Compare commits

..

15 Commits

Author SHA1 Message Date
Simon Alibert
c7a36bb661 Install ffmpeg for integration tests 2025-03-13 14:51:34 +01:00
Remi
9466da0ddf Merge branch 'main' into torchcodec-cpu 2025-03-13 14:00:22 +01:00
Jade Choghari
bb7542d799 Merge branch 'main' into torchcodec-cpu 2025-03-12 21:10:00 +03:00
Jade Choghari
1a1740d90d update torchcodec version 2025-03-12 21:02:16 +03:00
Jade Choghari
0b379e9c4e update benchmark to new dataset format 2025-03-08 11:12:58 +03:00
Jade Choghari
2295e6c45b fix arg 2025-03-04 13:31:25 +03:00
pre-commit-ci[bot]
920079230e [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
2025-03-04 10:27:47 +00:00
Jade Choghari
744906098a Update lerobot/common/datasets/lerobot_dataset.py
Co-authored-by: Remi <re.cadene@gmail.com>
2025-03-04 13:27:40 +03:00
Jade Choghari
e1732b4954 Update lerobot/common/datasets/video_utils.py
Co-authored-by: Remi <re.cadene@gmail.com>
2025-03-04 13:27:34 +03:00
Jade Choghari
c03b0db8aa Update lerobot/common/datasets/video_utils.py
Co-authored-by: Remi <re.cadene@gmail.com>
2025-03-04 13:27:24 +03:00
pre-commit-ci[bot]
a8fcd3512d [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
2025-03-03 07:26:28 +00:00
root
a963dba256 add dependency 2025-03-03 07:25:56 +00:00
root
2f9cbfbc4f add dependency 2025-03-03 06:44:26 +00:00
pre-commit-ci[bot]
e8126dc3d6 [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
2025-03-03 06:33:39 +00:00
root
4e2dc91e59 add torchcodec cpu 2025-03-02 20:47:33 +00:00
87 changed files with 887 additions and 520 deletions

View File

@@ -73,7 +73,7 @@ pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
!tests/artifacts
!tests/data
htmlcov/
.tox/
.nox/

View File

@@ -126,7 +126,7 @@ jobs:
# portaudio19-dev is needed to install pyaudio
run: |
sudo apt-get update && \
sudo apt-get install -y libegl1-mesa-dev portaudio19-dev
sudo apt-get install -y libegl1-mesa-dev ffmpeg portaudio19-dev
- name: Install uv and python
uses: astral-sh/setup-uv@v5

2
.gitignore vendored
View File

@@ -78,7 +78,7 @@ pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
!tests/artifacts
!tests/data
htmlcov/
.tox/
.nox/

View File

@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
exclude: "tests/artifacts/.*\\.safetensors$"
exclude: ^(tests/data)
default_language_version:
python: python3.10
repos:

View File

@@ -291,7 +291,7 @@ sudo apt-get install git-lfs
git lfs install
```
Pull artifacts if they're not in [tests/artifacts](tests/artifacts)
Pull artifacts if they're not in [tests/data](tests/data)
```bash
git lfs pull
```

View File

@@ -67,7 +67,7 @@ def parse_int_or_none(value) -> int | None:
def check_datasets_formats(repo_ids: list) -> None:
for repo_id in repo_ids:
dataset = LeRobotDataset(repo_id)
if dataset.video:
if len(dataset.meta.video_keys) > 0:
raise ValueError(
f"Use only image dataset for running this benchmark. Video dataset provided: {repo_id}"
)

View File

@@ -67,7 +67,7 @@ from lerobot.common.datasets.utils import (
)
from lerobot.common.datasets.video_utils import (
VideoFrame,
decode_video_frames_torchvision,
decode_video_frames,
encode_video_frames,
get_video_info,
)
@@ -462,8 +462,8 @@ class LeRobotDataset(torch.utils.data.Dataset):
download_videos (bool, optional): Flag to download the videos. Note that when set to True but the
video files are already present on local disk, they won't be downloaded again. Defaults to
True.
video_backend (str | None, optional): Video backend to use for decoding videos. There is currently
a single option which is the pyav decoder used by Torchvision. Defaults to pyav.
video_backend (str | None, optional): Video backend to use for decoding videos. Defaults to torchcodec.
You can also use the 'pyav' decoder used by Torchvision, which used to be the default option, or 'video_reader' which is another decoder of Torchvision.
"""
super().__init__()
self.repo_id = repo_id
@@ -473,7 +473,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
self.episodes = episodes
self.tolerance_s = tolerance_s
self.revision = revision if revision else CODEBASE_VERSION
self.video_backend = video_backend if video_backend else "pyav"
self.video_backend = video_backend if video_backend else "torchcodec"
self.delta_indices = None
# Unused attributes
@@ -707,9 +707,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
item = {}
for vid_key, query_ts in query_timestamps.items():
video_path = self.root / self.meta.get_video_file_path(ep_idx, vid_key)
frames = decode_video_frames_torchvision(
video_path, query_ts, self.tolerance_s, self.video_backend
)
frames = decode_video_frames(video_path, query_ts, self.tolerance_s, self.video_backend)
item[vid_key] = frames.squeeze(0)
return item
@@ -1029,7 +1027,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
obj.delta_timestamps = None
obj.delta_indices = None
obj.episode_data_index = None
obj.video_backend = video_backend if video_backend is not None else "pyav"
obj.video_backend = video_backend if video_backend is not None else "torchcodec"
return obj

View File

@@ -27,6 +27,35 @@ import torch
import torchvision
from datasets.features.features import register_feature
from PIL import Image
from torchcodec.decoders import VideoDecoder
def decode_video_frames(
video_path: Path | str,
timestamps: list[float],
tolerance_s: float,
backend: str = "torchcodec",
) -> torch.Tensor:
"""
Decodes video frames using the specified backend.
Args:
video_path (Path): Path to the video file.
timestamps (list[float]): List of timestamps to extract frames.
tolerance_s (float): Allowed deviation in seconds for frame retrieval.
backend (str, optional): Backend to use for decoding. Defaults to "torchcodec".
Returns:
torch.Tensor: Decoded frames.
Currently supports torchcodec on cpu and pyav.
"""
if backend == "torchcodec":
return decode_video_frames_torchcodec(video_path, timestamps, tolerance_s)
elif backend in ["pyav", "video_reader"]:
return decode_video_frames_torchvision(video_path, timestamps, tolerance_s, backend)
else:
raise ValueError(f"Unsupported video backend: {backend}")
def decode_video_frames_torchvision(
@@ -127,6 +156,76 @@ def decode_video_frames_torchvision(
return closest_frames
def decode_video_frames_torchcodec(
video_path: Path | str,
timestamps: list[float],
tolerance_s: float,
device: str = "cpu",
log_loaded_timestamps: bool = False,
) -> torch.Tensor:
"""Loads frames associated with the requested timestamps of a video using torchcodec.
Note: Setting device="cuda" outside the main process, e.g. in data loader workers, will lead to CUDA initialization errors.
Note: Video benefits from inter-frame compression. Instead of storing every frame individually,
the encoder stores a reference frame (or a key frame) and subsequent frames as differences relative to
that key frame. As a consequence, to access a requested frame, we need to load the preceding key frame,
and all subsequent frames until reaching the requested frame. The number of key frames in a video
can be adjusted during encoding to take into account decoding time and video size in bytes.
"""
video_path = str(video_path)
# initialize video decoder
decoder = VideoDecoder(video_path, device=device)
loaded_frames = []
loaded_ts = []
# get metadata for frame information
metadata = decoder.metadata
average_fps = metadata.average_fps
# convert timestamps to frame indices
frame_indices = [round(ts * average_fps) for ts in timestamps]
# retrieve frames based on indices
frames_batch = decoder.get_frames_at(indices=frame_indices)
for frame, pts in zip(frames_batch.data, frames_batch.pts_seconds, strict=False):
loaded_frames.append(frame)
loaded_ts.append(pts.item())
if log_loaded_timestamps:
logging.info(f"Frame loaded at timestamp={pts:.4f}")
query_ts = torch.tensor(timestamps)
loaded_ts = torch.tensor(loaded_ts)
# compute distances between each query timestamp and loaded timestamps
dist = torch.cdist(query_ts[:, None], loaded_ts[:, None], p=1)
min_, argmin_ = dist.min(1)
is_within_tol = min_ < tolerance_s
assert is_within_tol.all(), (
f"One or several query timestamps unexpectedly violate the tolerance ({min_[~is_within_tol]} > {tolerance_s=})."
"It means that the closest frame that can be loaded from the video is too far away in time."
"This might be due to synchronization issues with timestamps during data collection."
"To be safe, we advise to ignore this item during training."
f"\nqueried timestamps: {query_ts}"
f"\nloaded timestamps: {loaded_ts}"
f"\nvideo: {video_path}"
)
# get closest frames to the query timestamps
closest_frames = torch.stack([loaded_frames[idx] for idx in argmin_])
closest_ts = loaded_ts[argmin_]
if log_loaded_timestamps:
logging.info(f"{closest_ts=}")
# convert to float32 in [0,1] range (channel first)
closest_frames = closest_frames.type(torch.float32) / 255
assert len(timestamps) == len(closest_frames)
return closest_frames
def encode_video_frames(
imgs_dir: Path | str,
video_path: Path | str,

View File

@@ -48,7 +48,7 @@ def find_cameras(raise_when_empty=True, mock=False) -> list[dict]:
connected to the computer.
"""
if mock:
import tests.cameras.mock_pyrealsense2 as rs
import tests.mock_pyrealsense2 as rs
else:
import pyrealsense2 as rs
@@ -100,7 +100,7 @@ def save_images_from_cameras(
serial_numbers = [cam["serial_number"] for cam in camera_infos]
if mock:
import tests.cameras.mock_cv2 as cv2
import tests.mock_cv2 as cv2
else:
import cv2
@@ -253,7 +253,7 @@ class IntelRealSenseCamera:
self.logs = {}
if self.mock:
import tests.cameras.mock_cv2 as cv2
import tests.mock_cv2 as cv2
else:
import cv2
@@ -287,7 +287,7 @@ class IntelRealSenseCamera:
)
if self.mock:
import tests.cameras.mock_pyrealsense2 as rs
import tests.mock_pyrealsense2 as rs
else:
import pyrealsense2 as rs
@@ -375,7 +375,7 @@ class IntelRealSenseCamera:
)
if self.mock:
import tests.cameras.mock_cv2 as cv2
import tests.mock_cv2 as cv2
else:
import cv2

View File

@@ -80,7 +80,7 @@ def _find_cameras(
possible_camera_ids: list[int | str], raise_when_empty=False, mock=False
) -> list[int | str]:
if mock:
import tests.cameras.mock_cv2 as cv2
import tests.mock_cv2 as cv2
else:
import cv2
@@ -269,7 +269,7 @@ class OpenCVCamera:
self.logs = {}
if self.mock:
import tests.cameras.mock_cv2 as cv2
import tests.mock_cv2 as cv2
else:
import cv2
@@ -286,7 +286,7 @@ class OpenCVCamera:
raise RobotDeviceAlreadyConnectedError(f"OpenCVCamera({self.camera_index}) is already connected.")
if self.mock:
import tests.cameras.mock_cv2 as cv2
import tests.mock_cv2 as cv2
else:
import cv2
@@ -398,7 +398,7 @@ class OpenCVCamera:
# so we convert the image color from BGR to RGB.
if requested_color_mode == "rgb":
if self.mock:
import tests.cameras.mock_cv2 as cv2
import tests.mock_cv2 as cv2
else:
import cv2

View File

@@ -332,7 +332,7 @@ class DynamixelMotorsBus:
)
if self.mock:
import tests.motors.mock_dynamixel_sdk as dxl
import tests.mock_dynamixel_sdk as dxl
else:
import dynamixel_sdk as dxl
@@ -356,7 +356,7 @@ class DynamixelMotorsBus:
def reconnect(self):
if self.mock:
import tests.motors.mock_dynamixel_sdk as dxl
import tests.mock_dynamixel_sdk as dxl
else:
import dynamixel_sdk as dxl
@@ -646,7 +646,7 @@ class DynamixelMotorsBus:
def read_with_motor_ids(self, motor_models, motor_ids, data_name, num_retry=NUM_READ_RETRY):
if self.mock:
import tests.motors.mock_dynamixel_sdk as dxl
import tests.mock_dynamixel_sdk as dxl
else:
import dynamixel_sdk as dxl
@@ -691,7 +691,7 @@ class DynamixelMotorsBus:
start_time = time.perf_counter()
if self.mock:
import tests.motors.mock_dynamixel_sdk as dxl
import tests.mock_dynamixel_sdk as dxl
else:
import dynamixel_sdk as dxl
@@ -757,7 +757,7 @@ class DynamixelMotorsBus:
def write_with_motor_ids(self, motor_models, motor_ids, data_name, values, num_retry=NUM_WRITE_RETRY):
if self.mock:
import tests.motors.mock_dynamixel_sdk as dxl
import tests.mock_dynamixel_sdk as dxl
else:
import dynamixel_sdk as dxl
@@ -793,7 +793,7 @@ class DynamixelMotorsBus:
start_time = time.perf_counter()
if self.mock:
import tests.motors.mock_dynamixel_sdk as dxl
import tests.mock_dynamixel_sdk as dxl
else:
import dynamixel_sdk as dxl

View File

@@ -13,6 +13,8 @@
# limitations under the License.
import enum
import logging
import math
import time
import traceback
from copy import deepcopy
@@ -30,6 +32,13 @@ TIMEOUT_MS = 1000
MAX_ID_RANGE = 252
# The following bounds define the lower and upper joints range (after calibration).
# For joints in degree (i.e. revolute joints), their nominal range is [-180, 180] degrees
# which corresponds to a half rotation on the left and half rotation on the right.
# Some joints might require higher range, so we allow up to [-270, 270] degrees until
# an error is raised.
LOWER_BOUND_DEGREE = -270
UPPER_BOUND_DEGREE = 270
# For joints in percentage (i.e. joints that move linearly like the prismatic joint of a gripper),
# their nominal range is [0, 100] %. For instance, for Aloha gripper, 0% is fully
# closed, and 100% is fully open. To account for slight calibration issue, we allow up to
@@ -39,6 +48,7 @@ UPPER_BOUND_LINEAR = 110
HALF_TURN_DEGREE = 180
# See this link for STS3215 Memory Table:
# https://docs.google.com/spreadsheets/d/1GVs7W1VS1PqdhA1nW-abeyAHhTUxKUdR/edit?usp=sharing&ouid=116566590112741600240&rtpof=true&sd=true
# data_name: (address, size_byte)
@@ -104,6 +114,8 @@ SCS_SERIES_BAUDRATE_TABLE = {
}
CALIBRATION_REQUIRED = ["Goal_Position", "Present_Position"]
CONVERT_UINT32_TO_INT32_REQUIRED = ["Goal_Position", "Present_Position"]
MODEL_CONTROL_TABLE = {
"scs_series": SCS_SERIES_CONTROL_TABLE,
@@ -125,63 +137,15 @@ NUM_READ_RETRY = 20
NUM_WRITE_RETRY = 20
def convert_ticks_to_degrees(ticks, model):
resolutions = MODEL_RESOLUTION[model]
# Convert the ticks to degrees
return ticks * (360.0 / resolutions)
def convert_degrees_to_ticks(degrees, model):
resolutions = MODEL_RESOLUTION[model]
# Convert degrees to motor ticks
return int(degrees * (resolutions / 360.0))
def adjusted_to_homing_ticks(raw_motor_ticks: int, model: str, motorbus, motor_id: int) -> int:
def convert_degrees_to_steps(degrees: float | np.ndarray, models: str | list[str]) -> np.ndarray:
"""This function converts the degree range to the step range for indicating motors rotation.
It assumes a motor achieves a full rotation by going from -180 degree position to +180.
The motor resolution (e.g. 4096) corresponds to the number of steps needed to achieve a full rotation.
"""
Takes a raw reading [0..(res-1)] (e.g. 0..4095) and shifts it so that '2048'
becomes 0 in the homed coordinate system ([-2048..+2047] for 4096 resolution).
"""
resolutions = MODEL_RESOLUTION[model]
# Shift raw ticks by half-resolution so 2048 -> 0, then wrap [0..res-1].
ticks = (raw_motor_ticks - (resolutions // 2)) % resolutions
# If above halfway, fold it into negative territory => [-2048..+2047].
if ticks > (resolutions // 2):
ticks -= resolutions
# Flip sign if drive_mode is set.
drive_mode = 0
if motorbus.calibration is not None:
drive_mode = motorbus.calibration["drive_mode"][motor_id - 1]
if drive_mode:
ticks *= -1
return ticks
def adjusted_to_motor_ticks(adjusted_pos: int, model: str, motorbus, motor_id: int) -> int:
"""
Inverse of adjusted_to_homing_ticks(). Takes a 'homed' position in [-2048..+2047]
and recovers the raw [0..(res-1)] ticks with 2048 as midpoint.
"""
# Flip sign if drive_mode was set.
drive_mode = 0
if motorbus.calibration is not None:
drive_mode = motorbus.calibration["drive_mode"][motor_id - 1]
if drive_mode:
adjusted_pos *= -1
resolutions = MODEL_RESOLUTION[model]
# Shift by +half-resolution and wrap into [0..res-1].
# This undoes the earlier shift by -half-resolution.
ticks = (adjusted_pos + (resolutions // 2)) % resolutions
return ticks
resolutions = [MODEL_RESOLUTION[model] for model in models]
steps = degrees / 180 * np.array(resolutions) / 2
steps = steps.astype(int)
return steps
def convert_to_bytes(value, bytes, mock=False):
@@ -340,6 +304,8 @@ class FeetechMotorsBus:
self.group_writers = {}
self.logs = {}
self.track_positions = {}
def connect(self):
if self.is_connected:
raise RobotDeviceAlreadyConnectedError(
@@ -347,7 +313,7 @@ class FeetechMotorsBus:
)
if self.mock:
import tests.motors.mock_scservo_sdk as scs
import tests.mock_scservo_sdk as scs
else:
import scservo_sdk as scs
@@ -371,7 +337,7 @@ class FeetechMotorsBus:
def reconnect(self):
if self.mock:
import tests.motors.mock_scservo_sdk as scs
import tests.mock_scservo_sdk as scs
else:
import scservo_sdk as scs
@@ -436,7 +402,33 @@ class FeetechMotorsBus:
def set_calibration(self, calibration: dict[str, list]):
self.calibration = calibration
def apply_calibration_autocorrect(self, values: np.ndarray | list, motor_names: list[str] | None):
"""This function apply the calibration, automatically detects out of range errors for motors values and attempt to correct.
For more info, see docstring of `apply_calibration` and `autocorrect_calibration`.
"""
try:
values = self.apply_calibration(values, motor_names)
except JointOutOfRangeError as e:
print(e)
self.autocorrect_calibration(values, motor_names)
values = self.apply_calibration(values, motor_names)
return values
def apply_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
"""Convert from unsigned int32 joint position range [0, 2**32[ to the universal float32 nominal degree range ]-180.0, 180.0[ with
a "zero position" at 0 degree.
Note: We say "nominal degree range" since the motors can take values outside this range. For instance, 190 degrees, if the motor
rotate more than a half a turn from the zero position. However, most motors can't rotate more than 180 degrees and will stay in this range.
Joints values are original in [0, 2**32[ (unsigned int32). Each motor are expected to complete a full rotation
when given a goal position that is + or - their resolution. For instance, feetech xl330-m077 have a resolution of 4096, and
at any position in their original range, let's say the position 56734, they complete a full rotation clockwise by moving to 60830,
or anticlockwise by moving to 52638. The position in the original range is arbitrary and might change a lot between each motor.
To harmonize between motors of the same model, different robots, or even models of different brands, we propose to work
in the centered nominal degree range ]-180, 180[.
"""
if motor_names is None:
motor_names = self.motor_names
@@ -448,11 +440,34 @@ class FeetechMotorsBus:
calib_mode = self.calibration["calib_mode"][calib_idx]
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
motor_idx, model = self.motors[name]
drive_mode = self.calibration["drive_mode"][calib_idx]
homing_offset = self.calibration["homing_offset"][calib_idx]
_, model = self.motors[name]
resolution = self.model_resolution[model]
# Convert raw motor ticks to homed ticks, then convert the homed ticks to degrees
values[i] = adjusted_to_homing_ticks(values[i], model, self, motor_idx)
values[i] = convert_ticks_to_degrees(values[i], model)
# Update direction of rotation of the motor to match between leader and follower.
# In fact, the motor of the leader for a given joint can be assembled in an
# opposite direction in term of rotation than the motor of the follower on the same joint.
if drive_mode:
values[i] *= -1
# Convert from range [-2**31, 2**31[ to
# nominal range ]-resolution, resolution[ (e.g. ]-2048, 2048[)
values[i] += homing_offset
# Convert from range ]-resolution, resolution[ to
# universal float32 centered degree range ]-180, 180[
values[i] = values[i] / (resolution // 2) * HALF_TURN_DEGREE
if (values[i] < LOWER_BOUND_DEGREE) or (values[i] > UPPER_BOUND_DEGREE):
raise JointOutOfRangeError(
f"Wrong motor position range detected for {name}. "
f"Expected to be in nominal range of [-{HALF_TURN_DEGREE}, {HALF_TURN_DEGREE}] degrees (a full rotation), "
f"with a maximum range of [{LOWER_BOUND_DEGREE}, {UPPER_BOUND_DEGREE}] degrees to account for joints that can rotate a bit more, "
f"but present value is {values[i]} degree. "
"This might be due to a cable connection issue creating an artificial 360 degrees jump in motor values. "
"You need to recalibrate by running: `python lerobot/scripts/control_robot.py calibrate`"
)
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
start_pos = self.calibration["start_pos"][calib_idx]
@@ -474,6 +489,103 @@ class FeetechMotorsBus:
return values
def autocorrect_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
"""This function automatically detects issues with values of motors after calibration, and correct for these issues.
Some motors might have values outside of expected maximum bounds after calibration.
For instance, for a joint in degree, its value can be outside [-270, 270] degrees, which is totally unexpected given
a nominal range of [-180, 180] degrees, which represents half a turn to the left or right starting from zero position.
Known issues:
#1: Motor value randomly shifts of a full turn, caused by hardware/connection errors.
#2: Motor internal homing offset is shifted of a full turn, caused by using default calibration (e.g Aloha).
#3: motor internal homing offset is shifted of less or more than a full turn, caused by using default calibration
or by human error during manual calibration.
Issues #1 and #2 can be solved by shifting the calibration homing offset by a full turn.
Issue #3 will be visually detected by user and potentially captured by the safety feature `max_relative_target`,
that will slow down the motor, raise an error asking to recalibrate. Manual recalibrating will solve the issue.
Note: A full turn corresponds to 360 degrees but also to 4096 steps for a motor resolution of 4096.
"""
if motor_names is None:
motor_names = self.motor_names
# Convert from unsigned int32 original range [0, 2**32] to signed float32 range
values = values.astype(np.float32)
for i, name in enumerate(motor_names):
calib_idx = self.calibration["motor_names"].index(name)
calib_mode = self.calibration["calib_mode"][calib_idx]
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
drive_mode = self.calibration["drive_mode"][calib_idx]
homing_offset = self.calibration["homing_offset"][calib_idx]
_, model = self.motors[name]
resolution = self.model_resolution[model]
if drive_mode:
values[i] *= -1
# Convert from initial range to range [-180, 180] degrees
calib_val = (values[i] + homing_offset) / (resolution // 2) * HALF_TURN_DEGREE
in_range = (calib_val > LOWER_BOUND_DEGREE) and (calib_val < UPPER_BOUND_DEGREE)
# Solve this inequality to find the factor to shift the range into [-180, 180] degrees
# values[i] = (values[i] + homing_offset + resolution * factor) / (resolution // 2) * HALF_TURN_DEGREE
# - HALF_TURN_DEGREE <= (values[i] + homing_offset + resolution * factor) / (resolution // 2) * HALF_TURN_DEGREE <= HALF_TURN_DEGREE
# (- HALF_TURN_DEGREE / HALF_TURN_DEGREE * (resolution // 2) - values[i] - homing_offset) / resolution <= factor <= (HALF_TURN_DEGREE / 180 * (resolution // 2) - values[i] - homing_offset) / resolution
low_factor = (
-HALF_TURN_DEGREE / HALF_TURN_DEGREE * (resolution // 2) - values[i] - homing_offset
) / resolution
upp_factor = (
HALF_TURN_DEGREE / HALF_TURN_DEGREE * (resolution // 2) - values[i] - homing_offset
) / resolution
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
start_pos = self.calibration["start_pos"][calib_idx]
end_pos = self.calibration["end_pos"][calib_idx]
# Convert from initial range to range [0, 100] in %
calib_val = (values[i] - start_pos) / (end_pos - start_pos) * 100
in_range = (calib_val > LOWER_BOUND_LINEAR) and (calib_val < UPPER_BOUND_LINEAR)
# Solve this inequality to find the factor to shift the range into [0, 100] %
# values[i] = (values[i] - start_pos + resolution * factor) / (end_pos + resolution * factor - start_pos - resolution * factor) * 100
# values[i] = (values[i] - start_pos + resolution * factor) / (end_pos - start_pos) * 100
# 0 <= (values[i] - start_pos + resolution * factor) / (end_pos - start_pos) * 100 <= 100
# (start_pos - values[i]) / resolution <= factor <= (end_pos - values[i]) / resolution
low_factor = (start_pos - values[i]) / resolution
upp_factor = (end_pos - values[i]) / resolution
if not in_range:
# Get first integer between the two bounds
if low_factor < upp_factor:
factor = math.ceil(low_factor)
if factor > upp_factor:
raise ValueError(f"No integer found between bounds [{low_factor=}, {upp_factor=}]")
else:
factor = math.ceil(upp_factor)
if factor > low_factor:
raise ValueError(f"No integer found between bounds [{low_factor=}, {upp_factor=}]")
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
out_of_range_str = f"{LOWER_BOUND_DEGREE} < {calib_val} < {UPPER_BOUND_DEGREE} degrees"
in_range_str = f"{LOWER_BOUND_DEGREE} < {calib_val} < {UPPER_BOUND_DEGREE} degrees"
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
out_of_range_str = f"{LOWER_BOUND_LINEAR} < {calib_val} < {UPPER_BOUND_LINEAR} %"
in_range_str = f"{LOWER_BOUND_LINEAR} < {calib_val} < {UPPER_BOUND_LINEAR} %"
logging.warning(
f"Auto-correct calibration of motor '{name}' by shifting value by {abs(factor)} full turns, "
f"from '{out_of_range_str}' to '{in_range_str}'."
)
# A full turn corresponds to 360 degrees but also to 4096 steps for a motor resolution of 4096.
self.calibration["homing_offset"][calib_idx] += resolution * factor
def revert_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
"""Inverse of `apply_calibration`."""
if motor_names is None:
@@ -484,11 +596,23 @@ class FeetechMotorsBus:
calib_mode = self.calibration["calib_mode"][calib_idx]
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
motor_idx, model = self.motors[name]
drive_mode = self.calibration["drive_mode"][calib_idx]
homing_offset = self.calibration["homing_offset"][calib_idx]
_, model = self.motors[name]
resolution = self.model_resolution[model]
# Convert degrees to homed ticks, then convert the homed ticks to raw ticks
values[i] = convert_degrees_to_ticks(values[i], model)
values[i] = adjusted_to_motor_ticks(values[i], model, self, motor_idx)
# Convert from nominal 0-centered degree range [-180, 180] to
# 0-centered resolution range (e.g. [-2048, 2048] for resolution=4096)
values[i] = values[i] / HALF_TURN_DEGREE * (resolution // 2)
# Subtract the homing offsets to come back to actual motor range of values
# which can be arbitrary.
values[i] -= homing_offset
# Remove drive mode, which is the rotation direction of the motor, to come back to
# actual motor rotation direction which can be arbitrary.
if drive_mode:
values[i] *= -1
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
start_pos = self.calibration["start_pos"][calib_idx]
@@ -501,9 +625,46 @@ class FeetechMotorsBus:
values = np.round(values).astype(np.int32)
return values
def avoid_rotation_reset(self, values, motor_names, data_name):
if data_name not in self.track_positions:
self.track_positions[data_name] = {
"prev": [None] * len(self.motor_names),
# Assume False at initialization
"below_zero": [False] * len(self.motor_names),
"above_max": [False] * len(self.motor_names),
}
track = self.track_positions[data_name]
if motor_names is None:
motor_names = self.motor_names
for i, name in enumerate(motor_names):
idx = self.motor_names.index(name)
if track["prev"][idx] is None:
track["prev"][idx] = values[i]
continue
# Detect a full rotation occurred
if abs(track["prev"][idx] - values[i]) > 2048:
# Position went below 0 and got reset to 4095
if track["prev"][idx] < values[i]:
# So we set negative value by adding a full rotation
values[i] -= 4096
# Position went above 4095 and got reset to 0
elif track["prev"][idx] > values[i]:
# So we add a full rotation
values[i] += 4096
track["prev"][idx] = values[i]
return values
def read_with_motor_ids(self, motor_models, motor_ids, data_name, num_retry=NUM_READ_RETRY):
if self.mock:
import tests.motors.mock_scservo_sdk as scs
import tests.mock_scservo_sdk as scs
else:
import scservo_sdk as scs
@@ -541,7 +702,7 @@ class FeetechMotorsBus:
def read(self, data_name, motor_names: str | list[str] | None = None):
if self.mock:
import tests.motors.mock_scservo_sdk as scs
import tests.mock_scservo_sdk as scs
else:
import scservo_sdk as scs
@@ -574,7 +735,7 @@ class FeetechMotorsBus:
self.port_handler.ser.reset_output_buffer()
self.port_handler.ser.reset_input_buffer()
# Create new group reader
# create new group reader
self.group_readers[group_key] = scs.GroupSyncRead(
self.port_handler, self.packet_handler, addr, bytes
)
@@ -599,8 +760,15 @@ class FeetechMotorsBus:
values = np.array(values)
# Convert to signed int to use range [-2048, 2048] for our motor positions.
if data_name in CONVERT_UINT32_TO_INT32_REQUIRED:
values = values.astype(np.int32)
if data_name in CALIBRATION_REQUIRED:
values = self.avoid_rotation_reset(values, motor_names, data_name)
if data_name in CALIBRATION_REQUIRED and self.calibration is not None:
values = self.apply_calibration(values, motor_names)
values = self.apply_calibration_autocorrect(values, motor_names)
# log the number of seconds it took to read the data from the motors
delta_ts_name = get_log_name("delta_timestamp_s", "read", data_name, motor_names)
@@ -614,7 +782,7 @@ class FeetechMotorsBus:
def write_with_motor_ids(self, motor_models, motor_ids, data_name, values, num_retry=NUM_WRITE_RETRY):
if self.mock:
import tests.motors.mock_scservo_sdk as scs
import tests.mock_scservo_sdk as scs
else:
import scservo_sdk as scs
@@ -650,7 +818,7 @@ class FeetechMotorsBus:
start_time = time.perf_counter()
if self.mock:
import tests.motors.mock_scservo_sdk as scs
import tests.mock_scservo_sdk as scs
else:
import scservo_sdk as scs

View File

@@ -11,11 +11,18 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Logic to calibrate a robot arm built with feetech motors"""
# TODO(rcadene, aliberts): move this logic into the robot code when refactoring
import time
import numpy as np
from lerobot.common.robot_devices.motors.feetech import (
CalibrationMode,
TorqueMode,
convert_degrees_to_steps,
)
from lerobot.common.robot_devices.motors.utils import MotorsBus
@@ -23,164 +30,469 @@ URL_TEMPLATE = (
"https://raw.githubusercontent.com/huggingface/lerobot/main/media/{robot}/{arm}_{position}.webp"
)
# The following positions are provided in nominal degree range ]-180, +180[
# For more info on these constants, see comments in the code where they get used.
ZERO_POSITION_DEGREE = 0
ROTATED_POSITION_DEGREE = 90
def disable_torque(arm: MotorsBus):
def assert_drive_mode(drive_mode):
# `drive_mode` is in [0,1] with 0 means original rotation direction for the motor, and 1 means inverted.
if not np.all(np.isin(drive_mode, [0, 1])):
raise ValueError(f"`drive_mode` contains values other than 0 or 1: ({drive_mode})")
def apply_drive_mode(position, drive_mode):
assert_drive_mode(drive_mode)
# Convert `drive_mode` from [0, 1] with 0 indicates original rotation direction and 1 inverted,
# to [-1, 1] with 1 indicates original rotation direction and -1 inverted.
signed_drive_mode = -(drive_mode * 2 - 1)
position *= signed_drive_mode
return position
def move_until_block(arm, motor_name, positive_direction=True, while_move_hook=None):
count = 0
while True:
present_pos = arm.read("Present_Position", motor_name)
if positive_direction:
# Move +100 steps every time. Lower the steps to lower the speed at which the arm moves.
arm.write("Goal_Position", present_pos + 100, motor_name)
else:
arm.write("Goal_Position", present_pos - 100, motor_name)
if while_move_hook is not None:
while_move_hook()
present_pos = arm.read("Present_Position", motor_name).item()
present_speed = arm.read("Present_Speed", motor_name).item()
present_current = arm.read("Present_Current", motor_name).item()
# present_load = arm.read("Present_Load", motor_name).item()
# present_voltage = arm.read("Present_Voltage", motor_name).item()
# present_temperature = arm.read("Present_Temperature", motor_name).item()
# print(f"{present_pos=}")
# print(f"{present_speed=}")
# print(f"{present_current=}")
# print(f"{present_load=}")
# print(f"{present_voltage=}")
# print(f"{present_temperature=}")
if present_speed == 0 and present_current > 40:
count += 1
if count > 100 or present_current > 300:
return present_pos
else:
count = 0
def move_to_calibrate(
arm,
motor_name,
invert_drive_mode=False,
positive_first=True,
in_between_move_hook=None,
while_move_hook=None,
):
initial_pos = arm.read("Present_Position", motor_name)
if positive_first:
p_present_pos = move_until_block(
arm, motor_name, positive_direction=True, while_move_hook=while_move_hook
)
else:
n_present_pos = move_until_block(
arm, motor_name, positive_direction=False, while_move_hook=while_move_hook
)
if in_between_move_hook is not None:
in_between_move_hook()
if positive_first:
n_present_pos = move_until_block(
arm, motor_name, positive_direction=False, while_move_hook=while_move_hook
)
else:
p_present_pos = move_until_block(
arm, motor_name, positive_direction=True, while_move_hook=while_move_hook
)
zero_pos = (n_present_pos + p_present_pos) / 2
calib_data = {
"initial_pos": initial_pos,
"homing_offset": zero_pos if invert_drive_mode else -zero_pos,
"invert_drive_mode": invert_drive_mode,
"drive_mode": -1 if invert_drive_mode else 0,
"zero_pos": zero_pos,
"start_pos": n_present_pos if invert_drive_mode else p_present_pos,
"end_pos": p_present_pos if invert_drive_mode else n_present_pos,
}
return calib_data
def apply_offset(calib, offset):
calib["zero_pos"] += offset
if calib["drive_mode"]:
calib["homing_offset"] += offset
else:
calib["homing_offset"] -= offset
return calib
def run_arm_auto_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
if robot_type == "so100":
return run_arm_auto_calibration_so100(arm, robot_type, arm_name, arm_type)
elif robot_type == "moss":
return run_arm_auto_calibration_moss(arm, robot_type, arm_name, arm_type)
else:
raise ValueError(robot_type)
def run_arm_auto_calibration_so100(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
"""All the offsets and magic numbers are hand tuned, and are unique to SO-100 follower arms"""
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
raise ValueError("To run calibration, the torque must be disabled on all motors.")
if not (robot_type == "so100" and arm_type == "follower"):
raise NotImplementedError("Auto calibration only supports the follower of so100 arms for now.")
def get_calibration_modes(arm: MotorsBus):
"""Returns calibration modes for each motor (DEGREE for rotational, LINEAR for gripper)."""
return [
CalibrationMode.LINEAR.name if name == "gripper" else CalibrationMode.DEGREE.name
for name in arm.motor_names
]
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
print("\nMove arm to initial position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="initial"))
input("Press Enter to continue...")
def reset_offset(motor_id, motor_bus):
# Open the write lock, changes to EEPROM do NOT persist yet
motor_bus.write("Lock", 1)
# Lower the acceleration of the motors (in [0,254])
initial_acceleration = arm.read("Acceleration")
arm.write("Lock", 0)
arm.write("Acceleration", 10)
time.sleep(1)
# Set offset to 0
motor_name = motor_bus.motor_names[motor_id - 1]
motor_bus.write("Offset", 0, motor_names=[motor_name])
arm.write("Torque_Enable", TorqueMode.ENABLED.value)
# Close the write lock, changes to EEPROM do persist
motor_bus.write("Lock", 0)
print(f'{arm.read("Present_Position", "elbow_flex")=}')
# Confirm that the offset is zero by reading it back
confirmed_offset = motor_bus.read("Offset")[motor_id - 1]
print(f"Offset for motor {motor_id} reset to: {confirmed_offset}")
return confirmed_offset
calib = {}
init_wf_pos = arm.read("Present_Position", "wrist_flex")
init_sl_pos = arm.read("Present_Position", "shoulder_lift")
init_ef_pos = arm.read("Present_Position", "elbow_flex")
arm.write("Goal_Position", init_wf_pos - 800, "wrist_flex")
arm.write("Goal_Position", init_sl_pos + 150 + 1024, "shoulder_lift")
arm.write("Goal_Position", init_ef_pos - 2048, "elbow_flex")
time.sleep(2)
def calibrate_homing_motor(motor_id, motor_bus):
reset_offset(motor_id, motor_bus)
print("Calibrate shoulder_pan")
calib["shoulder_pan"] = move_to_calibrate(arm, "shoulder_pan")
arm.write("Goal_Position", calib["shoulder_pan"]["zero_pos"], "shoulder_pan")
time.sleep(1)
home_ticks = motor_bus.read("Present_Position")[motor_id - 1] # Read index starts at 0
print(f"Encoder offset (present position in homing position): {home_ticks}")
print("Calibrate gripper")
calib["gripper"] = move_to_calibrate(arm, "gripper", invert_drive_mode=True)
time.sleep(1)
return home_ticks
print("Calibrate wrist_flex")
calib["wrist_flex"] = move_to_calibrate(arm, "wrist_flex")
calib["wrist_flex"] = apply_offset(calib["wrist_flex"], offset=80)
def in_between_move_hook():
nonlocal arm, calib
time.sleep(2)
ef_pos = arm.read("Present_Position", "elbow_flex")
sl_pos = arm.read("Present_Position", "shoulder_lift")
arm.write("Goal_Position", ef_pos + 1024, "elbow_flex")
arm.write("Goal_Position", sl_pos - 1024, "shoulder_lift")
time.sleep(2)
def calibrate_linear_motor(motor_id, motor_bus):
motor_names = motor_bus.motor_names
motor_name = motor_names[motor_id - 1]
print("Calibrate elbow_flex")
calib["elbow_flex"] = move_to_calibrate(
arm, "elbow_flex", positive_first=False, in_between_move_hook=in_between_move_hook
)
calib["elbow_flex"] = apply_offset(calib["elbow_flex"], offset=80 - 1024)
reset_offset(motor_id, motor_bus)
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] + 1024 + 512, "elbow_flex")
time.sleep(1)
input(f"Close the {motor_name}, then press Enter...")
start_pos = motor_bus.read("Present_Position")[motor_id - 1] # Read index starts ar 0
print(f" [Motor {motor_id}] start position recorded: {start_pos}")
def in_between_move_hook():
nonlocal arm, calib
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"], "elbow_flex")
input(f"Open the {motor_name} fully, then press Enter...")
end_pos = motor_bus.read("Present_Position")[motor_id - 1] # Read index starts ar 0
print(f" [Motor {motor_id}] end position recorded: {end_pos}")
print("Calibrate shoulder_lift")
calib["shoulder_lift"] = move_to_calibrate(
arm,
"shoulder_lift",
invert_drive_mode=True,
positive_first=False,
in_between_move_hook=in_between_move_hook,
)
# add an 30 steps as offset to align with body
calib["shoulder_lift"] = apply_offset(calib["shoulder_lift"], offset=1024 - 50)
return start_pos, end_pos
def while_move_hook():
nonlocal arm, calib
positions = {
"shoulder_lift": round(calib["shoulder_lift"]["zero_pos"] - 1600),
"elbow_flex": round(calib["elbow_flex"]["zero_pos"] + 1700),
"wrist_flex": round(calib["wrist_flex"]["zero_pos"] + 800),
"gripper": round(calib["gripper"]["end_pos"]),
}
arm.write("Goal_Position", list(positions.values()), list(positions.keys()))
arm.write("Goal_Position", round(calib["shoulder_lift"]["zero_pos"] - 1600), "shoulder_lift")
time.sleep(2)
arm.write("Goal_Position", round(calib["elbow_flex"]["zero_pos"] + 1700), "elbow_flex")
time.sleep(2)
arm.write("Goal_Position", round(calib["wrist_flex"]["zero_pos"] + 800), "wrist_flex")
time.sleep(2)
arm.write("Goal_Position", round(calib["gripper"]["end_pos"]), "gripper")
time.sleep(2)
def single_motor_calibration(arm: MotorsBus, motor_id: int):
"""Calibrates a single motor and returns its calibration data for updating the calibration file."""
print("Calibrate wrist_roll")
calib["wrist_roll"] = move_to_calibrate(
arm, "wrist_roll", invert_drive_mode=True, positive_first=False, while_move_hook=while_move_hook
)
disable_torque(arm)
print(f"\n--- Calibrating Motor {motor_id} ---")
arm.write("Goal_Position", calib["wrist_roll"]["zero_pos"], "wrist_roll")
time.sleep(1)
arm.write("Goal_Position", calib["gripper"]["start_pos"], "gripper")
time.sleep(1)
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"], "wrist_flex")
time.sleep(1)
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] + 2048, "elbow_flex")
arm.write("Goal_Position", calib["shoulder_lift"]["zero_pos"] - 2048, "shoulder_lift")
time.sleep(1)
arm.write("Goal_Position", calib["shoulder_pan"]["zero_pos"], "shoulder_pan")
time.sleep(1)
start_pos = 0
end_pos = 0
encoder_offset = 0
calib_modes = []
for name in arm.motor_names:
if name == "gripper":
calib_modes.append(CalibrationMode.LINEAR.name)
else:
calib_modes.append(CalibrationMode.DEGREE.name)
if motor_id == 6:
start_pos, end_pos = calibrate_linear_motor(motor_id, arm)
else:
input("Move the motor to (zero) position, then press Enter...")
encoder_offset = calibrate_homing_motor(motor_id, arm)
print(f"Calibration for motor ID:{motor_id} done.")
# Create a calibration dictionary for the single motor
calib_dict = {
"homing_offset": int(encoder_offset),
"drive_mode": 0,
"start_pos": int(start_pos),
"end_pos": int(end_pos),
"calib_mode": get_calibration_modes(arm)[motor_id - 1],
"motor_name": arm.motor_names[motor_id - 1],
"homing_offset": [calib[name]["homing_offset"] for name in arm.motor_names],
"drive_mode": [calib[name]["drive_mode"] for name in arm.motor_names],
"start_pos": [calib[name]["start_pos"] for name in arm.motor_names],
"end_pos": [calib[name]["end_pos"] for name in arm.motor_names],
"calib_mode": calib_modes,
"motor_names": arm.motor_names,
}
# Re-enable original accerlation
arm.write("Lock", 0)
arm.write("Acceleration", initial_acceleration)
time.sleep(1)
return calib_dict
def run_full_arm_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
"""
Runs a full calibration process for all motors in a robotic arm.
def run_arm_auto_calibration_moss(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
"""All the offsets and magic numbers are hand tuned, and are unique to SO-100 follower arms"""
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
raise ValueError("To run calibration, the torque must be disabled on all motors.")
This function calibrates each motor in the arm, determining encoder offsets and
start/end positions for linear and rotational motors. The calibration data is then
stored in a dictionary for later use.
**Calibration Process:**
- The user is prompted to move the arm to its homing position before starting.
- Motors with rotational motion are calibrated using a homing method.
- Linear actuators (e.g., grippers) are calibrated separately.
- Encoder offsets, start positions, and end positions are recorded.
**Example Usage:**
```python
run_full_arm_calibration(arm, "so100", "left", "follower")
```
"""
disable_torque(arm)
if not (robot_type == "moss" and arm_type == "follower"):
raise NotImplementedError("Auto calibration only supports the follower of moss arms for now.")
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
print("\nMove arm to homing position (middle)")
print(
"See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="zero")
) # TODO(pepijn): replace with new instruction homing pos (all motors in middle) in tutorial
print("\nMove arm to initial position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="initial"))
input("Press Enter to continue...")
start_positions = np.zeros(len(arm.motor_indices))
end_positions = np.zeros(len(arm.motor_indices))
encoder_offsets = np.zeros(len(arm.motor_indices))
# Lower the acceleration of the motors (in [0,254])
initial_acceleration = arm.read("Acceleration")
arm.write("Lock", 0)
arm.write("Acceleration", 10)
time.sleep(1)
modes = get_calibration_modes(arm)
arm.write("Torque_Enable", TorqueMode.ENABLED.value)
for i, motor_id in enumerate(arm.motor_indices):
if modes[i] == CalibrationMode.DEGREE.name:
encoder_offsets[i] = calibrate_homing_motor(motor_id, arm)
start_positions[i] = 0
end_positions[i] = 0
sl_pos = arm.read("Present_Position", "shoulder_lift")
arm.write("Goal_Position", sl_pos - 1024 - 450, "shoulder_lift")
ef_pos = arm.read("Present_Position", "elbow_flex")
arm.write("Goal_Position", ef_pos + 1024 + 450, "elbow_flex")
time.sleep(2)
for i, motor_id in enumerate(arm.motor_indices):
if modes[i] == CalibrationMode.LINEAR.name:
start_positions[i], end_positions[i] = calibrate_linear_motor(motor_id, arm)
encoder_offsets[i] = 0
calib = {}
print("\nMove arm to rest position")
input("Press Enter to continue...")
print("Calibrate shoulder_pan")
calib["shoulder_pan"] = move_to_calibrate(arm, "shoulder_pan")
arm.write("Goal_Position", calib["shoulder_pan"]["zero_pos"], "shoulder_pan")
time.sleep(1)
print(f"\n calibration of {robot_type} {arm_name} {arm_type} done!")
print("Calibrate gripper")
calib["gripper"] = move_to_calibrate(arm, "gripper", invert_drive_mode=True)
time.sleep(1)
# Force drive_mode values (can be static)
drive_modes = [0, 1, 0, 0, 1, 0]
print("Calibrate wrist_flex")
calib["wrist_flex"] = move_to_calibrate(arm, "wrist_flex", invert_drive_mode=True)
calib["wrist_flex"] = apply_offset(calib["wrist_flex"], offset=-210 + 1024)
wr_pos = arm.read("Present_Position", "wrist_roll")
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 1024, "wrist_flex")
time.sleep(1)
arm.write("Goal_Position", wr_pos - 1024, "wrist_roll")
time.sleep(1)
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 2048, "wrist_flex")
time.sleep(1)
arm.write("Goal_Position", calib["gripper"]["end_pos"], "gripper")
time.sleep(1)
print("Calibrate wrist_roll")
calib["wrist_roll"] = move_to_calibrate(arm, "wrist_roll", invert_drive_mode=True)
calib["wrist_roll"] = apply_offset(calib["wrist_roll"], offset=790)
arm.write("Goal_Position", calib["wrist_roll"]["zero_pos"] - 1024, "wrist_roll")
arm.write("Goal_Position", calib["gripper"]["start_pos"], "gripper")
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 1024, "wrist_flex")
time.sleep(1)
arm.write("Goal_Position", calib["wrist_roll"]["zero_pos"], "wrist_roll")
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 2048, "wrist_flex")
def in_between_move_elbow_flex_hook():
nonlocal arm, calib
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"], "wrist_flex")
print("Calibrate elbow_flex")
calib["elbow_flex"] = move_to_calibrate(
arm,
"elbow_flex",
invert_drive_mode=True,
in_between_move_hook=in_between_move_elbow_flex_hook,
)
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 1024, "wrist_flex")
def in_between_move_shoulder_lift_hook():
nonlocal arm, calib
sl = arm.read("Present_Position", "shoulder_lift")
arm.write("Goal_Position", sl - 1500, "shoulder_lift")
time.sleep(1)
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] + 1536, "elbow_flex")
time.sleep(1)
arm.write("Goal_Position", calib["wrist_flex"]["start_pos"], "wrist_flex")
time.sleep(1)
print("Calibrate shoulder_lift")
calib["shoulder_lift"] = move_to_calibrate(
arm, "shoulder_lift", in_between_move_hook=in_between_move_shoulder_lift_hook
)
calib["shoulder_lift"] = apply_offset(calib["shoulder_lift"], offset=-1024)
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 1024, "wrist_flex")
time.sleep(1)
arm.write("Goal_Position", calib["shoulder_lift"]["zero_pos"] + 2048, "shoulder_lift")
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] - 1024 - 400, "elbow_flex")
time.sleep(2)
calib_modes = []
for name in arm.motor_names:
if name == "gripper":
calib_modes.append(CalibrationMode.LINEAR.name)
else:
calib_modes.append(CalibrationMode.DEGREE.name)
calib_dict = {
"homing_offset": encoder_offsets.astype(int).tolist(),
"drive_mode": drive_modes,
"start_pos": start_positions.astype(int).tolist(),
"end_pos": end_positions.astype(int).tolist(),
"calib_mode": get_calibration_modes(arm),
"homing_offset": [calib[name]["homing_offset"] for name in arm.motor_names],
"drive_mode": [calib[name]["drive_mode"] for name in arm.motor_names],
"start_pos": [calib[name]["start_pos"] for name in arm.motor_names],
"end_pos": [calib[name]["end_pos"] for name in arm.motor_names],
"calib_mode": calib_modes,
"motor_names": arm.motor_names,
}
# Re-enable original accerlation
arm.write("Lock", 0)
arm.write("Acceleration", initial_acceleration)
time.sleep(1)
return calib_dict
def run_arm_manual_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
"""This function ensures that a neural network trained on data collected on a given robot
can work on another robot. For instance before calibration, setting a same goal position
for each motor of two different robots will get two very different positions. But after calibration,
the two robots will move to the same position.To this end, this function computes the homing offset
and the drive mode for each motor of a given robot.
Homing offset is used to shift the motor position to a ]-2048, +2048[ nominal range (when the motor uses 2048 steps
to complete a half a turn). This range is set around an arbitrary "zero position" corresponding to all motor positions
being 0. During the calibration process, you will need to manually move the robot to this "zero position".
Drive mode is used to invert the rotation direction of the motor. This is useful when some motors have been assembled
in the opposite orientation for some robots. During the calibration process, you will need to manually move the robot
to the "rotated position".
After calibration, the homing offsets and drive modes are stored in a cache.
Example of usage:
```python
run_arm_calibration(arm, "so100", "left", "follower")
```
"""
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
raise ValueError("To run calibration, the torque must be disabled on all motors.")
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
print("\nMove arm to zero position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="zero"))
input("Press Enter to continue...")
# We arbitrarily chose our zero target position to be a straight horizontal position with gripper upwards and closed.
# It is easy to identify and all motors are in a "quarter turn" position. Once calibration is done, this position will
# correspond to every motor angle being 0. If you set all 0 as Goal Position, the arm will move in this position.
zero_target_pos = convert_degrees_to_steps(ZERO_POSITION_DEGREE, arm.motor_models)
# Compute homing offset so that `present_position + homing_offset ~= target_position`.
zero_pos = arm.read("Present_Position")
homing_offset = zero_target_pos - zero_pos
# The rotated target position corresponds to a rotation of a quarter turn from the zero position.
# This allows to identify the rotation direction of each motor.
# For instance, if the motor rotates 90 degree, and its value is -90 after applying the homing offset, then we know its rotation direction
# is inverted. However, for the calibration being successful, we need everyone to follow the same target position.
# Sometimes, there is only one possible rotation direction. For instance, if the gripper is closed, there is only one direction which
# corresponds to opening the gripper. When the rotation direction is ambiguous, we arbitrarily rotate clockwise from the point of view
# of the previous motor in the kinetic chain.
print("\nMove arm to rotated target position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rotated"))
input("Press Enter to continue...")
rotated_target_pos = convert_degrees_to_steps(ROTATED_POSITION_DEGREE, arm.motor_models)
# Find drive mode by rotating each motor by a quarter of a turn.
# Drive mode indicates if the motor rotation direction should be inverted (=1) or not (=0).
rotated_pos = arm.read("Present_Position")
drive_mode = (rotated_pos < zero_pos).astype(np.int32)
# Re-compute homing offset to take into account drive mode
rotated_drived_pos = apply_drive_mode(rotated_pos, drive_mode)
homing_offset = rotated_target_pos - rotated_drived_pos
print("\nMove arm to rest position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rest"))
input("Press Enter to continue...")
print()
# Joints with rotational motions are expressed in degrees in nominal range of [-180, 180]
calib_modes = []
for name in arm.motor_names:
if name == "gripper":
calib_modes.append(CalibrationMode.LINEAR.name)
else:
calib_modes.append(CalibrationMode.DEGREE.name)
calib_dict = {
"homing_offset": homing_offset.tolist(),
"drive_mode": drive_mode.tolist(),
"start_pos": zero_pos.tolist(),
"end_pos": rotated_pos.tolist(),
"calib_mode": calib_modes,
"motor_names": arm.motor_names,
}
return calib_dict
def run_full_auto_arm_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
"""TODO(pepijn): Add this method later as extra
Example of usage:
```python
run_full_auto_arm_calibration(arm, "so100", "left", "follower")
```
"""
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")

View File

@@ -54,73 +54,6 @@ def ensure_safe_goal_position(
return safe_goal_pos
def apply_feetech_offsets_from_calibration(motorsbus, calibration_dict: dict):
"""
Reads 'calibration_dict' containing 'homing_offset' and 'motor_names',
then writes each motor's offset to the servo's internal Offset (0x1F) in EPROM.
This version is modified so each homed position (originally 0) will now read
2047, i.e. 180° away from 0 in the 4096-count circle. Offsets are permanently
stored in EEPROM, so the servo's Present_Position is hardware-shifted even
after power cycling.
Steps:
1) Subtract 2047 from the old offset (so 0 -> 2047).
2) Clamp to [-2047..+2047].
3) Encode sign bit and magnitude into a 12-bit number.
"""
homing_offsets = calibration_dict["homing_offset"]
motor_names = calibration_dict["motor_names"]
start_pos = calibration_dict["start_pos"]
# Open the write lock, changes to EEPROM do NOT persist yet
motorsbus.write("Lock", 1)
# For each motor, set the 'Offset' parameter
for m_name, old_offset in zip(motor_names, homing_offsets, strict=False):
# If bus doesnt have a motor named m_name, skip
if m_name not in motorsbus.motors:
print(f"Warning: '{m_name}' not found in motorsbus.motors; skipping offset.")
continue
if m_name == "gripper":
old_offset = start_pos # If gripper set the offset to the start position of the gripper
continue
# Shift the offset so the homed position reads 2047
new_offset = old_offset - 2047
# Clamp to [-2047..+2047]
if new_offset > 2047:
new_offset = 2047
print(
f"Warning: '{new_offset}' is getting clamped because its larger then 2047; This should not happen!"
)
elif new_offset < -2047:
new_offset = -2047
print(
f"Warning: '{new_offset}' is getting clamped because its smaller then -2047; This should not happen!"
)
# Determine the direction (sign) bit and magnitude
direction_bit = 1 if new_offset < 0 else 0
magnitude = abs(new_offset)
# Combine sign bit (bit 11) with the magnitude (bits 0..10)
servo_offset = (direction_bit << 11) | magnitude
# Write offset to servo
motorsbus.write("Offset", servo_offset, motor_names=m_name)
print(
f"Set offset for {m_name}: "
f"old_offset={old_offset}, new_offset={new_offset}, servo_encoded={magnitude} + direction={direction_bit}"
)
motorsbus.write("Lock", 0)
print("Offsets have been saved to EEPROM successfully.")
class ManipulatorRobot:
# TODO(rcadene): Implement force feedback
"""This class allows to control any manipulator robot of various number of motors.
@@ -382,10 +315,10 @@ class ManipulatorRobot:
elif self.robot_type in ["so100", "moss", "lekiwi"]:
from lerobot.common.robot_devices.robots.feetech_calibration import (
run_full_arm_calibration,
run_arm_manual_calibration,
)
calibration = run_full_arm_calibration(arm, self.robot_type, name, arm_type)
calibration = run_arm_manual_calibration(arm, self.robot_type, name, arm_type)
print(f"Calibration is done! Saving calibration file '{arm_calib_path}'")
arm_calib_path.parent.mkdir(parents=True, exist_ok=True)
@@ -394,24 +327,12 @@ class ManipulatorRobot:
return calibration
# For each follower arm
for name, arm_bus in self.follower_arms.items():
calibration = load_or_run_calibration_(name, arm_bus, "follower")
arm_bus.set_calibration(calibration)
# If this is a Feetech robot, also set the servo offset into EEPROM
if self.robot_type in ["so100", "lekiwi"]:
apply_feetech_offsets_from_calibration(arm_bus, calibration)
# For each leader arm
for name, arm_bus in self.leader_arms.items():
calibration = load_or_run_calibration_(name, arm_bus, "leader")
arm_bus.set_calibration(calibration)
# Optionally also set offset for leader if you want the servo offsets as well
if self.robot_type in ["so100", "lekiwi"]:
apply_feetech_offsets_from_calibration(arm_bus, calibration)
for name, arm in self.follower_arms.items():
calibration = load_or_run_calibration_(name, arm, "follower")
arm.set_calibration(calibration)
for name, arm in self.leader_arms.items():
calibration = load_or_run_calibration_(name, arm, "leader")
arm.set_calibration(calibration)
def set_koch_robot_preset(self):
def set_operating_mode_(arm):

View File

@@ -1,176 +0,0 @@
import argparse
import json
import time
from pathlib import Path
from lerobot.common.robot_devices.motors.feetech import (
FeetechMotorsBus,
adjusted_to_homing_ticks,
adjusted_to_motor_ticks,
convert_degrees_to_ticks,
convert_ticks_to_degrees,
)
from lerobot.common.robot_devices.robots.configs import So100RobotConfig
from lerobot.common.robot_devices.robots.utils import make_robot_from_config
def apply_feetech_offsets_from_calibration(motorsbus: FeetechMotorsBus, calibration_dict: dict):
"""
Reads 'calibration_dict' containing 'homing_offset' and 'motor_names',
then writes each motor's offset to the servo's internal Offset (0x1F) in EPROM.
This version is modified so each homed position (originally 0) will now read
2047, i.e. 180° away from 0 in the 4096-count circle. Offsets are permanently
stored in EEPROM, so the servo's Present_Position is hardware-shifted even
after power cycling.
Steps:
1) Subtract 2047 from the old offset (so 0 -> 2047).
2) Clamp to [-2047..+2047].
3) Encode sign bit and magnitude into a 12-bit number.
"""
homing_offsets = calibration_dict["homing_offset"]
motor_names = calibration_dict["motor_names"]
start_pos = calibration_dict["start_pos"]
# Open the write lock, changes to EEPROM do NOT persist yet
motorsbus.write("Lock", 1)
# For each motor, set the 'Offset' parameter
for m_name, old_offset in zip(motor_names, homing_offsets, strict=False):
# If bus doesnt have a motor named m_name, skip
if m_name not in motorsbus.motors:
print(f"Warning: '{m_name}' not found in motorsbus.motors; skipping offset.")
continue
if m_name == "gripper":
old_offset = start_pos # If gripper set the offset to the start position of the gripper
continue
# Shift the offset so the homed position reads 2047
new_offset = old_offset - 2047
# Clamp to [-2047..+2047]
if new_offset > 2047:
new_offset = 2047
print(
f"Warning: '{new_offset}' is getting clamped because its larger then 2047; This should not happen!"
)
elif new_offset < -2047:
new_offset = -2047
print(
f"Warning: '{new_offset}' is getting clamped because its smaller then -2047; This should not happen!"
)
# Determine the direction (sign) bit and magnitude
direction_bit = 1 if new_offset < 0 else 0
magnitude = abs(new_offset)
# Combine sign bit (bit 11) with the magnitude (bits 0..10)
servo_offset = (direction_bit << 11) | magnitude
# Write offset to servo
motorsbus.write("Offset", servo_offset, motor_names=m_name)
print(
f"Set offset for {m_name}: "
f"old_offset={old_offset}, new_offset={new_offset}, servo_encoded={magnitude} + direction={direction_bit}"
)
motorsbus.write("Lock", 0)
print("Offsets have been saved to EEPROM successfully.")
def debug_feetech_positions(cfg, arm_arg: str):
"""
Reads each joints (1) raw ticks, (2) homed ticks, (3) degrees, and (4) invert-adjusted ticks.
:param arm_arg: One of "main_leader" or "main_follower".
"""
robot = make_robot_from_config(cfg)
# Parse which arm we want: 'main_leader' or 'main_follower'
if arm_arg not in ("main_leader", "main_follower"):
raise ValueError("Please specify --arm=main_leader or --arm=main_follower")
bus_config = robot.leader_arms["main"] if arm_arg == "main_leader" else robot.follower_arms["main"]
bus = FeetechMotorsBus(bus_config)
# Load calibration if it exists
calib_file = Path(robot.calibration_dir) / f"{arm_arg}.json"
if calib_file.exists():
with open(calib_file) as f:
calibration_dict = json.load(f)
bus.set_calibration(calibration_dict)
print(f"Loaded calibration from {calib_file}")
else:
print(f"No calibration file found at {calib_file}, skipping calibration set.")
bus.connect()
print(f"Connected to Feetech bus on port: {bus.port}")
# Apply offset to servo EEPROM so the servos Present_Position is hardware-shifted
if calibration_dict is not None:
print("Applying offsets from calibration object to servo EEPROM. Be careful—this is permanent!")
apply_feetech_offsets_from_calibration(bus, calibration_dict)
# Disable torque on all motors so you can move them freely by hand
bus.write("Torque_Enable", 0, motor_names=bus.motor_names)
print("Torque disabled on all joints.")
try:
print("\nPress Ctrl+C to quit.\n")
while True:
# Read *raw* positions (no calibration).
raw_positions = bus.read_with_motor_ids(
bus.motor_models, bus.motor_indices, data_name="Present_Position"
)
# Read *already-homed* positions
homed_positions = bus.read("Present_Position")
for i, name in enumerate(bus.motor_names):
motor_idx, model = bus.motors[name]
raw_ticks = raw_positions[i] # 0..4095
homed_val = homed_positions[i] # degrees or % if linear
# Manually compute "adjusted ticks" from raw ticks
manual_adjusted = adjusted_to_homing_ticks(raw_ticks, model, bus, motor_idx)
# Convert to degrees
manual_degs = convert_ticks_to_degrees(manual_adjusted, model)
# Convert that deg back to ticks
manual_ticks = convert_degrees_to_ticks(manual_degs, model)
# Then invert them using offset & bus drive mode
inv_ticks = adjusted_to_motor_ticks(manual_ticks, model, bus, motor_idx)
print(
f"{name:15s} | "
f"RAW={raw_ticks:4d} | "
f"HOMED_FROM_READ={homed_val:7.2f} | "
f"HOMED_TICKS={manual_adjusted:6d} | "
f"MANUAL_ADJ_DEG={manual_degs:7.2f} | "
f"MANUAL_ADJ_TICKS={manual_ticks:6d} | "
f"INV_TICKS={inv_ticks:4d} "
)
print("----------------------------------------------------")
time.sleep(0.25)
except KeyboardInterrupt:
pass
finally:
print("\nExiting. Disconnecting bus...")
bus.disconnect()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Debug Feetech positions.")
parser.add_argument(
"--arm",
type=str,
choices=["main_leader", "main_follower"],
default="main_leader",
help="Which arm to debug: 'main_leader' or 'main_follower'.",
)
args = parser.parse_args()
cfg = So100RobotConfig()
debug_feetech_positions(cfg, arm_arg=args.arm)

View File

@@ -145,12 +145,13 @@ def configure_motor(port, brand, model, motor_idx_des, baudrate_des):
# the motors. Note: this configuration is not in the official STS3215 Memory Table
motor_bus.write("Lock", 0)
motor_bus.write("Maximum_Acceleration", 254)
motor_bus.write("Max_Angle_Limit", 4095) # default 4095
motor_bus.write("Min_Angle_Limit", 0) # default 0
motor_bus.write("Offset", 0)
motor_bus.write("Mode", 0)
motor_bus.write("Goal_Position", 2048)
motor_bus.write("Lock", 1)
time.sleep(4)
print("Present Position", motor_bus.read("Present_Position"))
motor_bus.write("Offset", 0)
time.sleep(4)
print("Offset", motor_bus.read("Offset"))
except Exception as e:

View File

@@ -69,6 +69,7 @@ dependencies = [
"rerun-sdk>=0.21.0",
"termcolor>=2.4.0",
"torch>=2.2.1",
"torchcodec>=0.2.1",
"torchvision>=0.21.0",
"wandb>=0.16.3",
"zarr>=2.17.0",
@@ -102,7 +103,30 @@ requires-poetry = ">=2.1"
[tool.ruff]
line-length = 110
target-version = "py310"
exclude = ["tests/artifacts/**/*.safetensors"]
exclude = [
"tests/data",
".bzr",
".direnv",
".eggs",
".git",
".git-rewrite",
".hg",
".mypy_cache",
".nox",
".pants.d",
".pytype",
".ruff_cache",
".svn",
".tox",
".venv",
"__pypackages__",
"_build",
"buck-out",
"build",
"dist",
"node_modules",
"venv",
]
[tool.ruff.lint]
select = ["E4", "E7", "E9", "F", "I", "N", "B", "C4", "SIM"]

View File

@@ -0,0 +1,38 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from huggingface_hub import DatasetCard
from lerobot.common.datasets.utils import create_lerobot_dataset_card
def test_default_parameters():
card = create_lerobot_dataset_card()
assert isinstance(card, DatasetCard)
assert card.data.tags == ["LeRobot"]
assert card.data.task_categories == ["robotics"]
assert card.data.configs == [
{
"config_name": "default",
"data_files": "data/*/*.parquet",
}
]
def test_with_tags():
tags = ["tag1", "tag2"]
card = create_lerobot_dataset_card(tags=tags)
assert card.data.tags == ["LeRobot", "tag1", "tag2"]

View File

@@ -23,7 +23,7 @@ If you know that your change will break backward compatibility, you should write
doesnt need to be merged into the `main` branch. Then you need to run this script and update the tests artifacts.
Example usage:
`python tests/artifacts/datasets/save_dataset_to_safetensors.py`
`python tests/scripts/save_dataset_to_safetensors.py`
"""
import shutil
@@ -88,4 +88,4 @@ if __name__ == "__main__":
"lerobot/nyu_franka_play_dataset",
"lerobot/cmu_stretch",
]:
save_dataset_to_safetensors("tests/artifacts/datasets", repo_id=dataset)
save_dataset_to_safetensors("tests/data/save_dataset_to_safetensors", repo_id=dataset)

View File

@@ -27,7 +27,7 @@ from lerobot.common.datasets.transforms import (
)
from lerobot.common.utils.random_utils import seeded_context
ARTIFACT_DIR = Path("tests/artifacts/image_transforms")
ARTIFACT_DIR = Path("tests/data/save_image_transforms_to_safetensors")
DATASET_REPO_ID = "lerobot/aloha_mobile_shrimp"

View File

@@ -141,5 +141,5 @@ if __name__ == "__main__":
raise RuntimeError("No policies were provided!")
for ds_repo_id, policy, policy_kwargs, file_name_extra in artifacts_cfg:
ds_name = ds_repo_id.split("/")[-1]
output_dir = Path("tests/artifacts/policies") / f"{ds_name}_{policy}_{file_name_extra}"
output_dir = Path("tests/data/save_policy_to_safetensors") / f"{ds_name}_{policy}_{file_name_extra}"
save_policy_to_safetensors(output_dir, ds_repo_id, policy, policy_kwargs)

View File

@@ -146,7 +146,7 @@ def test_camera(request, camera_type, mock):
camera.connect()
if mock:
import tests.cameras.mock_cv2 as cv2
import tests.mock_cv2 as cv2
else:
import cv2

View File

@@ -51,7 +51,7 @@ from lerobot.common.robot_devices.control_configs import (
)
from lerobot.configs.policies import PreTrainedConfig
from lerobot.scripts.control_robot import calibrate, record, replay, teleoperate
from tests.robots.test_robots import make_robot
from tests.test_robots import make_robot
from tests.utils import TEST_ROBOT_TYPES, mock_calibration_dir, require_robot

View File

@@ -473,12 +473,12 @@ def test_flatten_unflatten_dict():
)
@require_x86_64_kernel
def test_backward_compatibility(repo_id):
"""The artifacts for this test have been generated by `tests/artifacts/datasets/save_dataset_to_safetensors.py`."""
"""The artifacts for this test have been generated by `tests/scripts/save_dataset_to_safetensors.py`."""
# TODO(rcadene, aliberts): remove dataset download
dataset = LeRobotDataset(repo_id, episodes=[0])
test_dir = Path("tests/artifacts/datasets") / repo_id
test_dir = Path("tests/data/save_dataset_to_safetensors") / repo_id
def load_and_compare(i):
new_frame = dataset[i] # noqa: B023

View File

@@ -23,7 +23,8 @@ from gymnasium.utils.env_checker import check_env
import lerobot
from lerobot.common.envs.factory import make_env, make_env_config
from lerobot.common.envs.utils import preprocess_observation
from tests.utils import require_env
from .utils import require_env
OBS_TYPES = ["state", "pixels", "pixels_agent_pos"]

View File

@@ -33,7 +33,7 @@ from lerobot.scripts.visualize_image_transforms import (
save_all_transforms,
save_each_transform,
)
from tests.artifacts.image_transforms.save_image_transforms_to_safetensors import ARTIFACT_DIR
from tests.scripts.save_image_transforms_to_safetensors import ARTIFACT_DIR
from tests.utils import require_x86_64_kernel

View File

@@ -40,7 +40,7 @@ from lerobot.common.utils.random_utils import seeded_context
from lerobot.configs.default import DatasetConfig
from lerobot.configs.train import TrainPipelineConfig
from lerobot.configs.types import FeatureType, NormalizationMode, PolicyFeature
from tests.artifacts.policies.save_policy_to_safetensors import get_policy_stats
from tests.scripts.save_policy_to_safetensors import get_policy_stats
from tests.utils import DEVICE, require_cpu, require_env, require_x86_64_kernel
@@ -407,10 +407,12 @@ def test_backward_compatibility(ds_repo_id: str, policy_name: str, policy_kwargs
should be updated.
4. Check that this test now passes.
5. Remember to restore `tests/scripts/save_policy_to_safetensors.py` to its original state.
6. Remember to stage and commit the resulting changes to `tests/artifacts`.
6. Remember to stage and commit the resulting changes to `tests/data`.
"""
ds_name = ds_repo_id.split("/")[-1]
artifact_dir = Path("tests/artifacts/policies") / f"{ds_name}_{policy_name}_{file_name_extra}"
artifact_dir = (
Path("tests/data/save_policy_to_safetensors") / f"{ds_name}_{policy_name}_{file_name_extra}"
)
saved_output_dict = load_file(artifact_dir / "output_dict.safetensors")
saved_grad_stats = load_file(artifact_dir / "grad_stats.safetensors")
saved_param_stats = load_file(artifact_dir / "param_stats.safetensors")

View File

@@ -1,5 +1,3 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -13,32 +11,13 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from datasets import Dataset
from huggingface_hub import DatasetCard
from lerobot.common.datasets.push_dataset_to_hub.utils import calculate_episode_data_index
from lerobot.common.datasets.utils import create_lerobot_dataset_card, hf_transform_to_torch
def test_default_parameters():
card = create_lerobot_dataset_card()
assert isinstance(card, DatasetCard)
assert card.data.tags == ["LeRobot"]
assert card.data.task_categories == ["robotics"]
assert card.data.configs == [
{
"config_name": "default",
"data_files": "data/*/*.parquet",
}
]
def test_with_tags():
tags = ["tag1", "tag2"]
card = create_lerobot_dataset_card(tags=tags)
assert card.data.tags == ["LeRobot", "tag1", "tag2"]
from lerobot.common.datasets.utils import (
hf_transform_to_torch,
)
def test_calculate_episode_data_index():