Merge branch 'fix_chrome'

This commit is contained in:
yuanmengqi
2025-07-17 04:14:47 +00:00
15 changed files with 1146 additions and 121 deletions

View File

@@ -3,6 +3,7 @@ from __future__ import annotations
import logging
import os
import time
import re
from typing import Callable, Any, Optional, Tuple
from typing import List, Dict, Union
@@ -22,6 +23,88 @@ MAX_RETRIES = 5 # Maximum retries for environment setup
def _fix_pyautogui_less_than_bug(command: str) -> str:
"""
Fix PyAutoGUI '<' character bug by converting it to hotkey("shift", ',') calls.
This fixes the known PyAutoGUI issue where typing '<' produces '>' instead.
References:
- https://github.com/asweigart/pyautogui/issues/198
- https://github.com/xlang-ai/OSWorld/issues/257
Args:
command (str): The original pyautogui command
Returns:
str: The fixed command with '<' characters handled properly
"""
# Handle typewrite with '<' characters
def replace_typewrite_less_than(match):
content = match.group(1)
# Split the content by '<' and rebuild with hotkey calls
parts = content.split('<')
if len(parts) == 1:
# No '<' found, return original
return match.group(0)
# Rebuild the command
result_parts = []
for i, part in enumerate(parts):
if i == 0:
# First part, just add typewrite if not empty
if part:
result_parts.append(f"pyautogui.typewrite({repr(part)})")
else:
# Add hotkey for '<' and then typewrite for the rest if not empty
result_parts.append('pyautogui.hotkey("shift", ",")')
if part:
result_parts.append(f"pyautogui.typewrite({repr(part)})")
return '; '.join(result_parts)
# Handle press('<') calls
def replace_press_less_than(match):
return 'pyautogui.hotkey("shift", ",")'
# Pattern to match typewrite calls with quoted strings
typewrite_pattern = r'pyautogui\.typewrite\((["\'])(.*?)\1\)'
# Pattern to match press('<') calls
press_pattern = r'pyautogui\.press\(["\']<["\']\)'
# First handle press('<') calls
command = re.sub(press_pattern, replace_press_less_than, command)
# Then handle typewrite calls
def process_typewrite_match(match):
quote_char = match.group(1)
content = match.group(2)
# Check if content contains '<'
if '<' not in content:
return match.group(0)
# Split by '<' and rebuild
parts = content.split('<')
result_parts = []
for i, part in enumerate(parts):
if i == 0:
# First part
if part:
result_parts.append(f"pyautogui.typewrite({quote_char}{part}{quote_char})")
else:
# Add hotkey for '<' and then typewrite for the rest
result_parts.append('pyautogui.hotkey("shift", ",")')
if part:
result_parts.append(f"pyautogui.typewrite({quote_char}{part}{quote_char})")
return '; '.join(result_parts)
command = re.sub(typewrite_pattern, process_typewrite_match, command)
return command
class DesktopEnv(gym.Env):
"""
DesktopEnv with OpenAI Gym interface. It provides a desktop environment for setting and evaluating desktop automation tasks.
@@ -341,9 +424,13 @@ class DesktopEnv(gym.Env):
else:
# the set of all possible python commands insides `pyautogui`
if type(action) == str:
self.controller.execute_python_command(action)
# Fix PyAutoGUI '<' character bug before execution
fixed_command = _fix_pyautogui_less_than_bug(action)
self.controller.execute_python_command(fixed_command)
elif type(action) == dict:
self.controller.execute_python_command(action['command'])
# Fix PyAutoGUI '<' character bug before execution
fixed_command = _fix_pyautogui_less_than_bug(action['command'])
self.controller.execute_python_command(fixed_command)
time.sleep(pause)
observation = self._get_obs()

View File

@@ -1,7 +1,7 @@
{
"id": "3c8f201a-009d-4bbe-8b65-a6f8b35bb57f",
"snapshot": "gimp",
"instruction": "https://huggingface.co/datasets/xlangai/ubuntu_osworld_file_cache/resolve/main/multi_apps/3c8f201a-009d-4bbe-8b65-a6f8b35bb57f/kingbird.jpeg",
"instruction": "Download the image from \"https://huggingface.co/datasets/xlangai/ubuntu_osworld_file_cache/resolve/main/multi_apps/3c8f201a-009d-4bbe-8b65-a6f8b35bb57f/kingbird.jpeg\", and then use GIMP to compress it to under 600KB as \"compressed.jpeg\" on the Desktop. Resize if needed.",
"source": "",
"config": [
{

View File

@@ -15,12 +15,6 @@
]
}
},
{
"type": "open",
"parameters": {
"path": "/home/user/Desktop/rsc-ebook-collection-2023.xlsx"
}
},
{
"type": "launch",
"parameters": {
@@ -41,9 +35,9 @@
}
},
{
"type": "activate_window",
"type": "open",
"parameters": {
"window_name": "Google Chrome"
"path": "/home/user/Desktop/rsc-ebook-collection-2023.xlsx"
}
}
],

View File

@@ -28,7 +28,7 @@
{
"type": "launch",
"parameters": {
"command": "vlc",
"command": "VLC_VERBOSE=-1 vlc --no-audio --no-video-title-show /home/user/Desktop/planet.mp4",
"shell": true
}
}

View File

@@ -1,7 +1,7 @@
{
"id": "bc2b57f3-686d-4ec9-87ce-edf850b7e442",
"snapshot": "libreoffice_calc",
"instruction": "The requirements of my data analysis assignment are listed in \"reminder.docx\" on the desktop. Help me modify my assignment \"asm.xlsx\" saved on the desktop accordingly.",
"instruction": "The requirements of my data analysis assignment are listed in \"reminder.docx\" on the desktop. Help me modify my assignment opended accordingly.",
"source": "authors",
"config": [
{

View File

@@ -2,8 +2,8 @@
{
"host": "gw.dataimpulse.com",
"port": 823,
"username": "your_username",
"password": "your_password",
"username": "fba5ac061fe18be70c6c",
"password": "e225c50bf56bdd6c",
"protocol": "http",
"provider": "dataimpulse",
"type": "residential",

View File

@@ -0,0 +1,12 @@
{
"multi_apps": [
"b52b40a5-ad70-4c53-b5b0-5650a8387052",
"22a4636f-8179-4357-8e87-d1743ece1f81",
"46407397-a7d5-4c6b-92c6-dbe038b1457b",
"4e9f0faf-2ecc-4ae8-a804-28c9a75d1ddc",
"78aed49a-a710-4321-a793-b611a7c5b56b",
"0c825995-5b70-4526-b663-113f4c999dd2",
"897e3b53-5d4d-444b-85cb-2cdc8a97d903",
"a0b9dc9c-fc07-4a88-8c5d-5e3ecad91bcb"
]
}

View File

@@ -0,0 +1,383 @@
{
"chrome": [
"bb5e4c0d-f964-439c-97b6-bdb9747de3f4",
"7b6c7e24-c58a-49fc-a5bb-d57b80e5b4c3",
"06fe7178-4491-4589-810f-2e2bc9502122",
"e1e75309-3ddb-4d09-92ec-de869c928143",
"35253b65-1c19-4304-8aa4-6884b8218fc0",
"2ad9387a-65d8-4e33-ad5b-7580065a27ca",
"7a5a7856-f1b6-42a4-ade9-1ca81ca0f263",
"44ee5668-ecd5-4366-a6ce-c1c9b8d4e938",
"2ae9ba84-3a0d-4d4c-8338-3a1478dc5fe3",
"480bcfea-d68f-4aaa-a0a9-2589ef319381",
"af630914-714e-4a24-a7bb-f9af687d3b91",
"3720f614-37fd-4d04-8a6b-76f54f8c222d",
"99146c54-4f37-4ab8-9327-5f3291665e1e",
"12086550-11c0-466b-b367-1d9e75b3910e",
"6766f2b8-8a72-417f-a9e5-56fcaa735837",
"93eabf48-6a27-4cb6-b963-7d5fe1e0d3a9",
"ae78f875-5b98-4907-bbb5-9c737fc68c03",
"3299584d-8f11-4457-bf4c-ce98f7600250",
"030eeff7-b492-4218-b312-701ec99ee0cc",
"9656a811-9b5b-4ddf-99c7-5117bcef0626",
"fc6d8143-9452-4171-9459-7f515143419a",
"a96b564e-dbe9-42c3-9ccf-b4498073438a",
"1704f00f-79e6-43a7-961b-cedd3724d5fd",
"f3b19d1e-2d48-44e9-b4e1-defcae1a0197",
"82bc8d6a-36eb-4d2d-8801-ef714fb1e55a",
"47543840-672a-467d-80df-8f7c3b9788c9",
"c1fa57f3-c3db-4596-8f09-020701085416",
"da46d875-6b82-4681-9284-653b0c7ae241",
"6c4c23a1-42a4-43cc-9db1-2f86ff3738cc",
"f79439ad-3ee8-4f99-a518-0eb60e5652b0",
"b7895e80-f4d1-4648-bee0-4eb45a6f1fa8",
"9f3f70fc-5afc-4958-a7b7-3bb4fcb01805",
"7f52cab9-535c-4835-ac8c-391ee64dc930",
"82279c77-8fc6-46f6-9622-3ba96f61b477",
"2888b4e6-5b47-4b57-8bf5-c73827890774",
"b4f95342-463e-4179-8c3f-193cd7241fb2",
"f5d96daf-83a8-4c86-9686-bada31fc66ab",
"121ba48f-9e17-48ce-9bc6-a4fb17a7ebba",
"368d9ba4-203c-40c1-9fa3-da2f1430ce63",
"59155008-fe71-45ec-8a8f-dc35497b6aa8",
"a728a36e-8bf1-4bb6-9a03-ef039a5233f0",
"b070486d-e161-459b-aa2b-ef442d973b92",
"0d8b7de3-e8de-4d86-b9fd-dd2dce58a217",
"9f935cce-0a9f-435f-8007-817732bfc0a5",
"f0b971a1-6831-4b9b-a50e-22a6e47f45ba",
"cabb3bae-cccb-41bd-9f5d-0f3a9fecd825"
],
"gimp": [
"7a4deb26-d57d-4ea9-9a73-630f66a7b568",
"554785e9-4523-4e7a-b8e1-8016f565f56a",
"77b8ab4d-994f-43ac-8930-8ca087d7c4b4",
"f4aec372-4fb0-4df5-a52b-79e0e2a5d6ce",
"d52d6308-ec58-42b7-a2c9-de80e4837b2b",
"2a729ded-3296-423d-aec4-7dd55ed5fbb3",
"b148e375-fe0b-4bec-90e7-38632b0d73c2",
"a746add2-cab0-4740-ac36-c3769d9bfb46",
"7b7617bd-57cc-468e-9c91-40c4ec2bcb3d",
"d16c99dc-2a1e-46f2-b350-d97c86c85c15",
"06ca5602-62ca-47f6-ad4f-da151cde54cc",
"e2dd0213-26db-4349-abe5-d5667bfd725c",
"f723c744-e62c-4ae6-98d1-750d3cd7d79d",
"72f83cdc-bf76-4531-9a1b-eb893a13f8aa",
"7767eef2-56a3-4cea-8c9f-48c070c7d65b",
"734d6579-c07d-47a8-9ae2-13339795476b",
"e19bd559-633b-4b02-940f-d946248f088e",
"38f48d40-764e-4e77-a7cf-51dfce880291",
"fbb548ca-c2a6-4601-9204-e39a2efc507b",
"5ca86c6f-f317-49d8-b6a7-b527541caae8",
"62f7fd55-0687-4a43-b6e1-3eda16fc6252",
"8ea73f6f-9689-42ad-8c60-195bbf06a7ba",
"58d3eeeb-e9d0-499f-962e-fd0db2a744d8",
"2e6f678f-472d-4c55-99cc-8e7c5c402a71",
"045bf3ff-9077-4b86-b483-a1040a949cff",
"dbbf4b99-2253-4b10-9274-45f246af2466"
],
"libreoffice_calc": [
"357ef137-7eeb-4c80-a3bb-0951f26a8aff",
"42e0a640-4f19-4b28-973d-729602b5a4a7",
"51719eea-10bc-4246-a428-ac7c433dd4b3",
"1954cced-e748-45c4-9c26-9855b97fbc5e",
"2bd59342-0664-4ccb-ba87-79379096cc08",
"3aaa4e37-dc91-482e-99af-132a612d40f3",
"1273e544-688f-496b-8d89-3e0f40aa0606",
"12382c62-0cd1-4bf2-bdc8-1d20bf9b2371",
"f9584479-3d0d-4c79-affa-9ad7afdd8850",
"535364ea-05bd-46ea-9937-9f55c68507e8",
"7e429b8d-a3f0-4ed0-9b58-08957d00b127",
"4f07fbe9-70de-4927-a4d5-bb28bc12c52c",
"04d9aeaf-7bed-4024-bedb-e10e6f00eb7f",
"0bf05a7d-b28b-44d2-955a-50b41e24012a",
"6054afcb-5bab-4702-90a0-b259b5d3217c",
"abed40dc-063f-4598-8ba5-9fe749c0615d",
"37608790-6147-45d0-9f20-1137bb35703d",
"26a8440e-c166-4c50-aef4-bfb77314b46b",
"d681960f-7bc3-4286-9913-a8812ba3261a",
"035f41ba-6653-43ab-aa63-c86d449d62e5",
"7efeb4b1-3d19-4762-b163-63328d66303b",
"1de60575-bb6e-4c3d-9e6a-2fa699f9f197",
"aa3a8974-2e85-438b-b29e-a64df44deb4b",
"51b11269-2ca8-4b2a-9163-f21758420e78",
"1e8df695-bd1b-45b3-b557-e7d599cf7597",
"ecb0df7a-4e8d-4a03-b162-053391d3afaf",
"8b1ce5f2-59d2-4dcc-b0b0-666a714b9a14",
"a01fbce3-2793-461f-ab86-43680ccbae25",
"0326d92d-d218-48a8-9ca1-981cd6d064c7",
"0a2e43bf-b26c-4631-a966-af9dfa12c9e5",
"4188d3a4-077d-46b7-9c86-23e1a036f6c1",
"347ef137-7eeb-4c80-a3bb-0951f26a8aff",
"eb03d19a-b88d-4de4-8a64-ca0ac66f426b",
"0cecd4f3-74de-457b-ba94-29ad6b5dafb6",
"1d17d234-e39d-4ed7-b46f-4417922a4e7c",
"4e6fcf72-daf3-439f-a232-c434ce416af6",
"01b269ae-2111-4a07-81fd-3fcd711993b0",
"21df9241-f8d7-4509-b7f1-37e501a823f7",
"a9f325aa-8c05-4e4f-8341-9e4358565f4f",
"6e99a1ad-07d2-4b66-a1ce-ece6d99c20a5",
"7a4e4bc8-922c-4c84-865c-25ba34136be1",
"4de54231-e4b5-49e3-b2ba-61a0bec721c0",
"30e3e107-1cfb-46ee-a755-2cd080d7ba6a",
"4172ea6e-6b77-4edb-a9cc-c0014bd1603b",
"1334ca3e-f9e3-4db8-9ca7-b4c653be7d17",
"3a7c8185-25c1-4941-bd7b-96e823c9f21f",
"21ab7b40-77c2-4ae6-8321-e00d3a086c73"
],
"libreoffice_impress": [
"5d901039-a89c-4bfb-967b-bf66f4df075e",
"550ce7e7-747b-495f-b122-acdc4d0b8e54",
"455d3c66-7dc6-4537-a39a-36d3e9119df7",
"af23762e-2bfd-4a1d-aada-20fa8de9ce07",
"c59742c0-4323-4b9d-8a02-723c251deaa0",
"ef9d12bd-bcee-4ba0-a40e-918400f43ddf",
"9ec204e4-f0a3-42f8-8458-b772a6797cab",
"0f84bef9-9790-432e-92b7-eece357603fb",
"ce88f674-ab7a-43da-9201-468d38539e4a",
"3b27600c-3668-4abd-8f84-7bcdebbccbdb",
"a097acff-6266-4291-9fbd-137af7ecd439",
"bf4e9888-f10f-47af-8dba-76413038b73c",
"21760ecb-8f62-40d2-8d85-0cee5725cb72",
"ac9bb6cb-1888-43ab-81e4-a98a547918cd",
"2cd43775-7085-45d8-89fa-9e35c0a915cf",
"358aa0a7-6677-453f-ae35-e440f004c31e",
"a669ef01-ded5-4099-9ea9-25e99b569840",
"73c99fb9-f828-43ce-b87a-01dc07faa224",
"15aece23-a215-4579-91b4-69eec72e18da",
"986fc832-6af2-417c-8845-9272b3a1528b",
"a434992a-89df-4577-925c-0c58b747f0f4",
"7dbc52a6-11e0-4c9a-a2cb-1e36cfda80d8",
"841b50aa-df53-47bd-a73a-22d3a9f73160",
"8979838c-54a5-4454-a2b8-3d135a1a5c8f",
"b8adbc24-cef2-4b15-99d5-ecbe7ff445eb",
"2b94c692-6abb-48ae-ab0b-b3e8a19cb340",
"9cf05d24-6bd9-4dae-8967-f67d88f5d38a",
"08aced46-45a2-48d7-993b-ed3fb5b32302",
"edb61b14-a854-4bf5-a075-c8075c11293a",
"c82632a4-56b6-4db4-9dd1-3820ee3388e4",
"39be0d19-634d-4475-8768-09c130f5425d",
"ac1b39ff-ee4d-4483-abce-c117e98942f0",
"f23acfd2-c485-4b7c-a1e7-d4303ddfe864",
"70bca0cc-c117-427e-b0be-4df7299ebeb6",
"af2d657a-e6b3-4c6a-9f67-9e3ed015974c",
"57667013-ea97-417c-9dce-2713091e6e2a",
"0a211154-fda0-48d0-9274-eaac4ce5486d",
"a53f80cd-4a90-4490-8310-097b011433f6",
"7ae48c60-f143-4119-b659-15b8f485eb9a",
"5cfb9197-e72b-454b-900e-c06b0c802b40",
"05dd4c1d-c489-4c85-8389-a7836c4f0567",
"5c1a6c3d-c1b3-47cb-9b01-8d1b7544ffa1",
"4ed5abd0-8b5d-47bd-839f-cacfa15ca37a",
"e4ef0baf-4b52-4590-a47e-d4d464cca2d7",
"ed43c15f-00cb-4054-9c95-62c880865d68",
"3161d64e-3120-47b4-aaad-6a764a92493b",
"04578141-1d42-4146-b9cf-6fab4ce5fd74"
],
"libreoffice_writer": [
"0810415c-bde4-4443-9047-d5f70165a697",
"0a0faba3-5580-44df-965d-f562a99b291c",
"0b17a146-2934-46c7-8727-73ff6b6483e8",
"0e47de2a-32e0-456c-a366-8c607ef7a9d2",
"0e763496-b6bb-4508-a427-fad0b6c3e195",
"3ef2b351-8a84-4ff2-8724-d86eae9b842e",
"4bcb1253-a636-4df4-8cb0-a35c04dfef31",
"66399b0d-8fda-4618-95c4-bfc6191617e9",
"6a33f9b9-0a56-4844-9c3f-96ec3ffb3ba2",
"6ada715d-3aae-4a32-a6a7-429b2e43fb93",
"6f81754e-285d-4ce0-b59e-af7edb02d108",
"72b810ef-4156-4d09-8f08-a0cf57e7cefe",
"8472fece-c7dd-4241-8d65-9b3cd1a0b568",
"88fe4b2d-3040-4c70-9a70-546a47764b48",
"936321ce-5236-426a-9a20-e0e3c5dc536f",
"adf5e2c3-64c7-4644-b7b6-d2f0167927e7",
"b21acd93-60fd-4127-8a43-2f5178f4a830",
"d53ff5ee-3b1a-431e-b2be-30ed2673079b",
"e246f6d8-78d7-44ac-b668-fcf47946cb50",
"e528b65e-1107-4b8c-8988-490e4fece599",
"ecc2413d-8a48-416e-a3a2-d30106ca36cb",
"f178a4a9-d090-4b56-bc4c-4b72a61a035d",
"bb8ccc78-479f-4a2f-a71e-d565e439436b"
],
"multi_apps": [
"2b9493d7-49b8-493a-a71b-56cd1f4d6908",
"2c9fc0de-3ee7-45e1-a5df-c86206ad78b5",
"2fe4b718-3bd7-46ec-bdce-b184f5653624",
"3680a5ee-6870-426a-a997-eba929a0d25c",
"510f64c8-9bcc-4be1-8d30-638705850618",
"51f5801c-18b3-4f25-b0c3-02f85507a078",
"58565672-7bfe-48ab-b828-db349231de6b",
"937087b6-f668-4ba6-9110-60682ee33441",
"c867c42d-a52d-4a24-8ae3-f75d256b5618",
"d9b7c649-c975-4f53-88f5-940b29c47247",
"e135df7c-7687-4ac0-a5f0-76b74438b53e",
"ee9a3c83-f437-4879-8918-be5efbb9fac7",
"f7dfbef3-7697-431c-883a-db8583a4e4f9",
"f8cfa149-d1c1-4215-8dac-4a0932bad3c2",
"6d72aad6-187a-4392-a4c4-ed87269c51cf",
"f918266a-b3e0-4914-865d-4faa564f1aef",
"da52d699-e8d2-4dc5-9191-a2199e0b6a9b",
"bc2b57f3-686d-4ec9-87ce-edf850b7e442",
"74d5859f-ed66-4d3e-aa0e-93d7a592ce41",
"b5062e3e-641c-4e3a-907b-ac864d2e7652",
"00fa164e-2612-4439-992e-157d019a8436",
"acb0f96b-e27c-44d8-b55f-7cb76609dfcd",
"69acbb55-d945-4927-a87b-8480e1a5bb7e",
"48d05431-6cd5-4e76-82eb-12b60d823f7d",
"68a25bd4-59c7-4f4d-975e-da0c8509c848",
"eb303e01-261e-4972-8c07-c9b4e7a4922a",
"c7c1e4c3-9e92-4eba-a4b8-689953975ea4",
"d1acdb87-bb67-4f30-84aa-990e56a09c92",
"deec51c9-3b1e-4b9e-993c-4776f20e8bb2",
"8e116af7-7db7-4e35-a68b-b0939c066c78",
"337d318b-aa07-4f4f-b763-89d9a2dd013f",
"82e3c869-49f6-4305-a7ce-f3e64a0618e7",
"185f29bd-5da0-40a6-b69c-ba7f4e0324ef",
"869de13e-bef9-4b91-ba51-f6708c40b096",
"2c1ebcd7-9c6d-4c9a-afad-900e381ecd5e",
"3a93cae4-ad3e-403e-8c12-65303b271818",
"1f18aa87-af6f-41ef-9853-cdb8f32ebdea",
"26150609-0da3-4a7d-8868-0faf9c5f01bb",
"9219480b-3aed-47fc-8bac-d2cffc5849f7",
"881deb30-9549-4583-a841-8270c65f2a17",
"7e287123-70ca-47b9-8521-47db09b69b14",
"e2392362-125e-4f76-a2ee-524b183a3412",
"5bc63fb9-276a-4439-a7c1-9dc76401737f",
"26660ad1-6ebb-4f59-8cba-a8432dfe8d38",
"a82b78bb-7fde-4cb3-94a4-035baf10bcf0",
"36037439-2044-4b50-b9d1-875b5a332143",
"716a6079-22da-47f1-ba73-c9d58f986a38",
"873cafdd-a581-47f6-8b33-b9696ddb7b05",
"a74b607e-6bb5-4ea8-8a7c-5d97c7bbcd2a",
"6f4073b8-d8ea-4ade-8a18-c5d1d5d5aa9a",
"da922383-bfa4-4cd3-bbad-6bebab3d7742",
"2373b66a-092d-44cb-bfd7-82e86e7a3b4d",
"81c425f5-78f3-4771-afd6-3d2973825947",
"bb83cab4-e5c7-42c7-a67b-e46068032b86",
"227d2f97-562b-4ccb-ae47-a5ec9e142fbb",
"b337d106-053f-4d37-8da0-7f9c4043a66b",
"20236825-b5df-46e7-89bf-62e1d640a897",
"8df7e444-8e06-4f93-8a1a-c5c974269d82",
"aad10cd7-9337-4b62-b704-a857848cedf2",
"02ce9a50-7af2-47ed-8596-af0c230501f8",
"4c26e3f3-3a14-4d86-b44a-d3cedebbb487",
"a503b07f-9119-456b-b75d-f5146737d24f",
"09a37c51-e625-49f4-a514-20a773797a8a",
"3e3fc409-bff3-4905-bf16-c968eee3f807",
"f5c13cdd-205c-4719-a562-348ae5cd1d91",
"5990457f-2adb-467b-a4af-5c857c92d762",
"415ef462-bed3-493a-ac36-ca8c6d23bf1b",
"7ff48d5b-2df2-49da-b500-a5150ffc7f18",
"9f3bb592-209d-43bc-bb47-d77d9df56504",
"dd60633f-2c72-42ba-8547-6f2c8cb0fdb0",
"ce2b64a2-ddc1-4f91-8c7d-a88be7121aac",
"3f05f3b9-29ba-4b6b-95aa-2204697ffc06",
"e1fc0df3-c8b9-4ee7-864c-d0b590d3aa56",
"f8369178-fafe-40c2-adc4-b9b08a125456",
"778efd0a-153f-4842-9214-f05fc176b877",
"47f7c0ce-a5fb-4100-a5e6-65cd0e7429e5",
"c2751594-0cd5-4088-be1b-b5f2f9ec97c4",
"788b3701-3ec9-4b67-b679-418bfa726c22",
"48c46dc7-fe04-4505-ade7-723cba1aa6f6",
"42d25c08-fb87-4927-8b65-93631280a26f",
"e8172110-ec08-421b-a6f5-842e6451911f",
"42f4d1c7-4521-4161-b646-0a8934e36081",
"3c8f201a-009d-4bbe-8b65-a6f8b35bb57f",
"d68204bf-11c1-4b13-b48b-d303c73d4bf6",
"91190194-f406-4cd6-b3f9-c43fac942b22",
"7f35355e-02a6-45b5-b140-f0be698bcf85",
"98e8e339-5f91-4ed2-b2b2-12647cb134f4",
"0e5303d4-8820-42f6-b18d-daf7e633de21",
"df67aebb-fb3a-44fd-b75b-51b6012df509",
"5df7b33a-9f77-4101-823e-02f863e1c1ae",
"aceb0368-56b8-4073-b70e-3dc9aee184e0",
"236833a3-5704-47fc-888c-4f298f09f799",
"67890eb6-6ce5-4c00-9e3d-fb4972699b06"
],
"os": [
"94d95f96-9699-4208-98ba-3c3119edf9c2",
"bedcedc4-4d72-425e-ad62-21960b11fe0d",
"ec4e3f68-9ea4-4c18-a5c9-69f89d1178b3",
"a462a795-fdc7-4b23-b689-e8b6df786b78",
"f9be0997-4b7c-45c5-b05c-4612b44a6118",
"28cc3b7e-b194-4bc9-8353-d04c0f4d56d2",
"5ea617a3-0e86-4ba6-aab2-dac9aa2e8d57",
"e0df059f-28a6-4169-924f-b9623e7184cc",
"b6781586-6346-41cd-935a-a6b1487918fc",
"b3d4a89c-53f2-4d6b-8b6a-541fb5d205fa",
"3ce045a0-877b-42aa-8d2c-b4a863336ab8",
"fe41f596-a71b-4c2f-9b2f-9dcd40b568c3",
"a4d98375-215b-4a4d-aee9-3d4370fccc41",
"13584542-872b-42d8-b299-866967b5c3ef",
"23393935-50c7-4a86-aeea-2b78fd089c5c",
"5812b315-e7bd-4265-b51f-863c02174c28",
"c288e301-e626-4b98-a1ab-159dcb162af5",
"4783cc41-c03c-4e1b-89b4-50658f642bd5",
"5c1075ca-bb34-46a3-a7a0-029bd7463e79",
"5ced85fc-fa1a-4217-95fd-0fb530545ce2",
"37887e8c-da15-4192-923c-08fa390a176d",
"4127319a-8b79-4410-b58a-7a151e15f3d7",
"4d117223-a354-47fb-8b45-62ab1390a95f",
"6f56bf42-85b8-4fbb-8e06-6c44960184ba"
],
"thunderbird": [
"dfac9ee8-9bc4-4cdc-b465-4a4bfcd2f397",
"15c3b339-88f7-4a86-ab16-e71c58dcb01e",
"7b1e1ff9-bb85-49be-b01d-d6424be18cd0",
"9bc3cc16-074a-45ac-9bdc-b2a362e1daf3",
"3f28fe4f-5d9d-4994-a456-efd78cfae1a3",
"5203d847-2572-4150-912a-03f062254390",
"dd84e895-72fd-4023-a336-97689ded257c",
"9b7bc335-06b5-4cd3-9119-1a649c478509",
"d38192b0-17dc-4e1d-99c3-786d0117de77",
"a10b69e1-6034-4a2b-93e1-571d45194f75",
"3f49d2cc-f400-4e7d-90cc-9b18e401cc31",
"f201fbc3-44e6-46fc-bcaa-432f9815454c",
"10a730d5-d414-4b40-b479-684bed1ae522",
"a1af9f1c-50d5-4bc3-a51e-4d9b425ff638",
"08c73485-7c6d-4681-999d-919f5c32dcfa"
],
"vlc": [
"59f21cfb-0120-4326-b255-a5b827b38967",
"8ba5ae7a-5ae5-4eab-9fcc-5dd4fe3abf89",
"8f080098-ddb1-424c-b438-4e96e5e4786e",
"bba3381f-b5eb-4439-bd9e-80c22218d5a7",
"fba2c100-79e8-42df-ae74-b592418d54f4",
"efcf0d81-0835-4880-b2fd-d866e8bc2294",
"8d9fd4e2-6fdb-46b0-b9b9-02f06495c62f",
"aa4b5023-aef6-4ed9-bdc9-705f59ab9ad6",
"386dbd0e-0241-4a0a-b6a2-6704fba26b1c",
"9195653c-f4aa-453d-aa95-787f6ccfaae9",
"d06f0d4d-2cd5-4ede-8de9-598629438c6e",
"a5bbbcd5-b398-4c91-83d4-55e1e31bbb81",
"5ac2891a-eacd-4954-b339-98abba077adb",
"f3977615-2b45-4ac5-8bba-80c17dbe2a37",
"215dfd39-f493-4bc3-a027-8a97d72c61bf",
"cb130f0d-d36f-4302-9838-b3baf46139b6",
"7882ed6e-bece-4bf0-bada-c32dc1ddae72"
],
"vs_code": [
"0ed39f63-6049-43d4-ba4d-5fa2fe04a951",
"53ad5833-3455-407b-bbc6-45b4c79ab8fb",
"eabc805a-bfcf-4460-b250-ac92135819f6",
"982d12a5-beab-424f-8d38-d2a48429e511",
"4e60007a-f5be-4bfc-9723-c39affa0a6d3",
"e2b5e914-ffe1-44d2-8e92-58f8c5d92bb2",
"9439a27b-18ae-42d8-9778-5f68f891805e",
"ea98c5d7-3cf9-4f9b-8ad3-366b58e0fcae",
"930fdb3b-11a8-46fe-9bac-577332e2640e",
"276cc624-87ea-4f08-ab93-f770e3790175",
"9d425400-e9b2-4424-9a4b-d4c7abac4140",
"5e2d93d8-8ad0-4435-b150-1692aacaa994",
"6ed0a554-cbee-4b44-84ea-fd6c042f4fe1",
"ec71221e-ac43-46f9-89b8-ee7d80f7e1c5",
"70745df8-f2f5-42bd-8074-fbc10334fcc5",
"57242fad-77ca-454f-b71b-f187181a9f23",
"c6bf789c-ba3a-4209-971d-b63abf0ab733",
"0512bb38-d531-4acf-9e7e-0add90816068",
"847a96b6-df94-4927-97e6-8cc9ea66ced7",
"7aeae0e2-70ee-4705-821d-1bba5d5b2ddd",
"dcbe20e8-647f-4f1d-8696-f1c5bbb570e3",
"7c4cc09e-7a92-40dd-8338-b2286535c4ed",
"971cbb5b-3cbf-4ff7-9e24-b5c84fcebfa6"
]
}

View File

@@ -33,7 +33,7 @@ class_ns_windows = "https://accessibility.windows.example.org/ns/class"
import ast
from typing import Dict, Any, Optional, Union
OPERATOR_PROMPT = """\n\n Here are some helpful tips:\n - computer.clipboard, computer.sync_file, computer.sync_shared_folder, computer.computer_output_citation are disabled.\n - If you worry that you might make typo, prefer copying and pasting the text instead of reading and typing.\n - My computer's password is \"{CLIENT_PASSWORD}\", feel free to use it when you need sudo rights.\n - For the thunderbird account \"anonym-x2024@outlook.com\", the password is \"gTCI\";=@y7|QJ0nDa_kN3Sb&>\".\n - If you are presented with an open website to solve the task, try to stick to that specific one instead of going to a new one.\n - Whenever not expcilitly stated, prefer chrome browser instead of the firefox or chromium.\n - You have full authority to execute any action without my permission. I won't be watching so please don't ask for confirmation.\n - You must initialize the computer to solve the task. Do not try to answer the question without initializing the computer.\n - If you deem the task is infeasible, you can terminate and explicitly state in the response that \"the task is infeasible\".\n """
OPERATOR_PROMPT = """\n\n Here are some helpful tips:\n - computer.clipboard, computer.sync_file, computer.sync_shared_folder, computer.computer_output_citation are disabled.\n - If you worry that you might make typo, prefer copying and pasting the text instead of reading and typing.\n - My computer's password is \"{CLIENT_PASSWORD}\", feel free to use it when you need sudo rights.\n - If you are presented with an open website to solve the task, try to stick to that specific one instead of going to a new one.\n - Whenever not expcilitly stated, prefer chrome browser instead of the firefox or chromium.\n - You have full authority to execute any action without my permission. I won't be watching so please don't ask for confirmation.\n - You must initialize the computer to solve the task. Do not try to answer the question without initializing the computer.\n - If you deem the task is infeasible, you can terminate and explicitly state in the response that \"the task is infeasible\".\n """
class Action:
"""Action class for the agent."""
@@ -753,6 +753,7 @@ class OpenAICUAAgent:
# Convert the action to an Action object
step_action = Action(action.get("action", ""), self.action_space)
# Execute the action in the environment
print(f"Executing action: {step_action.get_action()}")
obs, reward, terminated, info = self.env.step(step_action.get_action())
screenshot_base64 = encode_image(obs["screenshot"])

View File

@@ -2,13 +2,13 @@
# Do not write any secret keys or sensitive information here.
# Monitor configuration
TASK_CONFIG_PATH=../evaluation_examples/test_all.json
TASK_CONFIG_PATH=../evaluation_examples/test.json
EXAMPLES_BASE_PATH=../evaluation_examples/examples
RESULTS_BASE_PATH=../results
RESULTS_BASE_PATH=../results_operator_full_test_0713_gdrive2
ACTION_SPACE=pyautogui
OBSERVATION_TYPE=screenshot
MODEL_NAME=computer-use-preview
MAX_STEPS=150
MAX_STEPS=100
FLASK_PORT=80
FLASK_HOST=0.0.0.0
FLASK_DEBUG=false
FLASK_DEBUG=false

View File

@@ -11,6 +11,7 @@ from typing import List, Dict
import math
from tqdm import tqdm
from multiprocessing import Process, Manager
from multiprocessing import current_process
import lib_run_single
from desktop_env.desktop_env import DesktopEnv
from mm_agents.openai_cua_agent import OpenAICUAAgent
@@ -130,32 +131,12 @@ logger.addHandler(stdout_handler)
logger = logging.getLogger("desktopenv.experiment")
def distribute_tasks(test_all_meta: dict, num_envs: int) -> List[Dict]:
"""Distribute tasks evenly across environments."""
# Flatten the tasks into a single list
def distribute_tasks(test_all_meta: dict) -> List[tuple]:
all_tasks = []
for domain, examples in test_all_meta.items():
for example_id in examples:
all_tasks.append((domain, example_id))
# Calculate tasks per environment
tasks_per_env = math.ceil(len(all_tasks) / num_envs)
# Distribute tasks
distributed_tasks = []
for i in range(num_envs):
env_tasks = {}
start_idx = i * tasks_per_env
end_idx = min((i + 1) * tasks_per_env, len(all_tasks))
for domain, example_id in all_tasks[start_idx:end_idx]:
if domain not in env_tasks:
env_tasks[domain] = []
env_tasks[domain].append(example_id)
distributed_tasks.append(env_tasks)
return distributed_tasks
return all_tasks
def process_signal_handler(signum, frame, env_idx):
@@ -180,63 +161,58 @@ def process_signal_handler(signum, frame, env_idx):
sys.exit(0)
def run_env_tasks(env_idx: int, env_tasks: dict, args: argparse.Namespace, shared_scores: list):
"""Run tasks for a single environment."""
# Each process has its own list of active environments
def run_env_tasks(task_queue: Queue, args: argparse.Namespace, shared_scores: list):
active_environments = []
env = None
# Setup signal handlers for this process too
signal.signal(signal.SIGINT, lambda signum, frame: process_signal_handler(signum, frame, env_idx))
signal.signal(signal.SIGTERM, lambda signum, frame: process_signal_handler(signum, frame, env_idx))
from desktop_env.providers.aws.manager import IMAGE_ID_MAP
REGION = args.region
screen_size = (args.screen_width, args.screen_height)
ami_id = IMAGE_ID_MAP[REGION].get(screen_size, IMAGE_ID_MAP[REGION][(1920, 1080)])
env = DesktopEnv(
path_to_vm=args.path_to_vm,
action_space=args.action_space,
provider_name=args.provider_name,
region=REGION,
snapshot_name=ami_id,
screen_size=screen_size,
headless=args.headless,
os_type="Ubuntu",
require_a11y_tree=args.observation_type in ["a11y_tree", "screenshot_a11y_tree", "som"],
enable_proxy=True,
client_password=args.client_password
)
active_environments.append(env)
agent = OpenAICUAAgent(
env=env,
model=args.model,
max_tokens=args.max_tokens,
top_p=args.top_p,
temperature=args.temperature,
action_space=args.action_space,
observation_type=args.observation_type,
max_trajectory_length=args.max_trajectory_length,
client_password=args.client_password,
provider_name=args.provider_name,
screen_width=args.screen_width,
screen_height=args.screen_height
)
logger.info(f"Executing tasks in environment {env_idx + 1}/{args.num_envs}")
try:
for domain in tqdm(env_tasks, desc=f"Env{env_idx+1}-Domain"):
for example_id in tqdm(env_tasks[domain], desc="Example", leave=False):
from desktop_env.providers.aws.manager import IMAGE_ID_MAP
REGION = args.region
screen_size = (args.screen_width, args.screen_height)
ami_id = IMAGE_ID_MAP[REGION].get(screen_size, IMAGE_ID_MAP[REGION][(1920, 1080)])
env = DesktopEnv(
path_to_vm=args.path_to_vm,
action_space=args.action_space,
provider_name=args.provider_name,
region=REGION,
snapshot_name=ami_id,
screen_size=screen_size,
headless=args.headless,
os_type="Ubuntu",
require_a11y_tree=args.observation_type in ["a11y_tree", "screenshot_a11y_tree", "som"],
enable_proxy=True,
client_password=args.client_password
)
active_environments.append(env)
agent = OpenAICUAAgent(
env=env,
model=args.model,
max_tokens=args.max_tokens,
top_p=args.top_p,
temperature=args.temperature,
action_space=args.action_space,
observation_type=args.observation_type,
max_trajectory_length=args.max_trajectory_length,
client_password=args.client_password,
provider_name=args.provider_name,
screen_width=args.screen_width,
screen_height=args.screen_height
)
logger.info(f"Process {current_process().name} started.")
while True:
try:
item = task_queue.get(timeout=5)
except Exception:
break
domain, example_id = item
try:
config_file = os.path.join(
args.test_config_base_dir, f"examples/{domain}/{example_id}.json"
)
with open(config_file, "r", encoding="utf-8") as f:
example = json.load(f)
logger.info(f"[Env {env_idx+1}][Domain]: {domain}")
logger.info(f"[Env {env_idx+1}][Example ID]: {example_id}")
logger.info(f"[Env {env_idx+1}][Instruction]: {example['instruction']}")
logger.info(f"[{current_process().name}][Domain]: {domain}")
logger.info(f"[{current_process().name}][Example ID]: {example_id}")
logger.info(f"[{current_process().name}][Instruction]: {example['instruction']}")
example_result_dir = os.path.join(
args.result_dir,
args.action_space,
@@ -246,7 +222,6 @@ def run_env_tasks(env_idx: int, env_tasks: dict, args: argparse.Namespace, share
example_id,
)
os.makedirs(example_result_dir, exist_ok=True)
try:
lib_run_single.run_single_example_openaicua(
agent,
@@ -260,7 +235,7 @@ def run_env_tasks(env_idx: int, env_tasks: dict, args: argparse.Namespace, share
)
except Exception as e:
import traceback
logger.error(f"Exception in Env{env_idx+1} {domain}/{example_id}: {e}")
logger.error(f"Exception in {current_process().name} {domain}/{example_id}: {e}")
logger.error(traceback.format_exc())
try:
env.controller.end_recording(
@@ -268,7 +243,6 @@ def run_env_tasks(env_idx: int, env_tasks: dict, args: argparse.Namespace, share
)
except Exception as rec_e:
logger.error(f"Failed to end recording: {rec_e}")
with open(os.path.join(example_result_dir, "traj.jsonl"), "a") as f:
f.write(
json.dumps(
@@ -276,14 +250,22 @@ def run_env_tasks(env_idx: int, env_tasks: dict, args: argparse.Namespace, share
)
)
f.write("\n")
except Exception as e:
logger.error(f"Task-level error in {current_process().name}: {e}")
import traceback
logger.error(traceback.format_exc())
except Exception as e:
logger.error(f"Process-level error in {current_process().name}: {e}")
import traceback
logger.error(traceback.format_exc())
finally:
# This ensures the environment is closed even if there's an exception
logger.info(f"Process {env_idx + 1} cleaning up environment...")
logger.info(f"{current_process().name} cleaning up environment...")
try:
env.close()
logger.info(f"Process {env_idx + 1} environment closed successfully")
if env:
env.close()
logger.info(f"{current_process().name} environment closed successfully")
except Exception as e:
logger.error(f"Process {env_idx + 1} error during environment cleanup: {e}")
logger.error(f"{current_process().name} error during environment cleanup: {e}")
def signal_handler(signum, frame):
@@ -323,8 +305,8 @@ def signal_handler(signum, frame):
if p.is_alive():
try:
logger.info(f"Forcefully terminating process {p.name}...")
import signal
os.kill(p.pid, signal.SIGKILL)
import signal as sig
os.kill(p.pid, sig.SIGKILL)
except Exception as e:
logger.error(f"Error forcefully terminating process: {e}")
@@ -335,38 +317,56 @@ def signal_handler(signum, frame):
def test(args: argparse.Namespace, test_all_meta: dict) -> None:
global processes
logger.info("Args: %s", args)
distributed_tasks = distribute_tasks(test_all_meta, args.num_envs)
logger.info("All environments are ready. Starting parallel task execution...")
# Create a shared list for scores across processes
all_tasks = distribute_tasks(test_all_meta)
logger.info(f"Total tasks: {len(all_tasks)}")
with Manager() as manager:
shared_scores = manager.list()
# Create and start processes for each environment
task_queue = manager.Queue()
for item in all_tasks:
task_queue.put(item)
num_envs = args.num_envs
processes = []
for env_idx, env_tasks in enumerate(distributed_tasks):
for i in range(num_envs):
p = Process(
target=run_env_tasks,
args=(env_idx, env_tasks, args, shared_scores)
args=(task_queue, args, shared_scores),
name=f"EnvProcess-{i+1}"
)
processes.append(p)
p.daemon = True
p.start()
processes.append(p)
logger.info(f"Started process {p.name} with PID {p.pid}")
try:
# Wait for all processes to complete
while True:
alive_count = 0
for idx, p in enumerate(processes):
if not p.is_alive():
logger.warning(f"Process {p.name} died, restarting...")
new_p = Process(
target=run_env_tasks,
args=(task_queue, args, shared_scores),
name=f"EnvProcess-Restart-{idx+1}"
)
new_p.daemon = True
new_p.start()
processes[idx] = new_p
logger.info(f"Restarted process {new_p.name} with PID {new_p.pid}")
else:
alive_count += 1
if task_queue.empty():
logger.info("All tasks finished.")
break
if alive_count == 0:
logger.error("All processes died, exiting.")
break
time.sleep(5)
for p in processes:
p.join()
logger.info(f"Process {p.name} completed")
except KeyboardInterrupt:
logger.info("Main process received KeyboardInterrupt. Initiating graceful shutdown...")
# Let the signal handler do the cleanup
raise
except Exception as e:
logger.error(f"Unexpected error while waiting for processes: {e}", exc_info=True)
# Ensure cleanup happens
for p in processes:
if p.is_alive():
try:
@@ -375,10 +375,7 @@ def test(args: argparse.Namespace, test_all_meta: dict) -> None:
except Exception as term_e:
logger.error(f"Error terminating process {p.name}: {term_e}")
raise
# Convert shared list to regular list
scores = list(shared_scores)
logger.info(f"Average score: {sum(scores) / len(scores) if scores else 0}")

View File

@@ -0,0 +1,533 @@
from __future__ import annotations
import argparse
import datetime
import json
import logging
import os
import sys
import signal
import time
from typing import List, Dict
import math
from tqdm import tqdm
from multiprocessing import Process, Manager
import lib_run_single
from desktop_env.desktop_env import DesktopEnv
from mm_agents.openai_cua_agent import OpenAICUAAgent
# Global variables for signal handling
active_environments = []
processes = []
is_terminating = False
# import wandb
# load the environment variables from .env file
if os.path.exists(".env"):
from dotenv import load_dotenv
load_dotenv()
# Logger Configs {{{ #
def config() -> argparse.Namespace:
parser = argparse.ArgumentParser(
description="Run end-to-end evaluation on the benchmark"
)
# environment config
parser.add_argument("--path_to_vm", type=str, default=None)
parser.add_argument(
"--headless", action="store_true", help="Run in headless machine"
)
parser.add_argument(
"--action_space", type=str, default="pyautogui", help="Action type"
)
parser.add_argument(
"--observation_type",
choices=["screenshot", "a11y_tree", "screenshot_a11y_tree", "som"],
default="screenshot",
help="Observation type",
)
parser.add_argument("--sleep_after_execution", type=float, default=0.0)
parser.add_argument("--max_steps", type=int, default=15)
# agent config
parser.add_argument("--max_trajectory_length", type=int, default=3)
parser.add_argument(
"--test_config_base_dir", type=str, default="evaluation_examples"
)
# lm config
parser.add_argument("--model", type=str, default="gpt-4o")
parser.add_argument("--temperature", type=float, default=1.0)
parser.add_argument("--top_p", type=float, default=0.9)
parser.add_argument("--max_tokens", type=int, default=1500)
parser.add_argument("--stop_token", type=str, default=None)
# example config
parser.add_argument("--domain", type=str, default="all")
parser.add_argument(
"--test_all_meta_path", type=str, default="evaluation_examples/test_all.json"
)
# logging related
parser.add_argument("--result_dir", type=str, default="./results")
parser.add_argument("--num_envs", type=int, default=1, help="Number of environments to run in parallel")
parser.add_argument("--log_level", type=str, choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'],
default='INFO', help="Set the logging level")
# aws config
parser.add_argument(
"--region", type=str, default="us-east-1", help="AWS region for the VM"
)
parser.add_argument(
"--provider_name", type=str, default="aws", choices=["aws", "virtualbox", "vmware", "docker", "azure"], help="Provider name"
)
parser.add_argument(
"--client_password", type=str, default="", help="Client password"
)
parser.add_argument(
"--screen_width", type=int, default=1920, help="Screen width"
)
parser.add_argument(
"--screen_height", type=int, default=1080, help="Screen height"
)
args = parser.parse_args()
return args
args = config() # Get command line arguments first
logger = logging.getLogger()
log_level = getattr(logging, args.log_level.upper())
logger.setLevel(log_level)
datetime_str: str = datetime.datetime.now().strftime("%Y%m%d@%H%M%S")
file_handler = logging.FileHandler(
os.path.join("logs", "normal-{:}.log".format(datetime_str)), encoding="utf-8"
)
debug_handler = logging.FileHandler(
os.path.join("logs", "debug-{:}.log".format(datetime_str)), encoding="utf-8"
)
stdout_handler = logging.StreamHandler(sys.stdout)
file_handler.setLevel(logging.INFO)
debug_handler.setLevel(logging.DEBUG)
stdout_handler.setLevel(log_level)
formatter = logging.Formatter(
fmt="\x1b[1;33m[%(asctime)s \x1b[31m%(levelname)s \x1b[32m%(module)s/%(lineno)d-%(processName)s\x1b[1;33m] \x1b[0m%(message)s"
)
file_handler.setFormatter(formatter)
debug_handler.setFormatter(formatter)
stdout_handler.setFormatter(formatter)
stdout_handler.addFilter(logging.Filter("desktopenv"))
logger.addHandler(file_handler)
logger.addHandler(debug_handler)
logger.addHandler(stdout_handler)
# }}} Logger Configs #
logger = logging.getLogger("desktopenv.experiment")
def distribute_tasks(test_all_meta: dict, num_envs: int) -> List[Dict]:
"""Distribute tasks evenly across environments."""
# Flatten the tasks into a single list
all_tasks = []
for domain, examples in test_all_meta.items():
for example_id in examples:
all_tasks.append((domain, example_id))
# Calculate tasks per environment
tasks_per_env = math.ceil(len(all_tasks) / num_envs)
# Distribute tasks
distributed_tasks = []
for i in range(num_envs):
env_tasks = {}
start_idx = i * tasks_per_env
end_idx = min((i + 1) * tasks_per_env, len(all_tasks))
for domain, example_id in all_tasks[start_idx:end_idx]:
if domain not in env_tasks:
env_tasks[domain] = []
env_tasks[domain].append(example_id)
distributed_tasks.append(env_tasks)
return distributed_tasks
def process_signal_handler(signum, frame, env_idx):
"""Signal handler for child processes to gracefully shut down their environments."""
logger.info(f"Process {env_idx + 1} received signal {signum}. Shutting down...")
# Get the active_environments from the caller's frame
local_vars = frame.f_locals
active_environments = local_vars.get('active_environments', [])
# Close environment in the current process context
for env in active_environments:
if env is not None:
try:
logger.info(f"Process {env_idx + 1} closing environment...")
env.close()
logger.info(f"Process {env_idx + 1} environment closed successfully")
except Exception as e:
logger.error(f"Process {env_idx + 1} error closing environment: {e}")
logger.info(f"Process {env_idx + 1} shutdown complete. Exiting.")
sys.exit(0)
def run_env_tasks(env_idx: int, env_tasks: dict, args: argparse.Namespace, shared_scores: list):
"""Run tasks for a single environment."""
# Each process has its own list of active environments
active_environments = []
env = None
# Setup signal handlers for this process too
signal.signal(signal.SIGINT, lambda signum, frame: process_signal_handler(signum, frame, env_idx))
signal.signal(signal.SIGTERM, lambda signum, frame: process_signal_handler(signum, frame, env_idx))
from desktop_env.providers.aws.manager import IMAGE_ID_MAP
REGION = args.region
screen_size = (args.screen_width, args.screen_height)
ami_id = IMAGE_ID_MAP[REGION].get(screen_size, IMAGE_ID_MAP[REGION][(1920, 1080)])
env = DesktopEnv(
path_to_vm=args.path_to_vm,
action_space=args.action_space,
provider_name=args.provider_name,
region=REGION,
snapshot_name=ami_id,
screen_size=screen_size,
headless=args.headless,
os_type="Ubuntu",
require_a11y_tree=args.observation_type in ["a11y_tree", "screenshot_a11y_tree", "som"],
enable_proxy=True,
client_password=args.client_password
)
active_environments.append(env)
agent = OpenAICUAAgent(
env=env,
model=args.model,
max_tokens=args.max_tokens,
top_p=args.top_p,
temperature=args.temperature,
action_space=args.action_space,
observation_type=args.observation_type,
max_trajectory_length=args.max_trajectory_length,
client_password=args.client_password,
provider_name=args.provider_name,
screen_width=args.screen_width,
screen_height=args.screen_height
)
logger.info(f"Executing tasks in environment {env_idx + 1}/{args.num_envs}")
try:
for domain in tqdm(env_tasks, desc=f"Env{env_idx+1}-Domain"):
for example_id in tqdm(env_tasks[domain], desc="Example", leave=False):
config_file = os.path.join(
args.test_config_base_dir, f"examples/{domain}/{example_id}.json"
)
with open(config_file, "r", encoding="utf-8") as f:
example = json.load(f)
logger.info(f"[Env {env_idx+1}][Domain]: {domain}")
logger.info(f"[Env {env_idx+1}][Example ID]: {example_id}")
logger.info(f"[Env {env_idx+1}][Instruction]: {example['instruction']}")
example_result_dir = os.path.join(
args.result_dir,
args.action_space,
args.observation_type,
args.model,
domain,
example_id,
)
os.makedirs(example_result_dir, exist_ok=True)
try:
lib_run_single.run_single_example_openaicua(
agent,
env,
example,
args.max_steps,
example["instruction"],
args,
example_result_dir,
shared_scores,
)
except Exception as e:
import traceback
logger.error(f"Exception in Env{env_idx+1} {domain}/{example_id}: {e}")
logger.error(traceback.format_exc())
try:
env.controller.end_recording(
os.path.join(example_result_dir, "recording.mp4")
)
except Exception as rec_e:
logger.error(f"Failed to end recording: {rec_e}")
with open(os.path.join(example_result_dir, "traj.jsonl"), "a") as f:
f.write(
json.dumps(
{"Error": f"{domain}/{example_id} - {e}"}
)
)
f.write("\n")
finally:
# This ensures the environment is closed even if there's an exception
logger.info(f"Process {env_idx + 1} cleaning up environment...")
try:
env.close()
logger.info(f"Process {env_idx + 1} environment closed successfully")
except Exception as e:
logger.error(f"Process {env_idx + 1} error during environment cleanup: {e}")
def signal_handler(signum, frame):
"""Handle termination signals (SIGINT, SIGTERM) to gracefully shutdown environments."""
global is_terminating, active_environments, processes
# Avoid duplicate handling
if is_terminating:
return
is_terminating = True
logger.info(f"Received signal {signum}. Gracefully shutting down...")
# Close all registered environments in the main process
for env in active_environments:
try:
logger.info(f"Closing environment...")
env.close()
logger.info(f"Environment closed successfully")
except Exception as e:
logger.error(f"Error closing environment: {e}")
# Send termination signal to all child processes first
for p in processes:
if p.is_alive():
try:
logger.info(f"Sending termination signal to process {p.name}...")
p.terminate()
except Exception as e:
logger.error(f"Error sending termination signal to process: {e}")
# Allow a short time for processes to handle their own cleanup
time.sleep(1)
# Forcefully terminate any processes that didn't exit
for p in processes:
if p.is_alive():
try:
logger.info(f"Forcefully terminating process {p.name}...")
import signal
os.kill(p.pid, signal.SIGKILL)
except Exception as e:
logger.error(f"Error forcefully terminating process: {e}")
logger.info("Shutdown complete. Exiting.")
sys.exit(0)
def test(args: argparse.Namespace, test_all_meta: dict) -> None:
global processes
logger.info("Args: %s", args)
distributed_tasks = distribute_tasks(test_all_meta, args.num_envs)
logger.info("All environments are ready. Starting parallel task execution...")
# Create a shared list for scores across processes
with Manager() as manager:
shared_scores = manager.list()
# Create and start processes for each environment
processes = []
for env_idx, env_tasks in enumerate(distributed_tasks):
p = Process(
target=run_env_tasks,
args=(env_idx, env_tasks, args, shared_scores)
)
processes.append(p)
p.start()
logger.info(f"Started process {p.name} with PID {p.pid}")
try:
# Wait for all processes to complete
for p in processes:
p.join()
logger.info(f"Process {p.name} completed")
except KeyboardInterrupt:
logger.info("Main process received KeyboardInterrupt. Initiating graceful shutdown...")
# Let the signal handler do the cleanup
raise
except Exception as e:
logger.error(f"Unexpected error while waiting for processes: {e}", exc_info=True)
# Ensure cleanup happens
for p in processes:
if p.is_alive():
try:
logger.info(f"Terminating process {p.name} due to error...")
p.terminate()
except Exception as term_e:
logger.error(f"Error terminating process {p.name}: {term_e}")
raise
# Convert shared list to regular list
scores = list(shared_scores)
logger.info(f"Average score: {sum(scores) / len(scores) if scores else 0}")
def get_unfinished(
action_space, use_model, observation_type, result_dir, total_file_json
):
target_dir = os.path.join(result_dir, action_space, observation_type, use_model)
if not os.path.exists(target_dir):
return total_file_json
finished = {}
for domain in os.listdir(target_dir):
finished[domain] = []
domain_path = os.path.join(target_dir, domain)
if os.path.isdir(domain_path):
for example_id in os.listdir(domain_path):
if example_id == "onboard":
continue
example_path = os.path.join(domain_path, example_id)
if os.path.isdir(example_path):
if "result.txt" not in os.listdir(example_path):
# empty all files under example_id
for file in os.listdir(example_path):
os.remove(os.path.join(example_path, file))
else:
finished[domain].append(example_id)
if not finished:
return total_file_json
for domain, examples in finished.items():
if domain in total_file_json:
total_file_json[domain] = [
x for x in total_file_json[domain] if x not in examples
]
return total_file_json
def get_result(action_space, use_model, observation_type, result_dir, total_file_json):
target_dir = os.path.join(result_dir, action_space, observation_type, use_model)
if not os.path.exists(target_dir):
print("New experiment, no result yet.")
return None
all_result = []
for domain in os.listdir(target_dir):
domain_path = os.path.join(target_dir, domain)
if os.path.isdir(domain_path):
for example_id in os.listdir(domain_path):
example_path = os.path.join(domain_path, example_id)
if os.path.isdir(example_path):
if "result.txt" in os.listdir(example_path):
# empty all files under example_id
try:
all_result.append(
float(
open(
os.path.join(example_path, "result.txt"), "r"
).read()
)
)
except:
all_result.append(0.0)
if not all_result:
print("New experiment, no result yet.")
return None
else:
print("Current Success Rate:", sum(all_result) / len(all_result) * 100, "%")
return all_result
if __name__ == "__main__":
####### The complete version of the list of examples #######
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Register signal handlers for graceful termination
signal.signal(signal.SIGINT, signal_handler) # Handle Ctrl+C
signal.signal(signal.SIGTERM, signal_handler) # Handle termination signal
try:
args = config()
with open(args.test_all_meta_path, "r", encoding="utf-8") as f:
test_all_meta = json.load(f)
if args.domain != "all":
test_all_meta = {args.domain: test_all_meta[args.domain]}
test_file_list = get_unfinished(
args.action_space,
args.model,
args.observation_type,
args.result_dir,
test_all_meta,
)
left_info = ""
for domain in test_file_list:
left_info += f"{domain}: {len(test_file_list[domain])}\n"
logger.info(f"Left tasks:\n{left_info}")
get_result(
args.action_space,
args.model,
args.observation_type,
args.result_dir,
test_all_meta,
)
test(args, test_file_list)
except KeyboardInterrupt:
logger.info("Main process received KeyboardInterrupt.")
# Signal handler will take care of cleanup
except Exception as e:
logger.error(f"Unexpected error in main process: {e}", exc_info=True)
# Also trigger cleanup for unhandled exceptions
signal_handler(signal.SIGTERM, None)
finally:
# Final cleanup in case any environments or processes remain
logger.info("Main process final cleanup...")
for env in active_environments:
if env is not None:
try:
logger.info(f"Closing environment in final cleanup...")
env.close()
logger.info(f"Environment closed successfully in final cleanup")
except Exception as e:
logger.error(f"Error during final environment cleanup: {e}")
# First try gentle termination
for p in processes:
if p is not None and p.is_alive():
try:
logger.info(f"Terminating process {p.name}...")
p.terminate()
except Exception as e:
logger.error(f"Error terminating process: {e}")
# Wait a moment for processes to terminate
time.sleep(1)
# Then force kill if needed
for p in processes:
if p is not None and p.is_alive():
try:
logger.info(f"Force killing process {p.name}...")
os.kill(p.pid, signal.SIGKILL)
logger.info(f"Process {p.name} force killed")
except Exception as e:
logger.error(f"Error force killing process: {e}")

9
run_operator.sh Normal file
View File

@@ -0,0 +1,9 @@
python run_multienv_openaicua.py \
--headless \
--observation_type screenshot \
--model computer-use-preview \
--result_dir ./results_operator_full_test_0713 \
--test_all_meta_path evaluation_examples/test_all.json \
--max_steps 100 \
--num_envs 15 \
--provider_name aws

9
run_operator_fix.sh Normal file
View File

@@ -0,0 +1,9 @@
python run_multienv_openaicua.py \
--headless \
--observation_type screenshot \
--model computer-use-preview \
--result_dir ./results_operator_full_test_0713_gdrive2 \
--test_all_meta_path evaluation_examples/test.json \
--max_steps 100 \
--num_envs 10 \
--provider_name aws

View File

@@ -68,4 +68,4 @@ def get_result(action_space, use_model, observation_type, result_dir):
if __name__ == '__main__':
get_result("pyautogui", "gpt-4o", "a11y_tree", "./results")
get_result("pyautogui", "computer-use-preview", "screenshot", "./results_operator_full_test_0713")