fix: action chunks predicted using policy, and timed to observation used
This commit is contained in:
@@ -1,38 +1,41 @@
|
||||
import itertools
|
||||
import pickle # nosec
|
||||
import time
|
||||
from concurrent import futures
|
||||
from queue import Queue
|
||||
from typing import Generator, List
|
||||
from typing import Generator, List, Optional
|
||||
|
||||
import async_inference_pb2 # type: ignore
|
||||
import async_inference_pb2_grpc # type: ignore
|
||||
import grpc
|
||||
import numpy as np
|
||||
import torch
|
||||
from datasets import load_dataset
|
||||
|
||||
from lerobot.common.policies.pretrained import PreTrainedPolicy
|
||||
from lerobot.scripts.server.robot_client import TimedObservation
|
||||
from lerobot.common.policies.act.modeling_act import ACTPolicy
|
||||
from lerobot.scripts.server.robot_client import TimedAction, TimedObservation, environment_dt
|
||||
|
||||
inference_latency = 1 / 3
|
||||
idle_wait = 0.1
|
||||
|
||||
|
||||
def get_device():
|
||||
return torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
|
||||
class PolicyServer(async_inference_pb2_grpc.AsyncInferenceServicer):
|
||||
def __init__(self, policy: PreTrainedPolicy = None):
|
||||
# TODO: Add code for loading and using policy for inference
|
||||
self.policy = policy
|
||||
|
||||
def __init__(self):
|
||||
# TODO: Add device specification for policy inference at init
|
||||
self.device = "mps"
|
||||
start = time.time()
|
||||
self.policy = ACTPolicy.from_pretrained("fracapuano/act_so100_test")
|
||||
self.policy.to(self.device)
|
||||
end = time.time()
|
||||
print(f"Time taken to put policy on {self.device}: {end - start} seconds")
|
||||
|
||||
# Initialize dataset action generator
|
||||
self.action_generator = itertools.cycle(self._stream_action_chunks_from_dataset())
|
||||
|
||||
self._setup_server()
|
||||
|
||||
self.actions_per_chunk = 20
|
||||
self.actions_overlap = 10
|
||||
|
||||
def _setup_server(self) -> None:
|
||||
"""Flushes server state when new client connects."""
|
||||
# only running inference on the latest observation received by the server
|
||||
@@ -46,15 +49,11 @@ class PolicyServer(async_inference_pb2_grpc.AsyncInferenceServicer):
|
||||
|
||||
def SendObservations(self, request_iterator, context): # noqa: N802
|
||||
"""Receive observations from the robot client"""
|
||||
client_id = context.peer()
|
||||
print(f"Receiving observations from {client_id}")
|
||||
# print("Number of observations in queue: ", self.observation_queue.qsize())
|
||||
# client_id = context.peer()
|
||||
# print(f"Receiving observations from {client_id}")
|
||||
|
||||
for observation in request_iterator:
|
||||
# Increment observation timestep counter for each new observation
|
||||
observation_data = np.frombuffer(observation.data, dtype=np.float32)
|
||||
observation_timestep = observation_data[0]
|
||||
observation_content = observation_data[1:]
|
||||
timed_observation = pickle.loads(observation.data) # nosec
|
||||
|
||||
# If queue is full, get the old observation to make room
|
||||
if self.observation_queue.full():
|
||||
@@ -62,14 +61,8 @@ class PolicyServer(async_inference_pb2_grpc.AsyncInferenceServicer):
|
||||
_ = self.observation_queue.get_nowait()
|
||||
|
||||
# Now put the new observation (never blocks as queue is non-full here)
|
||||
self.observation_queue.put(
|
||||
TimedObservation(
|
||||
timestep=int(observation_timestep),
|
||||
observation=observation_content,
|
||||
transfer_state=observation.transfer_state,
|
||||
)
|
||||
)
|
||||
print("Received observation no: ", observation_timestep)
|
||||
self.observation_queue.put(timed_observation)
|
||||
print("Received observation no: ", timed_observation.get_timestep())
|
||||
|
||||
return async_inference_pb2.Empty()
|
||||
|
||||
@@ -91,15 +84,45 @@ class PolicyServer(async_inference_pb2_grpc.AsyncInferenceServicer):
|
||||
|
||||
return async_inference_pb2.Empty()
|
||||
|
||||
def _predict_and_queue_action(self, observation):
|
||||
def _time_action_chunk(self, t_0: float, action_chunk: list[torch.Tensor], i_0: int) -> list[TimedAction]:
|
||||
"""Turn a chunk of actions into a list of TimedAction instances,
|
||||
with the first action corresponding to t_0 and the rest corresponding to
|
||||
t_0 + i*environment_dt for i in range(len(action_chunk))
|
||||
"""
|
||||
return [
|
||||
TimedAction(t_0 + i * environment_dt, action, i_0 + i) for i, action in enumerate(action_chunk)
|
||||
]
|
||||
|
||||
@torch.no_grad()
|
||||
def _predict_action_chunk(self, observation_t: TimedObservation) -> list[TimedAction]:
|
||||
"""Predict an action based on the observation"""
|
||||
# TODO: Implement the logic to predict an action based on the observation
|
||||
"""
|
||||
Ideally, action-prediction should be general and not specific to the policy used.
|
||||
That is, this interface should be the same for ACT/VLA/RL-based etc.
|
||||
"""
|
||||
# TODO: Queue the action to be sent to the robot client
|
||||
raise NotImplementedError("Not implemented")
|
||||
self.policy.eval()
|
||||
|
||||
observation = {}
|
||||
for k, v in observation_t.get_observation().items():
|
||||
if "image" in k:
|
||||
observation[k] = v.permute(2, 0, 1).unsqueeze(0).to(self.device)
|
||||
else:
|
||||
observation[k] = v.unsqueeze(0).to(self.device)
|
||||
|
||||
# Remove batch dimension
|
||||
action_tensor = self.policy.select_action(observation).squeeze(0)
|
||||
|
||||
if action_tensor.dim() == 1:
|
||||
# No chunk dimension, so repeat action to create a (dummy) chunk of actions
|
||||
action_tensor = action_tensor.cpu().repeat(self.actions_per_chunk, 1)
|
||||
|
||||
action_chunk = self._time_action_chunk(
|
||||
observation_t.get_timestamp(), list(action_tensor), observation_t.get_timestep()
|
||||
)
|
||||
|
||||
action_bytes = pickle.dumps(action_chunk) # nosec
|
||||
# Create and return the Action message
|
||||
action = async_inference_pb2.Action(transfer_state=observation_t.transfer_state, data=action_bytes)
|
||||
|
||||
time.sleep(inference_latency) # slow action generation, emulates inference time (ACT is very fast)
|
||||
|
||||
return action
|
||||
|
||||
def _stream_action_chunks_from_dataset(self) -> Generator[List[torch.Tensor], None, None]:
|
||||
"""Stream chunks of actions from a prerecorded dataset.
|
||||
@@ -113,56 +136,44 @@ class PolicyServer(async_inference_pb2_grpc.AsyncInferenceServicer):
|
||||
actions = dataset["action"]
|
||||
action_indices = torch.arange(len(actions))
|
||||
|
||||
actions_per_chunk = 20
|
||||
actions_overlap = 10
|
||||
|
||||
# 2. Chunk the iterable of tensors into chunks with 10 elements each
|
||||
# sending only first element for debugging
|
||||
indices_chunks = action_indices.unfold(0, actions_per_chunk, actions_per_chunk - actions_overlap)
|
||||
indices_chunks = action_indices.unfold(
|
||||
0, self.actions_per_chunk, self.actions_per_chunk - self.actions_overlap
|
||||
)
|
||||
|
||||
for idx_chunk in indices_chunks:
|
||||
yield actions[idx_chunk[0] : idx_chunk[-1] + 1, :]
|
||||
|
||||
# Non overlapping action chunks
|
||||
# actions_chunks = torch.split(actions, 20)
|
||||
# for action_chunk in actions_chunks:
|
||||
# yield action_chunk
|
||||
|
||||
def _predict_action_chunk(self, observation: TimedObservation):
|
||||
def _read_action_chunk(self, observation: Optional[TimedObservation] = None):
|
||||
"""Dummy function for predicting action chunk given observation.
|
||||
|
||||
Instead of computing actions on-the-fly, this method streams
|
||||
actions from a prerecorded dataset.
|
||||
"""
|
||||
transfer_state = 0 if not observation else observation.transfer_state
|
||||
import warnings
|
||||
|
||||
warnings.warn(
|
||||
"This method is deprecated and will be removed in the future.", DeprecationWarning, stacklevel=2
|
||||
)
|
||||
|
||||
if not observation:
|
||||
observation = TimedObservation(timestamp=time.time(), observation={}, timestep=0)
|
||||
transfer_state = 0
|
||||
else:
|
||||
transfer_state = observation.transfer_state
|
||||
|
||||
# Get chunk of actions from the generator
|
||||
actions_chunk = next(self.action_generator)
|
||||
|
||||
# Convert the chunk of actions to a single contiguous numpy array
|
||||
# For the so100 dataset, each action in the chunk is a tensor with 6 elements
|
||||
actions_array = actions_chunk.numpy()
|
||||
|
||||
# Create timesteps starting from the observation timestep
|
||||
# Each action in the chunk gets a timestep starting from observation_timestep
|
||||
# This indicates that the first action corresponds to the current observation,
|
||||
# and subsequent actions are for future timesteps (and predicted observations!)
|
||||
|
||||
timesteps = (
|
||||
np.arange(observation.timestep, observation.timestep + len(actions_array))
|
||||
.reshape(-1, 1)
|
||||
.astype(np.float32)
|
||||
# Return a list of TimedActions, with timestamps starting from the observation timestamp
|
||||
action_data = self._time_action_chunk(
|
||||
observation.get_timestamp(), actions_chunk, observation.get_timestep()
|
||||
)
|
||||
|
||||
# Create a combined array with timesteps and actions
|
||||
# First column is the timestep, remaining columns are the action values
|
||||
combined_array = np.hstack((timesteps, actions_array))
|
||||
|
||||
# Convert the numpy array to bytes for transmission
|
||||
action_data = combined_array.astype(np.float32).tobytes()
|
||||
action_bytes = pickle.dumps(action_data) # nosec
|
||||
|
||||
# Create and return the Action message
|
||||
action = async_inference_pb2.Action(transfer_state=transfer_state, data=action_data)
|
||||
action = async_inference_pb2.Action(transfer_state=transfer_state, data=action_bytes)
|
||||
|
||||
time.sleep(inference_latency) # slow action generation, emulates inference time
|
||||
|
||||
|
||||
Reference in New Issue
Block a user