Files
lerobot/docs/source/_toctree.yml
Pepijn e82e7a02e9 feat(train): add accelerate for multi gpu training (#2154)
* Enhance training and logging functionality with accelerator support

- Added support for multi-GPU training by introducing an `accelerator` parameter in training functions.
- Updated `update_policy` to handle gradient updates based on the presence of an accelerator.
- Modified logging to prevent duplicate messages in non-main processes.
- Enhanced `set_seed` and `get_safe_torch_device` functions to accommodate accelerator usage.
- Updated `MetricsTracker` to account for the number of processes when calculating metrics.
- Introduced a new feature in `pyproject.toml` for the `accelerate` library dependency.

* Initialize logging in training script for both main and non-main processes

- Added `init_logging` calls to ensure proper logging setup when using the accelerator and in standard training mode.
- This change enhances the clarity and consistency of logging during training sessions.

* add docs and only push model once

* Place  logging under accelerate and update docs

* fix pre commit

* only log in main process

* main logging

* try with local rank

* add tests

* change runner

* fix test

* dont push to hub in multi gpu tests

* pre download dataset in tests

* small fixes

* fix path optimizer state

* update docs, and small improvements in train

* simplify accelerate main process detection

* small improvements in train

* fix OOM bug

* change accelerate detection

* add some debugging

* always use accelerate

* cleanup update method

* cleanup

* fix bug

* scale lr decay if we reduce steps

* cleanup logging

* fix formatting

* encorperate feedback pr

* add min memory to cpu tests

* use accelerate to determin logging

* fix precommit and fix tests

* chore: minor details

---------

Co-authored-by: AdilZouitine <adilzouitinegm@gmail.com>
Co-authored-by: Steven Palma <steven.palma@huggingface.co>
2025-10-16 17:41:55 +02:00

89 lines
2.0 KiB
YAML

- sections:
- local: index
title: LeRobot
- local: installation
title: Installation
title: Get started
- sections:
- local: il_robots
title: Imitation Learning for Robots
- local: cameras
title: Cameras
- local: integrate_hardware
title: Bring Your Own Hardware
- local: hilserl
title: Train a Robot with RL
- local: hilserl_sim
title: Train RL in Simulation
- local: async
title: Use Async Inference
- local: multi_gpu_training
title: Multi GPU training
title: "Tutorials"
- sections:
- local: lerobot-dataset-v3
title: Using LeRobotDataset
- local: porting_datasets_v3
title: Porting Large Datasets
- local: using_dataset_tools
title: Using the Dataset Tools
title: "Datasets"
- sections:
- local: act
title: ACT
- local: smolvla
title: SmolVLA
- local: pi0
title: π₀ (Pi0)
- local: pi05
title: π₀.₅ (Pi05)
title: "Policies"
- sections:
- local: il_sim
title: Imitation Learning in Sim
- local: libero
title: Using Libero
- local: metaworld
title: Using MetaWorld
title: "Simulation"
- sections:
- local: introduction_processors
title: Introduction to Robot Processors
- local: debug_processor_pipeline
title: Debug your processor pipeline
- local: implement_your_own_processor
title: Implement your own processor
- local: processors_robots_teleop
title: Processors for Robots and Teleoperators
title: "Robot Processors"
- sections:
- local: so101
title: SO-101
- local: so100
title: SO-100
- local: koch
title: Koch v1.1
- local: lekiwi
title: LeKiwi
- local: hope_jr
title: Hope Jr
- local: reachy2
title: Reachy 2
title: "Robots"
- sections:
- local: phone_teleop
title: Phone
title: "Teleoperators"
- sections:
- local: notebooks
title: Notebooks
- local: feetech
title: Updating Feetech Firmware
title: "Resources"
- sections:
- local: contributing
title: Contribute to LeRobot
- local: backwardcomp
title: Backward compatibility
title: "About"