Implement heuristic cutting on the accessibility tree to get the important nodes; Finish accessibility tree text agent
This commit is contained in:
@@ -83,6 +83,8 @@ class PythonController:
|
||||
"""
|
||||
Executes an action on the server computer.
|
||||
"""
|
||||
if action in ['WAIT', 'FAIL', 'DONE']:
|
||||
return
|
||||
|
||||
action_type = action["action_type"]
|
||||
parameters = action["parameters"] if "parameters" in action else {}
|
||||
|
||||
@@ -111,17 +111,17 @@ def run_one_example(example, agent, max_steps=10, example_trajectory_dir="exp_tr
|
||||
if __name__ == "__main__":
|
||||
action_space = "pyautogui"
|
||||
example_class = "chrome"
|
||||
example_id = "bb5e4c0d-f964-439c-97b6-bdb9747de3f4"
|
||||
example_id = "06fe7178-4491-4589-810f-2e2bc9502122"
|
||||
|
||||
with open(f"evaluation_examples/examples/{example_class}/{example_id}.json", "r") as f:
|
||||
example = json.load(f)
|
||||
example["snapshot"] = "exp_setup2"
|
||||
example["snapshot"] = "exp_setup4"
|
||||
|
||||
# api_key = os.environ.get("OPENAI_API_KEY")
|
||||
# agent = GPT4v_Agent(api_key=api_key, instruction=example['instruction'], action_space=action_space)
|
||||
api_key = os.environ.get("OPENAI_API_KEY")
|
||||
agent = GPT4_Agent(api_key=api_key, instruction=example['instruction'], action_space=action_space)
|
||||
|
||||
api_key = os.environ.get("GENAI_API_KEY")
|
||||
agent = GeminiPro_Agent(api_key=api_key, instruction=example['instruction'], action_space=action_space)
|
||||
# api_key = os.environ.get("GENAI_API_KEY")
|
||||
# agent = GeminiPro_Agent(api_key=api_key, instruction=example['instruction'], action_space=action_space)
|
||||
|
||||
root_trajectory_dir = "exp_trajectory"
|
||||
|
||||
|
||||
0
mm_agents/accessibility_tree_wrap/__init__.py
Normal file
0
mm_agents/accessibility_tree_wrap/__init__.py
Normal file
115
mm_agents/accessibility_tree_wrap/heuristic_retrieve.py
Normal file
115
mm_agents/accessibility_tree_wrap/heuristic_retrieve.py
Normal file
@@ -0,0 +1,115 @@
|
||||
import xml.etree.ElementTree as ET
|
||||
|
||||
from PIL import Image, ImageDraw, ImageFont
|
||||
|
||||
|
||||
def find_leaf_nodes(xml_file_path):
|
||||
root = ET.fromstring(xml_file_path)
|
||||
|
||||
# Recursive function to traverse the XML tree and collect leaf nodes
|
||||
def collect_leaf_nodes(node, leaf_nodes):
|
||||
# If the node has no children, it is a leaf node, add it to the list
|
||||
if not list(node):
|
||||
leaf_nodes.append(node)
|
||||
# If the node has children, recurse on each child
|
||||
for child in node:
|
||||
collect_leaf_nodes(child, leaf_nodes)
|
||||
|
||||
# List to hold all leaf nodes
|
||||
leaf_nodes = []
|
||||
collect_leaf_nodes(root, leaf_nodes)
|
||||
return leaf_nodes
|
||||
|
||||
|
||||
def filter_nodes(nodes):
|
||||
filtered_nodes = []
|
||||
|
||||
for node in nodes:
|
||||
if not node.get('{uri:deskat:state.at-spi.gnome.org}visible', None) == 'true':
|
||||
# Not visible
|
||||
continue
|
||||
# Check if the node is a 'panel'
|
||||
if node.tag == 'panel':
|
||||
# Check if the 'panel' represents an interactive element
|
||||
# or if it has certain attributes that are of interest.
|
||||
# Add your conditions here...
|
||||
if node.get('{uri:deskat:state.at-spi.gnome.org}focusable', 'false') == 'true':
|
||||
filtered_nodes.append(node)
|
||||
elif node.tag == 'text':
|
||||
continue
|
||||
else:
|
||||
coords = tuple(map(int, node.attrib.get('{uri:deskat:component.at-spi.gnome.org}screencoord').strip('()').split(', ')))
|
||||
if coords[0] < 0 or coords[1] < 0:
|
||||
continue
|
||||
size = tuple(map(int, node.attrib.get('{uri:deskat:component.at-spi.gnome.org}size').strip('()').split(', ')))
|
||||
if size[0] <= 0 or size[1] <= 0:
|
||||
continue
|
||||
# Node is not a 'panel', add to the list.
|
||||
filtered_nodes.append(node)
|
||||
|
||||
return filtered_nodes
|
||||
|
||||
|
||||
def draw_bounding_boxes(nodes, image_file_path, output_image_file_path):
|
||||
# Load the screenshot image
|
||||
image = Image.open(image_file_path)
|
||||
draw = ImageDraw.Draw(image)
|
||||
|
||||
# Optional: Load a font. If you don't specify a font, a default one will be used.
|
||||
try:
|
||||
# Adjust the path to the font file you have or use a default one
|
||||
font = ImageFont.truetype("arial.ttf", 20)
|
||||
except IOError:
|
||||
# Fallback to a basic font if the specified font can't be loaded
|
||||
font = ImageFont.load_default()
|
||||
|
||||
# Loop over all the visible nodes and draw their bounding boxes
|
||||
for index, _node in enumerate(nodes):
|
||||
coords_str = _node.attrib.get('{uri:deskat:component.at-spi.gnome.org}screencoord')
|
||||
size_str = _node.attrib.get('{uri:deskat:component.at-spi.gnome.org}size')
|
||||
|
||||
if coords_str and size_str:
|
||||
try:
|
||||
# Parse the coordinates and size from the strings
|
||||
coords = tuple(map(int, coords_str.strip('()').split(', ')))
|
||||
size = tuple(map(int, size_str.strip('()').split(', ')))
|
||||
|
||||
# Check for negative sizes
|
||||
if size[0] <= 0 or size[1] <= 0:
|
||||
raise ValueError(f"Size must be positive, got: {size}")
|
||||
|
||||
# Calculate the bottom-right corner of the bounding box
|
||||
bottom_right = (coords[0] + size[0], coords[1] + size[1])
|
||||
|
||||
# Check that bottom_right > coords (x1 >= x0, y1 >= y0)
|
||||
if bottom_right[0] < coords[0] or bottom_right[1] < coords[1]:
|
||||
raise ValueError(f"Invalid coordinates or size, coords: {coords}, size: {size}")
|
||||
|
||||
# Draw rectangle on image
|
||||
draw.rectangle([coords, bottom_right], outline="red", width=2)
|
||||
|
||||
# Draw index number at the bottom left of the bounding box
|
||||
text_position = (coords[0], bottom_right[1]) # Adjust Y to be above the bottom right
|
||||
draw.text(text_position, str(index), font=font, fill="purple")
|
||||
|
||||
except ValueError as e:
|
||||
pass
|
||||
|
||||
# Save the result
|
||||
image.save(output_image_file_path)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
with open('chrome_desktop_example_1.xml', 'r', encoding='utf-8') as f:
|
||||
xml_string = f.read()
|
||||
image_file_path = 'screenshot.png' # Replace with your actual screenshot image path
|
||||
output_image_file_path = 'annotated_screenshot.png' # Replace with your desired output image path
|
||||
|
||||
leaf_nodes = find_leaf_nodes(xml_string)
|
||||
filtered_nodes = filter_nodes(leaf_nodes)
|
||||
print(f"Found {len(filtered_nodes)} filtered nodes")
|
||||
|
||||
for node in filtered_nodes:
|
||||
print(node.tag, node.attrib)
|
||||
|
||||
draw_bounding_boxes(filtered_nodes, image_file_path, output_image_file_path)
|
||||
@@ -1,11 +1,12 @@
|
||||
import time
|
||||
from typing import Dict, List
|
||||
|
||||
import PIL.Image
|
||||
import google.generativeai as genai
|
||||
|
||||
from mm_agents.gpt_4v_agent import parse_actions_from_string, parse_code_from_string
|
||||
from mm_agents.accessibility_tree_wrap.heuristic_retrieve import find_leaf_nodes, filter_nodes
|
||||
from mm_agents.gpt_4_prompt_action import SYS_PROMPT as SYS_PROMPT_ACTION
|
||||
from mm_agents.gpt_4_prompt_code import SYS_PROMPT as SYS_PROMPT_CODE
|
||||
from mm_agents.gpt_4v_agent import parse_actions_from_string, parse_code_from_string
|
||||
|
||||
|
||||
class GeminiPro_Agent:
|
||||
@@ -36,9 +37,25 @@ class GeminiPro_Agent:
|
||||
Only support single-round conversation, only fill-in the last desktop screenshot.
|
||||
"""
|
||||
accessibility_tree = obs["accessibility_tree"]
|
||||
|
||||
leaf_nodes = find_leaf_nodes(accessibility_tree)
|
||||
filtered_nodes = filter_nodes(leaf_nodes)
|
||||
|
||||
linearized_accessibility_tree = "tag\ttext\tposition\tsize\n"
|
||||
# Linearize the accessibility tree nodes into a table format
|
||||
|
||||
for node in filtered_nodes:
|
||||
linearized_accessibility_tree += node.tag + "\t"
|
||||
linearized_accessibility_tree += node.attrib.get('name') + "\t"
|
||||
linearized_accessibility_tree += node.attrib.get(
|
||||
'{uri:deskat:component.at-spi.gnome.org}screencoord') + "\t"
|
||||
linearized_accessibility_tree += node.attrib.get('{uri:deskat:component.at-spi.gnome.org}size') + "\n"
|
||||
|
||||
self.trajectory.append({
|
||||
"role": "user",
|
||||
"parts": ["Given the XML format of accessibility tree as below:\n{}\nWhat's the next step that you will do to help with the task?".format(accessibility_tree)]
|
||||
"parts": [
|
||||
"Given the XML format of accessibility tree (convert and formatted into table) as below:\n{}\nWhat's the next step that you will do to help with the task?".format(
|
||||
linearized_accessibility_tree)]
|
||||
})
|
||||
|
||||
# todo: Remove this step once the Gemini supports multi-round conversation
|
||||
@@ -71,13 +88,20 @@ class GeminiPro_Agent:
|
||||
|
||||
print("Trajectory:", traj_to_show)
|
||||
|
||||
response = self.model.generate_content(
|
||||
message_for_gemini,
|
||||
generation_config={
|
||||
"max_output_tokens": self.max_tokens,
|
||||
"temperature": self.temperature
|
||||
}
|
||||
)
|
||||
while True:
|
||||
try:
|
||||
response = self.model.generate_content(
|
||||
message_for_gemini,
|
||||
generation_config={
|
||||
"max_output_tokens": self.max_tokens,
|
||||
"temperature": self.temperature
|
||||
}
|
||||
)
|
||||
break
|
||||
except:
|
||||
print("Failed to generate response, retrying...")
|
||||
time.sleep(5)
|
||||
pass
|
||||
|
||||
try:
|
||||
response_text = response.text
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
import time
|
||||
from typing import Dict, List
|
||||
|
||||
import PIL.Image
|
||||
@@ -66,13 +67,20 @@ class GeminiProV_Agent:
|
||||
|
||||
print("Trajectory:", traj_to_show)
|
||||
|
||||
response = self.model.generate_content(
|
||||
message_for_gemini,
|
||||
generation_config={
|
||||
"max_output_tokens": self.max_tokens,
|
||||
"temperature": self.temperature
|
||||
}
|
||||
)
|
||||
while True:
|
||||
try:
|
||||
response = self.model.generate_content(
|
||||
message_for_gemini,
|
||||
generation_config={
|
||||
"max_output_tokens": self.max_tokens,
|
||||
"temperature": self.temperature
|
||||
}
|
||||
)
|
||||
break
|
||||
except:
|
||||
print("Failed to generate response, retrying...")
|
||||
time.sleep(5)
|
||||
pass
|
||||
|
||||
try:
|
||||
response_text = response.text
|
||||
|
||||
@@ -1,10 +1,12 @@
|
||||
import base64
|
||||
import json
|
||||
import re
|
||||
import time
|
||||
from typing import Dict, List
|
||||
|
||||
import requests
|
||||
|
||||
from mm_agents.accessibility_tree_wrap.heuristic_retrieve import find_leaf_nodes, filter_nodes
|
||||
from mm_agents.gpt_4_prompt_action import SYS_PROMPT as SYS_PROMPT_ACTION
|
||||
from mm_agents.gpt_4_prompt_code import SYS_PROMPT as SYS_PROMPT_CODE
|
||||
|
||||
@@ -81,9 +83,9 @@ class GPT4_Agent:
|
||||
{
|
||||
"type": "text",
|
||||
"text": {
|
||||
"computer_13": SYS_PROMPT_ACTION,
|
||||
"pyautogui": SYS_PROMPT_CODE
|
||||
}[action_space] + "\nHere is the instruction for the task: {}".format(self.instruction)
|
||||
"computer_13": SYS_PROMPT_ACTION,
|
||||
"pyautogui": SYS_PROMPT_CODE
|
||||
}[action_space] + "\nHere is the instruction for the task: {}".format(self.instruction)
|
||||
},
|
||||
]
|
||||
}
|
||||
@@ -94,12 +96,27 @@ class GPT4_Agent:
|
||||
Predict the next action(s) based on the current observation.
|
||||
"""
|
||||
accessibility_tree = obs["accessibility_tree"]
|
||||
|
||||
leaf_nodes = find_leaf_nodes(accessibility_tree)
|
||||
filtered_nodes = filter_nodes(leaf_nodes)
|
||||
|
||||
linearized_accessibility_tree = "tag\ttext\tposition\tsize\n"
|
||||
# Linearize the accessibility tree nodes into a table format
|
||||
|
||||
for node in filtered_nodes:
|
||||
linearized_accessibility_tree += node.tag + "\t"
|
||||
linearized_accessibility_tree += node.attrib.get('name') + "\t"
|
||||
linearized_accessibility_tree += node.attrib.get(
|
||||
'{uri:deskat:component.at-spi.gnome.org}screencoord') + "\t"
|
||||
linearized_accessibility_tree += node.attrib.get('{uri:deskat:component.at-spi.gnome.org}size') + "\n"
|
||||
|
||||
self.trajectory.append({
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "Given the XML format of accessibility tree as below:\n{}\nWhat's the next step that you will do to help with the task?".format(accessibility_tree)
|
||||
"text": "Given the XML format of accessibility tree as below:\n{}\nWhat's the next step that you will do to help with the task?".format(
|
||||
linearized_accessibility_tree)
|
||||
}
|
||||
]
|
||||
})
|
||||
@@ -117,7 +134,16 @@ class GPT4_Agent:
|
||||
"messages": self.trajectory,
|
||||
"max_tokens": self.max_tokens
|
||||
}
|
||||
response = requests.post("https://api.openai.com/v1/chat/completions", headers=self.headers, json=payload)
|
||||
|
||||
while True:
|
||||
try:
|
||||
response = requests.post("https://api.openai.com/v1/chat/completions", headers=self.headers,
|
||||
json=payload)
|
||||
break
|
||||
except:
|
||||
print("Failed to generate response, retrying...")
|
||||
time.sleep(5)
|
||||
pass
|
||||
|
||||
try:
|
||||
actions = self.parse_actions(response.json()['choices'][0]['message']['content'])
|
||||
|
||||
@@ -11,7 +11,7 @@ You ONLY need to return the code inside a code block, like this:
|
||||
```
|
||||
Specially, it is also allowed to return the following special code:
|
||||
When you think you have to wait for some time, return ```WAIT```;
|
||||
When you think the task can not be done, return ```FAIL```;
|
||||
When you think the task can not be done, return ```FAIL```, don't easily say ```FAIL```, try your best to do the task;
|
||||
When you think the task is done, return ```DONE```.
|
||||
|
||||
First give the current screenshot and previous things we did a reflection, then RETURN ME THE CODE OR SPECIAL CODE I ASKED FOR. NEVER EVER RETURN ME ANYTHING ELSE.
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import base64
|
||||
import json
|
||||
import re
|
||||
import time
|
||||
from typing import Dict, List
|
||||
|
||||
import requests
|
||||
@@ -81,9 +82,9 @@ class GPT4v_Agent:
|
||||
{
|
||||
"type": "text",
|
||||
"text": {
|
||||
"computer_13": SYS_PROMPT_ACTION,
|
||||
"pyautogui": SYS_PROMPT_CODE
|
||||
}[action_space] + "\nHere is the instruction for the task: {}".format(self.instruction)
|
||||
"computer_13": SYS_PROMPT_ACTION,
|
||||
"pyautogui": SYS_PROMPT_CODE
|
||||
}[action_space] + "\nHere is the instruction for the task: {}".format(self.instruction)
|
||||
},
|
||||
]
|
||||
}
|
||||
@@ -123,8 +124,16 @@ class GPT4v_Agent:
|
||||
"messages": self.trajectory,
|
||||
"max_tokens": self.max_tokens
|
||||
}
|
||||
response = requests.post("https://api.openai.com/v1/chat/completions", headers=self.headers, json=payload)
|
||||
|
||||
while True:
|
||||
try:
|
||||
response = requests.post("https://api.openai.com/v1/chat/completions", headers=self.headers,
|
||||
json=payload)
|
||||
break
|
||||
except:
|
||||
print("Failed to generate response, retrying...")
|
||||
time.sleep(5)
|
||||
pass
|
||||
try:
|
||||
actions = self.parse_actions(response.json()['choices'][0]['message']['content'])
|
||||
except:
|
||||
|
||||
@@ -11,7 +11,7 @@ You ONLY need to return the code inside a code block, like this:
|
||||
```
|
||||
Specially, it is also allowed to return the following special code:
|
||||
When you think you have to wait for some time, return ```WAIT```;
|
||||
When you think the task can not be done, return ```FAIL```;
|
||||
When you think the task can not be done, return ```FAIL```, don't easily say ```FAIL```, try your best to do the task;
|
||||
When you think the task is done, return ```DONE```.
|
||||
|
||||
First give the current screenshot and previous things we did a reflection, then RETURN ME THE CODE OR SPECIAL CODE I ASKED FOR. NEVER EVER RETURN ME ANYTHING ELSE.
|
||||
|
||||
Reference in New Issue
Block a user