Files
lerobot/tests/processor/test_observation_processor.py
Adil Zouitine 88f7bf01c1 feat(pipeline): universal processor for LeRobot (#1431)
* Refactor observation preprocessing to use a modular pipeline system

- Introduced `RobotPipeline` and `ObservationProcessor` for handling observation transformations.
- Updated `preprocess_observation` to maintain backward compatibility while leveraging the new pipeline.
- Added tests for the new processing components and ensured they match the original functionality.
- Removed hardcoded logic in favor of a more flexible, composable architecture.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Refactor observation processing and improve modularity

- Updated `ObservationProcessor` to enhance the modular design for processing observations.
- Cleaned up imports and improved code readability by removing unnecessary lines and comments.
- Ensured backward compatibility while integrating new processing components.
- Added tests to validate the functionality of the updated processing architecture.

* Remove redundant tests for None observation and serialization methods in `test_observation_processor.py` to streamline the test suite and improve maintainability.

* Refactor processing architecture to use RobotProcessor

- Replaced instances of RobotPipeline with RobotProcessor across the codebase for improved modularity and clarity.
- Introduced ProcessorStepRegistry for better management of processing steps.
- Updated relevant documentation and tests to reflect the new processing structure.
- Enhanced the save/load functionality to support the new processor design.
- Added a model card template for RobotProcessor to facilitate sharing and documentation.

* Add RobotProcessor tutorial to documentation

- Introduced a new tutorial on using RobotProcessor for preprocessing robot data.
- Added a section in the table of contents for easy navigation to the new tutorial.
- The tutorial covers key concepts, real-world scenarios, and practical examples for effective use of the RobotProcessor pipeline.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Add normalization processor and related components

- Introduced `NormalizationProcessor` to handle both observation normalization and action unnormalization.
- Added `ObservationNormalizer` and `ActionUnnormalizer` classes for specific normalization tasks.
- Updated `__init__.py` to include the new `NormalizationProcessor` in the module exports.
- Enhanced `ObservationProcessor` with registration in the `ProcessorStepRegistry` for better modularity.
- Created `RenameProcessor` for renaming keys in observations, improving flexibility in data processing.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Enhance processing architecture with new components

- Added `RenameProcessor` to facilitate key renaming in observations, improving data handling flexibility.
- Updated `__init__.py` to include `RenameProcessor` in module exports.
- Refactored `NormalizationProcessor` and `ObservationNormalizer` to use `rsplit` for better key handling.
- Introduced comprehensive tests for `NormalizationProcessor` and `RenameProcessor` to ensure functionality and robustness.

* chore (docs): add docstring for processor

* fix (test): test factory

* fix(test): policies

* Update tests/processor/test_observation_processor.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com>

* chore(test): add suggestion made by copilot regarding numpy test

* fix(test): import issue

* Refactor normalization components and update tests

- Renamed `ObservationNormalizer` to `NormalizerProcessor` and `ActionUnnormalizer` to `UnnormalizerProcessor` for clarity.
- Consolidated normalization logic for both observations and actions into `NormalizerProcessor` and `UnnormalizerProcessor`.
- Updated tests to reflect the new class names and ensure proper functionality of normalization and unnormalization processes.
- Enhanced handling of missing statistics in normalization processes.

* chore (docstrin):Improve docstring for NormalizerProcessor

* feat (device processor): Implement device processor

* chore (batch handling): Enhance processing components with batch conversion utilities

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix(test): linting issue

* chore (output format): improves output format

* chore (type): add typing for multiprocess envs

* feat (overrides): Implement support for loading processors with parameter overrides

- Added the ability to provide non-serializable objects when loading processors from saved configurations using the `overrides` parameter.
- Enhanced error handling for invalid override keys and instantiation errors.
- Updated documentation and examples to illustrate the usage of overrides for both registered and unregistered steps.
- Added comprehensive tests to validate the new functionality and ensure backward compatibility.

* chore(normalization): addressing comments from copilot

* chore(learner): nit comment from copilot

* feat(pipeline): Enhance step_through method to support both tuple and dict inputs

* refactor(pipeline): Simplify observation and padding data handling in batch transitions

* Apply suggestions from code review

Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* refactor(pipeline): Introduce ComplementaryDataProcessor for handling complementary data in transitions

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* refactor(pipeline): Transition from tuple to dictionary format for EnvTransition

- Updated the EnvTransition structure to use a dictionary format instead of a tuple, enhancing readability and maintainability.
- Replaced instances of TransitionIndex with TransitionKey for accessing transition components.
- Adjusted related processing functions and tests to accommodate the new dictionary format, ensuring consistent handling of transitions across the codebase.

* refactor(observation_processor): Improve observation processing by using constants and simplifying pixel handling

- Introduced constants for observation keys to enhance readability.
- Streamlined the handling of the "pixels" key by copying observations first and processing images more clearly.
- Updated the environment state and agent position assignments to use the new constants, improving maintainability.

* feat(pipeline): Add hook unregistration functionality and enhance documentation

- Implemented methods to unregister before, after, and reset hooks in the RobotProcessor class, allowing for more flexible hook management.
- Enhanced documentation to clarify hook execution semantics and the implications of modifying transitions within hooks.
- Added comprehensive tests to verify the correct behavior of hook registration and unregistration, including error handling for non-existent hooks.

* refactor(pipeline): Clarify hook behavior and improve documentation

- Updated the RobotProcessor class to ensure hooks are strictly for observation and do not modify transitions, enhancing clarity and maintainability.
- Refactored hook registration methods to reflect the new behavior, ensuring they accept only functions that do not return modified transitions.
- Enhanced documentation to clearly outline the purpose of hooks and their execution semantics.
- Added tests to verify that hooks are not executed during the step_through method while ensuring they function correctly during the __call__ method.

* feat(pipeline): Add __repr__ method to RobotProcessor for improved readability

- Implemented a __repr__ method in the RobotProcessor class to provide a clear string representation of the processor, including step names and optional parameters like name and seed.
- Added comprehensive tests to validate the __repr__ output for various scenarios, including empty processors, single and multiple steps, custom names, and seed values.
- Ensured that the representation handles long lists of steps with truncation for better readability.

* chore(pipeline): Move _CFG_NAME along other class member

* refactor(pipeline): Utilize get_safe_torch_device for device assignment

- Replaced direct torch.device instantiation with get_safe_torch_device to ensure safe device handling.
- This change enhances code readability and maintains consistency in device management across the RobotProcessor class.

* refactor(pipeline): Enhance state filename generation and profiling method

- Updated state filename generation to use the registry name when available, improving clarity in saved files.
- Modified the profile_steps method to include a warmup_runs parameter, allowing for more controlled performance profiling.
- Ensured consistent conditions during profiling by deep copying transitions for each run, enhancing accuracy in timing results.

* chore(doc): address pip install commant lerobot that not exist yet

* feat(pipeline): Enhance configuration filename handling and state file naming

- Introduced support for custom configuration filenames in the `save_pretrained` method, allowing users to specify a filename instead of the default.
- Improved state file naming to include step indices, preventing conflicts when multiple processors of the same type are saved.
- Added automatic detection for configuration files when loading from a directory, with error handling for multiple files.
- Updated tests to validate new features, including custom filenames and automatic config detection.

* refactor(pipeline): Improve state file naming conventions for clarity and uniqueness

- Enhanced state file naming to include the processor's sanitized name, ensuring uniqueness when multiple processors are saved in the same directory.
- Updated tests to reflect changes in state file naming, verifying that filenames now include the processor name and step indices to prevent conflicts.
- Added a new test to validate state file naming when using multiple processors, ensuring distinct filenames for each processor's state files.

* docs(pipeline): Add clarification for repo name sanitization process

* Feat/pipeline add feature contract (#1637)

* Add feature contract to pipelinestep and pipeline

* Add tests

* Add processor tests

* PR feedback

* encorperate pr feedback

* type in doc

* oops

* docs(pipeline): Clarify transition handling and hook behavior

- Updated documentation to specify that hooks always receive transitions in EnvTransition format, ensuring consistent behavior across input formats.
- Refactored the step_through method to yield only EnvTransition objects, regardless of the input format, and updated related tests to reflect this change.
- Enhanced test assertions to verify the structure of results and the correctness of processing steps.

* refactor(pipeline): Remove to() method for device management

- Eliminated the to() method from RobotProcessor, which was responsible for moving tensor states to specified devices.
- Removed associated unit tests that validated the functionality of the to() method across various scenarios.
- Streamlined the pipeline code by focusing on other device management strategies.

* refactor(pipeline): Remove model card generation and streamline processor methods

- Eliminated the _generate_model_card method from RobotProcessor, which was responsible for generating README.md files from a template.
- Updated save_pretrained method to remove model card generation, focusing on serialization of processor definitions and parameters.
- Added default implementations for get_config, state_dict, load_state_dict, reset, and feature_contract methods in various processor classes to enhance consistency and usability.

* refactor(observation): Streamline observation preprocessing and remove unused processor methods

- Updated the `preprocess_observation` function to enhance image handling and ensure proper tensor formatting.
- Removed the `RobotProcessor` and associated transition handling from the `rollout` function, simplifying the observation processing flow.
- Integrated direct calls to `preprocess_observation` for improved clarity and efficiency in the evaluation script.

* refactor(pipeline): Rename parameters for clarity and enhance save/load functionality

- Updated parameter names in the save_pretrained and from_pretrained methods for improved readability, changing destination_path to save_directory and source to pretrained_model_name_or_path.
- Enhanced the save_pretrained method to ensure directory creation and file handling is consistent with the new parameter names.
- Streamlined the loading process in from_pretrained to utilize loaded_config for better clarity and maintainability.

* refactor(pipeline): minor improvements (#1684)

* chore(pipeline): remove unused features + device torch + envtransition keys

* refactor(pipeline): ImageProcessor & StateProcessor are both implemented directly in VanillaObservationPRocessor

* refactor(pipeline): RenameProcessor now inherits from ObservationProcessor + remove unused code

* test(pipeline): fix broken test after refactors

* docs(pipeline): update docstrings VanillaObservationProcessor

* chore(pipeline): move None check to base pipeline classes

---------

Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
Co-authored-by: Pepijn <138571049+pkooij@users.noreply.github.com>
Co-authored-by: Steven Palma <imstevenpmwork@ieee.org>
2025-08-06 16:11:04 +02:00

487 lines
17 KiB
Python

#!/usr/bin/env python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import pytest
import torch
from lerobot.configs.types import FeatureType
from lerobot.constants import OBS_ENV_STATE, OBS_IMAGE, OBS_IMAGES, OBS_STATE
from lerobot.processor import VanillaObservationProcessor
from lerobot.processor.pipeline import TransitionKey
from tests.conftest import assert_contract_is_typed
def create_transition(
observation=None, action=None, reward=None, done=None, truncated=None, info=None, complementary_data=None
):
"""Helper to create an EnvTransition dictionary."""
return {
TransitionKey.OBSERVATION: observation,
TransitionKey.ACTION: action,
TransitionKey.REWARD: reward,
TransitionKey.DONE: done,
TransitionKey.TRUNCATED: truncated,
TransitionKey.INFO: info,
TransitionKey.COMPLEMENTARY_DATA: complementary_data,
}
def test_process_single_image():
"""Test processing a single image."""
processor = VanillaObservationProcessor()
# Create a mock image (H, W, C) format, uint8
image = np.random.randint(0, 256, size=(64, 64, 3), dtype=np.uint8)
observation = {"pixels": image}
transition = create_transition(observation=observation)
result = processor(transition)
processed_obs = result[TransitionKey.OBSERVATION]
# Check that the image was processed correctly
assert "observation.image" in processed_obs
processed_img = processed_obs["observation.image"]
# Check shape: should be (1, 3, 64, 64) - batch, channels, height, width
assert processed_img.shape == (1, 3, 64, 64)
# Check dtype and range
assert processed_img.dtype == torch.float32
assert processed_img.min() >= 0.0
assert processed_img.max() <= 1.0
def test_process_image_dict():
"""Test processing multiple images in a dictionary."""
processor = VanillaObservationProcessor()
# Create mock images
image1 = np.random.randint(0, 256, size=(32, 32, 3), dtype=np.uint8)
image2 = np.random.randint(0, 256, size=(48, 48, 3), dtype=np.uint8)
observation = {"pixels": {"camera1": image1, "camera2": image2}}
transition = create_transition(observation=observation)
result = processor(transition)
processed_obs = result[TransitionKey.OBSERVATION]
# Check that both images were processed
assert "observation.images.camera1" in processed_obs
assert "observation.images.camera2" in processed_obs
# Check shapes
assert processed_obs["observation.images.camera1"].shape == (1, 3, 32, 32)
assert processed_obs["observation.images.camera2"].shape == (1, 3, 48, 48)
def test_process_batched_image():
"""Test processing already batched images."""
processor = VanillaObservationProcessor()
# Create a batched image (B, H, W, C)
image = np.random.randint(0, 256, size=(2, 64, 64, 3), dtype=np.uint8)
observation = {"pixels": image}
transition = create_transition(observation=observation)
result = processor(transition)
processed_obs = result[TransitionKey.OBSERVATION]
# Check that batch dimension is preserved
assert processed_obs["observation.image"].shape == (2, 3, 64, 64)
def test_invalid_image_format():
"""Test error handling for invalid image formats."""
processor = VanillaObservationProcessor()
# Test wrong channel order (channels first)
image = np.random.randint(0, 256, size=(3, 64, 64), dtype=np.uint8)
observation = {"pixels": image}
transition = create_transition(observation=observation)
with pytest.raises(ValueError, match="Expected channel-last images"):
processor(transition)
def test_invalid_image_dtype():
"""Test error handling for invalid image dtype."""
processor = VanillaObservationProcessor()
# Test wrong dtype
image = np.random.rand(64, 64, 3).astype(np.float32)
observation = {"pixels": image}
transition = create_transition(observation=observation)
with pytest.raises(ValueError, match="Expected torch.uint8 images"):
processor(transition)
def test_no_pixels_in_observation():
"""Test processor when no pixels are in observation."""
processor = VanillaObservationProcessor()
observation = {"other_data": np.array([1, 2, 3])}
transition = create_transition(observation=observation)
result = processor(transition)
processed_obs = result[TransitionKey.OBSERVATION]
# Should preserve other data unchanged
assert "other_data" in processed_obs
np.testing.assert_array_equal(processed_obs["other_data"], np.array([1, 2, 3]))
def test_none_observation():
"""Test processor with None observation."""
processor = VanillaObservationProcessor()
transition = create_transition()
result = processor(transition)
assert result == transition
def test_serialization_methods():
"""Test serialization methods."""
processor = VanillaObservationProcessor()
# Test get_config
config = processor.get_config()
assert isinstance(config, dict)
# Test state_dict
state = processor.state_dict()
assert isinstance(state, dict)
# Test load_state_dict (should not raise)
processor.load_state_dict(state)
# Test reset (should not raise)
processor.reset()
def test_process_environment_state():
"""Test processing environment_state."""
processor = VanillaObservationProcessor()
env_state = np.array([1.0, 2.0, 3.0], dtype=np.float32)
observation = {"environment_state": env_state}
transition = create_transition(observation=observation)
result = processor(transition)
processed_obs = result[TransitionKey.OBSERVATION]
# Check that environment_state was renamed and processed
assert "observation.environment_state" in processed_obs
assert "environment_state" not in processed_obs
processed_state = processed_obs["observation.environment_state"]
assert processed_state.shape == (1, 3) # Batch dimension added
assert processed_state.dtype == torch.float32
torch.testing.assert_close(processed_state, torch.tensor([[1.0, 2.0, 3.0]]))
def test_process_agent_pos():
"""Test processing agent_pos."""
processor = VanillaObservationProcessor()
agent_pos = np.array([0.5, -0.5, 1.0], dtype=np.float32)
observation = {"agent_pos": agent_pos}
transition = create_transition(observation=observation)
result = processor(transition)
processed_obs = result[TransitionKey.OBSERVATION]
# Check that agent_pos was renamed and processed
assert "observation.state" in processed_obs
assert "agent_pos" not in processed_obs
processed_state = processed_obs["observation.state"]
assert processed_state.shape == (1, 3) # Batch dimension added
assert processed_state.dtype == torch.float32
torch.testing.assert_close(processed_state, torch.tensor([[0.5, -0.5, 1.0]]))
def test_process_batched_states():
"""Test processing already batched states."""
processor = VanillaObservationProcessor()
env_state = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
agent_pos = np.array([[0.5, -0.5], [1.0, -1.0]], dtype=np.float32)
observation = {"environment_state": env_state, "agent_pos": agent_pos}
transition = create_transition(observation=observation)
result = processor(transition)
processed_obs = result[TransitionKey.OBSERVATION]
# Check that batch dimensions are preserved
assert processed_obs["observation.environment_state"].shape == (2, 2)
assert processed_obs["observation.state"].shape == (2, 2)
def test_process_both_states():
"""Test processing both environment_state and agent_pos."""
processor = VanillaObservationProcessor()
env_state = np.array([1.0, 2.0], dtype=np.float32)
agent_pos = np.array([0.5, -0.5], dtype=np.float32)
observation = {"environment_state": env_state, "agent_pos": agent_pos, "other_data": "keep_me"}
transition = create_transition(observation=observation)
result = processor(transition)
processed_obs = result[TransitionKey.OBSERVATION]
# Check that both states were processed
assert "observation.environment_state" in processed_obs
assert "observation.state" in processed_obs
# Check that original keys were removed
assert "environment_state" not in processed_obs
assert "agent_pos" not in processed_obs
# Check that other data was preserved
assert processed_obs["other_data"] == "keep_me"
def test_no_states_in_observation():
"""Test processor when no states are in observation."""
processor = VanillaObservationProcessor()
observation = {"other_data": np.array([1, 2, 3])}
transition = create_transition(observation=observation)
result = processor(transition)
processed_obs = result[TransitionKey.OBSERVATION]
# Should preserve data unchanged
np.testing.assert_array_equal(processed_obs, observation)
def test_complete_observation_processing():
"""Test processing a complete observation with both images and states."""
processor = VanillaObservationProcessor()
# Create mock data
image = np.random.randint(0, 256, size=(32, 32, 3), dtype=np.uint8)
env_state = np.array([1.0, 2.0, 3.0], dtype=np.float32)
agent_pos = np.array([0.5, -0.5, 1.0], dtype=np.float32)
observation = {
"pixels": image,
"environment_state": env_state,
"agent_pos": agent_pos,
"other_data": "preserve_me",
}
transition = create_transition(observation=observation)
result = processor(transition)
processed_obs = result[TransitionKey.OBSERVATION]
# Check that image was processed
assert "observation.image" in processed_obs
assert processed_obs["observation.image"].shape == (1, 3, 32, 32)
# Check that states were processed
assert "observation.environment_state" in processed_obs
assert "observation.state" in processed_obs
# Check that original keys were removed
assert "pixels" not in processed_obs
assert "environment_state" not in processed_obs
assert "agent_pos" not in processed_obs
# Check that other data was preserved
assert processed_obs["other_data"] == "preserve_me"
def test_image_only_processing():
"""Test processing observation with only images."""
processor = VanillaObservationProcessor()
image = np.random.randint(0, 256, size=(64, 64, 3), dtype=np.uint8)
observation = {"pixels": image}
transition = create_transition(observation=observation)
result = processor(transition)
processed_obs = result[TransitionKey.OBSERVATION]
assert "observation.image" in processed_obs
assert len(processed_obs) == 1
def test_state_only_processing():
"""Test processing observation with only states."""
processor = VanillaObservationProcessor()
agent_pos = np.array([1.0, 2.0], dtype=np.float32)
observation = {"agent_pos": agent_pos}
transition = create_transition(observation=observation)
result = processor(transition)
processed_obs = result[TransitionKey.OBSERVATION]
assert "observation.state" in processed_obs
assert "agent_pos" not in processed_obs
def test_empty_observation():
"""Test processing empty observation."""
processor = VanillaObservationProcessor()
observation = {}
transition = create_transition(observation=observation)
result = processor(transition)
processed_obs = result[TransitionKey.OBSERVATION]
assert processed_obs == {}
def test_equivalent_to_original_function():
"""Test that ObservationProcessor produces equivalent results to preprocess_observation."""
# Import the original function for comparison
from lerobot.envs.utils import preprocess_observation
processor = VanillaObservationProcessor()
# Create test data similar to what the original function expects
image = np.random.randint(0, 256, size=(64, 64, 3), dtype=np.uint8)
env_state = np.array([1.0, 2.0, 3.0], dtype=np.float32)
agent_pos = np.array([0.5, -0.5, 1.0], dtype=np.float32)
observation = {"pixels": image, "environment_state": env_state, "agent_pos": agent_pos}
# Process with original function
original_result = preprocess_observation(observation)
# Process with new processor
transition = create_transition(observation=observation)
processor_result = processor(transition)[TransitionKey.OBSERVATION]
# Compare results
assert set(original_result.keys()) == set(processor_result.keys())
for key in original_result:
torch.testing.assert_close(original_result[key], processor_result[key])
def test_equivalent_with_image_dict():
"""Test equivalence with dictionary of images."""
from lerobot.envs.utils import preprocess_observation
processor = VanillaObservationProcessor()
# Create test data with multiple cameras
image1 = np.random.randint(0, 256, size=(32, 32, 3), dtype=np.uint8)
image2 = np.random.randint(0, 256, size=(48, 48, 3), dtype=np.uint8)
agent_pos = np.array([1.0, 2.0], dtype=np.float32)
observation = {"pixels": {"cam1": image1, "cam2": image2}, "agent_pos": agent_pos}
# Process with original function
original_result = preprocess_observation(observation)
# Process with new processor
transition = create_transition(observation=observation)
processor_result = processor(transition)[TransitionKey.OBSERVATION]
# Compare results
assert set(original_result.keys()) == set(processor_result.keys())
for key in original_result:
torch.testing.assert_close(original_result[key], processor_result[key])
def test_image_processor_feature_contract_pixels_to_image(policy_feature_factory):
processor = VanillaObservationProcessor()
features = {
"pixels": policy_feature_factory(FeatureType.VISUAL, (3, 64, 64)),
"keep": policy_feature_factory(FeatureType.ENV, (1,)),
}
out = processor.feature_contract(features.copy())
assert OBS_IMAGE in out and out[OBS_IMAGE] == features["pixels"]
assert "pixels" not in out
assert out["keep"] == features["keep"]
assert_contract_is_typed(out)
def test_image_processor_feature_contract_observation_pixels_to_image(policy_feature_factory):
processor = VanillaObservationProcessor()
features = {
"observation.pixels": policy_feature_factory(FeatureType.VISUAL, (3, 64, 64)),
"keep": policy_feature_factory(FeatureType.ENV, (1,)),
}
out = processor.feature_contract(features.copy())
assert OBS_IMAGE in out and out[OBS_IMAGE] == features["observation.pixels"]
assert "observation.pixels" not in out
assert out["keep"] == features["keep"]
assert_contract_is_typed(out)
def test_image_processor_feature_contract_multi_camera_and_prefixed(policy_feature_factory):
processor = VanillaObservationProcessor()
features = {
"pixels.front": policy_feature_factory(FeatureType.VISUAL, (3, 64, 64)),
"pixels.wrist": policy_feature_factory(FeatureType.VISUAL, (3, 64, 64)),
"observation.pixels.rear": policy_feature_factory(FeatureType.VISUAL, (3, 64, 64)),
"keep": policy_feature_factory(FeatureType.ENV, (7,)),
}
out = processor.feature_contract(features.copy())
assert f"{OBS_IMAGES}.front" in out and out[f"{OBS_IMAGES}.front"] == features["pixels.front"]
assert f"{OBS_IMAGES}.wrist" in out and out[f"{OBS_IMAGES}.wrist"] == features["pixels.wrist"]
assert f"{OBS_IMAGES}.rear" in out and out[f"{OBS_IMAGES}.rear"] == features["observation.pixels.rear"]
assert "pixels.front" not in out and "pixels.wrist" not in out and "observation.pixels.rear" not in out
assert out["keep"] == features["keep"]
assert_contract_is_typed(out)
def test_state_processor_feature_contract_environment_and_agent_pos(policy_feature_factory):
processor = VanillaObservationProcessor()
features = {
"environment_state": policy_feature_factory(FeatureType.STATE, (3,)),
"agent_pos": policy_feature_factory(FeatureType.STATE, (7,)),
"keep": policy_feature_factory(FeatureType.ENV, (1,)),
}
out = processor.feature_contract(features.copy())
assert OBS_ENV_STATE in out and out[OBS_ENV_STATE] == features["environment_state"]
assert OBS_STATE in out and out[OBS_STATE] == features["agent_pos"]
assert "environment_state" not in out and "agent_pos" not in out
assert out["keep"] == features["keep"]
assert_contract_is_typed(out)
def test_state_processor_feature_contract_prefixed_inputs(policy_feature_factory):
proc = VanillaObservationProcessor()
features = {
"observation.environment_state": policy_feature_factory(FeatureType.STATE, (2,)),
"observation.agent_pos": policy_feature_factory(FeatureType.STATE, (4,)),
}
out = proc.feature_contract(features.copy())
assert OBS_ENV_STATE in out and out[OBS_ENV_STATE] == features["observation.environment_state"]
assert OBS_STATE in out and out[OBS_STATE] == features["observation.agent_pos"]
assert "environment_state" not in out and "agent_pos" not in out
assert_contract_is_typed(out)