eval gimp compare pics

This commit is contained in:
tsuky_chen
2024-01-13 01:49:46 +08:00
parent 1a5aa39611
commit 136b52c876
2 changed files with 48 additions and 1 deletions

View File

@@ -11,7 +11,7 @@ from .table import compare_table
from .vlc import is_vlc_playing, is_vlc_recordings_folder, is_vlc_fullscreen, compare_images, compare_audios, \
compare_videos
from .gimp import increase_saturation, decrease_brightness
from .gimp import increase_saturation, decrease_brightness, check_file_exists, compare_triangle_positions
from .general import check_csv, check_accessibility_tree, check_list
from .thunderbird import check_thunderbird_prefs, check_thunderbird_filter

View File

@@ -20,6 +20,10 @@ def get_gimp_export_path():
# Handle the case where the configuration file is not found
print("GIMP configuration file not found")
return False
def check_file_exists(directory, filename):
file_path = os.path.join(directory, filename)
return 1 if os.path.isfile(file_path) else 0
def increase_saturation(image1_path: str, image2_path: str) -> float:
def calculate_saturation(image):
@@ -61,6 +65,49 @@ def decrease_brightness(image1_path: str, image2_path: str) -> float:
brightness2 = calculate_brightness(image2)
return 1 if brightness1 > brightness2 else 0
import cv2
import numpy as np
def find_yellow_triangle(image):
# Convert the image to RGBA
rgba = cv2.cvtColor(image, cv2.COLOR_BGR2RGBA)
# define range of yellow color in HSV
lower_yellow = np.array([0, 0, 0], dtype=np.uint8)
upper_yellow = np.array([255, 255, 255], dtype=np.uint8)
# expand the dimensions of lower and upper yellow to match the image dimensions
lower_yellow = np.reshape(lower_yellow, (1, 1, 3))
upper_yellow = np.reshape(upper_yellow, (1, 1, 3))
# build a mask for the yellow color
mask = cv2.inRange(rgba, lower_yellow, upper_yellow)
# search for contours in the mask
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# choose the largest contour
max_contour = max(contours, key=cv2.contourArea)
# calculate the center of the contour
M = cv2.moments(max_contour)
cx = int(M['m10'] / M['m00'])
cy = int(M['m01'] / M['m00'])
return cx, cy
def compare_triangle_positions(image1, image2):
image1 = cv2.imread(image1, cv2.IMREAD_COLOR)
image2 = cv2.imread(image2, cv2.IMREAD_COLOR)
# find the center of the yellow triangle in each image
cx1, cy1 = find_yellow_triangle(image1)
cx2, cy2 = find_yellow_triangle(image2)
# calculate the distance between the center of the triangle and the center of the image
center_distance1 = np.sqrt((cx1 - image1.shape[1] // 2)**2 + (cy1 - image1.shape[0] // 2)**2)
center_distance2 = np.sqrt((cx2 - image2.shape[1] // 2)**2 + (cy2 - image2.shape[0] // 2)**2)
return 1 if center_distance1 > center_distance2 else 0
if __name__ == "__main__":
image1_path = "../Downloads/1.png"