Merge branch 'main' of github.com:xlang-ai/OSWorld

This commit is contained in:
yuanmengqi
2025-07-17 11:15:53 +00:00
2 changed files with 1380 additions and 0 deletions

849
mm_agents/uitars15_agent.py Normal file
View File

@@ -0,0 +1,849 @@
import os
import re
import base64
import requests
from typing import Optional, Dict, List, Tuple
from loguru import logger
import ast
import base64
import math
import re
FINISH_WORD = "finished"
WAIT_WORD = "wait"
ENV_FAIL_WORD = "error_env"
CALL_USER = "call_user"
IMAGE_FACTOR = 28
MIN_PIXELS = 100 * 28 * 28
MAX_PIXELS = 16384 * 28 * 28
MAX_RATIO = 200
def convert_point_to_coordinates(text, is_answer=False):
# 匹配 <bbox> 后面的四个数字
pattern = r"<point>(\d+)\s+(\d+)</point>"
def replace_match(match):
x1, y1= map(int, match.groups())
x = (x1 + x1) // 2 # 使用截断取整
y = (y1 + y1) // 2 # 使用截断取整
if is_answer:
return f"({x},{y})" # 只返回 (x, y) 格式
return f"({x},{y})" # 返回带标签的格式
# 去掉 [EOS] 并替换 <bbox> 坐标
text = re.sub(r"\[EOS\]", "", text)
return re.sub(pattern, replace_match, text).strip()
# 定义一个函数来解析每个 action
def parse_action(action_str):
try:
# 解析字符串为 AST 节点
node = ast.parse(action_str, mode='eval')
# 确保节点是一个表达式
if not isinstance(node, ast.Expression):
raise ValueError("Not an expression")
# 获取表达式的主体
call = node.body
# 确保主体是一个函数调用
if not isinstance(call, ast.Call):
raise ValueError("Not a function call")
# 获取函数名
if isinstance(call.func, ast.Name):
func_name = call.func.id
elif isinstance(call.func, ast.Attribute):
func_name = call.func.attr
else:
func_name = None
# 获取关键字参数
kwargs = {}
for kw in call.keywords:
key = kw.arg
# 处理不同类型的值,这里假设都是常量
if isinstance(kw.value, ast.Constant):
value = kw.value.value
elif isinstance(kw.value, ast.Str): # 兼容旧版本 Python
value = kw.value.s
else:
value = None
kwargs[key] = value
return {
'function': func_name,
'args': kwargs
}
except Exception as e:
print(f"Failed to parse action '{action_str}': {e}")
return None
def escape_single_quotes(text):
# 匹配未转义的单引号(不匹配 \\'
pattern = r"(?<!\\)'"
return re.sub(pattern, r"\\'", text)
def round_by_factor(number: int, factor: int) -> int:
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
return round(number / factor) * factor
def ceil_by_factor(number: int, factor: int) -> int:
"""Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
return math.ceil(number / factor) * factor
def floor_by_factor(number: int, factor: int) -> int:
"""Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
return math.floor(number / factor) * factor
def linear_resize(
height: int, width: int, factor: int = IMAGE_FACTOR, min_pixels: int = MIN_PIXELS, max_pixels: int = MAX_PIXELS
) -> tuple[int, int]:
if width * height > max_pixels:
"""
如果图片超过/低于像素限制则计算一个缩放因子resize_factor使图片的像素数缩小到等于或小于max_pixels。这个缩放因子是通过开平方根计算的确保纵横比保持不变,这样原始的相对坐标可以不经转换直接复用
"""
resize_factor = math.sqrt(max_pixels / (width * height))
width, height = int(width * resize_factor), int(height * resize_factor)
if width * height < min_pixels:
resize_factor = math.sqrt(min_pixels / (width * height))
width, height = math.ceil(width * resize_factor), math.ceil(height * resize_factor)
return height, width
def smart_resize(
height: int, width: int, factor: int = IMAGE_FACTOR, min_pixels: int = MIN_PIXELS, max_pixels: int = MAX_PIXELS
) -> tuple[int, int]:
"""
Rescales the image so that the following conditions are met:
1. Both dimensions (height and width) are divisible by 'factor'.
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
3. The aspect ratio of the image is maintained as closely as possible.
"""
if max(height, width) / min(height, width) > MAX_RATIO:
raise ValueError(
f"absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(height, width) / min(height, width)}"
)
h_bar = max(factor, round_by_factor(height, factor))
w_bar = max(factor, round_by_factor(width, factor))
if h_bar * w_bar > max_pixels:
beta = math.sqrt((height * width) / max_pixels)
h_bar = floor_by_factor(height / beta, factor)
w_bar = floor_by_factor(width / beta, factor)
elif h_bar * w_bar < min_pixels:
beta = math.sqrt(min_pixels / (height * width))
h_bar = ceil_by_factor(height * beta, factor)
w_bar = ceil_by_factor(width * beta, factor)
return h_bar, w_bar
def parse_action_to_structure_output(text, factor, origin_resized_height, origin_resized_width, model_type="qwen25vl", max_pixels=16384*28*28, min_pixels=100*28*28):
text = text.strip()
if "<point>" in text:
text = convert_point_to_coordinates(text)
if "start_point=" in text:
text = text.replace("start_point=", "start_box=")
if "end_point=" in text:
text = text.replace("end_point=", "end_box=")
if "point=" in text:
text = text.replace("point=", "start_box=")
if model_type == "qwen25vl":
smart_resize_height, smart_resize_width = smart_resize(origin_resized_height, origin_resized_width, factor=IMAGE_FACTOR, min_pixels=min_pixels, max_pixels=max_pixels)
# 正则表达式匹配 Action 字符串
if text.startswith("Thought:"):
thought_pattern = r"Thought: (.+?)(?=\s*Action: |$)"
thought_hint = "Thought: "
elif text.startswith("Reflection:"):
thought_pattern = r"Reflection: (.+?)Action_Summary: (.+?)(?=\s*Action: |$)"
thought_hint = "Reflection: "
elif text.startswith("Action_Summary:"):
thought_pattern = r"Action_Summary: (.+?)(?=\s*Action: |$)"
thought_hint = "Action_Summary: "
else:
thought_pattern = r"Thought: (.+?)(?=\s*Action: |$)"
thought_hint = "Thought: "
reflection, thought = None, None
thought_match = re.search(thought_pattern, text, re.DOTALL)
if thought_match:
if len(thought_match.groups()) == 1:
thought = thought_match.group(1).strip()
elif len(thought_match.groups()) == 2:
thought = thought_match.group(2).strip()
reflection = thought_match.group(1).strip()
assert "Action:" in text
action_str = text.split("Action: ")[-1]
tmp_all_action = action_str.split("')\n\n")
all_action = []
for action_str in tmp_all_action:
if "type(content" in action_str:
# 正则表达式匹配 content 中的字符串并转义单引号
def escape_quotes(match):
content = match.group(1) # 获取 content 的值
return content
# 使用正则表达式进行替换
pattern = r"type\(content='(.*?)'\)" # 匹配 type(content='...')
content = re.sub(pattern, escape_quotes, action_str)
# 处理字符串
action_str = escape_single_quotes(content)
action_str = "type(content='" + action_str + "')"
all_action.append(action_str)
parsed_actions = [parse_action(action.replace("\n","\\n").lstrip()) for action in all_action]
actions = []
for action_instance, raw_str in zip(parsed_actions, all_action):
if action_instance == None:
print(f"Action can't parse: {raw_str}")
raise ValueError(f"Action can't parse: {raw_str}")
action_type = action_instance["function"]
params = action_instance["args"]
# import pdb; pdb.set_trace()
action_inputs = {}
for param_name, param in params.items():
if param == "": continue
param = param.lstrip() # 去掉引号和多余的空格
# 处理start_box或者end_box参数格式 '<bbox>x1 y1 x2 y2</bbox>'
action_inputs[param_name.strip()] = param
if "start_box" in param_name or "end_box" in param_name:
ori_box = param
# Remove parentheses and split the string by commas
numbers = ori_box.replace("(", "").replace(")", "").split(",")
# Convert to float and scale by 1000
# Qwen2.5vl output absolute coordinates, qwen2vl output relative coordinates
if model_type == "qwen25vl":
float_numbers = []
for num_idx, num in enumerate(numbers):
num = float(num)
if (num_idx + 1) % 2 == 0:
float_numbers.append(float(num/smart_resize_height))
else:
float_numbers.append(float(num/smart_resize_width))
else:
float_numbers = [float(num) / factor for num in numbers]
if len(float_numbers) == 2:
float_numbers = [float_numbers[0], float_numbers[1], float_numbers[0], float_numbers[1]]
action_inputs[param_name.strip()] = str(float_numbers)
# import pdb; pdb.set_trace()
actions.append({
"reflection": reflection,
"thought": thought,
"action_type": action_type,
"action_inputs": action_inputs,
"text": text
})
return actions
def parsing_response_to_pyautogui_code(responses, image_height: int, image_width:int, input_swap:bool=True, platform:str="Ubuntu") -> str:
'''
将M模型的输出解析为OSWorld中的action生成pyautogui代码字符串
参数:
response: 包含模型输出的字典,结构类似于:
{
"action_type": "hotkey",
"action_inputs": {
"hotkey": "v ctrl",
"start_box": None,
"end_box": None
}
}
返回:
生成的pyautogui代码字符串
'''
pyautogui_code = f"import pyautogui\nimport time\n"
if isinstance(responses, dict):
responses = [responses]
for response_id, response in enumerate(responses):
if "observation" in response:
observation = response["observation"]
else:
observation = ""
if "thought" in response:
thought = response["thought"]
else:
thought = ""
if response_id == 0:
pyautogui_code += f"'''\nObservation:\n{observation}\n\nThought:\n{thought}\n'''\n"
else:
pyautogui_code += f"\ntime.sleep(1)\n"
action_dict = response
action_type = action_dict.get("action_type")
action_inputs = action_dict.get("action_inputs", {})
if action_type == "hotkey":
# Parsing hotkey action
if "key" in action_inputs:
hotkey = action_inputs.get("key", "")
else:
hotkey = action_inputs.get("hotkey", "")
if hotkey == "arrowleft":
hotkey = "left"
elif hotkey == "arrowright":
hotkey = "right"
elif hotkey == "arrowup":
hotkey = "up"
elif hotkey == "arrowdown":
hotkey = "down"
if hotkey:
# Handle other hotkeys
keys = hotkey.split() # Split the keys by space
convert_keys = []
for key in keys:
if key == "space":
key = ' '
convert_keys.append(key)
pyautogui_code += f"\npyautogui.hotkey({', '.join([repr(k) for k in convert_keys])})"
elif action_type in ["press", "keydown"]:
# Parsing press action
if "key" in action_inputs:
key_to_press = action_inputs.get("key", "")
else:
key_to_press = action_inputs.get("press", "")
if key_to_press == "arrowleft":
key_to_press = "left"
elif key_to_press == "arrowright":
key_to_press = "right"
elif key_to_press == "arrowup":
key_to_press = "up"
elif key_to_press == "arrowdown":
key_to_press = "down"
elif key_to_press == "space":
key_to_press = " "
if key_to_press:
# Simulate pressing a single key
pyautogui_code += f"\npyautogui.keyDown({repr(key_to_press)})"
elif action_type in ["release", "keyup"]:
# Parsing press action
if "key" in action_inputs:
key_to_press = action_inputs.get("key", "")
else:
key_to_press = action_inputs.get("press", "")
if key_to_press == "arrowleft":
key_to_press = "left"
elif key_to_press == "arrowright":
key_to_press = "right"
elif key_to_press == "arrowup":
key_to_press = "up"
elif key_to_press == "arrowdown":
key_to_press = "down"
elif key_to_press == "space":
key_to_press = " "
if key_to_press:
# Simulate pressing a single key
pyautogui_code += f"\npyautogui.keyUp({repr(key_to_press)})"
elif action_type == "type":
# Parsing typing action using clipboard
content = action_inputs.get("content", "")
content = escape_single_quotes(content)
stripped_content = content
if content.endswith("\n") or content.endswith("\\n"):
stripped_content = stripped_content.rstrip("\\n").rstrip("\n")
if content:
if input_swap:
pyautogui_code += f"\nimport pyperclip"
pyautogui_code += f"\npyperclip.copy('{stripped_content}')"
pyautogui_code += f"\npyautogui.hotkey('ctrl', 'v')"
pyautogui_code += f"\ntime.sleep(0.5)\n"
if content.endswith("\n") or content.endswith("\\n"):
pyautogui_code += f"\npyautogui.press('enter')"
else:
pyautogui_code += f"\npyautogui.write('{stripped_content}', interval=0.1)"
pyautogui_code += f"\ntime.sleep(0.5)\n"
if content.endswith("\n") or content.endswith("\\n"):
pyautogui_code += f"\npyautogui.press('enter')"
elif action_type in ["drag", "select"]:
# Parsing drag or select action based on start and end_boxes
start_box = action_inputs.get("start_box")
end_box = action_inputs.get("end_box")
if start_box and end_box:
x1, y1, x2, y2 = eval(start_box) # Assuming box is in [x1, y1, x2, y2]
sx = round(float((x1 + x2) / 2) * image_width, 3)
sy = round(float((y1 + y2) / 2) * image_height, 3)
x1, y1, x2, y2 = eval(end_box) # Assuming box is in [x1, y1, x2, y2]
ex = round(float((x1 + x2) / 2) * image_width, 3)
ey = round(float((y1 + y2) / 2) * image_height, 3)
pyautogui_code += (
f"\npyautogui.moveTo({sx}, {sy})\n"
f"\npyautogui.dragTo({ex}, {ey}, duration=1.0)\n"
)
elif action_type == "scroll":
# Parsing scroll action
start_box = action_inputs.get("start_box")
if start_box:
x1, y1, x2, y2 = eval(start_box) # Assuming box is in [x1, y1, x2, y2]
x = round(float((x1 + x2) / 2) * image_width, 3)
y = round(float((y1 + y2) / 2) * image_height, 3)
# # 先点对应区域,再滚动
# pyautogui_code += f"\npyautogui.click({x}, {y}, button='left')"
else:
x = None
y = None
direction = action_inputs.get("direction", "")
if x == None:
if "up" in direction.lower():
if platform.lower() == "ubuntu":
pyautogui_code += f"\npyautogui.scroll(-5)"
elif platform.lower() == "windows":
pyautogui_code += f"\npyautogui.scroll(-50)"
elif "down" in direction.lower():
if platform.lower() == "ubuntu":
pyautogui_code += f"\npyautogui.scroll(5)"
elif platform.lower() == "windows":
pyautogui_code += f"\npyautogui.scroll(50)"
else:
if "up" in direction.lower():
if platform.lower() == "ubuntu":
pyautogui_code += f"\npyautogui.scroll(5, x={x}, y={y})"
elif platform.lower() == "windows":
pyautogui_code += f"\npyautogui.scroll(50, x={x}, y={y})"
elif "down" in direction.lower():
if platform.lower() == "ubuntu":
pyautogui_code += f"\npyautogui.scroll(-5, x={x}, y={y})"
elif platform.lower() == "windows":
pyautogui_code += f"\npyautogui.scroll(-50, x={x}, y={y})"
elif action_type in ["click", "left_single", "left_double", "right_single", "hover"]:
# Parsing mouse click actions
start_box = action_inputs.get("start_box")
start_box = str(start_box)
if start_box:
start_box = eval(start_box)
if len(start_box) == 4:
x1, y1, x2, y2 = start_box # Assuming box is in [x1, y1, x2, y2]
elif len(start_box) == 2:
x1, y1 = start_box
x2 = x1
y2 = y1
x = round(float((x1 + x2) / 2) * image_width, 3)
y = round(float((y1 + y2) / 2) * image_height, 3)
if action_type == "left_single" or action_type == "click":
pyautogui_code += f"\npyautogui.click({x}, {y}, button='left')"
elif action_type == "left_double":
pyautogui_code += f"\npyautogui.doubleClick({x}, {y}, button='left')"
elif action_type == "right_single":
pyautogui_code += f"\npyautogui.click({x}, {y}, button='right')"
elif action_type == "hover":
pyautogui_code += f"\npyautogui.moveTo({x}, {y})"
elif action_type in ["finished"]:
pyautogui_code = f"DONE"
else:
pyautogui_code += f"\n# Unrecognized action type: {action_type}"
return pyautogui_code
def add_box_token(input_string):
# Step 1: Split the string into individual actions
if "Action: " in input_string and "start_box=" in input_string:
suffix = input_string.split("Action: ")[0] + "Action: "
actions = input_string.split("Action: ")[1:]
processed_actions = []
for action in actions:
action = action.strip()
# Step 2: Extract coordinates (start_box or end_box) using regex
coordinates = re.findall(r"(start_box|end_box)='\((\d+),\s*(\d+)\)'", action)
updated_action = action # Start with the original action
for coord_type, x, y in coordinates:
# Convert x and y to integers
updated_action = updated_action.replace(f"{coord_type}='({x},{y})'", f"{coord_type}='<|box_start|>({x},{y})<|box_end|>'")
processed_actions.append(updated_action)
# Step 5: Reconstruct the final string
final_string = suffix + "\n\n".join(processed_actions)
else:
final_string = input_string
return final_string
COMPUTER_USE_DOUBAO = """You are a GUI agent. You are given a task and your action history, with screenshots. You need to perform the next action to complete the task.
## Output Format
You should first think about the reasoning process in the mind and then provide the user with the answer.
The reasoning process is enclosed within <think> </think> tags
After the <think> tags, you should place final answer, which concludes your summarized thought and your action.
For example,
```
<think>detailed reasoning content here</think>
Thought: a small plan and finally summarize your next action (with its target element) in one sentence
Action: ...
```
## Action Space
click(point='<point>x1 y1</point>')
left_double(point='<point>x1 y1</point>')
right_single(point='<point>x1 y1</point>')
drag(start_point='<point>x1 y1</point>', end_point='<point>x2 y2</point>')
hotkey(key='ctrl c') # Split keys with a space and use lowercase. Also, do not use more than 3 keys in one hotkey action.
type(content='xxx') # Use escape characters \\', \\\", and \\n in content part to ensure we can parse the content in normal python string format. If you want to submit your input, use \\n at the end of content.
scroll(point='<point>x1 y1</point>', direction='down or up or right or left') # Show more information on the `direction` side.
wait() #Sleep for 5s and take a screenshot to check for any changes.
finished(content='xxx') # Use escape characters \\', \\", and \\n in content part to ensure we can parse the content in normal python string format.
## Output Example
<think>Now that...</think>
Thought: Let's click ...
Action: click(point='<point>100 200</point>')
## Note
- Use {language} in `Thought` part.
- Write a small plan and finally summarize your next action (with its target element) in one sentence in `Thought` part.
- If you have executed several same actions (like repeatedly clicking the same point) but the screen keeps no change, please try to execute a modified action when necessary.
## User Instruction
{instruction}
"""
MOBILE_USE_DOUBAO = """You are a GUI agent. You are given a task and your action history, with screenshots. You need to perform the next action to complete the task.
## Output Format
```
Thought: ...
Action: ...
```
## Action Space
click(point='<point>x1 y1</point>')
long_press(point='<point>x1 y1</point>')
type(content='') #If you want to submit your input, use "\\n" at the end of `content`.
scroll(point='<point>x1 y1</point>', direction='down or up or right or left')
open_app(app_name=\'\')
drag(start_point='<point>x1 y1</point>', end_point='<point>x2 y2</point>')
press_home()
press_back()
finished(content='xxx') # Use escape characters \\', \\", and \\n in content part to ensure we can parse the content in normal python string format.
## Note
- Use {language} in `Thought` part.
- Write a small plan and finally summarize your next action (with its target element) in one sentence in `Thought` part.
## User Instruction
{instruction}
"""
GROUNDING_DOUBAO = """You are a GUI agent. You are given a task and your action history, with screenshots. You need to perform the next action to complete the task. \n\n## Output Format\n\nAction: ...\n\n\n## Action Space\nclick(point='<point>x1 y1</point>'')\n\n## User Instruction
{instruction}"""
class UITarsAgent:
"""
UI-TARS Agent based on Seed1.5-VL model implementation.
Integrates the GUI folder UI-TARS-1.5 implementation with the mm_agents architecture.
"""
def __init__(
self,
# Model settings
model: str,
# Generation settings
max_tokens: int,
top_p: Optional[float],
temperature: float,
# History settings
max_trajectory_length: Optional[int],
max_image_history_length: Optional[int], # UI-TARS uses history-5 logic
# Prompt settings
screenshot_pyautogui_prompt: str = "uitars_v1",
# Parse settings
which_parsed_actions: str = "all",
# Outside infos
max_steps: int = 100,
# UI-TARS specific settings
use_thinking: bool = True,
language: str = "Chinese",
):
"""
Initialize UI-TARS Agent.
Args:
model: Model name, defaults to doubao-1-5-thinking-vision-pro-250428
api_key: API key for the model service
base_url: Base URL for the API service
max_tokens: Maximum tokens to generate
top_p: Top-p sampling parameter
temperature: Temperature for sampling
max_trajectory_length: Maximum trajectory history length
max_image_history_length: Maximum image history length (UI-TARS uses 5)
screenshot_pyautogui_prompt: Prompt version
which_parsed_actions: Which actions to parse
max_steps: Maximum steps for the agent
use_thinking: Whether to use thinking mode
language: Language for responses
openai_client: OpenAI client instance
"""
self.model = model
self.max_trajectory_length = max_trajectory_length
self.logger = logger
self.language = language
self.thoughts = []
self.actions = []
self.observations = []
self.history_images = []
self.history_responses = []
self.system_prompt = COMPUTER_USE_DOUBAO
self.action_parse_res_factor = 1000
self.model_type = "doubao"
self.history_n = 5
self.top_p = top_p
self.temperature = temperature
self.max_tokens = max_tokens
self.platform = "ubuntu"
def reset(self, _logger=None):
global logger
logger = _logger if _logger is not None else logging.getLogger("desktopenv.agent")
self.thoughts = []
self.actions = []
self.observations = []
self.history_images = []
self.history_responses = []
def pretty_print_messages(self, messages):
"""Pretty print messages while hiding base64 encoded images."""
def format_message(msg):
if not isinstance(msg, dict):
return str(msg)
formatted = {}
for key, value in msg.items():
if key == "content":
if isinstance(value, list):
formatted_content = []
for item in value:
if isinstance(item, dict) and "type" in item:
if item["type"] == "image_url" and "image_url" in item:
# Replace base64 image with placeholder
formatted_content.append({
"type": "image_url",
"image_url": {"url": "[BASE64_IMAGE_DATA]"}
})
else:
formatted_content.append(item)
else:
formatted_content.append(item)
formatted[key] = formatted_content
else:
formatted[key] = value
else:
formatted[key] = value
return formatted
if isinstance(messages, list):
return [format_message(msg) for msg in messages]
return format_message(messages)
def inference_with_thinking(self, messages):
api_key = os.environ['DOUBAO_API_KEY']
api_url = os.environ['DOUBAO_API_URL']
headers = {
'Authorization': f'Bearer {api_key}',
'Content-Type': 'application/json'
}
data = {
"model": self.model,
"messages": messages,
"thinking": {"type": "enabled"},
"max_tokens": self.max_tokens,
"top_p": self.top_p,
"temperature": self.temperature,
}
response = requests.post(api_url, headers=headers, json=data)
print(response.json()["choices"][0])
if response.status_code == 200:
return response.json()["choices"][0]["message"]["content"]
else:
return {
"error": f"Request failed with status code {response.status_code}",
"details": response.text
}
def predict(self, task_instruction: str, obs: dict) -> Tuple[str, List]:
"""Predict the next action based on the current observation."""
self.task_instruction = task_instruction
assert len(self.observations) == len(self.actions) and len(self.actions) == len(
self.thoughts
), "The number of observations and actions should be the same."
# Convert binary screenshot to base64 if needed
screenshot = obs["screenshot"]
if isinstance(screenshot, bytes):
screenshot = base64.b64encode(screenshot).decode('utf-8')
self.history_images.append(screenshot)
self.observations.append(
{"screenshot": screenshot, "accessibility_tree": None}
)
if len(self.history_images) > self.history_n:
self.history_images = self.history_images[-self.history_n:]
images = self.history_images
messages = [
{
"role": "user",
"content": [{"type": "text", "text": self.system_prompt.format(
instruction=task_instruction,
language=self.language
)}]
}
]
image_num = 0
if len(self.history_responses) > 0:
for history_idx, history_response in enumerate(self.history_responses):
# send at most history_n images to the model
if history_idx + self.history_n > len(self.history_responses):
messages.append({
"role": "user",
"content": [{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{images[image_num]}"}}]
})
image_num += 1
messages.append({
"role": "assistant",
"content": history_response
})
messages.append({
"role": "user",
"content": [{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{images[image_num]}"}}]
})
image_num += 1
else:
messages.append({
"role": "user",
"content": [{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{images[image_num]}"}}]
})
image_num += 1
try_times = 3
origin_resized_height = 1080
origin_resized_width = 1920
prediction = None
while True:
if try_times <= 0:
self.logger.error(f"Reach max retry times to fetch response from client, as error flag.")
return prediction, ["FAIL"]
try:
logger.info(f"Messages: {self.pretty_print_messages(messages[-1])}")
prediction = self.inference_with_thinking(messages)
except Exception as e:
self.logger.error(f"Error when fetching response from client, with error:\n{e}")
prediction = None
try_times -= 1
try:
parsed_dict = parse_action_to_structure_output(prediction, self.action_parse_res_factor, origin_resized_height, origin_resized_width, self.model_type)
parsed_pyautogui_code = parsing_response_to_pyautogui_code(parsed_dict, origin_resized_height, origin_resized_width, platform=self.platform)
break
except Exception as e:
self.logger.error(f"Error when parsing response from client, with error:\n{e}")
prediction = None
try_times -= 1
self.history_responses.append(prediction)
try:
parsed_dict = parse_action_to_structure_output(prediction, self.action_parse_res_factor, origin_resized_height, origin_resized_width, self.model_type)
parsed_pyautogui_code = parsing_response_to_pyautogui_code(parsed_dict, origin_resized_height, origin_resized_width, platform=self.platform)
except Exception as e:
self.logger.error(f"Parsing action error: {prediction}, with error:\n{e}")
return prediction, ["FAIL"]
thoughts = ""
for parsed_response in parsed_dict:
if "thought" in parsed_response and parsed_response["thought"]:
thoughts += parsed_response["thought"]
if thoughts:
self.thoughts.append(thoughts)
for parsed_response in parsed_dict:
if "action_type" in parsed_response:
if parsed_response["action_type"] == FINISH_WORD:
self.actions.append(["DONE"])
return prediction, ["DONE"]
elif parsed_response["action_type"] == WAIT_WORD:
self.actions.append(["WAIT"])
return prediction, ["WAIT"]
elif parsed_response["action_type"] == ENV_FAIL_WORD:
self.actions.append(["FAIL"])
return prediction, ["FAIL"]
self.actions.append([parsed_pyautogui_code])
return prediction, [parsed_pyautogui_code]

531
run_multienv_uitars15.py Normal file
View File

@@ -0,0 +1,531 @@
from __future__ import annotations
import argparse
import datetime
import json
import logging
import os
import sys
import signal
import time
from typing import List, Dict
import math
from tqdm import tqdm
from multiprocessing import Process, Manager
import lib_run_single
from desktop_env.desktop_env import DesktopEnv
from mm_agents.uitars15_agent import UITarsAgent
# Global variables for signal handling
active_environments = []
processes = []
is_terminating = False
# load the environment variables from .env file
if os.path.exists(".env"):
from dotenv import load_dotenv
load_dotenv()
# Logger Configs {{{ #
def config() -> argparse.Namespace:
parser = argparse.ArgumentParser(
description="Run end-to-end evaluation on the benchmark"
)
# environment config
parser.add_argument("--path_to_vm", type=str, default=None)
parser.add_argument(
"--headless", action="store_true", help="Run in headless machine"
)
parser.add_argument(
"--action_space", type=str, default="pyautogui", help="Action type"
)
parser.add_argument(
"--observation_type",
choices=["screenshot", "a11y_tree", "screenshot_a11y_tree", "som"],
default="screenshot",
help="Observation type",
)
parser.add_argument("--sleep_after_execution", type=float, default=0)
parser.add_argument("--max_steps", type=int, default=15)
# evaluation config
parser.add_argument(
"--test_config_base_dir", type=str, default="evaluation_examples"
)
# lm config
parser.add_argument("--model", type=str, default="doubao-1-5-thinking-vision-pro-250428")
parser.add_argument("--temperature", type=float, default=0)
parser.add_argument("--top_p", type=float, default=None)
parser.add_argument("--max_tokens", type=int, default=3000)
# OpenCUAagent config
parser.add_argument("--max_trajectory_length", type=int, default=None, help="The max number of trajectory steps.")
parser.add_argument("--max_image_history_length", type=int, default=5, help="The max number of images in the history.")
parser.add_argument("--language", type=str, default="Chinese", help="Language for the agent.")
# example config
parser.add_argument("--domain", type=str, default="all")
parser.add_argument(
"--test_all_meta_path", type=str, default="evaluation_examples/test_all.json"
)
# logging related
parser.add_argument("--result_dir", type=str, default="./results")
parser.add_argument("--num_envs", type=int, default=1, help="Number of environments to run in parallel")
parser.add_argument("--log_level", type=str, choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'],
default='INFO', help="Set the logging level")
# aws config
parser.add_argument(
"--region", type=str, default="us-east-1", help="AWS region for the VM"
)
parser.add_argument(
"--provider_name", type=str, default="aws", choices=["aws", "virtualbox", "vmware", "docker", "azure"], help="Provider name"
)
parser.add_argument(
"--client_password", type=str, default="", help="Client password"
)
parser.add_argument(
"--screen_width", type=int, default=1920, help="Screen width"
)
parser.add_argument(
"--screen_height", type=int, default=1080, help="Screen height"
)
args = parser.parse_args()
return args
args = config() # Get command line arguments first
logger = logging.getLogger()
log_level = getattr(logging, args.log_level.upper())
logger.setLevel(log_level)
datetime_str: str = datetime.datetime.now().strftime("%Y%m%d@%H%M%S")
file_handler = logging.FileHandler(
os.path.join("logs", "normal-{:}.log".format(datetime_str)), encoding="utf-8"
)
debug_handler = logging.FileHandler(
os.path.join("logs", "debug-{:}.log".format(datetime_str)), encoding="utf-8"
)
stdout_handler = logging.StreamHandler(sys.stdout)
file_handler.setLevel(logging.INFO)
debug_handler.setLevel(logging.DEBUG)
stdout_handler.setLevel(log_level)
formatter = logging.Formatter(
fmt="\x1b[1;33m[%(asctime)s \x1b[31m%(levelname)s \x1b[32m%(module)s/%(lineno)d-%(processName)s\x1b[1;33m] \x1b[0m%(message)s"
)
file_handler.setFormatter(formatter)
debug_handler.setFormatter(formatter)
stdout_handler.setFormatter(formatter)
stdout_handler.addFilter(logging.Filter("desktopenv"))
logger.addHandler(file_handler)
logger.addHandler(debug_handler)
logger.addHandler(stdout_handler)
# }}} Logger Configs #
logger = logging.getLogger("desktopenv.experiment")
def distribute_tasks(test_all_meta: dict, num_envs: int) -> List[Dict]:
"""Distribute tasks evenly across environments."""
# Flatten the tasks into a single list
all_tasks = []
for domain, examples in test_all_meta.items():
for example_id in examples:
all_tasks.append((domain, example_id))
# Calculate tasks per environment
tasks_per_env = math.ceil(len(all_tasks) / num_envs)
# Distribute tasks
distributed_tasks = []
for i in range(num_envs):
env_tasks = {}
start_idx = i * tasks_per_env
end_idx = min((i + 1) * tasks_per_env, len(all_tasks))
for domain, example_id in all_tasks[start_idx:end_idx]:
if domain not in env_tasks:
env_tasks[domain] = []
env_tasks[domain].append(example_id)
distributed_tasks.append(env_tasks)
return distributed_tasks
def process_signal_handler(signum, frame, env_idx):
"""Signal handler for child processes to gracefully shut down their environments."""
logger.info(f"Process {env_idx + 1} received signal {signum}. Shutting down...")
# Get the active_environments from the caller's frame
local_vars = frame.f_locals
active_environments = local_vars.get('active_environments', [])
# Close environment in the current process context
for env in active_environments:
if env is not None:
try:
logger.info(f"Process {env_idx + 1} closing environment...")
env.close()
logger.info(f"Process {env_idx + 1} environment closed successfully")
except Exception as e:
logger.error(f"Process {env_idx + 1} error closing environment: {e}")
logger.info(f"Process {env_idx + 1} shutdown complete. Exiting.")
sys.exit(0)
def run_env_tasks(env_idx: int, env_tasks: dict, args: argparse.Namespace, shared_scores: list):
"""Run tasks for a single environment."""
# Each process has its own list of active environments
active_environments = []
env = None
# Setup signal handlers for this process too
signal.signal(signal.SIGINT, lambda signum, frame: process_signal_handler(signum, frame, env_idx))
signal.signal(signal.SIGTERM, lambda signum, frame: process_signal_handler(signum, frame, env_idx))
from desktop_env.providers.aws.manager import IMAGE_ID_MAP
REGION = args.region
screen_size = (args.screen_width, args.screen_height)
ami_id = IMAGE_ID_MAP[REGION].get(screen_size, IMAGE_ID_MAP[REGION][(1920, 1080)])
env = DesktopEnv(
path_to_vm=args.path_to_vm,
action_space=args.action_space,
provider_name=args.provider_name,
region=REGION,
snapshot_name=ami_id,
screen_size=screen_size,
headless=args.headless,
os_type="Ubuntu",
require_a11y_tree=args.observation_type in ["a11y_tree", "screenshot_a11y_tree", "som"],
enable_proxy=True,
client_password=args.client_password
)
active_environments.append(env)
agent = UITarsAgent(
model=args.model,
max_tokens=args.max_tokens,
top_p=args.top_p,
temperature=args.temperature,
max_trajectory_length=args.max_trajectory_length,
max_image_history_length=args.max_image_history_length,
use_thinking=True,
language=args.language,
)
logger.info(f"Executing tasks in environment {env_idx + 1}/{args.num_envs}")
try:
for domain in tqdm(env_tasks, desc=f"Env{env_idx+1}-Domain"):
for example_id in tqdm(env_tasks[domain], desc="Example", leave=False):
config_file = os.path.join(
args.test_config_base_dir, f"examples/{domain}/{example_id}.json"
)
with open(config_file, "r", encoding="utf-8") as f:
example = json.load(f)
logger.info(f"[Env {env_idx+1}][Domain]: {domain}")
logger.info(f"[Env {env_idx+1}][Example ID]: {example_id}")
logger.info(f"[Env {env_idx+1}][Instruction]: {example['instruction']}")
example_result_dir = os.path.join(
args.result_dir,
args.action_space,
args.observation_type,
args.model,
domain,
example_id,
)
os.makedirs(example_result_dir, exist_ok=True)
try:
lib_run_single.run_single_example(
agent,
env,
example,
args.max_steps,
example["instruction"],
args,
example_result_dir,
shared_scores,
)
except Exception as e:
import traceback
logger.error(f"Exception in Env{env_idx+1} {domain}/{example_id}: {e}")
logger.error(traceback.format_exc())
try:
env.controller.end_recording(
os.path.join(example_result_dir, "recording.mp4")
)
except Exception as rec_e:
logger.error(f"Failed to end recording: {rec_e}")
with open(os.path.join(example_result_dir, "traj.jsonl"), "a") as f:
f.write(
json.dumps(
{"Error": f"{domain}/{example_id} - {e}"}
)
)
f.write("\n")
finally:
# This ensures the environment is closed even if there's an exception
logger.info(f"Process {env_idx + 1} cleaning up environment...")
try:
env.close()
logger.info(f"Process {env_idx + 1} environment closed successfully")
except Exception as e:
logger.error(f"Process {env_idx + 1} error during environment cleanup: {e}")
def signal_handler(signum, frame):
"""Handle termination signals (SIGINT, SIGTERM) to gracefully shutdown environments."""
global is_terminating, active_environments, processes
# Avoid duplicate handling
if is_terminating:
return
is_terminating = True
logger.info(f"Received signal {signum}. Gracefully shutting down...")
# Close all registered environments in the main process
for env in active_environments:
try:
logger.info(f"Closing environment...")
env.close()
logger.info(f"Environment closed successfully")
except Exception as e:
logger.error(f"Error closing environment: {e}")
# Send termination signal to all child processes first
for p in processes:
if p.is_alive():
try:
logger.info(f"Sending termination signal to process {p.name}...")
p.terminate()
except Exception as e:
logger.error(f"Error sending termination signal to process: {e}")
# Allow a short time for processes to handle their own cleanup
time.sleep(1)
# Forcefully terminate any processes that didn't exit
for p in processes:
if p.is_alive():
try:
logger.info(f"Forcefully terminating process {p.name}...")
import signal
os.kill(p.pid, signal.SIGKILL)
except Exception as e:
logger.error(f"Error forcefully terminating process: {e}")
logger.info("Shutdown complete. Exiting.")
sys.exit(0)
def test(args: argparse.Namespace, test_all_meta: dict) -> None:
global processes
logger.info("Args: %s", args)
distributed_tasks = distribute_tasks(test_all_meta, args.num_envs)
logger.info("All environments are ready. Starting parallel task execution...")
# Create a shared list for scores across processes
with Manager() as manager:
shared_scores = manager.list()
# Create and start processes for each environment
processes = []
for env_idx, env_tasks in enumerate(distributed_tasks):
p = Process(
target=run_env_tasks,
args=(env_idx, env_tasks, args, shared_scores)
)
processes.append(p)
p.start()
logger.info(f"Started process {p.name} with PID {p.pid}")
try:
# Wait for all processes to complete
for p in processes:
p.join()
logger.info(f"Process {p.name} completed")
except KeyboardInterrupt:
logger.info("Main process received KeyboardInterrupt. Initiating graceful shutdown...")
# Let the signal handler do the cleanup
raise
except Exception as e:
logger.error(f"Unexpected error while waiting for processes: {e}", exc_info=True)
# Ensure cleanup happens
for p in processes:
if p.is_alive():
try:
logger.info(f"Terminating process {p.name} due to error...")
p.terminate()
except Exception as term_e:
logger.error(f"Error terminating process {p.name}: {term_e}")
raise
# Convert shared list to regular list
scores = list(shared_scores)
logger.info(f"Average score: {sum(scores) / len(scores) if scores else 0}")
def get_unfinished(
action_space, use_model, observation_type, result_dir, total_file_json
):
target_dir = os.path.join(result_dir, action_space, observation_type, use_model)
if not os.path.exists(target_dir):
return total_file_json
finished = {}
for domain in os.listdir(target_dir):
finished[domain] = []
domain_path = os.path.join(target_dir, domain)
if os.path.isdir(domain_path):
for example_id in os.listdir(domain_path):
if example_id == "onboard":
continue
example_path = os.path.join(domain_path, example_id)
if os.path.isdir(example_path):
if "result.txt" not in os.listdir(example_path):
# empty all files under example_id
for file in os.listdir(example_path):
os.remove(os.path.join(example_path, file))
else:
finished[domain].append(example_id)
if not finished:
return total_file_json
for domain, examples in finished.items():
if domain in total_file_json:
total_file_json[domain] = [
x for x in total_file_json[domain] if x not in examples
]
return total_file_json
def get_result(action_space, use_model, observation_type, result_dir, total_file_json):
target_dir = os.path.join(result_dir, action_space, observation_type, use_model)
if not os.path.exists(target_dir):
print("New experiment, no result yet.")
return None
all_result = []
for domain in os.listdir(target_dir):
domain_path = os.path.join(target_dir, domain)
if os.path.isdir(domain_path):
for example_id in os.listdir(domain_path):
example_path = os.path.join(domain_path, example_id)
if os.path.isdir(example_path):
if "result.txt" in os.listdir(example_path):
# empty all files under example_id
try:
all_result.append(
float(
open(
os.path.join(example_path, "result.txt"), "r"
).read()
)
)
except:
all_result.append(0.0)
if not all_result:
print("New experiment, no result yet.")
return None
else:
print("Current Success Rate:", sum(all_result) / len(all_result) * 100, "%")
return all_result
if __name__ == "__main__":
####### The complete version of the list of examples #######
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Register signal handlers for graceful termination
signal.signal(signal.SIGINT, signal_handler) # Handle Ctrl+C
signal.signal(signal.SIGTERM, signal_handler) # Handle termination signal
try:
args = config()
with open(args.test_all_meta_path, "r", encoding="utf-8") as f:
test_all_meta = json.load(f)
if args.domain != "all":
test_all_meta = {args.domain: test_all_meta[args.domain]}
test_file_list = get_unfinished(
args.action_space,
args.model,
args.observation_type,
args.result_dir,
test_all_meta,
)
left_info = ""
for domain in test_file_list:
left_info += f"{domain}: {len(test_file_list[domain])}\n"
logger.info(f"Left tasks:\n{left_info}")
get_result(
args.action_space,
args.model,
args.observation_type,
args.result_dir,
test_all_meta,
)
test(args, test_file_list)
except KeyboardInterrupt:
logger.info("Main process received KeyboardInterrupt.")
# Signal handler will take care of cleanup
except Exception as e:
logger.error(f"Unexpected error in main process: {e}", exc_info=True)
# Also trigger cleanup for unhandled exceptions
signal_handler(signal.SIGTERM, None)
finally:
# Final cleanup in case any environments or processes remain
logger.info("Main process final cleanup...")
for env in active_environments:
if env is not None:
try:
logger.info(f"Closing environment in final cleanup...")
env.close()
logger.info(f"Environment closed successfully in final cleanup")
except Exception as e:
logger.error(f"Error during final environment cleanup: {e}")
# First try gentle termination
for p in processes:
if p is not None and p.is_alive():
try:
logger.info(f"Terminating process {p.name}...")
p.terminate()
except Exception as e:
logger.error(f"Error terminating process: {e}")
# Wait a moment for processes to terminate
time.sleep(1)
# Then force kill if needed
for p in processes:
if p is not None and p.is_alive():
try:
logger.info(f"Force killing process {p.name}...")
os.kill(p.pid, signal.SIGKILL)
logger.info(f"Process {p.name} force killed")
except Exception as e:
logger.error(f"Error force killing process: {e}")