[pre-commit.ci] pre-commit autoupdate (#871)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
pre-commit-ci[bot]
2025-04-08 06:58:46 +02:00
committed by GitHub
parent aee86b4b18
commit 437fc29e12
5 changed files with 8 additions and 8 deletions

View File

@@ -37,7 +37,7 @@ repos:
- id: trailing-whitespace
- repo: https://github.com/crate-ci/typos
rev: v1.30.2
rev: v1
hooks:
- id: typos
args: [--force-exclude]
@@ -48,7 +48,7 @@ repos:
- id: pyupgrade
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.9.10
rev: v0.11.4
hooks:
- id: ruff
args: [--fix]
@@ -57,12 +57,12 @@ repos:
##### Security #####
- repo: https://github.com/gitleaks/gitleaks
rev: v8.24.0
rev: v8.24.2
hooks:
- id: gitleaks
- repo: https://github.com/woodruffw/zizmor-pre-commit
rev: v1.4.1
rev: v1.5.2
hooks:
- id: zizmor

View File

@@ -1053,7 +1053,7 @@ class MultiLeRobotDataset(torch.utils.data.Dataset):
super().__init__()
self.repo_ids = repo_ids
self.root = Path(root) if root else HF_LEROBOT_HOME
self.tolerances_s = tolerances_s if tolerances_s else {repo_id: 1e-4 for repo_id in repo_ids}
self.tolerances_s = tolerances_s if tolerances_s else dict.fromkeys(repo_ids, 0.0001)
# Construct the underlying datasets passing everything but `transform` and `delta_timestamps` which
# are handled by this class.
self._datasets = [

View File

@@ -240,7 +240,7 @@ def load_episodes_stats(local_dir: Path) -> dict:
def backward_compatible_episodes_stats(
stats: dict[str, dict[str, np.ndarray]], episodes: list[int]
) -> dict[str, dict[str, np.ndarray]]:
return {ep_idx: stats for ep_idx in episodes}
return dict.fromkeys(episodes, stats)
def load_image_as_numpy(

View File

@@ -481,7 +481,7 @@ def convert_dataset(
# Tasks
if single_task:
tasks_by_episodes = {ep_idx: single_task for ep_idx in episode_indices}
tasks_by_episodes = dict.fromkeys(episode_indices, single_task)
dataset, tasks = add_task_index_by_episodes(dataset, tasks_by_episodes)
tasks_by_episodes = {ep_idx: [task] for ep_idx, task in tasks_by_episodes.items()}
elif tasks_path:

View File

@@ -94,7 +94,7 @@ class MetricsTracker:
metrics: dict[str, AverageMeter],
initial_step: int = 0,
):
self.__dict__.update({k: None for k in self.__keys__})
self.__dict__.update(dict.fromkeys(self.__keys__))
self._batch_size = batch_size
self._num_frames = num_frames
self._avg_samples_per_ep = num_frames / num_episodes