pass test case
This commit is contained in:
4
.gitignore
vendored
4
.gitignore
vendored
@@ -1,3 +1,7 @@
|
||||
# Model checkpoints
|
||||
*.pth
|
||||
*.pt
|
||||
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
|
||||
@@ -4,7 +4,6 @@ import os
|
||||
import re
|
||||
import base64
|
||||
import PIL.Image
|
||||
from desktop_env.envs.desktop_env import Action, MouseClick
|
||||
import json
|
||||
import requests
|
||||
|
||||
@@ -15,7 +14,7 @@ import argparse
|
||||
from seem.modeling.BaseModel import BaseModel as BaseModel_Seem
|
||||
from seem.utils.distributed import init_distributed as init_distributed_seem
|
||||
from seem.modeling import build_model as build_model_seem
|
||||
from task_adapter.seem.tasks import interactive_seem_m2m_auto, inference_seem_pano, inference_seem_interactive
|
||||
from task_adapter.seem.tasks import inference_seem_pano
|
||||
|
||||
# semantic sam
|
||||
from semantic_sam.BaseModel import BaseModel
|
||||
@@ -28,9 +27,9 @@ from task_adapter.semantic_sam.tasks import inference_semsam_m2m_auto, prompt_sw
|
||||
# sam
|
||||
from segment_anything import sam_model_registry
|
||||
from task_adapter.sam.tasks.inference_sam_m2m_auto import inference_sam_m2m_auto
|
||||
from task_adapter.sam.tasks.inference_sam_m2m_interactive import inference_sam_m2m_interactive
|
||||
|
||||
from scipy.ndimage import label
|
||||
from io import BytesIO
|
||||
import numpy as np
|
||||
|
||||
SYS_PROMPT = '''
|
||||
@@ -45,7 +44,7 @@ Firstly you need to predict the class of your action, select from one below:
|
||||
for example, format as:
|
||||
```
|
||||
{
|
||||
"action_type": "MOUSE_MOVE",
|
||||
"action_type": "CLICK",
|
||||
"label": 7
|
||||
}
|
||||
```
|
||||
@@ -107,7 +106,11 @@ def inference(image, slider, mode, alpha, label_mode, anno_mode, *args, **kwargs
|
||||
else:
|
||||
level = [6, 1, 2, 3, 4, 5]
|
||||
|
||||
label_mode = 'a' if label_mode == 'Alphabet' else '1'
|
||||
if label_mode == 'Alphabet':
|
||||
label_mode = 'a'
|
||||
else:
|
||||
label_mode = '1'
|
||||
|
||||
text_size, hole_scale, island_scale = 1280, 100, 100
|
||||
text, text_part, text_thresh = '', '', '0.0'
|
||||
|
||||
@@ -126,11 +129,15 @@ def inference(image, slider, mode, alpha, label_mode, anno_mode, *args, **kwargs
|
||||
model = model_seem
|
||||
output, mask = inference_seem_pano(model, image, text_size, label_mode, alpha, anno_mode)
|
||||
|
||||
return output
|
||||
return output, mask
|
||||
|
||||
# Function to encode the image
|
||||
def encode_image(image):
|
||||
return base64.b64encode(image).decode('utf-8')
|
||||
pil_img = PIL.Image.fromarray(image)
|
||||
buff = BytesIO()
|
||||
pil_img.save(buff, format="JPEG")
|
||||
new_image_string = base64.b64encode(buff.getvalue()).decode("utf-8")
|
||||
return new_image_string
|
||||
|
||||
def parse_actions_from_string(input_string):
|
||||
# Search for a JSON string within the input string
|
||||
@@ -187,7 +194,8 @@ class GPT4v_Agent:
|
||||
]
|
||||
|
||||
def predict(self, obs):
|
||||
obs = inference(obs, slider=2.0, mode="Automatic", alpha=0.1, label_mode="Number", anno_mode=["Mark", "Box"])
|
||||
obs, mask = inference(obs, slider=3.0, mode="Automatic", alpha=0.1, label_mode="Number", anno_mode=["Mark", "Box"])
|
||||
PIL.Image.fromarray(obs).save("desktop.jpeg")
|
||||
base64_image = encode_image(obs)
|
||||
self.trajectory.append({
|
||||
"role": "user",
|
||||
@@ -218,14 +226,14 @@ class GPT4v_Agent:
|
||||
response = requests.post("https://api.openai.com/v1/chat/completions", headers=self.headers, json=payload)
|
||||
|
||||
try:
|
||||
actions = self.parse_actions(response.json()['choices'][0]['message']['content'])
|
||||
actions = self.parse_actions(response.json()['choices'][0]['message']['content'], mask)
|
||||
except:
|
||||
print("Failed to parse action from response:", response.json()['choices'][0]['message']['content'])
|
||||
actions = None
|
||||
|
||||
return actions
|
||||
|
||||
def parse_actions(self, response: str):
|
||||
def parse_actions(self, response: str, mask):
|
||||
# response example
|
||||
"""
|
||||
```json
|
||||
@@ -238,6 +246,7 @@ class GPT4v_Agent:
|
||||
|
||||
# parse from the response
|
||||
actions = parse_actions_from_string(response)
|
||||
print(actions)
|
||||
|
||||
# add action into the trajectory
|
||||
self.trajectory.append({
|
||||
@@ -253,24 +262,14 @@ class GPT4v_Agent:
|
||||
# parse action
|
||||
parsed_actions = []
|
||||
for action in actions:
|
||||
parsed_action = {}
|
||||
action_type = Action[action['action_type']].value
|
||||
parsed_action["action_type"] = action_type
|
||||
action_type = action['action_type']
|
||||
if action_type == "CLICK":
|
||||
label = int(action['label'])
|
||||
x, y, w, h = mask[label-1]['bbox']
|
||||
parsed_actions.append({"action_type": action_type, "x": int(x + w//2) , "y": int(y + h//2)})
|
||||
|
||||
if action_type == Action.CLICK.value or action_type == Action.MOUSE_DOWN.value or action_type == Action.MOUSE_UP.value:
|
||||
parsed_action["click_type"] = MouseClick[action['click_type']].value
|
||||
|
||||
if action_type == Action.MOUSE_MOVE.value:
|
||||
parsed_action["x"] = action["x"]
|
||||
parsed_action["y"] = action["y"]
|
||||
|
||||
if action_type == Action.KEY.value:
|
||||
parsed_action["key"] = action["key"] # handle the condition of single key and multiple keys
|
||||
|
||||
if action_type == Action.TYPE.value:
|
||||
parsed_action["text"] = action["text"]
|
||||
|
||||
parsed_actions.append(parsed_action)
|
||||
if action_type == "TYPE":
|
||||
parsed_actions.append({"action_type": action_type, "text": action["text"]})
|
||||
|
||||
return parsed_actions
|
||||
|
||||
@@ -279,6 +278,6 @@ if __name__ == '__main__':
|
||||
# OpenAI API Key
|
||||
api_key = os.environ.get("OPENAI_API_KEY")
|
||||
|
||||
agent = GPT4v_Agent(api_key=api_key, instruction="Open Google Sheet")
|
||||
obs = PIL.Image.open('stackoverflow.png')
|
||||
agent = GPT4v_Agent(api_key=api_key, instruction="Open Firefox")
|
||||
obs = PIL.Image.open('desktop.png')
|
||||
print(agent.predict(obs=obs))
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 16 MiB |
401
mm_agents/configs/seem_focall_unicl_lang_v1.yaml
Normal file
401
mm_agents/configs/seem_focall_unicl_lang_v1.yaml
Normal file
@@ -0,0 +1,401 @@
|
||||
# --------------------------------------------------------
|
||||
# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
|
||||
# Copyright (c) 2022 Microsoft
|
||||
# Licensed under The MIT License [see LICENSE for details]
|
||||
# Written by Xueyan Zou (xueyan@cs.wisc.edu)
|
||||
# --------------------------------------------------------
|
||||
|
||||
# Define Test/Trainer/Saving
|
||||
PIPELINE: XDecoderPipeline
|
||||
TRAINER: xdecoder
|
||||
SAVE_DIR: '../../data/output/test'
|
||||
base_path: "./"
|
||||
|
||||
# Resume Logistic
|
||||
RESUME: false
|
||||
WEIGHT: false
|
||||
RESUME_FROM: ''
|
||||
EVAL_AT_START: False
|
||||
|
||||
# Logging and Debug
|
||||
WANDB: False
|
||||
LOG_EVERY: 100
|
||||
FIND_UNUSED_PARAMETERS: false
|
||||
|
||||
# Speed up training
|
||||
FP16: false
|
||||
PORT: '36873'
|
||||
|
||||
# misc
|
||||
LOADER:
|
||||
JOINT: False
|
||||
KEY_DATASET: 'coco'
|
||||
|
||||
##################
|
||||
# Task settings
|
||||
##################
|
||||
VERBOSE: true
|
||||
MODEL:
|
||||
NAME: seem_model_v1
|
||||
HEAD: xdecoder_head
|
||||
MASK_ON: false
|
||||
KEYPOINT_ON: false
|
||||
LOAD_PROPOSALS: false
|
||||
DIM_PROJ: 512
|
||||
TEXT:
|
||||
ARCH: vlpencoder
|
||||
NAME: transformer
|
||||
TOKENIZER: clip
|
||||
CONTEXT_LENGTH: 77 # 77
|
||||
WIDTH: 512
|
||||
HEADS: 8
|
||||
LAYERS: 12 # 6
|
||||
AUTOGRESSIVE: True
|
||||
BACKBONE:
|
||||
NAME: focal
|
||||
PRETRAINED: ''
|
||||
LOAD_PRETRAINED: false
|
||||
FOCAL:
|
||||
PRETRAIN_IMG_SIZE: 224
|
||||
PATCH_SIZE: 4
|
||||
EMBED_DIM: 192
|
||||
DEPTHS: [2, 2, 18, 2]
|
||||
FOCAL_LEVELS: [4, 4, 4, 4]
|
||||
FOCAL_WINDOWS: [3, 3, 3, 3]
|
||||
DROP_PATH_RATE: 0.3
|
||||
MLP_RATIO: 4.0
|
||||
DROP_RATE: 0.0
|
||||
PATCH_NORM: True
|
||||
USE_CONV_EMBED: True
|
||||
SCALING_MODULATOR: True
|
||||
USE_CHECKPOINT: False
|
||||
USE_POSTLN: true
|
||||
USE_POSTLN_IN_MODULATION: false
|
||||
USE_LAYERSCALE: True
|
||||
OUT_FEATURES: ["res2", "res3", "res4", "res5"]
|
||||
OUT_INDICES: [0, 1, 2, 3]
|
||||
ENCODER:
|
||||
NAME: transformer_encoder_fpn
|
||||
IGNORE_VALUE: 255
|
||||
NUM_CLASSES: 133
|
||||
LOSS_WEIGHT: 1.0
|
||||
CONVS_DIM: 512
|
||||
MASK_DIM: 512
|
||||
NORM: "GN"
|
||||
IN_FEATURES: ["res2", "res3", "res4", "res5"]
|
||||
DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES: ["res3", "res4", "res5"]
|
||||
COMMON_STRIDE: 4
|
||||
TRANSFORMER_ENC_LAYERS: 6
|
||||
DECODER:
|
||||
NAME: seem_v1
|
||||
TRANSFORMER_IN_FEATURE: "multi_scale_pixel_decoder"
|
||||
MASK:
|
||||
ENABLED: True
|
||||
DETECTION: False
|
||||
SPATIAL:
|
||||
ENABLED: True
|
||||
MAX_ITER: 1
|
||||
GROUNDING:
|
||||
ENABLED: True
|
||||
MAX_LEN: 5
|
||||
TEXT_WEIGHT: 2.0
|
||||
CLASS_WEIGHT: 0.5
|
||||
RETRIEVAL:
|
||||
ENABLED: False
|
||||
LVIS:
|
||||
ENABLED: True
|
||||
THRES: 0.7
|
||||
OPENIMAGE:
|
||||
ENABLED: False
|
||||
NEGATIVE_SAMPLES: 5
|
||||
GROUNDING:
|
||||
ENABLED: False
|
||||
MAX_LEN: 5
|
||||
CAPTION:
|
||||
ENABLED: False
|
||||
PHRASE_PROB: 0.5
|
||||
SIM_THRES: 0.95
|
||||
DEEP_SUPERVISION: True
|
||||
NO_OBJECT_WEIGHT: 0.1
|
||||
GCLASS_WEIGHT: 0.4
|
||||
GMASK_WEIGHT: 1.0
|
||||
GDICE_WEIGHT: 1.0
|
||||
SCLASS_WEIGHT: 0.4
|
||||
SMASK_WEIGHT: 1.0
|
||||
SDICE_WEIGHT: 1.0
|
||||
OCLASS_WEIGHT: 0.4
|
||||
OMASK_WEIGHT: 1.0
|
||||
ODICE_WEIGHT: 1.0
|
||||
CLASS_WEIGHT: 2.0
|
||||
MASK_WEIGHT: 5.0
|
||||
DICE_WEIGHT: 5.0
|
||||
BBOX_WEIGHT: 5.0
|
||||
GIOU_WEIGHT: 2.0
|
||||
CAPTION_WEIGHT: 2.0
|
||||
COST_SPATIAL:
|
||||
CLASS_WEIGHT: 5.0
|
||||
MASK_WEIGHT: 2.0
|
||||
DICE_WEIGHT: 2.0
|
||||
HIDDEN_DIM: 512
|
||||
NUM_OBJECT_QUERIES: 101
|
||||
NHEADS: 8
|
||||
DROPOUT: 0.0
|
||||
DIM_FEEDFORWARD: 2048
|
||||
MAX_SPATIAL_LEN: [512, 512, 512, 512]
|
||||
# ENC_LAYERS: 0
|
||||
PRE_NORM: False
|
||||
ENFORCE_INPUT_PROJ: False
|
||||
SIZE_DIVISIBILITY: 32
|
||||
TRAIN_NUM_POINTS: 12544
|
||||
OVERSAMPLE_RATIO: 3.0
|
||||
IMPORTANCE_SAMPLE_RATIO: 0.75
|
||||
DEC_LAYERS: 10 # 9 decoder layers, add one for the loss on learnable query
|
||||
TOP_GROUNDING_LAYERS: 10
|
||||
TOP_CAPTION_LAYERS: 10
|
||||
TOP_SPATIAL_LAYERS: 10
|
||||
TOP_OPENIMAGE_LAYERS: 10
|
||||
TEST:
|
||||
SEMANTIC_ON: True
|
||||
INSTANCE_ON: True
|
||||
PANOPTIC_ON: True
|
||||
OVERLAP_THRESHOLD: 0.8
|
||||
OBJECT_MASK_THRESHOLD: 0.8
|
||||
SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE: false
|
||||
|
||||
# Spatial sampler
|
||||
STROKE_SAMPLER:
|
||||
MAX_CANDIDATE: 1
|
||||
CANDIDATE_PROBS: [0.25, 0.25, 0.25, 0.25] # for training only
|
||||
CANDIDATE_NAMES: ["Point", "Polygon", "Scribble", "Circle"]
|
||||
DILATION: 3
|
||||
CIRCLE:
|
||||
NUM_STROKES: 5
|
||||
STROKE_PRESET: ['object_like', 'object_like_middle', 'object_like_small']
|
||||
STROKE_PROB: [0.33, 0.33, 0.33]
|
||||
SCRIBBLE:
|
||||
NUM_STROKES: 5
|
||||
STROKE_PRESET: ['rand_curve', 'rand_curve_small']
|
||||
STROKE_PROB: [0.5, 0.5]
|
||||
POINT:
|
||||
NUM_POINTS: 20
|
||||
POLYGON:
|
||||
MAX_POINTS: 9
|
||||
EVAL:
|
||||
MODE: 'best' # best/random/best_random
|
||||
NEGATIVE: False
|
||||
MAX_ITER: 20
|
||||
IOU_ITER: 1
|
||||
GROUNDING: False
|
||||
|
||||
# Multi-modal Architecture, order matters
|
||||
ATTENTION_ARCH:
|
||||
VARIABLE:
|
||||
queries: ['object', 'grounding', 'spatial']
|
||||
tokens: ['grounding', 'spatial']
|
||||
memories: ['spatial']
|
||||
SELF_ATTENTION:
|
||||
queries:
|
||||
object: ['queries_object']
|
||||
grounding: ['queries_grounding', 'tokens_grounding']
|
||||
spatial: ['queries_spatial', 'tokens_spatial', 'memories_spatial']
|
||||
tokens:
|
||||
grounding: ['queries_grounding', 'tokens_grounding']
|
||||
spatial: ['tokens_spatial']
|
||||
memories:
|
||||
spatial: ['memories_spatial']
|
||||
CROSS_ATTENTION:
|
||||
queries:
|
||||
object: True
|
||||
grounding: True
|
||||
spatial: True
|
||||
memories:
|
||||
spatial: True
|
||||
tokens:
|
||||
grounding: False
|
||||
spatial: False
|
||||
MASKING: ['tokens_spatial', 'tokens_grounding']
|
||||
DUPLICATION:
|
||||
queries:
|
||||
grounding: 'queries_object'
|
||||
spatial: 'queries_object'
|
||||
SPATIAL_MEMORIES: 32
|
||||
QUERY_NUMBER: 3
|
||||
|
||||
DATASETS:
|
||||
TRAIN: ["coco_2017_train_panoptic_filtrefgumdval_with_sem_seg_caption_grounding_lvis",]
|
||||
# TRAIN: ["coco_2017_train_panoptic_with_sem_seg_caption_grounding",]
|
||||
TEST: ["coco_2017_val_panoptic_with_sem_seg", "pascalvoc_val_Point", "refcocog_val_umd"] # to evaluate instance and semantic performance as well
|
||||
# TEST: ["pascalvoc_val_Point"] # [pascalvoc, openimage600, ade600, davis, cocomini], [Point, Scribble, Polygon, Circle, Box]
|
||||
# TEST: ["cocomini_val_Point", "cocomini_val_Circle", "cocomini_val_Scribble", "cocomini_val_Polygon", "cocomini_val_Box"] # [pascalvoc, openimage600, ade600, davis, cocomini], [Point, Scribble, Polygon, Circle, Box]
|
||||
# TEST: ["ade600_val_Point", "ade600_val_Circle", "ade600_val_Scribble", "ade600_val_Polygon", "ade600_val_Box"] # [pascalvoc, openimage600, ade600, davis, cocomini], [Point, Scribble, Polygon, Circle, Box]
|
||||
# TEST: ["openimage600_val_Point", "openimage600_val_Circle", "openimage600_val_Scribble", "openimage600_val_Polygon", "openimage600_val_Box"] # [pascalvoc, openimage600, ade600, davis, cocomini], [Point, Scribble, Polygon, Circle, Box]
|
||||
CLASS_CONCAT: false
|
||||
SIZE_DIVISIBILITY: 32
|
||||
PROPOSAL_FILES_TRAIN: []
|
||||
|
||||
INPUT:
|
||||
PIXEL_MEAN: [123.675, 116.280, 103.530]
|
||||
PIXEL_STD: [58.395, 57.120, 57.375]
|
||||
|
||||
TRAIN:
|
||||
ASPECT_RATIO_GROUPING: true
|
||||
BATCH_SIZE_TOTAL: 4
|
||||
BATCH_SIZE_PER_GPU: 4
|
||||
SHUFFLE: true
|
||||
|
||||
TEST:
|
||||
DETECTIONS_PER_IMAGE: 100
|
||||
NAME: coco_eval
|
||||
IOU_TYPE: ['bbox', 'segm']
|
||||
USE_MULTISCALE: false
|
||||
BATCH_SIZE_TOTAL: 8
|
||||
MODEL_FILE: ''
|
||||
AUG:
|
||||
ENABLED: False
|
||||
|
||||
DATALOADER:
|
||||
FILTER_EMPTY_ANNOTATIONS: False
|
||||
NUM_WORKERS: 8
|
||||
LOAD_PROPOSALS: False
|
||||
SAMPLER_TRAIN: "TrainingSampler"
|
||||
ASPECT_RATIO_GROUPING: True
|
||||
|
||||
COCO:
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: 800
|
||||
MAX_SIZE_TRAIN: 1333
|
||||
MIN_SIZE_TRAIN_SAMPLING: 'choice'
|
||||
MIN_SIZE_TEST: 800
|
||||
MAX_SIZE_TEST: 1333
|
||||
IMAGE_SIZE: 1024
|
||||
MIN_SCALE: 0.1
|
||||
MAX_SCALE: 2.0
|
||||
DATASET_MAPPER_NAME: "coco_interactive"
|
||||
IGNORE_VALUE: 255
|
||||
COLOR_AUG_SSD: False
|
||||
SIZE_DIVISIBILITY: 32
|
||||
RANDOM_FLIP: "horizontal"
|
||||
MASK_FORMAT: "polygon"
|
||||
FORMAT: "RGB"
|
||||
CROP:
|
||||
ENABLED: True
|
||||
DATASET:
|
||||
DATASET: 'coco'
|
||||
|
||||
# Validation dataset
|
||||
ADE20K:
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: 640
|
||||
MIN_SIZE_TRAIN_SAMPLING: "choice"
|
||||
MIN_SIZE_TEST: 640
|
||||
MAX_SIZE_TRAIN: 2560
|
||||
MAX_SIZE_TEST: 2560
|
||||
MASK_FORMAT: "polygon"
|
||||
CROP:
|
||||
ENABLED: True
|
||||
TYPE: "absolute"
|
||||
SIZE: (640, 640)
|
||||
SINGLE_CATEGORY_MAX_AREA: 1.0
|
||||
COLOR_AUG_SSD: True
|
||||
SIZE_DIVISIBILITY: 640 # used in dataset mapper
|
||||
DATASET_MAPPER_NAME: "mask_former_panoptic"
|
||||
FORMAT: "RGB"
|
||||
DATASET:
|
||||
DATASET: 'ade'
|
||||
|
||||
SBD:
|
||||
INPUT:
|
||||
MIN_SIZE_TEST: 800
|
||||
MAX_SIZE_TEST: 1333
|
||||
DATALOADER:
|
||||
FILTER_EMPTY_ANNOTATIONS: False
|
||||
NUM_WORKERS: 0
|
||||
LOAD_PROPOSALS: False
|
||||
SAMPLER_TRAIN: "TrainingSampler"
|
||||
ASPECT_RATIO_GROUPING: False
|
||||
TEST:
|
||||
BATCH_SIZE_TOTAL: 1
|
||||
|
||||
VOC:
|
||||
INPUT:
|
||||
MIN_SIZE_TEST: 800
|
||||
MAX_SIZE_TEST: 1333
|
||||
DATALOADER:
|
||||
FILTER_EMPTY_ANNOTATIONS: False
|
||||
NUM_WORKERS: 0
|
||||
LOAD_PROPOSALS: False
|
||||
SAMPLER_TRAIN: "TrainingSampler"
|
||||
ASPECT_RATIO_GROUPING: False
|
||||
TEST:
|
||||
BATCH_SIZE_TOTAL: 8
|
||||
|
||||
DAVIS:
|
||||
INPUT:
|
||||
MIN_SIZE_TEST: 800
|
||||
MAX_SIZE_TEST: 1333
|
||||
DATALOADER:
|
||||
FILTER_EMPTY_ANNOTATIONS: False
|
||||
NUM_WORKERS: 0
|
||||
LOAD_PROPOSALS: False
|
||||
SAMPLER_TRAIN: "TrainingSampler"
|
||||
ASPECT_RATIO_GROUPING: False
|
||||
TEST:
|
||||
BATCH_SIZE_TOTAL: 8
|
||||
|
||||
VOS:
|
||||
INPUT:
|
||||
MIN_SIZE_TEST: 800
|
||||
MAX_SIZE_TEST: 1333
|
||||
DATALOADER:
|
||||
FILTER_EMPTY_ANNOTATIONS: False
|
||||
NUM_WORKERS: 0
|
||||
LOAD_PROPOSALS: False
|
||||
SAMPLER_TRAIN: "TrainingSampler"
|
||||
ASPECT_RATIO_GROUPING: False
|
||||
TEST:
|
||||
BATCH_SIZE_TOTAL: 1
|
||||
|
||||
REF:
|
||||
INPUT:
|
||||
PIXEL_MEAN: [123.675, 116.280, 103.530]
|
||||
PIXEL_STD: [58.395, 57.120, 57.375]
|
||||
MIN_SIZE_TEST: 512
|
||||
MAX_SIZE_TEST: 1024
|
||||
FORMAT: "RGB"
|
||||
SPATIAL: False
|
||||
DATALOADER:
|
||||
FILTER_EMPTY_ANNOTATIONS: False
|
||||
NUM_WORKERS: 4
|
||||
LOAD_PROPOSALS: False
|
||||
SAMPLER_TRAIN: "TrainingSampler"
|
||||
ASPECT_RATIO_GROUPING: False
|
||||
TEST:
|
||||
BATCH_SIZE_TOTAL: 8
|
||||
|
||||
# Detectron2 training config for optimizer and lr scheduler
|
||||
SOLVER:
|
||||
BASE_LR: 0.0001
|
||||
STEPS: [0.88889, 0.96296]
|
||||
MAX_ITER: 1
|
||||
GAMMA: 0.1
|
||||
WARMUP_FACTOR: 1.0
|
||||
WARMUP_ITERS: 10
|
||||
WARMUP_METHOD: "linear"
|
||||
WEIGHT_DECAY: 0.05
|
||||
OPTIMIZER: "ADAMW"
|
||||
LR_SCHEDULER_NAME: "WarmupMultiStepLR"
|
||||
LR_MULTIPLIER:
|
||||
backbone: 0.1
|
||||
lang_encoder: 0.1
|
||||
FIX_PARAM:
|
||||
backbone: True
|
||||
lang_encoder: True
|
||||
pixel_decoder: True
|
||||
WEIGHT_DECAY_NORM: 0.0
|
||||
WEIGHT_DECAY_EMBED: 0.0
|
||||
CLIP_GRADIENTS:
|
||||
ENABLED: True
|
||||
CLIP_TYPE: "full_model"
|
||||
CLIP_VALUE: 5.0 # 0.01
|
||||
NORM_TYPE: 2.0
|
||||
MAX_NUM_EPOCHS: 50
|
||||
524
mm_agents/configs/semantic_sam_only_sa-1b_swinL.yaml
Normal file
524
mm_agents/configs/semantic_sam_only_sa-1b_swinL.yaml
Normal file
@@ -0,0 +1,524 @@
|
||||
# ------------------------------------------------------------------------
|
||||
# Semantic SAM
|
||||
# Copyright (c) MicroSoft, Inc. and its affiliates.
|
||||
# Modified from OpenSeed https://github.com/IDEA-Research/OpenSeed by Feng Li.
|
||||
# ------------------------------------------------------------------------
|
||||
|
||||
##################
|
||||
# Task settings
|
||||
##################
|
||||
WEIGHT: ''
|
||||
PORT: 53711
|
||||
VERBOSE: true
|
||||
|
||||
OUTPUT_DIR: '../../data/output/test'
|
||||
# misc
|
||||
LOADER:
|
||||
JOINT: True
|
||||
KEY_DATASET: 'coco'
|
||||
# model
|
||||
MODEL:
|
||||
NAME: interactive_mask_dino
|
||||
HEAD: general_head
|
||||
MASK_ON: false
|
||||
KEYPOINT_ON: false
|
||||
LOAD_PROPOSALS: false
|
||||
DIM_PROJ: 512
|
||||
BACKBONE_DIM: 768
|
||||
BACKGROUND: False
|
||||
WEIGHTS: ''
|
||||
TEXT:
|
||||
ARCH: noencoder # no language encoder for training only sa-1b data
|
||||
NAME: transformer
|
||||
TOKENIZER: clip
|
||||
CONTEXT_LENGTH: 18 # 77
|
||||
WIDTH: 512
|
||||
HEADS: 8
|
||||
LAYERS: 12 # 6
|
||||
AUTOGRESSIVE: True
|
||||
BACKBONE:
|
||||
NAME: swin
|
||||
PRETRAINED: 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22k.pth'
|
||||
LOAD_PRETRAINED: true
|
||||
SWIN:
|
||||
PRETRAIN_IMG_SIZE: 384
|
||||
PATCH_SIZE: 4
|
||||
EMBED_DIM: 192
|
||||
DEPTHS: [ 2, 2, 18, 2 ]
|
||||
NUM_HEADS: [ 6, 12, 24, 48 ]
|
||||
WINDOW_SIZE: 12
|
||||
MLP_RATIO: 4.0
|
||||
QKV_BIAS: true
|
||||
QK_SCALE: ~
|
||||
DROP_RATE: 0.0
|
||||
ATTN_DROP_RATE: 0.0
|
||||
DROP_PATH_RATE: 0.3
|
||||
APE: false
|
||||
PATCH_NORM: true
|
||||
USE_CHECKPOINT: false
|
||||
OUT_FEATURES: [ 'res2', 'res3', 'res4', 'res5' ]
|
||||
ENCODER:
|
||||
NAME: encoder_deform
|
||||
IGNORE_VALUE: 255
|
||||
NUM_CLASSES: 1
|
||||
LOSS_WEIGHT: 1.0
|
||||
CONVS_DIM: 256
|
||||
MASK_DIM: 256
|
||||
NORM: "GN"
|
||||
IN_FEATURES: [ "res2", "res3", "res4", "res5" ]
|
||||
DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES: [ "res3", "res4", "res5" ]
|
||||
COMMON_STRIDE: 4
|
||||
TRANSFORMER_ENC_LAYERS: 6
|
||||
TOTAL_NUM_FEATURE_LEVELS: 4
|
||||
NUM_FEATURE_LEVELS: 3
|
||||
FEATURE_ORDER: "low2high"
|
||||
DECODER:
|
||||
NAME: interactive_mask_dino
|
||||
TRANSFORMER_IN_FEATURE: "multi_scale_pixel_decoder"
|
||||
MASK: True
|
||||
BOX: True
|
||||
PART: True
|
||||
GROUNDING:
|
||||
ENABLED: False
|
||||
MAX_LEN: 5
|
||||
TEXT_WEIGHT: 2.0
|
||||
CLASS_WEIGHT: 0.5
|
||||
CAPTION:
|
||||
ENABLED: False
|
||||
PHRASE_PROB: 0.0
|
||||
SIM_THRES: 0.95
|
||||
CAPTIONING:
|
||||
ENABLED: False
|
||||
STEP: 50
|
||||
RETRIEVAL:
|
||||
ENABLED: False
|
||||
DIM_IMG: 768
|
||||
ENSEMBLE: True
|
||||
OPENIMAGE:
|
||||
ENABLED: False
|
||||
NEGATIVE_SAMPLES: 5
|
||||
GROUNDING:
|
||||
ENABLED: False
|
||||
MAX_LEN: 5
|
||||
DEEP_SUPERVISION: True
|
||||
NO_OBJECT_WEIGHT: 0.1
|
||||
CLASS_WEIGHT: 4.0
|
||||
MASK_WEIGHT: 5.0
|
||||
DICE_WEIGHT: 5.0
|
||||
BOX_WEIGHT: 5.0
|
||||
GIOU_WEIGHT: 2.0
|
||||
IOU_WEIGHT: 1.0
|
||||
COST_CLASS_WEIGHT: 4.0
|
||||
COST_DICE_WEIGHT: 5.0
|
||||
COST_MASK_WEIGHT: 5.0
|
||||
COST_BOX_WEIGHT: 5.0
|
||||
COST_GIOU_WEIGHT: 2.0
|
||||
HIDDEN_DIM: 256
|
||||
NUM_OBJECT_QUERIES: 0
|
||||
NHEADS: 8
|
||||
DROPOUT: 0.0
|
||||
DIM_FEEDFORWARD: 2048
|
||||
ENC_LAYERS: 0
|
||||
PRE_NORM: False
|
||||
ENFORCE_INPUT_PROJ: False
|
||||
SIZE_DIVISIBILITY: 32
|
||||
DEC_LAYERS: 9 # 9 decoder layers, add one for the loss on learnable query
|
||||
TRAIN_NUM_POINTS: 12544
|
||||
OVERSAMPLE_RATIO: 3.0
|
||||
IMPORTANCE_SAMPLE_RATIO: 0.75
|
||||
TWO_STAGE: False
|
||||
INITIALIZE_BOX_TYPE: 'no'
|
||||
DN: seg
|
||||
DN_NOISE_SCALE: 0.4
|
||||
DN_NUM: 100
|
||||
INITIAL_PRED: False
|
||||
LEARN_TGT: False
|
||||
TOTAL_NUM_FEATURE_LEVELS: 4
|
||||
SEMANTIC_CE_LOSS: False
|
||||
PANO_BOX_LOSS: False
|
||||
COCO: False
|
||||
O365: False
|
||||
SAM: True
|
||||
PASCAL: False
|
||||
RE_POINT: True
|
||||
NUM_INTERACTIVE_TOKENS: 6
|
||||
MAX_NUM_INSTANCE: 60
|
||||
TEST:
|
||||
SEMANTIC_ON: True
|
||||
INSTANCE_ON: True
|
||||
PANOPTIC_ON: True
|
||||
BOX_INTERACTIVE: False
|
||||
CLASSIFICATION_ON: False
|
||||
OVERLAP_THRESHOLD: 0.8
|
||||
OBJECT_MASK_THRESHOLD: 0.25
|
||||
SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE: false
|
||||
TEST_FOUCUS_ON_BOX: False
|
||||
PANO_TRANSFORM_EVAL: True
|
||||
PANO_TEMPERATURE: 0.06
|
||||
|
||||
TEST:
|
||||
EVAL_PERIOD: 500000
|
||||
PRECISE_BN:
|
||||
NUM_ITER: 1
|
||||
ENABLED: False
|
||||
AUG:
|
||||
ENABLED: False
|
||||
|
||||
SAM:
|
||||
INPUT:
|
||||
MIN_SIZE_TEST: 800
|
||||
MAX_SIZE_TEST: 1333
|
||||
IMAGE_SIZE: 1024
|
||||
MIN_SCALE: 0.99
|
||||
MAX_SCALE: 1.01
|
||||
DATASET_MAPPER_NAME: "sam"
|
||||
IGNORE_VALUE: 255
|
||||
COLOR_AUG_SSD: False
|
||||
SIZE_DIVISIBILITY: 32
|
||||
RANDOM_FLIP: "horizontal"
|
||||
MASK_FORMAT: "polygon"
|
||||
FORMAT: "RGB"
|
||||
CROP:
|
||||
ENABLED: True
|
||||
DATASET:
|
||||
DATASET: 'sam'
|
||||
TEST:
|
||||
DETECTIONS_PER_IMAGE: 100
|
||||
NAME: coco_eval
|
||||
IOU_TYPE: ['bbox', 'segm']
|
||||
USE_MULTISCALE: false
|
||||
BATCH_SIZE_TOTAL: 8
|
||||
MODEL_FILE: ''
|
||||
AUG:
|
||||
ENABLED: False
|
||||
TRAIN:
|
||||
BATCH_SIZE_TOTAL: 1
|
||||
BATCH_SIZE_PER_GPU: 1
|
||||
SHUFFLE: true
|
||||
DATALOADER:
|
||||
FILTER_EMPTY_ANNOTATIONS: False
|
||||
NUM_WORKERS: 4
|
||||
LOAD_PROPOSALS: False
|
||||
SAMPLER_TRAIN: "TrainingSampler"
|
||||
ASPECT_RATIO_GROUPING: True
|
||||
|
||||
COCO:
|
||||
INPUT:
|
||||
MIN_SIZE_TEST: 800
|
||||
MAX_SIZE_TEST: 1333
|
||||
IMAGE_SIZE: 1024
|
||||
MIN_SCALE: 0.1
|
||||
MAX_SCALE: 2.0
|
||||
DATASET_MAPPER_NAME: "coco_interactive_panoptic_lsj"
|
||||
IGNORE_VALUE: 255
|
||||
COLOR_AUG_SSD: False
|
||||
SIZE_DIVISIBILITY: 32
|
||||
RANDOM_FLIP: "horizontal"
|
||||
MASK_FORMAT: "polygon"
|
||||
FORMAT: "RGB"
|
||||
CROP:
|
||||
ENABLED: True
|
||||
DATASET:
|
||||
DATASET: 'coco'
|
||||
TEST:
|
||||
DETECTIONS_PER_IMAGE: 100
|
||||
NAME: coco_eval
|
||||
IOU_TYPE: ['bbox', 'segm']
|
||||
USE_MULTISCALE: false
|
||||
BATCH_SIZE_TOTAL: 1
|
||||
MODEL_FILE: ''
|
||||
AUG:
|
||||
ENABLED: False
|
||||
TRAIN:
|
||||
BATCH_SIZE_TOTAL: 1
|
||||
BATCH_SIZE_PER_GPU: 1
|
||||
SHUFFLE: true
|
||||
DATALOADER:
|
||||
FILTER_EMPTY_ANNOTATIONS: False
|
||||
NUM_WORKERS: 2
|
||||
LOAD_PROPOSALS: False
|
||||
SAMPLER_TRAIN: "TrainingSampler"
|
||||
ASPECT_RATIO_GROUPING: True
|
||||
|
||||
VLP:
|
||||
INPUT:
|
||||
IMAGE_SIZE: 224
|
||||
DATASET_MAPPER_NAME: "vlpretrain"
|
||||
IGNORE_VALUE: 255
|
||||
COLOR_AUG_SSD: False
|
||||
SIZE_DIVISIBILITY: 32
|
||||
MASK_FORMAT: "polygon"
|
||||
FORMAT: "RGB"
|
||||
CROP:
|
||||
ENABLED: True
|
||||
TRAIN:
|
||||
BATCH_SIZE_TOTAL: 2
|
||||
BATCH_SIZE_PER_GPU: 2
|
||||
TEST:
|
||||
BATCH_SIZE_TOTAL: 256
|
||||
DATALOADER:
|
||||
FILTER_EMPTY_ANNOTATIONS: False
|
||||
NUM_WORKERS: 16
|
||||
LOAD_PROPOSALS: False
|
||||
SAMPLER_TRAIN: "TrainingSampler"
|
||||
ASPECT_RATIO_GROUPING: True
|
||||
|
||||
INPUT:
|
||||
PIXEL_MEAN: [123.675, 116.280, 103.530]
|
||||
PIXEL_STD: [58.395, 57.120, 57.375]
|
||||
|
||||
DATASETS:
|
||||
TRAIN: ["sam_train"]
|
||||
# interactive segmentation evaluation.
|
||||
TEST: ["coco_2017_val_panoptic_with_sem_seg_interactive_jointboxpoint"]
|
||||
# TEST: ["sam_minival"]
|
||||
|
||||
CLASS_CONCAT: false
|
||||
SIZE_DIVISIBILITY: 32
|
||||
PROPOSAL_FILES_TRAIN: []
|
||||
|
||||
DATALOADER:
|
||||
FILTER_EMPTY_ANNOTATIONS: False
|
||||
NUM_WORKERS: 16
|
||||
LOAD_PROPOSALS: False
|
||||
SAMPLER_TRAIN: "TrainingSampler"
|
||||
ASPECT_RATIO_GROUPING: True
|
||||
|
||||
# Detectron2 training config for optimizer and lr scheduler
|
||||
SOLVER:
|
||||
BASE_LR_END: 0.0
|
||||
MOMENTUM: 0.9
|
||||
NESTEROV: False
|
||||
CHECKPOINT_PERIOD: 5000
|
||||
IMS_PER_BATCH: 1
|
||||
REFERENCE_WORLD_SIZE: 0
|
||||
BIAS_LR_FACTOR: 1.0
|
||||
WEIGHT_DECAY_BIAS: None
|
||||
# original
|
||||
BASE_LR: 0.0001
|
||||
STEPS: [327778, 355092]
|
||||
MAX_ITER: 368750
|
||||
GAMMA: 0.1
|
||||
WARMUP_FACTOR: 1.0
|
||||
WARMUP_ITERS: 10
|
||||
WARMUP_METHOD: "linear"
|
||||
WEIGHT_DECAY: 0.05
|
||||
OPTIMIZER: "ADAMW"
|
||||
LR_SCHEDULER_NAME: "WarmupMultiStepLR"
|
||||
LR_MULTIPLIER:
|
||||
backbone: 0.1
|
||||
lang_encoder: 0.1
|
||||
WEIGHT_DECAY_NORM: 0.0
|
||||
WEIGHT_DECAY_EMBED: 0.0
|
||||
CLIP_GRADIENTS:
|
||||
ENABLED: True
|
||||
CLIP_TYPE: "full_model"
|
||||
CLIP_VALUE: 0.01
|
||||
NORM_TYPE: 2.0
|
||||
AMP:
|
||||
ENABLED: True
|
||||
|
||||
# Evaluation Dataset
|
||||
ADE20K:
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: [320, 384, 448, 512, 576, 640, 704, 768, 832, 896, 960, 1024, 1088, 1152, 1216, 1280]
|
||||
MIN_SIZE_TRAIN_SAMPLING: "choice"
|
||||
MIN_SIZE_TEST: 640
|
||||
MAX_SIZE_TRAIN: 2560
|
||||
MAX_SIZE_TEST: 2560
|
||||
MASK_FORMAT: "polygon"
|
||||
CROP:
|
||||
ENABLED: True
|
||||
TYPE: "absolute"
|
||||
SIZE: [640, 640]
|
||||
SINGLE_CATEGORY_MAX_AREA: 1.0
|
||||
IGNORE_VALUE: 255
|
||||
COLOR_AUG_SSD: True
|
||||
SIZE_DIVISIBILITY: 640 # used in dataset mapper
|
||||
DATASET_MAPPER_NAME: "mask_former_panoptic"
|
||||
FORMAT: "RGB"
|
||||
DATASET:
|
||||
DATASET: 'ade'
|
||||
TRAIN:
|
||||
ASPECT_RATIO_GROUPING: true
|
||||
BATCH_SIZE_TOTAL: 16
|
||||
BATCH_SIZE_PER_GPU: 2
|
||||
SHUFFLE: true
|
||||
TEST:
|
||||
DETECTIONS_PER_IMAGE: 100
|
||||
NAME: coco_eval
|
||||
IOU_TYPE: ['bbox', 'segm']
|
||||
USE_MULTISCALE: false
|
||||
BATCH_SIZE_TOTAL: 8
|
||||
MODEL_FILE: ''
|
||||
AUG:
|
||||
ENABLED: False
|
||||
DATALOADER:
|
||||
FILTER_EMPTY_ANNOTATIONS: False
|
||||
NUM_WORKERS: 8
|
||||
LOAD_PROPOSALS: False
|
||||
SAMPLER_TRAIN: "TrainingSampler"
|
||||
ASPECT_RATIO_GROUPING: True
|
||||
#ADE20K:
|
||||
# INPUT:
|
||||
# MIN_SIZE_TRAIN: 640
|
||||
# MIN_SIZE_TRAIN_SAMPLING: "choice"
|
||||
# MIN_SIZE_TEST: 640
|
||||
# MAX_SIZE_TRAIN: 2560
|
||||
# MAX_SIZE_TEST: 2560
|
||||
# MASK_FORMAT: "polygon"
|
||||
# CROP:
|
||||
# ENABLED: True
|
||||
# TYPE: "absolute"
|
||||
# SIZE: (640, 640)
|
||||
# SINGLE_CATEGORY_MAX_AREA: 1.0
|
||||
# COLOR_AUG_SSD: True
|
||||
# SIZE_DIVISIBILITY: 640 # used in dataset mapper
|
||||
# DATASET_MAPPER_NAME: "mask_former_panoptic"
|
||||
# FORMAT: "RGB"
|
||||
# DATASET:
|
||||
# DATASET: 'ade'
|
||||
# TEST:
|
||||
# BATCH_SIZE_TOTAL: 8
|
||||
|
||||
|
||||
REF:
|
||||
INPUT:
|
||||
PIXEL_MEAN: [123.675, 116.280, 103.530]
|
||||
PIXEL_STD: [58.395, 57.120, 57.375]
|
||||
MIN_SIZE_TEST: 512
|
||||
MAX_SIZE_TEST: 1024
|
||||
FORMAT: "RGB"
|
||||
DATALOADER:
|
||||
FILTER_EMPTY_ANNOTATIONS: False
|
||||
NUM_WORKERS: 0
|
||||
LOAD_PROPOSALS: False
|
||||
SAMPLER_TRAIN: "TrainingSampler"
|
||||
ASPECT_RATIO_GROUPING: False
|
||||
TEST:
|
||||
BATCH_SIZE_TOTAL: 8
|
||||
|
||||
SUN:
|
||||
INPUT:
|
||||
PIXEL_MEAN: [123.675, 116.280, 103.530]
|
||||
PIXEL_STD: [58.395, 57.120, 57.375]
|
||||
MIN_SIZE_TEST: 512
|
||||
MAX_SIZE_TEST: 1024
|
||||
DATALOADER:
|
||||
FILTER_EMPTY_ANNOTATIONS: False
|
||||
NUM_WORKERS: 0
|
||||
LOAD_PROPOSALS: False
|
||||
SAMPLER_TRAIN: "TrainingSampler"
|
||||
ASPECT_RATIO_GROUPING: False
|
||||
TEST:
|
||||
BATCH_SIZE_TOTAL: 8
|
||||
|
||||
SCAN:
|
||||
INPUT:
|
||||
PIXEL_MEAN: [123.675, 116.280, 103.530]
|
||||
PIXEL_STD: [58.395, 57.120, 57.375]
|
||||
MIN_SIZE_TEST: 512
|
||||
MAX_SIZE_TEST: 1024
|
||||
DATALOADER:
|
||||
FILTER_EMPTY_ANNOTATIONS: False
|
||||
NUM_WORKERS: 0
|
||||
LOAD_PROPOSALS: False
|
||||
SAMPLER_TRAIN: "TrainingSampler"
|
||||
ASPECT_RATIO_GROUPING: False
|
||||
TEST:
|
||||
BATCH_SIZE_TOTAL: 8
|
||||
|
||||
BDD:
|
||||
INPUT:
|
||||
PIXEL_MEAN: [123.675, 116.280, 103.530]
|
||||
PIXEL_STD: [58.395, 57.120, 57.375]
|
||||
MIN_SIZE_TEST: 800
|
||||
MAX_SIZE_TEST: 1333
|
||||
DATALOADER:
|
||||
FILTER_EMPTY_ANNOTATIONS: False
|
||||
NUM_WORKERS: 0
|
||||
LOAD_PROPOSALS: False
|
||||
SAMPLER_TRAIN: "TrainingSampler"
|
||||
ASPECT_RATIO_GROUPING: False
|
||||
TEST:
|
||||
BATCH_SIZE_TOTAL: 8
|
||||
|
||||
CITY:
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: [ 512, 614, 716, 819, 921, 1024, 1126, 1228, 1331, 1433, 1536, 1638, 1740, 1843, 1945, 2048 ]
|
||||
MIN_SIZE_TRAIN_SAMPLING: "choice"
|
||||
MIN_SIZE_TEST: 1024
|
||||
MAX_SIZE_TRAIN: 4096
|
||||
MAX_SIZE_TEST: 2048
|
||||
CROP:
|
||||
ENABLED: True
|
||||
TYPE: "absolute"
|
||||
SIZE: [ 512, 1024 ]
|
||||
SINGLE_CATEGORY_MAX_AREA: 1.0
|
||||
IGNORE_VALUE: 255
|
||||
COLOR_AUG_SSD: True
|
||||
SIZE_DIVISIBILITY: -1
|
||||
FORMAT: "RGB"
|
||||
DATASET_MAPPER_NAME: "mask_former_panoptic"
|
||||
MASK_FORMAT: "polygon"
|
||||
TEST:
|
||||
EVAL_PERIOD: 5000
|
||||
BATCH_SIZE_TOTAL: 1
|
||||
AUG:
|
||||
ENABLED: False
|
||||
MIN_SIZES: [ 512, 768, 1024, 1280, 1536, 1792 ]
|
||||
MAX_SIZE: 4096
|
||||
FLIP: True
|
||||
DATALOADER:
|
||||
FILTER_EMPTY_ANNOTATIONS: True
|
||||
NUM_WORKERS: 2
|
||||
LOAD_PROPOSALS: False
|
||||
SAMPLER_TRAIN: "TrainingSampler"
|
||||
ASPECT_RATIO_GROUPING: True
|
||||
TRAIN:
|
||||
ASPECT_RATIO_GROUPING: true
|
||||
BATCH_SIZE_TOTAL: 2
|
||||
BATCH_SIZE_PER_GPU: 2
|
||||
SHUFFLE: true
|
||||
|
||||
PSACAL_PART:
|
||||
INPUT:
|
||||
MIN_SIZE_TEST: 800
|
||||
MAX_SIZE_TEST: 1333
|
||||
IMAGE_SIZE: 1024
|
||||
MIN_SCALE: 0.1
|
||||
MAX_SCALE: 2.0
|
||||
DATASET_MAPPER_NAME: "pascal_part_lsj"
|
||||
IGNORE_VALUE: 255
|
||||
COLOR_AUG_SSD: False
|
||||
SIZE_DIVISIBILITY: 32
|
||||
RANDOM_FLIP: "horizontal"
|
||||
MASK_FORMAT: "polygon"
|
||||
FORMAT: "RGB"
|
||||
CROP:
|
||||
ENABLED: True
|
||||
MODEL:
|
||||
MASK_ON: True
|
||||
KEYPOINT_ON: False
|
||||
LOAD_PROPOSALS: False
|
||||
# DATASET:
|
||||
# DATASET: 'coco'
|
||||
TEST:
|
||||
DETECTIONS_PER_IMAGE: 100
|
||||
NAME: coco_eval
|
||||
IOU_TYPE: ['bbox', 'segm']
|
||||
USE_MULTISCALE: false
|
||||
BATCH_SIZE_TOTAL: 8
|
||||
MODEL_FILE: ''
|
||||
AUG:
|
||||
ENABLED: False
|
||||
TRAIN:
|
||||
BATCH_SIZE_TOTAL: 1
|
||||
BATCH_SIZE_PER_GPU: 1
|
||||
SHUFFLE: true
|
||||
DATALOADER:
|
||||
FILTER_EMPTY_ANNOTATIONS: False
|
||||
NUM_WORKERS: 2
|
||||
LOAD_PROPOSALS: False
|
||||
SAMPLER_TRAIN: "TrainingSampler"
|
||||
ASPECT_RATIO_GROUPING: True
|
||||
BIN
mm_agents/desktop.png
Normal file
BIN
mm_agents/desktop.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 1.5 MiB |
3
mm_agents/download_ckpt.sh
Normal file
3
mm_agents/download_ckpt.sh
Normal file
@@ -0,0 +1,3 @@
|
||||
wget https://github.com/UX-Decoder/Semantic-SAM/releases/download/checkpoint/swinl_only_sam_many2many.pth
|
||||
wget https://huggingface.co/xdecoder/SEEM/resolve/main/seem_focall_v1.pt
|
||||
wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth
|
||||
13
mm_agents/ops/functions/__init__.py
Normal file
13
mm_agents/ops/functions/__init__.py
Normal file
@@ -0,0 +1,13 @@
|
||||
# ------------------------------------------------------------------------------------------------
|
||||
# Deformable DETR
|
||||
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
||||
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
||||
# ------------------------------------------------------------------------------------------------
|
||||
# Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
||||
# ------------------------------------------------------------------------------------------------
|
||||
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
|
||||
|
||||
from .ms_deform_attn_func import MSDeformAttnFunction
|
||||
|
||||
72
mm_agents/ops/functions/ms_deform_attn_func.py
Normal file
72
mm_agents/ops/functions/ms_deform_attn_func.py
Normal file
@@ -0,0 +1,72 @@
|
||||
# ------------------------------------------------------------------------------------------------
|
||||
# Deformable DETR
|
||||
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
||||
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
||||
# ------------------------------------------------------------------------------------------------
|
||||
# Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
||||
# ------------------------------------------------------------------------------------------------
|
||||
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import print_function
|
||||
from __future__ import division
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch.autograd import Function
|
||||
from torch.autograd.function import once_differentiable
|
||||
|
||||
try:
|
||||
import MultiScaleDeformableAttention as MSDA
|
||||
except ModuleNotFoundError as e:
|
||||
info_string = (
|
||||
"\n\nPlease compile MultiScaleDeformableAttention CUDA op with the following commands:\n"
|
||||
"\t`cd mask2former/modeling/pixel_decoder/ops`\n"
|
||||
"\t`sh make.sh`\n"
|
||||
)
|
||||
raise ModuleNotFoundError(info_string)
|
||||
|
||||
|
||||
class MSDeformAttnFunction(Function):
|
||||
@staticmethod
|
||||
def forward(ctx, value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, im2col_step):
|
||||
ctx.im2col_step = im2col_step
|
||||
output = MSDA.ms_deform_attn_forward(
|
||||
value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, ctx.im2col_step)
|
||||
ctx.save_for_backward(value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights)
|
||||
return output
|
||||
|
||||
@staticmethod
|
||||
@once_differentiable
|
||||
def backward(ctx, grad_output):
|
||||
value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights = ctx.saved_tensors
|
||||
grad_value, grad_sampling_loc, grad_attn_weight = \
|
||||
MSDA.ms_deform_attn_backward(
|
||||
value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, grad_output, ctx.im2col_step)
|
||||
|
||||
return grad_value, None, None, grad_sampling_loc, grad_attn_weight, None
|
||||
|
||||
|
||||
def ms_deform_attn_core_pytorch(value, value_spatial_shapes, sampling_locations, attention_weights):
|
||||
# for debug and test only,
|
||||
# need to use cuda version instead
|
||||
N_, S_, M_, D_ = value.shape
|
||||
_, Lq_, M_, L_, P_, _ = sampling_locations.shape
|
||||
value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes], dim=1)
|
||||
sampling_grids = 2 * sampling_locations - 1
|
||||
sampling_value_list = []
|
||||
for lid_, (H_, W_) in enumerate(value_spatial_shapes):
|
||||
# N_, H_*W_, M_, D_ -> N_, H_*W_, M_*D_ -> N_, M_*D_, H_*W_ -> N_*M_, D_, H_, W_
|
||||
value_l_ = value_list[lid_].flatten(2).transpose(1, 2).reshape(N_*M_, D_, H_, W_)
|
||||
# N_, Lq_, M_, P_, 2 -> N_, M_, Lq_, P_, 2 -> N_*M_, Lq_, P_, 2
|
||||
sampling_grid_l_ = sampling_grids[:, :, :, lid_].transpose(1, 2).flatten(0, 1)
|
||||
# N_*M_, D_, Lq_, P_
|
||||
sampling_value_l_ = F.grid_sample(value_l_, sampling_grid_l_,
|
||||
mode='bilinear', padding_mode='zeros', align_corners=False)
|
||||
sampling_value_list.append(sampling_value_l_)
|
||||
# (N_, Lq_, M_, L_, P_) -> (N_, M_, Lq_, L_, P_) -> (N_, M_, 1, Lq_, L_*P_)
|
||||
attention_weights = attention_weights.transpose(1, 2).reshape(N_*M_, 1, Lq_, L_*P_)
|
||||
output = (torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights).sum(-1).view(N_, M_*D_, Lq_)
|
||||
return output.transpose(1, 2).contiguous()
|
||||
13
mm_agents/ops/make.sh
Executable file
13
mm_agents/ops/make.sh
Executable file
@@ -0,0 +1,13 @@
|
||||
#!/usr/bin/env bash
|
||||
# ------------------------------------------------------------------------------------------------
|
||||
# Deformable DETR
|
||||
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
||||
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
||||
# ------------------------------------------------------------------------------------------------
|
||||
# Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
||||
# ------------------------------------------------------------------------------------------------
|
||||
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
|
||||
|
||||
python setup.py build install
|
||||
12
mm_agents/ops/modules/__init__.py
Normal file
12
mm_agents/ops/modules/__init__.py
Normal file
@@ -0,0 +1,12 @@
|
||||
# ------------------------------------------------------------------------------------------------
|
||||
# Deformable DETR
|
||||
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
||||
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
||||
# ------------------------------------------------------------------------------------------------
|
||||
# Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
||||
# ------------------------------------------------------------------------------------------------
|
||||
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
|
||||
|
||||
from .ms_deform_attn import MSDeformAttn
|
||||
125
mm_agents/ops/modules/ms_deform_attn.py
Normal file
125
mm_agents/ops/modules/ms_deform_attn.py
Normal file
@@ -0,0 +1,125 @@
|
||||
# ------------------------------------------------------------------------------------------------
|
||||
# Deformable DETR
|
||||
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
||||
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
||||
# ------------------------------------------------------------------------------------------------
|
||||
# Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
||||
# ------------------------------------------------------------------------------------------------
|
||||
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import print_function
|
||||
from __future__ import division
|
||||
|
||||
import warnings
|
||||
import math
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
from torch.nn.init import xavier_uniform_, constant_
|
||||
|
||||
from ..functions import MSDeformAttnFunction
|
||||
from ..functions.ms_deform_attn_func import ms_deform_attn_core_pytorch
|
||||
|
||||
|
||||
def _is_power_of_2(n):
|
||||
if (not isinstance(n, int)) or (n < 0):
|
||||
raise ValueError("invalid input for _is_power_of_2: {} (type: {})".format(n, type(n)))
|
||||
return (n & (n-1) == 0) and n != 0
|
||||
|
||||
|
||||
class MSDeformAttn(nn.Module):
|
||||
def __init__(self, d_model=256, n_levels=4, n_heads=8, n_points=4):
|
||||
"""
|
||||
Multi-Scale Deformable Attention Module
|
||||
:param d_model hidden dimension
|
||||
:param n_levels number of feature levels
|
||||
:param n_heads number of attention heads
|
||||
:param n_points number of sampling points per attention head per feature level
|
||||
"""
|
||||
super().__init__()
|
||||
if d_model % n_heads != 0:
|
||||
raise ValueError('d_model must be divisible by n_heads, but got {} and {}'.format(d_model, n_heads))
|
||||
_d_per_head = d_model // n_heads
|
||||
# you'd better set _d_per_head to a power of 2 which is more efficient in our CUDA implementation
|
||||
if not _is_power_of_2(_d_per_head):
|
||||
warnings.warn("You'd better set d_model in MSDeformAttn to make the dimension of each attention head a power of 2 "
|
||||
"which is more efficient in our CUDA implementation.")
|
||||
|
||||
self.im2col_step = 128
|
||||
|
||||
self.d_model = d_model
|
||||
self.n_levels = n_levels
|
||||
self.n_heads = n_heads
|
||||
self.n_points = n_points
|
||||
|
||||
self.sampling_offsets = nn.Linear(d_model, n_heads * n_levels * n_points * 2)
|
||||
self.attention_weights = nn.Linear(d_model, n_heads * n_levels * n_points)
|
||||
self.value_proj = nn.Linear(d_model, d_model)
|
||||
self.output_proj = nn.Linear(d_model, d_model)
|
||||
|
||||
self._reset_parameters()
|
||||
|
||||
def _reset_parameters(self):
|
||||
constant_(self.sampling_offsets.weight.data, 0.)
|
||||
thetas = torch.arange(self.n_heads, dtype=torch.float32) * (2.0 * math.pi / self.n_heads)
|
||||
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
|
||||
grid_init = (grid_init / grid_init.abs().max(-1, keepdim=True)[0]).view(self.n_heads, 1, 1, 2).repeat(1, self.n_levels, self.n_points, 1)
|
||||
for i in range(self.n_points):
|
||||
grid_init[:, :, i, :] *= i + 1
|
||||
with torch.no_grad():
|
||||
self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
|
||||
constant_(self.attention_weights.weight.data, 0.)
|
||||
constant_(self.attention_weights.bias.data, 0.)
|
||||
xavier_uniform_(self.value_proj.weight.data)
|
||||
constant_(self.value_proj.bias.data, 0.)
|
||||
xavier_uniform_(self.output_proj.weight.data)
|
||||
constant_(self.output_proj.bias.data, 0.)
|
||||
|
||||
def forward(self, query, reference_points, input_flatten, input_spatial_shapes, input_level_start_index, input_padding_mask=None):
|
||||
"""
|
||||
:param query (N, Length_{query}, C)
|
||||
:param reference_points (N, Length_{query}, n_levels, 2), range in [0, 1], top-left (0,0), bottom-right (1, 1), including padding area
|
||||
or (N, Length_{query}, n_levels, 4), add additional (w, h) to form reference boxes
|
||||
:param input_flatten (N, \sum_{l=0}^{L-1} H_l \cdot W_l, C)
|
||||
:param input_spatial_shapes (n_levels, 2), [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})]
|
||||
:param input_level_start_index (n_levels, ), [0, H_0*W_0, H_0*W_0+H_1*W_1, H_0*W_0+H_1*W_1+H_2*W_2, ..., H_0*W_0+H_1*W_1+...+H_{L-1}*W_{L-1}]
|
||||
:param input_padding_mask (N, \sum_{l=0}^{L-1} H_l \cdot W_l), True for padding elements, False for non-padding elements
|
||||
|
||||
:return output (N, Length_{query}, C)
|
||||
"""
|
||||
N, Len_q, _ = query.shape
|
||||
N, Len_in, _ = input_flatten.shape
|
||||
assert (input_spatial_shapes[:, 0] * input_spatial_shapes[:, 1]).sum() == Len_in
|
||||
|
||||
value = self.value_proj(input_flatten)
|
||||
if input_padding_mask is not None:
|
||||
value = value.masked_fill(input_padding_mask[..., None], float(0))
|
||||
value = value.view(N, Len_in, self.n_heads, self.d_model // self.n_heads)
|
||||
sampling_offsets = self.sampling_offsets(query).view(N, Len_q, self.n_heads, self.n_levels, self.n_points, 2)
|
||||
attention_weights = self.attention_weights(query).view(N, Len_q, self.n_heads, self.n_levels * self.n_points)
|
||||
attention_weights = F.softmax(attention_weights, -1).view(N, Len_q, self.n_heads, self.n_levels, self.n_points)
|
||||
# N, Len_q, n_heads, n_levels, n_points, 2
|
||||
if reference_points.shape[-1] == 2:
|
||||
offset_normalizer = torch.stack([input_spatial_shapes[..., 1], input_spatial_shapes[..., 0]], -1)
|
||||
sampling_locations = reference_points[:, :, None, :, None, :] \
|
||||
+ sampling_offsets / offset_normalizer[None, None, None, :, None, :]
|
||||
elif reference_points.shape[-1] == 4:
|
||||
sampling_locations = reference_points[:, :, None, :, None, :2] \
|
||||
+ sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5
|
||||
else:
|
||||
raise ValueError(
|
||||
'Last dim of reference_points must be 2 or 4, but get {} instead.'.format(reference_points.shape[-1]))
|
||||
try:
|
||||
output = MSDeformAttnFunction.apply(
|
||||
value, input_spatial_shapes, input_level_start_index, sampling_locations, attention_weights, self.im2col_step)
|
||||
except:
|
||||
# CPU
|
||||
output = ms_deform_attn_core_pytorch(value, input_spatial_shapes, sampling_locations, attention_weights)
|
||||
# # For FLOPs calculation only
|
||||
# output = ms_deform_attn_core_pytorch(value, input_spatial_shapes, sampling_locations, attention_weights)
|
||||
output = self.output_proj(output)
|
||||
return output
|
||||
78
mm_agents/ops/setup.py
Normal file
78
mm_agents/ops/setup.py
Normal file
@@ -0,0 +1,78 @@
|
||||
# ------------------------------------------------------------------------------------------------
|
||||
# Deformable DETR
|
||||
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
||||
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
||||
# ------------------------------------------------------------------------------------------------
|
||||
# Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
||||
# ------------------------------------------------------------------------------------------------
|
||||
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
|
||||
|
||||
import os
|
||||
import glob
|
||||
|
||||
import torch
|
||||
|
||||
from torch.utils.cpp_extension import CUDA_HOME
|
||||
from torch.utils.cpp_extension import CppExtension
|
||||
from torch.utils.cpp_extension import CUDAExtension
|
||||
|
||||
from setuptools import find_packages
|
||||
from setuptools import setup
|
||||
|
||||
requirements = ["torch", "torchvision"]
|
||||
|
||||
def get_extensions():
|
||||
this_dir = os.path.dirname(os.path.abspath(__file__))
|
||||
extensions_dir = os.path.join(this_dir, "src")
|
||||
|
||||
main_file = glob.glob(os.path.join(extensions_dir, "*.cpp"))
|
||||
source_cpu = glob.glob(os.path.join(extensions_dir, "cpu", "*.cpp"))
|
||||
source_cuda = glob.glob(os.path.join(extensions_dir, "cuda", "*.cu"))
|
||||
|
||||
sources = main_file + source_cpu
|
||||
extension = CppExtension
|
||||
extra_compile_args = {"cxx": []}
|
||||
define_macros = []
|
||||
|
||||
# Force cuda since torch ask for a device, not if cuda is in fact available.
|
||||
if (os.environ.get('FORCE_CUDA') or torch.cuda.is_available()) and CUDA_HOME is not None:
|
||||
extension = CUDAExtension
|
||||
sources += source_cuda
|
||||
define_macros += [("WITH_CUDA", None)]
|
||||
extra_compile_args["nvcc"] = [
|
||||
"-DCUDA_HAS_FP16=1",
|
||||
"-D__CUDA_NO_HALF_OPERATORS__",
|
||||
"-D__CUDA_NO_HALF_CONVERSIONS__",
|
||||
"-D__CUDA_NO_HALF2_OPERATORS__",
|
||||
]
|
||||
else:
|
||||
if CUDA_HOME is None:
|
||||
raise NotImplementedError('CUDA_HOME is None. Please set environment variable CUDA_HOME.')
|
||||
else:
|
||||
raise NotImplementedError('No CUDA runtime is found. Please set FORCE_CUDA=1 or test it by running torch.cuda.is_available().')
|
||||
|
||||
sources = [os.path.join(extensions_dir, s) for s in sources]
|
||||
include_dirs = [extensions_dir]
|
||||
ext_modules = [
|
||||
extension(
|
||||
"MultiScaleDeformableAttention",
|
||||
sources,
|
||||
include_dirs=include_dirs,
|
||||
define_macros=define_macros,
|
||||
extra_compile_args=extra_compile_args,
|
||||
)
|
||||
]
|
||||
return ext_modules
|
||||
|
||||
setup(
|
||||
name="MultiScaleDeformableAttention",
|
||||
version="1.0",
|
||||
author="Weijie Su",
|
||||
url="https://github.com/fundamentalvision/Deformable-DETR",
|
||||
description="PyTorch Wrapper for CUDA Functions of Multi-Scale Deformable Attention",
|
||||
packages=find_packages(exclude=("configs", "tests",)),
|
||||
ext_modules=get_extensions(),
|
||||
cmdclass={"build_ext": torch.utils.cpp_extension.BuildExtension},
|
||||
)
|
||||
46
mm_agents/ops/src/cpu/ms_deform_attn_cpu.cpp
Normal file
46
mm_agents/ops/src/cpu/ms_deform_attn_cpu.cpp
Normal file
@@ -0,0 +1,46 @@
|
||||
/*!
|
||||
**************************************************************************************************
|
||||
* Deformable DETR
|
||||
* Copyright (c) 2020 SenseTime. All Rights Reserved.
|
||||
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
||||
**************************************************************************************************
|
||||
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
||||
**************************************************************************************************
|
||||
*/
|
||||
|
||||
/*!
|
||||
* Copyright (c) Facebook, Inc. and its affiliates.
|
||||
* Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
|
||||
*/
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include <ATen/ATen.h>
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
|
||||
|
||||
at::Tensor
|
||||
ms_deform_attn_cpu_forward(
|
||||
const at::Tensor &value,
|
||||
const at::Tensor &spatial_shapes,
|
||||
const at::Tensor &level_start_index,
|
||||
const at::Tensor &sampling_loc,
|
||||
const at::Tensor &attn_weight,
|
||||
const int im2col_step)
|
||||
{
|
||||
AT_ERROR("Not implement on cpu");
|
||||
}
|
||||
|
||||
std::vector<at::Tensor>
|
||||
ms_deform_attn_cpu_backward(
|
||||
const at::Tensor &value,
|
||||
const at::Tensor &spatial_shapes,
|
||||
const at::Tensor &level_start_index,
|
||||
const at::Tensor &sampling_loc,
|
||||
const at::Tensor &attn_weight,
|
||||
const at::Tensor &grad_output,
|
||||
const int im2col_step)
|
||||
{
|
||||
AT_ERROR("Not implement on cpu");
|
||||
}
|
||||
|
||||
38
mm_agents/ops/src/cpu/ms_deform_attn_cpu.h
Normal file
38
mm_agents/ops/src/cpu/ms_deform_attn_cpu.h
Normal file
@@ -0,0 +1,38 @@
|
||||
/*!
|
||||
**************************************************************************************************
|
||||
* Deformable DETR
|
||||
* Copyright (c) 2020 SenseTime. All Rights Reserved.
|
||||
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
||||
**************************************************************************************************
|
||||
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
||||
**************************************************************************************************
|
||||
*/
|
||||
|
||||
/*!
|
||||
* Copyright (c) Facebook, Inc. and its affiliates.
|
||||
* Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
#include <torch/extension.h>
|
||||
|
||||
at::Tensor
|
||||
ms_deform_attn_cpu_forward(
|
||||
const at::Tensor &value,
|
||||
const at::Tensor &spatial_shapes,
|
||||
const at::Tensor &level_start_index,
|
||||
const at::Tensor &sampling_loc,
|
||||
const at::Tensor &attn_weight,
|
||||
const int im2col_step);
|
||||
|
||||
std::vector<at::Tensor>
|
||||
ms_deform_attn_cpu_backward(
|
||||
const at::Tensor &value,
|
||||
const at::Tensor &spatial_shapes,
|
||||
const at::Tensor &level_start_index,
|
||||
const at::Tensor &sampling_loc,
|
||||
const at::Tensor &attn_weight,
|
||||
const at::Tensor &grad_output,
|
||||
const int im2col_step);
|
||||
|
||||
|
||||
158
mm_agents/ops/src/cuda/ms_deform_attn_cuda.cu
Normal file
158
mm_agents/ops/src/cuda/ms_deform_attn_cuda.cu
Normal file
@@ -0,0 +1,158 @@
|
||||
/*!
|
||||
**************************************************************************************************
|
||||
* Deformable DETR
|
||||
* Copyright (c) 2020 SenseTime. All Rights Reserved.
|
||||
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
||||
**************************************************************************************************
|
||||
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
||||
**************************************************************************************************
|
||||
*/
|
||||
|
||||
/*!
|
||||
* Copyright (c) Facebook, Inc. and its affiliates.
|
||||
* Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
|
||||
*/
|
||||
|
||||
#include <vector>
|
||||
#include "cuda/ms_deform_im2col_cuda.cuh"
|
||||
|
||||
#include <ATen/ATen.h>
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
#include <cuda.h>
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
|
||||
at::Tensor ms_deform_attn_cuda_forward(
|
||||
const at::Tensor &value,
|
||||
const at::Tensor &spatial_shapes,
|
||||
const at::Tensor &level_start_index,
|
||||
const at::Tensor &sampling_loc,
|
||||
const at::Tensor &attn_weight,
|
||||
const int im2col_step)
|
||||
{
|
||||
AT_ASSERTM(value.is_contiguous(), "value tensor has to be contiguous");
|
||||
AT_ASSERTM(spatial_shapes.is_contiguous(), "spatial_shapes tensor has to be contiguous");
|
||||
AT_ASSERTM(level_start_index.is_contiguous(), "level_start_index tensor has to be contiguous");
|
||||
AT_ASSERTM(sampling_loc.is_contiguous(), "sampling_loc tensor has to be contiguous");
|
||||
AT_ASSERTM(attn_weight.is_contiguous(), "attn_weight tensor has to be contiguous");
|
||||
|
||||
AT_ASSERTM(value.type().is_cuda(), "value must be a CUDA tensor");
|
||||
AT_ASSERTM(spatial_shapes.type().is_cuda(), "spatial_shapes must be a CUDA tensor");
|
||||
AT_ASSERTM(level_start_index.type().is_cuda(), "level_start_index must be a CUDA tensor");
|
||||
AT_ASSERTM(sampling_loc.type().is_cuda(), "sampling_loc must be a CUDA tensor");
|
||||
AT_ASSERTM(attn_weight.type().is_cuda(), "attn_weight must be a CUDA tensor");
|
||||
|
||||
const int batch = value.size(0);
|
||||
const int spatial_size = value.size(1);
|
||||
const int num_heads = value.size(2);
|
||||
const int channels = value.size(3);
|
||||
|
||||
const int num_levels = spatial_shapes.size(0);
|
||||
|
||||
const int num_query = sampling_loc.size(1);
|
||||
const int num_point = sampling_loc.size(4);
|
||||
|
||||
const int im2col_step_ = std::min(batch, im2col_step);
|
||||
|
||||
AT_ASSERTM(batch % im2col_step_ == 0, "batch(%d) must divide im2col_step(%d)", batch, im2col_step_);
|
||||
|
||||
auto output = at::zeros({batch, num_query, num_heads, channels}, value.options());
|
||||
|
||||
const int batch_n = im2col_step_;
|
||||
auto output_n = output.view({batch/im2col_step_, batch_n, num_query, num_heads, channels});
|
||||
auto per_value_size = spatial_size * num_heads * channels;
|
||||
auto per_sample_loc_size = num_query * num_heads * num_levels * num_point * 2;
|
||||
auto per_attn_weight_size = num_query * num_heads * num_levels * num_point;
|
||||
for (int n = 0; n < batch/im2col_step_; ++n)
|
||||
{
|
||||
auto columns = output_n.select(0, n);
|
||||
AT_DISPATCH_FLOATING_TYPES(value.type(), "ms_deform_attn_forward_cuda", ([&] {
|
||||
ms_deformable_im2col_cuda(at::cuda::getCurrentCUDAStream(),
|
||||
value.data<scalar_t>() + n * im2col_step_ * per_value_size,
|
||||
spatial_shapes.data<int64_t>(),
|
||||
level_start_index.data<int64_t>(),
|
||||
sampling_loc.data<scalar_t>() + n * im2col_step_ * per_sample_loc_size,
|
||||
attn_weight.data<scalar_t>() + n * im2col_step_ * per_attn_weight_size,
|
||||
batch_n, spatial_size, num_heads, channels, num_levels, num_query, num_point,
|
||||
columns.data<scalar_t>());
|
||||
|
||||
}));
|
||||
}
|
||||
|
||||
output = output.view({batch, num_query, num_heads*channels});
|
||||
|
||||
return output;
|
||||
}
|
||||
|
||||
|
||||
std::vector<at::Tensor> ms_deform_attn_cuda_backward(
|
||||
const at::Tensor &value,
|
||||
const at::Tensor &spatial_shapes,
|
||||
const at::Tensor &level_start_index,
|
||||
const at::Tensor &sampling_loc,
|
||||
const at::Tensor &attn_weight,
|
||||
const at::Tensor &grad_output,
|
||||
const int im2col_step)
|
||||
{
|
||||
|
||||
AT_ASSERTM(value.is_contiguous(), "value tensor has to be contiguous");
|
||||
AT_ASSERTM(spatial_shapes.is_contiguous(), "spatial_shapes tensor has to be contiguous");
|
||||
AT_ASSERTM(level_start_index.is_contiguous(), "level_start_index tensor has to be contiguous");
|
||||
AT_ASSERTM(sampling_loc.is_contiguous(), "sampling_loc tensor has to be contiguous");
|
||||
AT_ASSERTM(attn_weight.is_contiguous(), "attn_weight tensor has to be contiguous");
|
||||
AT_ASSERTM(grad_output.is_contiguous(), "grad_output tensor has to be contiguous");
|
||||
|
||||
AT_ASSERTM(value.type().is_cuda(), "value must be a CUDA tensor");
|
||||
AT_ASSERTM(spatial_shapes.type().is_cuda(), "spatial_shapes must be a CUDA tensor");
|
||||
AT_ASSERTM(level_start_index.type().is_cuda(), "level_start_index must be a CUDA tensor");
|
||||
AT_ASSERTM(sampling_loc.type().is_cuda(), "sampling_loc must be a CUDA tensor");
|
||||
AT_ASSERTM(attn_weight.type().is_cuda(), "attn_weight must be a CUDA tensor");
|
||||
AT_ASSERTM(grad_output.type().is_cuda(), "grad_output must be a CUDA tensor");
|
||||
|
||||
const int batch = value.size(0);
|
||||
const int spatial_size = value.size(1);
|
||||
const int num_heads = value.size(2);
|
||||
const int channels = value.size(3);
|
||||
|
||||
const int num_levels = spatial_shapes.size(0);
|
||||
|
||||
const int num_query = sampling_loc.size(1);
|
||||
const int num_point = sampling_loc.size(4);
|
||||
|
||||
const int im2col_step_ = std::min(batch, im2col_step);
|
||||
|
||||
AT_ASSERTM(batch % im2col_step_ == 0, "batch(%d) must divide im2col_step(%d)", batch, im2col_step_);
|
||||
|
||||
auto grad_value = at::zeros_like(value);
|
||||
auto grad_sampling_loc = at::zeros_like(sampling_loc);
|
||||
auto grad_attn_weight = at::zeros_like(attn_weight);
|
||||
|
||||
const int batch_n = im2col_step_;
|
||||
auto per_value_size = spatial_size * num_heads * channels;
|
||||
auto per_sample_loc_size = num_query * num_heads * num_levels * num_point * 2;
|
||||
auto per_attn_weight_size = num_query * num_heads * num_levels * num_point;
|
||||
auto grad_output_n = grad_output.view({batch/im2col_step_, batch_n, num_query, num_heads, channels});
|
||||
|
||||
for (int n = 0; n < batch/im2col_step_; ++n)
|
||||
{
|
||||
auto grad_output_g = grad_output_n.select(0, n);
|
||||
AT_DISPATCH_FLOATING_TYPES(value.type(), "ms_deform_attn_backward_cuda", ([&] {
|
||||
ms_deformable_col2im_cuda(at::cuda::getCurrentCUDAStream(),
|
||||
grad_output_g.data<scalar_t>(),
|
||||
value.data<scalar_t>() + n * im2col_step_ * per_value_size,
|
||||
spatial_shapes.data<int64_t>(),
|
||||
level_start_index.data<int64_t>(),
|
||||
sampling_loc.data<scalar_t>() + n * im2col_step_ * per_sample_loc_size,
|
||||
attn_weight.data<scalar_t>() + n * im2col_step_ * per_attn_weight_size,
|
||||
batch_n, spatial_size, num_heads, channels, num_levels, num_query, num_point,
|
||||
grad_value.data<scalar_t>() + n * im2col_step_ * per_value_size,
|
||||
grad_sampling_loc.data<scalar_t>() + n * im2col_step_ * per_sample_loc_size,
|
||||
grad_attn_weight.data<scalar_t>() + n * im2col_step_ * per_attn_weight_size);
|
||||
|
||||
}));
|
||||
}
|
||||
|
||||
return {
|
||||
grad_value, grad_sampling_loc, grad_attn_weight
|
||||
};
|
||||
}
|
||||
35
mm_agents/ops/src/cuda/ms_deform_attn_cuda.h
Normal file
35
mm_agents/ops/src/cuda/ms_deform_attn_cuda.h
Normal file
@@ -0,0 +1,35 @@
|
||||
/*!
|
||||
**************************************************************************************************
|
||||
* Deformable DETR
|
||||
* Copyright (c) 2020 SenseTime. All Rights Reserved.
|
||||
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
||||
**************************************************************************************************
|
||||
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
||||
**************************************************************************************************
|
||||
*/
|
||||
|
||||
/*!
|
||||
* Copyright (c) Facebook, Inc. and its affiliates.
|
||||
* Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
#include <torch/extension.h>
|
||||
|
||||
at::Tensor ms_deform_attn_cuda_forward(
|
||||
const at::Tensor &value,
|
||||
const at::Tensor &spatial_shapes,
|
||||
const at::Tensor &level_start_index,
|
||||
const at::Tensor &sampling_loc,
|
||||
const at::Tensor &attn_weight,
|
||||
const int im2col_step);
|
||||
|
||||
std::vector<at::Tensor> ms_deform_attn_cuda_backward(
|
||||
const at::Tensor &value,
|
||||
const at::Tensor &spatial_shapes,
|
||||
const at::Tensor &level_start_index,
|
||||
const at::Tensor &sampling_loc,
|
||||
const at::Tensor &attn_weight,
|
||||
const at::Tensor &grad_output,
|
||||
const int im2col_step);
|
||||
|
||||
1332
mm_agents/ops/src/cuda/ms_deform_im2col_cuda.cuh
Normal file
1332
mm_agents/ops/src/cuda/ms_deform_im2col_cuda.cuh
Normal file
File diff suppressed because it is too large
Load Diff
67
mm_agents/ops/src/ms_deform_attn.h
Normal file
67
mm_agents/ops/src/ms_deform_attn.h
Normal file
@@ -0,0 +1,67 @@
|
||||
/*!
|
||||
**************************************************************************************************
|
||||
* Deformable DETR
|
||||
* Copyright (c) 2020 SenseTime. All Rights Reserved.
|
||||
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
||||
**************************************************************************************************
|
||||
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
||||
**************************************************************************************************
|
||||
*/
|
||||
|
||||
/*!
|
||||
* Copyright (c) Facebook, Inc. and its affiliates.
|
||||
* Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "cpu/ms_deform_attn_cpu.h"
|
||||
|
||||
#ifdef WITH_CUDA
|
||||
#include "cuda/ms_deform_attn_cuda.h"
|
||||
#endif
|
||||
|
||||
|
||||
at::Tensor
|
||||
ms_deform_attn_forward(
|
||||
const at::Tensor &value,
|
||||
const at::Tensor &spatial_shapes,
|
||||
const at::Tensor &level_start_index,
|
||||
const at::Tensor &sampling_loc,
|
||||
const at::Tensor &attn_weight,
|
||||
const int im2col_step)
|
||||
{
|
||||
if (value.type().is_cuda())
|
||||
{
|
||||
#ifdef WITH_CUDA
|
||||
return ms_deform_attn_cuda_forward(
|
||||
value, spatial_shapes, level_start_index, sampling_loc, attn_weight, im2col_step);
|
||||
#else
|
||||
AT_ERROR("Not compiled with GPU support");
|
||||
#endif
|
||||
}
|
||||
AT_ERROR("Not implemented on the CPU");
|
||||
}
|
||||
|
||||
std::vector<at::Tensor>
|
||||
ms_deform_attn_backward(
|
||||
const at::Tensor &value,
|
||||
const at::Tensor &spatial_shapes,
|
||||
const at::Tensor &level_start_index,
|
||||
const at::Tensor &sampling_loc,
|
||||
const at::Tensor &attn_weight,
|
||||
const at::Tensor &grad_output,
|
||||
const int im2col_step)
|
||||
{
|
||||
if (value.type().is_cuda())
|
||||
{
|
||||
#ifdef WITH_CUDA
|
||||
return ms_deform_attn_cuda_backward(
|
||||
value, spatial_shapes, level_start_index, sampling_loc, attn_weight, grad_output, im2col_step);
|
||||
#else
|
||||
AT_ERROR("Not compiled with GPU support");
|
||||
#endif
|
||||
}
|
||||
AT_ERROR("Not implemented on the CPU");
|
||||
}
|
||||
|
||||
21
mm_agents/ops/src/vision.cpp
Normal file
21
mm_agents/ops/src/vision.cpp
Normal file
@@ -0,0 +1,21 @@
|
||||
/*!
|
||||
**************************************************************************************************
|
||||
* Deformable DETR
|
||||
* Copyright (c) 2020 SenseTime. All Rights Reserved.
|
||||
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
||||
**************************************************************************************************
|
||||
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
||||
**************************************************************************************************
|
||||
*/
|
||||
|
||||
/*!
|
||||
* Copyright (c) Facebook, Inc. and its affiliates.
|
||||
* Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
|
||||
*/
|
||||
|
||||
#include "ms_deform_attn.h"
|
||||
|
||||
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||||
m.def("ms_deform_attn_forward", &ms_deform_attn_forward, "ms_deform_attn_forward");
|
||||
m.def("ms_deform_attn_backward", &ms_deform_attn_backward, "ms_deform_attn_backward");
|
||||
}
|
||||
92
mm_agents/ops/test.py
Normal file
92
mm_agents/ops/test.py
Normal file
@@ -0,0 +1,92 @@
|
||||
# ------------------------------------------------------------------------------------------------
|
||||
# Deformable DETR
|
||||
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
||||
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
||||
# ------------------------------------------------------------------------------------------------
|
||||
# Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
||||
# ------------------------------------------------------------------------------------------------
|
||||
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import print_function
|
||||
from __future__ import division
|
||||
|
||||
import time
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.autograd import gradcheck
|
||||
|
||||
from functions.ms_deform_attn_func import MSDeformAttnFunction, ms_deform_attn_core_pytorch
|
||||
|
||||
|
||||
N, M, D = 1, 2, 2
|
||||
Lq, L, P = 2, 2, 2
|
||||
shapes = torch.as_tensor([(6, 4), (3, 2)], dtype=torch.long).cuda()
|
||||
level_start_index = torch.cat((shapes.new_zeros((1, )), shapes.prod(1).cumsum(0)[:-1]))
|
||||
S = sum([(H*W).item() for H, W in shapes])
|
||||
|
||||
|
||||
torch.manual_seed(3)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def check_forward_equal_with_pytorch_double():
|
||||
value = torch.rand(N, S, M, D).cuda() * 0.01
|
||||
sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda()
|
||||
attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5
|
||||
attention_weights /= attention_weights.sum(-1, keepdim=True).sum(-2, keepdim=True)
|
||||
im2col_step = 2
|
||||
output_pytorch = ms_deform_attn_core_pytorch(value.double(), shapes, sampling_locations.double(), attention_weights.double()).detach().cpu()
|
||||
output_cuda = MSDeformAttnFunction.apply(value.double(), shapes, level_start_index, sampling_locations.double(), attention_weights.double(), im2col_step).detach().cpu()
|
||||
fwdok = torch.allclose(output_cuda, output_pytorch)
|
||||
max_abs_err = (output_cuda - output_pytorch).abs().max()
|
||||
max_rel_err = ((output_cuda - output_pytorch).abs() / output_pytorch.abs()).max()
|
||||
|
||||
print(f'* {fwdok} check_forward_equal_with_pytorch_double: max_abs_err {max_abs_err:.2e} max_rel_err {max_rel_err:.2e}')
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def check_forward_equal_with_pytorch_float():
|
||||
value = torch.rand(N, S, M, D).cuda() * 0.01
|
||||
sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda()
|
||||
attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5
|
||||
attention_weights /= attention_weights.sum(-1, keepdim=True).sum(-2, keepdim=True)
|
||||
im2col_step = 2
|
||||
output_pytorch = ms_deform_attn_core_pytorch(value, shapes, sampling_locations, attention_weights).detach().cpu()
|
||||
output_cuda = MSDeformAttnFunction.apply(value, shapes, level_start_index, sampling_locations, attention_weights, im2col_step).detach().cpu()
|
||||
fwdok = torch.allclose(output_cuda, output_pytorch, rtol=1e-2, atol=1e-3)
|
||||
max_abs_err = (output_cuda - output_pytorch).abs().max()
|
||||
max_rel_err = ((output_cuda - output_pytorch).abs() / output_pytorch.abs()).max()
|
||||
|
||||
print(f'* {fwdok} check_forward_equal_with_pytorch_float: max_abs_err {max_abs_err:.2e} max_rel_err {max_rel_err:.2e}')
|
||||
|
||||
|
||||
def check_gradient_numerical(channels=4, grad_value=True, grad_sampling_loc=True, grad_attn_weight=True):
|
||||
|
||||
value = torch.rand(N, S, M, channels).cuda() * 0.01
|
||||
sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda()
|
||||
attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5
|
||||
attention_weights /= attention_weights.sum(-1, keepdim=True).sum(-2, keepdim=True)
|
||||
im2col_step = 2
|
||||
func = MSDeformAttnFunction.apply
|
||||
|
||||
value.requires_grad = grad_value
|
||||
sampling_locations.requires_grad = grad_sampling_loc
|
||||
attention_weights.requires_grad = grad_attn_weight
|
||||
|
||||
gradok = gradcheck(func, (value.double(), shapes, level_start_index, sampling_locations.double(), attention_weights.double(), im2col_step))
|
||||
|
||||
print(f'* {gradok} check_gradient_numerical(D={channels})')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
check_forward_equal_with_pytorch_double()
|
||||
check_forward_equal_with_pytorch_float()
|
||||
|
||||
for channels in [30, 32, 64, 71, 1025, 2048, 3096]:
|
||||
check_gradient_numerical(channels, True, True, True)
|
||||
|
||||
|
||||
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 1.0 MiB |
Reference in New Issue
Block a user