feat(pipeline): universal processor for LeRobot (#1431)
* Refactor observation preprocessing to use a modular pipeline system - Introduced `RobotPipeline` and `ObservationProcessor` for handling observation transformations. - Updated `preprocess_observation` to maintain backward compatibility while leveraging the new pipeline. - Added tests for the new processing components and ensured they match the original functionality. - Removed hardcoded logic in favor of a more flexible, composable architecture. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Refactor observation processing and improve modularity - Updated `ObservationProcessor` to enhance the modular design for processing observations. - Cleaned up imports and improved code readability by removing unnecessary lines and comments. - Ensured backward compatibility while integrating new processing components. - Added tests to validate the functionality of the updated processing architecture. * Remove redundant tests for None observation and serialization methods in `test_observation_processor.py` to streamline the test suite and improve maintainability. * Refactor processing architecture to use RobotProcessor - Replaced instances of RobotPipeline with RobotProcessor across the codebase for improved modularity and clarity. - Introduced ProcessorStepRegistry for better management of processing steps. - Updated relevant documentation and tests to reflect the new processing structure. - Enhanced the save/load functionality to support the new processor design. - Added a model card template for RobotProcessor to facilitate sharing and documentation. * Add RobotProcessor tutorial to documentation - Introduced a new tutorial on using RobotProcessor for preprocessing robot data. - Added a section in the table of contents for easy navigation to the new tutorial. - The tutorial covers key concepts, real-world scenarios, and practical examples for effective use of the RobotProcessor pipeline. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add normalization processor and related components - Introduced `NormalizationProcessor` to handle both observation normalization and action unnormalization. - Added `ObservationNormalizer` and `ActionUnnormalizer` classes for specific normalization tasks. - Updated `__init__.py` to include the new `NormalizationProcessor` in the module exports. - Enhanced `ObservationProcessor` with registration in the `ProcessorStepRegistry` for better modularity. - Created `RenameProcessor` for renaming keys in observations, improving flexibility in data processing. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Enhance processing architecture with new components - Added `RenameProcessor` to facilitate key renaming in observations, improving data handling flexibility. - Updated `__init__.py` to include `RenameProcessor` in module exports. - Refactored `NormalizationProcessor` and `ObservationNormalizer` to use `rsplit` for better key handling. - Introduced comprehensive tests for `NormalizationProcessor` and `RenameProcessor` to ensure functionality and robustness. * chore (docs): add docstring for processor * fix (test): test factory * fix(test): policies * Update tests/processor/test_observation_processor.py Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com> Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com> * chore(test): add suggestion made by copilot regarding numpy test * fix(test): import issue * Refactor normalization components and update tests - Renamed `ObservationNormalizer` to `NormalizerProcessor` and `ActionUnnormalizer` to `UnnormalizerProcessor` for clarity. - Consolidated normalization logic for both observations and actions into `NormalizerProcessor` and `UnnormalizerProcessor`. - Updated tests to reflect the new class names and ensure proper functionality of normalization and unnormalization processes. - Enhanced handling of missing statistics in normalization processes. * chore (docstrin):Improve docstring for NormalizerProcessor * feat (device processor): Implement device processor * chore (batch handling): Enhance processing components with batch conversion utilities * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix(test): linting issue * chore (output format): improves output format * chore (type): add typing for multiprocess envs * feat (overrides): Implement support for loading processors with parameter overrides - Added the ability to provide non-serializable objects when loading processors from saved configurations using the `overrides` parameter. - Enhanced error handling for invalid override keys and instantiation errors. - Updated documentation and examples to illustrate the usage of overrides for both registered and unregistered steps. - Added comprehensive tests to validate the new functionality and ensure backward compatibility. * chore(normalization): addressing comments from copilot * chore(learner): nit comment from copilot * feat(pipeline): Enhance step_through method to support both tuple and dict inputs * refactor(pipeline): Simplify observation and padding data handling in batch transitions * Apply suggestions from code review Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com> Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com> * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * refactor(pipeline): Introduce ComplementaryDataProcessor for handling complementary data in transitions * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * refactor(pipeline): Transition from tuple to dictionary format for EnvTransition - Updated the EnvTransition structure to use a dictionary format instead of a tuple, enhancing readability and maintainability. - Replaced instances of TransitionIndex with TransitionKey for accessing transition components. - Adjusted related processing functions and tests to accommodate the new dictionary format, ensuring consistent handling of transitions across the codebase. * refactor(observation_processor): Improve observation processing by using constants and simplifying pixel handling - Introduced constants for observation keys to enhance readability. - Streamlined the handling of the "pixels" key by copying observations first and processing images more clearly. - Updated the environment state and agent position assignments to use the new constants, improving maintainability. * feat(pipeline): Add hook unregistration functionality and enhance documentation - Implemented methods to unregister before, after, and reset hooks in the RobotProcessor class, allowing for more flexible hook management. - Enhanced documentation to clarify hook execution semantics and the implications of modifying transitions within hooks. - Added comprehensive tests to verify the correct behavior of hook registration and unregistration, including error handling for non-existent hooks. * refactor(pipeline): Clarify hook behavior and improve documentation - Updated the RobotProcessor class to ensure hooks are strictly for observation and do not modify transitions, enhancing clarity and maintainability. - Refactored hook registration methods to reflect the new behavior, ensuring they accept only functions that do not return modified transitions. - Enhanced documentation to clearly outline the purpose of hooks and their execution semantics. - Added tests to verify that hooks are not executed during the step_through method while ensuring they function correctly during the __call__ method. * feat(pipeline): Add __repr__ method to RobotProcessor for improved readability - Implemented a __repr__ method in the RobotProcessor class to provide a clear string representation of the processor, including step names and optional parameters like name and seed. - Added comprehensive tests to validate the __repr__ output for various scenarios, including empty processors, single and multiple steps, custom names, and seed values. - Ensured that the representation handles long lists of steps with truncation for better readability. * chore(pipeline): Move _CFG_NAME along other class member * refactor(pipeline): Utilize get_safe_torch_device for device assignment - Replaced direct torch.device instantiation with get_safe_torch_device to ensure safe device handling. - This change enhances code readability and maintains consistency in device management across the RobotProcessor class. * refactor(pipeline): Enhance state filename generation and profiling method - Updated state filename generation to use the registry name when available, improving clarity in saved files. - Modified the profile_steps method to include a warmup_runs parameter, allowing for more controlled performance profiling. - Ensured consistent conditions during profiling by deep copying transitions for each run, enhancing accuracy in timing results. * chore(doc): address pip install commant lerobot that not exist yet * feat(pipeline): Enhance configuration filename handling and state file naming - Introduced support for custom configuration filenames in the `save_pretrained` method, allowing users to specify a filename instead of the default. - Improved state file naming to include step indices, preventing conflicts when multiple processors of the same type are saved. - Added automatic detection for configuration files when loading from a directory, with error handling for multiple files. - Updated tests to validate new features, including custom filenames and automatic config detection. * refactor(pipeline): Improve state file naming conventions for clarity and uniqueness - Enhanced state file naming to include the processor's sanitized name, ensuring uniqueness when multiple processors are saved in the same directory. - Updated tests to reflect changes in state file naming, verifying that filenames now include the processor name and step indices to prevent conflicts. - Added a new test to validate state file naming when using multiple processors, ensuring distinct filenames for each processor's state files. * docs(pipeline): Add clarification for repo name sanitization process * Feat/pipeline add feature contract (#1637) * Add feature contract to pipelinestep and pipeline * Add tests * Add processor tests * PR feedback * encorperate pr feedback * type in doc * oops * docs(pipeline): Clarify transition handling and hook behavior - Updated documentation to specify that hooks always receive transitions in EnvTransition format, ensuring consistent behavior across input formats. - Refactored the step_through method to yield only EnvTransition objects, regardless of the input format, and updated related tests to reflect this change. - Enhanced test assertions to verify the structure of results and the correctness of processing steps. * refactor(pipeline): Remove to() method for device management - Eliminated the to() method from RobotProcessor, which was responsible for moving tensor states to specified devices. - Removed associated unit tests that validated the functionality of the to() method across various scenarios. - Streamlined the pipeline code by focusing on other device management strategies. * refactor(pipeline): Remove model card generation and streamline processor methods - Eliminated the _generate_model_card method from RobotProcessor, which was responsible for generating README.md files from a template. - Updated save_pretrained method to remove model card generation, focusing on serialization of processor definitions and parameters. - Added default implementations for get_config, state_dict, load_state_dict, reset, and feature_contract methods in various processor classes to enhance consistency and usability. * refactor(observation): Streamline observation preprocessing and remove unused processor methods - Updated the `preprocess_observation` function to enhance image handling and ensure proper tensor formatting. - Removed the `RobotProcessor` and associated transition handling from the `rollout` function, simplifying the observation processing flow. - Integrated direct calls to `preprocess_observation` for improved clarity and efficiency in the evaluation script. * refactor(pipeline): Rename parameters for clarity and enhance save/load functionality - Updated parameter names in the save_pretrained and from_pretrained methods for improved readability, changing destination_path to save_directory and source to pretrained_model_name_or_path. - Enhanced the save_pretrained method to ensure directory creation and file handling is consistent with the new parameter names. - Streamlined the loading process in from_pretrained to utilize loaded_config for better clarity and maintainability. * refactor(pipeline): minor improvements (#1684) * chore(pipeline): remove unused features + device torch + envtransition keys * refactor(pipeline): ImageProcessor & StateProcessor are both implemented directly in VanillaObservationPRocessor * refactor(pipeline): RenameProcessor now inherits from ObservationProcessor + remove unused code * test(pipeline): fix broken test after refactors * docs(pipeline): update docstrings VanillaObservationProcessor * chore(pipeline): move None check to base pipeline classes --------- Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com> Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com> Co-authored-by: Pepijn <138571049+pkooij@users.noreply.github.com> Co-authored-by: Steven Palma <imstevenpmwork@ieee.org>
This commit is contained in:
54
src/lerobot/processor/__init__.py
Normal file
54
src/lerobot/processor/__init__.py
Normal file
@@ -0,0 +1,54 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from .device_processor import DeviceProcessor
|
||||
from .normalize_processor import NormalizerProcessor, UnnormalizerProcessor
|
||||
from .observation_processor import VanillaObservationProcessor
|
||||
from .pipeline import (
|
||||
ActionProcessor,
|
||||
DoneProcessor,
|
||||
EnvTransition,
|
||||
IdentityProcessor,
|
||||
InfoProcessor,
|
||||
ObservationProcessor,
|
||||
ProcessorStep,
|
||||
ProcessorStepRegistry,
|
||||
RewardProcessor,
|
||||
RobotProcessor,
|
||||
TransitionKey,
|
||||
TruncatedProcessor,
|
||||
)
|
||||
from .rename_processor import RenameProcessor
|
||||
|
||||
__all__ = [
|
||||
"ActionProcessor",
|
||||
"DeviceProcessor",
|
||||
"DoneProcessor",
|
||||
"EnvTransition",
|
||||
"IdentityProcessor",
|
||||
"InfoProcessor",
|
||||
"NormalizerProcessor",
|
||||
"UnnormalizerProcessor",
|
||||
"ObservationProcessor",
|
||||
"ProcessorStep",
|
||||
"ProcessorStepRegistry",
|
||||
"RenameProcessor",
|
||||
"RewardProcessor",
|
||||
"RobotProcessor",
|
||||
"TransitionKey",
|
||||
"TruncatedProcessor",
|
||||
"VanillaObservationProcessor",
|
||||
]
|
||||
82
src/lerobot/processor/device_processor.py
Normal file
82
src/lerobot/processor/device_processor.py
Normal file
@@ -0,0 +1,82 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from dataclasses import dataclass
|
||||
from typing import Any
|
||||
|
||||
import torch
|
||||
|
||||
from lerobot.configs.types import PolicyFeature
|
||||
from lerobot.processor.pipeline import EnvTransition, TransitionKey
|
||||
from lerobot.utils.utils import get_safe_torch_device
|
||||
|
||||
|
||||
@dataclass
|
||||
class DeviceProcessor:
|
||||
"""Processes transitions by moving tensors to the specified device.
|
||||
|
||||
This processor ensures that all tensors in the transition are moved to the
|
||||
specified device (CPU or GPU) before they are returned.
|
||||
"""
|
||||
|
||||
device: torch.device = "cpu"
|
||||
|
||||
def __post_init__(self):
|
||||
self.device = get_safe_torch_device(self.device)
|
||||
self.non_blocking = "cuda" in str(self.device)
|
||||
|
||||
def __call__(self, transition: EnvTransition) -> EnvTransition:
|
||||
# Create a copy of the transition
|
||||
new_transition = transition.copy()
|
||||
|
||||
# Process observation tensors
|
||||
observation = transition.get(TransitionKey.OBSERVATION)
|
||||
if observation is not None:
|
||||
new_observation = {
|
||||
k: v.to(self.device, non_blocking=self.non_blocking) if isinstance(v, torch.Tensor) else v
|
||||
for k, v in observation.items()
|
||||
}
|
||||
new_transition[TransitionKey.OBSERVATION] = new_observation
|
||||
|
||||
# Process action tensor
|
||||
action = transition.get(TransitionKey.ACTION)
|
||||
if action is not None and isinstance(action, torch.Tensor):
|
||||
new_transition[TransitionKey.ACTION] = action.to(self.device, non_blocking=self.non_blocking)
|
||||
|
||||
# Process reward tensor
|
||||
reward = transition.get(TransitionKey.REWARD)
|
||||
if reward is not None and isinstance(reward, torch.Tensor):
|
||||
new_transition[TransitionKey.REWARD] = reward.to(self.device, non_blocking=self.non_blocking)
|
||||
|
||||
# Process done tensor
|
||||
done = transition.get(TransitionKey.DONE)
|
||||
if done is not None and isinstance(done, torch.Tensor):
|
||||
new_transition[TransitionKey.DONE] = done.to(self.device, non_blocking=self.non_blocking)
|
||||
|
||||
# Process truncated tensor
|
||||
truncated = transition.get(TransitionKey.TRUNCATED)
|
||||
if truncated is not None and isinstance(truncated, torch.Tensor):
|
||||
new_transition[TransitionKey.TRUNCATED] = truncated.to(
|
||||
self.device, non_blocking=self.non_blocking
|
||||
)
|
||||
|
||||
return new_transition
|
||||
|
||||
def get_config(self) -> dict[str, Any]:
|
||||
"""Return configuration for serialization."""
|
||||
return {"device": self.device}
|
||||
|
||||
def feature_contract(self, features: dict[str, PolicyFeature]) -> dict[str, PolicyFeature]:
|
||||
return features
|
||||
331
src/lerobot/processor/normalize_processor.py
Normal file
331
src/lerobot/processor/normalize_processor.py
Normal file
@@ -0,0 +1,331 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from collections.abc import Mapping
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import Tensor
|
||||
|
||||
from lerobot.configs.types import FeatureType, NormalizationMode, PolicyFeature
|
||||
from lerobot.datasets.lerobot_dataset import LeRobotDataset
|
||||
from lerobot.processor.pipeline import EnvTransition, ProcessorStepRegistry, TransitionKey
|
||||
|
||||
|
||||
def _convert_stats_to_tensors(stats: dict[str, dict[str, Any]]) -> dict[str, dict[str, Tensor]]:
|
||||
"""Convert numpy arrays and other types to torch tensors."""
|
||||
tensor_stats: dict[str, dict[str, Tensor]] = {}
|
||||
for key, sub in stats.items():
|
||||
tensor_stats[key] = {}
|
||||
for stat_name, value in sub.items():
|
||||
if isinstance(value, np.ndarray):
|
||||
tensor_val = torch.from_numpy(value.astype(np.float32))
|
||||
elif isinstance(value, torch.Tensor):
|
||||
tensor_val = value.to(dtype=torch.float32)
|
||||
elif isinstance(value, (int, float, list, tuple)):
|
||||
tensor_val = torch.tensor(value, dtype=torch.float32)
|
||||
else:
|
||||
raise TypeError(f"Unsupported type for stats['{key}']['{stat_name}']: {type(value)}")
|
||||
tensor_stats[key][stat_name] = tensor_val
|
||||
return tensor_stats
|
||||
|
||||
|
||||
@dataclass
|
||||
@ProcessorStepRegistry.register(name="normalizer_processor")
|
||||
class NormalizerProcessor:
|
||||
"""Normalizes observations and actions in a single processor step.
|
||||
|
||||
This processor handles normalization of both observation and action tensors
|
||||
using either mean/std normalization or min/max scaling to a [-1, 1] range.
|
||||
|
||||
For each tensor key in the stats dictionary, the processor will:
|
||||
- Use mean/std normalization if those statistics are provided: (x - mean) / std
|
||||
- Use min/max scaling if those statistics are provided: 2 * (x - min) / (max - min) - 1
|
||||
|
||||
The processor can be configured to normalize only specific keys by setting
|
||||
the normalize_keys parameter.
|
||||
"""
|
||||
|
||||
# Features and normalisation map are mandatory to match the design of normalize.py
|
||||
features: dict[str, PolicyFeature]
|
||||
norm_map: dict[FeatureType, NormalizationMode]
|
||||
|
||||
# Pre-computed statistics coming from dataset.meta.stats for instance.
|
||||
stats: dict[str, dict[str, Any]] | None = None
|
||||
|
||||
# Explicit subset of keys to normalise. If ``None`` every key (except
|
||||
# "action") found in ``stats`` will be normalised. Using a ``set`` makes
|
||||
# membership checks O(1).
|
||||
normalize_keys: set[str] | None = None
|
||||
|
||||
eps: float = 1e-8
|
||||
|
||||
_tensor_stats: dict[str, dict[str, Tensor]] = field(default_factory=dict, init=False, repr=False)
|
||||
|
||||
@classmethod
|
||||
def from_lerobot_dataset(
|
||||
cls,
|
||||
dataset: LeRobotDataset,
|
||||
features: dict[str, PolicyFeature],
|
||||
norm_map: dict[FeatureType, NormalizationMode],
|
||||
*,
|
||||
normalize_keys: set[str] | None = None,
|
||||
eps: float = 1e-8,
|
||||
) -> NormalizerProcessor:
|
||||
"""Factory helper that pulls statistics from a :class:`LeRobotDataset`.
|
||||
|
||||
The features and norm_map parameters are mandatory to match the design
|
||||
pattern used in normalize.py.
|
||||
"""
|
||||
|
||||
return cls(
|
||||
features=features,
|
||||
norm_map=norm_map,
|
||||
stats=dataset.meta.stats,
|
||||
normalize_keys=normalize_keys,
|
||||
eps=eps,
|
||||
)
|
||||
|
||||
def __post_init__(self):
|
||||
# Handle deserialization from JSON config
|
||||
if self.features and isinstance(list(self.features.values())[0], dict):
|
||||
# Features came from JSON - need to reconstruct PolicyFeature objects
|
||||
reconstructed_features = {}
|
||||
for key, ft_dict in self.features.items():
|
||||
reconstructed_features[key] = PolicyFeature(
|
||||
type=FeatureType(ft_dict["type"]), shape=tuple(ft_dict["shape"])
|
||||
)
|
||||
self.features = reconstructed_features
|
||||
|
||||
if self.norm_map and isinstance(list(self.norm_map.keys())[0], str):
|
||||
# norm_map came from JSON - need to reconstruct enum keys and values
|
||||
reconstructed_norm_map = {}
|
||||
for ft_type_str, norm_mode_str in self.norm_map.items():
|
||||
reconstructed_norm_map[FeatureType(ft_type_str)] = NormalizationMode(norm_mode_str)
|
||||
self.norm_map = reconstructed_norm_map
|
||||
|
||||
# Convert statistics once so we avoid repeated numpy→Tensor conversions
|
||||
# during runtime.
|
||||
self.stats = self.stats or {}
|
||||
self._tensor_stats = _convert_stats_to_tensors(self.stats)
|
||||
|
||||
# Ensure *normalize_keys* is a set for fast look-ups and compare by
|
||||
# value later when returning the configuration.
|
||||
if self.normalize_keys is not None and not isinstance(self.normalize_keys, set):
|
||||
self.normalize_keys = set(self.normalize_keys)
|
||||
|
||||
def _normalize_obs(self, observation):
|
||||
if observation is None:
|
||||
return None
|
||||
|
||||
# Decide which keys should be normalised for this call.
|
||||
if self.normalize_keys is not None:
|
||||
keys_to_norm = self.normalize_keys
|
||||
else:
|
||||
# Use feature map to skip action keys.
|
||||
keys_to_norm = {k for k, ft in self.features.items() if ft.type is not FeatureType.ACTION}
|
||||
|
||||
processed = dict(observation)
|
||||
for key in keys_to_norm:
|
||||
if key not in processed or key not in self._tensor_stats:
|
||||
continue
|
||||
|
||||
orig_val = processed[key]
|
||||
tensor = (
|
||||
orig_val.to(dtype=torch.float32)
|
||||
if isinstance(orig_val, torch.Tensor)
|
||||
else torch.as_tensor(orig_val, dtype=torch.float32)
|
||||
)
|
||||
stats = {k: v.to(tensor.device) for k, v in self._tensor_stats[key].items()}
|
||||
|
||||
if "mean" in stats and "std" in stats:
|
||||
mean, std = stats["mean"], stats["std"]
|
||||
processed[key] = (tensor - mean) / (std + self.eps)
|
||||
elif "min" in stats and "max" in stats:
|
||||
min_val, max_val = stats["min"], stats["max"]
|
||||
processed[key] = 2 * (tensor - min_val) / (max_val - min_val + self.eps) - 1
|
||||
return processed
|
||||
|
||||
def _normalize_action(self, action):
|
||||
if action is None or "action" not in self._tensor_stats:
|
||||
return action
|
||||
|
||||
tensor = (
|
||||
action.to(dtype=torch.float32)
|
||||
if isinstance(action, torch.Tensor)
|
||||
else torch.as_tensor(action, dtype=torch.float32)
|
||||
)
|
||||
stats = {k: v.to(tensor.device) for k, v in self._tensor_stats["action"].items()}
|
||||
if "mean" in stats and "std" in stats:
|
||||
mean, std = stats["mean"], stats["std"]
|
||||
return (tensor - mean) / (std + self.eps)
|
||||
if "min" in stats and "max" in stats:
|
||||
min_val, max_val = stats["min"], stats["max"]
|
||||
return 2 * (tensor - min_val) / (max_val - min_val + self.eps) - 1
|
||||
raise ValueError("Action stats must contain either ('mean','std') or ('min','max')")
|
||||
|
||||
def __call__(self, transition: EnvTransition) -> EnvTransition:
|
||||
observation = self._normalize_obs(transition.get(TransitionKey.OBSERVATION))
|
||||
action = self._normalize_action(transition.get(TransitionKey.ACTION))
|
||||
|
||||
# Create a new transition with normalized values
|
||||
new_transition = transition.copy()
|
||||
new_transition[TransitionKey.OBSERVATION] = observation
|
||||
new_transition[TransitionKey.ACTION] = action
|
||||
return new_transition
|
||||
|
||||
def get_config(self) -> dict[str, Any]:
|
||||
config = {
|
||||
"eps": self.eps,
|
||||
"features": {
|
||||
key: {"type": ft.type.value, "shape": ft.shape} for key, ft in self.features.items()
|
||||
},
|
||||
"norm_map": {ft_type.value: norm_mode.value for ft_type, norm_mode in self.norm_map.items()},
|
||||
}
|
||||
if self.normalize_keys is not None:
|
||||
# Serialise as a list for YAML / JSON friendliness
|
||||
config["normalize_keys"] = sorted(self.normalize_keys)
|
||||
return config
|
||||
|
||||
def state_dict(self) -> dict[str, Tensor]:
|
||||
flat = {}
|
||||
for key, sub in self._tensor_stats.items():
|
||||
for stat_name, tensor in sub.items():
|
||||
flat[f"{key}.{stat_name}"] = tensor
|
||||
return flat
|
||||
|
||||
def load_state_dict(self, state: Mapping[str, Tensor]) -> None:
|
||||
self._tensor_stats.clear()
|
||||
for flat_key, tensor in state.items():
|
||||
key, stat_name = flat_key.rsplit(".", 1)
|
||||
self._tensor_stats.setdefault(key, {})[stat_name] = tensor
|
||||
|
||||
def reset(self):
|
||||
pass
|
||||
|
||||
def feature_contract(self, features: dict[str, PolicyFeature]) -> dict[str, PolicyFeature]:
|
||||
return features
|
||||
|
||||
|
||||
@dataclass
|
||||
@ProcessorStepRegistry.register(name="unnormalizer_processor")
|
||||
class UnnormalizerProcessor:
|
||||
"""Inverse normalisation for observations and actions.
|
||||
|
||||
Exactly mirrors :class:`NormalizerProcessor` but applies the inverse
|
||||
transform.
|
||||
"""
|
||||
|
||||
features: dict[str, PolicyFeature]
|
||||
norm_map: dict[FeatureType, NormalizationMode]
|
||||
stats: dict[str, dict[str, Any]] | None = None
|
||||
|
||||
_tensor_stats: dict[str, dict[str, Tensor]] = field(default_factory=dict, init=False, repr=False)
|
||||
|
||||
@classmethod
|
||||
def from_lerobot_dataset(
|
||||
cls,
|
||||
dataset: LeRobotDataset,
|
||||
features: dict[str, PolicyFeature],
|
||||
norm_map: dict[FeatureType, NormalizationMode],
|
||||
) -> UnnormalizerProcessor:
|
||||
return cls(features=features, norm_map=norm_map, stats=dataset.meta.stats)
|
||||
|
||||
def __post_init__(self):
|
||||
# Handle deserialization from JSON config
|
||||
if self.features and isinstance(list(self.features.values())[0], dict):
|
||||
# Features came from JSON - need to reconstruct PolicyFeature objects
|
||||
reconstructed_features = {}
|
||||
for key, ft_dict in self.features.items():
|
||||
reconstructed_features[key] = PolicyFeature(
|
||||
type=FeatureType(ft_dict["type"]), shape=tuple(ft_dict["shape"])
|
||||
)
|
||||
self.features = reconstructed_features
|
||||
|
||||
if self.norm_map and isinstance(list(self.norm_map.keys())[0], str):
|
||||
# norm_map came from JSON - need to reconstruct enum keys and values
|
||||
reconstructed_norm_map = {}
|
||||
for ft_type_str, norm_mode_str in self.norm_map.items():
|
||||
reconstructed_norm_map[FeatureType(ft_type_str)] = NormalizationMode(norm_mode_str)
|
||||
self.norm_map = reconstructed_norm_map
|
||||
|
||||
self.stats = self.stats or {}
|
||||
self._tensor_stats = _convert_stats_to_tensors(self.stats)
|
||||
|
||||
def _unnormalize_obs(self, observation):
|
||||
if observation is None:
|
||||
return None
|
||||
keys = [k for k, ft in self.features.items() if ft.type is not FeatureType.ACTION]
|
||||
processed = dict(observation)
|
||||
for key in keys:
|
||||
if key not in processed or key not in self._tensor_stats:
|
||||
continue
|
||||
orig_val = processed[key]
|
||||
tensor = (
|
||||
orig_val.to(dtype=torch.float32)
|
||||
if isinstance(orig_val, torch.Tensor)
|
||||
else torch.as_tensor(orig_val, dtype=torch.float32)
|
||||
)
|
||||
stats = {k: v.to(tensor.device) for k, v in self._tensor_stats[key].items()}
|
||||
if "mean" in stats and "std" in stats:
|
||||
mean, std = stats["mean"], stats["std"]
|
||||
processed[key] = tensor * std + mean
|
||||
elif "min" in stats and "max" in stats:
|
||||
min_val, max_val = stats["min"], stats["max"]
|
||||
processed[key] = (tensor + 1) / 2 * (max_val - min_val) + min_val
|
||||
return processed
|
||||
|
||||
def _unnormalize_action(self, action):
|
||||
if action is None or "action" not in self._tensor_stats:
|
||||
return action
|
||||
tensor = (
|
||||
action.to(dtype=torch.float32)
|
||||
if isinstance(action, torch.Tensor)
|
||||
else torch.as_tensor(action, dtype=torch.float32)
|
||||
)
|
||||
stats = {k: v.to(tensor.device) for k, v in self._tensor_stats["action"].items()}
|
||||
if "mean" in stats and "std" in stats:
|
||||
mean, std = stats["mean"], stats["std"]
|
||||
return tensor * std + mean
|
||||
if "min" in stats and "max" in stats:
|
||||
min_val, max_val = stats["min"], stats["max"]
|
||||
return (tensor + 1) / 2 * (max_val - min_val) + min_val
|
||||
raise ValueError("Action stats must contain either ('mean','std') or ('min','max')")
|
||||
|
||||
def __call__(self, transition: EnvTransition) -> EnvTransition:
|
||||
observation = self._unnormalize_obs(transition.get(TransitionKey.OBSERVATION))
|
||||
action = self._unnormalize_action(transition.get(TransitionKey.ACTION))
|
||||
|
||||
# Create a new transition with unnormalized values
|
||||
new_transition = transition.copy()
|
||||
new_transition[TransitionKey.OBSERVATION] = observation
|
||||
new_transition[TransitionKey.ACTION] = action
|
||||
return new_transition
|
||||
|
||||
def get_config(self) -> dict[str, Any]:
|
||||
return {
|
||||
"features": {
|
||||
key: {"type": ft.type.value, "shape": ft.shape} for key, ft in self.features.items()
|
||||
},
|
||||
"norm_map": {ft_type.value: norm_mode.value for ft_type, norm_mode in self.norm_map.items()},
|
||||
}
|
||||
|
||||
def state_dict(self) -> dict[str, Tensor]:
|
||||
flat = {}
|
||||
for key, sub in self._tensor_stats.items():
|
||||
for stat_name, tensor in sub.items():
|
||||
flat[f"{key}.{stat_name}"] = tensor
|
||||
return flat
|
||||
|
||||
def load_state_dict(self, state: Mapping[str, Tensor]) -> None:
|
||||
self._tensor_stats.clear()
|
||||
for flat_key, tensor in state.items():
|
||||
key, stat_name = flat_key.rsplit(".", 1)
|
||||
self._tensor_stats.setdefault(key, {})[stat_name] = tensor
|
||||
|
||||
def reset(self):
|
||||
pass
|
||||
|
||||
def feature_contract(self, features: dict[str, PolicyFeature]) -> dict[str, PolicyFeature]:
|
||||
return features
|
||||
157
src/lerobot/processor/observation_processor.py
Normal file
157
src/lerobot/processor/observation_processor.py
Normal file
@@ -0,0 +1,157 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from dataclasses import dataclass
|
||||
|
||||
import einops
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import Tensor
|
||||
|
||||
from lerobot.configs.types import PolicyFeature
|
||||
from lerobot.constants import OBS_ENV_STATE, OBS_IMAGE, OBS_IMAGES, OBS_STATE
|
||||
from lerobot.processor.pipeline import ObservationProcessor, ProcessorStepRegistry
|
||||
|
||||
|
||||
@dataclass
|
||||
@ProcessorStepRegistry.register(name="observation_processor")
|
||||
class VanillaObservationProcessor(ObservationProcessor):
|
||||
"""
|
||||
Processes environment observations into the LeRobot format by handling both images and states.
|
||||
|
||||
Image processing:
|
||||
- Converts channel-last (H, W, C) images to channel-first (C, H, W)
|
||||
- Normalizes uint8 images ([0, 255]) to float32 ([0, 1])
|
||||
- Adds a batch dimension if missing
|
||||
- Supports single images and image dictionaries
|
||||
|
||||
State processing:
|
||||
- Maps 'environment_state' to observation.environment_state
|
||||
- Maps 'agent_pos' to observation.state
|
||||
- Converts numpy arrays to tensors
|
||||
- Adds a batch dimension if missing
|
||||
"""
|
||||
|
||||
def _process_single_image(self, img: np.ndarray) -> Tensor:
|
||||
"""Process a single image array."""
|
||||
# Convert to tensor
|
||||
img_tensor = torch.from_numpy(img)
|
||||
|
||||
# Add batch dimension if needed
|
||||
if img_tensor.ndim == 3:
|
||||
img_tensor = img_tensor.unsqueeze(0)
|
||||
|
||||
# Validate image format
|
||||
_, h, w, c = img_tensor.shape
|
||||
if not (c < h and c < w):
|
||||
raise ValueError(f"Expected channel-last images, but got shape {img_tensor.shape}")
|
||||
|
||||
if img_tensor.dtype != torch.uint8:
|
||||
raise ValueError(f"Expected torch.uint8 images, but got {img_tensor.dtype}")
|
||||
|
||||
# Convert to channel-first format
|
||||
img_tensor = einops.rearrange(img_tensor, "b h w c -> b c h w").contiguous()
|
||||
|
||||
# Convert to float32 and normalize to [0, 1]
|
||||
img_tensor = img_tensor.type(torch.float32) / 255.0
|
||||
|
||||
return img_tensor
|
||||
|
||||
def _process_observation(self, observation):
|
||||
"""
|
||||
Processes both image and state observations.
|
||||
"""
|
||||
|
||||
processed_obs = observation.copy()
|
||||
|
||||
if "pixels" in processed_obs:
|
||||
pixels = processed_obs.pop("pixels")
|
||||
|
||||
if isinstance(pixels, dict):
|
||||
imgs = {f"{OBS_IMAGES}.{key}": img for key, img in pixels.items()}
|
||||
else:
|
||||
imgs = {OBS_IMAGE: pixels}
|
||||
|
||||
for imgkey, img in imgs.items():
|
||||
processed_obs[imgkey] = self._process_single_image(img)
|
||||
|
||||
if "environment_state" in processed_obs:
|
||||
env_state_np = processed_obs.pop("environment_state")
|
||||
env_state = torch.from_numpy(env_state_np).float()
|
||||
if env_state.dim() == 1:
|
||||
env_state = env_state.unsqueeze(0)
|
||||
processed_obs[OBS_ENV_STATE] = env_state
|
||||
|
||||
if "agent_pos" in processed_obs:
|
||||
agent_pos_np = processed_obs.pop("agent_pos")
|
||||
agent_pos = torch.from_numpy(agent_pos_np).float()
|
||||
if agent_pos.dim() == 1:
|
||||
agent_pos = agent_pos.unsqueeze(0)
|
||||
processed_obs[OBS_STATE] = agent_pos
|
||||
|
||||
return processed_obs
|
||||
|
||||
def observation(self, observation):
|
||||
return self._process_observation(observation)
|
||||
|
||||
def feature_contract(self, features: dict[str, PolicyFeature]) -> dict[str, PolicyFeature]:
|
||||
"""Transforms feature keys to a standardized contract.
|
||||
|
||||
This method handles several renaming patterns:
|
||||
- Exact matches (e.g., 'pixels' -> 'OBS_IMAGE').
|
||||
- Prefixed exact matches (e.g., 'observation.pixels' -> 'OBS_IMAGE').
|
||||
- Prefix matches (e.g., 'pixels.cam1' -> 'OBS_IMAGES.cam1').
|
||||
- Prefixed prefix matches (e.g., 'observation.pixels.cam1' -> 'OBS_IMAGES.cam1').
|
||||
- environment_state -> OBS_ENV_STATE,
|
||||
- agent_pos -> OBS_STATE,
|
||||
- observation.environment_state -> OBS_ENV_STATE,
|
||||
- observation.agent_pos -> OBS_STATE
|
||||
"""
|
||||
exact_pairs = {
|
||||
"pixels": OBS_IMAGE,
|
||||
"environment_state": OBS_ENV_STATE,
|
||||
"agent_pos": OBS_STATE,
|
||||
}
|
||||
|
||||
prefix_pairs = {
|
||||
"pixels.": f"{OBS_IMAGES}.",
|
||||
}
|
||||
|
||||
for key in list(features.keys()):
|
||||
matched_prefix = False
|
||||
for old_prefix, new_prefix in prefix_pairs.items():
|
||||
prefixed_old = f"observation.{old_prefix}"
|
||||
if key.startswith(prefixed_old):
|
||||
suffix = key[len(prefixed_old) :]
|
||||
features[f"{new_prefix}{suffix}"] = features.pop(key)
|
||||
matched_prefix = True
|
||||
break
|
||||
|
||||
if key.startswith(old_prefix):
|
||||
suffix = key[len(old_prefix) :]
|
||||
features[f"{new_prefix}{suffix}"] = features.pop(key)
|
||||
matched_prefix = True
|
||||
break
|
||||
|
||||
if matched_prefix:
|
||||
continue
|
||||
|
||||
for old, new in exact_pairs.items():
|
||||
if key == old or key == f"observation.{old}":
|
||||
if key in features:
|
||||
features[new] = features.pop(key)
|
||||
break
|
||||
|
||||
return features
|
||||
1264
src/lerobot/processor/pipeline.py
Normal file
1264
src/lerobot/processor/pipeline.py
Normal file
File diff suppressed because it is too large
Load Diff
51
src/lerobot/processor/rename_processor.py
Normal file
51
src/lerobot/processor/rename_processor.py
Normal file
@@ -0,0 +1,51 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Any
|
||||
|
||||
from lerobot.configs.types import PolicyFeature
|
||||
from lerobot.processor.pipeline import (
|
||||
ObservationProcessor,
|
||||
ProcessorStepRegistry,
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
@ProcessorStepRegistry.register(name="rename_processor")
|
||||
class RenameProcessor(ObservationProcessor):
|
||||
"""Rename processor that renames keys in the observation."""
|
||||
|
||||
rename_map: dict[str, str] = field(default_factory=dict)
|
||||
|
||||
def observation(self, observation):
|
||||
processed_obs = {}
|
||||
for key, value in observation.items():
|
||||
if key in self.rename_map:
|
||||
processed_obs[self.rename_map[key]] = value
|
||||
else:
|
||||
processed_obs[key] = value
|
||||
|
||||
return processed_obs
|
||||
|
||||
def get_config(self) -> dict[str, Any]:
|
||||
return {"rename_map": self.rename_map}
|
||||
|
||||
def feature_contract(self, features: dict[str, PolicyFeature]) -> dict[str, PolicyFeature]:
|
||||
"""Transforms:
|
||||
- Each key in the observation that appears in `rename_map` is renamed to its value.
|
||||
- Keys not in `rename_map` remain unchanged.
|
||||
"""
|
||||
return {self.rename_map.get(k, k): v for k, v in features.items()}
|
||||
Reference in New Issue
Block a user