Accomplish the exp scripts v1; Add video recording and trajectory recording of desktop agent; Fix minor bugs

This commit is contained in:
Timothyxxx
2024-01-15 13:49:48 +08:00
parent f153a4c253
commit 24169a65d0
6 changed files with 127 additions and 21 deletions

View File

@@ -243,6 +243,32 @@ class PythonController:
else:
raise Exception(f"Unknown action type: {action_type}")
# Record video
def start_recording(self):
"""
Starts recording the screen.
"""
response = requests.post(self.http_server + "/start_recording")
if response.status_code == 200:
logger.info("Recording started successfully")
else:
logger.error("Failed to start recording. Status code: %d", response.status_code)
def end_recording(self, dest: str):
"""
Ends recording the screen.
"""
response = requests.post(self.http_server + "/end_recording")
if response.status_code == 200:
logger.info("Recording stopped successfully")
with open(dest, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
if chunk:
f.write(chunk)
else:
logger.error("Failed to stop recording. Status code: %d", response.status_code)
return None
# Additional info
def get_vm_platform(self):
"""

View File

@@ -209,10 +209,6 @@ class SetupController:
if not command:
raise Exception("Empty command to launch.")
if isinstance(command, str) and len(command.split()) > 1:
logger.warning("Command should be a list of strings. Now it is a string. Will split it by space.")
command = command.split()
payload = json.dumps({"command": command})
headers = {"Content-Type": "application/json"}

View File

@@ -86,6 +86,9 @@ def compare_images(image1_path, image2_path):
# score = compare_images('path_to_image1', 'path_to_image2')
# print("Similarity score:", score)
if not image1_path or not image2_path:
return 0
# Open the images and convert to grayscale
image1 = Image.open(image1_path).convert('L')
image2 = Image.open(image2_path).convert('L')
@@ -119,6 +122,9 @@ def compare_audios(audio_path_1, audio_path_2, max_distance=1000):
# print(f'Similarity Score: {similarity}')
# Convert to common format if necessary and load audio
if not audio_path_1 or not audio_path_2:
return 0
y1, sr1 = librosa.load(audio_path_1)
y2, sr2 = librosa.load(audio_path_2)

View File

@@ -78,3 +78,8 @@ Activating the window manager control requires the installation of `wmctrl`:
```bash
sudo apt install wmctrl
```
To enable recording in the virtual machine, you need to install `ffmpeg`:
```bash
sudo apt install ffmpeg
```

View File

@@ -1,6 +1,7 @@
import ctypes
import os
import platform
import shlex
import subprocess
from pathlib import Path
from typing import Any, Optional
@@ -13,7 +14,7 @@ import pyautogui
import requests
from PIL import Image
from Xlib import display, X
from flask import Flask, request, jsonify, send_file, abort
from flask import Flask, request, jsonify, send_file, abort, send_from_directory
from lxml.etree import _Element
from pyatspi import Accessible, StateType
from pyatspi import Action as ATAction
@@ -29,7 +30,8 @@ pyautogui.PAUSE = 0
pyautogui.DARWIN_CATCH_UP_TIME = 0
logger = app.logger
recording_process = None # fixme: this is a temporary solution for recording, need to be changed to support multiple-process
recording_path = "/tmp/recording.mp4"
@app.route('/setup/execute', methods=['POST'])
@app.route('/execute', methods=['POST'])
@@ -39,6 +41,9 @@ def execute_command():
shell = data.get('shell', False)
command = data.get('command', "" if shell else [])
if isinstance(command, str):
command = shlex.split(command)
# Execute the command without any safety checks.
try:
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=shell, text=True)
@@ -60,6 +65,9 @@ def launch_app():
data = request.json
command: List[str] = data.get("command", [])
if isinstance(command, str):
command = shlex.split(command)
try:
subprocess.Popen(command)
return "{:} launched successfully".format(" ".join(command))
@@ -604,5 +612,42 @@ def activate_window():
return "File opened successfully", 200
@app.route('/start_recording', methods=['POST'])
def start_recording():
global recording_process
if recording_process:
return jsonify({'status': 'error', 'message': 'Recording is already in progress.'}), 400
d = display.Display()
screen_width = d.screen().width_in_pixels
screen_height = d.screen().height_in_pixels
start_command = f"ffmpeg -y -f x11grab -draw_mouse 1 -s {screen_width}x{screen_height} -i :0.0 -c:v libx264 -r 30 {recording_path}"
recording_process = subprocess.Popen(shlex.split(start_command), stdout=subprocess.PIPE, stderr=subprocess.PIPE)
return jsonify({'status': 'success', 'message': 'Started recording.'})
@app.route('/end_recording', methods=['POST'])
def end_recording():
global recording_process
if not recording_process:
return jsonify({'status': 'error', 'message': 'No recording in progress to stop.'}), 400
recording_process.terminate()
recording_process.wait()
return_code = recording_process.returncode
output, error = recording_process.communicate()
recording_process = None
# return recording video file
if os.path.exists(recording_path):
return send_file(recording_path, as_attachment=True)
else:
return abort(404, description="Recording failed")
if __name__ == '__main__':
app.run(debug=True, host="0.0.0.0")

View File

@@ -44,7 +44,7 @@ logger = logging.getLogger("desktopenv.experiment")
PATH_TO_VM = r"C:\Users\tianbaox\Documents\Virtual Machines\Ubuntu\Ubuntu.vmx"
def run_one_example(example, agent, max_steps=20, example_trajectory_dir="exp_trajectory"):
def run_one_example(example, agent, max_steps=2, example_trajectory_dir="exp_trajectory", recording=True):
trajectory_recording_path = os.path.join(example_trajectory_dir, "trajectory.json")
env = DesktopEnv(
path_to_vm=PATH_TO_VM,
@@ -57,25 +57,53 @@ def run_one_example(example, agent, max_steps=20, example_trajectory_dir="exp_tr
done = False
step_num = 0
# todo: save the screenshots and actions to a folder
if recording:
# send a request to the server to start recording
env.controller.start_recording()
while not done and step_num < max_steps:
actions = agent.predict(observation)
for action in actions:
step_num += 1
# Capture the timestamp before executing the action
action_timestamp = datetime.datetime.now().strftime("%Y%m%d@%H%M%S")
observation, reward, done, info = env.step(action)
observation['instruction'] = example['instruction']
step_num += 1
logger.info("Step %d", step_num)
logger.info("Action: %s", actions)
observation.pop("accessibility_tree")
logger.info("Observation: %s", observation)
logger.info("Reward: %.2f", reward)
logger.info("Info: %s", info)
logger.info("================================\n")
# Logging
logger.info("Step %d: %s", step_num, action)
logger.info("Reward: %.2f", reward)
logger.info("Done: %s", done)
logger.info("Info: %s", info)
if done:
logger.info("The episode is done.")
break
# Save screenshot and trajectory information
with open(os.path.join(example_trajectory_dir, f"step_{step_num}_{action_timestamp}.png"), "wb") as _f:
with open(observation['screenshot'], "rb") as __f:
screenshot = __f.read()
_f.write(screenshot)
with open(trajectory_recording_path, "a") as f:
f.write(json.dumps({
"step_num": step_num,
"action_timestamp": action_timestamp,
"action": action,
"reward": reward,
"done": done,
"info": info,
"screenshot_file": f"step_{step_num}_{action_timestamp}.png"
}))
f.write("\n")
if done:
logger.info("The episode is done.")
break
if recording:
# send a request to the server to stop recording
env.controller.end_recording(os.path.join(example_trajectory_dir, "recording.mp4"))
result = env.evaluate()
logger.info("Result: %.2f", result)
@@ -91,7 +119,7 @@ if __name__ == "__main__":
with open(f"evaluation_examples/examples/{example_class}/{example_id}.json", "r") as f:
example = json.load(f)
example["snapshot"] = "chrome_setup"
example["snapshot"] = "exp_setup"
api_key = os.environ.get("OPENAI_API_KEY")
agent = GPT4v_Agent(api_key=api_key, action_space=action_space)
@@ -101,4 +129,4 @@ if __name__ == "__main__":
example_trajectory_dir = os.path.join(root_trajectory_dir, example_class, example_id)
os.makedirs(example_trajectory_dir, exist_ok=True)
run_one_example(example, agent, 20, example_trajectory_dir)
run_one_example(example, agent, 2, example_trajectory_dir)