This commit is contained in:
rhythmcao
2024-03-15 22:09:44 +08:00
6 changed files with 198 additions and 83 deletions

19
.vscode/launch.json vendored Normal file
View File

@@ -0,0 +1,19 @@
{
// Use IntelliSense to learn about possible attributes.
// Hover to view descriptions of existing attributes.
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
"version": "0.2.0",
"configurations": [
{
"name": "Python Debugger: Current File with Arguments",
"type": "debugpy",
"request": "launch",
"program": "${file}",
"console": "integratedTerminal",
"args": [
"--path_to_vm", "/Users/lxc/Virtual Machines.localized/DesktopEnv-Ubuntu 64-bit Arm.vmwarevm/DesktopEnv-Ubuntu 64-bit Arm.vmx",
"--example_time_limit", "60"
]
}
]
}

View File

@@ -21,10 +21,12 @@
Please refer to [guidance](https://docs.google.com/document/d/1KBdeZwmZs2Vi_Wsnngb3Wf1-RiwMMpXTftwMqP2Ztak/edit#heading=h.uh0x0tkl7fuw)
2. Install the environment package, download the examples and the virtual machine image.
For x86_64 Linux or Windows, you can install the environment package and download the examples and the virtual machine image by running the following commands:
```bash
pip install desktop-env
gdown xxxx
gdown xxxx
vmrun -T ws start "Ubuntu/Ubuntu.vmx" nogui
vmrun -T ws snapshot "Ubuntu/Ubuntu.vmx" "init_state"
```
## Quick Start

16
demo.py Normal file
View File

@@ -0,0 +1,16 @@
import signal
import time
def handler(signo, frame):
raise RuntimeError("Timeout")
signal.signal(signal.SIGALRM, handler)
while True:
try:
signal.alarm(5) # seconds
time.sleep(10)
print("Working...")
except Exception as e :
print(e)
continue

View File

@@ -0,0 +1,19 @@
import pandas as pd
file_path = "/Users/lxc/Downloads/Speedtest.csv"
# 找到csv第二行的第二个数据格里的值
# with open(file_path, "r") as f:
# for i, line in enumerate(f):
# if i == 1:
# data = line.split(",")[1]
# break
# print(data)
with open(file_path, "r") as f:
reader = pd.read_csv(f, sep=',', header=None)
# for column in reader.columns:
# if column.startswith("TEST_DATE"):
# data_col = column
# break
for data in reader['TEST_DATE']:
print(data)

View File

@@ -5,21 +5,17 @@ import os
import re
import time
import uuid
import openai
import xml.etree.ElementTree as ET
from http import HTTPStatus
from io import BytesIO
from typing import Dict, List
from google.api_core.exceptions import InvalidArgument
import backoff
import dashscope
import google.generativeai as genai
import requests
from PIL import Image
from vertexai.preview.generative_models import (
HarmBlockThreshold,
HarmCategory,
Image,
)
from mm_agents.accessibility_tree_wrap.heuristic_retrieve import find_leaf_nodes, filter_nodes, draw_bounding_boxes
from mm_agents.prompts import SYS_PROMPT_IN_SCREENSHOT_OUT_CODE, SYS_PROMPT_IN_SCREENSHOT_OUT_ACTION, \
@@ -43,7 +39,7 @@ def linearize_accessibility_tree(accessibility_tree):
# leaf_nodes = find_leaf_nodes(accessibility_tree)
filtered_nodes = filter_nodes(ET.fromstring(accessibility_tree))
linearized_accessibility_tree = "tag\tname\ttext\tposition\tsize\n"
linearized_accessibility_tree = "tag\tname\ttext\tposition (top-left x&y)\tsize (w&h)\n"
# Linearize the accessibility tree nodes into a table format
for node in filtered_nodes:
@@ -205,7 +201,7 @@ class PromptAgent:
self.system_message = SYS_PROMPT_IN_A11Y_OUT_CODE
else:
raise ValueError("Invalid action space: " + action_space)
elif observation_type == "both":
elif observation_type == "screenshot_a11y_tree":
if action_space == "computer_13":
self.system_message = SYS_PROMPT_IN_BOTH_OUT_ACTION
elif action_space == "pyautogui":
@@ -233,8 +229,7 @@ class PromptAgent:
"""
Predict the next action(s) based on the current observation.
"""
self.system_message = self.system_message + "\nYou are asked to complete the following task: {}".format(
instruction)
system_message = self.system_message + "\nYou are asked to complete the following task: {}".format(instruction)
# Prepare the payload for the API call
messages = []
@@ -245,7 +240,7 @@ class PromptAgent:
"content": [
{
"type": "text",
"text": self.system_message
"text": system_message
},
]
})
@@ -266,7 +261,7 @@ class PromptAgent:
for previous_obs, previous_action, previous_thought in zip(_observations, _actions, _thoughts):
# {{{1
if self.observation_type == "both":
if self.observation_type == "screenshot_a11y_tree":
_screenshot = previous_obs["screenshot"]
_linearized_accessibility_tree = previous_obs["accessibility_tree"]
logger.debug("LINEAR AT: %s", _linearized_accessibility_tree)
@@ -356,11 +351,11 @@ class PromptAgent:
})
# {{{1
if self.observation_type in ["screenshot", "both"]:
if self.observation_type in ["screenshot", "screenshot_a11y_tree"]:
base64_image = encode_image(obs["screenshot"])
linearized_accessibility_tree = linearize_accessibility_tree(accessibility_tree=obs["accessibility_tree"])
if self.observation_type == "both":
if self.observation_type == "screenshot_a11y_tree":
self.observations.append({
"screenshot": base64_image,
"accessibility_tree": linearized_accessibility_tree
@@ -473,7 +468,9 @@ class PromptAgent:
response = self.call_llm({
"model": self.model,
"messages": messages,
"max_tokens": self.max_tokens
"max_tokens": self.max_tokens,
"top_p": self.top_p,
"temperature": self.temperature
})
logger.info("RESPONSE: %s", response)
@@ -513,7 +510,7 @@ class PromptAgent:
try:
actions = self.parse_actions(response, masks)
self.thoughts.append(response)
except Exception as e:
except ValueError as e:
print("Failed to parse action from response", e)
actions = None
self.thoughts.append("")
@@ -522,9 +519,16 @@ class PromptAgent:
@backoff.on_exception(
backoff.expo,
(Exception),
# here you should add more model exceptions as you want,
# but you are forbidden to add "Exception", that is, a common type of exception
# because we want to catch this kind of Exception in the outside to ensure each example won't exceed the time limit
(openai.RateLimitError,
openai.BadRequestError,
openai.InternalServerError,
InvalidArgument),
max_tries=5
)
def call_llm(self, payload):
if self.model.startswith("gpt"):
@@ -532,7 +536,7 @@ class PromptAgent:
"Content-Type": "application/json",
"Authorization": f"Bearer {os.environ['OPENAI_API_KEY']}"
}
logger.info("Generating content with GPT model: %s", self.model)
# logger.info("Generating content with GPT model: %s", self.model)
response = requests.post(
"https://api.openai.com/v1/chat/completions",
headers=headers,
@@ -542,14 +546,14 @@ class PromptAgent:
if response.status_code != 200:
if response.json()['error']['code'] == "context_length_exceeded":
logger.error("Context length exceeded. Retrying with a smaller context.")
payload["messages"] = payload["messages"][-1:]
payload["messages"] = [payload["messages"][0]] + payload["messages"][-1:]
retry_response = requests.post(
"https://api.openai.com/v1/chat/completions",
headers=headers,
json=payload
)
if retry_response.status_code != 200:
logger.error("Failed to call LLM: " + retry_response.text)
logger.error("Failed to call LLM even after attempt on shortening the history: " + retry_response.text)
return ""
logger.error("Failed to call LLM: " + response.text)
@@ -656,8 +660,9 @@ class PromptAgent:
for message in gemini_messages:
message_history_str += "<|" + message['role'] + "|>\n" + message['parts'][0] + "\n"
gemini_messages = [{"role": "user", "parts": [message_history_str, gemini_messages[-1]['parts'][1]]}]
# gemini_messages[-1]['parts'][1].save("output.png", "PNG")
print(gemini_messages)
# print(gemini_messages)
api_key = os.environ.get("GENAI_API_KEY")
assert api_key is not None, "Please set the GENAI_API_KEY environment variable"
genai.configure(api_key=api_key)
@@ -671,11 +676,10 @@ class PromptAgent:
"temperature": temperature
},
safety_settings={
HarmCategory.HARM_CATEGORY_UNSPECIFIED: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE,
"harassment": "block_none",
"hate": "block_none",
"sex": "block_none",
"danger": "block_none"
}
)
@@ -726,7 +730,7 @@ class PromptAgent:
def parse_actions(self, response: str, masks=None):
if self.observation_type in ["screenshot", "a11y_tree", "both"]:
if self.observation_type in ["screenshot", "a11y_tree", "screenshot_a11y_tree"]:
# parse from the response
if self.action_space == "computer_13":
actions = parse_actions_from_string(response)

165
run.py
View File

@@ -6,6 +6,7 @@ import datetime
import json
import logging
import os
import signal
import sys
from desktop_env.envs.desktop_env import DesktopEnv
@@ -46,6 +47,14 @@ logger.addHandler(sdebug_handler)
logger = logging.getLogger("desktopenv.experiment")
# make sure each example won't exceed the time limit
def handler(signo, frame):
raise RuntimeError("Time limit exceeded!")
signal.signal(signal.SIGALRM, handler)
def config() -> argparse.Namespace:
parser = argparse.ArgumentParser(
description="Run end-to-end evaluation on the benchmark"
@@ -66,7 +75,7 @@ def config() -> argparse.Namespace:
"screenshot_a11y_tree",
"som"
],
default="a11y_tree",
default="som",
help="Observation type",
)
parser.add_argument("--screen_width", type=int, default=1920)
@@ -77,6 +86,7 @@ def config() -> argparse.Namespace:
# agent config
parser.add_argument("--max_trajectory_length", type=int, default=3)
parser.add_argument("--test_config_base_dir", type=str, default="evaluation_examples")
parser.add_argument("--example_time_limit", type=int, default=600)
# lm config
parser.add_argument("--model", type=str, default="gpt-4-vision-preview")
@@ -98,6 +108,7 @@ def test(
) -> None:
scores = []
max_steps = args.max_steps
time_limit = args.example_time_limit
# log args
logger.info("Args: %s", args)
@@ -119,6 +130,7 @@ def test(
for domain in test_all_meta:
for example_id in test_all_meta[domain]:
# example setting
config_file = os.path.join(args.test_config_base_dir, f"examples/{domain}/{example_id}.json")
with open(config_file, "r", encoding="utf-8") as f:
example = json.load(f)
@@ -140,68 +152,102 @@ def test(
)
os.makedirs(example_result_dir, exist_ok=True)
agent.reset()
obs = env.reset(task_config=example)
done = False
step_idx = 0
env.controller.start_recording()
# example start running
try:
signal.alarm(time_limit)
agent.reset()
obs = env.reset(task_config=example)
done = False
step_idx = 0
env.controller.start_recording()
while not done and step_idx < max_steps:
actions = agent.predict(
instruction,
obs
)
while not done and step_idx < max_steps:
actions = agent.predict(
instruction,
obs
)
for action in actions:
# Capture the timestamp before executing the action
action_timestamp = datetime.datetime.now().strftime("%Y%m%d@%H%M%S")
logger.info("Step %d: %s", step_idx + 1, action)
for action in actions:
obs, reward, done, info = env.step(action, args.sleep_after_execution)
logger.info("Reward: %.2f", reward)
logger.info("Done: %s", done)
logger.info("Info: %s", info)
# Save screenshot and trajectory information
with open(os.path.join(example_result_dir, f"step_{step_idx + 1}_{action_timestamp}.png"),
"wb") as _f:
with open(obs['screenshot'], "rb") as __f:
screenshot = __f.read()
_f.write(screenshot)
with open(os.path.join(example_result_dir, "traj.jsonl"), "a") as f:
f.write(json.dumps({
"step_num": step_idx + 1,
"action_timestamp": action_timestamp,
"action": action,
"reward": reward,
"done": done,
"info": info,
"screenshot_file": f"step_{step_idx + 1}_{action_timestamp}.png"
}))
f.write("\n")
if done:
logger.info("The episode is done.")
break
step_idx += 1
# Capture the timestamp before executing the action
action_timestamp = datetime.datetime.now().strftime("%Y%m%d@%H%M%S")
logger.info("Step %d: %s", step_idx + 1, action)
observation, reward, done, info = env.step(action, args.sleep_after_execution)
logger.info("Reward: %.2f", reward)
logger.info("Done: %s", done)
logger.info("Info: %s", info)
# Save screenshot and trajectory information
with open(os.path.join(example_result_dir, f"step_{step_idx + 1}_{action_timestamp}.png"),
"wb") as _f:
with open(observation['screenshot'], "rb") as __f:
screenshot = __f.read()
_f.write(screenshot)
with open(os.path.join(example_result_dir, "traj.json"), "a") as f:
result = env.evaluate()
logger.info("Result: %.2f", result)
scores.append(result)
env.controller.end_recording(os.path.join(example_result_dir, "recording.mp4"))
except RuntimeError as e:
logger.error(f"Error in example {domain}/{example_id}: {e}")
# save info of this example and then continue
try:
env.controller.end_recording(os.path.join(example_result_dir, "recording.mp4"))
with open(os.path.join(example_result_dir, "traj.jsonl"), "a") as f:
f.write(json.dumps({
"step_num": step_idx + 1,
"action_timestamp": action_timestamp,
"action": action,
"reward": reward,
"done": done,
"info": info,
"screenshot_file": f"step_{step_idx + 1}_{action_timestamp}.png"
"Error": f"Error in example {domain}/{example_id}: {e}",
"step": step_idx + 1,
}))
f.write("\n")
if done:
logger.info("The episode is done.")
break
result = env.evaluate()
logger.info("Result: %.2f", result)
scores.append(result)
env.controller.end_recording(os.path.join(example_result_dir, "recording.mp4"))
except Exception as new_e:
with open(os.path.join(example_result_dir, "traj.jsonl"), "a") as f:
f.write(json.dumps({
"Error": f"Error in example {domain}/{example_id}: {e} and {new_e}",
"step": "before start recording",
}))
f.write("\n")
continue
env.close()
logger.info(f"Average score: {sum(scores) / len(scores)}")
def get_unfinished(test_file_list, result_dir):
finished = []
for domain in os.listdir(result_dir):
for example_id in os.listdir(os.path.join(result_dir, domain)):
finished.append(f"{domain}/{example_id}")
return [x for x in test_file_list if x not in finished]
def get_unfinished(action_space, use_model, observation_type, result_dir, total_file_json):
target_dir = os.path.join(result_dir, action_space, observation_type, use_model)
if not os.path.exists(target_dir):
return total_file_json
finished = {}
for domain in os.listdir(target_dir):
domain_path = os.path.join(target_dir, domain)
if os.path.isdir(domain_path):
finished[domain] = os.listdir(domain_path)
if not finished:
return total_file_json
for domain, examples in finished.items():
if domain in total_file_json:
total_file_json[domain] = [x for x in total_file_json[domain] if x not in examples]
return total_file_json
if __name__ == '__main__':
@@ -209,10 +255,19 @@ if __name__ == '__main__':
os.environ["TOKENIZERS_PARALLELISM"] = "false"
args = config()
# test_file_list = get_unfinished(args.test, args.result_dir)
# logger.info(f"Total {len(test_file_list)} tasks left")
with open("evaluation_examples/test_all.json", "r", encoding="utf-8") as f:
test_all_meta = json.load(f)
test_file_list = get_unfinished(
args.action_space,
args.model,
args.observation_type,
args.result_dir,
test_all_meta
)
left_info = ""
for domain in test_file_list:
left_info += f"{domain}: {len(test_file_list[domain])}\n"
logger.info(f"Left tasks:\n{left_info}")
test(args, test_all_meta)