135 lines
5.4 KiB
Markdown
135 lines
5.4 KiB
Markdown
|
||
## Multinode Training
|
||
|
||
Our codebase supports multi-node training for large-scale language models. The implementation is mainly based on [Ray](https://github.com/ray-project/ray).
|
||
|
||
There are two types of nodes when doing Ray multi-node training: (1) head node and (2) worker nodes.
|
||
There is only one head node where you will start the ray cluster and submit the job.
|
||
The other nodes are worker nodes, where you only need to start and register to the ray cluster.
|
||
|
||
### Step 1: Set up multinode ray cluster (from [link](https://verl.readthedocs.io/en/latest/start/multinode.html#set-up-multinode-ray-cluster))
|
||
|
||
a. Start **head** node with ```ray start --head --dashboard-host=0.0.0.0```, there’re 2 address you should care about:
|
||
|
||
- GCS address: ```ray start --address=<address>```, where **worker** node should connect to.
|
||
|
||
- Dashboard address: ```<address>:8265```, where you should submit job to the cluster.
|
||
|
||

|
||
|
||
b. Start **worker node** and register it to the ray cluster with ```ray start --address=<address>``` you get above.
|
||
|
||

|
||
|
||
c. Check the cluster status with ```ray status```.
|
||
|
||
For example, if you have two nodes (each with 8 GPUs) in the cluster, you should see something like this:
|
||
|
||

|
||
|
||
|
||
### Step 2: Launch the retrieval server on every node.
|
||
|
||
We would recommend launch the **same** retrieval server on every nodes (including both head and worker nodes) for the stable RL training. Detailed information on how to launch different retrievers can be found as follows: [doc](https://github.com/PeterGriffinJin/Search-R1/blob/main/docs/retriever.md) and [scripts](https://github.com/PeterGriffinJin/Search-R1/tree/main/example/retriever).
|
||
|
||
For example, if you want to launch the local dense retriever with flat indexing, run the following command on **every** nodes:
|
||
|
||
```
|
||
bash retrieval_launch.sh
|
||
```
|
||
|
||
|
||
### Step 3: Start the job
|
||
|
||
After the retrievers are launched, you can start the training job. You only need to start the job on the ***head*** node.
|
||
|
||
An example script is shown as below. Change ```RAY_DASHBOARD_ADDRESS``` and ```N_NODES``` to your dashboard address found in step 1 and the number of nodes respectively.
|
||
|
||
More script examples can be found [here](https://github.com/PeterGriffinJin/Search-R1/tree/main/example/multinode).
|
||
|
||
|
||
```bash
|
||
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
|
||
export DATA_DIR='data/nq_search'
|
||
|
||
WAND_PROJECT="Search-R1-release"
|
||
RAY_DASHBOARD_ADDRESS="<address>:8265"
|
||
N_NODES=2
|
||
|
||
export BASE_MODEL='Qwen/Qwen2.5-7B'
|
||
export EXPERIMENT_NAME=${train_data}-${test_data}-search-r1-ppo-qwen2.5-7b-em-multinode-$N_NODES
|
||
|
||
# set -x
|
||
export VLLM_ATTENTION_BACKEND=XFORMERS
|
||
|
||
ulimit -n 65535
|
||
|
||
ray job submit --address=$RAY_DASHBOARD_ADDRESS \
|
||
--runtime-env=verl/trainer/runtime_env.yaml \
|
||
--no-wait \
|
||
-- \
|
||
python3 -m verl.trainer.main_ppo \
|
||
data.train_files=$DATA_DIR/train.parquet \
|
||
data.val_files=$DATA_DIR/test.parquet \
|
||
data.train_data_num=null \
|
||
data.val_data_num=null \
|
||
data.train_batch_size=512 \
|
||
data.val_batch_size=256 \
|
||
data.max_prompt_length=4096 \
|
||
data.max_response_length=500 \
|
||
data.max_start_length=2048 \
|
||
data.max_obs_length=500 \
|
||
data.shuffle_train_dataloader=True \
|
||
algorithm.adv_estimator=gae \
|
||
actor_rollout_ref.model.path=$BASE_MODEL \
|
||
actor_rollout_ref.actor.optim.lr=1e-6 \
|
||
actor_rollout_ref.model.enable_gradient_checkpointing=true \
|
||
actor_rollout_ref.model.use_remove_padding=True \
|
||
actor_rollout_ref.actor.optim.lr_warmup_steps_ratio=0.285 \
|
||
actor_rollout_ref.actor.ppo_mini_batch_size=256 \
|
||
actor_rollout_ref.actor.ppo_micro_batch_size=64 \
|
||
actor_rollout_ref.actor.fsdp_config.param_offload=False \
|
||
actor_rollout_ref.actor.fsdp_config.grad_offload=False \
|
||
actor_rollout_ref.actor.fsdp_config.optimizer_offload=False \
|
||
actor_rollout_ref.rollout.log_prob_micro_batch_size=128 \
|
||
actor_rollout_ref.rollout.tensor_model_parallel_size=1 \
|
||
actor_rollout_ref.rollout.name=vllm \
|
||
actor_rollout_ref.rollout.gpu_memory_utilization=0.6 \
|
||
actor_rollout_ref.ref.log_prob_micro_batch_size=128 \
|
||
actor_rollout_ref.ref.fsdp_config.param_offload=False \
|
||
actor_rollout_ref.rollout.n_agent=1 \
|
||
actor_rollout_ref.rollout.temperature=1 \
|
||
actor_rollout_ref.rollout.top_p=1.0 \
|
||
actor_rollout_ref.actor.state_masking=true \
|
||
critic.optim.lr=1e-5 \
|
||
critic.model.use_remove_padding=True \
|
||
critic.optim.lr_warmup_steps_ratio=0.015 \
|
||
critic.model.path=$BASE_MODEL \
|
||
critic.model.enable_gradient_checkpointing=true \
|
||
critic.ppo_micro_batch_size=16 \
|
||
critic.model.fsdp_config.param_offload=False \
|
||
critic.model.fsdp_config.grad_offload=False \
|
||
critic.model.fsdp_config.optimizer_offload=False \
|
||
algorithm.kl_ctrl.kl_coef=0.001 \
|
||
algorithm.no_think_rl=false \
|
||
trainer.critic_warmup=0 \
|
||
trainer.logger=['wandb'] \
|
||
+trainer.val_only=false \
|
||
+trainer.val_before_train=false \
|
||
trainer.default_hdfs_dir=null \
|
||
trainer.n_gpus_per_node=8 \
|
||
trainer.nnodes=$N_NODES \
|
||
trainer.save_freq=100 \
|
||
trainer.test_freq=100 \
|
||
trainer.project_name=$WAND_PROJECT \
|
||
trainer.experiment_name=$EXPERIMENT_NAME \
|
||
trainer.total_epochs=15 \
|
||
trainer.total_training_steps=1005 \
|
||
trainer.default_hdfs_dir=null \
|
||
trainer.default_local_dir=verl_checkpoints/$EXPERIMENT_NAME \
|
||
max_turns=4 \
|
||
retriever.url="http://127.0.0.1:8000/retrieve" \
|
||
retriever.topk=3 \
|
||
2>&1 | tee $EXPERIMENT_NAME.log
|
||
```
|