feat(pipeline): universal processor for LeRobot (#1431)
* Refactor observation preprocessing to use a modular pipeline system - Introduced `RobotPipeline` and `ObservationProcessor` for handling observation transformations. - Updated `preprocess_observation` to maintain backward compatibility while leveraging the new pipeline. - Added tests for the new processing components and ensured they match the original functionality. - Removed hardcoded logic in favor of a more flexible, composable architecture. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Refactor observation processing and improve modularity - Updated `ObservationProcessor` to enhance the modular design for processing observations. - Cleaned up imports and improved code readability by removing unnecessary lines and comments. - Ensured backward compatibility while integrating new processing components. - Added tests to validate the functionality of the updated processing architecture. * Remove redundant tests for None observation and serialization methods in `test_observation_processor.py` to streamline the test suite and improve maintainability. * Refactor processing architecture to use RobotProcessor - Replaced instances of RobotPipeline with RobotProcessor across the codebase for improved modularity and clarity. - Introduced ProcessorStepRegistry for better management of processing steps. - Updated relevant documentation and tests to reflect the new processing structure. - Enhanced the save/load functionality to support the new processor design. - Added a model card template for RobotProcessor to facilitate sharing and documentation. * Add RobotProcessor tutorial to documentation - Introduced a new tutorial on using RobotProcessor for preprocessing robot data. - Added a section in the table of contents for easy navigation to the new tutorial. - The tutorial covers key concepts, real-world scenarios, and practical examples for effective use of the RobotProcessor pipeline. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add normalization processor and related components - Introduced `NormalizationProcessor` to handle both observation normalization and action unnormalization. - Added `ObservationNormalizer` and `ActionUnnormalizer` classes for specific normalization tasks. - Updated `__init__.py` to include the new `NormalizationProcessor` in the module exports. - Enhanced `ObservationProcessor` with registration in the `ProcessorStepRegistry` for better modularity. - Created `RenameProcessor` for renaming keys in observations, improving flexibility in data processing. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Enhance processing architecture with new components - Added `RenameProcessor` to facilitate key renaming in observations, improving data handling flexibility. - Updated `__init__.py` to include `RenameProcessor` in module exports. - Refactored `NormalizationProcessor` and `ObservationNormalizer` to use `rsplit` for better key handling. - Introduced comprehensive tests for `NormalizationProcessor` and `RenameProcessor` to ensure functionality and robustness. * chore (docs): add docstring for processor * fix (test): test factory * fix(test): policies * Update tests/processor/test_observation_processor.py Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com> Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com> * chore(test): add suggestion made by copilot regarding numpy test * fix(test): import issue * Refactor normalization components and update tests - Renamed `ObservationNormalizer` to `NormalizerProcessor` and `ActionUnnormalizer` to `UnnormalizerProcessor` for clarity. - Consolidated normalization logic for both observations and actions into `NormalizerProcessor` and `UnnormalizerProcessor`. - Updated tests to reflect the new class names and ensure proper functionality of normalization and unnormalization processes. - Enhanced handling of missing statistics in normalization processes. * chore (docstrin):Improve docstring for NormalizerProcessor * feat (device processor): Implement device processor * chore (batch handling): Enhance processing components with batch conversion utilities * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix(test): linting issue * chore (output format): improves output format * chore (type): add typing for multiprocess envs * feat (overrides): Implement support for loading processors with parameter overrides - Added the ability to provide non-serializable objects when loading processors from saved configurations using the `overrides` parameter. - Enhanced error handling for invalid override keys and instantiation errors. - Updated documentation and examples to illustrate the usage of overrides for both registered and unregistered steps. - Added comprehensive tests to validate the new functionality and ensure backward compatibility. * chore(normalization): addressing comments from copilot * chore(learner): nit comment from copilot * feat(pipeline): Enhance step_through method to support both tuple and dict inputs * refactor(pipeline): Simplify observation and padding data handling in batch transitions * Apply suggestions from code review Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com> Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com> * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * refactor(pipeline): Introduce ComplementaryDataProcessor for handling complementary data in transitions * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * refactor(pipeline): Transition from tuple to dictionary format for EnvTransition - Updated the EnvTransition structure to use a dictionary format instead of a tuple, enhancing readability and maintainability. - Replaced instances of TransitionIndex with TransitionKey for accessing transition components. - Adjusted related processing functions and tests to accommodate the new dictionary format, ensuring consistent handling of transitions across the codebase. * refactor(observation_processor): Improve observation processing by using constants and simplifying pixel handling - Introduced constants for observation keys to enhance readability. - Streamlined the handling of the "pixels" key by copying observations first and processing images more clearly. - Updated the environment state and agent position assignments to use the new constants, improving maintainability. * feat(pipeline): Add hook unregistration functionality and enhance documentation - Implemented methods to unregister before, after, and reset hooks in the RobotProcessor class, allowing for more flexible hook management. - Enhanced documentation to clarify hook execution semantics and the implications of modifying transitions within hooks. - Added comprehensive tests to verify the correct behavior of hook registration and unregistration, including error handling for non-existent hooks. * refactor(pipeline): Clarify hook behavior and improve documentation - Updated the RobotProcessor class to ensure hooks are strictly for observation and do not modify transitions, enhancing clarity and maintainability. - Refactored hook registration methods to reflect the new behavior, ensuring they accept only functions that do not return modified transitions. - Enhanced documentation to clearly outline the purpose of hooks and their execution semantics. - Added tests to verify that hooks are not executed during the step_through method while ensuring they function correctly during the __call__ method. * feat(pipeline): Add __repr__ method to RobotProcessor for improved readability - Implemented a __repr__ method in the RobotProcessor class to provide a clear string representation of the processor, including step names and optional parameters like name and seed. - Added comprehensive tests to validate the __repr__ output for various scenarios, including empty processors, single and multiple steps, custom names, and seed values. - Ensured that the representation handles long lists of steps with truncation for better readability. * chore(pipeline): Move _CFG_NAME along other class member * refactor(pipeline): Utilize get_safe_torch_device for device assignment - Replaced direct torch.device instantiation with get_safe_torch_device to ensure safe device handling. - This change enhances code readability and maintains consistency in device management across the RobotProcessor class. * refactor(pipeline): Enhance state filename generation and profiling method - Updated state filename generation to use the registry name when available, improving clarity in saved files. - Modified the profile_steps method to include a warmup_runs parameter, allowing for more controlled performance profiling. - Ensured consistent conditions during profiling by deep copying transitions for each run, enhancing accuracy in timing results. * chore(doc): address pip install commant lerobot that not exist yet * feat(pipeline): Enhance configuration filename handling and state file naming - Introduced support for custom configuration filenames in the `save_pretrained` method, allowing users to specify a filename instead of the default. - Improved state file naming to include step indices, preventing conflicts when multiple processors of the same type are saved. - Added automatic detection for configuration files when loading from a directory, with error handling for multiple files. - Updated tests to validate new features, including custom filenames and automatic config detection. * refactor(pipeline): Improve state file naming conventions for clarity and uniqueness - Enhanced state file naming to include the processor's sanitized name, ensuring uniqueness when multiple processors are saved in the same directory. - Updated tests to reflect changes in state file naming, verifying that filenames now include the processor name and step indices to prevent conflicts. - Added a new test to validate state file naming when using multiple processors, ensuring distinct filenames for each processor's state files. * docs(pipeline): Add clarification for repo name sanitization process * Feat/pipeline add feature contract (#1637) * Add feature contract to pipelinestep and pipeline * Add tests * Add processor tests * PR feedback * encorperate pr feedback * type in doc * oops * docs(pipeline): Clarify transition handling and hook behavior - Updated documentation to specify that hooks always receive transitions in EnvTransition format, ensuring consistent behavior across input formats. - Refactored the step_through method to yield only EnvTransition objects, regardless of the input format, and updated related tests to reflect this change. - Enhanced test assertions to verify the structure of results and the correctness of processing steps. * refactor(pipeline): Remove to() method for device management - Eliminated the to() method from RobotProcessor, which was responsible for moving tensor states to specified devices. - Removed associated unit tests that validated the functionality of the to() method across various scenarios. - Streamlined the pipeline code by focusing on other device management strategies. * refactor(pipeline): Remove model card generation and streamline processor methods - Eliminated the _generate_model_card method from RobotProcessor, which was responsible for generating README.md files from a template. - Updated save_pretrained method to remove model card generation, focusing on serialization of processor definitions and parameters. - Added default implementations for get_config, state_dict, load_state_dict, reset, and feature_contract methods in various processor classes to enhance consistency and usability. * refactor(observation): Streamline observation preprocessing and remove unused processor methods - Updated the `preprocess_observation` function to enhance image handling and ensure proper tensor formatting. - Removed the `RobotProcessor` and associated transition handling from the `rollout` function, simplifying the observation processing flow. - Integrated direct calls to `preprocess_observation` for improved clarity and efficiency in the evaluation script. * refactor(pipeline): Rename parameters for clarity and enhance save/load functionality - Updated parameter names in the save_pretrained and from_pretrained methods for improved readability, changing destination_path to save_directory and source to pretrained_model_name_or_path. - Enhanced the save_pretrained method to ensure directory creation and file handling is consistent with the new parameter names. - Streamlined the loading process in from_pretrained to utilize loaded_config for better clarity and maintainability. * refactor(pipeline): minor improvements (#1684) * chore(pipeline): remove unused features + device torch + envtransition keys * refactor(pipeline): ImageProcessor & StateProcessor are both implemented directly in VanillaObservationPRocessor * refactor(pipeline): RenameProcessor now inherits from ObservationProcessor + remove unused code * test(pipeline): fix broken test after refactors * docs(pipeline): update docstrings VanillaObservationProcessor * chore(pipeline): move None check to base pipeline classes --------- Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com> Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com> Co-authored-by: Pepijn <138571049+pkooij@users.noreply.github.com> Co-authored-by: Steven Palma <imstevenpmwork@ieee.org>
This commit is contained in:
54
src/lerobot/processor/__init__.py
Normal file
54
src/lerobot/processor/__init__.py
Normal file
@@ -0,0 +1,54 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from .device_processor import DeviceProcessor
|
||||
from .normalize_processor import NormalizerProcessor, UnnormalizerProcessor
|
||||
from .observation_processor import VanillaObservationProcessor
|
||||
from .pipeline import (
|
||||
ActionProcessor,
|
||||
DoneProcessor,
|
||||
EnvTransition,
|
||||
IdentityProcessor,
|
||||
InfoProcessor,
|
||||
ObservationProcessor,
|
||||
ProcessorStep,
|
||||
ProcessorStepRegistry,
|
||||
RewardProcessor,
|
||||
RobotProcessor,
|
||||
TransitionKey,
|
||||
TruncatedProcessor,
|
||||
)
|
||||
from .rename_processor import RenameProcessor
|
||||
|
||||
__all__ = [
|
||||
"ActionProcessor",
|
||||
"DeviceProcessor",
|
||||
"DoneProcessor",
|
||||
"EnvTransition",
|
||||
"IdentityProcessor",
|
||||
"InfoProcessor",
|
||||
"NormalizerProcessor",
|
||||
"UnnormalizerProcessor",
|
||||
"ObservationProcessor",
|
||||
"ProcessorStep",
|
||||
"ProcessorStepRegistry",
|
||||
"RenameProcessor",
|
||||
"RewardProcessor",
|
||||
"RobotProcessor",
|
||||
"TransitionKey",
|
||||
"TruncatedProcessor",
|
||||
"VanillaObservationProcessor",
|
||||
]
|
||||
82
src/lerobot/processor/device_processor.py
Normal file
82
src/lerobot/processor/device_processor.py
Normal file
@@ -0,0 +1,82 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from dataclasses import dataclass
|
||||
from typing import Any
|
||||
|
||||
import torch
|
||||
|
||||
from lerobot.configs.types import PolicyFeature
|
||||
from lerobot.processor.pipeline import EnvTransition, TransitionKey
|
||||
from lerobot.utils.utils import get_safe_torch_device
|
||||
|
||||
|
||||
@dataclass
|
||||
class DeviceProcessor:
|
||||
"""Processes transitions by moving tensors to the specified device.
|
||||
|
||||
This processor ensures that all tensors in the transition are moved to the
|
||||
specified device (CPU or GPU) before they are returned.
|
||||
"""
|
||||
|
||||
device: torch.device = "cpu"
|
||||
|
||||
def __post_init__(self):
|
||||
self.device = get_safe_torch_device(self.device)
|
||||
self.non_blocking = "cuda" in str(self.device)
|
||||
|
||||
def __call__(self, transition: EnvTransition) -> EnvTransition:
|
||||
# Create a copy of the transition
|
||||
new_transition = transition.copy()
|
||||
|
||||
# Process observation tensors
|
||||
observation = transition.get(TransitionKey.OBSERVATION)
|
||||
if observation is not None:
|
||||
new_observation = {
|
||||
k: v.to(self.device, non_blocking=self.non_blocking) if isinstance(v, torch.Tensor) else v
|
||||
for k, v in observation.items()
|
||||
}
|
||||
new_transition[TransitionKey.OBSERVATION] = new_observation
|
||||
|
||||
# Process action tensor
|
||||
action = transition.get(TransitionKey.ACTION)
|
||||
if action is not None and isinstance(action, torch.Tensor):
|
||||
new_transition[TransitionKey.ACTION] = action.to(self.device, non_blocking=self.non_blocking)
|
||||
|
||||
# Process reward tensor
|
||||
reward = transition.get(TransitionKey.REWARD)
|
||||
if reward is not None and isinstance(reward, torch.Tensor):
|
||||
new_transition[TransitionKey.REWARD] = reward.to(self.device, non_blocking=self.non_blocking)
|
||||
|
||||
# Process done tensor
|
||||
done = transition.get(TransitionKey.DONE)
|
||||
if done is not None and isinstance(done, torch.Tensor):
|
||||
new_transition[TransitionKey.DONE] = done.to(self.device, non_blocking=self.non_blocking)
|
||||
|
||||
# Process truncated tensor
|
||||
truncated = transition.get(TransitionKey.TRUNCATED)
|
||||
if truncated is not None and isinstance(truncated, torch.Tensor):
|
||||
new_transition[TransitionKey.TRUNCATED] = truncated.to(
|
||||
self.device, non_blocking=self.non_blocking
|
||||
)
|
||||
|
||||
return new_transition
|
||||
|
||||
def get_config(self) -> dict[str, Any]:
|
||||
"""Return configuration for serialization."""
|
||||
return {"device": self.device}
|
||||
|
||||
def feature_contract(self, features: dict[str, PolicyFeature]) -> dict[str, PolicyFeature]:
|
||||
return features
|
||||
331
src/lerobot/processor/normalize_processor.py
Normal file
331
src/lerobot/processor/normalize_processor.py
Normal file
@@ -0,0 +1,331 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from collections.abc import Mapping
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import Tensor
|
||||
|
||||
from lerobot.configs.types import FeatureType, NormalizationMode, PolicyFeature
|
||||
from lerobot.datasets.lerobot_dataset import LeRobotDataset
|
||||
from lerobot.processor.pipeline import EnvTransition, ProcessorStepRegistry, TransitionKey
|
||||
|
||||
|
||||
def _convert_stats_to_tensors(stats: dict[str, dict[str, Any]]) -> dict[str, dict[str, Tensor]]:
|
||||
"""Convert numpy arrays and other types to torch tensors."""
|
||||
tensor_stats: dict[str, dict[str, Tensor]] = {}
|
||||
for key, sub in stats.items():
|
||||
tensor_stats[key] = {}
|
||||
for stat_name, value in sub.items():
|
||||
if isinstance(value, np.ndarray):
|
||||
tensor_val = torch.from_numpy(value.astype(np.float32))
|
||||
elif isinstance(value, torch.Tensor):
|
||||
tensor_val = value.to(dtype=torch.float32)
|
||||
elif isinstance(value, (int, float, list, tuple)):
|
||||
tensor_val = torch.tensor(value, dtype=torch.float32)
|
||||
else:
|
||||
raise TypeError(f"Unsupported type for stats['{key}']['{stat_name}']: {type(value)}")
|
||||
tensor_stats[key][stat_name] = tensor_val
|
||||
return tensor_stats
|
||||
|
||||
|
||||
@dataclass
|
||||
@ProcessorStepRegistry.register(name="normalizer_processor")
|
||||
class NormalizerProcessor:
|
||||
"""Normalizes observations and actions in a single processor step.
|
||||
|
||||
This processor handles normalization of both observation and action tensors
|
||||
using either mean/std normalization or min/max scaling to a [-1, 1] range.
|
||||
|
||||
For each tensor key in the stats dictionary, the processor will:
|
||||
- Use mean/std normalization if those statistics are provided: (x - mean) / std
|
||||
- Use min/max scaling if those statistics are provided: 2 * (x - min) / (max - min) - 1
|
||||
|
||||
The processor can be configured to normalize only specific keys by setting
|
||||
the normalize_keys parameter.
|
||||
"""
|
||||
|
||||
# Features and normalisation map are mandatory to match the design of normalize.py
|
||||
features: dict[str, PolicyFeature]
|
||||
norm_map: dict[FeatureType, NormalizationMode]
|
||||
|
||||
# Pre-computed statistics coming from dataset.meta.stats for instance.
|
||||
stats: dict[str, dict[str, Any]] | None = None
|
||||
|
||||
# Explicit subset of keys to normalise. If ``None`` every key (except
|
||||
# "action") found in ``stats`` will be normalised. Using a ``set`` makes
|
||||
# membership checks O(1).
|
||||
normalize_keys: set[str] | None = None
|
||||
|
||||
eps: float = 1e-8
|
||||
|
||||
_tensor_stats: dict[str, dict[str, Tensor]] = field(default_factory=dict, init=False, repr=False)
|
||||
|
||||
@classmethod
|
||||
def from_lerobot_dataset(
|
||||
cls,
|
||||
dataset: LeRobotDataset,
|
||||
features: dict[str, PolicyFeature],
|
||||
norm_map: dict[FeatureType, NormalizationMode],
|
||||
*,
|
||||
normalize_keys: set[str] | None = None,
|
||||
eps: float = 1e-8,
|
||||
) -> NormalizerProcessor:
|
||||
"""Factory helper that pulls statistics from a :class:`LeRobotDataset`.
|
||||
|
||||
The features and norm_map parameters are mandatory to match the design
|
||||
pattern used in normalize.py.
|
||||
"""
|
||||
|
||||
return cls(
|
||||
features=features,
|
||||
norm_map=norm_map,
|
||||
stats=dataset.meta.stats,
|
||||
normalize_keys=normalize_keys,
|
||||
eps=eps,
|
||||
)
|
||||
|
||||
def __post_init__(self):
|
||||
# Handle deserialization from JSON config
|
||||
if self.features and isinstance(list(self.features.values())[0], dict):
|
||||
# Features came from JSON - need to reconstruct PolicyFeature objects
|
||||
reconstructed_features = {}
|
||||
for key, ft_dict in self.features.items():
|
||||
reconstructed_features[key] = PolicyFeature(
|
||||
type=FeatureType(ft_dict["type"]), shape=tuple(ft_dict["shape"])
|
||||
)
|
||||
self.features = reconstructed_features
|
||||
|
||||
if self.norm_map and isinstance(list(self.norm_map.keys())[0], str):
|
||||
# norm_map came from JSON - need to reconstruct enum keys and values
|
||||
reconstructed_norm_map = {}
|
||||
for ft_type_str, norm_mode_str in self.norm_map.items():
|
||||
reconstructed_norm_map[FeatureType(ft_type_str)] = NormalizationMode(norm_mode_str)
|
||||
self.norm_map = reconstructed_norm_map
|
||||
|
||||
# Convert statistics once so we avoid repeated numpy→Tensor conversions
|
||||
# during runtime.
|
||||
self.stats = self.stats or {}
|
||||
self._tensor_stats = _convert_stats_to_tensors(self.stats)
|
||||
|
||||
# Ensure *normalize_keys* is a set for fast look-ups and compare by
|
||||
# value later when returning the configuration.
|
||||
if self.normalize_keys is not None and not isinstance(self.normalize_keys, set):
|
||||
self.normalize_keys = set(self.normalize_keys)
|
||||
|
||||
def _normalize_obs(self, observation):
|
||||
if observation is None:
|
||||
return None
|
||||
|
||||
# Decide which keys should be normalised for this call.
|
||||
if self.normalize_keys is not None:
|
||||
keys_to_norm = self.normalize_keys
|
||||
else:
|
||||
# Use feature map to skip action keys.
|
||||
keys_to_norm = {k for k, ft in self.features.items() if ft.type is not FeatureType.ACTION}
|
||||
|
||||
processed = dict(observation)
|
||||
for key in keys_to_norm:
|
||||
if key not in processed or key not in self._tensor_stats:
|
||||
continue
|
||||
|
||||
orig_val = processed[key]
|
||||
tensor = (
|
||||
orig_val.to(dtype=torch.float32)
|
||||
if isinstance(orig_val, torch.Tensor)
|
||||
else torch.as_tensor(orig_val, dtype=torch.float32)
|
||||
)
|
||||
stats = {k: v.to(tensor.device) for k, v in self._tensor_stats[key].items()}
|
||||
|
||||
if "mean" in stats and "std" in stats:
|
||||
mean, std = stats["mean"], stats["std"]
|
||||
processed[key] = (tensor - mean) / (std + self.eps)
|
||||
elif "min" in stats and "max" in stats:
|
||||
min_val, max_val = stats["min"], stats["max"]
|
||||
processed[key] = 2 * (tensor - min_val) / (max_val - min_val + self.eps) - 1
|
||||
return processed
|
||||
|
||||
def _normalize_action(self, action):
|
||||
if action is None or "action" not in self._tensor_stats:
|
||||
return action
|
||||
|
||||
tensor = (
|
||||
action.to(dtype=torch.float32)
|
||||
if isinstance(action, torch.Tensor)
|
||||
else torch.as_tensor(action, dtype=torch.float32)
|
||||
)
|
||||
stats = {k: v.to(tensor.device) for k, v in self._tensor_stats["action"].items()}
|
||||
if "mean" in stats and "std" in stats:
|
||||
mean, std = stats["mean"], stats["std"]
|
||||
return (tensor - mean) / (std + self.eps)
|
||||
if "min" in stats and "max" in stats:
|
||||
min_val, max_val = stats["min"], stats["max"]
|
||||
return 2 * (tensor - min_val) / (max_val - min_val + self.eps) - 1
|
||||
raise ValueError("Action stats must contain either ('mean','std') or ('min','max')")
|
||||
|
||||
def __call__(self, transition: EnvTransition) -> EnvTransition:
|
||||
observation = self._normalize_obs(transition.get(TransitionKey.OBSERVATION))
|
||||
action = self._normalize_action(transition.get(TransitionKey.ACTION))
|
||||
|
||||
# Create a new transition with normalized values
|
||||
new_transition = transition.copy()
|
||||
new_transition[TransitionKey.OBSERVATION] = observation
|
||||
new_transition[TransitionKey.ACTION] = action
|
||||
return new_transition
|
||||
|
||||
def get_config(self) -> dict[str, Any]:
|
||||
config = {
|
||||
"eps": self.eps,
|
||||
"features": {
|
||||
key: {"type": ft.type.value, "shape": ft.shape} for key, ft in self.features.items()
|
||||
},
|
||||
"norm_map": {ft_type.value: norm_mode.value for ft_type, norm_mode in self.norm_map.items()},
|
||||
}
|
||||
if self.normalize_keys is not None:
|
||||
# Serialise as a list for YAML / JSON friendliness
|
||||
config["normalize_keys"] = sorted(self.normalize_keys)
|
||||
return config
|
||||
|
||||
def state_dict(self) -> dict[str, Tensor]:
|
||||
flat = {}
|
||||
for key, sub in self._tensor_stats.items():
|
||||
for stat_name, tensor in sub.items():
|
||||
flat[f"{key}.{stat_name}"] = tensor
|
||||
return flat
|
||||
|
||||
def load_state_dict(self, state: Mapping[str, Tensor]) -> None:
|
||||
self._tensor_stats.clear()
|
||||
for flat_key, tensor in state.items():
|
||||
key, stat_name = flat_key.rsplit(".", 1)
|
||||
self._tensor_stats.setdefault(key, {})[stat_name] = tensor
|
||||
|
||||
def reset(self):
|
||||
pass
|
||||
|
||||
def feature_contract(self, features: dict[str, PolicyFeature]) -> dict[str, PolicyFeature]:
|
||||
return features
|
||||
|
||||
|
||||
@dataclass
|
||||
@ProcessorStepRegistry.register(name="unnormalizer_processor")
|
||||
class UnnormalizerProcessor:
|
||||
"""Inverse normalisation for observations and actions.
|
||||
|
||||
Exactly mirrors :class:`NormalizerProcessor` but applies the inverse
|
||||
transform.
|
||||
"""
|
||||
|
||||
features: dict[str, PolicyFeature]
|
||||
norm_map: dict[FeatureType, NormalizationMode]
|
||||
stats: dict[str, dict[str, Any]] | None = None
|
||||
|
||||
_tensor_stats: dict[str, dict[str, Tensor]] = field(default_factory=dict, init=False, repr=False)
|
||||
|
||||
@classmethod
|
||||
def from_lerobot_dataset(
|
||||
cls,
|
||||
dataset: LeRobotDataset,
|
||||
features: dict[str, PolicyFeature],
|
||||
norm_map: dict[FeatureType, NormalizationMode],
|
||||
) -> UnnormalizerProcessor:
|
||||
return cls(features=features, norm_map=norm_map, stats=dataset.meta.stats)
|
||||
|
||||
def __post_init__(self):
|
||||
# Handle deserialization from JSON config
|
||||
if self.features and isinstance(list(self.features.values())[0], dict):
|
||||
# Features came from JSON - need to reconstruct PolicyFeature objects
|
||||
reconstructed_features = {}
|
||||
for key, ft_dict in self.features.items():
|
||||
reconstructed_features[key] = PolicyFeature(
|
||||
type=FeatureType(ft_dict["type"]), shape=tuple(ft_dict["shape"])
|
||||
)
|
||||
self.features = reconstructed_features
|
||||
|
||||
if self.norm_map and isinstance(list(self.norm_map.keys())[0], str):
|
||||
# norm_map came from JSON - need to reconstruct enum keys and values
|
||||
reconstructed_norm_map = {}
|
||||
for ft_type_str, norm_mode_str in self.norm_map.items():
|
||||
reconstructed_norm_map[FeatureType(ft_type_str)] = NormalizationMode(norm_mode_str)
|
||||
self.norm_map = reconstructed_norm_map
|
||||
|
||||
self.stats = self.stats or {}
|
||||
self._tensor_stats = _convert_stats_to_tensors(self.stats)
|
||||
|
||||
def _unnormalize_obs(self, observation):
|
||||
if observation is None:
|
||||
return None
|
||||
keys = [k for k, ft in self.features.items() if ft.type is not FeatureType.ACTION]
|
||||
processed = dict(observation)
|
||||
for key in keys:
|
||||
if key not in processed or key not in self._tensor_stats:
|
||||
continue
|
||||
orig_val = processed[key]
|
||||
tensor = (
|
||||
orig_val.to(dtype=torch.float32)
|
||||
if isinstance(orig_val, torch.Tensor)
|
||||
else torch.as_tensor(orig_val, dtype=torch.float32)
|
||||
)
|
||||
stats = {k: v.to(tensor.device) for k, v in self._tensor_stats[key].items()}
|
||||
if "mean" in stats and "std" in stats:
|
||||
mean, std = stats["mean"], stats["std"]
|
||||
processed[key] = tensor * std + mean
|
||||
elif "min" in stats and "max" in stats:
|
||||
min_val, max_val = stats["min"], stats["max"]
|
||||
processed[key] = (tensor + 1) / 2 * (max_val - min_val) + min_val
|
||||
return processed
|
||||
|
||||
def _unnormalize_action(self, action):
|
||||
if action is None or "action" not in self._tensor_stats:
|
||||
return action
|
||||
tensor = (
|
||||
action.to(dtype=torch.float32)
|
||||
if isinstance(action, torch.Tensor)
|
||||
else torch.as_tensor(action, dtype=torch.float32)
|
||||
)
|
||||
stats = {k: v.to(tensor.device) for k, v in self._tensor_stats["action"].items()}
|
||||
if "mean" in stats and "std" in stats:
|
||||
mean, std = stats["mean"], stats["std"]
|
||||
return tensor * std + mean
|
||||
if "min" in stats and "max" in stats:
|
||||
min_val, max_val = stats["min"], stats["max"]
|
||||
return (tensor + 1) / 2 * (max_val - min_val) + min_val
|
||||
raise ValueError("Action stats must contain either ('mean','std') or ('min','max')")
|
||||
|
||||
def __call__(self, transition: EnvTransition) -> EnvTransition:
|
||||
observation = self._unnormalize_obs(transition.get(TransitionKey.OBSERVATION))
|
||||
action = self._unnormalize_action(transition.get(TransitionKey.ACTION))
|
||||
|
||||
# Create a new transition with unnormalized values
|
||||
new_transition = transition.copy()
|
||||
new_transition[TransitionKey.OBSERVATION] = observation
|
||||
new_transition[TransitionKey.ACTION] = action
|
||||
return new_transition
|
||||
|
||||
def get_config(self) -> dict[str, Any]:
|
||||
return {
|
||||
"features": {
|
||||
key: {"type": ft.type.value, "shape": ft.shape} for key, ft in self.features.items()
|
||||
},
|
||||
"norm_map": {ft_type.value: norm_mode.value for ft_type, norm_mode in self.norm_map.items()},
|
||||
}
|
||||
|
||||
def state_dict(self) -> dict[str, Tensor]:
|
||||
flat = {}
|
||||
for key, sub in self._tensor_stats.items():
|
||||
for stat_name, tensor in sub.items():
|
||||
flat[f"{key}.{stat_name}"] = tensor
|
||||
return flat
|
||||
|
||||
def load_state_dict(self, state: Mapping[str, Tensor]) -> None:
|
||||
self._tensor_stats.clear()
|
||||
for flat_key, tensor in state.items():
|
||||
key, stat_name = flat_key.rsplit(".", 1)
|
||||
self._tensor_stats.setdefault(key, {})[stat_name] = tensor
|
||||
|
||||
def reset(self):
|
||||
pass
|
||||
|
||||
def feature_contract(self, features: dict[str, PolicyFeature]) -> dict[str, PolicyFeature]:
|
||||
return features
|
||||
157
src/lerobot/processor/observation_processor.py
Normal file
157
src/lerobot/processor/observation_processor.py
Normal file
@@ -0,0 +1,157 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from dataclasses import dataclass
|
||||
|
||||
import einops
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import Tensor
|
||||
|
||||
from lerobot.configs.types import PolicyFeature
|
||||
from lerobot.constants import OBS_ENV_STATE, OBS_IMAGE, OBS_IMAGES, OBS_STATE
|
||||
from lerobot.processor.pipeline import ObservationProcessor, ProcessorStepRegistry
|
||||
|
||||
|
||||
@dataclass
|
||||
@ProcessorStepRegistry.register(name="observation_processor")
|
||||
class VanillaObservationProcessor(ObservationProcessor):
|
||||
"""
|
||||
Processes environment observations into the LeRobot format by handling both images and states.
|
||||
|
||||
Image processing:
|
||||
- Converts channel-last (H, W, C) images to channel-first (C, H, W)
|
||||
- Normalizes uint8 images ([0, 255]) to float32 ([0, 1])
|
||||
- Adds a batch dimension if missing
|
||||
- Supports single images and image dictionaries
|
||||
|
||||
State processing:
|
||||
- Maps 'environment_state' to observation.environment_state
|
||||
- Maps 'agent_pos' to observation.state
|
||||
- Converts numpy arrays to tensors
|
||||
- Adds a batch dimension if missing
|
||||
"""
|
||||
|
||||
def _process_single_image(self, img: np.ndarray) -> Tensor:
|
||||
"""Process a single image array."""
|
||||
# Convert to tensor
|
||||
img_tensor = torch.from_numpy(img)
|
||||
|
||||
# Add batch dimension if needed
|
||||
if img_tensor.ndim == 3:
|
||||
img_tensor = img_tensor.unsqueeze(0)
|
||||
|
||||
# Validate image format
|
||||
_, h, w, c = img_tensor.shape
|
||||
if not (c < h and c < w):
|
||||
raise ValueError(f"Expected channel-last images, but got shape {img_tensor.shape}")
|
||||
|
||||
if img_tensor.dtype != torch.uint8:
|
||||
raise ValueError(f"Expected torch.uint8 images, but got {img_tensor.dtype}")
|
||||
|
||||
# Convert to channel-first format
|
||||
img_tensor = einops.rearrange(img_tensor, "b h w c -> b c h w").contiguous()
|
||||
|
||||
# Convert to float32 and normalize to [0, 1]
|
||||
img_tensor = img_tensor.type(torch.float32) / 255.0
|
||||
|
||||
return img_tensor
|
||||
|
||||
def _process_observation(self, observation):
|
||||
"""
|
||||
Processes both image and state observations.
|
||||
"""
|
||||
|
||||
processed_obs = observation.copy()
|
||||
|
||||
if "pixels" in processed_obs:
|
||||
pixels = processed_obs.pop("pixels")
|
||||
|
||||
if isinstance(pixels, dict):
|
||||
imgs = {f"{OBS_IMAGES}.{key}": img for key, img in pixels.items()}
|
||||
else:
|
||||
imgs = {OBS_IMAGE: pixels}
|
||||
|
||||
for imgkey, img in imgs.items():
|
||||
processed_obs[imgkey] = self._process_single_image(img)
|
||||
|
||||
if "environment_state" in processed_obs:
|
||||
env_state_np = processed_obs.pop("environment_state")
|
||||
env_state = torch.from_numpy(env_state_np).float()
|
||||
if env_state.dim() == 1:
|
||||
env_state = env_state.unsqueeze(0)
|
||||
processed_obs[OBS_ENV_STATE] = env_state
|
||||
|
||||
if "agent_pos" in processed_obs:
|
||||
agent_pos_np = processed_obs.pop("agent_pos")
|
||||
agent_pos = torch.from_numpy(agent_pos_np).float()
|
||||
if agent_pos.dim() == 1:
|
||||
agent_pos = agent_pos.unsqueeze(0)
|
||||
processed_obs[OBS_STATE] = agent_pos
|
||||
|
||||
return processed_obs
|
||||
|
||||
def observation(self, observation):
|
||||
return self._process_observation(observation)
|
||||
|
||||
def feature_contract(self, features: dict[str, PolicyFeature]) -> dict[str, PolicyFeature]:
|
||||
"""Transforms feature keys to a standardized contract.
|
||||
|
||||
This method handles several renaming patterns:
|
||||
- Exact matches (e.g., 'pixels' -> 'OBS_IMAGE').
|
||||
- Prefixed exact matches (e.g., 'observation.pixels' -> 'OBS_IMAGE').
|
||||
- Prefix matches (e.g., 'pixels.cam1' -> 'OBS_IMAGES.cam1').
|
||||
- Prefixed prefix matches (e.g., 'observation.pixels.cam1' -> 'OBS_IMAGES.cam1').
|
||||
- environment_state -> OBS_ENV_STATE,
|
||||
- agent_pos -> OBS_STATE,
|
||||
- observation.environment_state -> OBS_ENV_STATE,
|
||||
- observation.agent_pos -> OBS_STATE
|
||||
"""
|
||||
exact_pairs = {
|
||||
"pixels": OBS_IMAGE,
|
||||
"environment_state": OBS_ENV_STATE,
|
||||
"agent_pos": OBS_STATE,
|
||||
}
|
||||
|
||||
prefix_pairs = {
|
||||
"pixels.": f"{OBS_IMAGES}.",
|
||||
}
|
||||
|
||||
for key in list(features.keys()):
|
||||
matched_prefix = False
|
||||
for old_prefix, new_prefix in prefix_pairs.items():
|
||||
prefixed_old = f"observation.{old_prefix}"
|
||||
if key.startswith(prefixed_old):
|
||||
suffix = key[len(prefixed_old) :]
|
||||
features[f"{new_prefix}{suffix}"] = features.pop(key)
|
||||
matched_prefix = True
|
||||
break
|
||||
|
||||
if key.startswith(old_prefix):
|
||||
suffix = key[len(old_prefix) :]
|
||||
features[f"{new_prefix}{suffix}"] = features.pop(key)
|
||||
matched_prefix = True
|
||||
break
|
||||
|
||||
if matched_prefix:
|
||||
continue
|
||||
|
||||
for old, new in exact_pairs.items():
|
||||
if key == old or key == f"observation.{old}":
|
||||
if key in features:
|
||||
features[new] = features.pop(key)
|
||||
break
|
||||
|
||||
return features
|
||||
1264
src/lerobot/processor/pipeline.py
Normal file
1264
src/lerobot/processor/pipeline.py
Normal file
File diff suppressed because it is too large
Load Diff
51
src/lerobot/processor/rename_processor.py
Normal file
51
src/lerobot/processor/rename_processor.py
Normal file
@@ -0,0 +1,51 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Any
|
||||
|
||||
from lerobot.configs.types import PolicyFeature
|
||||
from lerobot.processor.pipeline import (
|
||||
ObservationProcessor,
|
||||
ProcessorStepRegistry,
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
@ProcessorStepRegistry.register(name="rename_processor")
|
||||
class RenameProcessor(ObservationProcessor):
|
||||
"""Rename processor that renames keys in the observation."""
|
||||
|
||||
rename_map: dict[str, str] = field(default_factory=dict)
|
||||
|
||||
def observation(self, observation):
|
||||
processed_obs = {}
|
||||
for key, value in observation.items():
|
||||
if key in self.rename_map:
|
||||
processed_obs[self.rename_map[key]] = value
|
||||
else:
|
||||
processed_obs[key] = value
|
||||
|
||||
return processed_obs
|
||||
|
||||
def get_config(self) -> dict[str, Any]:
|
||||
return {"rename_map": self.rename_map}
|
||||
|
||||
def feature_contract(self, features: dict[str, PolicyFeature]) -> dict[str, PolicyFeature]:
|
||||
"""Transforms:
|
||||
- Each key in the observation that appears in `rename_map` is renamed to its value.
|
||||
- Keys not in `rename_map` remain unchanged.
|
||||
"""
|
||||
return {self.rename_map.get(k, k): v for k, v in features.items()}
|
||||
@@ -19,6 +19,7 @@ import traceback
|
||||
import pytest
|
||||
from serial import SerialException
|
||||
|
||||
from lerobot.configs.types import FeatureType, PolicyFeature
|
||||
from tests.utils import DEVICE
|
||||
|
||||
# Import fixture modules as plugins
|
||||
@@ -69,3 +70,19 @@ def patch_builtins_input(monkeypatch):
|
||||
print(text)
|
||||
|
||||
monkeypatch.setattr("builtins.input", print_text)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def policy_feature_factory():
|
||||
"""PolicyFeature factory"""
|
||||
|
||||
def _pf(ft: FeatureType, shape: tuple[int, ...]) -> PolicyFeature:
|
||||
return PolicyFeature(type=ft, shape=shape)
|
||||
|
||||
return _pf
|
||||
|
||||
|
||||
def assert_contract_is_typed(features: dict[str, PolicyFeature]) -> None:
|
||||
assert isinstance(features, dict)
|
||||
assert all(isinstance(k, str) for k in features.keys())
|
||||
assert all(isinstance(v, PolicyFeature) for v in features.values())
|
||||
|
||||
282
tests/processor/test_batch_conversion.py
Normal file
282
tests/processor/test_batch_conversion.py
Normal file
@@ -0,0 +1,282 @@
|
||||
import torch
|
||||
|
||||
from lerobot.processor.pipeline import (
|
||||
RobotProcessor,
|
||||
TransitionKey,
|
||||
_default_batch_to_transition,
|
||||
_default_transition_to_batch,
|
||||
)
|
||||
|
||||
|
||||
def _dummy_batch():
|
||||
"""Create a dummy batch using the new format with observation.* and next.* keys."""
|
||||
return {
|
||||
"observation.image.left": torch.randn(1, 3, 128, 128),
|
||||
"observation.image.right": torch.randn(1, 3, 128, 128),
|
||||
"observation.state": torch.tensor([[0.1, 0.2, 0.3, 0.4]]),
|
||||
"action": torch.tensor([[0.5]]),
|
||||
"next.reward": 1.0,
|
||||
"next.done": False,
|
||||
"next.truncated": False,
|
||||
"info": {"key": "value"},
|
||||
}
|
||||
|
||||
|
||||
def test_observation_grouping_roundtrip():
|
||||
"""Test that observation.* keys are properly grouped and ungrouped."""
|
||||
proc = RobotProcessor([])
|
||||
batch_in = _dummy_batch()
|
||||
batch_out = proc(batch_in)
|
||||
|
||||
# Check that all observation.* keys are preserved
|
||||
original_obs_keys = {k: v for k, v in batch_in.items() if k.startswith("observation.")}
|
||||
reconstructed_obs_keys = {k: v for k, v in batch_out.items() if k.startswith("observation.")}
|
||||
|
||||
assert set(original_obs_keys.keys()) == set(reconstructed_obs_keys.keys())
|
||||
|
||||
# Check tensor values
|
||||
assert torch.allclose(batch_out["observation.image.left"], batch_in["observation.image.left"])
|
||||
assert torch.allclose(batch_out["observation.image.right"], batch_in["observation.image.right"])
|
||||
assert torch.allclose(batch_out["observation.state"], batch_in["observation.state"])
|
||||
|
||||
# Check other fields
|
||||
assert torch.allclose(batch_out["action"], batch_in["action"])
|
||||
assert batch_out["next.reward"] == batch_in["next.reward"]
|
||||
assert batch_out["next.done"] == batch_in["next.done"]
|
||||
assert batch_out["next.truncated"] == batch_in["next.truncated"]
|
||||
assert batch_out["info"] == batch_in["info"]
|
||||
|
||||
|
||||
def test_batch_to_transition_observation_grouping():
|
||||
"""Test that _default_batch_to_transition correctly groups observation.* keys."""
|
||||
batch = {
|
||||
"observation.image.top": torch.randn(1, 3, 128, 128),
|
||||
"observation.image.left": torch.randn(1, 3, 128, 128),
|
||||
"observation.state": [1, 2, 3, 4],
|
||||
"action": "action_data",
|
||||
"next.reward": 1.5,
|
||||
"next.done": True,
|
||||
"next.truncated": False,
|
||||
"info": {"episode": 42},
|
||||
}
|
||||
|
||||
transition = _default_batch_to_transition(batch)
|
||||
|
||||
# Check observation is a dict with all observation.* keys
|
||||
assert isinstance(transition[TransitionKey.OBSERVATION], dict)
|
||||
assert "observation.image.top" in transition[TransitionKey.OBSERVATION]
|
||||
assert "observation.image.left" in transition[TransitionKey.OBSERVATION]
|
||||
assert "observation.state" in transition[TransitionKey.OBSERVATION]
|
||||
|
||||
# Check values are preserved
|
||||
assert torch.allclose(
|
||||
transition[TransitionKey.OBSERVATION]["observation.image.top"], batch["observation.image.top"]
|
||||
)
|
||||
assert torch.allclose(
|
||||
transition[TransitionKey.OBSERVATION]["observation.image.left"], batch["observation.image.left"]
|
||||
)
|
||||
assert transition[TransitionKey.OBSERVATION]["observation.state"] == [1, 2, 3, 4]
|
||||
|
||||
# Check other fields
|
||||
assert transition[TransitionKey.ACTION] == "action_data"
|
||||
assert transition[TransitionKey.REWARD] == 1.5
|
||||
assert transition[TransitionKey.DONE]
|
||||
assert not transition[TransitionKey.TRUNCATED]
|
||||
assert transition[TransitionKey.INFO] == {"episode": 42}
|
||||
assert transition[TransitionKey.COMPLEMENTARY_DATA] == {}
|
||||
|
||||
|
||||
def test_transition_to_batch_observation_flattening():
|
||||
"""Test that _default_transition_to_batch correctly flattens observation dict."""
|
||||
observation_dict = {
|
||||
"observation.image.top": torch.randn(1, 3, 128, 128),
|
||||
"observation.image.left": torch.randn(1, 3, 128, 128),
|
||||
"observation.state": [1, 2, 3, 4],
|
||||
}
|
||||
|
||||
transition = {
|
||||
TransitionKey.OBSERVATION: observation_dict,
|
||||
TransitionKey.ACTION: "action_data",
|
||||
TransitionKey.REWARD: 1.5,
|
||||
TransitionKey.DONE: True,
|
||||
TransitionKey.TRUNCATED: False,
|
||||
TransitionKey.INFO: {"episode": 42},
|
||||
TransitionKey.COMPLEMENTARY_DATA: {},
|
||||
}
|
||||
|
||||
batch = _default_transition_to_batch(transition)
|
||||
|
||||
# Check that observation.* keys are flattened back to batch
|
||||
assert "observation.image.top" in batch
|
||||
assert "observation.image.left" in batch
|
||||
assert "observation.state" in batch
|
||||
|
||||
# Check values are preserved
|
||||
assert torch.allclose(batch["observation.image.top"], observation_dict["observation.image.top"])
|
||||
assert torch.allclose(batch["observation.image.left"], observation_dict["observation.image.left"])
|
||||
assert batch["observation.state"] == [1, 2, 3, 4]
|
||||
|
||||
# Check other fields are mapped to next.* format
|
||||
assert batch["action"] == "action_data"
|
||||
assert batch["next.reward"] == 1.5
|
||||
assert batch["next.done"]
|
||||
assert not batch["next.truncated"]
|
||||
assert batch["info"] == {"episode": 42}
|
||||
|
||||
|
||||
def test_no_observation_keys():
|
||||
"""Test behavior when there are no observation.* keys."""
|
||||
batch = {
|
||||
"action": "action_data",
|
||||
"next.reward": 2.0,
|
||||
"next.done": False,
|
||||
"next.truncated": True,
|
||||
"info": {"test": "no_obs"},
|
||||
}
|
||||
|
||||
transition = _default_batch_to_transition(batch)
|
||||
|
||||
# Observation should be None when no observation.* keys
|
||||
assert transition[TransitionKey.OBSERVATION] is None
|
||||
|
||||
# Check other fields
|
||||
assert transition[TransitionKey.ACTION] == "action_data"
|
||||
assert transition[TransitionKey.REWARD] == 2.0
|
||||
assert not transition[TransitionKey.DONE]
|
||||
assert transition[TransitionKey.TRUNCATED]
|
||||
assert transition[TransitionKey.INFO] == {"test": "no_obs"}
|
||||
|
||||
# Round trip should work
|
||||
reconstructed_batch = _default_transition_to_batch(transition)
|
||||
assert reconstructed_batch["action"] == "action_data"
|
||||
assert reconstructed_batch["next.reward"] == 2.0
|
||||
assert not reconstructed_batch["next.done"]
|
||||
assert reconstructed_batch["next.truncated"]
|
||||
assert reconstructed_batch["info"] == {"test": "no_obs"}
|
||||
|
||||
|
||||
def test_minimal_batch():
|
||||
"""Test with minimal batch containing only observation.* and action."""
|
||||
batch = {"observation.state": "minimal_state", "action": "minimal_action"}
|
||||
|
||||
transition = _default_batch_to_transition(batch)
|
||||
|
||||
# Check observation
|
||||
assert transition[TransitionKey.OBSERVATION] == {"observation.state": "minimal_state"}
|
||||
assert transition[TransitionKey.ACTION] == "minimal_action"
|
||||
|
||||
# Check defaults
|
||||
assert transition[TransitionKey.REWARD] == 0.0
|
||||
assert not transition[TransitionKey.DONE]
|
||||
assert not transition[TransitionKey.TRUNCATED]
|
||||
assert transition[TransitionKey.INFO] == {}
|
||||
assert transition[TransitionKey.COMPLEMENTARY_DATA] == {}
|
||||
|
||||
# Round trip
|
||||
reconstructed_batch = _default_transition_to_batch(transition)
|
||||
assert reconstructed_batch["observation.state"] == "minimal_state"
|
||||
assert reconstructed_batch["action"] == "minimal_action"
|
||||
assert reconstructed_batch["next.reward"] == 0.0
|
||||
assert not reconstructed_batch["next.done"]
|
||||
assert not reconstructed_batch["next.truncated"]
|
||||
assert reconstructed_batch["info"] == {}
|
||||
|
||||
|
||||
def test_empty_batch():
|
||||
"""Test behavior with empty batch."""
|
||||
batch = {}
|
||||
|
||||
transition = _default_batch_to_transition(batch)
|
||||
|
||||
# All fields should have defaults
|
||||
assert transition[TransitionKey.OBSERVATION] is None
|
||||
assert transition[TransitionKey.ACTION] is None
|
||||
assert transition[TransitionKey.REWARD] == 0.0
|
||||
assert not transition[TransitionKey.DONE]
|
||||
assert not transition[TransitionKey.TRUNCATED]
|
||||
assert transition[TransitionKey.INFO] == {}
|
||||
assert transition[TransitionKey.COMPLEMENTARY_DATA] == {}
|
||||
|
||||
# Round trip
|
||||
reconstructed_batch = _default_transition_to_batch(transition)
|
||||
assert reconstructed_batch["action"] is None
|
||||
assert reconstructed_batch["next.reward"] == 0.0
|
||||
assert not reconstructed_batch["next.done"]
|
||||
assert not reconstructed_batch["next.truncated"]
|
||||
assert reconstructed_batch["info"] == {}
|
||||
|
||||
|
||||
def test_complex_nested_observation():
|
||||
"""Test with complex nested observation data."""
|
||||
batch = {
|
||||
"observation.image.top": {"image": torch.randn(1, 3, 128, 128), "timestamp": 1234567890},
|
||||
"observation.image.left": {"image": torch.randn(1, 3, 128, 128), "timestamp": 1234567891},
|
||||
"observation.state": torch.randn(7),
|
||||
"action": torch.randn(8),
|
||||
"next.reward": 3.14,
|
||||
"next.done": False,
|
||||
"next.truncated": True,
|
||||
"info": {"episode_length": 200, "success": True},
|
||||
}
|
||||
|
||||
transition = _default_batch_to_transition(batch)
|
||||
reconstructed_batch = _default_transition_to_batch(transition)
|
||||
|
||||
# Check that all observation keys are preserved
|
||||
original_obs_keys = {k for k in batch if k.startswith("observation.")}
|
||||
reconstructed_obs_keys = {k for k in reconstructed_batch if k.startswith("observation.")}
|
||||
|
||||
assert original_obs_keys == reconstructed_obs_keys
|
||||
|
||||
# Check tensor values
|
||||
assert torch.allclose(batch["observation.state"], reconstructed_batch["observation.state"])
|
||||
|
||||
# Check nested dict with tensors
|
||||
assert torch.allclose(
|
||||
batch["observation.image.top"]["image"], reconstructed_batch["observation.image.top"]["image"]
|
||||
)
|
||||
assert torch.allclose(
|
||||
batch["observation.image.left"]["image"], reconstructed_batch["observation.image.left"]["image"]
|
||||
)
|
||||
|
||||
# Check action tensor
|
||||
assert torch.allclose(batch["action"], reconstructed_batch["action"])
|
||||
|
||||
# Check other fields
|
||||
assert batch["next.reward"] == reconstructed_batch["next.reward"]
|
||||
assert batch["next.done"] == reconstructed_batch["next.done"]
|
||||
assert batch["next.truncated"] == reconstructed_batch["next.truncated"]
|
||||
assert batch["info"] == reconstructed_batch["info"]
|
||||
|
||||
|
||||
def test_custom_converter():
|
||||
"""Test that custom converters can still be used."""
|
||||
|
||||
def to_tr(batch):
|
||||
# Custom converter that modifies the reward
|
||||
tr = _default_batch_to_transition(batch)
|
||||
# Double the reward
|
||||
reward = tr.get(TransitionKey.REWARD, 0.0)
|
||||
new_tr = tr.copy()
|
||||
new_tr[TransitionKey.REWARD] = reward * 2 if reward is not None else 0.0
|
||||
return new_tr
|
||||
|
||||
def to_batch(tr):
|
||||
batch = _default_transition_to_batch(tr)
|
||||
return batch
|
||||
|
||||
processor = RobotProcessor(steps=[], to_transition=to_tr, to_output=to_batch)
|
||||
|
||||
batch = {
|
||||
"observation.state": torch.randn(1, 4),
|
||||
"action": torch.randn(1, 2),
|
||||
"next.reward": 1.0,
|
||||
"next.done": False,
|
||||
}
|
||||
|
||||
result = processor(batch)
|
||||
|
||||
# Check the reward was doubled by our custom converter
|
||||
assert result["next.reward"] == 2.0
|
||||
assert torch.allclose(result["observation.state"], batch["observation.state"])
|
||||
assert torch.allclose(result["action"], batch["action"])
|
||||
628
tests/processor/test_normalize_processor.py
Normal file
628
tests/processor/test_normalize_processor.py
Normal file
@@ -0,0 +1,628 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from unittest.mock import Mock
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from lerobot.configs.types import FeatureType, NormalizationMode, PolicyFeature
|
||||
from lerobot.processor.normalize_processor import (
|
||||
NormalizerProcessor,
|
||||
UnnormalizerProcessor,
|
||||
_convert_stats_to_tensors,
|
||||
)
|
||||
from lerobot.processor.pipeline import RobotProcessor, TransitionKey
|
||||
|
||||
|
||||
def create_transition(
|
||||
observation=None, action=None, reward=None, done=None, truncated=None, info=None, complementary_data=None
|
||||
):
|
||||
"""Helper to create an EnvTransition dictionary."""
|
||||
return {
|
||||
TransitionKey.OBSERVATION: observation,
|
||||
TransitionKey.ACTION: action,
|
||||
TransitionKey.REWARD: reward,
|
||||
TransitionKey.DONE: done,
|
||||
TransitionKey.TRUNCATED: truncated,
|
||||
TransitionKey.INFO: info,
|
||||
TransitionKey.COMPLEMENTARY_DATA: complementary_data,
|
||||
}
|
||||
|
||||
|
||||
def test_numpy_conversion():
|
||||
stats = {
|
||||
"observation.image": {
|
||||
"mean": np.array([0.5, 0.5, 0.5]),
|
||||
"std": np.array([0.2, 0.2, 0.2]),
|
||||
}
|
||||
}
|
||||
tensor_stats = _convert_stats_to_tensors(stats)
|
||||
|
||||
assert isinstance(tensor_stats["observation.image"]["mean"], torch.Tensor)
|
||||
assert isinstance(tensor_stats["observation.image"]["std"], torch.Tensor)
|
||||
assert torch.allclose(tensor_stats["observation.image"]["mean"], torch.tensor([0.5, 0.5, 0.5]))
|
||||
assert torch.allclose(tensor_stats["observation.image"]["std"], torch.tensor([0.2, 0.2, 0.2]))
|
||||
|
||||
|
||||
def test_tensor_conversion():
|
||||
stats = {
|
||||
"action": {
|
||||
"mean": torch.tensor([0.0, 0.0]),
|
||||
"std": torch.tensor([1.0, 1.0]),
|
||||
}
|
||||
}
|
||||
tensor_stats = _convert_stats_to_tensors(stats)
|
||||
|
||||
assert tensor_stats["action"]["mean"].dtype == torch.float32
|
||||
assert tensor_stats["action"]["std"].dtype == torch.float32
|
||||
|
||||
|
||||
def test_scalar_conversion():
|
||||
stats = {
|
||||
"reward": {
|
||||
"mean": 0.5,
|
||||
"std": 0.1,
|
||||
}
|
||||
}
|
||||
tensor_stats = _convert_stats_to_tensors(stats)
|
||||
|
||||
assert torch.allclose(tensor_stats["reward"]["mean"], torch.tensor(0.5))
|
||||
assert torch.allclose(tensor_stats["reward"]["std"], torch.tensor(0.1))
|
||||
|
||||
|
||||
def test_list_conversion():
|
||||
stats = {
|
||||
"observation.state": {
|
||||
"min": [0.0, -1.0, -2.0],
|
||||
"max": [1.0, 1.0, 2.0],
|
||||
}
|
||||
}
|
||||
tensor_stats = _convert_stats_to_tensors(stats)
|
||||
|
||||
assert torch.allclose(tensor_stats["observation.state"]["min"], torch.tensor([0.0, -1.0, -2.0]))
|
||||
assert torch.allclose(tensor_stats["observation.state"]["max"], torch.tensor([1.0, 1.0, 2.0]))
|
||||
|
||||
|
||||
def test_unsupported_type():
|
||||
stats = {
|
||||
"bad_key": {
|
||||
"mean": "string_value",
|
||||
}
|
||||
}
|
||||
with pytest.raises(TypeError, match="Unsupported type"):
|
||||
_convert_stats_to_tensors(stats)
|
||||
|
||||
|
||||
# Helper functions to create feature maps and norm maps
|
||||
def _create_observation_features():
|
||||
return {
|
||||
"observation.image": PolicyFeature(FeatureType.VISUAL, (3, 96, 96)),
|
||||
"observation.state": PolicyFeature(FeatureType.STATE, (2,)),
|
||||
}
|
||||
|
||||
|
||||
def _create_observation_norm_map():
|
||||
return {
|
||||
FeatureType.VISUAL: NormalizationMode.MEAN_STD,
|
||||
FeatureType.STATE: NormalizationMode.MIN_MAX,
|
||||
}
|
||||
|
||||
|
||||
# Fixtures for observation normalisation tests using NormalizerProcessor
|
||||
@pytest.fixture
|
||||
def observation_stats():
|
||||
return {
|
||||
"observation.image": {
|
||||
"mean": np.array([0.5, 0.5, 0.5]),
|
||||
"std": np.array([0.2, 0.2, 0.2]),
|
||||
},
|
||||
"observation.state": {
|
||||
"min": np.array([0.0, -1.0]),
|
||||
"max": np.array([1.0, 1.0]),
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def observation_normalizer(observation_stats):
|
||||
"""Return a NormalizerProcessor that only has observation stats (no action)."""
|
||||
features = _create_observation_features()
|
||||
norm_map = _create_observation_norm_map()
|
||||
return NormalizerProcessor(features=features, norm_map=norm_map, stats=observation_stats)
|
||||
|
||||
|
||||
def test_mean_std_normalization(observation_normalizer):
|
||||
observation = {
|
||||
"observation.image": torch.tensor([0.7, 0.5, 0.3]),
|
||||
"observation.state": torch.tensor([0.5, 0.0]),
|
||||
}
|
||||
transition = create_transition(observation=observation)
|
||||
|
||||
normalized_transition = observation_normalizer(transition)
|
||||
normalized_obs = normalized_transition[TransitionKey.OBSERVATION]
|
||||
|
||||
# Check mean/std normalization
|
||||
expected_image = (torch.tensor([0.7, 0.5, 0.3]) - 0.5) / 0.2
|
||||
assert torch.allclose(normalized_obs["observation.image"], expected_image)
|
||||
|
||||
|
||||
def test_min_max_normalization(observation_normalizer):
|
||||
observation = {
|
||||
"observation.state": torch.tensor([0.5, 0.0]),
|
||||
}
|
||||
transition = create_transition(observation=observation)
|
||||
|
||||
normalized_transition = observation_normalizer(transition)
|
||||
normalized_obs = normalized_transition[TransitionKey.OBSERVATION]
|
||||
|
||||
# Check min/max normalization to [-1, 1]
|
||||
# For state[0]: 2 * (0.5 - 0.0) / (1.0 - 0.0) - 1 = 0.0
|
||||
# For state[1]: 2 * (0.0 - (-1.0)) / (1.0 - (-1.0)) - 1 = 0.0
|
||||
expected_state = torch.tensor([0.0, 0.0])
|
||||
assert torch.allclose(normalized_obs["observation.state"], expected_state, atol=1e-6)
|
||||
|
||||
|
||||
def test_selective_normalization(observation_stats):
|
||||
features = _create_observation_features()
|
||||
norm_map = _create_observation_norm_map()
|
||||
normalizer = NormalizerProcessor(
|
||||
features=features, norm_map=norm_map, stats=observation_stats, normalize_keys={"observation.image"}
|
||||
)
|
||||
|
||||
observation = {
|
||||
"observation.image": torch.tensor([0.7, 0.5, 0.3]),
|
||||
"observation.state": torch.tensor([0.5, 0.0]),
|
||||
}
|
||||
transition = create_transition(observation=observation)
|
||||
|
||||
normalized_transition = normalizer(transition)
|
||||
normalized_obs = normalized_transition[TransitionKey.OBSERVATION]
|
||||
|
||||
# Only image should be normalized
|
||||
assert torch.allclose(normalized_obs["observation.image"], (torch.tensor([0.7, 0.5, 0.3]) - 0.5) / 0.2)
|
||||
# State should remain unchanged
|
||||
assert torch.allclose(normalized_obs["observation.state"], observation["observation.state"])
|
||||
|
||||
|
||||
@pytest.mark.skipif(not torch.cuda.is_available(), reason="CUDA not available")
|
||||
def test_device_compatibility(observation_stats):
|
||||
features = _create_observation_features()
|
||||
norm_map = _create_observation_norm_map()
|
||||
normalizer = NormalizerProcessor(features=features, norm_map=norm_map, stats=observation_stats)
|
||||
observation = {
|
||||
"observation.image": torch.tensor([0.7, 0.5, 0.3]).cuda(),
|
||||
}
|
||||
transition = create_transition(observation=observation)
|
||||
|
||||
normalized_transition = normalizer(transition)
|
||||
normalized_obs = normalized_transition[TransitionKey.OBSERVATION]
|
||||
|
||||
assert normalized_obs["observation.image"].device.type == "cuda"
|
||||
|
||||
|
||||
def test_from_lerobot_dataset():
|
||||
# Mock dataset
|
||||
mock_dataset = Mock()
|
||||
mock_dataset.meta.stats = {
|
||||
"observation.image": {"mean": [0.5], "std": [0.2]},
|
||||
"action": {"mean": [0.0], "std": [1.0]},
|
||||
}
|
||||
|
||||
features = {
|
||||
"observation.image": PolicyFeature(FeatureType.VISUAL, (3, 96, 96)),
|
||||
"action": PolicyFeature(FeatureType.ACTION, (1,)),
|
||||
}
|
||||
norm_map = {
|
||||
FeatureType.VISUAL: NormalizationMode.MEAN_STD,
|
||||
FeatureType.ACTION: NormalizationMode.MEAN_STD,
|
||||
}
|
||||
|
||||
normalizer = NormalizerProcessor.from_lerobot_dataset(mock_dataset, features, norm_map)
|
||||
|
||||
# Both observation and action statistics should be present in tensor stats
|
||||
assert "observation.image" in normalizer._tensor_stats
|
||||
assert "action" in normalizer._tensor_stats
|
||||
|
||||
|
||||
def test_state_dict_save_load(observation_normalizer):
|
||||
# Save state
|
||||
state_dict = observation_normalizer.state_dict()
|
||||
|
||||
# Create new normalizer and load state
|
||||
features = _create_observation_features()
|
||||
norm_map = _create_observation_norm_map()
|
||||
new_normalizer = NormalizerProcessor(features=features, norm_map=norm_map, stats={})
|
||||
new_normalizer.load_state_dict(state_dict)
|
||||
|
||||
# Test that it works the same
|
||||
observation = {"observation.image": torch.tensor([0.7, 0.5, 0.3])}
|
||||
transition = create_transition(observation=observation)
|
||||
|
||||
result1 = observation_normalizer(transition)[TransitionKey.OBSERVATION]
|
||||
result2 = new_normalizer(transition)[TransitionKey.OBSERVATION]
|
||||
|
||||
assert torch.allclose(result1["observation.image"], result2["observation.image"])
|
||||
|
||||
|
||||
# Fixtures for ActionUnnormalizer tests
|
||||
@pytest.fixture
|
||||
def action_stats_mean_std():
|
||||
return {
|
||||
"mean": np.array([0.0, 0.0, 0.0]),
|
||||
"std": np.array([1.0, 2.0, 0.5]),
|
||||
}
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def action_stats_min_max():
|
||||
return {
|
||||
"min": np.array([-1.0, -2.0, 0.0]),
|
||||
"max": np.array([1.0, 2.0, 1.0]),
|
||||
}
|
||||
|
||||
|
||||
def _create_action_features():
|
||||
return {
|
||||
"action": PolicyFeature(FeatureType.ACTION, (3,)),
|
||||
}
|
||||
|
||||
|
||||
def _create_action_norm_map_mean_std():
|
||||
return {
|
||||
FeatureType.ACTION: NormalizationMode.MEAN_STD,
|
||||
}
|
||||
|
||||
|
||||
def _create_action_norm_map_min_max():
|
||||
return {
|
||||
FeatureType.ACTION: NormalizationMode.MIN_MAX,
|
||||
}
|
||||
|
||||
|
||||
def test_mean_std_unnormalization(action_stats_mean_std):
|
||||
features = _create_action_features()
|
||||
norm_map = _create_action_norm_map_mean_std()
|
||||
unnormalizer = UnnormalizerProcessor(
|
||||
features=features, norm_map=norm_map, stats={"action": action_stats_mean_std}
|
||||
)
|
||||
|
||||
normalized_action = torch.tensor([1.0, -0.5, 2.0])
|
||||
transition = create_transition(action=normalized_action)
|
||||
|
||||
unnormalized_transition = unnormalizer(transition)
|
||||
unnormalized_action = unnormalized_transition[TransitionKey.ACTION]
|
||||
|
||||
# action * std + mean
|
||||
expected = torch.tensor([1.0 * 1.0 + 0.0, -0.5 * 2.0 + 0.0, 2.0 * 0.5 + 0.0])
|
||||
assert torch.allclose(unnormalized_action, expected)
|
||||
|
||||
|
||||
def test_min_max_unnormalization(action_stats_min_max):
|
||||
features = _create_action_features()
|
||||
norm_map = _create_action_norm_map_min_max()
|
||||
unnormalizer = UnnormalizerProcessor(
|
||||
features=features, norm_map=norm_map, stats={"action": action_stats_min_max}
|
||||
)
|
||||
|
||||
# Actions in [-1, 1]
|
||||
normalized_action = torch.tensor([0.0, -1.0, 1.0])
|
||||
transition = create_transition(action=normalized_action)
|
||||
|
||||
unnormalized_transition = unnormalizer(transition)
|
||||
unnormalized_action = unnormalized_transition[TransitionKey.ACTION]
|
||||
|
||||
# Map from [-1, 1] to [min, max]
|
||||
# (action + 1) / 2 * (max - min) + min
|
||||
expected = torch.tensor(
|
||||
[
|
||||
(0.0 + 1) / 2 * (1.0 - (-1.0)) + (-1.0), # 0.0
|
||||
(-1.0 + 1) / 2 * (2.0 - (-2.0)) + (-2.0), # -2.0
|
||||
(1.0 + 1) / 2 * (1.0 - 0.0) + 0.0, # 1.0
|
||||
]
|
||||
)
|
||||
assert torch.allclose(unnormalized_action, expected)
|
||||
|
||||
|
||||
def test_numpy_action_input(action_stats_mean_std):
|
||||
features = _create_action_features()
|
||||
norm_map = _create_action_norm_map_mean_std()
|
||||
unnormalizer = UnnormalizerProcessor(
|
||||
features=features, norm_map=norm_map, stats={"action": action_stats_mean_std}
|
||||
)
|
||||
|
||||
normalized_action = np.array([1.0, -0.5, 2.0], dtype=np.float32)
|
||||
transition = create_transition(action=normalized_action)
|
||||
|
||||
unnormalized_transition = unnormalizer(transition)
|
||||
unnormalized_action = unnormalized_transition[TransitionKey.ACTION]
|
||||
|
||||
assert isinstance(unnormalized_action, torch.Tensor)
|
||||
expected = torch.tensor([1.0, -1.0, 1.0])
|
||||
assert torch.allclose(unnormalized_action, expected)
|
||||
|
||||
|
||||
def test_none_action(action_stats_mean_std):
|
||||
features = _create_action_features()
|
||||
norm_map = _create_action_norm_map_mean_std()
|
||||
unnormalizer = UnnormalizerProcessor(
|
||||
features=features, norm_map=norm_map, stats={"action": action_stats_mean_std}
|
||||
)
|
||||
|
||||
transition = create_transition()
|
||||
result = unnormalizer(transition)
|
||||
|
||||
# Should return transition unchanged
|
||||
assert result == transition
|
||||
|
||||
|
||||
def test_action_from_lerobot_dataset():
|
||||
mock_dataset = Mock()
|
||||
mock_dataset.meta.stats = {"action": {"mean": [0.0], "std": [1.0]}}
|
||||
features = {"action": PolicyFeature(FeatureType.ACTION, (1,))}
|
||||
norm_map = {FeatureType.ACTION: NormalizationMode.MEAN_STD}
|
||||
unnormalizer = UnnormalizerProcessor.from_lerobot_dataset(mock_dataset, features, norm_map)
|
||||
assert "mean" in unnormalizer._tensor_stats["action"]
|
||||
|
||||
|
||||
# Fixtures for NormalizerProcessor tests
|
||||
@pytest.fixture
|
||||
def full_stats():
|
||||
return {
|
||||
"observation.image": {
|
||||
"mean": np.array([0.5, 0.5, 0.5]),
|
||||
"std": np.array([0.2, 0.2, 0.2]),
|
||||
},
|
||||
"observation.state": {
|
||||
"min": np.array([0.0, -1.0]),
|
||||
"max": np.array([1.0, 1.0]),
|
||||
},
|
||||
"action": {
|
||||
"mean": np.array([0.0, 0.0]),
|
||||
"std": np.array([1.0, 2.0]),
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
def _create_full_features():
|
||||
return {
|
||||
"observation.image": PolicyFeature(FeatureType.VISUAL, (3, 96, 96)),
|
||||
"observation.state": PolicyFeature(FeatureType.STATE, (2,)),
|
||||
"action": PolicyFeature(FeatureType.ACTION, (2,)),
|
||||
}
|
||||
|
||||
|
||||
def _create_full_norm_map():
|
||||
return {
|
||||
FeatureType.VISUAL: NormalizationMode.MEAN_STD,
|
||||
FeatureType.STATE: NormalizationMode.MIN_MAX,
|
||||
FeatureType.ACTION: NormalizationMode.MEAN_STD,
|
||||
}
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def normalizer_processor(full_stats):
|
||||
features = _create_full_features()
|
||||
norm_map = _create_full_norm_map()
|
||||
return NormalizerProcessor(features=features, norm_map=norm_map, stats=full_stats)
|
||||
|
||||
|
||||
def test_combined_normalization(normalizer_processor):
|
||||
observation = {
|
||||
"observation.image": torch.tensor([0.7, 0.5, 0.3]),
|
||||
"observation.state": torch.tensor([0.5, 0.0]),
|
||||
}
|
||||
action = torch.tensor([1.0, -0.5])
|
||||
transition = create_transition(
|
||||
observation=observation,
|
||||
action=action,
|
||||
reward=1.0,
|
||||
done=False,
|
||||
truncated=False,
|
||||
info={},
|
||||
complementary_data={},
|
||||
)
|
||||
|
||||
processed_transition = normalizer_processor(transition)
|
||||
|
||||
# Check normalized observations
|
||||
processed_obs = processed_transition[TransitionKey.OBSERVATION]
|
||||
expected_image = (torch.tensor([0.7, 0.5, 0.3]) - 0.5) / 0.2
|
||||
assert torch.allclose(processed_obs["observation.image"], expected_image)
|
||||
|
||||
# Check normalized action
|
||||
processed_action = processed_transition[TransitionKey.ACTION]
|
||||
expected_action = torch.tensor([(1.0 - 0.0) / 1.0, (-0.5 - 0.0) / 2.0])
|
||||
assert torch.allclose(processed_action, expected_action)
|
||||
|
||||
# Check other fields remain unchanged
|
||||
assert processed_transition[TransitionKey.REWARD] == 1.0
|
||||
assert not processed_transition[TransitionKey.DONE]
|
||||
|
||||
|
||||
def test_processor_from_lerobot_dataset(full_stats):
|
||||
# Mock dataset
|
||||
mock_dataset = Mock()
|
||||
mock_dataset.meta.stats = full_stats
|
||||
|
||||
features = _create_full_features()
|
||||
norm_map = _create_full_norm_map()
|
||||
|
||||
processor = NormalizerProcessor.from_lerobot_dataset(
|
||||
mock_dataset, features, norm_map, normalize_keys={"observation.image"}
|
||||
)
|
||||
|
||||
assert processor.normalize_keys == {"observation.image"}
|
||||
assert "observation.image" in processor._tensor_stats
|
||||
assert "action" in processor._tensor_stats
|
||||
|
||||
|
||||
def test_get_config(full_stats):
|
||||
features = _create_full_features()
|
||||
norm_map = _create_full_norm_map()
|
||||
processor = NormalizerProcessor(
|
||||
features=features, norm_map=norm_map, stats=full_stats, normalize_keys={"observation.image"}, eps=1e-6
|
||||
)
|
||||
|
||||
config = processor.get_config()
|
||||
expected_config = {
|
||||
"normalize_keys": ["observation.image"],
|
||||
"eps": 1e-6,
|
||||
"features": {
|
||||
"observation.image": {"type": "VISUAL", "shape": (3, 96, 96)},
|
||||
"observation.state": {"type": "STATE", "shape": (2,)},
|
||||
"action": {"type": "ACTION", "shape": (2,)},
|
||||
},
|
||||
"norm_map": {
|
||||
"VISUAL": "MEAN_STD",
|
||||
"STATE": "MIN_MAX",
|
||||
"ACTION": "MEAN_STD",
|
||||
},
|
||||
}
|
||||
assert config == expected_config
|
||||
|
||||
|
||||
def test_integration_with_robot_processor(normalizer_processor):
|
||||
"""Test integration with RobotProcessor pipeline"""
|
||||
robot_processor = RobotProcessor([normalizer_processor])
|
||||
|
||||
observation = {
|
||||
"observation.image": torch.tensor([0.7, 0.5, 0.3]),
|
||||
"observation.state": torch.tensor([0.5, 0.0]),
|
||||
}
|
||||
action = torch.tensor([1.0, -0.5])
|
||||
transition = create_transition(
|
||||
observation=observation,
|
||||
action=action,
|
||||
reward=1.0,
|
||||
done=False,
|
||||
truncated=False,
|
||||
info={},
|
||||
complementary_data={},
|
||||
)
|
||||
|
||||
processed_transition = robot_processor(transition)
|
||||
|
||||
# Verify the processing worked
|
||||
assert isinstance(processed_transition[TransitionKey.OBSERVATION], dict)
|
||||
assert isinstance(processed_transition[TransitionKey.ACTION], torch.Tensor)
|
||||
|
||||
|
||||
# Edge case tests
|
||||
def test_empty_observation():
|
||||
stats = {"observation.image": {"mean": [0.5], "std": [0.2]}}
|
||||
features = {"observation.image": PolicyFeature(FeatureType.VISUAL, (3, 96, 96))}
|
||||
norm_map = {FeatureType.VISUAL: NormalizationMode.MEAN_STD}
|
||||
normalizer = NormalizerProcessor(features=features, norm_map=norm_map, stats=stats)
|
||||
|
||||
transition = create_transition()
|
||||
result = normalizer(transition)
|
||||
|
||||
assert result == transition
|
||||
|
||||
|
||||
def test_empty_stats():
|
||||
features = {"observation.image": PolicyFeature(FeatureType.VISUAL, (3, 96, 96))}
|
||||
norm_map = {FeatureType.VISUAL: NormalizationMode.MEAN_STD}
|
||||
normalizer = NormalizerProcessor(features=features, norm_map=norm_map, stats={})
|
||||
observation = {"observation.image": torch.tensor([0.5])}
|
||||
transition = create_transition(observation=observation)
|
||||
|
||||
result = normalizer(transition)
|
||||
# Should return observation unchanged since no stats are available
|
||||
assert torch.allclose(
|
||||
result[TransitionKey.OBSERVATION]["observation.image"], observation["observation.image"]
|
||||
)
|
||||
|
||||
|
||||
def test_partial_stats():
|
||||
"""If statistics are incomplete, the value should pass through unchanged."""
|
||||
stats = {"observation.image": {"mean": [0.5]}} # Missing std / (min,max)
|
||||
features = {"observation.image": PolicyFeature(FeatureType.VISUAL, (3, 96, 96))}
|
||||
norm_map = {FeatureType.VISUAL: NormalizationMode.MEAN_STD}
|
||||
normalizer = NormalizerProcessor(features=features, norm_map=norm_map, stats=stats)
|
||||
observation = {"observation.image": torch.tensor([0.7])}
|
||||
transition = create_transition(observation=observation)
|
||||
|
||||
processed = normalizer(transition)[TransitionKey.OBSERVATION]
|
||||
assert torch.allclose(processed["observation.image"], observation["observation.image"])
|
||||
|
||||
|
||||
def test_missing_action_stats_no_error():
|
||||
mock_dataset = Mock()
|
||||
mock_dataset.meta.stats = {"observation.image": {"mean": [0.5], "std": [0.2]}}
|
||||
|
||||
features = {"observation.image": PolicyFeature(FeatureType.VISUAL, (3, 96, 96))}
|
||||
norm_map = {FeatureType.VISUAL: NormalizationMode.MEAN_STD}
|
||||
|
||||
processor = UnnormalizerProcessor.from_lerobot_dataset(mock_dataset, features, norm_map)
|
||||
# The tensor stats should not contain the 'action' key
|
||||
assert "action" not in processor._tensor_stats
|
||||
|
||||
|
||||
def test_serialization_roundtrip(full_stats):
|
||||
"""Test that features and norm_map can be serialized and deserialized correctly."""
|
||||
features = _create_full_features()
|
||||
norm_map = _create_full_norm_map()
|
||||
original_processor = NormalizerProcessor(
|
||||
features=features, norm_map=norm_map, stats=full_stats, normalize_keys={"observation.image"}, eps=1e-6
|
||||
)
|
||||
|
||||
# Get config (serialization)
|
||||
config = original_processor.get_config()
|
||||
|
||||
# Create a new processor from the config (deserialization)
|
||||
new_processor = NormalizerProcessor(
|
||||
features=config["features"],
|
||||
norm_map=config["norm_map"],
|
||||
stats=full_stats,
|
||||
normalize_keys=set(config["normalize_keys"]),
|
||||
eps=config["eps"],
|
||||
)
|
||||
|
||||
# Test that both processors work the same way
|
||||
observation = {
|
||||
"observation.image": torch.tensor([0.7, 0.5, 0.3]),
|
||||
"observation.state": torch.tensor([0.5, 0.0]),
|
||||
}
|
||||
action = torch.tensor([1.0, -0.5])
|
||||
transition = create_transition(
|
||||
observation=observation,
|
||||
action=action,
|
||||
reward=1.0,
|
||||
done=False,
|
||||
truncated=False,
|
||||
info={},
|
||||
complementary_data={},
|
||||
)
|
||||
|
||||
result1 = original_processor(transition)
|
||||
result2 = new_processor(transition)
|
||||
|
||||
# Compare results
|
||||
assert torch.allclose(
|
||||
result1[TransitionKey.OBSERVATION]["observation.image"],
|
||||
result2[TransitionKey.OBSERVATION]["observation.image"],
|
||||
)
|
||||
assert torch.allclose(result1[TransitionKey.ACTION], result2[TransitionKey.ACTION])
|
||||
|
||||
# Verify features and norm_map are correctly reconstructed
|
||||
assert new_processor.features.keys() == original_processor.features.keys()
|
||||
for key in new_processor.features:
|
||||
assert new_processor.features[key].type == original_processor.features[key].type
|
||||
assert new_processor.features[key].shape == original_processor.features[key].shape
|
||||
|
||||
assert new_processor.norm_map == original_processor.norm_map
|
||||
486
tests/processor/test_observation_processor.py
Normal file
486
tests/processor/test_observation_processor.py
Normal file
@@ -0,0 +1,486 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from lerobot.configs.types import FeatureType
|
||||
from lerobot.constants import OBS_ENV_STATE, OBS_IMAGE, OBS_IMAGES, OBS_STATE
|
||||
from lerobot.processor import VanillaObservationProcessor
|
||||
from lerobot.processor.pipeline import TransitionKey
|
||||
from tests.conftest import assert_contract_is_typed
|
||||
|
||||
|
||||
def create_transition(
|
||||
observation=None, action=None, reward=None, done=None, truncated=None, info=None, complementary_data=None
|
||||
):
|
||||
"""Helper to create an EnvTransition dictionary."""
|
||||
return {
|
||||
TransitionKey.OBSERVATION: observation,
|
||||
TransitionKey.ACTION: action,
|
||||
TransitionKey.REWARD: reward,
|
||||
TransitionKey.DONE: done,
|
||||
TransitionKey.TRUNCATED: truncated,
|
||||
TransitionKey.INFO: info,
|
||||
TransitionKey.COMPLEMENTARY_DATA: complementary_data,
|
||||
}
|
||||
|
||||
|
||||
def test_process_single_image():
|
||||
"""Test processing a single image."""
|
||||
processor = VanillaObservationProcessor()
|
||||
|
||||
# Create a mock image (H, W, C) format, uint8
|
||||
image = np.random.randint(0, 256, size=(64, 64, 3), dtype=np.uint8)
|
||||
|
||||
observation = {"pixels": image}
|
||||
transition = create_transition(observation=observation)
|
||||
|
||||
result = processor(transition)
|
||||
processed_obs = result[TransitionKey.OBSERVATION]
|
||||
|
||||
# Check that the image was processed correctly
|
||||
assert "observation.image" in processed_obs
|
||||
processed_img = processed_obs["observation.image"]
|
||||
|
||||
# Check shape: should be (1, 3, 64, 64) - batch, channels, height, width
|
||||
assert processed_img.shape == (1, 3, 64, 64)
|
||||
|
||||
# Check dtype and range
|
||||
assert processed_img.dtype == torch.float32
|
||||
assert processed_img.min() >= 0.0
|
||||
assert processed_img.max() <= 1.0
|
||||
|
||||
|
||||
def test_process_image_dict():
|
||||
"""Test processing multiple images in a dictionary."""
|
||||
processor = VanillaObservationProcessor()
|
||||
|
||||
# Create mock images
|
||||
image1 = np.random.randint(0, 256, size=(32, 32, 3), dtype=np.uint8)
|
||||
image2 = np.random.randint(0, 256, size=(48, 48, 3), dtype=np.uint8)
|
||||
|
||||
observation = {"pixels": {"camera1": image1, "camera2": image2}}
|
||||
transition = create_transition(observation=observation)
|
||||
|
||||
result = processor(transition)
|
||||
processed_obs = result[TransitionKey.OBSERVATION]
|
||||
|
||||
# Check that both images were processed
|
||||
assert "observation.images.camera1" in processed_obs
|
||||
assert "observation.images.camera2" in processed_obs
|
||||
|
||||
# Check shapes
|
||||
assert processed_obs["observation.images.camera1"].shape == (1, 3, 32, 32)
|
||||
assert processed_obs["observation.images.camera2"].shape == (1, 3, 48, 48)
|
||||
|
||||
|
||||
def test_process_batched_image():
|
||||
"""Test processing already batched images."""
|
||||
processor = VanillaObservationProcessor()
|
||||
|
||||
# Create a batched image (B, H, W, C)
|
||||
image = np.random.randint(0, 256, size=(2, 64, 64, 3), dtype=np.uint8)
|
||||
|
||||
observation = {"pixels": image}
|
||||
transition = create_transition(observation=observation)
|
||||
|
||||
result = processor(transition)
|
||||
processed_obs = result[TransitionKey.OBSERVATION]
|
||||
|
||||
# Check that batch dimension is preserved
|
||||
assert processed_obs["observation.image"].shape == (2, 3, 64, 64)
|
||||
|
||||
|
||||
def test_invalid_image_format():
|
||||
"""Test error handling for invalid image formats."""
|
||||
processor = VanillaObservationProcessor()
|
||||
|
||||
# Test wrong channel order (channels first)
|
||||
image = np.random.randint(0, 256, size=(3, 64, 64), dtype=np.uint8)
|
||||
observation = {"pixels": image}
|
||||
transition = create_transition(observation=observation)
|
||||
|
||||
with pytest.raises(ValueError, match="Expected channel-last images"):
|
||||
processor(transition)
|
||||
|
||||
|
||||
def test_invalid_image_dtype():
|
||||
"""Test error handling for invalid image dtype."""
|
||||
processor = VanillaObservationProcessor()
|
||||
|
||||
# Test wrong dtype
|
||||
image = np.random.rand(64, 64, 3).astype(np.float32)
|
||||
observation = {"pixels": image}
|
||||
transition = create_transition(observation=observation)
|
||||
|
||||
with pytest.raises(ValueError, match="Expected torch.uint8 images"):
|
||||
processor(transition)
|
||||
|
||||
|
||||
def test_no_pixels_in_observation():
|
||||
"""Test processor when no pixels are in observation."""
|
||||
processor = VanillaObservationProcessor()
|
||||
|
||||
observation = {"other_data": np.array([1, 2, 3])}
|
||||
transition = create_transition(observation=observation)
|
||||
|
||||
result = processor(transition)
|
||||
processed_obs = result[TransitionKey.OBSERVATION]
|
||||
|
||||
# Should preserve other data unchanged
|
||||
assert "other_data" in processed_obs
|
||||
np.testing.assert_array_equal(processed_obs["other_data"], np.array([1, 2, 3]))
|
||||
|
||||
|
||||
def test_none_observation():
|
||||
"""Test processor with None observation."""
|
||||
processor = VanillaObservationProcessor()
|
||||
|
||||
transition = create_transition()
|
||||
result = processor(transition)
|
||||
|
||||
assert result == transition
|
||||
|
||||
|
||||
def test_serialization_methods():
|
||||
"""Test serialization methods."""
|
||||
processor = VanillaObservationProcessor()
|
||||
|
||||
# Test get_config
|
||||
config = processor.get_config()
|
||||
assert isinstance(config, dict)
|
||||
|
||||
# Test state_dict
|
||||
state = processor.state_dict()
|
||||
assert isinstance(state, dict)
|
||||
|
||||
# Test load_state_dict (should not raise)
|
||||
processor.load_state_dict(state)
|
||||
|
||||
# Test reset (should not raise)
|
||||
processor.reset()
|
||||
|
||||
|
||||
def test_process_environment_state():
|
||||
"""Test processing environment_state."""
|
||||
processor = VanillaObservationProcessor()
|
||||
|
||||
env_state = np.array([1.0, 2.0, 3.0], dtype=np.float32)
|
||||
observation = {"environment_state": env_state}
|
||||
transition = create_transition(observation=observation)
|
||||
|
||||
result = processor(transition)
|
||||
processed_obs = result[TransitionKey.OBSERVATION]
|
||||
|
||||
# Check that environment_state was renamed and processed
|
||||
assert "observation.environment_state" in processed_obs
|
||||
assert "environment_state" not in processed_obs
|
||||
|
||||
processed_state = processed_obs["observation.environment_state"]
|
||||
assert processed_state.shape == (1, 3) # Batch dimension added
|
||||
assert processed_state.dtype == torch.float32
|
||||
torch.testing.assert_close(processed_state, torch.tensor([[1.0, 2.0, 3.0]]))
|
||||
|
||||
|
||||
def test_process_agent_pos():
|
||||
"""Test processing agent_pos."""
|
||||
processor = VanillaObservationProcessor()
|
||||
|
||||
agent_pos = np.array([0.5, -0.5, 1.0], dtype=np.float32)
|
||||
observation = {"agent_pos": agent_pos}
|
||||
transition = create_transition(observation=observation)
|
||||
|
||||
result = processor(transition)
|
||||
processed_obs = result[TransitionKey.OBSERVATION]
|
||||
|
||||
# Check that agent_pos was renamed and processed
|
||||
assert "observation.state" in processed_obs
|
||||
assert "agent_pos" not in processed_obs
|
||||
|
||||
processed_state = processed_obs["observation.state"]
|
||||
assert processed_state.shape == (1, 3) # Batch dimension added
|
||||
assert processed_state.dtype == torch.float32
|
||||
torch.testing.assert_close(processed_state, torch.tensor([[0.5, -0.5, 1.0]]))
|
||||
|
||||
|
||||
def test_process_batched_states():
|
||||
"""Test processing already batched states."""
|
||||
processor = VanillaObservationProcessor()
|
||||
|
||||
env_state = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
|
||||
agent_pos = np.array([[0.5, -0.5], [1.0, -1.0]], dtype=np.float32)
|
||||
|
||||
observation = {"environment_state": env_state, "agent_pos": agent_pos}
|
||||
transition = create_transition(observation=observation)
|
||||
|
||||
result = processor(transition)
|
||||
processed_obs = result[TransitionKey.OBSERVATION]
|
||||
|
||||
# Check that batch dimensions are preserved
|
||||
assert processed_obs["observation.environment_state"].shape == (2, 2)
|
||||
assert processed_obs["observation.state"].shape == (2, 2)
|
||||
|
||||
|
||||
def test_process_both_states():
|
||||
"""Test processing both environment_state and agent_pos."""
|
||||
processor = VanillaObservationProcessor()
|
||||
|
||||
env_state = np.array([1.0, 2.0], dtype=np.float32)
|
||||
agent_pos = np.array([0.5, -0.5], dtype=np.float32)
|
||||
|
||||
observation = {"environment_state": env_state, "agent_pos": agent_pos, "other_data": "keep_me"}
|
||||
transition = create_transition(observation=observation)
|
||||
|
||||
result = processor(transition)
|
||||
processed_obs = result[TransitionKey.OBSERVATION]
|
||||
|
||||
# Check that both states were processed
|
||||
assert "observation.environment_state" in processed_obs
|
||||
assert "observation.state" in processed_obs
|
||||
|
||||
# Check that original keys were removed
|
||||
assert "environment_state" not in processed_obs
|
||||
assert "agent_pos" not in processed_obs
|
||||
|
||||
# Check that other data was preserved
|
||||
assert processed_obs["other_data"] == "keep_me"
|
||||
|
||||
|
||||
def test_no_states_in_observation():
|
||||
"""Test processor when no states are in observation."""
|
||||
processor = VanillaObservationProcessor()
|
||||
|
||||
observation = {"other_data": np.array([1, 2, 3])}
|
||||
transition = create_transition(observation=observation)
|
||||
|
||||
result = processor(transition)
|
||||
processed_obs = result[TransitionKey.OBSERVATION]
|
||||
|
||||
# Should preserve data unchanged
|
||||
np.testing.assert_array_equal(processed_obs, observation)
|
||||
|
||||
|
||||
def test_complete_observation_processing():
|
||||
"""Test processing a complete observation with both images and states."""
|
||||
processor = VanillaObservationProcessor()
|
||||
|
||||
# Create mock data
|
||||
image = np.random.randint(0, 256, size=(32, 32, 3), dtype=np.uint8)
|
||||
env_state = np.array([1.0, 2.0, 3.0], dtype=np.float32)
|
||||
agent_pos = np.array([0.5, -0.5, 1.0], dtype=np.float32)
|
||||
|
||||
observation = {
|
||||
"pixels": image,
|
||||
"environment_state": env_state,
|
||||
"agent_pos": agent_pos,
|
||||
"other_data": "preserve_me",
|
||||
}
|
||||
transition = create_transition(observation=observation)
|
||||
|
||||
result = processor(transition)
|
||||
processed_obs = result[TransitionKey.OBSERVATION]
|
||||
|
||||
# Check that image was processed
|
||||
assert "observation.image" in processed_obs
|
||||
assert processed_obs["observation.image"].shape == (1, 3, 32, 32)
|
||||
|
||||
# Check that states were processed
|
||||
assert "observation.environment_state" in processed_obs
|
||||
assert "observation.state" in processed_obs
|
||||
|
||||
# Check that original keys were removed
|
||||
assert "pixels" not in processed_obs
|
||||
assert "environment_state" not in processed_obs
|
||||
assert "agent_pos" not in processed_obs
|
||||
|
||||
# Check that other data was preserved
|
||||
assert processed_obs["other_data"] == "preserve_me"
|
||||
|
||||
|
||||
def test_image_only_processing():
|
||||
"""Test processing observation with only images."""
|
||||
processor = VanillaObservationProcessor()
|
||||
|
||||
image = np.random.randint(0, 256, size=(64, 64, 3), dtype=np.uint8)
|
||||
observation = {"pixels": image}
|
||||
transition = create_transition(observation=observation)
|
||||
|
||||
result = processor(transition)
|
||||
processed_obs = result[TransitionKey.OBSERVATION]
|
||||
|
||||
assert "observation.image" in processed_obs
|
||||
assert len(processed_obs) == 1
|
||||
|
||||
|
||||
def test_state_only_processing():
|
||||
"""Test processing observation with only states."""
|
||||
processor = VanillaObservationProcessor()
|
||||
|
||||
agent_pos = np.array([1.0, 2.0], dtype=np.float32)
|
||||
observation = {"agent_pos": agent_pos}
|
||||
transition = create_transition(observation=observation)
|
||||
|
||||
result = processor(transition)
|
||||
processed_obs = result[TransitionKey.OBSERVATION]
|
||||
|
||||
assert "observation.state" in processed_obs
|
||||
assert "agent_pos" not in processed_obs
|
||||
|
||||
|
||||
def test_empty_observation():
|
||||
"""Test processing empty observation."""
|
||||
processor = VanillaObservationProcessor()
|
||||
|
||||
observation = {}
|
||||
transition = create_transition(observation=observation)
|
||||
|
||||
result = processor(transition)
|
||||
processed_obs = result[TransitionKey.OBSERVATION]
|
||||
|
||||
assert processed_obs == {}
|
||||
|
||||
|
||||
def test_equivalent_to_original_function():
|
||||
"""Test that ObservationProcessor produces equivalent results to preprocess_observation."""
|
||||
# Import the original function for comparison
|
||||
from lerobot.envs.utils import preprocess_observation
|
||||
|
||||
processor = VanillaObservationProcessor()
|
||||
|
||||
# Create test data similar to what the original function expects
|
||||
image = np.random.randint(0, 256, size=(64, 64, 3), dtype=np.uint8)
|
||||
env_state = np.array([1.0, 2.0, 3.0], dtype=np.float32)
|
||||
agent_pos = np.array([0.5, -0.5, 1.0], dtype=np.float32)
|
||||
|
||||
observation = {"pixels": image, "environment_state": env_state, "agent_pos": agent_pos}
|
||||
|
||||
# Process with original function
|
||||
original_result = preprocess_observation(observation)
|
||||
|
||||
# Process with new processor
|
||||
transition = create_transition(observation=observation)
|
||||
processor_result = processor(transition)[TransitionKey.OBSERVATION]
|
||||
|
||||
# Compare results
|
||||
assert set(original_result.keys()) == set(processor_result.keys())
|
||||
|
||||
for key in original_result:
|
||||
torch.testing.assert_close(original_result[key], processor_result[key])
|
||||
|
||||
|
||||
def test_equivalent_with_image_dict():
|
||||
"""Test equivalence with dictionary of images."""
|
||||
from lerobot.envs.utils import preprocess_observation
|
||||
|
||||
processor = VanillaObservationProcessor()
|
||||
|
||||
# Create test data with multiple cameras
|
||||
image1 = np.random.randint(0, 256, size=(32, 32, 3), dtype=np.uint8)
|
||||
image2 = np.random.randint(0, 256, size=(48, 48, 3), dtype=np.uint8)
|
||||
agent_pos = np.array([1.0, 2.0], dtype=np.float32)
|
||||
|
||||
observation = {"pixels": {"cam1": image1, "cam2": image2}, "agent_pos": agent_pos}
|
||||
|
||||
# Process with original function
|
||||
original_result = preprocess_observation(observation)
|
||||
|
||||
# Process with new processor
|
||||
transition = create_transition(observation=observation)
|
||||
processor_result = processor(transition)[TransitionKey.OBSERVATION]
|
||||
|
||||
# Compare results
|
||||
assert set(original_result.keys()) == set(processor_result.keys())
|
||||
|
||||
for key in original_result:
|
||||
torch.testing.assert_close(original_result[key], processor_result[key])
|
||||
|
||||
|
||||
def test_image_processor_feature_contract_pixels_to_image(policy_feature_factory):
|
||||
processor = VanillaObservationProcessor()
|
||||
features = {
|
||||
"pixels": policy_feature_factory(FeatureType.VISUAL, (3, 64, 64)),
|
||||
"keep": policy_feature_factory(FeatureType.ENV, (1,)),
|
||||
}
|
||||
out = processor.feature_contract(features.copy())
|
||||
|
||||
assert OBS_IMAGE in out and out[OBS_IMAGE] == features["pixels"]
|
||||
assert "pixels" not in out
|
||||
assert out["keep"] == features["keep"]
|
||||
assert_contract_is_typed(out)
|
||||
|
||||
|
||||
def test_image_processor_feature_contract_observation_pixels_to_image(policy_feature_factory):
|
||||
processor = VanillaObservationProcessor()
|
||||
features = {
|
||||
"observation.pixels": policy_feature_factory(FeatureType.VISUAL, (3, 64, 64)),
|
||||
"keep": policy_feature_factory(FeatureType.ENV, (1,)),
|
||||
}
|
||||
out = processor.feature_contract(features.copy())
|
||||
|
||||
assert OBS_IMAGE in out and out[OBS_IMAGE] == features["observation.pixels"]
|
||||
assert "observation.pixels" not in out
|
||||
assert out["keep"] == features["keep"]
|
||||
assert_contract_is_typed(out)
|
||||
|
||||
|
||||
def test_image_processor_feature_contract_multi_camera_and_prefixed(policy_feature_factory):
|
||||
processor = VanillaObservationProcessor()
|
||||
features = {
|
||||
"pixels.front": policy_feature_factory(FeatureType.VISUAL, (3, 64, 64)),
|
||||
"pixels.wrist": policy_feature_factory(FeatureType.VISUAL, (3, 64, 64)),
|
||||
"observation.pixels.rear": policy_feature_factory(FeatureType.VISUAL, (3, 64, 64)),
|
||||
"keep": policy_feature_factory(FeatureType.ENV, (7,)),
|
||||
}
|
||||
out = processor.feature_contract(features.copy())
|
||||
|
||||
assert f"{OBS_IMAGES}.front" in out and out[f"{OBS_IMAGES}.front"] == features["pixels.front"]
|
||||
assert f"{OBS_IMAGES}.wrist" in out and out[f"{OBS_IMAGES}.wrist"] == features["pixels.wrist"]
|
||||
assert f"{OBS_IMAGES}.rear" in out and out[f"{OBS_IMAGES}.rear"] == features["observation.pixels.rear"]
|
||||
assert "pixels.front" not in out and "pixels.wrist" not in out and "observation.pixels.rear" not in out
|
||||
assert out["keep"] == features["keep"]
|
||||
assert_contract_is_typed(out)
|
||||
|
||||
|
||||
def test_state_processor_feature_contract_environment_and_agent_pos(policy_feature_factory):
|
||||
processor = VanillaObservationProcessor()
|
||||
features = {
|
||||
"environment_state": policy_feature_factory(FeatureType.STATE, (3,)),
|
||||
"agent_pos": policy_feature_factory(FeatureType.STATE, (7,)),
|
||||
"keep": policy_feature_factory(FeatureType.ENV, (1,)),
|
||||
}
|
||||
out = processor.feature_contract(features.copy())
|
||||
|
||||
assert OBS_ENV_STATE in out and out[OBS_ENV_STATE] == features["environment_state"]
|
||||
assert OBS_STATE in out and out[OBS_STATE] == features["agent_pos"]
|
||||
assert "environment_state" not in out and "agent_pos" not in out
|
||||
assert out["keep"] == features["keep"]
|
||||
assert_contract_is_typed(out)
|
||||
|
||||
|
||||
def test_state_processor_feature_contract_prefixed_inputs(policy_feature_factory):
|
||||
proc = VanillaObservationProcessor()
|
||||
features = {
|
||||
"observation.environment_state": policy_feature_factory(FeatureType.STATE, (2,)),
|
||||
"observation.agent_pos": policy_feature_factory(FeatureType.STATE, (4,)),
|
||||
}
|
||||
out = proc.feature_contract(features.copy())
|
||||
|
||||
assert OBS_ENV_STATE in out and out[OBS_ENV_STATE] == features["observation.environment_state"]
|
||||
assert OBS_STATE in out and out[OBS_STATE] == features["observation.agent_pos"]
|
||||
assert "environment_state" not in out and "agent_pos" not in out
|
||||
assert_contract_is_typed(out)
|
||||
1919
tests/processor/test_pipeline.py
Normal file
1919
tests/processor/test_pipeline.py
Normal file
File diff suppressed because it is too large
Load Diff
467
tests/processor/test_rename_processor.py
Normal file
467
tests/processor/test_rename_processor.py
Normal file
@@ -0,0 +1,467 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import tempfile
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from lerobot.configs.types import FeatureType
|
||||
from lerobot.processor import ProcessorStepRegistry, RenameProcessor, RobotProcessor, TransitionKey
|
||||
from tests.conftest import assert_contract_is_typed
|
||||
|
||||
|
||||
def create_transition(
|
||||
observation=None, action=None, reward=None, done=None, truncated=None, info=None, complementary_data=None
|
||||
):
|
||||
"""Helper to create an EnvTransition dictionary."""
|
||||
return {
|
||||
TransitionKey.OBSERVATION: observation,
|
||||
TransitionKey.ACTION: action,
|
||||
TransitionKey.REWARD: reward,
|
||||
TransitionKey.DONE: done,
|
||||
TransitionKey.TRUNCATED: truncated,
|
||||
TransitionKey.INFO: info,
|
||||
TransitionKey.COMPLEMENTARY_DATA: complementary_data,
|
||||
}
|
||||
|
||||
|
||||
def test_basic_renaming():
|
||||
"""Test basic key renaming functionality."""
|
||||
rename_map = {
|
||||
"old_key1": "new_key1",
|
||||
"old_key2": "new_key2",
|
||||
}
|
||||
processor = RenameProcessor(rename_map=rename_map)
|
||||
|
||||
observation = {
|
||||
"old_key1": torch.tensor([1.0, 2.0]),
|
||||
"old_key2": np.array([3.0, 4.0]),
|
||||
"unchanged_key": "keep_me",
|
||||
}
|
||||
transition = create_transition(observation=observation)
|
||||
|
||||
result = processor(transition)
|
||||
processed_obs = result[TransitionKey.OBSERVATION]
|
||||
|
||||
# Check renamed keys
|
||||
assert "new_key1" in processed_obs
|
||||
assert "new_key2" in processed_obs
|
||||
assert "old_key1" not in processed_obs
|
||||
assert "old_key2" not in processed_obs
|
||||
|
||||
# Check values are preserved
|
||||
torch.testing.assert_close(processed_obs["new_key1"], torch.tensor([1.0, 2.0]))
|
||||
np.testing.assert_array_equal(processed_obs["new_key2"], np.array([3.0, 4.0]))
|
||||
|
||||
# Check unchanged key is preserved
|
||||
assert processed_obs["unchanged_key"] == "keep_me"
|
||||
|
||||
|
||||
def test_empty_rename_map():
|
||||
"""Test processor with empty rename map (should pass through unchanged)."""
|
||||
processor = RenameProcessor(rename_map={})
|
||||
|
||||
observation = {
|
||||
"key1": torch.tensor([1.0]),
|
||||
"key2": "value2",
|
||||
}
|
||||
transition = create_transition(observation=observation)
|
||||
|
||||
result = processor(transition)
|
||||
processed_obs = result[TransitionKey.OBSERVATION]
|
||||
|
||||
# All keys should be unchanged
|
||||
assert processed_obs.keys() == observation.keys()
|
||||
torch.testing.assert_close(processed_obs["key1"], observation["key1"])
|
||||
assert processed_obs["key2"] == observation["key2"]
|
||||
|
||||
|
||||
def test_none_observation():
|
||||
"""Test processor with None observation."""
|
||||
processor = RenameProcessor(rename_map={"old": "new"})
|
||||
|
||||
transition = create_transition()
|
||||
result = processor(transition)
|
||||
|
||||
# Should return transition unchanged
|
||||
assert result == transition
|
||||
|
||||
|
||||
def test_overlapping_rename():
|
||||
"""Test renaming when new names might conflict."""
|
||||
rename_map = {
|
||||
"a": "b",
|
||||
"b": "c", # This creates a potential conflict
|
||||
}
|
||||
processor = RenameProcessor(rename_map=rename_map)
|
||||
|
||||
observation = {
|
||||
"a": 1,
|
||||
"b": 2,
|
||||
"x": 3,
|
||||
}
|
||||
transition = create_transition(observation=observation)
|
||||
|
||||
result = processor(transition)
|
||||
processed_obs = result[TransitionKey.OBSERVATION]
|
||||
|
||||
# Check that renaming happens correctly
|
||||
assert "a" not in processed_obs
|
||||
assert processed_obs["b"] == 1 # 'a' renamed to 'b'
|
||||
assert processed_obs["c"] == 2 # original 'b' renamed to 'c'
|
||||
assert processed_obs["x"] == 3
|
||||
|
||||
|
||||
def test_partial_rename():
|
||||
"""Test renaming only some keys."""
|
||||
rename_map = {
|
||||
"observation.state": "observation.proprio_state",
|
||||
"pixels": "observation.image",
|
||||
}
|
||||
processor = RenameProcessor(rename_map=rename_map)
|
||||
|
||||
observation = {
|
||||
"observation.state": torch.randn(10),
|
||||
"pixels": np.random.randint(0, 256, (64, 64, 3), dtype=np.uint8),
|
||||
"reward": 1.0,
|
||||
"info": {"episode": 1},
|
||||
}
|
||||
transition = create_transition(observation=observation)
|
||||
|
||||
result = processor(transition)
|
||||
processed_obs = result[TransitionKey.OBSERVATION]
|
||||
|
||||
# Check renamed keys
|
||||
assert "observation.proprio_state" in processed_obs
|
||||
assert "observation.image" in processed_obs
|
||||
assert "observation.state" not in processed_obs
|
||||
assert "pixels" not in processed_obs
|
||||
|
||||
# Check unchanged keys
|
||||
assert processed_obs["reward"] == 1.0
|
||||
assert processed_obs["info"] == {"episode": 1}
|
||||
|
||||
|
||||
def test_get_config():
|
||||
"""Test configuration serialization."""
|
||||
rename_map = {
|
||||
"old1": "new1",
|
||||
"old2": "new2",
|
||||
}
|
||||
processor = RenameProcessor(rename_map=rename_map)
|
||||
|
||||
config = processor.get_config()
|
||||
assert config == {"rename_map": rename_map}
|
||||
|
||||
|
||||
def test_state_dict():
|
||||
"""Test state dict (should be empty for RenameProcessor)."""
|
||||
processor = RenameProcessor(rename_map={"old": "new"})
|
||||
|
||||
state = processor.state_dict()
|
||||
assert state == {}
|
||||
|
||||
# Load state dict should work even with empty dict
|
||||
processor.load_state_dict({})
|
||||
|
||||
|
||||
def test_integration_with_robot_processor():
|
||||
"""Test integration with RobotProcessor pipeline."""
|
||||
rename_map = {
|
||||
"agent_pos": "observation.state",
|
||||
"pixels": "observation.image",
|
||||
}
|
||||
rename_processor = RenameProcessor(rename_map=rename_map)
|
||||
|
||||
pipeline = RobotProcessor([rename_processor])
|
||||
|
||||
observation = {
|
||||
"agent_pos": np.array([1.0, 2.0, 3.0]),
|
||||
"pixels": np.zeros((32, 32, 3), dtype=np.uint8),
|
||||
"other_data": "preserve_me",
|
||||
}
|
||||
transition = create_transition(
|
||||
observation=observation, reward=0.5, done=False, truncated=False, info={}, complementary_data={}
|
||||
)
|
||||
|
||||
result = pipeline(transition)
|
||||
processed_obs = result[TransitionKey.OBSERVATION]
|
||||
|
||||
# Check renaming worked through pipeline
|
||||
assert "observation.state" in processed_obs
|
||||
assert "observation.image" in processed_obs
|
||||
assert "agent_pos" not in processed_obs
|
||||
assert "pixels" not in processed_obs
|
||||
assert processed_obs["other_data"] == "preserve_me"
|
||||
|
||||
# Check other transition elements unchanged
|
||||
assert result[TransitionKey.REWARD] == 0.5
|
||||
assert result[TransitionKey.DONE] is False
|
||||
|
||||
|
||||
def test_save_and_load_pretrained():
|
||||
"""Test saving and loading processor with RobotProcessor."""
|
||||
rename_map = {
|
||||
"old_state": "observation.state",
|
||||
"old_image": "observation.image",
|
||||
}
|
||||
processor = RenameProcessor(rename_map=rename_map)
|
||||
pipeline = RobotProcessor([processor], name="TestRenameProcessor")
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmp_dir:
|
||||
# Save pipeline
|
||||
pipeline.save_pretrained(tmp_dir)
|
||||
|
||||
# Check files were created
|
||||
config_path = Path(tmp_dir) / "testrenameprocessor.json" # Based on name="TestRenameProcessor"
|
||||
assert config_path.exists()
|
||||
|
||||
# No state files should be created for RenameProcessor
|
||||
state_files = list(Path(tmp_dir).glob("*.safetensors"))
|
||||
assert len(state_files) == 0
|
||||
|
||||
# Load pipeline
|
||||
loaded_pipeline = RobotProcessor.from_pretrained(tmp_dir)
|
||||
|
||||
assert loaded_pipeline.name == "TestRenameProcessor"
|
||||
assert len(loaded_pipeline) == 1
|
||||
|
||||
# Check that loaded processor works correctly
|
||||
loaded_processor = loaded_pipeline.steps[0]
|
||||
assert isinstance(loaded_processor, RenameProcessor)
|
||||
assert loaded_processor.rename_map == rename_map
|
||||
|
||||
# Test functionality after loading
|
||||
observation = {"old_state": [1, 2, 3], "old_image": "image_data"}
|
||||
transition = create_transition(observation=observation)
|
||||
|
||||
result = loaded_pipeline(transition)
|
||||
processed_obs = result[TransitionKey.OBSERVATION]
|
||||
|
||||
assert "observation.state" in processed_obs
|
||||
assert "observation.image" in processed_obs
|
||||
assert processed_obs["observation.state"] == [1, 2, 3]
|
||||
assert processed_obs["observation.image"] == "image_data"
|
||||
|
||||
|
||||
def test_registry_functionality():
|
||||
"""Test that RenameProcessor is properly registered."""
|
||||
# Check that it's registered
|
||||
assert "rename_processor" in ProcessorStepRegistry.list()
|
||||
|
||||
# Get from registry
|
||||
retrieved_class = ProcessorStepRegistry.get("rename_processor")
|
||||
assert retrieved_class is RenameProcessor
|
||||
|
||||
# Create instance from registry
|
||||
instance = retrieved_class(rename_map={"old": "new"})
|
||||
assert isinstance(instance, RenameProcessor)
|
||||
assert instance.rename_map == {"old": "new"}
|
||||
|
||||
|
||||
def test_registry_based_save_load():
|
||||
"""Test save/load using registry name instead of module path."""
|
||||
processor = RenameProcessor(rename_map={"key1": "renamed_key1"})
|
||||
pipeline = RobotProcessor([processor])
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmp_dir:
|
||||
# Save and load
|
||||
pipeline.save_pretrained(tmp_dir)
|
||||
|
||||
# Verify config uses registry name
|
||||
import json
|
||||
|
||||
with open(Path(tmp_dir) / "robotprocessor.json") as f: # Default name is "RobotProcessor"
|
||||
config = json.load(f)
|
||||
|
||||
assert "registry_name" in config["steps"][0]
|
||||
assert config["steps"][0]["registry_name"] == "rename_processor"
|
||||
assert "class" not in config["steps"][0] # Should use registry, not module path
|
||||
|
||||
# Load should work
|
||||
loaded_pipeline = RobotProcessor.from_pretrained(tmp_dir)
|
||||
loaded_processor = loaded_pipeline.steps[0]
|
||||
assert isinstance(loaded_processor, RenameProcessor)
|
||||
assert loaded_processor.rename_map == {"key1": "renamed_key1"}
|
||||
|
||||
|
||||
def test_chained_rename_processors():
|
||||
"""Test multiple RenameProcessors in a pipeline."""
|
||||
# First processor: rename raw keys to intermediate format
|
||||
processor1 = RenameProcessor(
|
||||
rename_map={
|
||||
"pos": "agent_position",
|
||||
"img": "camera_image",
|
||||
}
|
||||
)
|
||||
|
||||
# Second processor: rename to final format
|
||||
processor2 = RenameProcessor(
|
||||
rename_map={
|
||||
"agent_position": "observation.state",
|
||||
"camera_image": "observation.image",
|
||||
}
|
||||
)
|
||||
|
||||
pipeline = RobotProcessor([processor1, processor2])
|
||||
|
||||
observation = {
|
||||
"pos": np.array([1.0, 2.0]),
|
||||
"img": "image_data",
|
||||
"extra": "keep_me",
|
||||
}
|
||||
transition = create_transition(observation=observation)
|
||||
|
||||
# Step through to see intermediate results
|
||||
results = list(pipeline.step_through(transition))
|
||||
|
||||
# After first processor
|
||||
assert "agent_position" in results[1][TransitionKey.OBSERVATION]
|
||||
assert "camera_image" in results[1][TransitionKey.OBSERVATION]
|
||||
|
||||
# After second processor
|
||||
final_obs = results[2][TransitionKey.OBSERVATION]
|
||||
assert "observation.state" in final_obs
|
||||
assert "observation.image" in final_obs
|
||||
assert final_obs["extra"] == "keep_me"
|
||||
|
||||
# Original keys should be gone
|
||||
assert "pos" not in final_obs
|
||||
assert "img" not in final_obs
|
||||
assert "agent_position" not in final_obs
|
||||
assert "camera_image" not in final_obs
|
||||
|
||||
|
||||
def test_nested_observation_rename():
|
||||
"""Test renaming with nested observation structures."""
|
||||
rename_map = {
|
||||
"observation.images.left": "observation.camera.left_view",
|
||||
"observation.images.right": "observation.camera.right_view",
|
||||
"observation.proprio": "observation.proprioception",
|
||||
}
|
||||
processor = RenameProcessor(rename_map=rename_map)
|
||||
|
||||
observation = {
|
||||
"observation.images.left": torch.randn(3, 64, 64),
|
||||
"observation.images.right": torch.randn(3, 64, 64),
|
||||
"observation.proprio": torch.randn(7),
|
||||
"observation.gripper": torch.tensor([0.0]), # Not renamed
|
||||
}
|
||||
transition = create_transition(observation=observation)
|
||||
|
||||
result = processor(transition)
|
||||
processed_obs = result[TransitionKey.OBSERVATION]
|
||||
|
||||
# Check renames
|
||||
assert "observation.camera.left_view" in processed_obs
|
||||
assert "observation.camera.right_view" in processed_obs
|
||||
assert "observation.proprioception" in processed_obs
|
||||
|
||||
# Check unchanged key
|
||||
assert "observation.gripper" in processed_obs
|
||||
|
||||
# Check old keys removed
|
||||
assert "observation.images.left" not in processed_obs
|
||||
assert "observation.images.right" not in processed_obs
|
||||
assert "observation.proprio" not in processed_obs
|
||||
|
||||
|
||||
def test_value_types_preserved():
|
||||
"""Test that various value types are preserved during renaming."""
|
||||
rename_map = {"old_tensor": "new_tensor", "old_array": "new_array", "old_scalar": "new_scalar"}
|
||||
processor = RenameProcessor(rename_map=rename_map)
|
||||
|
||||
tensor_value = torch.randn(3, 3)
|
||||
array_value = np.random.rand(2, 2)
|
||||
|
||||
observation = {
|
||||
"old_tensor": tensor_value,
|
||||
"old_array": array_value,
|
||||
"old_scalar": 42,
|
||||
"old_string": "hello",
|
||||
"old_dict": {"nested": "value"},
|
||||
"old_list": [1, 2, 3],
|
||||
}
|
||||
transition = create_transition(observation=observation)
|
||||
|
||||
result = processor(transition)
|
||||
processed_obs = result[TransitionKey.OBSERVATION]
|
||||
|
||||
# Check that values and types are preserved
|
||||
assert torch.equal(processed_obs["new_tensor"], tensor_value)
|
||||
assert np.array_equal(processed_obs["new_array"], array_value)
|
||||
assert processed_obs["new_scalar"] == 42
|
||||
assert processed_obs["old_string"] == "hello"
|
||||
assert processed_obs["old_dict"] == {"nested": "value"}
|
||||
assert processed_obs["old_list"] == [1, 2, 3]
|
||||
|
||||
|
||||
def test_feature_contract_basic_renaming(policy_feature_factory):
|
||||
processor = RenameProcessor(rename_map={"a": "x", "b": "y"})
|
||||
features = {
|
||||
"a": policy_feature_factory(FeatureType.STATE, (2,)),
|
||||
"b": policy_feature_factory(FeatureType.ACTION, (3,)),
|
||||
"c": policy_feature_factory(FeatureType.ENV, (1,)),
|
||||
}
|
||||
|
||||
out = processor.feature_contract(features.copy())
|
||||
|
||||
# Values preserved and typed
|
||||
assert out["x"] == features["a"]
|
||||
assert out["y"] == features["b"]
|
||||
assert out["c"] == features["c"]
|
||||
|
||||
assert_contract_is_typed(out)
|
||||
# Input not mutated
|
||||
assert set(features) == {"a", "b", "c"}
|
||||
|
||||
|
||||
def test_feature_contract_overlapping_keys(policy_feature_factory):
|
||||
# Overlapping renames: both 'a' and 'b' exist. 'a'->'b', 'b'->'c'
|
||||
processor = RenameProcessor(rename_map={"a": "b", "b": "c"})
|
||||
features = {
|
||||
"a": policy_feature_factory(FeatureType.STATE, (1,)),
|
||||
"b": policy_feature_factory(FeatureType.STATE, (2,)),
|
||||
}
|
||||
out = processor.feature_contract(features)
|
||||
|
||||
assert set(out) == {"b", "c"}
|
||||
assert out["b"] == features["a"] # 'a' renamed to'b'
|
||||
assert out["c"] == features["b"] # 'b' renamed to 'c'
|
||||
assert_contract_is_typed(out)
|
||||
|
||||
|
||||
def test_feature_contract_chained_processors(policy_feature_factory):
|
||||
# Chain two rename processors at the contract level
|
||||
processor1 = RenameProcessor(rename_map={"pos": "agent_position", "img": "camera_image"})
|
||||
processor2 = RenameProcessor(
|
||||
rename_map={"agent_position": "observation.state", "camera_image": "observation.image"}
|
||||
)
|
||||
pipeline = RobotProcessor([processor1, processor2])
|
||||
|
||||
spec = {
|
||||
"pos": policy_feature_factory(FeatureType.STATE, (7,)),
|
||||
"img": policy_feature_factory(FeatureType.VISUAL, (3, 64, 64)),
|
||||
"extra": policy_feature_factory(FeatureType.ENV, (1,)),
|
||||
}
|
||||
out = pipeline.feature_contract(initial_features=spec)
|
||||
|
||||
assert set(out) == {"observation.state", "observation.image", "extra"}
|
||||
assert out["observation.state"] == spec["pos"]
|
||||
assert out["observation.image"] == spec["img"]
|
||||
assert out["extra"] == spec["extra"]
|
||||
assert_contract_is_typed(out)
|
||||
Reference in New Issue
Block a user