Initial commit
This commit is contained in:
100
scripts/data_process/nq.py
Normal file
100
scripts/data_process/nq.py
Normal file
@@ -0,0 +1,100 @@
|
||||
# Copyright 2024 Bytedance Ltd. and/or its affiliates
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Preprocess the nq dataset to parquet format
|
||||
"""
|
||||
|
||||
import re
|
||||
import os
|
||||
import datasets
|
||||
|
||||
from verl.utils.hdfs_io import copy, makedirs
|
||||
import argparse
|
||||
|
||||
|
||||
def make_prefix(dp, template_type):
|
||||
question = dp['question']
|
||||
|
||||
# NOTE: also need to change reward_score/countdown.py
|
||||
if template_type == 'base':
|
||||
"""This works for any base model"""
|
||||
prefix = f"""Answer the given question. \
|
||||
You should first have a reasoning process in mind and then provides the answer. \
|
||||
Show your reasoning in <think> </think> tags and return the final answer in <answer> </answer> tags, for example <answer> Beijing </answer>. \
|
||||
Question: {question}\n"""
|
||||
else:
|
||||
raise NotImplementedError
|
||||
return prefix
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--local_dir', default='./data/nq')
|
||||
parser.add_argument('--hdfs_dir', default=None)
|
||||
parser.add_argument('--template_type', type=str, default='base')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
data_source = 'nq'
|
||||
|
||||
dataset = datasets.load_dataset('RUC-NLPIR/FlashRAG_datasets', 'nq')
|
||||
|
||||
train_dataset = dataset['train']
|
||||
test_dataset = dataset['test']
|
||||
|
||||
# add a row to each data item that represents a unique id
|
||||
def make_map_fn(split):
|
||||
|
||||
def process_fn(example, idx):
|
||||
example['question'] = example['question'].strip()
|
||||
if example['question'][-1] != '?':
|
||||
example['question'] += '?'
|
||||
question = make_prefix(example, template_type=args.template_type)
|
||||
solution = {
|
||||
"target": example['golden_answers'],
|
||||
}
|
||||
|
||||
data = {
|
||||
"data_source": data_source,
|
||||
"prompt": [{
|
||||
"role": "user",
|
||||
"content": question,
|
||||
}],
|
||||
"ability": "fact-reasoning",
|
||||
"reward_model": {
|
||||
"style": "rule",
|
||||
"ground_truth": solution
|
||||
},
|
||||
"extra_info": {
|
||||
'split': split,
|
||||
'index': idx,
|
||||
}
|
||||
}
|
||||
return data
|
||||
|
||||
return process_fn
|
||||
|
||||
train_dataset = train_dataset.map(function=make_map_fn('train'), with_indices=True)
|
||||
test_dataset = test_dataset.map(function=make_map_fn('test'), with_indices=True)
|
||||
|
||||
local_dir = args.local_dir
|
||||
hdfs_dir = args.hdfs_dir
|
||||
|
||||
train_dataset.to_parquet(os.path.join(local_dir, 'train.parquet'))
|
||||
test_dataset.to_parquet(os.path.join(local_dir, 'test.parquet'))
|
||||
|
||||
if hdfs_dir is not None:
|
||||
makedirs(hdfs_dir)
|
||||
|
||||
copy(src=local_dir, dst=hdfs_dir)
|
||||
141
scripts/data_process/nq_rag.py
Normal file
141
scripts/data_process/nq_rag.py
Normal file
@@ -0,0 +1,141 @@
|
||||
# Copyright 2024 Bytedance Ltd. and/or its affiliates
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Preprocess the nq dataset to parquet format
|
||||
"""
|
||||
|
||||
import re
|
||||
import os
|
||||
import json
|
||||
import datasets
|
||||
|
||||
from verl.utils.hdfs_io import copy, makedirs
|
||||
import argparse
|
||||
|
||||
|
||||
def make_prefix(dp, template_type):
|
||||
question = dp['question']
|
||||
context = dp['context']
|
||||
|
||||
# NOTE: also need to change reward_score/countdown.py
|
||||
if template_type == 'base':
|
||||
"""This works for any base model"""
|
||||
prefix = f"""Answer the given question with some potentially useful context. \
|
||||
You should analyze the question carefully, evaluate the given context (which may or may not be useful), and then generate an accurate and well-reasoned response. \
|
||||
You should first have a reasoning process in mind and then provides the answer. \
|
||||
Show your reasoning in <think> </think> tags and return the final answer in <answer> </answer> tags, for example <answer> Beijing </answer>. \
|
||||
Question: {question} Context: {context} \n"""
|
||||
else:
|
||||
raise NotImplementedError
|
||||
return prefix
|
||||
|
||||
|
||||
def format_reference(retrieval_result):
|
||||
format_reference = ''
|
||||
for idx, doc_item in enumerate(retrieval_result):
|
||||
content = doc_item['contents']
|
||||
title = content.split("\n")[0]
|
||||
text = "\n".join(content.split("\n")[1:])
|
||||
format_reference += f"Doc {idx+1}(Title: {title}) {text}\n"
|
||||
|
||||
return format_reference
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--local_dir', default='./data/nq_rag')
|
||||
parser.add_argument('--hdfs_dir', default=None)
|
||||
parser.add_argument('--template_type', type=str, default='base')
|
||||
parser.add_argument('--topk', type=int, default=3)
|
||||
parser.add_argument('--corpus_path', type=str, default='/home/peterjin/mnt/data/retrieval-corpus/wiki-18.jsonl')
|
||||
parser.add_argument('--train_retrieval_cache', type=str, default='/home/peterjin/rag_retrieval_cache/nq/e5_train_retrieval_cache_2048.json')
|
||||
parser.add_argument('--test_retrieval_cache', type=str, default='/home/peterjin/rag_retrieval_cache/nq/e5_test_retrieval_cache_10000.json')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
data_source = 'nq'
|
||||
|
||||
dataset = datasets.load_dataset('RUC-NLPIR/FlashRAG_datasets', 'nq')
|
||||
|
||||
train_dataset = dataset['train']
|
||||
test_dataset = dataset['test']
|
||||
|
||||
# read retrieval cache
|
||||
print('reading retrieval cache...')
|
||||
retrieval_cache = json.load(open(args.train_retrieval_cache))
|
||||
# test_retrieval_cache = json.load(open(args.test_retrieval_cache))
|
||||
retrieval_cache.update(json.load(open(args.test_retrieval_cache)))
|
||||
|
||||
# read corpus
|
||||
print('reading corpus...')
|
||||
corpus = {}
|
||||
with open(args.corpus_path) as f:
|
||||
readin = f.readlines()
|
||||
for line in readin:
|
||||
tmp = json.loads(line)
|
||||
corpus[tmp['id']] = tmp
|
||||
|
||||
# add a column for the retrieval context
|
||||
def add_context(example):
|
||||
example['context'] = format_reference([corpus[docs["id"]] for docs in retrieval_cache[example['question']][:args.topk]])
|
||||
return example
|
||||
|
||||
train_dataset = train_dataset.map(function=add_context)
|
||||
test_dataset = test_dataset.map(function=add_context)
|
||||
|
||||
# add a row to each data item that represents a unique id
|
||||
def make_map_fn(split):
|
||||
|
||||
def process_fn(example, idx):
|
||||
example['question'] = example['question'].strip()
|
||||
if example['question'][-1] != '?':
|
||||
example['question'] += '?'
|
||||
question = make_prefix(example, template_type=args.template_type)
|
||||
solution = {
|
||||
"target": example['golden_answers'],
|
||||
}
|
||||
|
||||
data = {
|
||||
"data_source": data_source,
|
||||
"prompt": [{
|
||||
"role": "user",
|
||||
"content": question,
|
||||
}],
|
||||
"ability": "fact-reasoning",
|
||||
"reward_model": {
|
||||
"style": "rule",
|
||||
"ground_truth": solution
|
||||
},
|
||||
"extra_info": {
|
||||
'split': split,
|
||||
'index': idx,
|
||||
}
|
||||
}
|
||||
return data
|
||||
|
||||
return process_fn
|
||||
|
||||
train_dataset = train_dataset.map(function=make_map_fn('train'), with_indices=True)
|
||||
test_dataset = test_dataset.map(function=make_map_fn('test'), with_indices=True)
|
||||
|
||||
local_dir = args.local_dir
|
||||
hdfs_dir = args.hdfs_dir
|
||||
|
||||
train_dataset.to_parquet(os.path.join(local_dir, 'train.parquet'))
|
||||
test_dataset.to_parquet(os.path.join(local_dir, 'test.parquet'))
|
||||
|
||||
if hdfs_dir is not None:
|
||||
makedirs(hdfs_dir)
|
||||
|
||||
copy(src=local_dir, dst=hdfs_dir)
|
||||
101
scripts/data_process/nq_search.py
Normal file
101
scripts/data_process/nq_search.py
Normal file
@@ -0,0 +1,101 @@
|
||||
# Copyright 2024 Bytedance Ltd. and/or its affiliates
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Preprocess the nq dataset to parquet format
|
||||
"""
|
||||
|
||||
import re
|
||||
import os
|
||||
import datasets
|
||||
|
||||
from verl.utils.hdfs_io import copy, makedirs
|
||||
import argparse
|
||||
|
||||
|
||||
def make_prefix(dp, template_type):
|
||||
question = dp['question']
|
||||
|
||||
# NOTE: also need to change reward_score/countdown.py
|
||||
if template_type == 'base':
|
||||
"""This works for any base model"""
|
||||
prefix = f"""Answer the given question. \
|
||||
You must conduct reasoning inside <think> and </think> first every time you get new information. \
|
||||
After reasoning, if you find you lack some knowledge, you can call a search engine by <search> query </search> and it will return the top searched results between <information> and </information>. \
|
||||
You can search as many times as your want. \
|
||||
If you find no further external knowledge needed, you can directly provide the answer inside <answer> and </answer>, without detailed illustrations. For example, <answer> Beijing </answer>. Question: {question}\n"""
|
||||
else:
|
||||
raise NotImplementedError
|
||||
return prefix
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--local_dir', default='./data/nq_search')
|
||||
parser.add_argument('--hdfs_dir', default=None)
|
||||
parser.add_argument('--template_type', type=str, default='base')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
data_source = 'nq'
|
||||
|
||||
dataset = datasets.load_dataset('RUC-NLPIR/FlashRAG_datasets', 'nq')
|
||||
|
||||
train_dataset = dataset['train']
|
||||
test_dataset = dataset['test']
|
||||
|
||||
# add a row to each data item that represents a unique id
|
||||
def make_map_fn(split):
|
||||
|
||||
def process_fn(example, idx):
|
||||
example['question'] = example['question'].strip()
|
||||
if example['question'][-1] != '?':
|
||||
example['question'] += '?'
|
||||
question = make_prefix(example, template_type=args.template_type)
|
||||
solution = {
|
||||
"target": example['golden_answers'],
|
||||
}
|
||||
|
||||
data = {
|
||||
"data_source": data_source,
|
||||
"prompt": [{
|
||||
"role": "user",
|
||||
"content": question,
|
||||
}],
|
||||
"ability": "fact-reasoning",
|
||||
"reward_model": {
|
||||
"style": "rule",
|
||||
"ground_truth": solution
|
||||
},
|
||||
"extra_info": {
|
||||
'split': split,
|
||||
'index': idx,
|
||||
}
|
||||
}
|
||||
return data
|
||||
|
||||
return process_fn
|
||||
|
||||
train_dataset = train_dataset.map(function=make_map_fn('train'), with_indices=True)
|
||||
test_dataset = test_dataset.map(function=make_map_fn('test'), with_indices=True)
|
||||
|
||||
local_dir = args.local_dir
|
||||
hdfs_dir = args.hdfs_dir
|
||||
|
||||
train_dataset.to_parquet(os.path.join(local_dir, 'train.parquet'))
|
||||
test_dataset.to_parquet(os.path.join(local_dir, 'test.parquet'))
|
||||
|
||||
if hdfs_dir is not None:
|
||||
makedirs(hdfs_dir)
|
||||
|
||||
copy(src=local_dir, dst=hdfs_dir)
|
||||
25
scripts/download.py
Normal file
25
scripts/download.py
Normal file
@@ -0,0 +1,25 @@
|
||||
import argparse
|
||||
from huggingface_hub import hf_hub_download
|
||||
|
||||
parser = argparse.ArgumentParser(description="Download files from a Hugging Face dataset repository.")
|
||||
parser.add_argument("--repo_id", type=str, default="PeterJinGo/wiki-18-e5-index", help="Hugging Face repository ID")
|
||||
parser.add_argument("--save_path", type=str, required=True, help="Local directory to save files")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
repo_id = "PeterJinGo/wiki-18-e5-index"
|
||||
for file in ["part_aa", "part_ab"]:
|
||||
hf_hub_download(
|
||||
repo_id=repo_id,
|
||||
filename=file, # e.g., "e5_Flat.index"
|
||||
repo_type="dataset",
|
||||
local_dir=args.save_path,
|
||||
)
|
||||
|
||||
repo_id = "PeterJinGo/wiki-18-corpus"
|
||||
hf_hub_download(
|
||||
repo_id=repo_id,
|
||||
filename="wiki-18.jsonl.gz",
|
||||
repo_type="dataset",
|
||||
local_dir=args.save_path,
|
||||
)
|
||||
6
scripts/download.sh
Normal file
6
scripts/download.sh
Normal file
@@ -0,0 +1,6 @@
|
||||
|
||||
save_path=/home/peterjin/debug_cache
|
||||
|
||||
python download.py --savepath $savepath
|
||||
|
||||
cat $save_path/part_* > e5_Flat.index
|
||||
12
scripts/upload.py
Normal file
12
scripts/upload.py
Normal file
@@ -0,0 +1,12 @@
|
||||
import os
|
||||
from huggingface_hub import upload_file
|
||||
|
||||
repo_id = "PeterJinGo/wiki-18-e5-index"
|
||||
path = "/home/peterjin/mnt/index/wiki-18"
|
||||
for file in ["part_aa", "part_ab"]:
|
||||
upload_file(
|
||||
path_or_fileobj=os.path.join(path, file), # File path
|
||||
path_in_repo=file, # Destination filename in the repo
|
||||
repo_id=repo_id, # Your dataset repo ID
|
||||
repo_type="dataset"
|
||||
)
|
||||
6
scripts/upload.sh
Normal file
6
scripts/upload.sh
Normal file
@@ -0,0 +1,6 @@
|
||||
|
||||
index=/home/peterjin/mnt/index/wiki-18/e5_Flat.index
|
||||
|
||||
split -b 40G $index part_
|
||||
|
||||
python upload.py
|
||||
Reference in New Issue
Block a user