Merge remote-tracking branch 'origin/main'

# Conflicts:
#	mm_agents/agent.py
#	run.py
This commit is contained in:
Timothyxxx
2024-03-15 21:10:32 +08:00
11 changed files with 215 additions and 85 deletions

19
.vscode/launch.json vendored Normal file
View File

@@ -0,0 +1,19 @@
{
// Use IntelliSense to learn about possible attributes.
// Hover to view descriptions of existing attributes.
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
"version": "0.2.0",
"configurations": [
{
"name": "Python Debugger: Current File with Arguments",
"type": "debugpy",
"request": "launch",
"program": "${file}",
"console": "integratedTerminal",
"args": [
"--path_to_vm", "/Users/lxc/Virtual Machines.localized/DesktopEnv-Ubuntu 64-bit Arm.vmwarevm/DesktopEnv-Ubuntu 64-bit Arm.vmx",
"--example_time_limit", "60"
]
}
]
}

16
demo.py Normal file
View File

@@ -0,0 +1,16 @@
import signal
import time
def handler(signo, frame):
raise RuntimeError("Timeout")
signal.signal(signal.SIGALRM, handler)
while True:
try:
signal.alarm(5) # seconds
time.sleep(10)
print("Working...")
except Exception as e :
print(e)
continue

View File

@@ -174,7 +174,7 @@ class DesktopEnv(gym.Env):
if isinstance(self.evaluator["func"], list) \
else getattr(metrics, self.evaluator["func"])
self.metric_conj: str = self.evaluator.get("conj", "and") # take conjunction of multiple metrics
if "result" in self.evaluator:
if "result" in self.evaluator and len(self.evaluator["result"])>0:
self.result_getter: Getter = [getattr(getters, "get_{:}".format(res["type"])) for res in
self.evaluator["result"]] \
if isinstance(self.evaluator["result"], list) \
@@ -184,7 +184,7 @@ class DesktopEnv(gym.Env):
if isinstance(self.metric, list) \
else None
if "expected" in self.evaluator:
if "expected" in self.evaluator and len(self.evaluator["expected"])>0:
self.expected_getter: Getter = [getattr(getters, "get_{:}".format(exp["type"])) if exp else None for exp in
self.evaluator["expected"]] \
if isinstance(self.evaluator["expected"], list) \

View File

@@ -0,0 +1,16 @@
[Unit]
Description=OSBench Server
StartLimitIntervalSec=60
StartLimitBurst=4
After=network.target auditd.service
[Service]
ExecStart=/usr/bin/python3 /home/user/main.py
User=user
WorkingDirectory=/home/user
Restart=on-failure
RestartSec=1
Environment="DISPLAY=:1"
[Install]
WantedBy=graphical.target

View File

@@ -0,0 +1,16 @@
[Unit]
Description=OSBench Server
StartLimitIntervalSec=60
StartLimitBurst=4
After=network.target auditd.service
[Service]
ExecStart=/usr/bin/python3 /home/user/main.py
User=user
WorkingDirectory=/home/user
Restart=on-failure
RestartSec=1
Environment="DISPLAY=%i"
[Install]
WantedBy=graphical.target

View File

@@ -10,10 +10,6 @@
"libreoffice_calc"
],
"evaluator": {
"func": "infeasible",
"expected": {
},
"result": {
}
"func": "infeasible"
}
}
}

View File

@@ -10,10 +10,6 @@
"libreoffice_calc"
],
"evaluator": {
"func": "infeasible",
"expected": {
},
"result": {
}
"func": "infeasible"
}
}
}

View File

@@ -0,0 +1,19 @@
import pandas as pd
file_path = "/Users/lxc/Downloads/Speedtest.csv"
# 找到csv第二行的第二个数据格里的值
# with open(file_path, "r") as f:
# for i, line in enumerate(f):
# if i == 1:
# data = line.split(",")[1]
# break
# print(data)
with open(file_path, "r") as f:
reader = pd.read_csv(f, sep=',', header=None)
# for column in reader.columns:
# if column.startswith("TEST_DATE"):
# data_col = column
# break
for data in reader['TEST_DATE']:
print(data)

View File

@@ -55,12 +55,12 @@ def judge_node(node: ET, platform="ubuntu") -> bool:
or platform=="windows"\
and node.get("{{{:}}}visible".format(state_ns), "false")=="true"\
)\
and ( node.get("{{{:}}}enabled".format(state_ns), "false")=="true"\
or node.get("{{{:}}}editable".format(state_ns), "false")=="true"\
or node.get("{{{:}}}expandable".format(state_ns), "false")=="true"\
or node.get("{{{:}}}checkable".format(state_ns), "false")=="true"
)\
and (node.get("name", "") != "" or node.text is not None and len(node.text)>0)
and ( node.get("{{{:}}}enabled".format(state_ns), "false")=="true"\
or node.get("{{{:}}}editable".format(state_ns), "false")=="true"\
or node.get("{{{:}}}expandable".format(state_ns), "false")=="true"\
or node.get("{{{:}}}checkable".format(state_ns), "false")=="true"
)\
and (node.get("name", "") != "" or node.text is not None and len(node.text)>0)
coordinates: Tuple[int, int] = eval(node.get("{{{:}}}screencoord".format(component_ns), "(-1, -1)"))
sizes: Tuple[int, int] = eval(node.get("{{{:}}}size".format(component_ns), "(-1, -1)"))

View File

@@ -5,11 +5,13 @@ import os
import re
import time
import uuid
import openai
import xml.etree.ElementTree as ET
from http import HTTPStatus
from io import BytesIO
from typing import Dict, List
from google.api_core.exceptions import InvalidArgument
import backoff
import dashscope
import google.generativeai as genai
import requests
@@ -22,6 +24,8 @@ from mm_agents.prompts import SYS_PROMPT_IN_SCREENSHOT_OUT_CODE, SYS_PROMPT_IN_S
SYS_PROMPT_IN_SOM_A11Y_OUT_TAG, \
SYS_PROMPT_SEEACT, ACTION_DESCRIPTION_PROMPT_SEEACT, ACTION_GROUNDING_PROMPT_SEEACT
# todo: cross-check with visualwebarena
logger = logging.getLogger("desktopenv.agent")
@@ -506,18 +510,25 @@ class PromptAgent:
try:
actions = self.parse_actions(response, masks)
self.thoughts.append(response)
except Exception as e:
except ValueError as e:
print("Failed to parse action from response", e)
actions = None
self.thoughts.append("")
return actions
# @backoff.on_exception(
# backoff.expo,
# (Exception),
# max_tries=5
# )
@backoff.on_exception(
backoff.expo,
# here you should add more model exceptions as you want,
# but you are forbidden to add "Exception", that is, a common type of exception
# because we want to catch this kind of Exception in the outside to ensure each example won't exceed the time limit
(openai.RateLimitError,
openai.BadRequestError,
openai.InternalServerError,
InvalidArgument),
max_tries=5
)
def call_llm(self, payload):
if self.model.startswith("gpt"):
@@ -525,7 +536,7 @@ class PromptAgent:
"Content-Type": "application/json",
"Authorization": f"Bearer {os.environ['OPENAI_API_KEY']}"
}
logger.info("Generating content with GPT model: %s", self.model)
# logger.info("Generating content with GPT model: %s", self.model)
response = requests.post(
"https://api.openai.com/v1/chat/completions",
headers=headers,

155
run.py
View File

@@ -7,6 +7,7 @@ import json
import logging
import os
import sys
import signal
from desktop_env.envs.desktop_env import DesktopEnv
from mm_agents.agent import PromptAgent
@@ -45,6 +46,10 @@ logger.addHandler(sdebug_handler)
logger = logging.getLogger("desktopenv.experiment")
# make sure each example won't exceed the time limit
def handler(signo, frame):
raise RuntimeError("Time limit exceeded!")
signal.signal(signal.SIGALRM, handler)
def config() -> argparse.Namespace:
parser = argparse.ArgumentParser(
@@ -77,6 +82,7 @@ def config() -> argparse.Namespace:
# agent config
parser.add_argument("--max_trajectory_length", type=int, default=3)
parser.add_argument("--test_config_base_dir", type=str, default="evaluation_examples")
parser.add_argument("--example_time_limit", type=int, default=600)
# lm config
parser.add_argument("--model", type=str, default="gpt-4-vision-preview")
@@ -98,6 +104,7 @@ def test(
) -> None:
scores = []
max_steps = args.max_steps
time_limit = args.example_time_limit
# log args
logger.info("Args: %s", args)
@@ -119,6 +126,7 @@ def test(
for domain in test_all_meta:
for example_id in test_all_meta[domain]:
# example setting
config_file = os.path.join(args.test_config_base_dir, f"examples/{domain}/{example_id}.json")
with open(config_file, "r", encoding="utf-8") as f:
example = json.load(f)
@@ -140,82 +148,115 @@ def test(
)
os.makedirs(example_result_dir, exist_ok=True)
agent.reset()
obs = env.reset(task_config=example)
done = False
step_idx = 0
env.controller.start_recording()
# example start running
try:
signal.alarm(time_limit)
agent.reset()
obs = env.reset(task_config=example)
done = False
step_idx = 0
env.controller.start_recording()
# todo: update max running time for each example, @xiaochuan
while not done and step_idx < max_steps:
actions = agent.predict(
instruction,
obs
)
while not done and step_idx < max_steps:
actions = agent.predict(
instruction,
obs
)
for action in actions:
# Capture the timestamp before executing the action
action_timestamp = datetime.datetime.now().strftime("%Y%m%d@%H%M%S")
logger.info("Step %d: %s", step_idx + 1, action)
for action in actions:
obs, reward, done, info = env.step(action, args.sleep_after_execution)
logger.info("Reward: %.2f", reward)
logger.info("Done: %s", done)
logger.info("Info: %s", info)
# Save screenshot and trajectory information
with open(os.path.join(example_result_dir, f"step_{step_idx + 1}_{action_timestamp}.png"),
"wb") as _f:
with open(obs['screenshot'], "rb") as __f:
screenshot = __f.read()
_f.write(screenshot)
with open(os.path.join(example_result_dir, "traj.jsonl"), "a") as f:
f.write(json.dumps({
"step_num": step_idx + 1,
"action_timestamp": action_timestamp,
"action": action,
"reward": reward,
"done": done,
"info": info,
"screenshot_file": f"step_{step_idx + 1}_{action_timestamp}.png"
}))
f.write("\n")
if done:
logger.info("The episode is done.")
break
step_idx += 1
# Capture the timestamp before executing the action
action_timestamp = datetime.datetime.now().strftime("%Y%m%d@%H%M%S")
logger.info("Step %d: %s", step_idx + 1, action)
obs, reward, done, info = env.step(action, args.sleep_after_execution)
logger.info("Reward: %.2f", reward)
logger.info("Done: %s", done)
logger.info("Info: %s", info)
# Save screenshot and trajectory information
with open(os.path.join(example_result_dir, f"step_{step_idx + 1}_{action_timestamp}.png"),
"wb") as _f:
with open(obs['screenshot'], "rb") as __f:
screenshot = __f.read()
_f.write(screenshot)
with open(os.path.join(example_result_dir, "traj.json"), "a") as f:
result = env.evaluate()
logger.info("Result: %.2f", result)
scores.append(result)
env.controller.end_recording(os.path.join(example_result_dir, "recording.mp4"))
except RuntimeError as e:
logger.error(f"Error in example {domain}/{example_id}: {e}")
# save info of this example and then continue
try:
env.controller.end_recording(os.path.join(example_result_dir, "recording.mp4"))
with open(os.path.join(example_result_dir, "traj.jsonl"), "a") as f:
f.write(json.dumps({
"step_num": step_idx + 1,
"action_timestamp": action_timestamp,
"action": action,
"reward": reward,
"done": done,
"info": info,
"screenshot_file": f"step_{step_idx + 1}_{action_timestamp}.png"
"Error": f"Error in example {domain}/{example_id}: {e}",
"step": step_idx + 1,
}))
f.write("\n")
if done:
logger.info("The episode is done.")
break
try:
result = env.evaluate()
except Exception as e:
logger.error(f"Error in evaluating the example {example_id}: {e}")
result = 0.0
logger.info("Result: %.2f", result)
env.controller.end_recording(os.path.join(example_result_dir, "recording.mp4"))
scores.append(result)
with open(os.path.join(example_result_dir, "result.txt"), "w", encoding="utf-8") as f:
f.write(f"{result}\n")
except Exception as new_e:
with open(os.path.join(example_result_dir, "traj.jsonl"), "a") as f:
f.write(json.dumps({
"Error": f"Error in example {domain}/{example_id}: {e} and {new_e}",
"step": "before start recording",
}))
f.write("\n")
continue
env.close()
logger.info(f"Average score: {sum(scores) / len(scores)}")
def get_unfinished(test, result_dir):
# todo @xiaochuan
pass
def get_unfinished(action_space, use_model, observation_type, result_dir, total_file_json):
target_dir = os.path.join(result_dir, action_space, observation_type, use_model)
if not os.path.exists(target_dir):
return total_file_json
finished = {}
for domain in os.listdir(target_dir):
domain_path = os.path.join(target_dir, domain)
if os.path.isdir(domain_path):
finished[domain] = os.listdir(domain_path)
if not finished:
return total_file_json
for domain, examples in finished.items():
if domain in total_file_json:
total_file_json[domain] = [x for x in total_file_json[domain] if x not in examples]
return total_file_json
if __name__ == '__main__':
####### The complete version of the list of examples #######
os.environ["TOKENIZERS_PARALLELISM"] = "false"
args = config()
# test_file_list = get_unfinished(args.test, args.result_dir)
# logger.info(f"Total {len(test_file_list)} tasks left")
with open("evaluation_examples/test_all.json", "r", encoding="utf-8") as f:
test_all_meta = json.load(f)
test_file_list = get_unfinished(args.action_space, args.model, args.observation_type, args.result_dir, test_all_meta)
left_info = ""
for domain in test_file_list:
left_info += f"{domain}: {len(test_file_list[domain])}\n"
logger.info(f"Left tasks:\n{left_info}")
test(args, test_all_meta)