Accomplish the exp scripts v1; Add video recording and trajectory recording of desktop agent; Fix minor bugs

This commit is contained in:
Timothyxxx
2024-01-15 13:49:48 +08:00
parent f153a4c253
commit 24169a65d0
6 changed files with 127 additions and 21 deletions

View File

@@ -44,7 +44,7 @@ logger = logging.getLogger("desktopenv.experiment")
PATH_TO_VM = r"C:\Users\tianbaox\Documents\Virtual Machines\Ubuntu\Ubuntu.vmx"
def run_one_example(example, agent, max_steps=20, example_trajectory_dir="exp_trajectory"):
def run_one_example(example, agent, max_steps=2, example_trajectory_dir="exp_trajectory", recording=True):
trajectory_recording_path = os.path.join(example_trajectory_dir, "trajectory.json")
env = DesktopEnv(
path_to_vm=PATH_TO_VM,
@@ -57,25 +57,53 @@ def run_one_example(example, agent, max_steps=20, example_trajectory_dir="exp_tr
done = False
step_num = 0
# todo: save the screenshots and actions to a folder
if recording:
# send a request to the server to start recording
env.controller.start_recording()
while not done and step_num < max_steps:
actions = agent.predict(observation)
for action in actions:
step_num += 1
# Capture the timestamp before executing the action
action_timestamp = datetime.datetime.now().strftime("%Y%m%d@%H%M%S")
observation, reward, done, info = env.step(action)
observation['instruction'] = example['instruction']
step_num += 1
logger.info("Step %d", step_num)
logger.info("Action: %s", actions)
observation.pop("accessibility_tree")
logger.info("Observation: %s", observation)
logger.info("Reward: %.2f", reward)
logger.info("Info: %s", info)
logger.info("================================\n")
# Logging
logger.info("Step %d: %s", step_num, action)
logger.info("Reward: %.2f", reward)
logger.info("Done: %s", done)
logger.info("Info: %s", info)
if done:
logger.info("The episode is done.")
break
# Save screenshot and trajectory information
with open(os.path.join(example_trajectory_dir, f"step_{step_num}_{action_timestamp}.png"), "wb") as _f:
with open(observation['screenshot'], "rb") as __f:
screenshot = __f.read()
_f.write(screenshot)
with open(trajectory_recording_path, "a") as f:
f.write(json.dumps({
"step_num": step_num,
"action_timestamp": action_timestamp,
"action": action,
"reward": reward,
"done": done,
"info": info,
"screenshot_file": f"step_{step_num}_{action_timestamp}.png"
}))
f.write("\n")
if done:
logger.info("The episode is done.")
break
if recording:
# send a request to the server to stop recording
env.controller.end_recording(os.path.join(example_trajectory_dir, "recording.mp4"))
result = env.evaluate()
logger.info("Result: %.2f", result)
@@ -91,7 +119,7 @@ if __name__ == "__main__":
with open(f"evaluation_examples/examples/{example_class}/{example_id}.json", "r") as f:
example = json.load(f)
example["snapshot"] = "chrome_setup"
example["snapshot"] = "exp_setup"
api_key = os.environ.get("OPENAI_API_KEY")
agent = GPT4v_Agent(api_key=api_key, action_space=action_space)
@@ -101,4 +129,4 @@ if __name__ == "__main__":
example_trajectory_dir = os.path.join(root_trajectory_dir, example_class, example_id)
os.makedirs(example_trajectory_dir, exist_ok=True)
run_one_example(example, agent, 20, example_trajectory_dir)
run_one_example(example, agent, 2, example_trajectory_dir)