Initial commit

This commit is contained in:
PeterGriffinJin
2025-02-28 15:16:19 +00:00
commit 068516be64
207 changed files with 33063 additions and 0 deletions

100
scripts/data_process/nq.py Normal file
View File

@@ -0,0 +1,100 @@
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Preprocess the nq dataset to parquet format
"""
import re
import os
import datasets
from verl.utils.hdfs_io import copy, makedirs
import argparse
def make_prefix(dp, template_type):
question = dp['question']
# NOTE: also need to change reward_score/countdown.py
if template_type == 'base':
"""This works for any base model"""
prefix = f"""Answer the given question. \
You should first have a reasoning process in mind and then provides the answer. \
Show your reasoning in <think> </think> tags and return the final answer in <answer> </answer> tags, for example <answer> Beijing </answer>. \
Question: {question}\n"""
else:
raise NotImplementedError
return prefix
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--local_dir', default='./data/nq')
parser.add_argument('--hdfs_dir', default=None)
parser.add_argument('--template_type', type=str, default='base')
args = parser.parse_args()
data_source = 'nq'
dataset = datasets.load_dataset('RUC-NLPIR/FlashRAG_datasets', 'nq')
train_dataset = dataset['train']
test_dataset = dataset['test']
# add a row to each data item that represents a unique id
def make_map_fn(split):
def process_fn(example, idx):
example['question'] = example['question'].strip()
if example['question'][-1] != '?':
example['question'] += '?'
question = make_prefix(example, template_type=args.template_type)
solution = {
"target": example['golden_answers'],
}
data = {
"data_source": data_source,
"prompt": [{
"role": "user",
"content": question,
}],
"ability": "fact-reasoning",
"reward_model": {
"style": "rule",
"ground_truth": solution
},
"extra_info": {
'split': split,
'index': idx,
}
}
return data
return process_fn
train_dataset = train_dataset.map(function=make_map_fn('train'), with_indices=True)
test_dataset = test_dataset.map(function=make_map_fn('test'), with_indices=True)
local_dir = args.local_dir
hdfs_dir = args.hdfs_dir
train_dataset.to_parquet(os.path.join(local_dir, 'train.parquet'))
test_dataset.to_parquet(os.path.join(local_dir, 'test.parquet'))
if hdfs_dir is not None:
makedirs(hdfs_dir)
copy(src=local_dir, dst=hdfs_dir)

View File

@@ -0,0 +1,141 @@
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Preprocess the nq dataset to parquet format
"""
import re
import os
import json
import datasets
from verl.utils.hdfs_io import copy, makedirs
import argparse
def make_prefix(dp, template_type):
question = dp['question']
context = dp['context']
# NOTE: also need to change reward_score/countdown.py
if template_type == 'base':
"""This works for any base model"""
prefix = f"""Answer the given question with some potentially useful context. \
You should analyze the question carefully, evaluate the given context (which may or may not be useful), and then generate an accurate and well-reasoned response. \
You should first have a reasoning process in mind and then provides the answer. \
Show your reasoning in <think> </think> tags and return the final answer in <answer> </answer> tags, for example <answer> Beijing </answer>. \
Question: {question} Context: {context} \n"""
else:
raise NotImplementedError
return prefix
def format_reference(retrieval_result):
format_reference = ''
for idx, doc_item in enumerate(retrieval_result):
content = doc_item['contents']
title = content.split("\n")[0]
text = "\n".join(content.split("\n")[1:])
format_reference += f"Doc {idx+1}(Title: {title}) {text}\n"
return format_reference
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--local_dir', default='./data/nq_rag')
parser.add_argument('--hdfs_dir', default=None)
parser.add_argument('--template_type', type=str, default='base')
parser.add_argument('--topk', type=int, default=3)
parser.add_argument('--corpus_path', type=str, default='/home/peterjin/mnt/data/retrieval-corpus/wiki-18.jsonl')
parser.add_argument('--train_retrieval_cache', type=str, default='/home/peterjin/rag_retrieval_cache/nq/e5_train_retrieval_cache_2048.json')
parser.add_argument('--test_retrieval_cache', type=str, default='/home/peterjin/rag_retrieval_cache/nq/e5_test_retrieval_cache_10000.json')
args = parser.parse_args()
data_source = 'nq'
dataset = datasets.load_dataset('RUC-NLPIR/FlashRAG_datasets', 'nq')
train_dataset = dataset['train']
test_dataset = dataset['test']
# read retrieval cache
print('reading retrieval cache...')
retrieval_cache = json.load(open(args.train_retrieval_cache))
# test_retrieval_cache = json.load(open(args.test_retrieval_cache))
retrieval_cache.update(json.load(open(args.test_retrieval_cache)))
# read corpus
print('reading corpus...')
corpus = {}
with open(args.corpus_path) as f:
readin = f.readlines()
for line in readin:
tmp = json.loads(line)
corpus[tmp['id']] = tmp
# add a column for the retrieval context
def add_context(example):
example['context'] = format_reference([corpus[docs["id"]] for docs in retrieval_cache[example['question']][:args.topk]])
return example
train_dataset = train_dataset.map(function=add_context)
test_dataset = test_dataset.map(function=add_context)
# add a row to each data item that represents a unique id
def make_map_fn(split):
def process_fn(example, idx):
example['question'] = example['question'].strip()
if example['question'][-1] != '?':
example['question'] += '?'
question = make_prefix(example, template_type=args.template_type)
solution = {
"target": example['golden_answers'],
}
data = {
"data_source": data_source,
"prompt": [{
"role": "user",
"content": question,
}],
"ability": "fact-reasoning",
"reward_model": {
"style": "rule",
"ground_truth": solution
},
"extra_info": {
'split': split,
'index': idx,
}
}
return data
return process_fn
train_dataset = train_dataset.map(function=make_map_fn('train'), with_indices=True)
test_dataset = test_dataset.map(function=make_map_fn('test'), with_indices=True)
local_dir = args.local_dir
hdfs_dir = args.hdfs_dir
train_dataset.to_parquet(os.path.join(local_dir, 'train.parquet'))
test_dataset.to_parquet(os.path.join(local_dir, 'test.parquet'))
if hdfs_dir is not None:
makedirs(hdfs_dir)
copy(src=local_dir, dst=hdfs_dir)

View File

@@ -0,0 +1,101 @@
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Preprocess the nq dataset to parquet format
"""
import re
import os
import datasets
from verl.utils.hdfs_io import copy, makedirs
import argparse
def make_prefix(dp, template_type):
question = dp['question']
# NOTE: also need to change reward_score/countdown.py
if template_type == 'base':
"""This works for any base model"""
prefix = f"""Answer the given question. \
You must conduct reasoning inside <think> and </think> first every time you get new information. \
After reasoning, if you find you lack some knowledge, you can call a search engine by <search> query </search> and it will return the top searched results between <information> and </information>. \
You can search as many times as your want. \
If you find no further external knowledge needed, you can directly provide the answer inside <answer> and </answer>, without detailed illustrations. For example, <answer> Beijing </answer>. Question: {question}\n"""
else:
raise NotImplementedError
return prefix
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--local_dir', default='./data/nq_search')
parser.add_argument('--hdfs_dir', default=None)
parser.add_argument('--template_type', type=str, default='base')
args = parser.parse_args()
data_source = 'nq'
dataset = datasets.load_dataset('RUC-NLPIR/FlashRAG_datasets', 'nq')
train_dataset = dataset['train']
test_dataset = dataset['test']
# add a row to each data item that represents a unique id
def make_map_fn(split):
def process_fn(example, idx):
example['question'] = example['question'].strip()
if example['question'][-1] != '?':
example['question'] += '?'
question = make_prefix(example, template_type=args.template_type)
solution = {
"target": example['golden_answers'],
}
data = {
"data_source": data_source,
"prompt": [{
"role": "user",
"content": question,
}],
"ability": "fact-reasoning",
"reward_model": {
"style": "rule",
"ground_truth": solution
},
"extra_info": {
'split': split,
'index': idx,
}
}
return data
return process_fn
train_dataset = train_dataset.map(function=make_map_fn('train'), with_indices=True)
test_dataset = test_dataset.map(function=make_map_fn('test'), with_indices=True)
local_dir = args.local_dir
hdfs_dir = args.hdfs_dir
train_dataset.to_parquet(os.path.join(local_dir, 'train.parquet'))
test_dataset.to_parquet(os.path.join(local_dir, 'test.parquet'))
if hdfs_dir is not None:
makedirs(hdfs_dir)
copy(src=local_dir, dst=hdfs_dir)

25
scripts/download.py Normal file
View File

@@ -0,0 +1,25 @@
import argparse
from huggingface_hub import hf_hub_download
parser = argparse.ArgumentParser(description="Download files from a Hugging Face dataset repository.")
parser.add_argument("--repo_id", type=str, default="PeterJinGo/wiki-18-e5-index", help="Hugging Face repository ID")
parser.add_argument("--save_path", type=str, required=True, help="Local directory to save files")
args = parser.parse_args()
repo_id = "PeterJinGo/wiki-18-e5-index"
for file in ["part_aa", "part_ab"]:
hf_hub_download(
repo_id=repo_id,
filename=file, # e.g., "e5_Flat.index"
repo_type="dataset",
local_dir=args.save_path,
)
repo_id = "PeterJinGo/wiki-18-corpus"
hf_hub_download(
repo_id=repo_id,
filename="wiki-18.jsonl.gz",
repo_type="dataset",
local_dir=args.save_path,
)

6
scripts/download.sh Normal file
View File

@@ -0,0 +1,6 @@
save_path=/home/peterjin/debug_cache
python download.py --savepath $savepath
cat $save_path/part_* > e5_Flat.index

12
scripts/upload.py Normal file
View File

@@ -0,0 +1,12 @@
import os
from huggingface_hub import upload_file
repo_id = "PeterJinGo/wiki-18-e5-index"
path = "/home/peterjin/mnt/index/wiki-18"
for file in ["part_aa", "part_ab"]:
upload_file(
path_or_fileobj=os.path.join(path, file), # File path
path_in_repo=file, # Destination filename in the repo
repo_id=repo_id, # Your dataset repo ID
repo_type="dataset"
)

6
scripts/upload.sh Normal file
View File

@@ -0,0 +1,6 @@
index=/home/peterjin/mnt/index/wiki-18/e5_Flat.index
split -b 40G $index part_
python upload.py