Files
Search-R1/scripts/data_process/nq_rag.py
PeterGriffinJin 068516be64 Initial commit
2025-02-28 15:16:19 +00:00

142 lines
5.1 KiB
Python

# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Preprocess the nq dataset to parquet format
"""
import re
import os
import json
import datasets
from verl.utils.hdfs_io import copy, makedirs
import argparse
def make_prefix(dp, template_type):
question = dp['question']
context = dp['context']
# NOTE: also need to change reward_score/countdown.py
if template_type == 'base':
"""This works for any base model"""
prefix = f"""Answer the given question with some potentially useful context. \
You should analyze the question carefully, evaluate the given context (which may or may not be useful), and then generate an accurate and well-reasoned response. \
You should first have a reasoning process in mind and then provides the answer. \
Show your reasoning in <think> </think> tags and return the final answer in <answer> </answer> tags, for example <answer> Beijing </answer>. \
Question: {question} Context: {context} \n"""
else:
raise NotImplementedError
return prefix
def format_reference(retrieval_result):
format_reference = ''
for idx, doc_item in enumerate(retrieval_result):
content = doc_item['contents']
title = content.split("\n")[0]
text = "\n".join(content.split("\n")[1:])
format_reference += f"Doc {idx+1}(Title: {title}) {text}\n"
return format_reference
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--local_dir', default='./data/nq_rag')
parser.add_argument('--hdfs_dir', default=None)
parser.add_argument('--template_type', type=str, default='base')
parser.add_argument('--topk', type=int, default=3)
parser.add_argument('--corpus_path', type=str, default='/home/peterjin/mnt/data/retrieval-corpus/wiki-18.jsonl')
parser.add_argument('--train_retrieval_cache', type=str, default='/home/peterjin/rag_retrieval_cache/nq/e5_train_retrieval_cache_2048.json')
parser.add_argument('--test_retrieval_cache', type=str, default='/home/peterjin/rag_retrieval_cache/nq/e5_test_retrieval_cache_10000.json')
args = parser.parse_args()
data_source = 'nq'
dataset = datasets.load_dataset('RUC-NLPIR/FlashRAG_datasets', 'nq')
train_dataset = dataset['train']
test_dataset = dataset['test']
# read retrieval cache
print('reading retrieval cache...')
retrieval_cache = json.load(open(args.train_retrieval_cache))
# test_retrieval_cache = json.load(open(args.test_retrieval_cache))
retrieval_cache.update(json.load(open(args.test_retrieval_cache)))
# read corpus
print('reading corpus...')
corpus = {}
with open(args.corpus_path) as f:
readin = f.readlines()
for line in readin:
tmp = json.loads(line)
corpus[tmp['id']] = tmp
# add a column for the retrieval context
def add_context(example):
example['context'] = format_reference([corpus[docs["id"]] for docs in retrieval_cache[example['question']][:args.topk]])
return example
train_dataset = train_dataset.map(function=add_context)
test_dataset = test_dataset.map(function=add_context)
# add a row to each data item that represents a unique id
def make_map_fn(split):
def process_fn(example, idx):
example['question'] = example['question'].strip()
if example['question'][-1] != '?':
example['question'] += '?'
question = make_prefix(example, template_type=args.template_type)
solution = {
"target": example['golden_answers'],
}
data = {
"data_source": data_source,
"prompt": [{
"role": "user",
"content": question,
}],
"ability": "fact-reasoning",
"reward_model": {
"style": "rule",
"ground_truth": solution
},
"extra_info": {
'split': split,
'index': idx,
}
}
return data
return process_fn
train_dataset = train_dataset.map(function=make_map_fn('train'), with_indices=True)
test_dataset = test_dataset.map(function=make_map_fn('test'), with_indices=True)
local_dir = args.local_dir
hdfs_dir = args.hdfs_dir
train_dataset.to_parquet(os.path.join(local_dir, 'train.parquet'))
test_dataset.to_parquet(os.path.join(local_dir, 'test.parquet'))
if hdfs_dir is not None:
makedirs(hdfs_dir)
copy(src=local_dir, dst=hdfs_dir)