Add EvoCUA Support (#401)

* evocua init

* setup max_token

---------

Co-authored-by: xuetaofeng <xuetaofeng@meituan.com>
Co-authored-by: Tianbao Xie <47296835+Timothyxxx@users.noreply.github.com>
This commit is contained in:
xuetf
2025-12-23 20:46:23 +08:00
committed by GitHub
parent 031696e83c
commit 410ec63a89
5 changed files with 1697 additions and 57 deletions

View File

@@ -462,82 +462,102 @@ def run_single_example_uipath(agent, env, example, max_steps, instruction, args,
f.write(f"{result}\n")
env.controller.end_recording(os.path.join(example_result_dir, "recording.mp4"))
from mm_agents.os_symphony.utils.common_utils import draw_coordinates
from mm_agents.os_symphony.utils.process_context import set_current_result_dir
logger = logging.getLogger("desktopenv.experiment")
def run_single_example_os_symphony(agent, env, example, max_steps, instruction, args, example_result_dir, scores):
set_current_result_dir(example_result_dir)
def run_single_example_evocua(agent, env, example, max_steps, instruction, args, example_result_dir, scores):
"""
Unified run function for EvoCUAAgent (supporting both S1 and S2 modes).
"""
runtime_logger = setup_logger(example, example_result_dir)
agent.reset(result_dir=example_result_dir)
# Reset Environment
env.reset(task_config=example)
time.sleep(30) # Wait for the environment to be ready
# Reset Agent
# Handle agent reset signature differences if any
try:
agent.reset(runtime_logger, vm_ip=env.vm_ip)
except Exception:
try:
agent.reset(runtime_logger)
except Exception:
agent.reset()
time.sleep(60) # Wait for the environment to be ready
obs = env._get_obs() # Get the initial observation
done = False
step_idx = 0
# env.controller.start_recording()
start_time = time.time()
env.controller.start_recording()
while not done and step_idx < max_steps:
response, actions = agent.predict(
instruction,
obs,
step_idx == max_steps - 1
)
# EvoCUAAgent.predict unified signature: returns (response, actions)
# It handles both modes internally.
predict_res = agent.predict(instruction, obs)
# Check return signature logic
if len(predict_res) == 3:
# Compatibility with S1 original signature if agent was updated to match
response, actions, info_dict = predict_res
else:
response, actions = predict_res
info_dict = {}
logger.info(f"Step {step_idx + 1} Actions: {actions}")
# Break if no actions (fail-safe)
if not actions or (len(actions) == 1 and (actions[0] == "" or "error" in actions[0].lower())):
# Allow "FAIL" or "DONE" to process through execution loop if agent outputs them as actions
if not (actions and actions[0] in ["FAIL", "DONE"]):
logger.warning("No valid actions returned. Breaking loop.")
break
for action in actions:
# Save screenshot and trajectory information
if "reflection" in response and response["reflection"].get("is_milestone"):
img_name = f"step_{step_idx + 1}_milestone.png"
else:
img_name = f"step_{step_idx + 1}.png"
with open(os.path.join(example_result_dir, img_name),
"wb") as _f:
_f.write(obs['screenshot'])
if "coordinates" in response and response["coordinates"]:
draw_coordinates(
image_bytes=obs['screenshot'],
coordinates=response["coordinates"],
save_path=os.path.join(example_result_dir, img_name[:-4] + "_draw.png")
)
logger.info("Step %d: %s", step_idx + 1, action)
action_timestamp = datetime.datetime.now().strftime("%Y%m%d@%H%M%S%f")
logger.info("Executing action: %s", action)
# Execute
obs, reward, done, info = env.step(action, args.sleep_after_execution)
logger.info("Reward: %.2f", reward)
logger.info("Done: %s", done)
# Save screenshot
screenshot_file = f"step_{step_idx + 1}_{action_timestamp}.png"
with open(os.path.join(example_result_dir, screenshot_file), "wb") as _f:
_f.write(obs['screenshot'])
# Log Trajectory
log_entry = {
"step_num": step_idx + 1,
"action_timestamp": action_timestamp,
"action": action,
"response": response,
"reward": reward,
"done": done,
"info": info,
"screenshot_file": screenshot_file
}
# Add natural language info if available (S1 style)
if info_dict:
log_entry["natural_language_action"] = info_dict.get("action")
with open(os.path.join(example_result_dir, "traj.jsonl"), "a", encoding="utf-8") as f:
f.write(json.dumps({
"instruction": instruction,
"step_num": step_idx + 1,
"action": action,
"response": response,
"done": done,
"info": info,
"screenshot_file": img_name
}))
f.write(json.dumps(log_entry, ensure_ascii=False))
f.write("\n")
with open(os.path.join(example_result_dir, f"traj_{step_idx+1}.json"), "w", encoding="utf-8") as f:
json.dump({
"step_num": step_idx + 1,
"action": action,
"response": response,
"done": done,
"info": info,
"screenshot_file": img_name
}, f, indent=4, ensure_ascii=False)
if done:
logger.info("The episode is done.")
time.sleep(60)
break
step_idx += 1
end_time = time.time()
result = float(env.evaluate())
time.sleep(20) # Wait for environment to settle
result = env.evaluate()
logger.info("Result: %.2f", result)
scores.append(result)
with open(os.path.join(example_result_dir, "result.txt"), "w", encoding="utf-8") as f:
f.write(f"{result}\n")
log_task_completion(example, result, example_result_dir, args)
with open(os.path.join(example_result_dir, "time.txt"), "w", encoding="utf-8") as f:
f.write(f"{end_time-start_time:.2f}\n")
env.controller.end_recording(os.path.join(example_result_dir, "recording.mp4"))

View File

@@ -0,0 +1,619 @@
import os
import re
import json
import logging
import backoff
import openai
from typing import Dict, List, Tuple, Optional
from io import BytesIO
from PIL import Image
from mm_agents.evocua.utils import (
process_image,
encode_image,
rewrite_pyautogui_text_inputs,
project_coordinate_to_absolute_scale,
log_messages
)
from mm_agents.evocua.prompts import (
S1_SYSTEM_PROMPT,
S1_INSTRUTION_TEMPLATE,
S1_STEP_TEMPLATE,
S1_ACTION_HISTORY_TEMPLATE,
S2_ACTION_DESCRIPTION,
S2_DESCRIPTION_PROMPT_TEMPLATE,
S2_SYSTEM_PROMPT,
build_s2_tools_def
)
logger = logging.getLogger("desktopenv.evocua")
class EvoCUAAgent:
"""
EvoCUA - A Native GUI agent model for desktop automation.
"""
def __init__(
self,
model: str = "EvoCUA-S2",
max_tokens: int = 32768,
top_p: float = 0.9,
temperature: float = 0.0,
action_space: str = "pyautogui",
observation_type: str = "screenshot",
max_steps: int = 50,
prompt_style: str = "S2", # "S1" or "S2"
max_history_turns: int = 4,
screen_size: Tuple[int, int] = (1920, 1080),
coordinate_type: str = "relative",
password: str = "osworld-public-evaluation",
resize_factor: int = 32,
**kwargs
):
self.model = model
self.max_tokens = max_tokens
self.top_p = top_p
self.temperature = temperature
self.action_space = action_space
self.observation_type = observation_type
self.max_steps = max_steps
self.prompt_style = prompt_style
assert self.prompt_style in ["S1", "S2"], f"Invalid prompt_style: {self.prompt_style}"
self.max_history_turns = max_history_turns
self.screen_size = screen_size
self.coordinate_type = coordinate_type
self.password = password
self.resize_factor = resize_factor
# Action space assertion
assert self.action_space == "pyautogui", f"Invalid action space: {self.action_space}"
assert self.observation_type == "screenshot", f"Invalid observation type: {self.observation_type}"
# State
self.thoughts = []
self.actions = []
self.observations = []
self.responses = []
self.screenshots = [] # Stores encoded string
self.cots = [] # For S1 style history
def reset(self, _logger=None, vm_ip=None):
global logger
if _logger:
logger = _logger
self.thoughts = []
self.actions = []
self.observations = []
self.responses = []
self.screenshots = []
self.cots = []
def predict(self, instruction: str, obs: Dict) -> List:
"""
Main prediction loop.
"""
logger.info(f"========================== {self.model} ===================================")
logger.info(f"Instruction: \n{instruction}")
screenshot_bytes = obs["screenshot"]
try:
original_img = Image.open(BytesIO(screenshot_bytes))
original_width, original_height = original_img.size
except Exception as e:
logger.warning(f"Failed to read screenshot size, falling back to screen_size: {e}")
original_width, original_height = self.screen_size
if self.prompt_style == "S1":
raw_b64 = encode_image(screenshot_bytes)
self.screenshots.append(raw_b64)
return self._predict_s1(instruction, obs, raw_b64)
else:
processed_b64, p_width, p_height = process_image(screenshot_bytes, factor=self.resize_factor)
self.screenshots.append(processed_b64)
return self._predict_s2(
instruction,
obs,
processed_b64,
p_width,
p_height,
original_width,
original_height,
)
def _predict_s2(self, instruction, obs, processed_b64, p_width, p_height, original_width, original_height):
current_step = len(self.actions)
current_history_n = self.max_history_turns
response = None
if self.coordinate_type == "absolute":
resolution_info = f"* The screen's resolution is {p_width}x{p_height}."
else:
resolution_info = "* The screen's resolution is 1000x1000."
description_prompt = S2_DESCRIPTION_PROMPT_TEMPLATE.format(resolution_info=resolution_info)
tools_def = build_s2_tools_def(description_prompt)
system_prompt = S2_SYSTEM_PROMPT.format(tools_xml=json.dumps(tools_def))
# Retry loop for context length
while True:
messages = self._build_s2_messages(
instruction,
processed_b64,
current_step,
current_history_n,
system_prompt
)
try:
response = self.call_llm({
"model": self.model,
"messages": messages,
"max_tokens": self.max_tokens,
"top_p": self.top_p,
"temperature": self.temperature,
})
break
except Exception as e:
# Handle Context Too Large
if self._should_giveup_on_context_error(e) and current_history_n > 0:
current_history_n -= 1
logger.warning(f"Context too large, retrying with history_n={current_history_n}")
else:
logger.error(f"Error in predict: {e}")
break
self.responses.append(response)
low_level_instruction, pyautogui_code = self._parse_response_s2(
response, p_width, p_height, original_width, original_height
)
# new added
current_step = len(self.actions) + 1
first_action = pyautogui_code[0] if pyautogui_code else ""
if current_step >= self.max_steps and str(first_action).upper() not in ("DONE", "FAIL"):
logger.warning(f"Reached maximum steps {self.max_steps}. Forcing termination with FAIL.")
low_level_instruction = "Fail the task because reaching the maximum step limit."
pyautogui_code = ["FAIL"]
logger.info(f"Low level instruction: {low_level_instruction}")
logger.info(f"Pyautogui code: {pyautogui_code}")
self.actions.append(low_level_instruction)
return response, pyautogui_code
def _build_s2_messages(self, instruction, current_img, step, history_n, system_prompt):
messages = [{"role": "system", "content": [{"type": "text", "text": system_prompt}]}]
previous_actions = []
history_start_idx = max(0, step - history_n)
for i in range(history_start_idx):
if i < len(self.actions):
previous_actions.append(f"Step {i+1}: {self.actions[i]}")
previous_actions_str = "\n".join(previous_actions) if previous_actions else "None"
# Add History
history_len = min(history_n, len(self.responses))
if history_len > 0:
hist_responses = self.responses[-history_len:]
hist_imgs = self.screenshots[-history_len-1:-1]
for i in range(history_len):
if i < len(hist_imgs):
screenshot_b64 = hist_imgs[i]
if i == 0:
# First history item: Inject Instruction + Previous Actions Context
img_url = f"data:image/png;base64,{screenshot_b64}"
instruction_prompt = f"""
Please generate the next move according to the UI screenshot, instruction and previous actions.
Instruction: {instruction}
Previous actions:
{previous_actions_str}"""
messages.append({
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": img_url}},
{"type": "text", "text": instruction_prompt}
]
})
else:
img_url = f"data:image/png;base64,{screenshot_b64}"
messages.append({
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": img_url}},
]
})
messages.append({
"role": "assistant",
"content": [{"type": "text", "text": hist_responses[i]}]
})
# Current Turn
# We re-use previous_actions_str logic for the case where history_len == 0
if history_len == 0:
# First turn logic: Include Instruction + Previous Actions
instruction_prompt = f"""
Please generate the next move according to the UI screenshot, instruction and previous actions.
Instruction: {instruction}
Previous actions:
{previous_actions_str}"""
messages.append({
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{current_img}"}},
{"type": "text", "text": instruction_prompt}
]
})
else:
# Subsequent turns logic (context already in first history message): Image Only
messages.append({
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{current_img}"}}
]
})
return messages
def _parse_response_s2(
self,
response: str,
processed_width: int = None,
processed_height: int = None,
original_width: Optional[int] = None,
original_height: Optional[int] = None,
) -> Tuple[str, List[str]]:
"""
Parse LLM response and convert it to low level action and pyautogui code.
"""
# Prefer the real screenshot resolution (passed from predict), fallback to configured screen_size.
if not (original_width and original_height):
original_width, original_height = self.screen_size
low_level_instruction = ""
pyautogui_code: List[str] = []
if response is None or not response.strip():
return low_level_instruction, pyautogui_code
def adjust_coordinates(x: float, y: float) -> Tuple[int, int]:
if not (original_width and original_height):
return int(x), int(y)
if self.coordinate_type == "absolute":
# scale from processed pixels to original
if processed_width and processed_height:
x_scale = original_width / processed_width
y_scale = original_height / processed_height
return int(x * x_scale), int(y * y_scale)
return int(x), int(y)
# relative: scale from 0..999 grid
x_scale = original_width / 999
y_scale = original_height / 999
return int(x * x_scale), int(y * y_scale)
def process_tool_call(json_str: str) -> None:
try:
tool_call = json.loads(json_str)
if tool_call.get("name") == "computer_use":
args = tool_call["arguments"]
action = args["action"]
if action == "left_click":
if "coordinate" in args:
x, y = args["coordinate"]
adj_x, adj_y = adjust_coordinates(x, y)
pyautogui_code.append(f"pyautogui.click({adj_x}, {adj_y})")
else:
pyautogui_code.append("pyautogui.click()")
elif action == "right_click":
if "coordinate" in args:
x, y = args["coordinate"]
adj_x, adj_y = adjust_coordinates(x, y)
pyautogui_code.append(
f"pyautogui.rightClick({adj_x}, {adj_y})"
)
else:
pyautogui_code.append("pyautogui.rightClick()")
elif action == "middle_click":
if "coordinate" in args:
x, y = args["coordinate"]
adj_x, adj_y = adjust_coordinates(x, y)
pyautogui_code.append(
f"pyautogui.middleClick({adj_x}, {adj_y})"
)
else:
pyautogui_code.append("pyautogui.middleClick()")
elif action == "double_click":
if "coordinate" in args:
x, y = args["coordinate"]
adj_x, adj_y = adjust_coordinates(x, y)
pyautogui_code.append(
f"pyautogui.doubleClick({adj_x}, {adj_y})"
)
else:
pyautogui_code.append("pyautogui.doubleClick()")
elif action == "type":
text = args.get("text", "")
try:
text = text.encode('latin-1', 'backslashreplace').decode('unicode_escape')
except Exception as e:
logger.error(f"Failed to unescape text: {e}")
logger.info(f"Pyautogui code[before rewrite]: {text}")
result = ""
for char in text:
if char == '\n':
result += "pyautogui.press('enter')\n"
elif char == "'":
result += 'pyautogui.press("\'")\n'
elif char == '\\':
result += "pyautogui.press('\\\\')\n"
elif char == '"':
result += "pyautogui.press('\"')\n"
else:
result += f"pyautogui.press('{char}')\n"
pyautogui_code.append(result)
logger.info(f"Pyautogui code[after rewrite]: {pyautogui_code}")
elif action == "key":
keys = args.get("keys", [])
if isinstance(keys, list):
cleaned_keys = []
for key in keys:
if isinstance(key, str):
if key.startswith("keys=["):
key = key[6:]
if key.endswith("]"):
key = key[:-1]
if key.startswith("['") or key.startswith('["'):
key = key[2:] if len(key) > 2 else key
if key.endswith("']") or key.endswith('"]'):
key = key[:-2] if len(key) > 2 else key
key = key.strip()
cleaned_keys.append(key)
else:
cleaned_keys.append(key)
keys = cleaned_keys
keys_str = ", ".join([f"'{key}'" for key in keys])
if len(keys) > 1:
pyautogui_code.append(f"pyautogui.hotkey({keys_str})")
else:
pyautogui_code.append(f"pyautogui.press({keys_str})")
elif action == "scroll":
pixels = args.get("pixels", 0)
pyautogui_code.append(f"pyautogui.scroll({pixels})")
elif action == "wait":
pyautogui_code.append("WAIT")
elif action == "terminate":
pyautogui_code.append("DONE")
elif action == "mouse_move":
if "coordinate" in args:
x, y = args["coordinate"]
adj_x, adj_y = adjust_coordinates(x, y)
pyautogui_code.append(
f"pyautogui.moveTo({adj_x}, {adj_y})"
)
else:
pyautogui_code.append("pyautogui.moveTo(0, 0)")
elif action == "left_click_drag":
if "coordinate" in args:
x, y = args["coordinate"]
adj_x, adj_y = adjust_coordinates(x, y)
duration = args.get("duration", 0.5)
pyautogui_code.append(
f"pyautogui.dragTo({adj_x}, {adj_y}, duration={duration})"
)
else:
pyautogui_code.append("pyautogui.dragTo(0, 0)")
except (json.JSONDecodeError, KeyError) as e:
logger.error(f"Failed to parse tool call: {e}")
lines = response.split("\n")
inside_tool_call = False
current_tool_call: List[str] = []
for line in lines:
line = line.strip()
if not line:
continue
if line.lower().startswith(("action:")):
if not low_level_instruction:
low_level_instruction = line.split("Action:")[-1].strip()
continue
if line.startswith("<tool_call>"):
inside_tool_call = True
continue
elif line.startswith("</tool_call>"):
if current_tool_call:
process_tool_call("\n".join(current_tool_call))
current_tool_call = []
inside_tool_call = False
continue
if inside_tool_call:
current_tool_call.append(line)
continue
if line.startswith("{") and line.endswith("}"):
try:
json_obj = json.loads(line)
if "name" in json_obj and "arguments" in json_obj:
process_tool_call(line)
except json.JSONDecodeError:
pass
if current_tool_call:
process_tool_call("\n".join(current_tool_call))
if not low_level_instruction and len(pyautogui_code) > 0:
action_type = pyautogui_code[0].split(".", 1)[1].split("(", 1)[0]
low_level_instruction = f"Performing {action_type} action"
return low_level_instruction, pyautogui_code
def _predict_s1(self, instruction, obs, processed_b64):
messages = [{"role": "system", "content": S1_SYSTEM_PROMPT.format(password=self.password)}]
# Reconstruct History Logic for S1 mode
history_step_texts = []
for i in range(len(self.actions)):
cot = self.cots[i] if i < len(self.cots) else {}
# Step Content string
step_content = S1_STEP_TEMPLATE.format(step_num=i+1) + S1_ACTION_HISTORY_TEMPLATE.format(action=cot.get('action', ''))
if i > len(self.actions) - self.max_history_turns:
# Recent history: Add User(Image) and Assistant(Text)
if i < len(self.screenshots) - 1: # Screenshot exists for this step
img = self.screenshots[i]
messages.append({
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{img}"}}
]
})
messages.append({"role": "assistant", "content": step_content})
else:
# Old history: Collect text
history_step_texts.append(step_content)
# If this is the last step before the recent window, flush collected texts
if i == len(self.actions) - self.max_history_turns:
messages.append({
"role": "assistant",
"content": "\n".join(history_step_texts)
})
# Current
messages.append({
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{processed_b64}"}},
{"type": "text", "text": S1_INSTRUTION_TEMPLATE.format(instruction=instruction)}
]
})
response = self.call_llm({
"model": self.model,
"messages": messages,
"max_tokens": self.max_tokens
})
low_level, codes, cot_data = self._parse_response_s1(response)
self.observations.append(obs)
self.cots.append(cot_data)
self.actions.append(low_level)
self.responses.append(response)
return response, codes
def _parse_response_s1(self, response):
sections = {}
# Simple Regex Parsing
for key, pattern in [
('observation', r'#{1,2}\s*Observation\s*:?[\n\r]+(.*?)(?=^#{1,2}\s|$)'),
('thought', r'#{1,2}\s*Thought\s*:?[\n\r]+(.*?)(?=^#{1,2}\s|$)'),
('action', r'#{1,2}\s*Action\s*:?[\n\r]+(.*?)(?=^#{1,2}\s|$)')
]:
m = re.search(pattern, response, re.DOTALL | re.MULTILINE)
if m: sections[key] = m.group(1).strip()
code_blocks = re.findall(r'```(?:code|python)?\s*(.*?)\s*```', response, re.DOTALL | re.IGNORECASE)
code = code_blocks[-1].strip() if code_blocks else "FAIL"
sections['code'] = code
# Post-process code
if "computer.terminate" in code:
final_code = ["DONE"] if "success" in code.lower() else ["FAIL"]
elif "computer.wait" in code:
final_code = ["WAIT"]
else:
# Project coordinates
code = project_coordinate_to_absolute_scale(
code,
self.screen_size[0],
self.screen_size[1],
self.coordinate_type,
self.resize_factor
)
logger.info(f"[rewrite before]: {code}")
final_code = [rewrite_pyautogui_text_inputs(code)]
logger.info(f"[rewrite after]: {final_code}")
return sections.get('action', 'Acting'), final_code, sections
@staticmethod
def _should_giveup_on_context_error(e):
"""对于 context length 相关的错误,立即放弃重试,交给外层处理"""
error_str = str(e)
return "Too Large" in error_str or "context_length_exceeded" in error_str or "413" in error_str
@backoff.on_exception(backoff.constant, Exception, interval=30, max_tries=10, giveup=_should_giveup_on_context_error.__func__)
def call_llm(self, payload):
"""Unified OpenAI-compatible API call"""
# Get env vars
base_url = os.environ.get("OPENAI_BASE_URL", "url-xxx")
api_key = os.environ.get("OPENAI_API_KEY", "sk-xxx")
client = openai.OpenAI(base_url=base_url, api_key=api_key)
messages = payload["messages"]
log_messages(messages, "LLM Request")
params = {
"model": payload["model"],
"messages": messages,
"max_tokens": payload["max_tokens"],
"temperature": self.temperature,
"top_p": self.top_p
}
try:
resp = client.chat.completions.create(**params)
content = resp.choices[0].message.content
logger.info(f"LLM Response:\n{content}")
return content
except Exception as e:
logger.error(f"LLM Call failed: {e}")
raise e

145
mm_agents/evocua/prompts.py Normal file
View File

@@ -0,0 +1,145 @@
S1_SYSTEM_PROMPT = """You are a GUI agent. You are given a task, a screenshot of the screen and your previous interactions with the computer. You need to perform a series of actions to complete the task. The password of the computer is "{password}", use it when you need sudo rights. You need to **wait** explicitly for installation, waiting website loading or running commands to finish. Don't terminate the task unless you are sure the task is finished. If you find that you can't finish the task, or the task is not finished exactly as the instruction indicates (you have made progress but not finished the task completely), or the task is impossible to complete, you must report **failure**.
For each step, provide your response in this format:
# Step: {{step number}}
## Thought:
{{thought}}
## Action:
{{action}}
## Code:
{{code}}
For the Thought section, you should include the following parts:
- Reflection on the task when there is previous action:
- Consider the correnctness of previous action and its outcomes
- If the previous action was correct, describe the change in the state of the computer and reason
- If the previous action was incorrect, reflect on what went wrong and why
- Step by Step Progress Assessment:
- Add necessary information according to the history screenshots, former actions and current screenshot.
- Analyze what parts of the task have already been completed and how they contribute to the overall goal.
- Make a plan on how to complete the task based on the history and currect screenshot.
- Next Action Prediction:
- Propose the most possible next action and state the reason
- For Text Input Actions:
- Note current cursor position
- Consolidate repetitive actions (specify count for multiple keypresses)
- Describe expected final text outcome
- Use first-person perspective in reasoning
For the action section, you should provide clear, concise, and actionable instructions in one sentence.
- If the action involves interacting with a specific target:
- Describe target explicitly (if multiple elements share that name, you should distinguish the target) without using coordinates
- Specify element names when possible (use original language if non-English)
- Describe features (shape, color, position) if name unavailable
- If the action involves keyboard actions like 'press', 'write', 'hotkey':
- Consolidate repetitive keypresses with count
- Specify expected text outcome for typing actions
For the code section, you should output the corresponding code for the action. The code should be either PyAutoGUI code or one of the following functions warped in the code block:
- {{"name": "computer.wait", "description": "Make the computer wait for 20 seconds for installation, running code, etc.", "parameters": {{"type": "object", "properties": {{}}, "required": []}}}}
- {{"name": "computer.terminate", "description": "Terminate the current task and report its completion status", "parameters": {{"type": "object", "properties": {{"status": {{"type": "string", "enum": ["success", "failure"], "description": "The status of the task"}}, {{"answer": {{"type": "string", "description": "The answer of the task"}}}}, "required": ["status"]}}}}
Examples for the code section:
```python
pyautogui.click(x=123, y=456)
```
```code
computer.terminate(status="success")
```
```code
computer.terminate(status="success", answer='''text''')
```"""
# S1 prompt templates for generating trajectories
S1_STEP_TEMPLATE = "# Step {step_num}:\n"
S1_INSTRUTION_TEMPLATE = "# Task Instruction:\n{instruction}\n\nPlease generate the next move according to the screenshot, task instruction and previous steps (if provided).\n"
S1_ACTION_HISTORY_TEMPLATE = "## Action:\n{action}\n"
# S2 Prompts
S2_ACTION_DESCRIPTION = """
* `key`: Performs key down presses on the arguments passed in order, then performs key releases in reverse order.
* `type`: Type a string of text on the keyboard.
* `mouse_move`: Move the cursor to a specified (x, y) pixel coordinate on the screen.
* `left_click`: Click the left mouse button at a specified (x, y) pixel coordinate on the screen.
* `left_click_drag`: Click and drag the cursor to a specified (x, y) pixel coordinate on the screen.
* `right_click`: Click the right mouse button at a specified (x, y) pixel coordinate on the screen.
* `middle_click`: Click the middle mouse button at a specified (x, y) pixel coordinate on the screen.
* `double_click`: Double-click the left mouse button at a specified (x, y) pixel coordinate on the screen.
* `triple_click`: Triple-click the left mouse button at a specified (x, y) pixel coordinate on the screen (simulated as double-click since it's the closest action).
* `scroll`: Performs a scroll of the mouse scroll wheel.
* `hscroll`: Performs a horizontal scroll (mapped to regular scroll).
* `wait`: Wait specified seconds for the change to happen.
* `terminate`: Terminate the current task and report its completion status.
* `answer`: Answer a question.
"""
S2_DESCRIPTION_PROMPT_TEMPLATE = """Use a mouse and keyboard to interact with a computer, and take screenshots.
* This is an interface to a desktop GUI. You do not have access to a terminal or applications menu. You must click on desktop icons to start applications.
* Some applications may take time to start or process actions, so you may need to wait and take successive screenshots to see the results of your actions. E.g. if you click on Firefox and a window doesn't open, try wait and taking another screenshot.
{resolution_info}
* Whenever you intend to move the cursor to click on an element like an icon, you should consult a screenshot to determine the coordinates of the element before moving the cursor.
* If you tried clicking on a program or link but it failed to load even after waiting, try adjusting your cursor position so that the tip of the cursor visually falls on the element that you want to click.
* Make sure to click any buttons, links, icons, etc with the cursor tip in the center of the element. Don't click boxes on their edges unless asked."""
S2_SYSTEM_PROMPT = """# Tools
You may call one or more functions to assist with the user query.
You are provided with function signatures within <tools></tools> XML tags:
<tools>
{tools_xml}
</tools>
For each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:
<tool_call>
{{"name": <function-name>, "arguments": <args-json-object>}}
</tool_call>
# Response format
Response format for every step:
1) Action: a short imperative describing what to do in the UI.
2) A single <tool_call>...</tool_call> block containing only the JSON: {{"name": <function-name>, "arguments": <args-json-object>}}.
Rules:
- Output exactly in the order: Action, <tool_call>.
- Be brief: one sentence for Action.
- Do not output anything else outside those parts.
- If finishing, use action=terminate in the tool call."""
def build_s2_tools_def(description_prompt):
return {
"type": "function",
"function": {
"name_for_human": "computer_use",
"name": "computer_use",
"description": description_prompt,
"parameters": {
"properties": {
"action": {
"description": S2_ACTION_DESCRIPTION,
"enum": ["key", "type", "mouse_move", "left_click", "left_click_drag",
"right_click", "middle_click", "double_click", "scroll", "wait", "terminate"],
"type": "string"
},
"keys": {"description": "Required only by `action=key`.", "type": "array"},
"text": {"description": "Required only by `action=type`.", "type": "string"},
"coordinate": {"description": "The x,y coordinates for mouse actions.", "type": "array"},
"pixels": {"description": "The amount of scrolling.", "type": "number"},
"time": {"description": "The seconds to wait.", "type": "number"},
"status": {
"description": "The status of the task.",
"type": "string",
"enum": ["success", "failure"]
}
},
"required": ["action"],
"type": "object"
},
"args_format": "Format the arguments as a JSON object."
}
}

302
mm_agents/evocua/utils.py Normal file
View File

@@ -0,0 +1,302 @@
import base64
import re
import ast
import logging
from io import BytesIO
import json
from PIL import Image
from mm_agents.utils.qwen_vl_utils import smart_resize
logger = logging.getLogger("desktopenv.evocua.utils")
def encode_image(image_content):
"""Encode image bytes to base64 string."""
return base64.b64encode(image_content).decode("utf-8")
def process_image(image_bytes, factor=32):
"""
Process an image for VL models.
factor: 32 for S2 mode, 28 for S1 mode default
"""
image = Image.open(BytesIO(image_bytes))
width, height = image.size
resized_height, resized_width = smart_resize(
height=height,
width=width,
factor=factor,
max_pixels=16 * 16 * 4 * 12800, # Large buffer
)
image = image.resize((resized_width, resized_height))
buffer = BytesIO()
image.save(buffer, format="PNG")
processed_bytes = buffer.getvalue()
return base64.b64encode(processed_bytes).decode("utf-8"), resized_width, resized_height
def _fallback_rewrite_pyautogui_text_inputs(code: str) -> str:
"""
Regex-based fallback to handle malformed pyautogui.write/typewrite calls.
"""
logger.info(f"SyntaxError detected in code, using regex fallback. Original code: {code}")
def _replacer(match):
call_content = match.group(0)
m = re.search(r'pyautogui\.(?:write|typewrite)\s*\(', call_content)
if not m:
return call_content
args_part = call_content[m.end():].strip()
args_part = re.sub(r'^(?:message|text)\s*=\s*', '', args_part)
text_content = ""
if args_part.startswith(("'''", '"""')):
quote_type = args_part[:3]
content = args_part[3:]
end_idx = content.rfind(quote_type)
if end_idx != -1:
text_content = content[:end_idx]
else:
text_content = content[:-1] if content.endswith(')') else content
elif args_part.startswith(("'", '"')):
quote_type = args_part[0]
content = args_part[1:]
if content.endswith(quote_type + ")"):
text_content = content[:-2]
elif content.endswith(")"):
if len(content) > 1 and content[-2] == quote_type:
text_content = content[:-2]
else:
text_content = content[:-1]
elif content.endswith(quote_type):
text_content = content[:-1]
else:
text_content = content
else:
text_content = args_part[:-1] if args_part.endswith(')') else args_part
new_cmds = []
for char in text_content:
p = "enter" if char == "\n" else char
p_esc = p.replace("'", "\\'")
new_cmds.append(f"pyautogui.press('{p_esc}')")
return "; ".join(new_cmds)
pattern = r"pyautogui\.(?:write|typewrite)\s*\(.*?(?=\s*;|\s*$|\n)"
new_code = re.sub(pattern, _replacer, code)
if new_code == code and ("pyautogui.write" in code or "pyautogui.typewrite" in code):
new_code = re.sub(r"pyautogui\.(?:write|typewrite)\s*\(.*", _replacer, code)
return new_code
def rewrite_pyautogui_text_inputs(code: str) -> str:
"""
Expand pyautogui.write/typewrite string literals into per-character presses.
"""
try:
tree = ast.parse(code)
class _TextCallRewriter(ast.NodeTransformer):
def _extract_text(self, call: ast.Call):
if not (
isinstance(call.func, ast.Attribute)
and isinstance(call.func.value, ast.Name)
and call.func.value.id == "pyautogui"
and call.func.attr in ("write", "typewrite")
):
return None
message_node = call.args[0] if call.args else None
if message_node is None:
for kw in call.keywords:
if kw.arg in ("message", "text"):
message_node = kw.value
break
if isinstance(message_node, ast.Constant) and isinstance(message_node.value, str):
return message_node.value
return None
def visit_Expr(self, node):
self.generic_visit(node)
if isinstance(node.value, ast.Call):
text = self._extract_text(node.value)
if text is not None:
new_nodes = []
for char in text:
press_value = "enter" if char == "\n" else char
press_call = ast.Expr(
value=ast.Call(
func=ast.Attribute(
value=ast.Name(id="pyautogui", ctx=ast.Load()),
attr="press",
ctx=ast.Load(),
),
args=[ast.Constant(value=press_value)],
keywords=[],
)
)
new_nodes.append(press_call)
return new_nodes if new_nodes else node
return node
tree = _TextCallRewriter().visit(tree)
tree = ast.fix_missing_locations(tree)
new_code = ast.unparse(tree)
return new_code
except (SyntaxError, Exception):
return _fallback_rewrite_pyautogui_text_inputs(code)
def project_coordinate_to_absolute_scale(pyautogui_code_relative_coordinates, screen_width, screen_height, coordinate_type="relative", resize_factor=28):
"""
Convert the relative coordinates in the pyautogui code to absolute coordinates based on the logical screen size.
"""
def _coordinate_projection(x, y, screen_width, screen_height, coordinate_type):
if coordinate_type == "qwen25":
height, width = smart_resize(
height=screen_height,
width=screen_width,
factor=resize_factor,
min_pixels=3136,
max_pixels=12845056
)
if 0 <= x <= 1 and 0 <= y <= 1:
# If already normalized, treat like "relative"
return int(round(x * width)), int(round(y * height))
return int(x / width * screen_width), int(y / height * screen_height)
else:
raise ValueError(f"Invalid coordinate type: {coordinate_type}. Expected 'qwen25'")
pattern = r'(pyautogui\.\w+\([^\)]*\))'
matches = re.findall(pattern, pyautogui_code_relative_coordinates)
new_code = pyautogui_code_relative_coordinates
for full_call in matches:
func_name_pattern = r'(pyautogui\.\w+)\((.*)\)'
func_match = re.match(func_name_pattern, full_call, re.DOTALL)
if not func_match:
continue
func_name = func_match.group(1)
args_str = func_match.group(2)
try:
parsed = ast.parse(f"func({args_str})").body[0].value
parsed_args = parsed.args
parsed_keywords = parsed.keywords
except SyntaxError:
continue
function_parameters = {
'click': ['x', 'y', 'clicks', 'interval', 'button', 'duration', 'pause'],
'rightClick': ['x', 'y', 'duration', 'tween', 'pause'],
'middleClick': ['x', 'y', 'duration', 'tween', 'pause'],
'doubleClick': ['x', 'y', 'interval', 'button', 'duration', 'pause'],
'tripleClick': ['x', 'y', 'interval', 'button', 'duration', 'pause'],
'moveTo': ['x', 'y', 'duration', 'tween', 'pause'],
'dragTo': ['x', 'y', 'duration', 'button', 'mouseDownUp', 'pause'],
}
func_base_name = func_name.split('.')[-1]
param_names = function_parameters.get(func_base_name, [])
args = {}
for idx, arg in enumerate(parsed_args):
if idx < len(param_names):
param_name = param_names[idx]
try:
arg_value = ast.literal_eval(arg)
args[param_name] = arg_value
except:
pass
try:
for kw in parsed_keywords:
param_name = kw.arg
arg_value = ast.literal_eval(kw.value)
args[param_name] = arg_value
except Exception as e:
logger.error(f"Error parsing keyword arguments: {e}")
continue
updated = False
if 'x' in args and 'y' in args:
try:
x_rel = float(args['x'])
y_rel = float(args['y'])
# Only project if they look like relative coords (e.g. <= 1.0 or depending on type)
# Projection applies unconditionally if type is relative
x_abs, y_abs = _coordinate_projection(x_rel, y_rel, screen_width, screen_height, coordinate_type)
# Apply coordinate transformation
args['x'] = x_abs
args['y'] = y_abs
updated = True
except (ValueError, TypeError):
pass
if updated:
reconstructed_args = []
for idx, param_name in enumerate(param_names):
if param_name in args:
arg_value = args[param_name]
if isinstance(arg_value, str):
arg_repr = f"'{arg_value}'"
else:
arg_repr = str(arg_value)
reconstructed_args.append(arg_repr)
else:
break
used_params = set(param_names[:len(reconstructed_args)])
for kw in parsed_keywords:
if kw.arg not in used_params:
arg_value = args[kw.arg]
if isinstance(arg_value, str):
arg_repr = f"{kw.arg}='{arg_value}'"
else:
arg_repr = f"{kw.arg}={arg_value}"
reconstructed_args.append(arg_repr)
new_args_str = ', '.join(reconstructed_args)
new_full_call = f"{func_name}({new_args_str})"
new_code = new_code.replace(full_call, new_full_call)
return new_code
def log_messages(messages, prefix="LLM Messages"):
"""Log messages with truncated base64 images"""
try:
log_msgs = []
for msg in messages:
msg_copy = msg.copy()
content = msg.get("content")
if isinstance(content, list):
new_content = []
for item in content:
if isinstance(item, dict) and item.get("type") == "image_url":
item_copy = item.copy()
url = item_copy.get("image_url", {}).get("url", "")
if len(url) > 100:
item_copy["image_url"] = {"url": url[:30] + "...[base64_truncated]..." + url[-10:]}
new_content.append(item_copy)
else:
new_content.append(item)
msg_copy["content"] = new_content
log_msgs.append(msg_copy)
logger.info(f"{prefix}:\n{json.dumps(log_msgs, indent=2, ensure_ascii=False)}")
except Exception as e:
logger.warning(f"Failed to log messages: {e}")

554
run_multienv_evocua.py Normal file
View File

@@ -0,0 +1,554 @@
"""
Script to run EvoCUA native agent model on OSWorld tasks.
export AWS_ACCESS_KEY_ID="xx"
export AWS_SECRET_ACCESS_KEY="xx"
export AWS_REGION="xx"
export AWS_SECURITY_GROUP_ID="xx"
export AWS_SUBNET_ID="xx"
export OPENAI_API_KEY="xxxx"
export OPENAI_BASE_URL="xxxx"
Example Usage (S2):
python3 run_multienv_evocua.py \
--headless \
--provider_name aws \
--observation_type screenshot \
--model EvoCUA-S2 \
--result_dir ./evocua_s2 \
--test_all_meta_path evaluation_examples/test_nogdrive.json \
--max_steps 50 \
--num_envs 30 \
--max_history_turns 4 \
--coordinate_type relative \
--resize_factor 32 \
--prompt_style S2
Example Usage (S1):
python3 run_multienv_evocua.py \
--headless \
--provider_name aws \
--observation_type screenshot \
--model EvoCUA-S1 \
--result_dir ./evocua_s1 \
--test_all_meta_path evaluation_examples/test_nogdrive.json \
--max_steps 50 \
--num_envs 30 \
--max_history_turns 3 \
--coordinate_type qwen25 \
--max_tokens 10240 \
--resize_factor 28 \
--prompt_style S1
"""
from __future__ import annotations
import argparse
import datetime
import json
import logging
import os
import sys
import signal
import time
from typing import List
from multiprocessing import Process, Manager, Queue
from multiprocessing import current_process
import lib_run_single
from desktop_env.desktop_env import DesktopEnv
from mm_agents.evocua.evocua_agent import EvoCUAAgent
# Global variables for signal handling
active_environments = []
processes = []
is_terminating = False
# load the environment variables from .env file
if os.path.exists(".env"):
from dotenv import load_dotenv
load_dotenv()
def config() -> argparse.Namespace:
parser = argparse.ArgumentParser(
description="Run end-to-end evaluation with EvoCUAAgent"
)
# environment config
parser.add_argument("--path_to_vm", type=str, default=None)
parser.add_argument(
"--headless", action="store_true", help="Run in headless machine"
)
parser.add_argument(
"--action_space", type=str, default="pyautogui", help="Action type"
)
parser.add_argument(
"--observation_type",
choices=["screenshot", "a11y_tree", "screenshot_a11y_tree", "som"],
default="screenshot",
help="Observation type",
)
parser.add_argument("--sleep_after_execution", type=float, default=5.0)
parser.add_argument("--max_steps", type=int, default=50)
# evaluation config
parser.add_argument(
"--test_config_base_dir", type=str, default="evaluation_examples"
)
# lm config
parser.add_argument("--model", type=str, default="evocua", help="Model name.")
parser.add_argument("--temperature", type=float, default=0.0)
parser.add_argument("--top_p", type=float, default=0.9)
parser.add_argument("--max_tokens", type=int, default=32768)
parser.add_argument("--stop_token", type=str, default=None)
parser.add_argument("--prompt_style", type=str, default="S2", choices=["S1", "S2"], help="Prompt style: 'S1' (structured reasoning) or 'S2' (tool calling)")
parser.add_argument("--history_type", type=str, default="action_history", help="[S1] History type")
parser.add_argument("--coordinate_type", type=str, default="relative", help="Coordinate type: relative, absolute, qwen25")
parser.add_argument("--password", type=str, default="osworld-public-evaluation", help="VM Password")
# Unified History Parameter
parser.add_argument("--max_history_turns", type=int, default=3, help="Number of history turns to include")
parser.add_argument("--resize_factor", type=int, default=32, help="Image resize factor (S1: 28, S2: 32)")
# example config
parser.add_argument("--domain", type=str, default="all")
parser.add_argument(
"--test_all_meta_path", type=str, default="evaluation_examples/test_nogdrive.json"
)
# logging related
parser.add_argument("--result_dir", type=str, default="./results")
parser.add_argument("--num_envs", type=int, default=1, help="Number of environments to run in parallel")
parser.add_argument("--log_level", type=str, choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'],
default='INFO', help="Set the logging level")
# aws config
parser.add_argument(
"--region", type=str, default="us-east-1", help="AWS region for the VM"
)
parser.add_argument(
"--provider_name", type=str, default="aws", choices=["aws", "virtualbox", "vmware", "docker", "azure"], help="Provider name"
)
parser.add_argument(
"--client_password", type=str, default="", help="Client password"
)
parser.add_argument(
"--screen_width", type=int, default=1920, help="Screen width"
)
parser.add_argument(
"--screen_height", type=int, default=1080, help="Screen height"
)
args = parser.parse_args()
return args
args = config()
logger = logging.getLogger()
log_level = getattr(logging, args.log_level.upper())
logger.setLevel(log_level)
datetime_str: str = datetime.datetime.now().strftime("%Y%m%d@%H%M%S")
file_handler = logging.FileHandler(
os.path.join("logs", "normal-{:}.log".format(datetime_str)), encoding="utf-8"
)
debug_handler = logging.FileHandler(
os.path.join("logs", "debug-{:}.log".format(datetime_str)), encoding="utf-8"
)
stdout_handler = logging.StreamHandler(sys.stdout)
file_handler.setLevel(logging.INFO)
debug_handler.setLevel(logging.DEBUG)
stdout_handler.setLevel(log_level)
formatter = logging.Formatter(
fmt="\x1b[1;33m[%(asctime)s \x1b[31m%(levelname)s \x1b[32m%(module)s/%(lineno)d-%(processName)s\x1b[1;33m] \x1b[0m%(message)s"
)
file_handler.setFormatter(formatter)
debug_handler.setFormatter(formatter)
stdout_handler.setFormatter(formatter)
stdout_handler.addFilter(logging.Filter("desktopenv"))
logger.addHandler(file_handler)
logger.addHandler(debug_handler)
logger.addHandler(stdout_handler)
logger = logging.getLogger("desktopenv.experiment")
def distribute_tasks(test_all_meta: dict) -> List[tuple]:
all_tasks = []
for domain, examples in test_all_meta.items():
for example_id in examples:
all_tasks.append((domain, example_id))
return all_tasks
def run_env_tasks(task_queue: Queue, args: argparse.Namespace, shared_scores: list):
active_environments = []
env = None
try:
REGION = args.region
screen_size = (args.screen_width, args.screen_height)
# Determine snapshot based on provider
snapshot_name = "init_state"
if args.provider_name == "aws":
from desktop_env.providers.aws.manager import IMAGE_ID_MAP
ami_id = IMAGE_ID_MAP[REGION].get(screen_size, IMAGE_ID_MAP[REGION].get((1920, 1080)))
snapshot_name = ami_id
env = DesktopEnv(
path_to_vm=args.path_to_vm,
action_space=args.action_space,
provider_name=args.provider_name,
region=REGION,
snapshot_name=snapshot_name,
screen_size=screen_size,
headless=args.headless,
os_type="Ubuntu",
require_a11y_tree=args.observation_type in ["a11y_tree", "screenshot_a11y_tree", "som"],
enable_proxy=True,
client_password=args.client_password
)
active_environments.append(env)
logger.info(f"Process {current_process().name} started.")
while True:
try:
item = task_queue.get(timeout=5)
except Exception:
break
domain, example_id = item
try:
config_file = os.path.join(
args.test_config_base_dir, f"examples/{domain}/{example_id}.json"
)
with open(config_file, "r", encoding="utf-8") as f:
example = json.load(f)
logger.info(f"[{current_process().name}][Domain]: {domain}")
logger.info(f"[{current_process().name}][Example ID]: {example_id}")
logger.info(f"[{current_process().name}][Instruction]: {example['instruction']}")
example_result_dir = os.path.join(
args.result_dir,
args.action_space,
args.observation_type,
args.model,
domain,
example_id,
)
os.makedirs(example_result_dir, exist_ok=True)
# Initialize EvoCUAAgent
agent = EvoCUAAgent(
model=args.model,
max_tokens=args.max_tokens,
top_p=args.top_p,
temperature=args.temperature,
action_space=args.action_space,
observation_type=args.observation_type,
max_steps=args.max_steps,
prompt_style=args.prompt_style,
max_history_turns=args.max_history_turns,
screen_size=(args.screen_width, args.screen_height),
coordinate_type=args.coordinate_type,
password=args.password,
resize_factor=args.resize_factor,
)
try:
lib_run_single.run_single_example_evocua(
agent,
env,
example,
args.max_steps,
example["instruction"],
args,
example_result_dir,
shared_scores,
)
except Exception as e:
import traceback
logger.error(f"Exception in {current_process().name} {domain}/{example_id}: {e}")
logger.error(traceback.format_exc())
try:
env.controller.end_recording(
os.path.join(example_result_dir, "recording.mp4")
)
except Exception as rec_e:
logger.error(f"Failed to end recording: {rec_e}")
with open(os.path.join(example_result_dir, "traj.jsonl"), "a") as f:
f.write(json.dumps({"Error": f"{domain}/{example_id} - {e}"}))
f.write("\n")
except Exception as e:
logger.error(f"Task-level error in {current_process().name}: {e}")
import traceback
logger.error(traceback.format_exc())
except Exception as e:
logger.error(f"Process-level error in {current_process().name}: {e}")
import traceback
logger.error(traceback.format_exc())
finally:
logger.info(f"{current_process().name} cleaning up environment...")
try:
if env:
env.close()
logger.info(f"{current_process().name} environment closed successfully")
except Exception as e:
logger.error(f"{current_process().name} error during environment cleanup: {e}")
def signal_handler(signum, frame):
"""Handle termination signals (SIGINT, SIGTERM) to gracefully shutdown environments."""
global is_terminating, active_environments, processes
if is_terminating:
return
is_terminating = True
logger.info(f"Received signal {signum}. Gracefully shutting down...")
for env in active_environments:
try:
logger.info(f"Closing environment...")
env.close()
logger.info(f"Environment closed successfully")
except Exception as e:
logger.error(f"Error closing environment: {e}")
for p in processes:
if p.is_alive():
try:
logger.info(f"Sending termination signal to process {p.name}...")
p.terminate()
except Exception as e:
logger.error(f"Error sending termination signal to process: {e}")
time.sleep(1)
for p in processes:
if p.is_alive():
try:
logger.info(f"Forcefully terminating process {p.name}...")
import signal as sig
os.kill(p.pid, sig.SIGKILL)
except Exception as e:
logger.error(f"Error forcefully terminating process: {e}")
logger.info("Shutdown complete. Exiting.")
sys.exit(0)
def test(args: argparse.Namespace, test_all_meta: dict) -> None:
global processes
logger.info("Args: %s", args)
all_tasks = distribute_tasks(test_all_meta)
logger.info(f"Total tasks: {len(all_tasks)}")
with Manager() as manager:
shared_scores = manager.list()
task_queue = manager.Queue()
for item in all_tasks:
task_queue.put(item)
num_envs = args.num_envs
processes = []
for i in range(num_envs):
p = Process(
target=run_env_tasks,
args=(task_queue, args, shared_scores),
name=f"EnvProcess-{i+1}"
)
p.daemon = True
p.start()
processes.append(p)
logger.info(f"Started process {p.name} with PID {p.pid}")
try:
while True:
alive_count = 0
for idx, p in enumerate(processes):
if not p.is_alive():
logger.warning(f"Process {p.name} died, restarting...")
new_p = Process(
target=run_env_tasks,
args=(task_queue, args, shared_scores),
name=f"EnvProcess-Restart-{idx+1}"
)
new_p.daemon = True
new_p.start()
processes[idx] = new_p
logger.info(f"Restarted process {new_p.name} with PID {new_p.pid}")
else:
alive_count += 1
if task_queue.empty():
logger.info("All tasks finished.")
break
if alive_count == 0:
logger.error("All processes died, exiting.")
break
time.sleep(5)
for p in processes:
p.join()
except KeyboardInterrupt:
logger.info("Main process received KeyboardInterrupt. Initiating graceful shutdown...")
raise
except Exception as e:
logger.error(f"Unexpected error while waiting for processes: {e}", exc_info=True)
for p in processes:
if p.is_alive():
try:
logger.info(f"Terminating process {p.name} due to error...")
p.terminate()
except Exception as term_e:
logger.error(f"Error terminating process {p.name}: {term_e}")
raise
scores = list(shared_scores)
logger.info(f"Average score: {sum(scores) / len(scores) if scores else 0}")
def get_unfinished(
action_space, use_model, observation_type, result_dir, total_file_json
):
target_dir = os.path.join(result_dir, action_space, observation_type, use_model)
if not os.path.exists(target_dir):
return total_file_json
finished = {}
for domain in os.listdir(target_dir):
finished[domain] = []
domain_path = os.path.join(target_dir, domain)
if os.path.isdir(domain_path):
for example_id in os.listdir(domain_path):
if example_id == "onboard":
continue
example_path = os.path.join(domain_path, example_id)
if os.path.isdir(example_path):
if "result.txt" not in os.listdir(example_path):
for file in os.listdir(example_path):
os.remove(os.path.join(example_path, file))
else:
finished[domain].append(example_id)
if not finished:
return total_file_json
for domain, examples in finished.items():
if domain in total_file_json:
total_file_json[domain] = [
x for x in total_file_json[domain] if x not in examples
]
return total_file_json
def get_result(action_space, use_model, observation_type, result_dir, total_file_json):
target_dir = os.path.join(result_dir, action_space, observation_type, use_model)
if not os.path.exists(target_dir):
print("New experiment, no result yet.")
return None
all_result = []
for domain in os.listdir(target_dir):
domain_path = os.path.join(target_dir, domain)
if os.path.isdir(domain_path):
for example_id in os.listdir(domain_path):
example_path = os.path.join(domain_path, example_id)
if os.path.isdir(example_path):
if "result.txt" in os.listdir(example_path):
try:
all_result.append(
float(
open(
os.path.join(example_path, "result.txt"), "r"
).read()
)
)
except:
all_result.append(0.0)
if not all_result:
print("New experiment, no result yet.")
return None
else:
print("Current Success Rate:", sum(all_result) / len(all_result) * 100, "%")
return all_result
if __name__ == "__main__":
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Register signal handlers
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
try:
args = config()
path_to_args = os.path.join(
args.result_dir,
args.action_space,
args.observation_type,
args.model,
"args.json",
)
os.makedirs(os.path.dirname(path_to_args), exist_ok=True)
with open(path_to_args, "w", encoding="utf-8") as f:
json.dump(vars(args), f, indent=4)
with open(args.test_all_meta_path, "r", encoding="utf-8") as f:
test_all_meta = json.load(f)
if args.domain != "all":
test_all_meta = {args.domain: test_all_meta[args.domain]}
test_file_list = get_unfinished(
args.action_space,
args.model,
args.observation_type,
args.result_dir,
test_all_meta,
)
left_info = ""
for domain in test_file_list:
left_info += f"{domain}: {len(test_file_list[domain])}\n"
logger.info(f"Left tasks:\n{left_info}")
get_result(
args.action_space,
args.model,
args.observation_type,
args.result_dir,
test_all_meta,
)
test(args, test_file_list)
except KeyboardInterrupt:
logger.info("Main process received KeyboardInterrupt.")
except Exception as e:
logger.error(f"Unexpected error in main process: {e}", exc_info=True)
signal_handler(signal.SIGTERM, None)
finally:
logger.info("Main process final cleanup...")
for env in active_environments:
if env is not None:
try:
logger.info("Closing environment in final cleanup...")
env.close()
except Exception as e:
logger.error(f"Error during final environment cleanup: {e}")
for p in processes:
if p is not None and p.is_alive():
try:
p.terminate()
except Exception as e:
logger.error(f"Error terminating process: {e}")
time.sleep(1)
for p in processes:
if p is not None and p.is_alive():
try:
os.kill(p.pid, signal.SIGKILL)
except Exception as e:
logger.error(f"Error force killing process: {e}")