refactor/lekiwi robot (#863)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Simon Alibert <simon.alibert@huggingface.co>
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
This commit is contained in:
Steven Palma
2025-04-29 17:48:41 +02:00
committed by GitHub
parent b7a9b0689a
commit 2e528a8b12
21 changed files with 1161 additions and 1744 deletions

View File

@@ -0,0 +1,98 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import time
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.robots.lekiwi.config_lekiwi import LeKiwiClientConfig
from lerobot.common.robots.lekiwi.lekiwi_client import OBS_STATE, LeKiwiClient
from lerobot.common.teleoperators.keyboard import KeyboardTeleop, KeyboardTeleopConfig
from lerobot.common.teleoperators.so100 import SO100Leader, SO100LeaderConfig
NB_CYCLES_CLIENT_CONNECTION = 250
def main():
logging.info("Configuring Teleop Devices")
leader_arm_config = SO100LeaderConfig(port="/dev/tty.usbmodem58760434171")
leader_arm = SO100Leader(leader_arm_config)
keyboard_config = KeyboardTeleopConfig()
keyboard = KeyboardTeleop(keyboard_config)
logging.info("Configuring LeKiwi Client")
robot_config = LeKiwiClientConfig(remote_ip="192.0.2.42", id="lekiwi")
robot = LeKiwiClient(robot_config)
logging.info("Creating LeRobot Dataset")
# The observations that we get are expected to be in body frame (x,y,theta)
obs_dict = {f"{OBS_STATE}." + key: value for key, value in robot.state_feature.items()}
# The actions that we send are expected to be in wheel frame (motor encoders)
act_dict = {"action." + key: value for key, value in robot.action_feature.items()}
features_dict = {
**act_dict,
**obs_dict,
**robot.camera_features,
}
dataset = LeRobotDataset.create(
repo_id="user/lekiwi" + str(int(time.time())),
fps=10,
features=features_dict,
)
logging.info("Connecting Teleop Devices")
leader_arm.connect()
keyboard.connect()
logging.info("Connecting remote LeKiwi")
robot.connect()
if not robot.is_connected or not leader_arm.is_connected or not keyboard.is_connected:
logging.error("Failed to connect to all devices")
return
logging.info("Starting LeKiwi teleoperation")
i = 0
while i < NB_CYCLES_CLIENT_CONNECTION:
arm_action = leader_arm.get_action()
base_action = keyboard.get_action()
action = {**arm_action, **base_action} if len(base_action) > 0 else arm_action
action_sent = robot.send_action(action)
observation = robot.get_observation()
frame = {**action_sent, **observation}
frame.update({"task": "Dummy Example Task Dataset"})
logging.info("Saved a frame into the dataset")
dataset.add_frame(frame)
i += 1
logging.info("Disconnecting Teleop Devices and LeKiwi Client")
robot.disconnect()
leader_arm.disconnect()
keyboard.disconnect()
logging.info("Uploading dataset to the hub")
dataset.save_episode()
dataset.push_to_hub()
logging.info("Finished LeKiwi cleanly")
if __name__ == "__main__":
main()

View File

@@ -21,7 +21,7 @@ def main():
i += 1
keyboard.disconnect()
logging.info("Finished LeKiwiRobot cleanly")
logging.info("Finished LeKiwi cleanly")
if __name__ == "__main__":

View File

@@ -48,5 +48,5 @@ default_cache_path = Path(HF_HOME) / "lerobot"
HF_LEROBOT_HOME = Path(os.getenv("HF_LEROBOT_HOME", default_cache_path)).expanduser()
# calibration dir
default_calibration_path = HF_LEROBOT_HOME / ".calibration"
default_calibration_path = HF_LEROBOT_HOME / "calibration"
HF_LEROBOT_CALIBRATION = Path(os.getenv("HF_LEROBOT_CALIBRATION", default_calibration_path)).expanduser()

View File

@@ -15,3 +15,14 @@ class DeviceAlreadyConnectedError(ConnectionError):
):
self.message = message
super().__init__(self.message)
class InvalidActionError(ValueError):
"""Exception raised when an action is already invalid."""
def __init__(
self,
message="The action is invalid. Check the value follows what it is expected from the action space.",
):
self.message = message
super().__init__(self.message)

View File

@@ -1,3 +1,24 @@
# TODO(Steven): Consider doing the following:
# from enum import Enum
# class MyControlTableKey(Enum):
# ID = "ID"
# GOAL_SPEED = "Goal_Speed"
# ...
#
# MY_CONTROL_TABLE ={
# MyControlTableKey.ID.value: (5,1)
# MyControlTableKey.GOAL_SPEED.value: (46, 2)
# ...
# }
# This allows me do to:
# bus.write(MyControlTableKey.GOAL_SPEED, ...)
# Instead of:
# bus.write("Goal_Speed", ...)
# This is important for two reasons:
# 1. The linter will tell me if I'm trying to use an invalid key, instead of me realizing when I get the RunTimeError
# 2. We can change the value of the MyControlTableKey enums without impacting the client code
# {data_name: (address, size_byte)}
# https://emanual.robotis.com/docs/en/dxl/x/{MODEL}/#control-table
X_SERIES_CONTROL_TABLE = {

View File

@@ -2,6 +2,26 @@ FIRMWARE_MAJOR_VERSION = (0, 1)
FIRMWARE_MINOR_VERSION = (1, 1)
MODEL_NUMBER = (3, 2)
# TODO(Steven): Consider doing the following:
# from enum import Enum
# class MyControlTableKey(Enum):
# ID = "ID"
# GOAL_SPEED = "Goal_Speed"
# ...
#
# MY_CONTROL_TABLE ={
# MyControlTableKey.ID.value: (5,1)
# MyControlTableKey.GOAL_SPEED.value: (46, 2)
# ...
# }
# This allows me do to:
# bus.write(MyControlTableKey.GOAL_SPEED, ...)
# Instead of:
# bus.write("Goal_Speed", ...)
# This is important for two reasons:
# 1. The linter will tell me if I'm trying to use an invalid key, instead of me realizing when I get the RunTimeError
# 2. We can change the value of the MyControlTableKey enums without impacting the client code
# data_name: (address, size_byte)
# http://doc.feetech.cn/#/prodinfodownload?srcType=FT-SMS-STS-emanual-229f4476422d4059abfb1cb0
STS_SMS_SERIES_CONTROL_TABLE = {

View File

@@ -570,7 +570,7 @@ class MotorsBus(abc.ABC):
motors = list(self.motors)
elif isinstance(motors, (str, int)):
motors = [motors]
else:
elif not isinstance(motors, list):
raise TypeError(motors)
self.reset_calibration(motors)
@@ -633,6 +633,8 @@ class MotorsBus(abc.ABC):
min_ = self.calibration[motor].range_min
max_ = self.calibration[motor].range_max
bounded_val = min(max_, max(min_, val))
# TODO(Steven): normalization can go boom if max_ == min_, we should add a check probably in record_ranges_of_motions
# (which probably indicates the user forgot to move a motor, most likely a gripper-like one)
if self.motors[motor].norm_mode is MotorNormMode.RANGE_M100_100:
normalized_values[id_] = (((bounded_val - min_) / (max_ - min_)) * 200) - 100
elif self.motors[motor].norm_mode is MotorNormMode.RANGE_0_100:

View File

@@ -194,11 +194,11 @@ sudo chmod 666 /dev/ttyACM1
#### d. Update config file
IMPORTANTLY: Now that you have your ports of leader and follower arm and ip address of the mobile-so100, update the **ip** in Network configuration, **port** in leader_arms and **port** in lekiwi. In the [`LeKiwiRobotConfig`](../lerobot/common/robot_devices/robots/configs.py) file. Where you will find something like:
IMPORTANTLY: Now that you have your ports of leader and follower arm and ip address of the mobile-so100, update the **ip** in Network configuration, **port** in leader_arms and **port** in lekiwi. In the [`LeKiwiConfig`](../lerobot/common/robot_devices/robots/configs.py) file. Where you will find something like:
```python
@RobotConfig.register_subclass("lekiwi")
@dataclass
class LeKiwiRobotConfig(RobotConfig):
class LeKiwiConfig(RobotConfig):
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
@@ -281,7 +281,7 @@ For the wired LeKiwi version your configured IP address should refer to your own
```python
@RobotConfig.register_subclass("lekiwi")
@dataclass
class LeKiwiRobotConfig(RobotConfig):
class LeKiwiConfig(RobotConfig):
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
@@ -446,7 +446,7 @@ You should see on your laptop something like this: ```[INFO] Connected to remote
| F | Decrease speed |
> [!TIP]
> If you use a different keyboard you can change the keys for each command in the [`LeKiwiRobotConfig`](../lerobot/common/robot_devices/robots/configs.py).
> If you use a different keyboard you can change the keys for each command in the [`LeKiwiConfig`](../lerobot/common/robot_devices/robots/configs.py).
### Wired version
If you have the **wired** LeKiwi version please run all commands including both these teleoperation commands on your laptop.

View File

@@ -0,0 +1,3 @@
from .config_lekiwi import LeKiwiClientConfig, LeKiwiConfig
from .lekiwi import LeKiwi
from .lekiwi_client import LeKiwiClient

View File

@@ -0,0 +1,89 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from lerobot.common.cameras.configs import CameraConfig
from lerobot.common.cameras.opencv.configuration_opencv import OpenCVCameraConfig
from ..config import RobotConfig
@RobotConfig.register_subclass("lekiwi")
@dataclass
class LeKiwiConfig(RobotConfig):
port = "/dev/ttyACM0" # port to connect to the bus
disable_torque_on_disconnect: bool = True
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
cameras: dict[str, CameraConfig] = field(
default_factory=lambda: {
"front": OpenCVCameraConfig(
camera_index="/dev/video0", fps=30, width=640, height=480, rotation=None
),
"wrist": OpenCVCameraConfig(
camera_index="/dev/video2", fps=30, width=640, height=480, rotation=180
),
}
)
@dataclass
class LeKiwiHostConfig:
# Network Configuration
port_zmq_cmd: int = 5555
port_zmq_observations: int = 5556
# Duration of the application
connection_time_s: int = 30
# Watchdog: stop the robot if no command is received for over 0.5 seconds.
watchdog_timeout_ms: int = 500
# If robot jitters decrease the frequency and monitor cpu load with `top` in cmd
max_loop_freq_hz: int = 30
@RobotConfig.register_subclass("lekiwi_client")
@dataclass
class LeKiwiClientConfig(RobotConfig):
# Network Configuration
remote_ip: str
port_zmq_cmd: int = 5555
port_zmq_observations: int = 5556
teleop_keys: dict[str, str] = field(
default_factory=lambda: {
# Movement
"forward": "w",
"backward": "s",
"left": "a",
"right": "d",
"rotate_left": "z",
"rotate_right": "x",
# Speed control
"speed_up": "r",
"speed_down": "f",
# quit teleop
"quit": "q",
}
)
polling_timeout_ms: int = 15
connect_timeout_s: int = 5

View File

@@ -1,89 +0,0 @@
from dataclasses import dataclass, field
from lerobot.common.cameras.configs import CameraConfig
from lerobot.common.cameras.opencv.configuration_opencv import OpenCVCameraConfig
from lerobot.common.motors.configs import FeetechMotorsBusConfig, MotorsBusConfig
from lerobot.common.robots.config import RobotConfig
@RobotConfig.register_subclass("lekiwi")
@dataclass
class LeKiwiRobotConfig(RobotConfig):
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
# Network Configuration
ip: str = "192.168.0.193"
port: int = 5555
video_port: int = 5556
cameras: dict[str, CameraConfig] = field(
default_factory=lambda: {
"front": OpenCVCameraConfig(
camera_index="/dev/video0", fps=30, width=640, height=480, rotation=90
),
"wrist": OpenCVCameraConfig(
camera_index="/dev/video2", fps=30, width=640, height=480, rotation=180
),
}
)
calibration_dir: str = ".cache/calibration/lekiwi"
leader_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
port="/dev/tty.usbmodem585A0077581",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
},
),
}
)
follower_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
port="/dev/ttyACM0",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
"left_wheel": (7, "sts3215"),
"back_wheel": (8, "sts3215"),
"right_wheel": (9, "sts3215"),
},
),
}
)
teleop_keys: dict[str, str] = field(
default_factory=lambda: {
# Movement
"forward": "w",
"backward": "s",
"left": "a",
"right": "d",
"rotate_left": "z",
"rotate_right": "x",
# Speed control
"speed_up": "r",
"speed_down": "f",
# quit teleop
"quit": "q",
}
)
mock: bool = False

View File

@@ -0,0 +1,254 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import time
from typing import Any
from lerobot.common.cameras.utils import make_cameras_from_configs
from lerobot.common.constants import OBS_IMAGES, OBS_STATE
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from lerobot.common.motors import Motor, MotorCalibration, MotorNormMode
from lerobot.common.motors.feetech import (
FeetechMotorsBus,
OperatingMode,
)
from ..robot import Robot
from ..utils import ensure_safe_goal_position
from .config_lekiwi import LeKiwiConfig
logger = logging.getLogger(__name__)
class LeKiwi(Robot):
"""
The robot includes a three omniwheel mobile base and a remote follower arm.
The leader arm is connected locally (on the laptop) and its joint positions are recorded and then
forwarded to the remote follower arm (after applying a safety clamp).
In parallel, keyboard teleoperation is used to generate raw velocity commands for the wheels.
"""
config_class = LeKiwiConfig
name = "lekiwi"
def __init__(self, config: LeKiwiConfig):
super().__init__(config)
self.config = config
self.bus = FeetechMotorsBus(
port=self.config.port,
motors={
# arm
"arm_shoulder_pan": Motor(1, "sts3215", MotorNormMode.RANGE_M100_100),
"arm_shoulder_lift": Motor(2, "sts3215", MotorNormMode.RANGE_M100_100),
"arm_elbow_flex": Motor(3, "sts3215", MotorNormMode.RANGE_M100_100),
"arm_wrist_flex": Motor(4, "sts3215", MotorNormMode.RANGE_M100_100),
"arm_wrist_roll": Motor(5, "sts3215", MotorNormMode.RANGE_M100_100),
"arm_gripper": Motor(6, "sts3215", MotorNormMode.RANGE_0_100),
# base
"base_left_wheel": Motor(7, "sts3215", MotorNormMode.RANGE_M100_100),
"base_right_wheel": Motor(8, "sts3215", MotorNormMode.RANGE_M100_100),
"base_back_wheel": Motor(9, "sts3215", MotorNormMode.RANGE_M100_100),
},
calibration=self.calibration,
)
self.arm_motors = [motor for motor in self.bus.motors if motor.startswith("arm")]
self.base_motors = [motor for motor in self.bus.motors if motor.startswith("base")]
self.cameras = make_cameras_from_configs(config.cameras)
@property
def state_feature(self) -> dict:
state_ft = {
"arm_shoulder_pan": {"dtype": "float32"},
"arm_shoulder_lift": {"dtype": "float32"},
"arm_elbow_flex": {"dtype": "float32"},
"arm_wrist_flex": {"dtype": "float32"},
"arm_wrist_roll": {"dtype": "float32"},
"arm_gripper": {"dtype": "float32"},
"base_left_wheel": {"dtype": "float32"},
"base_right_wheel": {"dtype": "float32"},
"base_back_wheel": {"dtype": "float32"},
}
return state_ft
@property
def action_feature(self) -> dict:
return self.state_feature
@property
def camera_features(self) -> dict[str, dict]:
cam_ft = {}
for cam_key, cam in self.cameras.items():
cam_ft[cam_key] = {
"shape": (cam.height, cam.width, cam.channels),
"names": ["height", "width", "channels"],
"info": None,
}
return cam_ft
@property
def is_connected(self) -> bool:
# TODO(aliberts): add cam.is_connected for cam in self.cameras
return self.bus.is_connected
def connect(self) -> None:
if self.is_connected:
raise DeviceAlreadyConnectedError(f"{self} already connected")
self.bus.connect()
if not self.is_calibrated:
self.calibrate()
for cam in self.cameras.values():
cam.connect()
self.configure()
logger.info(f"{self} connected.")
@property
def is_calibrated(self) -> bool:
return self.bus.is_calibrated
def calibrate(self) -> None:
logger.info(f"\nRunning calibration of {self}")
motors = self.arm_motors + self.base_motors
self.bus.disable_torque(self.arm_motors)
for name in self.arm_motors:
self.bus.write("Operating_Mode", name, OperatingMode.POSITION.value)
input("Move robot to the middle of its range of motion and press ENTER....")
homing_offsets = self.bus.set_half_turn_homings(self.arm_motors)
homing_offsets.update(dict.fromkeys(self.base_motors, 0))
full_turn_motor = [
motor for motor in motors if any(keyword in motor for keyword in ["wheel", "wrist"])
]
unknown_range_motors = [motor for motor in motors if motor not in full_turn_motor]
print(
f"Move all arm joints except '{full_turn_motor}' sequentially through their "
"entire ranges of motion.\nRecording positions. Press ENTER to stop..."
)
range_mins, range_maxes = self.bus.record_ranges_of_motion(unknown_range_motors)
for name in full_turn_motor:
range_mins[name] = 0
range_maxes[name] = 4095
self.calibration = {}
for name, motor in self.bus.motors.items():
self.calibration[name] = MotorCalibration(
id=motor.id,
drive_mode=0,
homing_offset=homing_offsets[name],
range_min=range_mins[name],
range_max=range_maxes[name],
)
self.bus.write_calibration(self.calibration)
self._save_calibration()
print("Calibration saved to", self.calibration_fpath)
def configure(self):
# Set-up arm actuators (position mode)
# We assume that at connection time, arm is in a rest position,
# and torque can be safely disabled to run calibration.
self.bus.disable_torque()
self.bus.configure_motors()
for name in self.arm_motors:
self.bus.write("Operating_Mode", name, OperatingMode.POSITION.value)
# Set P_Coefficient to lower value to avoid shakiness (Default is 32)
self.bus.write("P_Coefficient", name, 16)
# Set I_Coefficient and D_Coefficient to default value 0 and 32
self.bus.write("I_Coefficient", name, 0)
self.bus.write("D_Coefficient", name, 32)
for name in self.base_motors:
self.bus.write("Operating_Mode", name, OperatingMode.VELOCITY.value)
self.bus.enable_torque()
def get_observation(self) -> dict[str, Any]:
if not self.is_connected:
raise DeviceNotConnectedError(f"{self} is not connected.")
# Read actuators position for arm and vel for base
start = time.perf_counter()
arm_pos = self.bus.sync_read("Present_Position", self.arm_motors)
base_vel = self.bus.sync_read("Present_Velocity", self.base_motors)
obs_dict = {**arm_pos, **base_vel}
obs_dict = {f"{OBS_STATE}." + key: value for key, value in obs_dict.items()}
dt_ms = (time.perf_counter() - start) * 1e3
logger.debug(f"{self} read state: {dt_ms:.1f}ms")
# Capture images from cameras
for cam_key, cam in self.cameras.items():
start = time.perf_counter()
obs_dict[f"{OBS_IMAGES}.{cam_key}"] = cam.async_read()
dt_ms = (time.perf_counter() - start) * 1e3
logger.debug(f"{self} read {cam_key}: {dt_ms:.1f}ms")
return obs_dict
def send_action(self, action: dict[str, Any]) -> dict[str, Any]:
"""Command lekiwi to move to a target joint configuration.
The relative action magnitude may be clipped depending on the configuration parameter
`max_relative_target`. In this case, the action sent differs from original action.
Thus, this function always returns the action actually sent.
Raises:
RobotDeviceNotConnectedError: if robot is not connected.
Returns:
np.ndarray: the action sent to the motors, potentially clipped.
"""
if not self.is_connected:
raise DeviceNotConnectedError(f"{self} is not connected.")
arm_goal_pos = {k: v for k, v in action.items() if k in self.arm_motors}
base_goal_vel = {k: v for k, v in action.items() if k in self.base_motors}
# Cap goal position when too far away from present position.
# /!\ Slower fps expected due to reading from the follower.
if self.config.max_relative_target is not None:
present_pos = self.bus.sync_read("Present_Position", self.arm_motors)
goal_present_pos = {key: (g_pos, present_pos[key]) for key, g_pos in arm_goal_pos.items()}
arm_safe_goal_pos = ensure_safe_goal_position(goal_present_pos, self.config.max_relative_target)
arm_goal_pos = arm_safe_goal_pos
# Send goal position to the actuators
self.bus.sync_write("Goal_Position", arm_goal_pos)
self.bus.sync_write("Goal_Velocity", base_goal_vel)
return {**arm_goal_pos, **base_goal_vel}
def stop_base(self):
self.bus.sync_write("Goal_Velocity", dict.fromkeys(self.base_motors, 0), num_retry=5)
logger.info("Base motors stopped")
def disconnect(self):
if not self.is_connected:
raise DeviceNotConnectedError(f"{self} is not connected.")
self.stop_base()
self.bus.disconnect(self.config.disable_torque_on_disconnect)
for cam in self.cameras.values():
cam.disconnect()
logger.info(f"{self} disconnected.")

View File

@@ -0,0 +1,495 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import base64
import json
import logging
from typing import Any, Dict, Optional, Tuple
import cv2
import numpy as np
import torch
import zmq
from lerobot.common.constants import OBS_IMAGES, OBS_STATE
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from ..robot import Robot
from .config_lekiwi import LeKiwiClientConfig
class LeKiwiClient(Robot):
config_class = LeKiwiClientConfig
name = "lekiwi_client"
def __init__(self, config: LeKiwiClientConfig):
super().__init__(config)
self.config = config
self.id = config.id
self.robot_type = config.type
self.remote_ip = config.remote_ip
self.port_zmq_cmd = config.port_zmq_cmd
self.port_zmq_observations = config.port_zmq_observations
self.teleop_keys = config.teleop_keys
self.polling_timeout_ms = config.polling_timeout_ms
self.connect_timeout_s = config.connect_timeout_s
self.zmq_context = None
self.zmq_cmd_socket = None
self.zmq_observation_socket = None
self.last_frames = {}
self.last_remote_arm_state = {}
self.last_remote_base_state = {"base_left_wheel": 0, "base_back_wheel": 0, "base_right_wheel": 0}
# Define three speed levels and a current index
self.speed_levels = [
{"xy": 0.1, "theta": 30}, # slow
{"xy": 0.2, "theta": 60}, # medium
{"xy": 0.3, "theta": 90}, # fast
]
self.speed_index = 0 # Start at slow
self._is_connected = False
self.logs = {}
@property
def state_feature(self) -> dict:
state_ft = {
"arm_shoulder_pan": {"shape": (1,), "info": None, "dtype": "float32"},
"arm_shoulder_lift": {"shape": (1,), "info": None, "dtype": "float32"},
"arm_elbow_flex": {"shape": (1,), "info": None, "dtype": "float32"},
"arm_wrist_flex": {"shape": (1,), "info": None, "dtype": "float32"},
"arm_wrist_roll": {"shape": (1,), "info": None, "dtype": "float32"},
"arm_gripper": {"shape": (1,), "info": None, "dtype": "float32"},
"x_cmd": {"shape": (1,), "info": None, "dtype": "float32"},
"y_cmd": {"shape": (1,), "info": None, "dtype": "float32"},
"theta_cmd": {"shape": (1,), "info": None, "dtype": "float32"},
}
return state_ft
@property
def action_feature(self) -> dict:
action_ft = {
"arm_shoulder_pan": {"shape": (1,), "info": None, "dtype": "float32"},
"arm_shoulder_lift": {"shape": (1,), "info": None, "dtype": "float32"},
"arm_elbow_flex": {"shape": (1,), "info": None, "dtype": "float32"},
"arm_wrist_flex": {"shape": (1,), "info": None, "dtype": "float32"},
"arm_wrist_roll": {"shape": (1,), "info": None, "dtype": "float32"},
"arm_gripper": {"shape": (1,), "info": None, "dtype": "float32"},
"base_left_wheel": {"shape": (1,), "info": None, "dtype": "float32"},
"base_right_wheel": {"shape": (1,), "info": None, "dtype": "float32"},
"base_back_wheel": {"shape": (1,), "info": None, "dtype": "float32"},
}
return action_ft
@property
def camera_features(self) -> dict[str, dict]:
cam_ft = {
f"{OBS_IMAGES}.front": {
"shape": (480, 640, 3),
"names": ["height", "width", "channels"],
"info": None,
"dtype": "image",
},
f"{OBS_IMAGES}.wrist": {
"shape": (480, 640, 3),
"names": ["height", "width", "channels"],
"dtype": "image",
"info": None,
},
}
return cam_ft
@property
def is_connected(self) -> bool:
return self._is_connected
@property
def is_calibrated(self) -> bool:
pass
def connect(self) -> None:
"""Establishes ZMQ sockets with the remote mobile robot"""
if self._is_connected:
raise DeviceAlreadyConnectedError(
"LeKiwi Daemon is already connected. Do not run `robot.connect()` twice."
)
self.zmq_context = zmq.Context()
self.zmq_cmd_socket = self.zmq_context.socket(zmq.PUSH)
zmq_cmd_locator = f"tcp://{self.remote_ip}:{self.port_zmq_cmd}"
self.zmq_cmd_socket.connect(zmq_cmd_locator)
self.zmq_cmd_socket.setsockopt(zmq.CONFLATE, 1)
self.zmq_observation_socket = self.zmq_context.socket(zmq.PULL)
zmq_observations_locator = f"tcp://{self.remote_ip}:{self.port_zmq_observations}"
self.zmq_observation_socket.connect(zmq_observations_locator)
self.zmq_observation_socket.setsockopt(zmq.CONFLATE, 1)
poller = zmq.Poller()
poller.register(self.zmq_observation_socket, zmq.POLLIN)
socks = dict(poller.poll(self.connect_timeout_s * 1000))
if self.zmq_observation_socket not in socks or socks[self.zmq_observation_socket] != zmq.POLLIN:
raise DeviceNotConnectedError("Timeout waiting for LeKiwi Host to connect expired.")
self._is_connected = True
def calibrate(self) -> None:
pass
@staticmethod
def _degps_to_raw(degps: float) -> int:
steps_per_deg = 4096.0 / 360.0
speed_in_steps = degps * steps_per_deg
speed_int = int(round(speed_in_steps))
# Cap the value to fit within signed 16-bit range (-32768 to 32767)
if speed_int > 0x7FFF:
speed_int = 0x7FFF # 32767 -> maximum positive value
elif speed_int < -0x8000:
speed_int = -0x8000 # -32768 -> minimum negative value
return speed_int
@staticmethod
def _raw_to_degps(raw_speed: int) -> float:
steps_per_deg = 4096.0 / 360.0
magnitude = raw_speed
degps = magnitude / steps_per_deg
return degps
def _body_to_wheel_raw(
self,
x_cmd: float,
y_cmd: float,
theta_cmd: float,
wheel_radius: float = 0.05,
base_radius: float = 0.125,
max_raw: int = 3000,
) -> dict:
"""
Convert desired body-frame velocities into wheel raw commands.
Parameters:
x_cmd : Linear velocity in x (m/s).
y_cmd : Linear velocity in y (m/s).
theta_cmd : Rotational velocity (deg/s).
wheel_radius: Radius of each wheel (meters).
base_radius : Distance from the center of rotation to each wheel (meters).
max_raw : Maximum allowed raw command (ticks) per wheel.
Returns:
A dictionary with wheel raw commands:
{"base_left_wheel": value, "base_back_wheel": value, "base_right_wheel": value}.
Notes:
- Internally, the method converts theta_cmd to rad/s for the kinematics.
- The raw command is computed from the wheels angular speed in deg/s
using _degps_to_raw(). If any command exceeds max_raw, all commands
are scaled down proportionally.
"""
# Convert rotational velocity from deg/s to rad/s.
theta_rad = theta_cmd * (np.pi / 180.0)
# Create the body velocity vector [x, y, theta_rad].
velocity_vector = np.array([x_cmd, y_cmd, theta_rad])
# Define the wheel mounting angles with a -90° offset.
angles = np.radians(np.array([240, 120, 0]) - 90)
# Build the kinematic matrix: each row maps body velocities to a wheels linear speed.
# The third column (base_radius) accounts for the effect of rotation.
m = np.array([[np.cos(a), np.sin(a), base_radius] for a in angles])
# Compute each wheels linear speed (m/s) and then its angular speed (rad/s).
wheel_linear_speeds = m.dot(velocity_vector)
wheel_angular_speeds = wheel_linear_speeds / wheel_radius
# Convert wheel angular speeds from rad/s to deg/s.
wheel_degps = wheel_angular_speeds * (180.0 / np.pi)
# Scaling
steps_per_deg = 4096.0 / 360.0
raw_floats = [abs(degps) * steps_per_deg for degps in wheel_degps]
max_raw_computed = max(raw_floats)
if max_raw_computed > max_raw:
scale = max_raw / max_raw_computed
wheel_degps = wheel_degps * scale
# Convert each wheels angular speed (deg/s) to a raw integer.
wheel_raw = [self._degps_to_raw(deg) for deg in wheel_degps]
return {
"base_left_wheel": wheel_raw[0],
"base_back_wheel": wheel_raw[1],
"base_right_wheel": wheel_raw[2],
}
def _wheel_raw_to_body(
self, wheel_raw: dict[str, Any], wheel_radius: float = 0.05, base_radius: float = 0.125
) -> dict[str, Any]:
"""
Convert wheel raw command feedback back into body-frame velocities.
Parameters:
wheel_raw : Vector with raw wheel commands ("base_left_wheel", "base_back_wheel", "base_right_wheel").
wheel_radius: Radius of each wheel (meters).
base_radius : Distance from the robot center to each wheel (meters).
Returns:
A dict (x_cmd, y_cmd, theta_cmd) where:
OBS_STATE.x_cmd : Linear velocity in x (m/s).
OBS_STATE.y_cmd : Linear velocity in y (m/s).
OBS_STATE.theta_cmd : Rotational velocity in deg/s.
"""
# Convert each raw command back to an angular speed in deg/s.
wheel_degps = np.array([LeKiwiClient._raw_to_degps(int(v)) for _, v in wheel_raw.items()])
# Convert from deg/s to rad/s.
wheel_radps = wheel_degps * (np.pi / 180.0)
# Compute each wheels linear speed (m/s) from its angular speed.
wheel_linear_speeds = wheel_radps * wheel_radius
# Define the wheel mounting angles with a -90° offset.
angles = np.radians(np.array([240, 120, 0]) - 90)
m = np.array([[np.cos(a), np.sin(a), base_radius] for a in angles])
# Solve the inverse kinematics: body_velocity = M⁻¹ · wheel_linear_speeds.
m_inv = np.linalg.inv(m)
velocity_vector = m_inv.dot(wheel_linear_speeds)
x_cmd, y_cmd, theta_rad = velocity_vector
theta_cmd = theta_rad * (180.0 / np.pi)
return {
f"{OBS_STATE}.x_cmd": x_cmd * 1000,
f"{OBS_STATE}.y_cmd": y_cmd * 1000,
f"{OBS_STATE}.theta_cmd": theta_cmd,
} # Convert to mm/s
def _poll_and_get_latest_message(self) -> Optional[str]:
"""Polls the ZMQ socket for a limited time and returns the latest message string."""
poller = zmq.Poller()
poller.register(self.zmq_observation_socket, zmq.POLLIN)
try:
socks = dict(poller.poll(self.polling_timeout_ms))
except zmq.ZMQError as e:
logging.error(f"ZMQ polling error: {e}")
return None
if self.zmq_observation_socket not in socks:
logging.info("No new data available within timeout.")
return None
last_msg = None
while True:
try:
msg = self.zmq_observation_socket.recv_string(zmq.NOBLOCK)
last_msg = msg
except zmq.Again:
break
if last_msg is None:
logging.warning("Poller indicated data, but failed to retrieve message.")
return last_msg
def _parse_observation_json(self, obs_string: str) -> Optional[Dict[str, Any]]:
"""Parses the JSON observation string."""
try:
return json.loads(obs_string)
except json.JSONDecodeError as e:
logging.error(f"Error decoding JSON observation: {e}")
return None
def _decode_image_from_b64(self, image_b64: str) -> Optional[np.ndarray]:
"""Decodes a base64 encoded image string to an OpenCV image."""
if not image_b64:
return None
try:
jpg_data = base64.b64decode(image_b64)
np_arr = np.frombuffer(jpg_data, dtype=np.uint8)
frame = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
if frame is None:
logging.warning("cv2.imdecode returned None for an image.")
return frame
except (TypeError, ValueError) as e:
logging.error(f"Error decoding base64 image data: {e}")
return None
def _remote_state_from_obs(
self, observation: Dict[str, Any]
) -> Tuple[Dict[str, np.ndarray], Dict[str, Any], Dict[str, Any]]:
"""Extracts frames, speed, and arm state from the parsed observation."""
# Separate image and state data
image_observation = {k: v for k, v in observation.items() if k.startswith(OBS_IMAGES)}
state_observation = {k: v for k, v in observation.items() if k.startswith(OBS_STATE)}
# Decode images
current_frames: Dict[str, np.ndarray] = {}
for cam_name, image_b64 in image_observation.items():
frame = self._decode_image_from_b64(image_b64)
if frame is not None:
current_frames[cam_name] = frame
# Extract state components
current_arm_state = {k: v for k, v in state_observation.items() if k.startswith(f"{OBS_STATE}.arm")}
current_base_state = {k: v for k, v in state_observation.items() if k.startswith(f"{OBS_STATE}.base")}
return current_frames, current_arm_state, current_base_state
def _get_data(self) -> Tuple[Dict[str, np.ndarray], Dict[str, Any], Dict[str, Any]]:
"""
Polls the video socket for the latest observation data.
Attempts to retrieve and decode the latest message within a short timeout.
If successful, updates and returns the new frames, speed, and arm state.
If no new data arrives or decoding fails, returns the last known values.
"""
# 1. Get the latest message string from the socket
latest_message_str = self._poll_and_get_latest_message()
# 2. If no message, return cached data
if latest_message_str is None:
return self.last_frames, self.last_remote_arm_state, self.last_remote_base_state
# 3. Parse the JSON message
observation = self._parse_observation_json(latest_message_str)
# 4. If JSON parsing failed, return cached data
if observation is None:
return self.last_frames, self.last_remote_arm_state, self.last_remote_base_state
# 5. Process the valid observation data
try:
new_frames, new_arm_state, new_base_state = self._remote_state_from_obs(observation)
except Exception as e:
logging.error(f"Error processing observation data, serving last observation: {e}")
return self.last_frames, self.last_remote_arm_state, self.last_remote_base_state
self.last_frames = new_frames
self.last_remote_arm_state = new_arm_state
self.last_remote_base_state = new_base_state
return new_frames, new_arm_state, new_base_state
def get_observation(self) -> dict[str, Any]:
"""
Capture observations from the remote robot: current follower arm positions,
present wheel speeds (converted to body-frame velocities: x, y, theta),
and a camera frame. Receives over ZMQ, translate to body-frame vel
"""
if not self._is_connected:
raise DeviceNotConnectedError("LeKiwiClient is not connected. You need to run `robot.connect()`.")
frames, remote_arm_state, remote_base_state = self._get_data()
remote_body_state = self._wheel_raw_to_body(remote_base_state)
obs_dict = {**remote_arm_state, **remote_body_state}
# TODO(Steven): Remove this when it is possible to record a non-numpy array value
obs_dict = {k: np.array([v], dtype=np.float32) for k, v in obs_dict.items()}
# Loop over each configured camera
for cam_name, frame in frames.items():
if frame is None:
logging.warning("Frame is None")
frame = np.zeros((640, 480, 3), dtype=np.uint8)
obs_dict[cam_name] = torch.from_numpy(frame)
return obs_dict
def _from_keyboard_to_wheel_action(self, pressed_keys: np.ndarray):
# Speed control
if self.teleop_keys["speed_up"] in pressed_keys:
self.speed_index = min(self.speed_index + 1, 2)
if self.teleop_keys["speed_down"] in pressed_keys:
self.speed_index = max(self.speed_index - 1, 0)
speed_setting = self.speed_levels[self.speed_index]
xy_speed = speed_setting["xy"] # e.g. 0.1, 0.25, or 0.4
theta_speed = speed_setting["theta"] # e.g. 30, 60, or 90
x_cmd = 0.0 # m/s forward/backward
y_cmd = 0.0 # m/s lateral
theta_cmd = 0.0 # deg/s rotation
if self.teleop_keys["forward"] in pressed_keys:
x_cmd += xy_speed
if self.teleop_keys["backward"] in pressed_keys:
x_cmd -= xy_speed
if self.teleop_keys["left"] in pressed_keys:
y_cmd += xy_speed
if self.teleop_keys["right"] in pressed_keys:
y_cmd -= xy_speed
if self.teleop_keys["rotate_left"] in pressed_keys:
theta_cmd += theta_speed
if self.teleop_keys["rotate_right"] in pressed_keys:
theta_cmd -= theta_speed
return self._body_to_wheel_raw(x_cmd, y_cmd, theta_cmd)
def configure(self):
pass
def send_action(self, action: dict[str, Any]) -> dict[str, Any]:
"""Command lekiwi to move to a target joint configuration. Translates to motor space + sends over ZMQ
Args:
action (np.ndarray): array containing the goal positions for the motors.
Raises:
RobotDeviceNotConnectedError: if robot is not connected.
Returns:
np.ndarray: the action sent to the motors, potentially clipped.
"""
if not self._is_connected:
raise DeviceNotConnectedError(
"ManipulatorRobot is not connected. You need to run `robot.connect()`."
)
goal_pos = {}
common_keys = [
key
for key in action
if key in (motor.replace("arm_", "") for motor, _ in self.action_feature.items())
]
arm_actions = {"arm_" + arm_motor: action[arm_motor] for arm_motor in common_keys}
goal_pos = arm_actions
keyboard_keys = np.array(list(set(action.keys()) - set(common_keys)))
wheel_actions = self._from_keyboard_to_wheel_action(keyboard_keys)
goal_pos = {**arm_actions, **wheel_actions}
self.zmq_cmd_socket.send_string(json.dumps(goal_pos)) # action is in motor space
# TODO(Steven): Remove the np conversion when it is possible to record a non-numpy array value
goal_pos = {"action." + k: np.array([v], dtype=np.float32) for k, v in goal_pos.items()}
return goal_pos
def disconnect(self):
"""Cleans ZMQ comms"""
if not self._is_connected:
raise DeviceNotConnectedError(
"LeKiwi is not connected. You need to run `robot.connect()` before disconnecting."
)
self.zmq_observation_socket.close()
self.zmq_cmd_socket.close()
self.zmq_context.term()
self._is_connected = False

View File

@@ -0,0 +1,129 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import base64
import json
import logging
import time
import cv2
import zmq
from lerobot.common.constants import OBS_IMAGES
from .config_lekiwi import LeKiwiConfig, LeKiwiHostConfig
from .lekiwi import LeKiwi
class LeKiwiHost:
def __init__(self, config: LeKiwiHostConfig):
self.zmq_context = zmq.Context()
self.zmq_cmd_socket = self.zmq_context.socket(zmq.PULL)
self.zmq_cmd_socket.setsockopt(zmq.CONFLATE, 1)
self.zmq_cmd_socket.bind(f"tcp://*:{config.port_zmq_cmd}")
self.zmq_observation_socket = self.zmq_context.socket(zmq.PUSH)
self.zmq_observation_socket.setsockopt(zmq.CONFLATE, 1)
self.zmq_observation_socket.bind(f"tcp://*:{config.port_zmq_observations}")
self.connection_time_s = config.connection_time_s
self.watchdog_timeout_ms = config.watchdog_timeout_ms
self.max_loop_freq_hz = config.max_loop_freq_hz
def disconnect(self):
self.zmq_observation_socket.close()
self.zmq_cmd_socket.close()
self.zmq_context.term()
def main():
logging.info("Configuring LeKiwi")
robot_config = LeKiwiConfig()
robot = LeKiwi(robot_config)
logging.info("Connecting LeKiwi")
robot.connect()
logging.info("Starting HostAgent")
host_config = LeKiwiHostConfig()
host = LeKiwiHost(host_config)
last_cmd_time = time.time()
watchdog_active = False
logging.info("Waiting for commands...")
try:
# Business logic
start = time.perf_counter()
duration = 0
while duration < host.connection_time_s:
loop_start_time = time.time()
try:
msg = host.zmq_cmd_socket.recv_string(zmq.NOBLOCK)
data = dict(json.loads(msg))
_action_sent = robot.send_action(data)
last_cmd_time = time.time()
watchdog_active = False
except zmq.Again:
if not watchdog_active:
logging.warning("No command available")
except Exception as e:
logging.error("Message fetching failed: %s", e)
now = time.time()
if (now - last_cmd_time > host.watchdog_timeout_ms / 1000) and not watchdog_active:
logging.warning(
f"Command not received for more than {host.watchdog_timeout_ms} milliseconds. Stopping the base."
)
watchdog_active = True
robot.stop_base()
last_observation = robot.get_observation()
# Encode ndarrays to base64 strings
for cam_key, _ in robot.cameras.items():
ret, buffer = cv2.imencode(
".jpg", last_observation[f"{OBS_IMAGES}.{cam_key}"], [int(cv2.IMWRITE_JPEG_QUALITY), 90]
)
if ret:
last_observation[f"{OBS_IMAGES}.{cam_key}"] = base64.b64encode(buffer).decode("utf-8")
else:
last_observation[f"{OBS_IMAGES}.{cam_key}"] = ""
# Send the observation to the remote agent
try:
host.zmq_observation_socket.send_string(json.dumps(last_observation), flags=zmq.NOBLOCK)
except zmq.Again:
logging.info("Dropping observation, no client connected")
# Ensure a short sleep to avoid overloading the CPU.
elapsed = time.time() - loop_start_time
time.sleep(max(1 / host.max_loop_freq_hz - elapsed, 0))
duration = time.perf_counter() - start
print("Cycle time reached.")
except KeyboardInterrupt:
print("Keyboard interrupt received. Exiting...")
finally:
print("Shutting down Lekiwi Host.")
robot.disconnect()
host.disconnect()
logging.info("Finished LeKiwi cleanly")
if __name__ == "__main__":
main()

View File

@@ -1,224 +0,0 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import base64
import json
import threading
import time
from pathlib import Path
import cv2
import zmq
from lerobot.common.robots.mobile_manipulator import LeKiwi
def setup_zmq_sockets(config):
context = zmq.Context()
cmd_socket = context.socket(zmq.PULL)
cmd_socket.setsockopt(zmq.CONFLATE, 1)
cmd_socket.bind(f"tcp://*:{config.port}")
video_socket = context.socket(zmq.PUSH)
video_socket.setsockopt(zmq.CONFLATE, 1)
video_socket.bind(f"tcp://*:{config.video_port}")
return context, cmd_socket, video_socket
def run_camera_capture(cameras, images_lock, latest_images_dict, stop_event):
while not stop_event.is_set():
local_dict = {}
for name, cam in cameras.items():
frame = cam.async_read()
ret, buffer = cv2.imencode(".jpg", frame, [int(cv2.IMWRITE_JPEG_QUALITY), 90])
if ret:
local_dict[name] = base64.b64encode(buffer).decode("utf-8")
else:
local_dict[name] = ""
with images_lock:
latest_images_dict.update(local_dict)
time.sleep(0.01)
def calibrate_follower_arm(motors_bus, calib_dir_str):
"""
Calibrates the follower arm. Attempts to load an existing calibration file;
if not found, runs manual calibration and saves the result.
"""
calib_dir = Path(calib_dir_str)
calib_dir.mkdir(parents=True, exist_ok=True)
calib_file = calib_dir / "main_follower.json"
try:
from lerobot.common.motors.feetech.feetech_calibration import run_full_arm_calibration
except ImportError:
print("[WARNING] Calibration function not available. Skipping calibration.")
return
if calib_file.exists():
with open(calib_file) as f:
calibration = json.load(f)
print(f"[INFO] Loaded calibration from {calib_file}")
else:
print("[INFO] Calibration file not found. Running manual calibration...")
calibration = run_full_arm_calibration(motors_bus, "lekiwi", "follower_arm", "follower")
print(f"[INFO] Calibration complete. Saving to {calib_file}")
with open(calib_file, "w") as f:
json.dump(calibration, f)
try:
motors_bus.set_calibration(calibration)
print("[INFO] Applied calibration for follower arm.")
except Exception as e:
print(f"[WARNING] Could not apply calibration: {e}")
def run_lekiwi(robot_config):
"""
Runs the LeKiwi robot:
- Sets up cameras and connects them.
- Initializes the follower arm motors.
- Calibrates the follower arm if necessary.
- Creates ZeroMQ sockets for receiving commands and streaming observations.
- Processes incoming commands (arm and wheel commands) and sends back sensor and camera data.
"""
# Import helper functions and classes
from lerobot.common.cameras.utils import make_cameras_from_configs
from lerobot.common.motors.feetech.feetech import FeetechMotorsBus, TorqueMode
# Initialize cameras from the robot configuration.
cameras = make_cameras_from_configs(robot_config.cameras)
for cam in cameras.values():
cam.connect()
# Initialize the motors bus using the follower arm configuration.
motor_config = robot_config.follower_arms.get("main")
if motor_config is None:
print("[ERROR] Follower arm 'main' configuration not found.")
return
motors_bus = FeetechMotorsBus(motor_config)
motors_bus.connect()
# Calibrate the follower arm.
calibrate_follower_arm(motors_bus, robot_config.calibration_dir)
# Create the LeKiwi robot instance.
robot = LeKiwi(motors_bus)
# Define the expected arm motor IDs.
arm_motor_ids = ["shoulder_pan", "shoulder_lift", "elbow_flex", "wrist_flex", "wrist_roll", "gripper"]
# Disable torque for each arm motor.
for motor in arm_motor_ids:
motors_bus.write("Torque_Enable", TorqueMode.DISABLED.value, motor)
# Set up ZeroMQ sockets.
context, cmd_socket, video_socket = setup_zmq_sockets(robot_config)
# Start the camera capture thread.
latest_images_dict = {}
images_lock = threading.Lock()
stop_event = threading.Event()
cam_thread = threading.Thread(
target=run_camera_capture, args=(cameras, images_lock, latest_images_dict, stop_event), daemon=True
)
cam_thread.start()
last_cmd_time = time.time()
print("LeKiwi robot server started. Waiting for commands...")
try:
while True:
loop_start_time = time.time()
# Process incoming commands (non-blocking).
while True:
try:
msg = cmd_socket.recv_string(zmq.NOBLOCK)
except zmq.Again:
break
try:
data = json.loads(msg)
# Process arm position commands.
if "arm_positions" in data:
arm_positions = data["arm_positions"]
if not isinstance(arm_positions, list):
print(f"[ERROR] Invalid arm_positions: {arm_positions}")
elif len(arm_positions) < len(arm_motor_ids):
print(
f"[WARNING] Received {len(arm_positions)} arm positions, expected {len(arm_motor_ids)}"
)
else:
for motor, pos in zip(arm_motor_ids, arm_positions, strict=False):
motors_bus.write("Goal_Position", pos, motor)
# Process wheel (base) commands.
if "raw_velocity" in data:
raw_command = data["raw_velocity"]
# Expect keys: "left_wheel", "back_wheel", "right_wheel".
command_speeds = [
int(raw_command.get("left_wheel", 0)),
int(raw_command.get("back_wheel", 0)),
int(raw_command.get("right_wheel", 0)),
]
robot.set_velocity(command_speeds)
last_cmd_time = time.time()
except Exception as e:
print(f"[ERROR] Parsing message failed: {e}")
# Watchdog: stop the robot if no command is received for over 0.5 seconds.
now = time.time()
if now - last_cmd_time > 0.5:
robot.stop()
last_cmd_time = now
# Read current wheel speeds from the robot.
current_velocity = robot.read_velocity()
# Read the follower arm state from the motors bus.
follower_arm_state = []
for motor in arm_motor_ids:
try:
pos = motors_bus.read("Present_Position", motor)
# Convert the position to a float (or use as is if already numeric).
follower_arm_state.append(float(pos) if not isinstance(pos, (int, float)) else pos)
except Exception as e:
print(f"[ERROR] Reading motor {motor} failed: {e}")
# Get the latest camera images.
with images_lock:
images_dict_copy = dict(latest_images_dict)
# Build the observation dictionary.
observation = {
"images": images_dict_copy,
"present_speed": current_velocity,
"follower_arm_state": follower_arm_state,
}
# Send the observation over the video socket.
video_socket.send_string(json.dumps(observation))
# Ensure a short sleep to avoid overloading the CPU.
elapsed = time.time() - loop_start_time
time.sleep(
max(0.033 - elapsed, 0)
) # If robot jitters increase the sleep and monitor cpu load with `top` in cmd
except KeyboardInterrupt:
print("Shutting down LeKiwi server.")
finally:
stop_event.set()
cam_thread.join()
robot.stop()
motors_bus.disconnect()
cmd_socket.close()
video_socket.close()
context.term()

View File

@@ -1,692 +0,0 @@
import base64
import json
import os
import sys
from pathlib import Path
import cv2
import numpy as np
import torch
import zmq
from lerobot.common.cameras.utils import make_cameras_from_configs
from lerobot.common.errors import DeviceNotConnectedError
from lerobot.common.motors.feetech.feetech import TorqueMode
from lerobot.common.motors.feetech.feetech_calibration import run_full_arm_calibration
from lerobot.common.motors.motors_bus import MotorsBus
from lerobot.common.motors.utils import make_motors_buses_from_configs
from lerobot.common.robots.lekiwi.configuration_lekiwi import LeKiwiRobotConfig
from lerobot.common.robots.utils import get_arm_id
PYNPUT_AVAILABLE = True
try:
# Only import if there's a valid X server or if we're not on a Pi
if ("DISPLAY" not in os.environ) and ("linux" in sys.platform):
print("No DISPLAY set. Skipping pynput import.")
raise ImportError("pynput blocked intentionally due to no display.")
from pynput import keyboard
except ImportError:
keyboard = None
PYNPUT_AVAILABLE = False
except Exception as e:
keyboard = None
PYNPUT_AVAILABLE = False
print(f"Could not import pynput: {e}")
class MobileManipulator:
"""
MobileManipulator is a class for connecting to and controlling a remote mobile manipulator robot.
The robot includes a three omniwheel mobile base and a remote follower arm.
The leader arm is connected locally (on the laptop) and its joint positions are recorded and then
forwarded to the remote follower arm (after applying a safety clamp).
In parallel, keyboard teleoperation is used to generate raw velocity commands for the wheels.
"""
def __init__(self, config: LeKiwiRobotConfig):
"""
Expected keys in config:
- ip, port, video_port for the remote connection.
- calibration_dir, leader_arms, follower_arms, max_relative_target, etc.
"""
self.robot_type = config.type
self.config = config
self.remote_ip = config.ip
self.remote_port = config.port
self.remote_port_video = config.video_port
self.calibration_dir = Path(self.config.calibration_dir)
self.logs = {}
self.teleop_keys = self.config.teleop_keys
# For teleoperation, the leader arm (local) is used to record the desired arm pose.
self.leader_arms = make_motors_buses_from_configs(self.config.leader_arms)
self.follower_arms = make_motors_buses_from_configs(self.config.follower_arms)
self.cameras = make_cameras_from_configs(self.config.cameras)
self.is_connected = False
self.last_frames = {}
self.last_present_speed = {}
self.last_remote_arm_state = torch.zeros(6, dtype=torch.float32)
# Define three speed levels and a current index
self.speed_levels = [
{"xy": 0.1, "theta": 30}, # slow
{"xy": 0.2, "theta": 60}, # medium
{"xy": 0.3, "theta": 90}, # fast
]
self.speed_index = 0 # Start at slow
# ZeroMQ context and sockets.
self.context = None
self.cmd_socket = None
self.video_socket = None
# Keyboard state for base teleoperation.
self.running = True
self.pressed_keys = {
"forward": False,
"backward": False,
"left": False,
"right": False,
"rotate_left": False,
"rotate_right": False,
}
if PYNPUT_AVAILABLE:
print("pynput is available - enabling local keyboard listener.")
self.listener = keyboard.Listener(
on_press=self.on_press,
on_release=self.on_release,
)
self.listener.start()
else:
print("pynput not available - skipping local keyboard listener.")
self.listener = None
def get_motor_names(self, arms: dict[str, MotorsBus]) -> list:
return [f"{arm}_{motor}" for arm, bus in arms.items() for motor in bus.motors]
@property
def camera_features(self) -> dict:
cam_ft = {}
for cam_key, cam in self.cameras.items():
key = f"observation.images.{cam_key}"
cam_ft[key] = {
"shape": (cam.height, cam.width, cam.channels),
"names": ["height", "width", "channels"],
"info": None,
}
return cam_ft
@property
def motor_features(self) -> dict:
follower_arm_names = [
"shoulder_pan",
"shoulder_lift",
"elbow_flex",
"wrist_flex",
"wrist_roll",
"gripper",
]
observations = ["x_mm", "y_mm", "theta"]
combined_names = follower_arm_names + observations
return {
"action": {
"dtype": "float32",
"shape": (len(combined_names),),
"names": combined_names,
},
"observation.state": {
"dtype": "float32",
"shape": (len(combined_names),),
"names": combined_names,
},
}
@property
def features(self):
return {**self.motor_features, **self.camera_features}
@property
def has_camera(self):
return len(self.cameras) > 0
@property
def num_cameras(self):
return len(self.cameras)
@property
def available_arms(self):
available = []
for name in self.leader_arms:
available.append(get_arm_id(name, "leader"))
for name in self.follower_arms:
available.append(get_arm_id(name, "follower"))
return available
def on_press(self, key):
try:
# Movement
if key.char == self.teleop_keys["forward"]:
self.pressed_keys["forward"] = True
elif key.char == self.teleop_keys["backward"]:
self.pressed_keys["backward"] = True
elif key.char == self.teleop_keys["left"]:
self.pressed_keys["left"] = True
elif key.char == self.teleop_keys["right"]:
self.pressed_keys["right"] = True
elif key.char == self.teleop_keys["rotate_left"]:
self.pressed_keys["rotate_left"] = True
elif key.char == self.teleop_keys["rotate_right"]:
self.pressed_keys["rotate_right"] = True
# Quit teleoperation
elif key.char == self.teleop_keys["quit"]:
self.running = False
return False
# Speed control
elif key.char == self.teleop_keys["speed_up"]:
self.speed_index = min(self.speed_index + 1, 2)
print(f"Speed index increased to {self.speed_index}")
elif key.char == self.teleop_keys["speed_down"]:
self.speed_index = max(self.speed_index - 1, 0)
print(f"Speed index decreased to {self.speed_index}")
except AttributeError:
# e.g., if key is special like Key.esc
if key == keyboard.Key.esc:
self.running = False
return False
def on_release(self, key):
try:
if hasattr(key, "char"):
if key.char == self.teleop_keys["forward"]:
self.pressed_keys["forward"] = False
elif key.char == self.teleop_keys["backward"]:
self.pressed_keys["backward"] = False
elif key.char == self.teleop_keys["left"]:
self.pressed_keys["left"] = False
elif key.char == self.teleop_keys["right"]:
self.pressed_keys["right"] = False
elif key.char == self.teleop_keys["rotate_left"]:
self.pressed_keys["rotate_left"] = False
elif key.char == self.teleop_keys["rotate_right"]:
self.pressed_keys["rotate_right"] = False
except AttributeError:
pass
def connect(self):
if not self.leader_arms:
raise ValueError("MobileManipulator has no leader arm to connect.")
for name in self.leader_arms:
print(f"Connecting {name} leader arm.")
self.calibrate_leader()
# Set up ZeroMQ sockets to communicate with the remote mobile robot.
self.context = zmq.Context()
self.cmd_socket = self.context.socket(zmq.PUSH)
connection_string = f"tcp://{self.remote_ip}:{self.remote_port}"
self.cmd_socket.connect(connection_string)
self.cmd_socket.setsockopt(zmq.CONFLATE, 1)
self.video_socket = self.context.socket(zmq.PULL)
video_connection = f"tcp://{self.remote_ip}:{self.remote_port_video}"
self.video_socket.connect(video_connection)
self.video_socket.setsockopt(zmq.CONFLATE, 1)
print(
f"[INFO] Connected to remote robot at {connection_string} and video stream at {video_connection}."
)
self.is_connected = True
def load_or_run_calibration_(self, name, arm, arm_type):
arm_id = get_arm_id(name, arm_type)
arm_calib_path = self.calibration_dir / f"{arm_id}.json"
if arm_calib_path.exists():
with open(arm_calib_path) as f:
calibration = json.load(f)
else:
print(f"Missing calibration file '{arm_calib_path}'")
calibration = run_full_arm_calibration(arm, self.robot_type, name, arm_type)
print(f"Calibration is done! Saving calibration file '{arm_calib_path}'")
arm_calib_path.parent.mkdir(parents=True, exist_ok=True)
with open(arm_calib_path, "w") as f:
json.dump(calibration, f)
return calibration
def calibrate_leader(self):
for name, arm in self.leader_arms.items():
# Connect the bus
arm.connect()
# Disable torque on all motors
for motor_id in arm.motors:
arm.write("Torque_Enable", TorqueMode.DISABLED.value, motor_id)
# Now run calibration
calibration = self.load_or_run_calibration_(name, arm, "leader")
arm.set_calibration(calibration)
def calibrate_follower(self):
for name, bus in self.follower_arms.items():
bus.connect()
# Disable torque on all motors
for motor_id in bus.motors:
bus.write("Torque_Enable", 0, motor_id)
# Then filter out wheels
arm_only_dict = {k: v for k, v in bus.motors.items() if not k.startswith("wheel_")}
if not arm_only_dict:
continue
original_motors = bus.motors
bus.motors = arm_only_dict
calibration = self.load_or_run_calibration_(name, bus, "follower")
bus.set_calibration(calibration)
bus.motors = original_motors
def _get_data(self):
"""
Polls the video socket for up to 15 ms. If data arrives, decode only
the *latest* message, returning frames, speed, and arm state. If
nothing arrives for any field, use the last known values.
"""
frames = {}
present_speed = {}
remote_arm_state_tensor = torch.zeros(6, dtype=torch.float32)
# Poll up to 15 ms
poller = zmq.Poller()
poller.register(self.video_socket, zmq.POLLIN)
socks = dict(poller.poll(15))
if self.video_socket not in socks or socks[self.video_socket] != zmq.POLLIN:
# No new data arrived → reuse ALL old data
return (self.last_frames, self.last_present_speed, self.last_remote_arm_state)
# Drain all messages, keep only the last
last_msg = None
while True:
try:
obs_string = self.video_socket.recv_string(zmq.NOBLOCK)
last_msg = obs_string
except zmq.Again:
break
if not last_msg:
# No new message → also reuse old
return (self.last_frames, self.last_present_speed, self.last_remote_arm_state)
# Decode only the final message
try:
observation = json.loads(last_msg)
images_dict = observation.get("images", {})
new_speed = observation.get("present_speed", {})
new_arm_state = observation.get("follower_arm_state", None)
# Convert images
for cam_name, image_b64 in images_dict.items():
if image_b64:
jpg_data = base64.b64decode(image_b64)
np_arr = np.frombuffer(jpg_data, dtype=np.uint8)
frame_candidate = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
if frame_candidate is not None:
frames[cam_name] = frame_candidate
# If remote_arm_state is None and frames is None there is no message then use the previous message
if new_arm_state is not None and frames is not None:
self.last_frames = frames
remote_arm_state_tensor = torch.tensor(new_arm_state, dtype=torch.float32)
self.last_remote_arm_state = remote_arm_state_tensor
present_speed = new_speed
self.last_present_speed = new_speed
else:
frames = self.last_frames
remote_arm_state_tensor = self.last_remote_arm_state
present_speed = self.last_present_speed
except Exception as e:
print(f"[DEBUG] Error decoding video message: {e}")
# If decode fails, fall back to old data
return (self.last_frames, self.last_present_speed, self.last_remote_arm_state)
return frames, present_speed, remote_arm_state_tensor
def _process_present_speed(self, present_speed: dict) -> torch.Tensor:
state_tensor = torch.zeros(3, dtype=torch.int32)
if present_speed:
decoded = {key: MobileManipulator.raw_to_degps(value) for key, value in present_speed.items()}
if "1" in decoded:
state_tensor[0] = decoded["1"]
if "2" in decoded:
state_tensor[1] = decoded["2"]
if "3" in decoded:
state_tensor[2] = decoded["3"]
return state_tensor
def teleop_step(
self, record_data: bool = False
) -> None | tuple[dict[str, torch.Tensor], dict[str, torch.Tensor]]:
if not self.is_connected:
raise DeviceNotConnectedError("MobileManipulator is not connected. Run `connect()` first.")
speed_setting = self.speed_levels[self.speed_index]
xy_speed = speed_setting["xy"] # e.g. 0.1, 0.25, or 0.4
theta_speed = speed_setting["theta"] # e.g. 30, 60, or 90
# Prepare to assign the position of the leader to the follower
arm_positions = []
for name in self.leader_arms:
pos = self.leader_arms[name].read("Present_Position")
pos_tensor = torch.from_numpy(pos).float()
# Instead of pos_tensor.item(), use tolist() to convert the entire tensor to a list
arm_positions.extend(pos_tensor.tolist())
# (The rest of your code for generating wheel commands remains unchanged)
x_cmd = 0.0 # m/s forward/backward
y_cmd = 0.0 # m/s lateral
theta_cmd = 0.0 # deg/s rotation
if self.pressed_keys["forward"]:
x_cmd += xy_speed
if self.pressed_keys["backward"]:
x_cmd -= xy_speed
if self.pressed_keys["left"]:
y_cmd += xy_speed
if self.pressed_keys["right"]:
y_cmd -= xy_speed
if self.pressed_keys["rotate_left"]:
theta_cmd += theta_speed
if self.pressed_keys["rotate_right"]:
theta_cmd -= theta_speed
wheel_commands = self.body_to_wheel_raw(x_cmd, y_cmd, theta_cmd)
message = {"raw_velocity": wheel_commands, "arm_positions": arm_positions}
self.cmd_socket.send_string(json.dumps(message))
if not record_data:
return
obs_dict = self.capture_observation()
arm_state_tensor = torch.tensor(arm_positions, dtype=torch.float32)
wheel_velocity_tuple = self.wheel_raw_to_body(wheel_commands)
wheel_velocity_mm = (
wheel_velocity_tuple[0] * 1000.0,
wheel_velocity_tuple[1] * 1000.0,
wheel_velocity_tuple[2],
)
wheel_tensor = torch.tensor(wheel_velocity_mm, dtype=torch.float32)
action_tensor = torch.cat([arm_state_tensor, wheel_tensor])
action_dict = {"action": action_tensor}
return obs_dict, action_dict
def capture_observation(self) -> dict:
"""
Capture observations from the remote robot: current follower arm positions,
present wheel speeds (converted to body-frame velocities: x, y, theta),
and a camera frame.
"""
if not self.is_connected:
raise DeviceNotConnectedError("Not connected. Run `connect()` first.")
frames, present_speed, remote_arm_state_tensor = self._get_data()
body_state = self.wheel_raw_to_body(present_speed)
body_state_mm = (body_state[0] * 1000.0, body_state[1] * 1000.0, body_state[2]) # Convert x,y to mm/s
wheel_state_tensor = torch.tensor(body_state_mm, dtype=torch.float32)
combined_state_tensor = torch.cat((remote_arm_state_tensor, wheel_state_tensor), dim=0)
obs_dict = {"observation.state": combined_state_tensor}
# Loop over each configured camera
for cam_name, cam in self.cameras.items():
frame = frames.get(cam_name, None)
if frame is None:
# Create a black image using the camera's configured width, height, and channels
frame = np.zeros((cam.height, cam.width, cam.channels), dtype=np.uint8)
obs_dict[f"observation.images.{cam_name}"] = torch.from_numpy(frame)
return obs_dict
def send_action(self, action: torch.Tensor) -> torch.Tensor:
if not self.is_connected:
raise DeviceNotConnectedError("Not connected. Run `connect()` first.")
# Ensure the action tensor has at least 9 elements:
# - First 6: arm positions.
# - Last 3: base commands.
if action.numel() < 9:
# Pad with zeros if there are not enough elements.
padded = torch.zeros(9, dtype=action.dtype)
padded[: action.numel()] = action
action = padded
# Extract arm and base actions.
arm_actions = action[:6].flatten()
base_actions = action[6:].flatten()
x_cmd_mm = base_actions[0].item() # mm/s
y_cmd_mm = base_actions[1].item() # mm/s
theta_cmd = base_actions[2].item() # deg/s
# Convert mm/s to m/s for the kinematics calculations.
x_cmd = x_cmd_mm / 1000.0 # m/s
y_cmd = y_cmd_mm / 1000.0 # m/s
# Compute wheel commands from body commands.
wheel_commands = self.body_to_wheel_raw(x_cmd, y_cmd, theta_cmd)
arm_positions_list = arm_actions.tolist()
message = {"raw_velocity": wheel_commands, "arm_positions": arm_positions_list}
self.cmd_socket.send_string(json.dumps(message))
return action
def print_logs(self):
pass
def disconnect(self):
if not self.is_connected:
raise DeviceNotConnectedError("Not connected.")
if self.cmd_socket:
stop_cmd = {
"raw_velocity": {"left_wheel": 0, "back_wheel": 0, "right_wheel": 0},
"arm_positions": {},
}
self.cmd_socket.send_string(json.dumps(stop_cmd))
self.cmd_socket.close()
if self.video_socket:
self.video_socket.close()
if self.context:
self.context.term()
if PYNPUT_AVAILABLE:
self.listener.stop()
self.is_connected = False
print("[INFO] Disconnected from remote robot.")
def __del__(self):
if getattr(self, "is_connected", False):
self.disconnect()
if PYNPUT_AVAILABLE:
self.listener.stop()
@staticmethod
def degps_to_raw(degps: float) -> int:
steps_per_deg = 4096.0 / 360.0
speed_in_steps = abs(degps) * steps_per_deg
speed_int = int(round(speed_in_steps))
if speed_int > 0x7FFF:
speed_int = 0x7FFF
if degps < 0:
return speed_int | 0x8000
else:
return speed_int & 0x7FFF
@staticmethod
def raw_to_degps(raw_speed: int) -> float:
steps_per_deg = 4096.0 / 360.0
magnitude = raw_speed & 0x7FFF
degps = magnitude / steps_per_deg
if raw_speed & 0x8000:
degps = -degps
return degps
def body_to_wheel_raw(
self,
x_cmd: float,
y_cmd: float,
theta_cmd: float,
wheel_radius: float = 0.05,
base_radius: float = 0.125,
max_raw: int = 3000,
) -> dict:
"""
Convert desired body-frame velocities into wheel raw commands.
Parameters:
x_cmd : Linear velocity in x (m/s).
y_cmd : Linear velocity in y (m/s).
theta_cmd : Rotational velocity (deg/s).
wheel_radius: Radius of each wheel (meters).
base_radius : Distance from the center of rotation to each wheel (meters).
max_raw : Maximum allowed raw command (ticks) per wheel.
Returns:
A dictionary with wheel raw commands:
{"left_wheel": value, "back_wheel": value, "right_wheel": value}.
Notes:
- Internally, the method converts theta_cmd to rad/s for the kinematics.
- The raw command is computed from the wheels angular speed in deg/s
using degps_to_raw(). If any command exceeds max_raw, all commands
are scaled down proportionally.
"""
# Convert rotational velocity from deg/s to rad/s.
theta_rad = theta_cmd * (np.pi / 180.0)
# Create the body velocity vector [x, y, theta_rad].
velocity_vector = np.array([x_cmd, y_cmd, theta_rad])
# Define the wheel mounting angles with a -90° offset.
angles = np.radians(np.array([240, 120, 0]) - 90)
# Build the kinematic matrix: each row maps body velocities to a wheels linear speed.
# The third column (base_radius) accounts for the effect of rotation.
m = np.array([[np.cos(a), np.sin(a), base_radius] for a in angles])
# Compute each wheels linear speed (m/s) and then its angular speed (rad/s).
wheel_linear_speeds = m.dot(velocity_vector)
wheel_angular_speeds = wheel_linear_speeds / wheel_radius
# Convert wheel angular speeds from rad/s to deg/s.
wheel_degps = wheel_angular_speeds * (180.0 / np.pi)
# Scaling
steps_per_deg = 4096.0 / 360.0
raw_floats = [abs(degps) * steps_per_deg for degps in wheel_degps]
max_raw_computed = max(raw_floats)
if max_raw_computed > max_raw:
scale = max_raw / max_raw_computed
wheel_degps = wheel_degps * scale
# Convert each wheels angular speed (deg/s) to a raw integer.
wheel_raw = [MobileManipulator.degps_to_raw(deg) for deg in wheel_degps]
return {"left_wheel": wheel_raw[0], "back_wheel": wheel_raw[1], "right_wheel": wheel_raw[2]}
def wheel_raw_to_body(
self, wheel_raw: dict, wheel_radius: float = 0.05, base_radius: float = 0.125
) -> tuple:
"""
Convert wheel raw command feedback back into body-frame velocities.
Parameters:
wheel_raw : Dictionary with raw wheel commands (keys: "left_wheel", "back_wheel", "right_wheel").
wheel_radius: Radius of each wheel (meters).
base_radius : Distance from the robot center to each wheel (meters).
Returns:
A tuple (x_cmd, y_cmd, theta_cmd) where:
x_cmd : Linear velocity in x (m/s).
y_cmd : Linear velocity in y (m/s).
theta_cmd : Rotational velocity in deg/s.
"""
# Extract the raw values in order.
raw_list = [
int(wheel_raw.get("left_wheel", 0)),
int(wheel_raw.get("back_wheel", 0)),
int(wheel_raw.get("right_wheel", 0)),
]
# Convert each raw command back to an angular speed in deg/s.
wheel_degps = np.array([MobileManipulator.raw_to_degps(r) for r in raw_list])
# Convert from deg/s to rad/s.
wheel_radps = wheel_degps * (np.pi / 180.0)
# Compute each wheels linear speed (m/s) from its angular speed.
wheel_linear_speeds = wheel_radps * wheel_radius
# Define the wheel mounting angles with a -90° offset.
angles = np.radians(np.array([240, 120, 0]) - 90)
m = np.array([[np.cos(a), np.sin(a), base_radius] for a in angles])
# Solve the inverse kinematics: body_velocity = M⁻¹ · wheel_linear_speeds.
m_inv = np.linalg.inv(m)
velocity_vector = m_inv.dot(wheel_linear_speeds)
x_cmd, y_cmd, theta_rad = velocity_vector
theta_cmd = theta_rad * (180.0 / np.pi)
return (x_cmd, y_cmd, theta_cmd)
class LeKiwi:
def __init__(self, motor_bus):
"""
Initializes the LeKiwi with Feetech motors bus.
"""
self.motor_bus = motor_bus
self.motor_ids = ["left_wheel", "back_wheel", "right_wheel"]
# Initialize motors in velocity mode.
self.motor_bus.write("Lock", 0)
self.motor_bus.write("Mode", [1, 1, 1], self.motor_ids)
self.motor_bus.write("Lock", 1)
print("Motors set to velocity mode.")
def read_velocity(self):
"""
Reads the raw speeds for all wheels. Returns a dictionary with motor names:
"""
raw_speeds = self.motor_bus.read("Present_Velocity", self.motor_ids)
return {
"left_wheel": int(raw_speeds[0]),
"back_wheel": int(raw_speeds[1]),
"right_wheel": int(raw_speeds[2]),
}
def set_velocity(self, command_speeds):
"""
Sends raw velocity commands (16-bit encoded values) directly to the motor bus.
The order of speeds must correspond to self.motor_ids.
"""
self.motor_bus.write("Goal_Velocity", command_speeds, self.motor_ids)
def stop(self):
"""Stops the robot by setting all motor speeds to zero."""
self.motor_bus.write("Goal_Velocity", [0, 0, 0], self.motor_ids)
print("Motors stopped.")

View File

@@ -1,704 +0,0 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import base64
import json
import os
import sys
from pathlib import Path
import cv2
import numpy as np
import torch
import zmq
from lerobot.common.cameras.utils import make_cameras_from_configs
from lerobot.common.errors import DeviceNotConnectedError
from lerobot.common.motors.feetech.feetech import TorqueMode
from lerobot.common.motors.feetech.feetech_calibration import run_full_arm_calibration
from lerobot.common.motors.motors_bus import MotorsBus
from lerobot.common.motors.utils import make_motors_buses_from_configs
from lerobot.common.robots.lekiwi.configuration_lekiwi import LeKiwiRobotConfig
from lerobot.common.robots.utils import get_arm_id
PYNPUT_AVAILABLE = True
try:
# Only import if there's a valid X server or if we're not on a Pi
if ("DISPLAY" not in os.environ) and ("linux" in sys.platform):
print("No DISPLAY set. Skipping pynput import.")
raise ImportError("pynput blocked intentionally due to no display.")
from pynput import keyboard
except ImportError:
keyboard = None
PYNPUT_AVAILABLE = False
except Exception as e:
keyboard = None
PYNPUT_AVAILABLE = False
print(f"Could not import pynput: {e}")
class MobileManipulator:
"""
MobileManipulator is a class for connecting to and controlling a remote mobile manipulator robot.
The robot includes a three omniwheel mobile base and a remote follower arm.
The leader arm is connected locally (on the laptop) and its joint positions are recorded and then
forwarded to the remote follower arm (after applying a safety clamp).
In parallel, keyboard teleoperation is used to generate raw velocity commands for the wheels.
"""
def __init__(self, config: LeKiwiRobotConfig):
"""
Expected keys in config:
- ip, port, video_port for the remote connection.
- calibration_dir, leader_arms, follower_arms, max_relative_target, etc.
"""
self.robot_type = config.type
self.config = config
self.remote_ip = config.ip
self.remote_port = config.port
self.remote_port_video = config.video_port
self.calibration_dir = Path(self.config.calibration_dir)
self.logs = {}
self.teleop_keys = self.config.teleop_keys
# For teleoperation, the leader arm (local) is used to record the desired arm pose.
self.leader_arms = make_motors_buses_from_configs(self.config.leader_arms)
self.follower_arms = make_motors_buses_from_configs(self.config.follower_arms)
self.cameras = make_cameras_from_configs(self.config.cameras)
self.is_connected = False
self.last_frames = {}
self.last_present_speed = {}
self.last_remote_arm_state = torch.zeros(6, dtype=torch.float32)
# Define three speed levels and a current index
self.speed_levels = [
{"xy": 0.1, "theta": 30}, # slow
{"xy": 0.2, "theta": 60}, # medium
{"xy": 0.3, "theta": 90}, # fast
]
self.speed_index = 0 # Start at slow
# ZeroMQ context and sockets.
self.context = None
self.cmd_socket = None
self.video_socket = None
# Keyboard state for base teleoperation.
self.running = True
self.pressed_keys = {
"forward": False,
"backward": False,
"left": False,
"right": False,
"rotate_left": False,
"rotate_right": False,
}
if PYNPUT_AVAILABLE:
print("pynput is available - enabling local keyboard listener.")
self.listener = keyboard.Listener(
on_press=self.on_press,
on_release=self.on_release,
)
self.listener.start()
else:
print("pynput not available - skipping local keyboard listener.")
self.listener = None
def get_motor_names(self, arms: dict[str, MotorsBus]) -> list:
return [f"{arm}_{motor}" for arm, bus in arms.items() for motor in bus.motors]
@property
def camera_features(self) -> dict:
cam_ft = {}
for cam_key, cam in self.cameras.items():
key = f"observation.images.{cam_key}"
cam_ft[key] = {
"shape": (cam.height, cam.width, cam.channels),
"names": ["height", "width", "channels"],
"info": None,
}
return cam_ft
@property
def motor_features(self) -> dict:
follower_arm_names = [
"shoulder_pan",
"shoulder_lift",
"elbow_flex",
"wrist_flex",
"wrist_roll",
"gripper",
]
observations = ["x_mm", "y_mm", "theta"]
combined_names = follower_arm_names + observations
return {
"action": {
"dtype": "float32",
"shape": (len(combined_names),),
"names": combined_names,
},
"observation.state": {
"dtype": "float32",
"shape": (len(combined_names),),
"names": combined_names,
},
}
@property
def features(self):
return {**self.motor_features, **self.camera_features}
@property
def has_camera(self):
return len(self.cameras) > 0
@property
def num_cameras(self):
return len(self.cameras)
@property
def available_arms(self):
available = []
for name in self.leader_arms:
available.append(get_arm_id(name, "leader"))
for name in self.follower_arms:
available.append(get_arm_id(name, "follower"))
return available
def on_press(self, key):
try:
# Movement
if key.char == self.teleop_keys["forward"]:
self.pressed_keys["forward"] = True
elif key.char == self.teleop_keys["backward"]:
self.pressed_keys["backward"] = True
elif key.char == self.teleop_keys["left"]:
self.pressed_keys["left"] = True
elif key.char == self.teleop_keys["right"]:
self.pressed_keys["right"] = True
elif key.char == self.teleop_keys["rotate_left"]:
self.pressed_keys["rotate_left"] = True
elif key.char == self.teleop_keys["rotate_right"]:
self.pressed_keys["rotate_right"] = True
# Quit teleoperation
elif key.char == self.teleop_keys["quit"]:
self.running = False
return False
# Speed control
elif key.char == self.teleop_keys["speed_up"]:
self.speed_index = min(self.speed_index + 1, 2)
print(f"Speed index increased to {self.speed_index}")
elif key.char == self.teleop_keys["speed_down"]:
self.speed_index = max(self.speed_index - 1, 0)
print(f"Speed index decreased to {self.speed_index}")
except AttributeError:
# e.g., if key is special like Key.esc
if key == keyboard.Key.esc:
self.running = False
return False
def on_release(self, key):
try:
if hasattr(key, "char"):
if key.char == self.teleop_keys["forward"]:
self.pressed_keys["forward"] = False
elif key.char == self.teleop_keys["backward"]:
self.pressed_keys["backward"] = False
elif key.char == self.teleop_keys["left"]:
self.pressed_keys["left"] = False
elif key.char == self.teleop_keys["right"]:
self.pressed_keys["right"] = False
elif key.char == self.teleop_keys["rotate_left"]:
self.pressed_keys["rotate_left"] = False
elif key.char == self.teleop_keys["rotate_right"]:
self.pressed_keys["rotate_right"] = False
except AttributeError:
pass
def connect(self):
if not self.leader_arms:
raise ValueError("MobileManipulator has no leader arm to connect.")
for name in self.leader_arms:
print(f"Connecting {name} leader arm.")
self.calibrate_leader()
# Set up ZeroMQ sockets to communicate with the remote mobile robot.
self.context = zmq.Context()
self.cmd_socket = self.context.socket(zmq.PUSH)
connection_string = f"tcp://{self.remote_ip}:{self.remote_port}"
self.cmd_socket.connect(connection_string)
self.cmd_socket.setsockopt(zmq.CONFLATE, 1)
self.video_socket = self.context.socket(zmq.PULL)
video_connection = f"tcp://{self.remote_ip}:{self.remote_port_video}"
self.video_socket.connect(video_connection)
self.video_socket.setsockopt(zmq.CONFLATE, 1)
print(
f"[INFO] Connected to remote robot at {connection_string} and video stream at {video_connection}."
)
self.is_connected = True
def load_or_run_calibration_(self, name, arm, arm_type):
arm_id = get_arm_id(name, arm_type)
arm_calib_path = self.calibration_dir / f"{arm_id}.json"
if arm_calib_path.exists():
with open(arm_calib_path) as f:
calibration = json.load(f)
else:
print(f"Missing calibration file '{arm_calib_path}'")
calibration = run_full_arm_calibration(arm, self.robot_type, name, arm_type)
print(f"Calibration is done! Saving calibration file '{arm_calib_path}'")
arm_calib_path.parent.mkdir(parents=True, exist_ok=True)
with open(arm_calib_path, "w") as f:
json.dump(calibration, f)
return calibration
def calibrate_leader(self):
for name, arm in self.leader_arms.items():
# Connect the bus
arm.connect()
# Disable torque on all motors
for motor_id in arm.motors:
arm.write("Torque_Enable", TorqueMode.DISABLED.value, motor_id)
# Now run calibration
calibration = self.load_or_run_calibration_(name, arm, "leader")
arm.set_calibration(calibration)
def calibrate_follower(self):
for name, bus in self.follower_arms.items():
bus.connect()
# Disable torque on all motors
for motor_id in bus.motors:
bus.write("Torque_Enable", 0, motor_id)
# Then filter out wheels
arm_only_dict = {k: v for k, v in bus.motors.items() if not k.startswith("wheel_")}
if not arm_only_dict:
continue
original_motors = bus.motors
bus.motors = arm_only_dict
calibration = self.load_or_run_calibration_(name, bus, "follower")
bus.set_calibration(calibration)
bus.motors = original_motors
def _get_data(self):
"""
Polls the video socket for up to 15 ms. If data arrives, decode only
the *latest* message, returning frames, speed, and arm state. If
nothing arrives for any field, use the last known values.
"""
frames = {}
present_speed = {}
remote_arm_state_tensor = torch.zeros(6, dtype=torch.float32)
# Poll up to 15 ms
poller = zmq.Poller()
poller.register(self.video_socket, zmq.POLLIN)
socks = dict(poller.poll(15))
if self.video_socket not in socks or socks[self.video_socket] != zmq.POLLIN:
# No new data arrived → reuse ALL old data
return (self.last_frames, self.last_present_speed, self.last_remote_arm_state)
# Drain all messages, keep only the last
last_msg = None
while True:
try:
obs_string = self.video_socket.recv_string(zmq.NOBLOCK)
last_msg = obs_string
except zmq.Again:
break
if not last_msg:
# No new message → also reuse old
return (self.last_frames, self.last_present_speed, self.last_remote_arm_state)
# Decode only the final message
try:
observation = json.loads(last_msg)
images_dict = observation.get("images", {})
new_speed = observation.get("present_speed", {})
new_arm_state = observation.get("follower_arm_state", None)
# Convert images
for cam_name, image_b64 in images_dict.items():
if image_b64:
jpg_data = base64.b64decode(image_b64)
np_arr = np.frombuffer(jpg_data, dtype=np.uint8)
frame_candidate = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
if frame_candidate is not None:
frames[cam_name] = frame_candidate
# If remote_arm_state is None and frames is None there is no message then use the previous message
if new_arm_state is not None and frames is not None:
self.last_frames = frames
remote_arm_state_tensor = torch.tensor(new_arm_state, dtype=torch.float32)
self.last_remote_arm_state = remote_arm_state_tensor
present_speed = new_speed
self.last_present_speed = new_speed
else:
frames = self.last_frames
remote_arm_state_tensor = self.last_remote_arm_state
present_speed = self.last_present_speed
except Exception as e:
print(f"[DEBUG] Error decoding video message: {e}")
# If decode fails, fall back to old data
return (self.last_frames, self.last_present_speed, self.last_remote_arm_state)
return frames, present_speed, remote_arm_state_tensor
def _process_present_speed(self, present_speed: dict) -> torch.Tensor:
state_tensor = torch.zeros(3, dtype=torch.int32)
if present_speed:
decoded = {key: MobileManipulator.raw_to_degps(value) for key, value in present_speed.items()}
if "1" in decoded:
state_tensor[0] = decoded["1"]
if "2" in decoded:
state_tensor[1] = decoded["2"]
if "3" in decoded:
state_tensor[2] = decoded["3"]
return state_tensor
def teleop_step(
self, record_data: bool = False
) -> None | tuple[dict[str, torch.Tensor], dict[str, torch.Tensor]]:
if not self.is_connected:
raise DeviceNotConnectedError("MobileManipulator is not connected. Run `connect()` first.")
speed_setting = self.speed_levels[self.speed_index]
xy_speed = speed_setting["xy"] # e.g. 0.1, 0.25, or 0.4
theta_speed = speed_setting["theta"] # e.g. 30, 60, or 90
# Prepare to assign the position of the leader to the follower
arm_positions = []
for name in self.leader_arms:
pos = self.leader_arms[name].read("Present_Position")
pos_tensor = torch.from_numpy(pos).float()
arm_positions.extend(pos_tensor.tolist())
y_cmd = 0.0 # m/s forward/backward
x_cmd = 0.0 # m/s lateral
theta_cmd = 0.0 # deg/s rotation
if self.pressed_keys["forward"]:
y_cmd += xy_speed
if self.pressed_keys["backward"]:
y_cmd -= xy_speed
if self.pressed_keys["left"]:
x_cmd += xy_speed
if self.pressed_keys["right"]:
x_cmd -= xy_speed
if self.pressed_keys["rotate_left"]:
theta_cmd += theta_speed
if self.pressed_keys["rotate_right"]:
theta_cmd -= theta_speed
wheel_commands = self.body_to_wheel_raw(x_cmd, y_cmd, theta_cmd)
message = {"raw_velocity": wheel_commands, "arm_positions": arm_positions}
self.cmd_socket.send_string(json.dumps(message))
if not record_data:
return
obs_dict = self.capture_observation()
arm_state_tensor = torch.tensor(arm_positions, dtype=torch.float32)
wheel_velocity_tuple = self.wheel_raw_to_body(wheel_commands)
wheel_velocity_mm = (
wheel_velocity_tuple[0] * 1000.0,
wheel_velocity_tuple[1] * 1000.0,
wheel_velocity_tuple[2],
)
wheel_tensor = torch.tensor(wheel_velocity_mm, dtype=torch.float32)
action_tensor = torch.cat([arm_state_tensor, wheel_tensor])
action_dict = {"action": action_tensor}
return obs_dict, action_dict
def capture_observation(self) -> dict:
"""
Capture observations from the remote robot: current follower arm positions,
present wheel speeds (converted to body-frame velocities: x, y, theta),
and a camera frame.
"""
if not self.is_connected:
raise DeviceNotConnectedError("Not connected. Run `connect()` first.")
frames, present_speed, remote_arm_state_tensor = self._get_data()
body_state = self.wheel_raw_to_body(present_speed)
body_state_mm = (body_state[0] * 1000.0, body_state[1] * 1000.0, body_state[2]) # Convert x,y to mm/s
wheel_state_tensor = torch.tensor(body_state_mm, dtype=torch.float32)
combined_state_tensor = torch.cat((remote_arm_state_tensor, wheel_state_tensor), dim=0)
obs_dict = {"observation.state": combined_state_tensor}
# Loop over each configured camera
for cam_name, cam in self.cameras.items():
frame = frames.get(cam_name, None)
if frame is None:
# Create a black image using the camera's configured width, height, and channels
frame = np.zeros((cam.height, cam.width, cam.channels), dtype=np.uint8)
obs_dict[f"observation.images.{cam_name}"] = torch.from_numpy(frame)
return obs_dict
def send_action(self, action: torch.Tensor) -> torch.Tensor:
if not self.is_connected:
raise DeviceNotConnectedError("Not connected. Run `connect()` first.")
# Ensure the action tensor has at least 9 elements:
# - First 6: arm positions.
# - Last 3: base commands.
if action.numel() < 9:
# Pad with zeros if there are not enough elements.
padded = torch.zeros(9, dtype=action.dtype)
padded[: action.numel()] = action
action = padded
# Extract arm and base actions.
arm_actions = action[:6].flatten()
base_actions = action[6:].flatten()
x_cmd_mm = base_actions[0].item() # mm/s
y_cmd_mm = base_actions[1].item() # mm/s
theta_cmd = base_actions[2].item() # deg/s
# Convert mm/s to m/s for the kinematics calculations.
x_cmd = x_cmd_mm / 1000.0 # m/s
y_cmd = y_cmd_mm / 1000.0 # m/s
# Compute wheel commands from body commands.
wheel_commands = self.body_to_wheel_raw(x_cmd, y_cmd, theta_cmd)
arm_positions_list = arm_actions.tolist()
message = {"raw_velocity": wheel_commands, "arm_positions": arm_positions_list}
self.cmd_socket.send_string(json.dumps(message))
return action
def print_logs(self):
pass
def disconnect(self):
if not self.is_connected:
raise DeviceNotConnectedError("Not connected.")
if self.cmd_socket:
stop_cmd = {
"raw_velocity": {"left_wheel": 0, "back_wheel": 0, "right_wheel": 0},
"arm_positions": {},
}
self.cmd_socket.send_string(json.dumps(stop_cmd))
self.cmd_socket.close()
if self.video_socket:
self.video_socket.close()
if self.context:
self.context.term()
if PYNPUT_AVAILABLE:
self.listener.stop()
self.is_connected = False
print("[INFO] Disconnected from remote robot.")
def __del__(self):
if getattr(self, "is_connected", False):
self.disconnect()
if PYNPUT_AVAILABLE:
self.listener.stop()
@staticmethod
def degps_to_raw(degps: float) -> int:
steps_per_deg = 4096.0 / 360.0
speed_in_steps = abs(degps) * steps_per_deg
speed_int = int(round(speed_in_steps))
if speed_int > 0x7FFF:
speed_int = 0x7FFF
if degps < 0:
return speed_int | 0x8000
else:
return speed_int & 0x7FFF
@staticmethod
def raw_to_degps(raw_speed: int) -> float:
steps_per_deg = 4096.0 / 360.0
magnitude = raw_speed & 0x7FFF
degps = magnitude / steps_per_deg
if raw_speed & 0x8000:
degps = -degps
return degps
def body_to_wheel_raw(
self,
x_cmd: float,
y_cmd: float,
theta_cmd: float,
wheel_radius: float = 0.05,
base_radius: float = 0.125,
max_raw: int = 3000,
) -> dict:
"""
Convert desired body-frame velocities into wheel raw commands.
Parameters:
x_cmd : Linear velocity in x (m/s).
y_cmd : Linear velocity in y (m/s).
theta_cmd : Rotational velocity (deg/s).
wheel_radius: Radius of each wheel (meters).
base_radius : Distance from the center of rotation to each wheel (meters).
max_raw : Maximum allowed raw command (ticks) per wheel.
Returns:
A dictionary with wheel raw commands:
{"left_wheel": value, "back_wheel": value, "right_wheel": value}.
Notes:
- Internally, the method converts theta_cmd to rad/s for the kinematics.
- The raw command is computed from the wheels angular speed in deg/s
using degps_to_raw(). If any command exceeds max_raw, all commands
are scaled down proportionally.
"""
# Convert rotational velocity from deg/s to rad/s.
theta_rad = theta_cmd * (np.pi / 180.0)
# Create the body velocity vector [x, y, theta_rad].
velocity_vector = np.array([x_cmd, y_cmd, theta_rad])
# Define the wheel mounting angles (defined from y axis cw)
angles = np.radians(np.array([300, 180, 60]))
# Build the kinematic matrix: each row maps body velocities to a wheels linear speed.
# The third column (base_radius) accounts for the effect of rotation.
m = np.array([[np.cos(a), np.sin(a), base_radius] for a in angles])
# Compute each wheels linear speed (m/s) and then its angular speed (rad/s).
wheel_linear_speeds = m.dot(velocity_vector)
wheel_angular_speeds = wheel_linear_speeds / wheel_radius
# Convert wheel angular speeds from rad/s to deg/s.
wheel_degps = wheel_angular_speeds * (180.0 / np.pi)
# Scaling
steps_per_deg = 4096.0 / 360.0
raw_floats = [abs(degps) * steps_per_deg for degps in wheel_degps]
max_raw_computed = max(raw_floats)
if max_raw_computed > max_raw:
scale = max_raw / max_raw_computed
wheel_degps = wheel_degps * scale
# Convert each wheels angular speed (deg/s) to a raw integer.
wheel_raw = [MobileManipulator.degps_to_raw(deg) for deg in wheel_degps]
return {"left_wheel": wheel_raw[0], "back_wheel": wheel_raw[1], "right_wheel": wheel_raw[2]}
def wheel_raw_to_body(
self, wheel_raw: dict, wheel_radius: float = 0.05, base_radius: float = 0.125
) -> tuple:
"""
Convert wheel raw command feedback back into body-frame velocities.
Parameters:
wheel_raw : Dictionary with raw wheel commands (keys: "left_wheel", "back_wheel", "right_wheel").
wheel_radius: Radius of each wheel (meters).
base_radius : Distance from the robot center to each wheel (meters).
Returns:
A tuple (x_cmd, y_cmd, theta_cmd) where:
x_cmd : Linear velocity in x (m/s).
y_cmd : Linear velocity in y (m/s).
theta_cmd : Rotational velocity in deg/s.
"""
# Extract the raw values in order.
raw_list = [
int(wheel_raw.get("left_wheel", 0)),
int(wheel_raw.get("back_wheel", 0)),
int(wheel_raw.get("right_wheel", 0)),
]
# Convert each raw command back to an angular speed in deg/s.
wheel_degps = np.array([MobileManipulator.raw_to_degps(r) for r in raw_list])
# Convert from deg/s to rad/s.
wheel_radps = wheel_degps * (np.pi / 180.0)
# Compute each wheels linear speed (m/s) from its angular speed.
wheel_linear_speeds = wheel_radps * wheel_radius
# Define the wheel mounting angles (defined from y axis cw)
angles = np.radians(np.array([300, 180, 60]))
m = np.array([[np.cos(a), np.sin(a), base_radius] for a in angles])
# Solve the inverse kinematics: body_velocity = M⁻¹ · wheel_linear_speeds.
m_inv = np.linalg.inv(m)
velocity_vector = m_inv.dot(wheel_linear_speeds)
x_cmd, y_cmd, theta_rad = velocity_vector
theta_cmd = theta_rad * (180.0 / np.pi)
return (x_cmd, y_cmd, theta_cmd)
class LeKiwi:
def __init__(self, motor_bus):
"""
Initializes the LeKiwi with Feetech motors bus.
"""
self.motor_bus = motor_bus
self.motor_ids = ["left_wheel", "back_wheel", "right_wheel"]
# Initialize motors in velocity mode.
self.motor_bus.write("Lock", 0)
self.motor_bus.write("Mode", [1, 1, 1], self.motor_ids)
self.motor_bus.write("Lock", 1)
print("Motors set to velocity mode.")
def read_velocity(self):
"""
Reads the raw speeds for all wheels. Returns a dictionary with motor names:
"""
raw_speeds = self.motor_bus.read("Present_Velocity", self.motor_ids)
return {
"left_wheel": int(raw_speeds[0]),
"back_wheel": int(raw_speeds[1]),
"right_wheel": int(raw_speeds[2]),
}
def set_velocity(self, command_speeds):
"""
Sends raw velocity commands (16-bit encoded values) directly to the motor bus.
The order of speeds must correspond to self.motor_ids.
"""
self.motor_bus.write("Goal_Velocity", command_speeds, self.motor_ids)
def stop(self):
"""Stops the robot by setting all motor speeds to zero."""
self.motor_bus.write("Goal_Velocity", [0, 0, 0], self.motor_ids)
print("Motors stopped.")

View File

@@ -49,25 +49,26 @@ def make_robot_config(robot_type: str, **kwargs) -> RobotConfig:
return Stretch3RobotConfig(**kwargs)
elif robot_type == "lekiwi":
from .lekiwi.configuration_lekiwi import LeKiwiRobotConfig
from .lekiwi.config_lekiwi import LeKiwiConfig
return LeKiwiRobotConfig(**kwargs)
return LeKiwiConfig(**kwargs)
else:
raise ValueError(f"Robot type '{robot_type}' is not available.")
def make_robot_from_config(config: RobotConfig):
from .lekiwi.configuration_lekiwi import LeKiwiRobotConfig
from .lekiwi.config_lekiwi import LeKiwiConfig
from .manipulator import ManipulatorRobotConfig
if isinstance(config, ManipulatorRobotConfig):
from lerobot.common.robots.manipulator import ManipulatorRobot
return ManipulatorRobot(config)
elif isinstance(config, LeKiwiRobotConfig):
from lerobot.common.robots.mobile_manipulator import MobileManipulator
elif isinstance(config, LeKiwiConfig):
from lerobot.common.robots.lekiwi import LeKiwiClient
return MobileManipulator(config)
return LeKiwiClient(config)
...
else:
from lerobot.common.robots.stretch3.robot_stretch3 import Stretch3Robot

View File

@@ -22,4 +22,5 @@ from ..config import TeleoperatorConfig
@TeleoperatorConfig.register_subclass("keyboard")
@dataclass
class KeyboardTeleopConfig(TeleoperatorConfig):
# TODO(Steven): Consider setting in here the keys that we want to capture/listen
mock: bool = False

View File

@@ -19,8 +19,7 @@ import os
import sys
import time
from queue import Queue
import numpy as np
from typing import Any
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
@@ -59,48 +58,50 @@ class KeyboardTeleop(Teleoperator):
self.event_queue = Queue()
self.current_pressed = {}
self.listener = None
self.is_connected = False
self.logs = {}
@property
def action_feature(self) -> dict:
return {
"dtype": "float32",
"shape": (len(self.arm),),
"names": {"motors": list(self.arm.motors)},
}
# TODO(Steven): Change this when we agree what should this return
...
@property
def feedback_feature(self) -> dict:
return {}
@property
def is_connected(self) -> bool:
return PYNPUT_AVAILABLE and isinstance(self.listener, keyboard.Listener) and self.listener.is_alive()
@property
def is_calibrated(self) -> bool:
pass
def connect(self) -> None:
if self.is_connected:
raise DeviceAlreadyConnectedError(
"ManipulatorRobot is already connected. Do not run `robot.connect()` twice."
"Keyboard is already connected. Do not run `robot.connect()` twice."
)
if PYNPUT_AVAILABLE:
logging.info("pynput is available - enabling local keyboard listener.")
self.listener = keyboard.Listener(
on_press=self.on_press,
on_release=self.on_release,
on_press=self._on_press,
on_release=self._on_release,
)
self.listener.start()
else:
logging.info("pynput not available - skipping local keyboard listener.")
self.listener = None
self.is_connected = True
def calibrate(self) -> None:
pass
def on_press(self, key):
def _on_press(self, key):
if hasattr(key, "char"):
self.event_queue.put((key.char, True))
def on_release(self, key):
def _on_release(self, key):
if hasattr(key, "char"):
self.event_queue.put((key.char, False))
if key == keyboard.Key.esc:
@@ -112,10 +113,13 @@ class KeyboardTeleop(Teleoperator):
key_char, is_pressed = self.event_queue.get_nowait()
self.current_pressed[key_char] = is_pressed
def get_action(self) -> np.ndarray:
def configure(self):
pass
def get_action(self) -> dict[str, Any]:
before_read_t = time.perf_counter()
if not self.is_connected:
if not self._is_connected:
raise DeviceNotConnectedError(
"KeyboardTeleop is not connected. You need to run `connect()` before `get_action()`."
)
@@ -126,9 +130,9 @@ class KeyboardTeleop(Teleoperator):
action = {key for key, val in self.current_pressed.items() if val}
self.logs["read_pos_dt_s"] = time.perf_counter() - before_read_t
return np.array(list(action))
return dict.fromkeys(action, None)
def send_feedback(self, feedback: np.ndarray) -> None:
def send_feedback(self, feedback: dict[str, Any]) -> None:
pass
def disconnect(self) -> None:
@@ -138,5 +142,3 @@ class KeyboardTeleop(Teleoperator):
)
if self.listener is not None:
self.listener.stop()
self.is_connected = False

View File

@@ -422,7 +422,7 @@ def control_robot(cfg: ControlPipelineConfig):
elif isinstance(cfg.control, ReplayControlConfig):
replay(robot, cfg.control)
elif isinstance(cfg.control, RemoteRobotConfig):
from lerobot.common.robots.lekiwi.lekiwi_remote import run_lekiwi
from lerobot.common.robots.lekiwi.old_lekiwi_remote import run_lekiwi
_init_rerun(control_config=cfg.control, session_name="lerobot_control_loop_remote")
run_lekiwi(cfg.robot)