Fix bugs related to loss mask, meta info, and response length
1. Construct the loss mask immediately after obtaining the observation to prevent encoding misalignment when converting back to tokens after text transformation. 2. Follow up on meta info to ensure that the test batch can apply do sample. 3. Remove the recording of info information for response length.
This commit is contained in:
@@ -93,7 +93,7 @@ def apply_kl_penalty(data: DataProto, kl_ctrl: core_algos.AdaptiveKLController,
|
||||
response_length = responses.size(1)
|
||||
token_level_scores = data.batch['token_level_scores']
|
||||
batch_size = data.batch.batch_size[0]
|
||||
attention_mask = data.batch['attention_mask']
|
||||
attention_mask = data.batch['info_mask']
|
||||
response_mask = attention_mask[:, -response_length:]
|
||||
|
||||
# compute kl between ref_policy and current policy
|
||||
@@ -163,8 +163,8 @@ def reduce_metrics(metrics: dict):
|
||||
def _compute_response_info(batch):
|
||||
response_length = batch.batch['responses'].shape[-1]
|
||||
|
||||
prompt_mask = batch.batch['attention_mask'][:, :-response_length]
|
||||
response_mask = batch.batch['attention_mask'][:, -response_length:]
|
||||
prompt_mask = batch.batch['info_mask'][:, :-response_length]
|
||||
response_mask = batch.batch['info_mask'][:, -response_length:]
|
||||
|
||||
prompt_length = prompt_mask.sum(-1).float()
|
||||
response_length = response_mask.sum(-1).float() # (batch_size,)
|
||||
@@ -867,50 +867,8 @@ class RayPPOTrainer(object):
|
||||
response_length = batch.batch['responses'].shape[-1]
|
||||
response_mask = batch.batch['attention_mask'][:, -response_length:]
|
||||
|
||||
# Initialize state mask
|
||||
state_mask = torch.ones_like(response_mask)
|
||||
|
||||
responses = [self.tokenizer.decode(resp, skip_special_tokens=False) for resp in batch.batch['responses']]
|
||||
|
||||
for i, response in enumerate(responses):
|
||||
# Find all pairs of start and end marker positions
|
||||
start_marker = self.config.algorithm.state_masking.start_state_marker
|
||||
end_marker = self.config.algorithm.state_masking.end_state_marker
|
||||
|
||||
# Get all start and end positions
|
||||
start_positions = [m.start() for m in re.finditer(re.escape(start_marker), response)]
|
||||
end_positions = [m.start() + len(end_marker) for m in re.finditer(re.escape(end_marker), response)]
|
||||
|
||||
# Convert character positions to token positions
|
||||
for start, end in zip(start_positions, end_positions):
|
||||
prefix_to_start = response[:start]
|
||||
state_section = response[start:end]
|
||||
|
||||
start_tokens = self.tokenizer.encode(prefix_to_start, add_special_tokens=False)
|
||||
state_tokens = self.tokenizer.encode(state_section, add_special_tokens=False)
|
||||
|
||||
start_token_pos = len(start_tokens)
|
||||
end_token_pos = start_token_pos + len(state_tokens)
|
||||
|
||||
state_mask[i, start_token_pos:end_token_pos] = 0
|
||||
|
||||
loss_mask = state_mask * response_mask
|
||||
loss_mask = batch.batch['info_mask'][:, -response_length:]
|
||||
batch.batch['loss_mask'] = loss_mask
|
||||
|
||||
# # Debug print
|
||||
# print("\nRaw batch[0] (before masking):\n", self.tokenizer.decode(batch.batch['responses'][0]))
|
||||
# response_ids = batch.batch['responses'][0]
|
||||
# unmasked_ids = response_ids[loss_mask[0] == 0]
|
||||
# print("\nMasked batch[0] (after masking):\n", self.tokenizer.decode(unmasked_ids))
|
||||
|
||||
# masked_ids = response_ids[loss_mask[0] == 1]
|
||||
# print("\nUnmasked batch[0] (masked parts):\n", self.tokenizer.decode(masked_ids))
|
||||
|
||||
# masked_ids = response_ids[response_mask[0] == 1]
|
||||
# print("\nresponse_mask[0] == 1:\n", self.tokenizer.decode(masked_ids))
|
||||
|
||||
# masked_ids = response_ids[response_mask[0] == 0]
|
||||
# print("\nresponse_mask[0] == 0:\n", self.tokenizer.decode(masked_ids))
|
||||
|
||||
metrics.update({
|
||||
'state_tokens/total': loss_mask.sum().item(),
|
||||
|
||||
Reference in New Issue
Block a user