Merge pull request #13 from xlang-ai/xiaochuanli/addChromeExtensions

Xiaochuanli/add chrome extensions
This commit is contained in:
Tianbao Xie
2024-03-08 20:46:01 +08:00
committed by GitHub
33 changed files with 1287 additions and 51 deletions

View File

@@ -24,6 +24,7 @@ from .chrome import (
get_gotoRecreationPage_and_get_html_content,
get_url_dashPart,
get_active_url_from_accessTree,
get_find_installed_extension_name,
get_info_from_website
)
from .file import get_cloud_file, get_vm_file, get_cache_file, get_content_from_vm_file
@@ -31,7 +32,8 @@ from .general import get_vm_command_line, get_vm_terminal_output, get_vm_command
from .gimp import get_gimp_config_file
from .impress import get_audio_in_slide, get_background_image_in_slide
from .info import get_vm_screen_size, get_vm_window_size, get_vm_wallpaper, get_list_directory
from .misc import get_rule, get_accessibility_tree, get_rule_relativeTime
from .misc import get_rule, get_accessibility_tree, get_rule_relativeTime, get_time_diff_range
from .replay import get_replay
from .vlc import get_vlc_playing_info, get_vlc_config, get_default_video_player
from .vscode import get_vscode_config
from .calc import get_conference_city_in_order

View File

@@ -0,0 +1,15 @@
import csv
# I want to write a function, reads a csv file, and get all the contents in the third column in the order of rows
def get_conference_city_in_order(env, config):
# read the csv file
csv_path = config['csv_path']
print(f"Reading csv file from {csv_path}")
with open(csv_path, 'r') as f:
reader = csv.reader(f)
# skip the header row
next(reader)
# get the third column in the order of rows
conference_city_list = [row[2] for row in reader]
return conference_city_list

View File

@@ -4,6 +4,7 @@ import os
import platform
import sqlite3
import time
from urllib.parse import unquote
from typing import Dict, Any, List
from urllib.parse import urlparse, parse_qs
@@ -1010,6 +1011,43 @@ def get_find_unpacked_extension_path(env, config: Dict[str, str]):
return "Google"
def get_find_installed_extension_name(env, config: Dict[str, str]):
os_type = env.vm_platform
if os_type == 'Windows':
preference_file_path = env.controller.execute_python_command("""import os; print(os.path.join(os.getenv('LOCALAPPDATA'),
'Google\\Chrome\\User Data\\Default\\Preferences'))""")['output'].strip()
elif os_type == 'Darwin':
preference_file_path = env.controller.execute_python_command(
"import os; print(os.path.join(os.getenv('HOME'), 'Library/Application Support/Google/Chrome/Default/Preferences'))")[
'output'].strip()
elif os_type == 'Linux':
if "arm" in platform.machine():
preference_file_path = env.controller.execute_python_command(
"import os; print(os.path.join(os.getenv('HOME'), 'snap/chromium/common/chromium/Default/Preferences'))")[
'output'].strip()
else:
preference_file_path = env.controller.execute_python_command(
"import os; print(os.path.join(os.getenv('HOME'), '.config/google-chrome/Default/Preferences'))")[
'output'].strip()
else:
raise Exception('Unsupported operating system')
try:
content = env.controller.get_file(preference_file_path)
data = json.loads(content)
# Preferences store all the path of installed extensions, return them all and let metrics try to find one matches the targeted extension path
all_extensions_name = []
all_extensions = data.get('extensions', {}).get('settings', {})
for id in all_extensions.keys():
name = all_extensions[id]["manifest"]["name"]
all_extensions_name.append(name)
return all_extensions_name
except Exception as e:
logger.error(f"Error: {e}")
return "Google"
def get_data_delete_automacally(env, config: Dict[str, str]):
"""
This function is used to open th "auto-delete" mode of chromium
@@ -1077,6 +1115,7 @@ def get_active_tab_html_parse(env, config: Dict[str, Any]):
"""
active_tab_url = get_active_url_from_accessTree(env, config)
if not isinstance(active_tab_url, str):
logger.error("active_tab_url is not a string")
return None
host = env.vm_ip
port = 9222 # fixme: this port is hard-coded, need to be changed from config file
@@ -1109,12 +1148,14 @@ def get_active_tab_html_parse(env, config: Dict[str, Any]):
for context in browser.contexts:
for page in context.pages:
page.wait_for_load_state("networkidle")
if page.url == active_tab_url:
# the accTree and playwright can get encoding(percent-encoding) characters, we need to convert them to normal characters
if unquote(page.url) == unquote(active_tab_url):
target_page = page
print("tartget page url: ", target_page.url)
print("tartget page title: ", target_page.title())
print("\33[32mtartget page url: ", target_page.url, "\33[0m")
print("\33[32mtartget page title: ", target_page.title(), "\33[0m")
break
if target_page is None:
logger.error("Your tab is not the target tab.")
return {}
return_json = {}
if config["category"] == "class":

View File

@@ -1,6 +1,7 @@
import os
from typing import Dict, List, Set
from typing import Optional, Any, Union
from datetime import datetime
import requests
import pandas as pd
@@ -77,14 +78,24 @@ def get_vm_file(env, config: Dict[str, Any]) -> Union[Optional[str], List[Option
gives (List[int]): optional. defaults to [0]. which files are directly
returned to the metric. if len==1, str is returned; else, list is
returned.
only support for single file now:
time_suffix(bool): optional. defaults to False. if True, append the current time in required format.
time_format(str): optional. defaults to "%Y_%m_%d". format of the time suffix.
"""
time_format = "%Y_%m_%d"
if not config.get("multi", False):
paths: List[str] = [config["path"]]
dests: List[str] = [config["dest"]]
else:
paths: List[str] = config["path"]
dests: List[str] = config["dest"]
if "time_suffix" in config.keys() and config["time_suffix"]:
if "time_format" in config.keys():
time_format = config["time_format"]
# Insert time before . in file type suffix
paths = [p.split(".")[0] + datetime.now().strftime(time_format) + "." + p.split(".")[1] if "." in p else p for p in paths]
dests = [d.split(".")[0] + datetime.now().strftime(time_format) + "." + d.split(".")[1] if "." in d else d for d in dests]
cache_paths: List[str] = []
gives: Set[int] = set(config.get("gives", [0]))
@@ -104,7 +115,8 @@ def get_vm_file(env, config: Dict[str, Any]) -> Union[Optional[str], List[Option
cache_paths.append(_path)
with open(_path, "wb") as f:
f.write(file)
# debug
print(cache_paths)
return cache_paths[0] if len(cache_paths)==1 else cache_paths

View File

@@ -195,3 +195,10 @@ def get_accessibility_tree(env, *args) -> str:
accessibility_tree: str = env.controller.get_accessibility_tree()
logger.debug("AT@eval: %s", accessibility_tree)
return accessibility_tree
def get_time_diff_range(env, config) -> str:
try:
return config["diff_range_in_minutes"]
except:
logger.error("diff_range_in_minutes not found in config.")
return None

View File

@@ -2,7 +2,8 @@ from .basic_os import (
check_gnome_favorite_apps,
is_utc_0,
check_text_enlarged,
check_moved_jpgs
check_moved_jpgs,
is_in_vm_clickboard
)
from .chrome import (
is_expected_tabs,
@@ -19,6 +20,7 @@ from .chrome import (
is_expected_active_tab,
is_expected_url_pattern_match,
is_added_to_steam_cart,
is_expected_installed_extensions
compare_pdf_images
)
from .docs import (
@@ -47,6 +49,7 @@ from .docs import (
check_file_exists,
check_tabstops,
compare_contains_image,
compare_docx_files_and_ignore_new_lines
compare_docx_images,
compare_image_text,
compare_references
@@ -62,6 +65,14 @@ from .general import (
fuzzy_match,
check_include_exclude,
check_direct_json_object,
compare_time_in_speedtest_results,
is_included_all_json_objects,
is_gold_text_included_in_pdf,
check_csv_line_number,
file_contains,
compare_terminal_and_txt,
fuzzy_place_math,
compare_python_pure_text
diff_text_file,
literal_match
)
@@ -137,6 +148,7 @@ from .vscode import (
check_html_background_image,
compare_zip_files
)
from .calc import compare_conference_city_in_order
from .others import compare_epub, check_mp3_meta
def infeasible():

View File

@@ -56,3 +56,15 @@ def check_moved_jpgs(directory_list, rule):
return 1
else:
return 0
def is_in_vm_clickboard(config, terminal_output):
print("terminal_output: ")
print(terminal_output)
print("config: ")
print(config)
expected_results = config["expected"]
# check if terminal_output has expected results
if not isinstance(expected_results, list):
return 1 if expected_results in terminal_output else 0
else:
return 1 if all(result in terminal_output for result in expected_results) else 0

View File

@@ -0,0 +1,24 @@
import openpyxl
def compare_conference_city_in_order( actual_city_list_path, expected_city):
expected_city_list = expected_city["expected"]
print(f"Reading csv file from {actual_city_list_path}")
wb = openpyxl.load_workbook(actual_city_list_path)
sheet = wb.active
actual_city_list = []
for row in sheet["C2:C22"]:
for cell in row:
actual_city_list.append(cell.value)
# expected_city is the city that we want to compare with the actual city list
# must in order index
# debug
print("expected_city_list:")
print(expected_city_list)
print("actual_city_list_path:")
print(actual_city_list)
wrong_list = []
for i in range(len(actual_city_list)):
if expected_city_list[i] not in actual_city_list[i]:
wrong_list.append(i)
print(f"Expected city {expected_city_list[i]}; Actual city {actual_city_list[i]}")
return True if len(wrong_list) == 0 else False

View File

@@ -61,6 +61,12 @@ def is_expected_url_pattern_match(result, rules) -> float:
return 1.
def is_expected_installed_extensions(installed_extensions, expected) -> float:
print("installed_extensions: ")
print(installed_extensions)
expected_extensions = expected["expected"]
return 1 if expected_extensions == installed_extensions else 0. # must equal, no additional extensions allowed
def is_expected_tabs(open_tabs: List[Dict[str, str]], rule: Dict[str, Any]) -> float:
"""
Checks if the expected tabs are open in Chrome.

View File

@@ -0,0 +1,28 @@
import fitz # PyMuPDF
def extract_answers_from_pdf(pdf_file):
# 打开PDF文件
doc = fitz.open(pdf_file)
answers = []
# 遍历每一页
for page in doc:
# 提取当前页的文本
text = page.get_text()
# 分割文本为行
lines = text.split('\n')
for line in lines:
if line.strip(): # 排除空白行
# 分割等号,提取答案
parts = line.split('=')
if len(parts) > 1:
answer = parts[-1].strip() # 取等号后的部分为答案
answers.append(answer)
return answers
# 假设你的文件名是'math_problems.pdf'
pdf_file = '/Users/lxc/Desktop/calculus.pdf'
answers = extract_answers_from_pdf(pdf_file)
for i, answer in enumerate(answers, 1):
print(f"题目{i}的答案是: {answer}")

View File

@@ -118,14 +118,21 @@ def compare_docx_files(file1, file2, **options):
if text1 != text2:
return 0
else:
print("ignore_blanks=false")
if len(doc1_paragraphs) != len(doc2_paragraphs):
print(doc1_paragraphs)
print(doc2_paragraphs)
print(len(doc1_paragraphs))
print(len(doc2_paragraphs))
return 0
print("in compare")
# Compare each paragraph
for p1, p2 in zip(doc1_paragraphs, doc2_paragraphs):
if ignore_case:
p1, p2 = p1.lower(), p2.lower()
if p1 != p2:
print(p1)
print(p2)
return 0
return 1
@@ -552,6 +559,39 @@ def compare_docx_lines(file1, file2):
return 0
def compare_docx_files_and_ignore_new_lines(file1, file2, **options):
ignore_blanks = options.get('ignore_blanks', True)
# Determine file types and load documents
if file1.endswith('.docx') and file2.endswith('.docx'):
doc1 = Document(file1)
doc2 = Document(file2)
# First, delete all the blank in paragraphs
doc1 = [p for p in doc1.paragraphs if p.text != '']
doc2 = [p for p in doc2.paragraphs if p.text != '']
doc1_paragraphs = [p.text for p in doc1]
doc2_paragraphs = [p.text for p in doc2]
else:
# Unsupported file types or mismatch
print("Unsupported file types or mismatch between file types.")
return 0
# Process and compare documents
if ignore_blanks:
text1 = re.sub(r'\s+', ' ', '\n'.join(doc1_paragraphs)).strip()
text2 = re.sub(r'\s+', ' ', '\n'.join(doc2_paragraphs)).strip()
if text1 != text2:
return 0
else:
if len(doc1_paragraphs) != len(doc2_paragraphs):
return 0
# Compare each paragraph
for p1, p2 in zip(doc1_paragraphs, doc2_paragraphs):
if p1 != p2:
return 0
return 1
# Docx file saved in the ubuntu cannot use this function to compare highlight, don't know why, deprecated
def compare_highlighted_text(file1, file2):
def extract_highlighted_text(file_path):

View File

@@ -4,15 +4,18 @@ import json
import yaml
import operator
import re
import pdfplumber
import sqlite3
from numbers import Number
from typing import Callable, Any, Union
from typing import Dict, List, Pattern
import datetime
import pandas as pd
import lxml.etree
from lxml.cssselect import CSSSelector
from lxml.etree import _Element
from rapidfuzz import fuzz
from docx import Document
import difflib
from .utils import _match_record, _match_value_to_rule
@@ -84,6 +87,21 @@ def fuzzy_match(result, rules) -> float:
return fuzz.ratio(result, expect) / 100.
def fuzzy_place_math(result_file_path, rules) -> float:
expect = rules["expected"] # a list of possible answers
# read list.docx, and get all texts out, overlook blank lines, remove blanks before and after each line
doc = Document(result_file_path)
words_list = []
for para in doc.paragraphs:
words_list.extend(para.text.split())
# Print out the list of extracted words
print(words_list)
for word in words_list:
if not any(ans in word for ans in expect):
print("Wrong place:", word)
return 0
return 1
def check_csv(result: str, rules: Dict[str, List[Dict[str, str]]]) -> float:
"""
Args:
@@ -272,15 +290,137 @@ def check_direct_json_object(result, rules)->float:
One of the most commonly used function to evalute.
Compare two json objects directly.
"""
if isinstance(result, str):
# remove blanks before and after result
result = result.strip()
# replace all ' with "
result = result.replace("'", '"')
# load json object
result = json.loads(result)
print("result: ")
print(result)
print("expected: ")
print(rules["expected"])
if result is None:
return 0.
expected_json = rules["expected"]
for key in expected_json.keys():
expected_value = expected_json.get(key)
if expected_value != result.get(key):
return 0.
return 1.0
expect_in_result = rules.get("expect_in_result", False)
if not expect_in_result:
expected_json = rules["expected"]
for key in expected_json.keys():
expected_value = expected_json.get(key)
if expected_value != result.get(key):
return 0.
return 1.0
else:
expected_json = rules["expected"]
for key in expected_json.keys():
expected_value = expected_json.get(key)
if expected_value not in result.get(key):
return 0.
return 1.0
def compare_time_in_speedtest_results(speedtest_result_path, time_diff):
# open the speedtest results file(csv)
date_col = None
with open(speedtest_result_path, 'r') as f:
reader = pd.read_csv(f)
for column in reader.columns:
if column.startswith('TEST_DATE'):
date_col = column
break
now_date_time = datetime.datetime.now().strftime('%H:%M')
for date in reader[date_col]:
date_time = date[-5:]
# compare the date time with the current date time, if time diff less than time_diff para, then return true
if not abs((datetime.datetime.strptime(date_time, '%H:%M') - datetime.datetime.strptime(now_date_time, '%H:%M')).total_seconds()) / 60 < int(time_diff):
return False
return True
def is_included_all_json_objects(gold_file_path, result_file_path):
print("gold_file_path: ")
print(gold_file_path)
print("result_file_path: ")
print(result_file_path)
# two json file, check if all the key-value pair in gold_file_path is included in result_file_path
with open(gold_file_path, 'r') as f:
gold_json = json.load(f)
with open(result_file_path, 'r') as fr:
result_json = json.load(fr)
for key in gold_json.keys():
if key not in result_json.keys() or gold_json[key] != result_json[key]:
return False
return True
def is_gold_text_included_in_pdf(pdf_file_path, gold_text_path):
print("gold_text_path: ")
print(gold_text_path)
print("pdf_file_path: ")
print(pdf_file_path)
# gold file is a json file, we need to check all the value in json are included in pdf file.
with open(gold_text_path, 'r') as f:
gold_json = json.load(f)
with pdfplumber.open(pdf_file_path) as pdf:
text = ''
for page in pdf.pages:
text += page.extract_text()
false_list = []
for key in gold_json.keys():
if gold_json[key] not in text:
false_list.append(key)
if len(false_list) > 0:
print("false_list: ")
print(false_list)
return False
else:
return True
def file_contains(file_path, config):
# file_path ends with .txt
if not file_path :
return False
with open(file_path, 'r') as f:
file_text = f.read()
for text in config["expected"]:
if text not in file_text:
return False
return True
def check_csv_line_number(file_path, line_number):
# check file_path suffix
if not file_path.endswith('.csv'):
return False
# check line number
with open(file_path, 'r') as f:
reader = csv.reader(f)
line_count = sum(1 for row in reader)
return True if line_count == int(line_number["expected"]) else False
def compare_terminal_and_txt(txt_file_path, terminal_output):
# read txt file content
with open(txt_file_path, 'r') as f:
txt_file_content = f.read()
# compare terminal output with txt file content
return True if terminal_output == txt_file_content else False
def compare_python_pure_text(py_file_path, gold_file_path):
# first, change the suffix of gold_file from .txt to .py
print("py_file_path: ")
print(py_file_path)
print("gold_file_path: ")
print(gold_file_path)
# gold_file_path = gold_file_path.replace('.txt', '.py')
def remove_whitespace(text):
return ''.join(text.split())
with open(py_file_path, 'r') as file1:
content1 = file1.read()
with open(gold_file_path, 'r') as file2:
content2 = file2.read()
content1_no_whitespace = remove_whitespace(content1)
content2_no_whitespace = remove_whitespace(content2)
return content1_no_whitespace == content2_no_whitespace

View File

@@ -1,10 +1,12 @@
import builtins
import datetime
import functools
import itertools
import logging
import operator
import re
import zipfile
import pandas as pd
from typing import Any, TypeVar, Union, Iterable, Optional, Callable
from typing import Dict, List, Set, Match, Tuple, Pattern
from urllib.parse import urlparse, urlunparse

View File

@@ -53,17 +53,32 @@
"chrome"
],
"evaluator": {
"func": "is_expected_active_tab",
"result": {
"func": ["is_expected_active_tab", "is_expected_active_tab"],
"conj": "or",
"result": [
{
"type": "active_url_from_accessTree",
"goto_prefix": "https://www."
},
"expected": {
},
{
"type": "active_url_from_accessTree",
"goto_prefix": "https://www."
}
],
"expected": [
{
"type": "rule",
"rules": {
"type": "url",
"url": "https://www.drugs.com/npc/"
}
}
},
{
"type": "rule",
"rules": {
"type": "url",
"url": "https://www.drugs.com/npp/"
}
}]
}
}

View File

@@ -62,8 +62,8 @@
"type": "rule",
"rules":{
"expected": {
"locationName": "Zurich Airport",
"dropLocationName": "Zurich Airport",
"locationName": "Zürich",
"dropLocationName": "Zürich",
"filterCriteria_carCategory": "large",
"filterCriteria_sortBy": "PRICE"
}

View File

@@ -1,7 +1,7 @@
{
"id": "2ad9387a-65d8-4e33-ad5b-7580065a27ca",
"snapshot": "chrome",
"instruction": "Can you make a new folder for me on that bookmarks bar in my internet browser? Let's call it 'Favorites.'",
"instruction": "Can you make a new folder for me on the bookmarks bar in my internet browser? Let's call it 'Favorites.'",
"source": "https://www.youtube.com/watch?v=IN-Eq_UripQ",
"config": [
{

View File

@@ -54,7 +54,7 @@
"rules":{
"expected": {
"q": "drip coffee maker",
"tbs": "mr:1,price:1,ppr_min:25,ppr_max:60,pdtr0:1825161|1825162"
"tbs": "mr:1,price:1,ppr_min:25,ppr_max:60,sales:1,pdtr0:1825161|1825162"
}
}
}

View File

@@ -43,19 +43,35 @@
"chrome"
],
"evaluator": {
"func": "exact_match",
"result": {
"func": ["exact_match", "exact_match"],
"conj": "or",
"result": [
{
"type": "url_dashPart",
"goto_prefix": "https://www.",
"partIndex": -1,
"needDeleteId": false,
"returnType": "string"
},
"expected": {
},
{
"type": "url_dashPart",
"goto_prefix": "https://www.",
"partIndex": -1,
"needDeleteId": false,
"returnType": "string"
}],
"expected": [
{
"type": "rule",
"rules": {
"expected": "tamiflu.html#side-effects"
}
}
},
{
"type": "rule",
"rules": {
"expected": "tamiflu-side-effects.html"
}
}]
}
}

View File

@@ -53,7 +53,7 @@
"rules": {
"expected": [
"AgeAppropriate:Kids",
"search=spider-man%20toys",
"search=spider[-%20]?man%20toys",
"S=4"
]
}

View File

@@ -0,0 +1,49 @@
{
"id": "2373b66a-092d-44cb-bfd7-82e86e7a3b4d",
"snapshot": "multiapps",
"instruction": "I want to understand the resource usage of my Ubuntu system under normal workloads. Please use the `sar` command in the `sysstat` toolkit to monitor the system CPU usage, evaluate the status once every second for 30 seconds, output the results to \"System_Resources_Report.txt\" under Desktop, and convert the txt to csv file with the same name.",
"source": "author",
"config": [
{
"type": "command",
"parameters":{
"command": "echo lixiaochuan20 | sudo -S apt-get update && echo lixiaochuan20 | sudo -S apt-get install sysstat",
"shell": "true"
}
}
],
"trajectory": "trajectories/",
"related_apps": [
"os", "calc"
],
"evaluator": {
"func": ["file_contains", "check_csv_line_number"],
"result":
[
{
"type": "vm_file",
"path": "/home/user/Desktop/System_Resources_Report.txt",
"dest": "System_Resources_Report.txt"
},
{
"type": "vm_file",
"path": "/home/user/Desktop/System_Resources_Report.csv",
"dest": "System_Resources_Report.csv"
}
],
"expected":
[
{
"type": "rule",
"rules" :{
"expected": ["tps", "rtps", "wtps", "dtps", "bread/s", "bwrtn/s", "bdscd/s", "Average", "Linux"]
}
},
{
"type": "rule",
"rules": {
"expected": "33"
}
}]
}
}

View File

@@ -1,25 +1,69 @@
{
"id": "26660ad1-6ebb-4f59-8cba-a8432dfe8d38",
"snapshot": "libreoffice_calc",
"instruction": "I want to test the quality of the network environment my laptop is currently in. Please measure my network situation through speedtest.net, export the measurement results, and save them to ~/Test/Speed.",
"source": "authors",
"config": [
],
"trajectory": "trajectories/26660ad1-6ebb-4f59-8cba-a8432dfe8d38",
"related_apps": [
],
"evaluator": {
"postconfig": [],
"func": "",
"result": {
"id": "26660ad1-6ebb-4f59-8cba-a8432dfe8d38",
"snapshot": "multiapps",
"instruction": "I want to test the quality of the network environment my laptop is currently in. Please measure my network situation through speedtest.net, export the measurement results, and save them to ~/Test/Speed (if the dir does not exist, create it).",
"source": "https://www.speedtest.net/",
"config": [
{
"type": "launch",
"parameters": {
"command": [
"google-chrome",
"--remote-debugging-port=1337"
]
}
},
"expected": {
{
"type": "launch",
"parameters": {
"command": [
"socat",
"tcp-listen:9222,fork",
"tcp:localhost:1337"
]
}
},
"options": {
{
"type": "chrome_open_tabs",
"parameters": {
"urls_to_open": [
"https://www.speedtest.net/"
]
}
},
{
"type": "activate_window",
"parameters": {
"window_name": "Google Chrome"
}
},
{
"type": "execute",
"parameters": {
"command": [
"python",
"-c",
"import pyautogui; import time; time.sleep(0.5);"
]
}
}
],
"trajectory": "trajectories/",
"related_apps":[
"os",
"browser"
],
"evaluator":{
"func": "compare_time_in_speedtest_results",
"result":{
"type": "vm_file",
"path": "/home/user/Test/Speed/Speedtest Results Export-.csv",
"dest": "Speedtest Results Export-.csv",
"time_suffix": true
},
"expected":{
"type": "time_diff_range",
"diff_range_in_minutes": "60"
}
}
}
}
}

View File

@@ -0,0 +1,52 @@
{
"id": "3eb2a122-a5e3-4f89-9820-f7fa1a582969",
"snapshot": "multiapps",
"instruction": "Please search online for the submission deadline and venue of the ICLR main conference in 2035, and copy it to my clipboard. If not yet publicized, copy None.",
"source": "author",
"config": [
{
"type": "launch",
"parameters": {
"command": [
"google-chrome",
"--remote-debugging-port=1337"
]
}
},
{
"type": "launch",
"parameters": {
"command": [
"socat",
"tcp-listen:9222,fork",
"tcp:localhost:1337"
]
}
},
{
"type": "command",
"parameters":{
"command": "echo lixiaochuan20 | sudo -S apt install xsel && xsel -bc",
"shell": "true"
}
}
],
"trajectory": "trajectories/",
"related_apps": [
"os", "chrome"
],
"evaluator": {
"func": "is_in_vm_clickboard",
"expected": {
"type": "vm_command_line",
"command": "xsel --clipboard --output",
"shell": "true"
},
"result": {
"type": "rule",
"rules": {
"expected": ["None"]
}
}
}
}

View File

@@ -0,0 +1,70 @@
{
"id": "5bc63fb9-276a-4439-a7c1-9dc76401737f",
"snapshot": "multiapps",
"instruction": "I have a JSON-formatted data file opened now that stores the responses of several large language models on a specific dataset. Now, I want to filter out all the responses from Gemini and specifically look at the sentences in the responses that contain \"Iliad\". Please copy all of Gemini's responses(values) from the JSON file, paste them into a Word document named \"gemini_results.docx\" under Desktop. Each response should be a new paragraph and sepreated by a new line. Highlight the all the \"Iliad\" word.",
"source": "",
"config": [
{
"type": "download",
"parameters": {
"files": [
{
"url": "https://drive.google.com/uc?export=download&id=1XIJHJ6jtYITRG6vA1-rQlnKegIk0u6j6",
"path": "/home/user/Desktop/llm_answers.json"
}
]
}
},
{
"type": "open",
"parameters": {
"path": "/home/user/Desktop/llm_answers.json"
}
}
],
"trajectory": "trajectories/",
"related_apps": [
"libreoffice_writer"
],
"evaluator": {
"postconfig": [
{
"type": "activate_window",
"parameters": {
"window_name": "gemini_results.docx - LibreOffice Writer",
"strict": true
}
},
{
"type": "sleep",
"parameters": {
"seconds": 0.5
}
},
{
"type": "execute",
"parameters": {
"command": [
"python",
"-c",
"import pyautogui; import time; pyautogui.hotkey('ctrl', 's'); time.sleep(0.5); "
]
}
}
],
"func": "compare_docx_files_and_ignore_new_lines",
"expected": {
"type": "cloud_file",
"path": "https://drive.google.com/uc?export=download&id=1N5LlYhrRWtcC24LKiDQAYJYqCDYMBh9b",
"dest": "gemini_results_Gold.docx"
},
"result": {
"type": "vm_file",
"path": "/home/user/Desktop/gemini_results.docx",
"dest": "gemini_results.docx"
},
"options": {
"ignore_blanks": false
}
}
}

View File

@@ -0,0 +1,70 @@
{
"id": "65e62ec6-4603-4c67-b4d2-07830deb285b",
"snapshot": "multiapps",
"instruction": "I've recently become very interested in large language models. I tried entering some questions into several large language models and stored the answers in a file named \"answers.json\" under Desktop. Now, I want to focus only on the answers from GPT-4. Please help me copy all the GPT-4 answers into a Word document named \"results.docx\" under Desktop, one answer per paragraph.",
"source": "",
"config": [
{
"type": "download",
"parameters": {
"files": [
{
"url": "https://drive.google.com/uc?export=download&id=1XIJHJ6jtYITRG6vA1-rQlnKegIk0u6j6",
"path": "/home/user/Desktop/answers.json"
}
]
}
},
{
"type": "open",
"parameters": {
"path": "/home/user/Desktop/answers.json"
}
}
],
"trajectory": "trajectories/",
"related_apps": [
"libreoffice_writer"
],
"evaluator": {
"postconfig": [
{
"type": "activate_window",
"parameters": {
"window_name": "results.docx - LibreOffice Writer",
"strict": true
}
},
{
"type": "sleep",
"parameters": {
"seconds": 0.5
}
},
{
"type": "execute",
"parameters": {
"command": [
"python",
"-c",
"import pyautogui; import time; pyautogui.hotkey('ctrl', 's'); time.sleep(0.5); "
]
}
}
],
"func": "compare_docx_files_and_ignore_new_lines",
"expected": {
"type": "cloud_file",
"path": "https://drive.google.com/uc?export=download&id=1edtU4kHecg7oxerf1jvd1-ak-2WmEla3",
"dest": "results_Gold.docx"
},
"result": {
"type": "vm_file",
"path": "/home/user/Desktop/results.docx",
"dest": "results.docx"
},
"options": {
"ignore_blanks": false
}
}
}

View File

@@ -0,0 +1,54 @@
{
"id": "6f4073b8-d8ea-4ade-8a18-c5d1d5d5aa9a",
"snapshot": "multiapps",
"instruction": "I now want to count the meeting cities of the three machine learning conferences in the past ten years from 2013 to 2019(including 2013 and 2019). I have listed the names and years of the conferences in excel. Please fill in the vacant locations.",
"source": "author",
"config": [
{
"type": "download",
"parameters": {
"files": [
{
"url": "https://drive.google.com/uc?export=download&id=1MhoRWCk-_ZZYg1agfQWHaOEYxXOrXLKC",
"path": "/home/user/Desktop/ConferenceCity.xlsx"
}
]
}
},
{
"type": "download",
"parameters": {
"files": [
{
"url": "https://drive.google.com/uc?export=download&id=1p10oM6S3iZ6x2UVCgZE1mQ9D1yeZGCbO",
"path": "/home/user/Desktop/ConferenceCity_Gold.xlsx"
}
]
}
},
{
"type": "open",
"parameters": {
"path": "/home/user/Desktop/ConferenceCity.xlsx"
}
}
],
"trajectory": "trajectories/",
"related_apps": [
"calc", "chrome", "os"
],
"evaluator": {
"func": "compare_conference_city_in_order",
"expected": {
"type": "rule",
"rules":{
"expected": ["Scottsdale","Atlanta","Lake Tahoe","Banff","Beijing","Montreal","San Diego","Lille","Montreal","San Juan","New York","Barcelona","Toulon","Sydney","Long Beach","Vancouver","Stockholm","Montréal","New Orleans","Long Beach","Vancouver"]
}
},
"result": {
"type": "vm_file",
"path": "/home/user/Desktop/ConferenceCity.xlsx",
"dest": "ConferenceCity.xlsx"
}
}
}

View File

@@ -0,0 +1,51 @@
{
"id": "716a6079-22da-47f1-ba73-c9d58f986a38",
"snapshot": "multiapps",
"instruction": "I remember there is a file named \"secret.docx\" on this computer, but I can't remember where it is. Please find the path where this file is stored and copy it to the clipboard.",
"source": "",
"config": [
{
"type": "command",
"parameters": {
"command": "mkdir -p /home/user/Data1/List1 && mkdir -p /home/user/Data2/List2 && mkdir -p /home/user/Data3/List3 && mkdir -p /home/user/Data4/List4 && mkdir -p /home/user/Data5/List5",
"shell" :"true"
}
},
{
"type": "download",
"parameters": {
"files": [
{
"url": "https://drive.google.com/uc?export=download&id=1kjfHFNmAy4ZVqGgFsxPDxWwMuZkCHxAv",
"path": "/home/user/Data3/List3/secret.docx"
}
]
}
},
{
"type": "command",
"parameters":{
"command": "echo lixiaochuan20 | sudo -S apt install xsel && xsel -bc",
"shell": "true"
}
}
],
"trajectory": "trajectories/",
"related_apps": [
"os", "terminal"
],
"evaluator": {
"func": "is_in_vm_clickboard",
"expected": {
"type": "vm_command_line",
"command": "xsel --clipboard --output",
"shell": "true"
},
"result": {
"type": "rule",
"rules": {
"expected": "/home/user/Data3/List3/secret.docx"
}
}
}
}

View File

@@ -0,0 +1,50 @@
{
"id": "7ff48d5b-2df2-49da-b500-a5150ffc7f18",
"snapshot": "multiapps",
"instruction": "I am a Chinese citizen and I want to go to Macau to watch a concert recently, but I have not yet applied for a visa for Macau. I live in Futian District, Shenzhen City. I heard that Shenzhen currently has 24-hour self-service check-in machines. Please help me find the addresses of 5 24-hour self-service check-in machines in Futian District and save them in Chinese in this open word document.",
"source": "authors",
"config": [
{
"type": "download",
"parameters": {
"files": [
{
"url": "https://drive.google.com/uc?export=download&id=1wrxlOrxZr3I5vaF1KRzc9nA9UcWW2ReU",
"path": "/home/user/Desktop/AllLocations.docx"
}
]
}
},
{
"type": "open",
"parameters": {
"path": "/home/user/Desktop/AllLocations.docx"
}
},
{
"type": "activate_window",
"parameters": {
"window_name": "AllLocations.docx - LibreOffice Writer"
}
}
],
"trajectory": "trajectories/",
"related_apps": [
"chrome", "os", "writer"
],
"evaluator": {
"func": "fuzzy_place_math",
"result": {
"type": "vm_file",
"path": "/home/user/Desktop/AllLocations.docx",
"dest": "AllLocations.docx"
},
"expected": {
"type": "rule",
"rules":{
"expected": ["正义", "海天综合大厦", "盛世家园", "香梅路", "金沙嘴大厦", "卓悦汇", "昌泰公寓", "天安数码城", "振兴路", "梅岗南街", "滨河大道", "上沙", "香蜜原著", "八卦岭", "竹园", "竹子林五路", "体育中心", "赤尾", "书城中心广场", "侨城东路", "沙头所", "水围村", "黄木岗", "华强广场", "国大药房","科学馆","江苏宾馆", "梅林"]
}
}
}
}

View File

@@ -0,0 +1,66 @@
{
"id": "873cafdd-a581-47f6-8b33-b9696ddb7b05",
"snapshot": "multiapps",
"instruction": "My friend is a \"plugin guru\" and he recommended some good plug-ins to me. Please go to the Chrome plug-in store and install all the listed plug-ins.",
"source": "author",
"config": [
{
"type": "launch",
"parameters": {
"command": [
"google-chrome",
"--remote-debugging-port=1337"
]
}
},
{
"type": "launch",
"parameters": {
"command": [
"socat",
"tcp-listen:9222,fork",
"tcp:localhost:1337"
]
}
},
{
"type": "download",
"parameters": {
"files": [
{
"url": "https://drive.google.com/uc?export=download&id=1el4WdiJVpUP49FABN_DpC7yy7obgJSC5",
"path": "/home/user/Desktop/Recommended_plugin_list.docx"
}
]
}
},
{
"type": "open",
"parameters": {
"path": "/home/user/Desktop/Recommended_plugin_list.docx"
}
},
{
"type": "activate_window",
"parameters": {
"window_name": "Recommended_plugin_list.docx - LibreOffice Writer"
}
}
],
"trajectory": "trajectories/",
"related_apps": [
"os", "chrome", "Writer"
],
"evaluator": {
"func": "is_expected_installed_extensions",
"expected": {
"type": "rule",
"rules":{
"expected": ["Zoom Chrome Extension", "Speechify Text to Speech Voice Reader", "React Developer Tools", "Momentum", "Google Translate", "Web Store", "Chromium PDF Viewer", "Google Hangouts"]
}
},
"result": {
"type": "find_installed_extension_name"
}
}
}

View File

@@ -0,0 +1,88 @@
{
"id": "9f3bb592-209d-43bc-bb47-d77d9df56504",
"snapshot": "multiapps",
"instruction": "I downloaded a video to practice listening, but I don't know how to remove the subtitles. Please help me remove the subtitles from the video and export it as \"subtitles.srt\" and store it in the same directory as the video.",
"source": "authors",
"config": [
{
"type": "download",
"parameters": {
"files": [
{
"url": "https://drive.google.com/uc?export=download&id=1YrPG1sXDACdXlrBlW8-RUzovWUJ0qoC5",
"path": "/home/user/video.txt"
}
]
}
},
{
"type": "execute",
"parameters":{
"command":"echo lixiaochuan20 | sudo -S mv /home/user/video.txt /home/user/video.mp4",
"shell": "true"
}
},
{
"type": "open",
"parameters": {
"path": "/home/user/video.mp4"
}
},
{
"type": "activate_window",
"parameters": {
"window_name": "video.mp4 - VLC media player"
}
}
],
"trajectory": "trajectories/",
"related_apps": [
"os", "vlc"
],
"evaluator": {
"postconfig":[
{
"type": "download",
"parameters": {
"files": [
{
"url": "https://drive.google.com/uc?export=download&id=1Q6GV39h74bc_8_kFKjNW3RMxUSgXaaWR",
"path": "/home/user/subtitles_Gold.srt"
}
]
}
},
{
"type": "download",
"parameters": {
"files": [
{
"url": "https://drive.google.com/uc?export=download&id=14eBaLVfUekkpj3dPkdDwHehHRmzx2njy",
"path": "/home/user/Desktop/subtitles_script.txt"
}
]
}
},
{
"type": "command",
"parameters": {
"command": "echo lixiaochuan20 | sudo -S pip install pysrt",
"shell" :"true"
}
}
],
"func": "exact_match",
"result": {
"type": "vm_command_line",
"command": "echo lixiaochuan20 | mv /home/user/Desktop/subtitles_script.txt /home/user/Desktop/subtitles_script.py && python /home/user/Desktop/subtitles_script.py",
"shell" :"true"
},
"expected": {
"type": "rule",
"rules":{
"expected": "true\n"
}
}
}
}

View File

@@ -0,0 +1,62 @@
{
"id": "a74b607e-6bb5-4ea8-8a7c-5d97c7bbcd2a",
"snapshot": "multiapps",
"instruction": "I have developed a new Chrome extension myself, so it needs to be installed manually. Please help me install the extension located in the Desktop directory into the Chrome browser.",
"source": "https://support.google.com/chrome/thread/205881926/it-s-possible-to-load-unpacked-extension-automatically-in-chrome?hl=en",
"config": [
{
"type": "download",
"parameters": {
"files":[
{
"url":"https://drive.google.com/uc?id=1t-6Qrpgox0UvqQ0EAhkCnSV8Rqsp4cMF&export=download",
"path":"/home/user/Desktop/helloExtension.zip"
}
]
}
},
{
"type": "execute",
"parameters": {
"command": "echo password | sudo -S apt-get update -y && echo password | sudo -S apt-get install unzip -y && unzip /home/user/Desktop/helloExtension.zip -d /home/user/Desktop/ && rm /home/user/Desktop/helloExtension.zip",
"shell": true
}
},
{
"type": "launch",
"parameters": {
"command": [
"google-chrome",
"--remote-debugging-port=1337"
]
}
},
{
"type": "launch",
"parameters": {
"command": [
"socat",
"tcp-listen:9222,fork",
"tcp:localhost:1337"
]
}
}
],
"trajectory": "trajectories/",
"related_apps": [
"chrome", "os"
],
"evaluator": {
"func": "is_in_list",
"result": {
"type": "find_unpacked_extension_path"
},
"expected": {
"type": "rule",
"rules": {
"expected": "/home/user/Desktop/helloExtension"
}
}
}
}

View File

@@ -0,0 +1,80 @@
{
"id": "ce2b64a2-ddc1-4f91-8c7d-a88be7121aac",
"snapshot": "multiapps",
"instruction": "There are several pictures of mountains in my Pictures directory, but I dont know the names of these mountains. Please help me identify these pictures and change the names of these pictures to the names of the mountains in the pictures.",
"source": "authors",
"config": [
{
"type": "download",
"parameters": {
"files": [
{
"url": "https://drive.google.com/uc?export=download&id=1LSFS3AI4t5aOIEUby73ZHvURqnx5cw7C",
"path": "/home/user/Pictures/picture1.jpg"
}
]
}
},
{
"type": "download",
"parameters": {
"files": [
{
"url": "https://drive.google.com/uc?export=download&id=1pdRoU_FnqoDgenvp1WzFJZrsGnsexRoo",
"path": "/home/user/Pictures/picture2.jpg"
}
]
}
},
{
"type": "download",
"parameters": {
"files": [
{
"url": "https://drive.google.com/uc?export=download&id=1ajGd9b_YvE1Ay59Pqh8RnePgbnepGc_g",
"path": "/home/user/Pictures/picture3.jpg"
}
]
}
}
],
"trajectory": "trajectories/",
"related_apps": [
"chrome", "os", "image"
],
"evaluator": {
"postconfig":[
{
"type": "download",
"parameters": {
"files": [
{
"url": "https://drive.google.com/uc?export=download&id=1cbBn9BqtkmiZH-nNJAfQ_RYjaAUGHHTG",
"path": "/home/user/Desktop/image_script.txt"
}
]
}
}
],
"func": "check_direct_json_object",
"result":{
"type": "vm_command_line",
"command":"echo lixiaochuan20 | sudo -S mv /home/user/Desktop/image_script.txt /home/user/Desktop/script.py && python /home/user/Desktop/script.py",
"shell": "true"
},
"expected": {
"type": "rule",
"rules":{
"expected":{
"ec076282f61ba74642e94b5a6a1250c6988204d59d9b02936606b6b8ef1e4433": "Kilimanjaro",
"999957c8de835bfa420d198270e7a6b079ee20ff53a3f214491e8134768a7c0b": "Himalayas",
"79f45d40d8413d4e81f1b9734ea39e58622cafd79e12bab32959643fc245147c": "Hua"
},
"expect_in_result": true
}
}
}
}

View File

@@ -0,0 +1,75 @@
{
"id": "da922383-bfa4-4cd3-bbad-6bebab3d7742",
"snapshot": "multiapps",
"instruction": "I browsed a lot of interesting blog articles today. I hope to store these articles in my local designated folder just like zotero stores papers. Please download the blogs you are opening now in pdf format to /home/user/Documents/Blogs.",
"source": "authors",
"config": [
{
"type": "launch",
"parameters": {
"command": [
"google-chrome",
"--remote-debugging-port=1337"
]
}
},
{
"type": "launch",
"parameters": {
"command": [
"socat",
"tcp-listen:9222,fork",
"tcp:localhost:1337"
]
}
},
{
"type": "chrome_open_tabs",
"parameters": {
"urls_to_open": [
"https://lilianweng.github.io/posts/2023-06-23-agent/",
"https://lilianweng.github.io/posts/2024-02-05-human-data-quality/"
]
}
}
],
"trajectory": "trajectories/",
"related_apps": [
"chrome", "os"
],
"evaluator": {
"postconfig":[
{
"type": "download",
"parameters": {
"files": [
{
"url": "https://drive.google.com/uc?export=download&id=19SJ4ydB36lwIK4K4B57sl3bsY9T-3WNv",
"path": "/home/user/Desktop/script.txt"
}
]
}
},
{
"type": "execute",
"parameters": {
"command": "pip install PyMuPDF",
"shell": "true"
}
}
],
"func": "exact_match",
"result":{
"type": "vm_command_line",
"command":"echo lixiaochuan20 | sudo -S mv /home/user/Desktop/script.txt /home/user/Desktop/script.py && python /home/user/Desktop/script.py",
"shell": "true"
},
"expected": {
"type": "rule",
"rules":{
"expected": "[1, 1]\n"
}
}
}
}

View File

@@ -0,0 +1,53 @@
{
"id": "dd60633f-2c72-42ba-8547-6f2c8cb0fdb0",
"snapshot": "multiapps",
"instruction": "I ran some simple code demos on the currently open google colab, and I think the effect is pretty good. Please help me extract the code in all code boxes, merge it into a \"task.py\" file and store it in the local Home directory.",
"source": "authors",
"config": [
{
"type": "launch",
"parameters": {
"command": [
"google-chrome",
"--remote-debugging-port=1337"
]
}
},
{
"type": "launch",
"parameters": {
"command": [
"socat",
"tcp-listen:9222,fork",
"tcp:localhost:1337"
]
}
},
{
"type": "chrome_open_tabs",
"parameters": {
"urls_to_open": [
"https://colab.research.google.com/github/stanfordnlp/dspy/blob/main/intro.ipynb#scrollTo=L1BHAoL_LRd7"
]
}
}
],
"trajectory": "trajectories/",
"related_apps": [
"chrome", "os", "writer"
],
"evaluator": {
"func": "compare_python_pure_text",
"result": {
"type": "vm_file",
"path": "/home/user/colab.py",
"dest": "colab.py"
},
"expected": {
"type": "cloud_file",
"path": "https://drive.google.com/uc?export=download&id=1Z1Vl7SOXf0yjoKttkZD1oYbLM7TgXr5s",
"dest": "colab_Gold.txt"
}
}
}