strftime('%Y-%m-%d/%H-%M-%S')}_{cfg.env.name}_{cfg.policy.name}",
)

View File

@@ -1,331 +0,0 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Use this script to convert your dataset into LeRobot dataset format and upload it to the Hugging Face hub,
or store it locally. LeRobot dataset format is lightweight, fast to load from, and does not require any
installation of neural net specific packages like pytorch, tensorflow, jax.
Example:
```
python lerobot/scripts/push_dataset_to_hub.py \
--data-dir data \
--dataset-id pusht \
--raw-format pusht_zarr \
--community-id lerobot \
--dry-run 1 \
--save-to-disk 1 \
--save-tests-to-disk 0 \
--debug 1
python lerobot/scripts/push_dataset_to_hub.py \
--data-dir data \
--dataset-id xarm_lift_medium \
--raw-format xarm_pkl \
--community-id lerobot \
--dry-run 1 \
--save-to-disk 1 \
--save-tests-to-disk 0 \
--debug 1
python lerobot/scripts/push_dataset_to_hub.py \
--data-dir data \
--dataset-id aloha_sim_insertion_scripted \
--raw-format aloha_hdf5 \
--community-id lerobot \
--dry-run 1 \
--save-to-disk 1 \
--save-tests-to-disk 0 \
--debug 1
python lerobot/scripts/push_dataset_to_hub.py \
--data-dir data \
--dataset-id umi_cup_in_the_wild \
--raw-format umi_zarr \
--community-id lerobot \
--dry-run 1 \
--save-to-disk 1 \
--save-tests-to-disk 0 \
--debug 1
```
"""
import argparse
import json
import shutil
from pathlib import Path
import torch
from huggingface_hub import HfApi
from safetensors.torch import save_file
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION, LeRobotDataset
from lerobot.common.datasets.push_dataset_to_hub._download_raw import download_raw
from lerobot.common.datasets.push_dataset_to_hub.compute_stats import compute_stats
from lerobot.common.datasets.utils import flatten_dict
def get_from_raw_to_lerobot_format_fn(raw_format):
if raw_format == "pusht_zarr":
from lerobot.common.datasets.push_dataset_to_hub.pusht_zarr_format import from_raw_to_lerobot_format
elif raw_format == "umi_zarr":
from lerobot.common.datasets.push_dataset_to_hub.umi_zarr_format import from_raw_to_lerobot_format
elif raw_format == "aloha_hdf5":
from lerobot.common.datasets.push_dataset_to_hub.aloha_hdf5_format import from_raw_to_lerobot_format
elif raw_format == "xarm_pkl":
from lerobot.common.datasets.push_dataset_to_hub.xarm_pkl_format import from_raw_to_lerobot_format
else:
raise ValueError(raw_format)
return from_raw_to_lerobot_format
def save_meta_data(info, stats, episode_data_index, meta_data_dir):
meta_data_dir.mkdir(parents=True, exist_ok=True)
# save info
info_path = meta_data_dir / "info.json"
with open(str(info_path), "w") as f:
json.dump(info, f, indent=4)
# save stats
stats_path = meta_data_dir / "stats.safetensors"
save_file(flatten_dict(stats), stats_path)
# save episode_data_index
episode_data_index = {key: torch.tensor(episode_data_index[key]) for key in episode_data_index}
ep_data_idx_path = meta_data_dir / "episode_data_index.safetensors"
save_file(episode_data_index, ep_data_idx_path)
def push_meta_data_to_hub(repo_id, meta_data_dir, revision):
"""Expect all meta data files to be all stored in a single "meta_data" directory.
On the hugging face repositery, they will be uploaded in a "meta_data" directory at the root.
"""
api = HfApi()
api.upload_folder(
folder_path=meta_data_dir,
path_in_repo="meta_data",
repo_id=repo_id,
revision=revision,
repo_type="dataset",
)
def push_videos_to_hub(repo_id, videos_dir, revision):
"""Expect mp4 files to be all stored in a single "videos" directory.
On the hugging face repositery, they will be uploaded in a "videos" directory at the root.
"""
api = HfApi()
api.upload_folder(
folder_path=videos_dir,
path_in_repo="videos",
repo_id=repo_id,
revision=revision,
repo_type="dataset",
allow_patterns="*.mp4",
)
def push_dataset_to_hub(
data_dir: Path,
dataset_id: str,
raw_format: str | None,
community_id: str,
revision: str,
dry_run: bool,
save_to_disk: bool,
tests_data_dir: Path,
save_tests_to_disk: bool,
fps: int | None,
video: bool,
batch_size: int,
num_workers: int,
debug: bool,
):
repo_id = f"{community_id}/{dataset_id}"
raw_dir = data_dir / f"{dataset_id}_raw"
out_dir = data_dir / repo_id
meta_data_dir = out_dir / "meta_data"
videos_dir = out_dir / "videos"
tests_out_dir = tests_data_dir / repo_id
tests_meta_data_dir = tests_out_dir / "meta_data"
tests_videos_dir = tests_out_dir / "videos"
if out_dir.exists():
shutil.rmtree(out_dir)
if tests_out_dir.exists() and save_tests_to_disk:
shutil.rmtree(tests_out_dir)
if not raw_dir.exists():
download_raw(raw_dir, dataset_id)
if raw_format is None:
# TODO(rcadene, adilzouitine): implement auto_find_raw_format
raise NotImplementedError()
# raw_format = auto_find_raw_format(raw_dir)
from_raw_to_lerobot_format = get_from_raw_to_lerobot_format_fn(raw_format)
# convert dataset from original raw format to LeRobot format
hf_dataset, episode_data_index, info = from_raw_to_lerobot_format(raw_dir, out_dir, fps, video, debug)
lerobot_dataset = LeRobotDataset.from_preloaded(
repo_id=repo_id,
version=revision,
hf_dataset=hf_dataset,
episode_data_index=episode_data_index,
info=info,
videos_dir=videos_dir,
)
stats = compute_stats(lerobot_dataset, batch_size, num_workers)
if save_to_disk:
hf_dataset = hf_dataset.with_format(None) # to remove transforms that cant be saved
hf_dataset.save_to_disk(str(out_dir / "train"))
if not dry_run or save_to_disk:
# mandatory for upload
save_meta_data(info, stats, episode_data_index, meta_data_dir)
if not dry_run:
hf_dataset.push_to_hub(repo_id, token=True, revision="main")
hf_dataset.push_to_hub(repo_id, token=True, revision=revision)
push_meta_data_to_hub(repo_id, meta_data_dir, revision="main")
push_meta_data_to_hub(repo_id, meta_data_dir, revision=revision)
if video:
push_videos_to_hub(repo_id, videos_dir, revision="main")
push_videos_to_hub(repo_id, videos_dir, revision=revision)
if save_tests_to_disk:
# get the first episode
num_items_first_ep = episode_data_index["to"][0] - episode_data_index["from"][0]
test_hf_dataset = hf_dataset.select(range(num_items_first_ep))
test_hf_dataset = test_hf_dataset.with_format(None)
test_hf_dataset.save_to_disk(str(tests_out_dir / "train"))
save_meta_data(info, stats, episode_data_index, tests_meta_data_dir)
# copy videos of first episode to tests directory
episode_index = 0
tests_videos_dir.mkdir(parents=True, exist_ok=True)
for key in lerobot_dataset.video_frame_keys:
fname = f"{key}_episode_{episode_index:06d}.mp4"
shutil.copy(videos_dir / fname, tests_videos_dir / fname)
if not save_to_disk and out_dir.exists():
# remove possible temporary files remaining in the output directory
shutil.rmtree(out_dir)
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--data-dir",
type=Path,
required=True,
help="Root directory containing datasets (e.g. `data` or `tmp/data` or `/tmp/lerobot/data`).",
)
parser.add_argument(
"--dataset-id",
type=str,
required=True,
help="Name of the dataset (e.g. `pusht`, `aloha_sim_insertion_human`), which matches the folder where the data is stored (e.g. `data/pusht`).",
)
parser.add_argument(
"--raw-format",
type=str,
help="Dataset type (e.g. `pusht_zarr`, `umi_zarr`, `aloha_hdf5`, `xarm_pkl`). If not provided, will be detected automatically.",
)
parser.add_argument(
"--community-id",
type=str,
default="lerobot",
help="Community or user ID under which the dataset will be hosted on the Hub.",
)
parser.add_argument(
"--revision",
type=str,
default=CODEBASE_VERSION,
help="Codebase version used to generate the dataset.",
)
parser.add_argument(
"--dry-run",
type=int,
default=0,
help="Run everything without uploading to hub, for testing purposes or storing a dataset locally.",
)
parser.add_argument(
"--save-to-disk",
type=int,
default=1,
help="Save the dataset in the directory specified by `--data-dir`.",
)
parser.add_argument(
"--tests-data-dir",
type=Path,
default="tests/data",
help="Directory containing tests artifacts datasets.",
)
parser.add_argument(
"--save-tests-to-disk",
type=int,
default=1,
help="Save the dataset with 1 episode used for unit tests in the directory specified by `--tests-data-dir`.",
)
parser.add_argument(
"--fps",
type=int,
help="Frame rate used to collect videos. If not provided, use the default one specified in the code.",
)
parser.add_argument(
"--video",
type=int,
default=1,
help="Convert each episode of the raw dataset to an mp4 video. This option allows 60 times lower disk space consumption and 25 faster loading time during training.",
)
parser.add_argument(
"--batch-size",
type=int,
default=32,
help="Batch size loaded by DataLoader for computing the dataset statistics.",
)
parser.add_argument(
"--num-workers",
type=int,
default=8,
help="Number of processes of Dataloader for computing the dataset statistics.",
)
parser.add_argument(
"--debug",
type=int,
default=0,
help="Debug mode process the first episode only.",
)
args = parser.parse_args()
push_dataset_to_hub(**vars(args))
if __name__ == "__main__":
main()

View File

@@ -1,36 +1,18 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import time
from contextlib import nullcontext
from copy import deepcopy
from pathlib import Path
import datasets
import hydra
import torch
from omegaconf import DictConfig
from torch.cuda.amp import GradScaler
from datasets import concatenate_datasets
from datasets.utils import disable_progress_bars, enable_progress_bars
from lerobot.common.datasets.factory import make_dataset
from lerobot.common.datasets.utils import cycle
from lerobot.common.envs.factory import make_env
from lerobot.common.logger import Logger, log_output_dir
from lerobot.common.policies.factory import make_policy
from lerobot.common.policies.policy_protocol import PolicyWithUpdate
from lerobot.common.policies.utils import get_device_from_parameters
from lerobot.common.utils.utils import (
format_big_number,
get_safe_torch_device,
@@ -40,107 +22,7 @@ from lerobot.common.utils.utils import (
from lerobot.scripts.eval import eval_policy
def make_optimizer_and_scheduler(cfg, policy):
if cfg.policy.name == "act":
optimizer_params_dicts = [
{
"params": [
p
for n, p in policy.named_parameters()
if not n.startswith("backbone") and p.requires_grad
]
},
{
"params": [
p for n, p in policy.named_parameters() if n.startswith("backbone") and p.requires_grad
],
"lr": cfg.training.lr_backbone,
},
]
optimizer = torch.optim.AdamW(
optimizer_params_dicts, lr=cfg.training.lr, weight_decay=cfg.training.weight_decay
)
lr_scheduler = None
elif cfg.policy.name == "diffusion":
optimizer = torch.optim.Adam(
policy.diffusion.parameters(),
cfg.training.lr,
cfg.training.adam_betas,
cfg.training.adam_eps,
cfg.training.adam_weight_decay,
)
from diffusers.optimization import get_scheduler
lr_scheduler = get_scheduler(
cfg.training.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=cfg.training.lr_warmup_steps,
num_training_steps=cfg.training.offline_steps,
)
elif policy.name == "tdmpc":
optimizer = torch.optim.Adam(policy.parameters(), cfg.training.lr)
lr_scheduler = None
else:
raise NotImplementedError()
return optimizer, lr_scheduler
def update_policy(
policy,
batch,
optimizer,
grad_clip_norm,
grad_scaler: GradScaler,
lr_scheduler=None,
use_amp: bool = False,
):
"""Returns a dictionary of items for logging."""
start_time = time.perf_counter()
device = get_device_from_parameters(policy)
policy.train()
with torch.autocast(device_type=device.type) if use_amp else nullcontext():
output_dict = policy.forward(batch)
# TODO(rcadene): policy.unnormalize_outputs(out_dict)
loss = output_dict["loss"]
grad_scaler.scale(loss).backward()
# Unscale the graident of the optimzer's assigned params in-place **prior to gradient clipping**.
grad_scaler.unscale_(optimizer)
grad_norm = torch.nn.utils.clip_grad_norm_(
policy.parameters(),
grad_clip_norm,
error_if_nonfinite=False,
)
# Optimizer's gradients are already unscaled, so scaler.step does not unscale them,
# although it still skips optimizer.step() if the gradients contain infs or NaNs.
grad_scaler.step(optimizer)
# Updates the scale for next iteration.
grad_scaler.update()
optimizer.zero_grad()
if lr_scheduler is not None:
lr_scheduler.step()
if isinstance(policy, PolicyWithUpdate):
# To possibly update an internal buffer (for instance an Exponential Moving Average like in TDMPC).
policy.update()
info = {
"loss": loss.item(),
"grad_norm": float(grad_norm),
"lr": optimizer.param_groups[0]["lr"],
"update_s": time.perf_counter() - start_time,
**{k: v for k, v in output_dict.items() if k != "loss"},
}
return info
@hydra.main(version_base="1.2", config_name="default", config_path="../configs")
@hydra.main(version_base=None, config_name="default", config_path="../configs")
def train_cli(cfg: dict):
train(
cfg,
@@ -158,7 +40,7 @@ def train_notebook(out_dir=None, job_name=None, config_name="default", config_pa
train(cfg, out_dir=out_dir, job_name=job_name)
def log_train_info(logger: Logger, info, step, cfg, dataset, is_offline):
def log_train_info(logger, info, step, cfg, dataset, is_offline):
loss = info["loss"]
grad_norm = info["grad_norm"]
lr = info["lr"]
@@ -166,7 +48,7 @@ def log_train_info(logger: Logger, info, step, cfg, dataset, is_offline):
# A sample is an (observation,action) pair, where observation and action
# can be on multiple timestamps. In a batch, we have `batch_size`` number of samples.
num_samples = (step + 1) * cfg.training.batch_size
num_samples = (step + 1) * cfg.policy.batch_size
avg_samples_per_ep = dataset.num_samples / dataset.num_episodes
num_episodes = num_samples / avg_samples_per_ep
num_epochs = num_samples / dataset.num_samples
@@ -202,7 +84,7 @@ def log_eval_info(logger, info, step, cfg, dataset, is_offline):
# A sample is an (observation,action) pair, where observation and action
# can be on multiple timestamps. In a batch, we have `batch_size`` number of samples.
num_samples = (step + 1) * cfg.training.batch_size
num_samples = (step + 1) * cfg.policy.batch_size
avg_samples_per_ep = dataset.num_samples / dataset.num_episodes
num_episodes = num_samples / avg_samples_per_ep
num_epochs = num_samples / dataset.num_samples
@@ -229,19 +111,115 @@ def log_eval_info(logger, info, step, cfg, dataset, is_offline):
logger.log_dict(info, step, mode="eval")
def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = None):
def calculate_online_sample_weight(n_off: int, n_on: int, pc_on: float):
"""
Calculate the sampling weight to be assigned to samples so that a specified percentage of the batch comes from online dataset (on average).
Parameters:
- n_off (int): Number of offline samples, each with a sampling weight of 1.
- n_on (int): Number of online samples.
- pc_on (float): Desired percentage of online samples in decimal form (e.g., 50% as 0.5).
The total weight of offline samples is n_off * 1.0.
The total weight of offline samples is n_on * w.
The total combined weight of all samples is n_off + n_on * w.
The fraction of the weight that is online is n_on * w / (n_off + n_on * w).
We want this fraction to equal pc_on, so we set up the equation n_on * w / (n_off + n_on * w) = pc_on.
The solution is w = - (n_off * pc_on) / (n_on * (pc_on - 1))
"""
assert 0.0 <= pc_on <= 1.0
return -(n_off * pc_on) / (n_on * (pc_on - 1))
def add_episodes_inplace(
online_dataset: torch.utils.data.Dataset,
concat_dataset: torch.utils.data.ConcatDataset,
sampler: torch.utils.data.WeightedRandomSampler,
hf_dataset: datasets.Dataset,
episode_data_index: dict[str, torch.Tensor],
pc_online_samples: float,
):
"""
Modifies the online_dataset, concat_dataset, and sampler in place by integrating
new episodes from hf_dataset into the online_dataset, updating the concatenated
dataset's structure and adjusting the sampling strategy based on the specified
percentage of online samples.
Parameters:
- online_dataset (torch.utils.data.Dataset): The existing online dataset to be updated.
- concat_dataset (torch.utils.data.ConcatDataset): The concatenated dataset that combines
offline and online datasets, used for sampling purposes.
- sampler (torch.utils.data.WeightedRandomSampler): A sampler that will be updated to
reflect changes in the dataset sizes and specified sampling weights.
- hf_dataset (datasets.Dataset): A Hugging Face dataset containing the new episodes to be added.
- episode_data_index (dict): A dictionary containing two keys ("from" and "to") associated to dataset indices.
They indicate the start index and end index of each episode in the dataset.
- pc_online_samples (float): The target percentage of samples that should come from
the online dataset during sampling operations.
Raises:
- AssertionError: If the first episode_id or index in hf_dataset is not 0
"""
first_episode_idx = hf_dataset.select_columns("episode_index")[0]["episode_index"].item()
last_episode_idx = hf_dataset.select_columns("episode_index")[-1]["episode_index"].item()
first_index = hf_dataset.select_columns("index")[0]["index"].item()
last_index = hf_dataset.select_columns("index")[-1]["index"].item()
# sanity check
assert first_episode_idx == 0, f"{first_episode_idx=} is not 0"
assert first_index == 0, f"{first_index=} is not 0"
assert first_index == episode_data_index["from"][first_episode_idx].item()
assert last_index == episode_data_index["to"][last_episode_idx].item() - 1
if len(online_dataset) == 0:
# initialize online dataset
online_dataset.hf_dataset = hf_dataset
online_dataset.episode_data_index = episode_data_index
else:
# get the starting indices of the new episodes and frames to be added
start_episode_idx = last_episode_idx + 1
start_index = last_index + 1
def shift_indices(episode_index, index):
# note: we dont shift "frame_index" since it represents the index of the frame in the episode it belongs to
example = {"episode_index": episode_index + start_episode_idx, "index": index + start_index}
return example
disable_progress_bars() # map has a tqdm progress bar
hf_dataset = hf_dataset.map(shift_indices, input_columns=["episode_index", "index"])
enable_progress_bars()
episode_data_index["from"] += start_index
episode_data_index["to"] += start_index
# extend online dataset
online_dataset.hf_dataset = concatenate_datasets([online_dataset.hf_dataset, hf_dataset])
# update the concatenated dataset length used during sampling
concat_dataset.cumulative_sizes = concat_dataset.cumsum(concat_dataset.datasets)
# update the sampling weights for each frame so that online frames get sampled a certain percentage of times
len_online = len(online_dataset)
len_offline = len(concat_dataset) - len_online
weight_offline = 1.0
weight_online = calculate_online_sample_weight(len_offline, len_online, pc_online_samples)
sampler.weights = torch.tensor([weight_offline] * len_offline + [weight_online] * len(online_dataset))
# update the total number of samples used during sampling
sampler.num_samples = len(concat_dataset)
def train(cfg: dict, out_dir=None, job_name=None):
if out_dir is None:
raise NotImplementedError()
if job_name is None:
raise NotImplementedError()
if cfg.online_steps > 0:
assert cfg.rollout_batch_size == 1, "rollout_batch_size > 1 not supported for online training steps"
init_logging()
if cfg.training.online_steps > 0:
raise NotImplementedError("Online training is not implemented yet.")
# Check device is available
device = get_safe_torch_device(cfg.device, log=True)
get_safe_torch_device(cfg.device, log=True)
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
@@ -251,15 +229,10 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
offline_dataset = make_dataset(cfg)
logging.info("make_env")
eval_env = make_env(cfg)
env = make_env(cfg, num_parallel_envs=cfg.eval_episodes)
logging.info("make_policy")
policy = make_policy(hydra_cfg=cfg, dataset_stats=offline_dataset.stats)
# Create optimizer and scheduler
# Temporary hack to move optimizer out of policy
optimizer, lr_scheduler = make_optimizer_and_scheduler(cfg, policy)
grad_scaler = GradScaler(enabled=cfg.use_amp)
policy = make_policy(cfg, dataset_stats=offline_dataset.stats)
num_learnable_params = sum(p.numel() for p in policy.parameters() if p.requires_grad)
num_total_params = sum(p.numel() for p in policy.parameters())
@@ -269,81 +242,71 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
log_output_dir(out_dir)
logging.info(f"{cfg.env.task=}")
logging.info(f"{cfg.training.offline_steps=} ({format_big_number(cfg.training.offline_steps)})")
logging.info(f"{cfg.training.online_steps=}")
logging.info(f"{cfg.offline_steps=} ({format_big_number(cfg.offline_steps)})")
logging.info(f"{cfg.online_steps=}")
logging.info(f"{offline_dataset.num_samples=} ({format_big_number(offline_dataset.num_samples)})")
logging.info(f"{offline_dataset.num_episodes=}")
logging.info(f"{num_learnable_params=} ({format_big_number(num_learnable_params)})")
logging.info(f"{num_total_params=} ({format_big_number(num_total_params)})")
# Note: this helper will be used in offline and online training loops.
def evaluate_and_checkpoint_if_needed(step):
if step % cfg.training.eval_freq == 0:
def _maybe_eval_and_maybe_save(step):
if step % cfg.eval_freq == 0:
logging.info(f"Eval policy at step {step}")
with torch.no_grad(), torch.autocast(device_type=device.type) if cfg.use_amp else nullcontext():
eval_info = eval_policy(
eval_env,
policy,
cfg.eval.n_episodes,
video_dir=Path(out_dir) / "eval",
max_episodes_rendered=4,
start_seed=cfg.seed,
)
eval_info = eval_policy(
env,
policy,
video_dir=Path(out_dir) / "eval",
max_episodes_rendered=4,
transform=offline_dataset.transform,
seed=cfg.seed,
)
log_eval_info(logger, eval_info["aggregated"], step, cfg, offline_dataset, is_offline)
if cfg.wandb.enable:
logger.log_video(eval_info["video_paths"][0], step, mode="eval")
logger.log_video(eval_info["videos"][0], step, mode="eval")
logging.info("Resume training")
if cfg.training.save_model and step % cfg.training.save_freq == 0:
if cfg.save_model and step % cfg.save_freq == 0:
logging.info(f"Checkpoint policy after step {step}")
# Note: Save with step as the identifier, and format it to have at least 6 digits but more if
# needed (choose 6 as a minimum for consistency without being overkill).
logger.save_model(
policy,
identifier=str(step).zfill(
max(6, len(str(cfg.training.offline_steps + cfg.training.online_steps)))
),
)
logger.save_model(policy, identifier=step)
logging.info("Resume training")
# create dataloader for offline training
dataloader = torch.utils.data.DataLoader(
offline_dataset,
num_workers=4,
batch_size=cfg.training.batch_size,
batch_size=cfg.policy.batch_size,
shuffle=True,
pin_memory=device.type != "cpu",
pin_memory=cfg.device != "cpu",
drop_last=False,
)
dl_iter = cycle(dataloader)
policy.train()
step = 0 # number of policy update (forward + backward + optim)
is_offline = True
for step in range(cfg.training.offline_steps):
if step == 0:
for offline_step in range(cfg.offline_steps):
if offline_step == 0:
logging.info("Start offline training on a fixed dataset")
policy.train()
batch = next(dl_iter)
for key in batch:
batch[key] = batch[key].to(device, non_blocking=True)
batch[key] = batch[key].to(cfg.device, non_blocking=True)
train_info = update_policy(
policy,
batch,
optimizer,
cfg.training.grad_clip_norm,
grad_scaler=grad_scaler,
lr_scheduler=lr_scheduler,
use_amp=cfg.use_amp,
)
train_info = policy.update(batch, step=step)
# TODO(rcadene): is it ok if step_t=0 = 0 and not 1 as previously done?
if step % cfg.training.log_freq == 0:
if step % cfg.log_freq == 0:
log_train_info(logger, train_info, step, cfg, offline_dataset, is_offline)
# Note: evaluate_and_checkpoint_if_needed happens **after** the `step`th training update has completed,
# so we pass in step + 1.
evaluate_and_checkpoint_if_needed(step + 1)
# Note: _maybe_eval_and_maybe_save happens **after** the `step`th training update has completed, so we pass in
# step + 1.
_maybe_eval_and_maybe_save(step + 1)
step += 1
# create an env dedicated to online episodes collection from policy rollout
rollout_env = make_env(cfg, num_parallel_envs=1)
# create an empty online dataset similar to offline dataset
online_dataset = deepcopy(offline_dataset)
@@ -359,13 +322,55 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
dataloader = torch.utils.data.DataLoader(
concat_dataset,
num_workers=4,
batch_size=cfg.training.batch_size,
batch_size=cfg.policy.batch_size,
sampler=sampler,
pin_memory=device.type != "cpu",
pin_memory=cfg.device != "cpu",
drop_last=False,
)
dl_iter = cycle(dataloader)
online_step = 0
is_offline = False
for env_step in range(cfg.online_steps):
if env_step == 0:
logging.info("Start online training by interacting with environment")
with torch.no_grad():
eval_info = eval_policy(
rollout_env,
policy,
return_episode_data=True,
seed=cfg.seed,
)
add_episodes_inplace(
online_dataset,
concat_dataset,
sampler,
hf_dataset=eval_info["episodes"]["hf_dataset"],
episode_data_index=eval_info["episodes"]["episode_data_index"],
pc_online_samples=cfg.get("demo_schedule", 0.5),
)
for _ in range(cfg.policy.utd):
policy.train()
batch = next(dl_iter)
for key in batch:
batch[key] = batch[key].to(cfg.device, non_blocking=True)
train_info = policy.update(batch, step)
if step % cfg.log_freq == 0:
log_train_info(logger, train_info, step, cfg, online_dataset, is_offline)
# Note: _maybe_eval_and_maybe_save happens **after** the `step`th training update has completed, so we pass
# in step + 1.
_maybe_eval_and_maybe_save(step + 1)
step += 1
online_step += 1
eval_env.close()
logging.info("End of training")

View File

@@ -1,263 +1,116 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Visualize data of **all** frames of any episode of a dataset of type LeRobotDataset.
Note: The last frame of the episode doesnt always correspond to a final state.
That's because our datasets are composed of transition from state to state up to
the antepenultimate state associated to the ultimate action to arrive in the final state.
However, there might not be a transition from a final state to another state.
Note: This script aims to visualize the data used to train the neural networks.
~What you see is what you get~. When visualizing image modality, it is often expected to observe
lossly compression artifacts since these images have been decoded from compressed mp4 videos to
save disk space. The compression factor applied has been tuned to not affect success rate.
Examples:
- Visualize data stored on a local machine:
```
local$ python lerobot/scripts/visualize_dataset.py \
--repo-id lerobot/pusht \
--episode-index 0
```
- Visualize data stored on a distant machine with a local viewer:
```
distant$ python lerobot/scripts/visualize_dataset.py \
--repo-id lerobot/pusht \
--episode-index 0 \
--save 1 \
--output-dir path/to/directory
local$ scp distant:path/to/directory/lerobot_pusht_episode_0.rrd .
local$ rerun lerobot_pusht_episode_0.rrd
```
- Visualize data stored on a distant machine through streaming:
(You need to forward the websocket port to the distant machine, with
`ssh -L 9087:localhost:9087 username@remote-host`)
```
distant$ python lerobot/scripts/visualize_dataset.py \
--repo-id lerobot/pusht \
--episode-index 0 \
--mode distant \
--ws-port 9087
local$ rerun ws://localhost:9087
```
"""
import argparse
import gc
import logging
import time
import threading
from pathlib import Path
import rerun as rr
import einops
import hydra
import imageio
import torch
import tqdm
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.datasets.factory import make_dataset
from lerobot.common.logger import log_output_dir
from lerobot.common.utils.utils import init_logging
NUM_EPISODES_TO_RENDER = 50
MAX_NUM_STEPS = 1000
FIRST_FRAME = 0
class EpisodeSampler(torch.utils.data.Sampler):
def __init__(self, dataset, episode_index):
from_idx = dataset.episode_data_index["from"][episode_index].item()
to_idx = dataset.episode_data_index["to"][episode_index].item()
self.frame_ids = range(from_idx, to_idx)
def __iter__(self):
return iter(self.frame_ids)
def __len__(self):
return len(self.frame_ids)
@hydra.main(version_base=None, config_name="default", config_path="../configs")
def visualize_dataset_cli(cfg: dict):
visualize_dataset(cfg, out_dir=hydra.core.hydra_config.HydraConfig.get().runtime.output_dir)
def to_hwc_uint8_numpy(chw_float32_torch):
assert chw_float32_torch.dtype == torch.float32
assert chw_float32_torch.ndim == 3
c, h, w = chw_float32_torch.shape
assert c < h and c < w, f"expect channel first images, but instead {chw_float32_torch.shape}"
hwc_uint8_numpy = (chw_float32_torch * 255).type(torch.uint8).permute(1, 2, 0).numpy()
return hwc_uint8_numpy
def cat_and_write_video(video_path, frames, fps):
frames = torch.cat(frames)
# Expects images in [0, 1].
frame = frames[0]
if frame.ndim == 4:
raise NotImplementedError("We currently dont support multiple timestamps.")
c, h, w = frame.shape
assert c < h and c < w, f"expect channel first images, but instead {frame.shape}"
# sanity check that images are float32 in range [0,1]
assert frame.dtype == torch.float32, f"expect torch.float32, but instead {frame.dtype=}"
assert frame.max() <= 1, f"expect pixels lower than 1, but instead {frame.max()=}"
assert frame.min() >= 0, f"expect pixels greater than 1, but instead {frame.min()=}"
# convert to channel last uint8 [0, 255]
frames = einops.rearrange(frames, "b c h w -> b h w c")
frames = (frames * 255).type(torch.uint8)
imageio.mimsave(video_path, frames.numpy(), fps=fps)
def visualize_dataset(
repo_id: str,
episode_index: int,
batch_size: int = 32,
num_workers: int = 0,
mode: str = "local",
web_port: int = 9090,
ws_port: int = 9087,
save: bool = False,
output_dir: Path | None = None,
) -> Path | None:
if save:
assert (
output_dir is not None
), "Set an output directory where to write .rrd files with `--output-dir path/to/directory`."
def visualize_dataset(cfg: dict, out_dir=None):
if out_dir is None:
raise NotImplementedError()
logging.info("Loading dataset")
dataset = LeRobotDataset(repo_id)
init_logging()
log_output_dir(out_dir)
logging.info("make_dataset")
dataset = make_dataset(cfg)
logging.info("Start rendering episodes from offline buffer")
video_paths = render_dataset(dataset, out_dir, MAX_NUM_STEPS * NUM_EPISODES_TO_RENDER)
for video_path in video_paths:
logging.info(video_path)
return video_paths
def render_dataset(dataset, out_dir, max_num_episodes):
out_dir = Path(out_dir)
video_paths = []
threads = []
logging.info("Loading dataloader")
episode_sampler = EpisodeSampler(dataset, episode_index)
dataloader = torch.utils.data.DataLoader(
dataset,
num_workers=num_workers,
batch_size=batch_size,
sampler=episode_sampler,
num_workers=4,
batch_size=1,
shuffle=False,
)
dl_iter = iter(dataloader)
logging.info("Starting Rerun")
for ep_id in range(min(max_num_episodes, dataset.num_episodes)):
logging.info(f"Rendering episode {ep_id}")
if mode not in ["local", "distant"]:
raise ValueError(mode)
frames = {}
end_of_episode = False
while not end_of_episode:
item = next(dl_iter)
spawn_local_viewer = mode == "local" and not save
rr.init(f"{repo_id}/episode_{episode_index}", spawn=spawn_local_viewer)
for im_key in dataset.image_keys:
# when first frame of episode, initialize frames dict
if im_key not in frames:
frames[im_key] = []
# add current frame to list of frames to render
frames[im_key].append(item[im_key])
# Manually call python garbage collector after `rr.init` to avoid hanging in a blocking flush
# when iterating on a dataloader with `num_workers` > 0
# TODO(rcadene): remove `gc.collect` when rerun version 0.16 is out, which includes a fix
gc.collect()
end_of_episode = item["index"].item() == dataset.episode_data_index["to"][ep_id] - 1
if mode == "distant":
rr.serve(open_browser=False, web_port=web_port, ws_port=ws_port)
out_dir.mkdir(parents=True, exist_ok=True)
for im_key in dataset.image_keys:
if len(dataset.image_keys) > 1:
im_name = im_key.replace("observation.images.", "")
video_path = out_dir / f"episode_{ep_id}_{im_name}.mp4"
else:
video_path = out_dir / f"episode_{ep_id}.mp4"
video_paths.append(video_path)
logging.info("Logging to Rerun")
thread = threading.Thread(
target=cat_and_write_video,
args=(str(video_path), frames[im_key], dataset.fps),
)
thread.start()
threads.append(thread)
for batch in tqdm.tqdm(dataloader, total=len(dataloader)):
# iterate over the batch
for i in range(len(batch["index"])):
rr.set_time_sequence("frame_index", batch["frame_index"][i].item())
rr.set_time_seconds("timestamp", batch["timestamp"][i].item())
for thread in threads:
thread.join()
# display each camera image
for key in dataset.camera_keys:
# TODO(rcadene): add `.compress()`? is it lossless?
rr.log(key, rr.Image(to_hwc_uint8_numpy(batch[key][i])))
# display each dimension of action space (e.g. actuators command)
if "action" in batch:
for dim_idx, val in enumerate(batch["action"][i]):
rr.log(f"action/{dim_idx}", rr.Scalar(val.item()))
# display each dimension of observed state space (e.g. agent position in joint space)
if "observation.state" in batch:
for dim_idx, val in enumerate(batch["observation.state"][i]):
rr.log(f"state/{dim_idx}", rr.Scalar(val.item()))
if "next.done" in batch:
rr.log("next.done", rr.Scalar(batch["next.done"][i].item()))
if "next.reward" in batch:
rr.log("next.reward", rr.Scalar(batch["next.reward"][i].item()))
if "next.success" in batch:
rr.log("next.success", rr.Scalar(batch["next.success"][i].item()))
if mode == "local" and save:
# save .rrd locally
output_dir = Path(output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
repo_id_str = repo_id.replace("/", "_")
rrd_path = output_dir / f"{repo_id_str}_episode_{episode_index}.rrd"
rr.save(rrd_path)
return rrd_path
elif mode == "distant":
# stop the process from exiting since it is serving the websocket connection
try:
while True:
time.sleep(1)
except KeyboardInterrupt:
print("Ctrl-C received. Exiting.")
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--repo-id",
type=str,
required=True,
help="Name of hugging face repositery containing a LeRobotDataset dataset (e.g. `lerobot/pusht`).",
)
parser.add_argument(
"--episode-index",
type=int,
required=True,
help="Episode to visualize.",
)
parser.add_argument(
"--batch-size",
type=int,
default=32,
help="Batch size loaded by DataLoader.",
)
parser.add_argument(
"--num-workers",
type=int,
default=4,
help="Number of processes of Dataloader for loading the data.",
)
parser.add_argument(
"--mode",
type=str,
default="local",
help=(
"Mode of viewing between 'local' or 'distant'. "
"'local' requires data to be on a local machine. It spawns a viewer to visualize the data locally. "
"'distant' creates a server on the distant machine where the data is stored. Visualize the data by connecting to the server with `rerun ws://localhost:PORT` on the local machine."
),
)
parser.add_argument(
"--web-port",
type=int,
default=9090,
help="Web port for rerun.io when `--mode distant` is set.",
)
parser.add_argument(
"--ws-port",
type=int,
default=9087,
help="Web socket port for rerun.io when `--mode distant` is set.",
)
parser.add_argument(
"--save",
type=int,
default=0,
help=(
"Save a .rrd file in the directory provided by `--output-dir`. "
"It also deactivates the spawning of a viewer. ",
"Visualize the data by running `rerun path/to/file.rrd` on your local machine.",
),
)
parser.add_argument(
"--output-dir",
type=str,
help="Directory path to write a .rrd file when `--save 1` is set.",
)
args = parser.parse_args()
visualize_dataset(**vars(args))
logging.info("End of visualize_dataset")
return video_paths
if __name__ == "__main__":
main()
visualize_dataset_cli()

Binary file not shown.

Before

Width:  |  Height:  |  Size: 407 KiB

2303
poetry.lock generated

File diff suppressed because it is too large Load Diff

Some files were not shown because too many files have changed in this diff Show More