Files
lerobot/tests/processor/test_pipeline.py
Adil Zouitine 88f7bf01c1 feat(pipeline): universal processor for LeRobot (#1431)
* Refactor observation preprocessing to use a modular pipeline system

- Introduced `RobotPipeline` and `ObservationProcessor` for handling observation transformations.
- Updated `preprocess_observation` to maintain backward compatibility while leveraging the new pipeline.
- Added tests for the new processing components and ensured they match the original functionality.
- Removed hardcoded logic in favor of a more flexible, composable architecture.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Refactor observation processing and improve modularity

- Updated `ObservationProcessor` to enhance the modular design for processing observations.
- Cleaned up imports and improved code readability by removing unnecessary lines and comments.
- Ensured backward compatibility while integrating new processing components.
- Added tests to validate the functionality of the updated processing architecture.

* Remove redundant tests for None observation and serialization methods in `test_observation_processor.py` to streamline the test suite and improve maintainability.

* Refactor processing architecture to use RobotProcessor

- Replaced instances of RobotPipeline with RobotProcessor across the codebase for improved modularity and clarity.
- Introduced ProcessorStepRegistry for better management of processing steps.
- Updated relevant documentation and tests to reflect the new processing structure.
- Enhanced the save/load functionality to support the new processor design.
- Added a model card template for RobotProcessor to facilitate sharing and documentation.

* Add RobotProcessor tutorial to documentation

- Introduced a new tutorial on using RobotProcessor for preprocessing robot data.
- Added a section in the table of contents for easy navigation to the new tutorial.
- The tutorial covers key concepts, real-world scenarios, and practical examples for effective use of the RobotProcessor pipeline.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Add normalization processor and related components

- Introduced `NormalizationProcessor` to handle both observation normalization and action unnormalization.
- Added `ObservationNormalizer` and `ActionUnnormalizer` classes for specific normalization tasks.
- Updated `__init__.py` to include the new `NormalizationProcessor` in the module exports.
- Enhanced `ObservationProcessor` with registration in the `ProcessorStepRegistry` for better modularity.
- Created `RenameProcessor` for renaming keys in observations, improving flexibility in data processing.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Enhance processing architecture with new components

- Added `RenameProcessor` to facilitate key renaming in observations, improving data handling flexibility.
- Updated `__init__.py` to include `RenameProcessor` in module exports.
- Refactored `NormalizationProcessor` and `ObservationNormalizer` to use `rsplit` for better key handling.
- Introduced comprehensive tests for `NormalizationProcessor` and `RenameProcessor` to ensure functionality and robustness.

* chore (docs): add docstring for processor

* fix (test): test factory

* fix(test): policies

* Update tests/processor/test_observation_processor.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com>

* chore(test): add suggestion made by copilot regarding numpy test

* fix(test): import issue

* Refactor normalization components and update tests

- Renamed `ObservationNormalizer` to `NormalizerProcessor` and `ActionUnnormalizer` to `UnnormalizerProcessor` for clarity.
- Consolidated normalization logic for both observations and actions into `NormalizerProcessor` and `UnnormalizerProcessor`.
- Updated tests to reflect the new class names and ensure proper functionality of normalization and unnormalization processes.
- Enhanced handling of missing statistics in normalization processes.

* chore (docstrin):Improve docstring for NormalizerProcessor

* feat (device processor): Implement device processor

* chore (batch handling): Enhance processing components with batch conversion utilities

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix(test): linting issue

* chore (output format): improves output format

* chore (type): add typing for multiprocess envs

* feat (overrides): Implement support for loading processors with parameter overrides

- Added the ability to provide non-serializable objects when loading processors from saved configurations using the `overrides` parameter.
- Enhanced error handling for invalid override keys and instantiation errors.
- Updated documentation and examples to illustrate the usage of overrides for both registered and unregistered steps.
- Added comprehensive tests to validate the new functionality and ensure backward compatibility.

* chore(normalization): addressing comments from copilot

* chore(learner): nit comment from copilot

* feat(pipeline): Enhance step_through method to support both tuple and dict inputs

* refactor(pipeline): Simplify observation and padding data handling in batch transitions

* Apply suggestions from code review

Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* refactor(pipeline): Introduce ComplementaryDataProcessor for handling complementary data in transitions

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* refactor(pipeline): Transition from tuple to dictionary format for EnvTransition

- Updated the EnvTransition structure to use a dictionary format instead of a tuple, enhancing readability and maintainability.
- Replaced instances of TransitionIndex with TransitionKey for accessing transition components.
- Adjusted related processing functions and tests to accommodate the new dictionary format, ensuring consistent handling of transitions across the codebase.

* refactor(observation_processor): Improve observation processing by using constants and simplifying pixel handling

- Introduced constants for observation keys to enhance readability.
- Streamlined the handling of the "pixels" key by copying observations first and processing images more clearly.
- Updated the environment state and agent position assignments to use the new constants, improving maintainability.

* feat(pipeline): Add hook unregistration functionality and enhance documentation

- Implemented methods to unregister before, after, and reset hooks in the RobotProcessor class, allowing for more flexible hook management.
- Enhanced documentation to clarify hook execution semantics and the implications of modifying transitions within hooks.
- Added comprehensive tests to verify the correct behavior of hook registration and unregistration, including error handling for non-existent hooks.

* refactor(pipeline): Clarify hook behavior and improve documentation

- Updated the RobotProcessor class to ensure hooks are strictly for observation and do not modify transitions, enhancing clarity and maintainability.
- Refactored hook registration methods to reflect the new behavior, ensuring they accept only functions that do not return modified transitions.
- Enhanced documentation to clearly outline the purpose of hooks and their execution semantics.
- Added tests to verify that hooks are not executed during the step_through method while ensuring they function correctly during the __call__ method.

* feat(pipeline): Add __repr__ method to RobotProcessor for improved readability

- Implemented a __repr__ method in the RobotProcessor class to provide a clear string representation of the processor, including step names and optional parameters like name and seed.
- Added comprehensive tests to validate the __repr__ output for various scenarios, including empty processors, single and multiple steps, custom names, and seed values.
- Ensured that the representation handles long lists of steps with truncation for better readability.

* chore(pipeline): Move _CFG_NAME along other class member

* refactor(pipeline): Utilize get_safe_torch_device for device assignment

- Replaced direct torch.device instantiation with get_safe_torch_device to ensure safe device handling.
- This change enhances code readability and maintains consistency in device management across the RobotProcessor class.

* refactor(pipeline): Enhance state filename generation and profiling method

- Updated state filename generation to use the registry name when available, improving clarity in saved files.
- Modified the profile_steps method to include a warmup_runs parameter, allowing for more controlled performance profiling.
- Ensured consistent conditions during profiling by deep copying transitions for each run, enhancing accuracy in timing results.

* chore(doc): address pip install commant lerobot that not exist yet

* feat(pipeline): Enhance configuration filename handling and state file naming

- Introduced support for custom configuration filenames in the `save_pretrained` method, allowing users to specify a filename instead of the default.
- Improved state file naming to include step indices, preventing conflicts when multiple processors of the same type are saved.
- Added automatic detection for configuration files when loading from a directory, with error handling for multiple files.
- Updated tests to validate new features, including custom filenames and automatic config detection.

* refactor(pipeline): Improve state file naming conventions for clarity and uniqueness

- Enhanced state file naming to include the processor's sanitized name, ensuring uniqueness when multiple processors are saved in the same directory.
- Updated tests to reflect changes in state file naming, verifying that filenames now include the processor name and step indices to prevent conflicts.
- Added a new test to validate state file naming when using multiple processors, ensuring distinct filenames for each processor's state files.

* docs(pipeline): Add clarification for repo name sanitization process

* Feat/pipeline add feature contract (#1637)

* Add feature contract to pipelinestep and pipeline

* Add tests

* Add processor tests

* PR feedback

* encorperate pr feedback

* type in doc

* oops

* docs(pipeline): Clarify transition handling and hook behavior

- Updated documentation to specify that hooks always receive transitions in EnvTransition format, ensuring consistent behavior across input formats.
- Refactored the step_through method to yield only EnvTransition objects, regardless of the input format, and updated related tests to reflect this change.
- Enhanced test assertions to verify the structure of results and the correctness of processing steps.

* refactor(pipeline): Remove to() method for device management

- Eliminated the to() method from RobotProcessor, which was responsible for moving tensor states to specified devices.
- Removed associated unit tests that validated the functionality of the to() method across various scenarios.
- Streamlined the pipeline code by focusing on other device management strategies.

* refactor(pipeline): Remove model card generation and streamline processor methods

- Eliminated the _generate_model_card method from RobotProcessor, which was responsible for generating README.md files from a template.
- Updated save_pretrained method to remove model card generation, focusing on serialization of processor definitions and parameters.
- Added default implementations for get_config, state_dict, load_state_dict, reset, and feature_contract methods in various processor classes to enhance consistency and usability.

* refactor(observation): Streamline observation preprocessing and remove unused processor methods

- Updated the `preprocess_observation` function to enhance image handling and ensure proper tensor formatting.
- Removed the `RobotProcessor` and associated transition handling from the `rollout` function, simplifying the observation processing flow.
- Integrated direct calls to `preprocess_observation` for improved clarity and efficiency in the evaluation script.

* refactor(pipeline): Rename parameters for clarity and enhance save/load functionality

- Updated parameter names in the save_pretrained and from_pretrained methods for improved readability, changing destination_path to save_directory and source to pretrained_model_name_or_path.
- Enhanced the save_pretrained method to ensure directory creation and file handling is consistent with the new parameter names.
- Streamlined the loading process in from_pretrained to utilize loaded_config for better clarity and maintainability.

* refactor(pipeline): minor improvements (#1684)

* chore(pipeline): remove unused features + device torch + envtransition keys

* refactor(pipeline): ImageProcessor & StateProcessor are both implemented directly in VanillaObservationPRocessor

* refactor(pipeline): RenameProcessor now inherits from ObservationProcessor + remove unused code

* test(pipeline): fix broken test after refactors

* docs(pipeline): update docstrings VanillaObservationProcessor

* chore(pipeline): move None check to base pipeline classes

---------

Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
Co-authored-by: Pepijn <138571049+pkooij@users.noreply.github.com>
Co-authored-by: Steven Palma <imstevenpmwork@ieee.org>
2025-08-06 16:11:04 +02:00

1920 lines
66 KiB
Python

#!/usr/bin/env python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import tempfile
from collections.abc import Callable
from dataclasses import dataclass
from pathlib import Path
from typing import Any
import pytest
import torch
import torch.nn as nn
from lerobot.configs.types import FeatureType, PolicyFeature
from lerobot.processor import EnvTransition, ProcessorStepRegistry, RobotProcessor
from lerobot.processor.pipeline import TransitionKey
from tests.conftest import assert_contract_is_typed
def create_transition(
observation=None, action=None, reward=0.0, done=False, truncated=False, info=None, complementary_data=None
):
"""Helper to create an EnvTransition dictionary."""
return {
TransitionKey.OBSERVATION: observation,
TransitionKey.ACTION: action,
TransitionKey.REWARD: reward,
TransitionKey.DONE: done,
TransitionKey.TRUNCATED: truncated,
TransitionKey.INFO: info if info is not None else {},
TransitionKey.COMPLEMENTARY_DATA: complementary_data if complementary_data is not None else {},
}
@dataclass
class MockStep:
"""Mock pipeline step for testing - demonstrates best practices.
This example shows the proper separation:
- JSON-serializable attributes (name, counter) go in get_config()
- Only torch tensors go in state_dict()
Note: The counter is part of the configuration, so it will be restored
when the step is recreated from config during loading.
"""
name: str = "mock_step"
counter: int = 0
def __call__(self, transition: EnvTransition) -> EnvTransition:
"""Add a counter to the complementary_data."""
comp_data = transition.get(TransitionKey.COMPLEMENTARY_DATA, {})
comp_data = {} if comp_data is None else dict(comp_data) # Make a copy
comp_data[f"{self.name}_counter"] = self.counter
self.counter += 1
# Create a new transition with updated complementary_data
new_transition = transition.copy()
new_transition[TransitionKey.COMPLEMENTARY_DATA] = comp_data
return new_transition
def get_config(self) -> dict[str, Any]:
# Return all JSON-serializable attributes that should be persisted
# These will be passed to __init__ when loading
return {"name": self.name, "counter": self.counter}
def state_dict(self) -> dict[str, torch.Tensor]:
# Only return torch tensors (empty in this case since we have no tensor state)
return {}
def load_state_dict(self, state: dict[str, torch.Tensor]) -> None:
# No tensor state to load
pass
def reset(self) -> None:
self.counter = 0
def feature_contract(self, features: dict[str, PolicyFeature]) -> dict[str, PolicyFeature]:
# We do not test feature_contract here
return features
@dataclass
class MockStepWithoutOptionalMethods:
"""Mock step that only implements the required __call__ method."""
multiplier: float = 2.0
def __call__(self, transition: EnvTransition) -> EnvTransition:
"""Multiply reward by multiplier."""
reward = transition.get(TransitionKey.REWARD)
if reward is not None:
new_transition = transition.copy()
new_transition[TransitionKey.REWARD] = reward * self.multiplier
return new_transition
return transition
def feature_contract(self, features: dict[str, PolicyFeature]) -> dict[str, PolicyFeature]:
# We do not test feature_contract here
return features
@dataclass
class MockStepWithTensorState:
"""Mock step demonstrating mixed JSON attributes and tensor state."""
name: str = "tensor_step"
learning_rate: float = 0.01
window_size: int = 10
def __init__(self, name: str = "tensor_step", learning_rate: float = 0.01, window_size: int = 10):
self.name = name
self.learning_rate = learning_rate
self.window_size = window_size
# Tensor state
self.running_mean = torch.zeros(window_size)
self.running_count = torch.tensor(0)
def __call__(self, transition: EnvTransition) -> EnvTransition:
"""Update running statistics."""
reward = transition.get(TransitionKey.REWARD)
if reward is not None:
# Update running mean
idx = self.running_count % self.window_size
self.running_mean[idx] = reward
self.running_count += 1
return transition
def get_config(self) -> dict[str, Any]:
# Only JSON-serializable attributes
return {
"name": self.name,
"learning_rate": self.learning_rate,
"window_size": self.window_size,
}
def state_dict(self) -> dict[str, torch.Tensor]:
# Only tensor state
return {
"running_mean": self.running_mean,
"running_count": self.running_count,
}
def load_state_dict(self, state: dict[str, torch.Tensor]) -> None:
self.running_mean = state["running_mean"]
self.running_count = state["running_count"]
def reset(self) -> None:
self.running_mean.zero_()
self.running_count.zero_()
def feature_contract(self, features: dict[str, PolicyFeature]) -> dict[str, PolicyFeature]:
# We do not test feature_contract here
return features
def test_empty_pipeline():
"""Test pipeline with no steps."""
pipeline = RobotProcessor()
transition = create_transition()
result = pipeline(transition)
assert result == transition
assert len(pipeline) == 0
def test_single_step_pipeline():
"""Test pipeline with a single step."""
step = MockStep("test_step")
pipeline = RobotProcessor([step])
transition = create_transition()
result = pipeline(transition)
assert len(pipeline) == 1
assert result[TransitionKey.COMPLEMENTARY_DATA]["test_step_counter"] == 0
# Call again to test counter increment
result = pipeline(transition)
assert result[TransitionKey.COMPLEMENTARY_DATA]["test_step_counter"] == 1
def test_multiple_steps_pipeline():
"""Test pipeline with multiple steps."""
step1 = MockStep("step1")
step2 = MockStep("step2")
pipeline = RobotProcessor([step1, step2])
transition = create_transition()
result = pipeline(transition)
assert len(pipeline) == 2
assert result[TransitionKey.COMPLEMENTARY_DATA]["step1_counter"] == 0
assert result[TransitionKey.COMPLEMENTARY_DATA]["step2_counter"] == 0
def test_invalid_transition_format():
"""Test pipeline with invalid transition format."""
pipeline = RobotProcessor([MockStep()])
# Test with wrong type (tuple instead of dict)
with pytest.raises(ValueError, match="EnvTransition must be a dictionary"):
pipeline((None, None, 0.0, False, False, {}, {})) # Tuple instead of dict
# Test with wrong type (string)
with pytest.raises(ValueError, match="EnvTransition must be a dictionary"):
pipeline("not a dict")
def test_step_through():
"""Test step_through method with dict input."""
step1 = MockStep("step1")
step2 = MockStep("step2")
pipeline = RobotProcessor([step1, step2])
transition = create_transition()
results = list(pipeline.step_through(transition))
assert len(results) == 3 # Original + 2 steps
assert results[0] == transition # Original
assert "step1_counter" in results[1][TransitionKey.COMPLEMENTARY_DATA] # After step1
assert "step2_counter" in results[2][TransitionKey.COMPLEMENTARY_DATA] # After step2
# Ensure all results are dicts (same format as input)
for result in results:
assert isinstance(result, dict)
assert all(isinstance(k, TransitionKey) for k in result.keys())
def test_step_through_with_dict():
"""Test step_through method with dict input."""
step1 = MockStep("step1")
step2 = MockStep("step2")
pipeline = RobotProcessor([step1, step2])
batch = {
"observation.image": None,
"action": None,
"next.reward": 0.0,
"next.done": False,
"next.truncated": False,
"info": {},
}
results = list(pipeline.step_through(batch))
assert len(results) == 3 # Original + 2 steps
# Ensure all results are EnvTransition dicts (regardless of input format)
for result in results:
assert isinstance(result, dict)
# Check that keys are TransitionKey enums or at least valid transition keys
for key in result:
assert key in [
TransitionKey.OBSERVATION,
TransitionKey.ACTION,
TransitionKey.REWARD,
TransitionKey.DONE,
TransitionKey.TRUNCATED,
TransitionKey.INFO,
TransitionKey.COMPLEMENTARY_DATA,
]
# Check that the processing worked - verify step counters in complementary_data
assert results[1].get(TransitionKey.COMPLEMENTARY_DATA, {}).get("step1_counter") == 0
assert results[2].get(TransitionKey.COMPLEMENTARY_DATA, {}).get("step1_counter") == 0
assert results[2].get(TransitionKey.COMPLEMENTARY_DATA, {}).get("step2_counter") == 0
def test_step_through_no_hooks():
"""Test that step_through doesn't execute hooks."""
step = MockStep("test_step")
pipeline = RobotProcessor([step])
hook_calls = []
def tracking_hook(idx: int, transition: EnvTransition):
hook_calls.append(f"hook_called_step_{idx}")
# Register hooks
pipeline.register_before_step_hook(tracking_hook)
pipeline.register_after_step_hook(tracking_hook)
# Use step_through
transition = create_transition()
results = list(pipeline.step_through(transition))
# Verify step was executed (counter should increment)
assert len(results) == 2 # Initial + 1 step
assert results[1][TransitionKey.COMPLEMENTARY_DATA]["test_step_counter"] == 0
# Verify hooks were NOT called
assert len(hook_calls) == 0
# Now use __call__ to verify hooks ARE called there
hook_calls.clear()
pipeline(transition)
# Verify hooks were called (before and after for 1 step = 2 calls)
assert len(hook_calls) == 2
assert hook_calls == ["hook_called_step_0", "hook_called_step_0"]
def test_indexing():
"""Test pipeline indexing."""
step1 = MockStep("step1")
step2 = MockStep("step2")
pipeline = RobotProcessor([step1, step2])
# Test integer indexing
assert pipeline[0] is step1
assert pipeline[1] is step2
# Test slice indexing
sub_pipeline = pipeline[0:1]
assert isinstance(sub_pipeline, RobotProcessor)
assert len(sub_pipeline) == 1
assert sub_pipeline[0] is step1
def test_hooks():
"""Test before/after step hooks."""
step = MockStep("test_step")
pipeline = RobotProcessor([step])
before_calls = []
after_calls = []
def before_hook(idx: int, transition: EnvTransition):
before_calls.append(idx)
def after_hook(idx: int, transition: EnvTransition):
after_calls.append(idx)
pipeline.register_before_step_hook(before_hook)
pipeline.register_after_step_hook(after_hook)
transition = create_transition()
pipeline(transition)
assert before_calls == [0]
assert after_calls == [0]
def test_unregister_hooks():
"""Test unregistering hooks from the pipeline."""
step = MockStep("test_step")
pipeline = RobotProcessor([step])
# Test before_step_hook
before_calls = []
def before_hook(idx: int, transition: EnvTransition):
before_calls.append(idx)
pipeline.register_before_step_hook(before_hook)
# Verify hook is registered
transition = create_transition()
pipeline(transition)
assert len(before_calls) == 1
# Unregister and verify it's no longer called
pipeline.unregister_before_step_hook(before_hook)
before_calls.clear()
pipeline(transition)
assert len(before_calls) == 0
# Test after_step_hook
after_calls = []
def after_hook(idx: int, transition: EnvTransition):
after_calls.append(idx)
pipeline.register_after_step_hook(after_hook)
pipeline(transition)
assert len(after_calls) == 1
pipeline.unregister_after_step_hook(after_hook)
after_calls.clear()
pipeline(transition)
assert len(after_calls) == 0
def test_unregister_nonexistent_hook():
"""Test error handling when unregistering hooks that don't exist."""
pipeline = RobotProcessor([MockStep()])
def some_hook(idx: int, transition: EnvTransition):
pass
def reset_hook():
pass
# Test unregistering hooks that were never registered
with pytest.raises(ValueError, match="not found in before_step_hooks"):
pipeline.unregister_before_step_hook(some_hook)
with pytest.raises(ValueError, match="not found in after_step_hooks"):
pipeline.unregister_after_step_hook(some_hook)
def test_multiple_hooks_and_selective_unregister():
"""Test registering multiple hooks and selectively unregistering them."""
pipeline = RobotProcessor([MockStep("step1"), MockStep("step2")])
calls_1 = []
calls_2 = []
calls_3 = []
def hook1(idx: int, transition: EnvTransition):
calls_1.append(f"hook1_step{idx}")
def hook2(idx: int, transition: EnvTransition):
calls_2.append(f"hook2_step{idx}")
def hook3(idx: int, transition: EnvTransition):
calls_3.append(f"hook3_step{idx}")
# Register multiple hooks
pipeline.register_before_step_hook(hook1)
pipeline.register_before_step_hook(hook2)
pipeline.register_before_step_hook(hook3)
# Run pipeline - all hooks should be called for both steps
transition = create_transition()
pipeline(transition)
assert calls_1 == ["hook1_step0", "hook1_step1"]
assert calls_2 == ["hook2_step0", "hook2_step1"]
assert calls_3 == ["hook3_step0", "hook3_step1"]
# Clear calls
calls_1.clear()
calls_2.clear()
calls_3.clear()
# Unregister middle hook
pipeline.unregister_before_step_hook(hook2)
# Run again - only hook1 and hook3 should be called
pipeline(transition)
assert calls_1 == ["hook1_step0", "hook1_step1"]
assert calls_2 == [] # hook2 was unregistered
assert calls_3 == ["hook3_step0", "hook3_step1"]
def test_hook_execution_order_documentation():
"""Test and document that hooks are executed sequentially in registration order."""
pipeline = RobotProcessor([MockStep("step")])
execution_order = []
def hook_a(idx: int, transition: EnvTransition):
execution_order.append("A")
def hook_b(idx: int, transition: EnvTransition):
execution_order.append("B")
def hook_c(idx: int, transition: EnvTransition):
execution_order.append("C")
# Register in specific order: A, B, C
pipeline.register_before_step_hook(hook_a)
pipeline.register_before_step_hook(hook_b)
pipeline.register_before_step_hook(hook_c)
transition = create_transition()
pipeline(transition)
# Verify execution order matches registration order
assert execution_order == ["A", "B", "C"]
# Test that after unregistering B and re-registering it, it goes to the end
pipeline.unregister_before_step_hook(hook_b)
execution_order.clear()
pipeline(transition)
assert execution_order == ["A", "C"] # B is gone
# Re-register B - it should now be at the end
pipeline.register_before_step_hook(hook_b)
execution_order.clear()
pipeline(transition)
assert execution_order == ["A", "C", "B"] # B is now last
def test_save_and_load_pretrained():
"""Test saving and loading pipeline.
This test demonstrates that JSON-serializable attributes (like counter)
are saved in the config and restored when the step is recreated.
"""
step1 = MockStep("step1")
step2 = MockStep("step2")
# Increment counters to have some state
step1.counter = 5
step2.counter = 10
pipeline = RobotProcessor([step1, step2], name="TestPipeline")
with tempfile.TemporaryDirectory() as tmp_dir:
# Save pipeline
pipeline.save_pretrained(tmp_dir)
# Check files were created
config_path = Path(tmp_dir) / "testpipeline.json" # Based on name="TestPipeline"
assert config_path.exists()
# Check config content
with open(config_path) as f:
config = json.load(f)
assert config["name"] == "TestPipeline"
assert len(config["steps"]) == 2
# Verify counters are saved in config, not in separate state files
assert config["steps"][0]["config"]["counter"] == 5
assert config["steps"][1]["config"]["counter"] == 10
# Load pipeline
loaded_pipeline = RobotProcessor.from_pretrained(tmp_dir)
assert loaded_pipeline.name == "TestPipeline"
assert len(loaded_pipeline) == 2
# Check that counter was restored from config
assert loaded_pipeline.steps[0].counter == 5
assert loaded_pipeline.steps[1].counter == 10
def test_step_without_optional_methods():
"""Test pipeline with steps that don't implement optional methods."""
step = MockStepWithoutOptionalMethods(multiplier=3.0)
pipeline = RobotProcessor([step])
transition = create_transition(reward=2.0)
result = pipeline(transition)
assert result[TransitionKey.REWARD] == 6.0 # 2.0 * 3.0
# Reset should work even if step doesn't implement reset
pipeline.reset()
# Save/load should work even without optional methods
with tempfile.TemporaryDirectory() as tmp_dir:
pipeline.save_pretrained(tmp_dir)
loaded_pipeline = RobotProcessor.from_pretrained(tmp_dir)
assert len(loaded_pipeline) == 1
def test_mixed_json_and_tensor_state():
"""Test step with both JSON attributes and tensor state."""
step = MockStepWithTensorState(name="stats", learning_rate=0.05, window_size=5)
pipeline = RobotProcessor([step])
# Process some transitions with rewards
for i in range(10):
transition = create_transition(reward=float(i))
pipeline(transition)
# Check state
assert step.running_count.item() == 10
assert step.learning_rate == 0.05
# Save and load
with tempfile.TemporaryDirectory() as tmp_dir:
pipeline.save_pretrained(tmp_dir)
# Check that both config and state files were created
config_path = Path(tmp_dir) / "robotprocessor.json" # Default name is "RobotProcessor"
state_path = Path(tmp_dir) / "robotprocessor_step_0.safetensors"
assert config_path.exists()
assert state_path.exists()
# Load and verify
loaded_pipeline = RobotProcessor.from_pretrained(tmp_dir)
loaded_step = loaded_pipeline.steps[0]
# Check JSON attributes were restored
assert loaded_step.name == "stats"
assert loaded_step.learning_rate == 0.05
assert loaded_step.window_size == 5
# Check tensor state was restored
assert loaded_step.running_count.item() == 10
assert torch.allclose(loaded_step.running_mean, step.running_mean)
class MockModuleStep(nn.Module):
"""Mock step that inherits from nn.Module to test state_dict handling of module parameters."""
def __init__(self, input_dim: int = 10, hidden_dim: int = 5):
super().__init__()
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.linear = nn.Linear(input_dim, hidden_dim)
self.running_mean = nn.Parameter(torch.zeros(hidden_dim), requires_grad=False)
self.counter = 0 # Non-tensor state
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.linear(x)
def __call__(self, transition: EnvTransition) -> EnvTransition:
"""Process transition and update running mean."""
obs = transition.get(TransitionKey.OBSERVATION)
if obs is not None and isinstance(obs, torch.Tensor):
# Process observation through linear layer
processed = self.forward(obs[:, : self.input_dim])
# Update running mean in-place (don't reassign the parameter)
with torch.no_grad():
self.running_mean.mul_(0.9).add_(processed.mean(dim=0), alpha=0.1)
self.counter += 1
return transition
def get_config(self) -> dict[str, Any]:
return {
"input_dim": self.input_dim,
"hidden_dim": self.hidden_dim,
"counter": self.counter,
}
def state_dict(self) -> dict[str, torch.Tensor]:
"""Override to return all module parameters and buffers."""
# Get the module's state dict (includes all parameters and buffers)
return super().state_dict()
def load_state_dict(self, state: dict[str, torch.Tensor]) -> None:
"""Override to load all module parameters and buffers."""
# Use the module's load_state_dict
super().load_state_dict(state)
def reset(self) -> None:
self.running_mean.zero_()
self.counter = 0
def feature_contract(self, features: dict[str, PolicyFeature]) -> dict[str, PolicyFeature]:
# We do not test feature_contract here
return features
class MockNonModuleStepWithState:
"""Mock step that explicitly does NOT inherit from nn.Module but has tensor state.
This tests the state_dict/load_state_dict path for regular classes.
"""
def __init__(self, name: str = "non_module_step", feature_dim: int = 10):
self.name = name
self.feature_dim = feature_dim
# Initialize tensor state - these are regular tensors, not nn.Parameters
self.weights = torch.randn(feature_dim, feature_dim)
self.bias = torch.zeros(feature_dim)
self.running_stats = torch.zeros(feature_dim)
self.step_count = torch.tensor(0)
# Non-tensor state
self.config_value = 42
self.history = []
def __call__(self, transition: EnvTransition) -> EnvTransition:
"""Process transition using tensor operations."""
obs = transition.get(TransitionKey.OBSERVATION)
comp_data = transition.get(TransitionKey.COMPLEMENTARY_DATA, {})
if obs is not None and isinstance(obs, torch.Tensor) and obs.numel() >= self.feature_dim:
# Perform some tensor operations
flat_obs = obs.flatten()[: self.feature_dim]
# Simple linear transformation (ensure dimensions match for matmul)
output = torch.matmul(self.weights.T, flat_obs) + self.bias
# Update running stats
self.running_stats = 0.9 * self.running_stats + 0.1 * output
self.step_count += 1
# Add to complementary data
comp_data = {} if comp_data is None else dict(comp_data)
comp_data[f"{self.name}_mean_output"] = output.mean().item()
comp_data[f"{self.name}_steps"] = self.step_count.item()
# Return updated transition
new_transition = transition.copy()
new_transition[TransitionKey.COMPLEMENTARY_DATA] = comp_data
return new_transition
return transition
def get_config(self) -> dict[str, Any]:
return {
"name": self.name,
"feature_dim": self.feature_dim,
"config_value": self.config_value,
}
def state_dict(self) -> dict[str, torch.Tensor]:
"""Return only tensor state."""
return {
"weights": self.weights,
"bias": self.bias,
"running_stats": self.running_stats,
"step_count": self.step_count,
}
def load_state_dict(self, state: dict[str, torch.Tensor]) -> None:
"""Load tensor state."""
self.weights = state["weights"]
self.bias = state["bias"]
self.running_stats = state["running_stats"]
self.step_count = state["step_count"]
def reset(self) -> None:
"""Reset statistics but keep learned parameters."""
self.running_stats.zero_()
self.step_count.zero_()
self.history.clear()
def feature_contract(self, features: dict[str, PolicyFeature]) -> dict[str, PolicyFeature]:
# We do not test feature_contract here
return features
# Tests for overrides functionality
@dataclass
class MockStepWithNonSerializableParam:
"""Mock step that requires a non-serializable parameter."""
def __init__(self, name: str = "mock_env_step", multiplier: float = 1.0, env: Any = None):
self.name = name
# Add type validation for multiplier
if isinstance(multiplier, str):
raise ValueError(f"multiplier must be a number, got string '{multiplier}'")
if not isinstance(multiplier, (int, float)):
raise TypeError(f"multiplier must be a number, got {type(multiplier).__name__}")
self.multiplier = float(multiplier)
self.env = env # Non-serializable parameter (like gym.Env)
def __call__(self, transition: EnvTransition) -> EnvTransition:
reward = transition.get(TransitionKey.REWARD)
comp_data = transition.get(TransitionKey.COMPLEMENTARY_DATA, {})
# Use the env parameter if provided
if self.env is not None:
comp_data = {} if comp_data is None else dict(comp_data)
comp_data[f"{self.name}_env_info"] = str(self.env)
# Apply multiplier to reward
new_transition = transition.copy()
if reward is not None:
new_transition[TransitionKey.REWARD] = reward * self.multiplier
if comp_data:
new_transition[TransitionKey.COMPLEMENTARY_DATA] = comp_data
return new_transition
def get_config(self) -> dict[str, Any]:
# Note: env is intentionally NOT included here as it's not serializable
return {
"name": self.name,
"multiplier": self.multiplier,
}
def state_dict(self) -> dict[str, torch.Tensor]:
return {}
def load_state_dict(self, state: dict[str, torch.Tensor]) -> None:
pass
def reset(self) -> None:
pass
def feature_contract(self, features: dict[str, PolicyFeature]) -> dict[str, PolicyFeature]:
# We do not test feature_contract here
return features
@ProcessorStepRegistry.register("registered_mock_step")
@dataclass
class RegisteredMockStep:
"""Mock step registered in the registry."""
value: int = 42
device: str = "cpu"
def __call__(self, transition: EnvTransition) -> EnvTransition:
comp_data = transition.get(TransitionKey.COMPLEMENTARY_DATA, {})
comp_data = {} if comp_data is None else dict(comp_data)
comp_data["registered_step_value"] = self.value
comp_data["registered_step_device"] = self.device
new_transition = transition.copy()
new_transition[TransitionKey.COMPLEMENTARY_DATA] = comp_data
return new_transition
def get_config(self) -> dict[str, Any]:
return {
"value": self.value,
"device": self.device,
}
def state_dict(self) -> dict[str, torch.Tensor]:
return {}
def load_state_dict(self, state: dict[str, torch.Tensor]) -> None:
pass
def reset(self) -> None:
pass
def feature_contract(self, features: dict[str, PolicyFeature]) -> dict[str, PolicyFeature]:
# We do not test feature_contract here
return features
class MockEnvironment:
"""Mock environment for testing non-serializable parameters."""
def __init__(self, name: str):
self.name = name
def __str__(self):
return f"MockEnvironment({self.name})"
def test_from_pretrained_with_overrides():
"""Test loading processor with parameter overrides."""
# Create a processor with steps that need overrides
env_step = MockStepWithNonSerializableParam(name="env_step", multiplier=2.0)
registered_step = RegisteredMockStep(value=100, device="cpu")
pipeline = RobotProcessor([env_step, registered_step], name="TestOverrides")
with tempfile.TemporaryDirectory() as tmp_dir:
# Save the pipeline
pipeline.save_pretrained(tmp_dir)
# Create a mock environment for override
mock_env = MockEnvironment("test_env")
# Load with overrides
overrides = {
"MockStepWithNonSerializableParam": {
"env": mock_env,
"multiplier": 3.0, # Override the multiplier too
},
"registered_mock_step": {"device": "cuda", "value": 200},
}
loaded_pipeline = RobotProcessor.from_pretrained(tmp_dir, overrides=overrides)
# Verify the pipeline was loaded correctly
assert len(loaded_pipeline) == 2
assert loaded_pipeline.name == "TestOverrides"
# Test the loaded steps
transition = create_transition(reward=1.0)
result = loaded_pipeline(transition)
# Check that overrides were applied
comp_data = result[TransitionKey.COMPLEMENTARY_DATA]
assert "env_step_env_info" in comp_data
assert comp_data["env_step_env_info"] == "MockEnvironment(test_env)"
assert comp_data["registered_step_value"] == 200
assert comp_data["registered_step_device"] == "cuda"
# Check that multiplier override was applied
assert result[TransitionKey.REWARD] == 3.0 # 1.0 * 3.0 (overridden multiplier)
def test_from_pretrained_with_partial_overrides():
"""Test loading processor with overrides for only some steps."""
step1 = MockStepWithNonSerializableParam(name="step1", multiplier=1.0)
step2 = MockStepWithNonSerializableParam(name="step2", multiplier=2.0)
pipeline = RobotProcessor([step1, step2])
with tempfile.TemporaryDirectory() as tmp_dir:
pipeline.save_pretrained(tmp_dir)
# Override only one step
overrides = {"MockStepWithNonSerializableParam": {"multiplier": 5.0}}
# The current implementation applies overrides to ALL steps with the same class name
# Both steps will get the override
loaded_pipeline = RobotProcessor.from_pretrained(tmp_dir, overrides=overrides)
transition = create_transition(reward=1.0)
result = loaded_pipeline(transition)
# The reward should be affected by both steps, both getting the override
# First step: 1.0 * 5.0 = 5.0 (overridden)
# Second step: 5.0 * 5.0 = 25.0 (also overridden)
assert result[TransitionKey.REWARD] == 25.0
def test_from_pretrained_invalid_override_key():
"""Test that invalid override keys raise KeyError."""
step = MockStepWithNonSerializableParam()
pipeline = RobotProcessor([step])
with tempfile.TemporaryDirectory() as tmp_dir:
pipeline.save_pretrained(tmp_dir)
# Try to override a non-existent step
overrides = {"NonExistentStep": {"param": "value"}}
with pytest.raises(KeyError, match="Override keys.*do not match any step"):
RobotProcessor.from_pretrained(tmp_dir, overrides=overrides)
def test_from_pretrained_multiple_invalid_override_keys():
"""Test that multiple invalid override keys are reported."""
step = MockStepWithNonSerializableParam()
pipeline = RobotProcessor([step])
with tempfile.TemporaryDirectory() as tmp_dir:
pipeline.save_pretrained(tmp_dir)
# Try to override multiple non-existent steps
overrides = {"NonExistentStep1": {"param": "value1"}, "NonExistentStep2": {"param": "value2"}}
with pytest.raises(KeyError) as exc_info:
RobotProcessor.from_pretrained(tmp_dir, overrides=overrides)
error_msg = str(exc_info.value)
assert "NonExistentStep1" in error_msg
assert "NonExistentStep2" in error_msg
assert "Available step keys" in error_msg
def test_from_pretrained_registered_step_override():
"""Test overriding registered steps using registry names."""
registered_step = RegisteredMockStep(value=50, device="cpu")
pipeline = RobotProcessor([registered_step])
with tempfile.TemporaryDirectory() as tmp_dir:
pipeline.save_pretrained(tmp_dir)
# Override using registry name
overrides = {"registered_mock_step": {"value": 999, "device": "cuda"}}
loaded_pipeline = RobotProcessor.from_pretrained(tmp_dir, overrides=overrides)
# Test that overrides were applied
transition = create_transition()
result = loaded_pipeline(transition)
comp_data = result[TransitionKey.COMPLEMENTARY_DATA]
assert comp_data["registered_step_value"] == 999
assert comp_data["registered_step_device"] == "cuda"
def test_from_pretrained_mixed_registered_and_unregistered():
"""Test overriding both registered and unregistered steps."""
unregistered_step = MockStepWithNonSerializableParam(name="unregistered", multiplier=1.0)
registered_step = RegisteredMockStep(value=10, device="cpu")
pipeline = RobotProcessor([unregistered_step, registered_step])
with tempfile.TemporaryDirectory() as tmp_dir:
pipeline.save_pretrained(tmp_dir)
mock_env = MockEnvironment("mixed_test")
overrides = {
"MockStepWithNonSerializableParam": {"env": mock_env, "multiplier": 4.0},
"registered_mock_step": {"value": 777},
}
loaded_pipeline = RobotProcessor.from_pretrained(tmp_dir, overrides=overrides)
# Test both steps
transition = create_transition(reward=2.0)
result = loaded_pipeline(transition)
comp_data = result[TransitionKey.COMPLEMENTARY_DATA]
assert comp_data["unregistered_env_info"] == "MockEnvironment(mixed_test)"
assert comp_data["registered_step_value"] == 777
assert result[TransitionKey.REWARD] == 8.0 # 2.0 * 4.0
def test_from_pretrained_no_overrides():
"""Test that from_pretrained works without overrides (backward compatibility)."""
step = MockStepWithNonSerializableParam(name="no_override", multiplier=3.0)
pipeline = RobotProcessor([step])
with tempfile.TemporaryDirectory() as tmp_dir:
pipeline.save_pretrained(tmp_dir)
# Load without overrides
loaded_pipeline = RobotProcessor.from_pretrained(tmp_dir)
assert len(loaded_pipeline) == 1
# Test that the step works (env will be None)
transition = create_transition(reward=1.0)
result = loaded_pipeline(transition)
assert result[TransitionKey.REWARD] == 3.0 # 1.0 * 3.0
def test_from_pretrained_empty_overrides():
"""Test that from_pretrained works with empty overrides dict."""
step = MockStepWithNonSerializableParam(multiplier=2.0)
pipeline = RobotProcessor([step])
with tempfile.TemporaryDirectory() as tmp_dir:
pipeline.save_pretrained(tmp_dir)
# Load with empty overrides
loaded_pipeline = RobotProcessor.from_pretrained(tmp_dir, overrides={})
assert len(loaded_pipeline) == 1
# Test that the step works normally
transition = create_transition(reward=1.0)
result = loaded_pipeline(transition)
assert result[TransitionKey.REWARD] == 2.0
def test_from_pretrained_override_instantiation_error():
"""Test that instantiation errors with overrides are properly reported."""
step = MockStepWithNonSerializableParam(multiplier=1.0)
pipeline = RobotProcessor([step])
with tempfile.TemporaryDirectory() as tmp_dir:
pipeline.save_pretrained(tmp_dir)
# Try to override with invalid parameter type
overrides = {
"MockStepWithNonSerializableParam": {
"multiplier": "invalid_type" # Should be float, not string
}
}
with pytest.raises(ValueError, match="Failed to instantiate processor step"):
RobotProcessor.from_pretrained(tmp_dir, overrides=overrides)
def test_from_pretrained_with_state_and_overrides():
"""Test that overrides work correctly with steps that have tensor state."""
step = MockStepWithTensorState(name="tensor_step", learning_rate=0.01, window_size=5)
pipeline = RobotProcessor([step])
# Process some data to create state
for i in range(10):
transition = create_transition(reward=float(i))
pipeline(transition)
with tempfile.TemporaryDirectory() as tmp_dir:
pipeline.save_pretrained(tmp_dir)
# Load with overrides
overrides = {
"MockStepWithTensorState": {
"learning_rate": 0.05, # Override learning rate
"window_size": 3, # Override window size
}
}
loaded_pipeline = RobotProcessor.from_pretrained(tmp_dir, overrides=overrides)
loaded_step = loaded_pipeline.steps[0]
# Check that config overrides were applied
assert loaded_step.learning_rate == 0.05
assert loaded_step.window_size == 3
# Check that tensor state was preserved
assert loaded_step.running_count.item() == 10
# The running_mean should still have the original window_size (5) from saved state
# but the new step will use window_size=3 for future operations
assert loaded_step.running_mean.shape[0] == 5 # From saved state
def test_from_pretrained_override_error_messages():
"""Test that error messages for override failures are helpful."""
step1 = MockStepWithNonSerializableParam(name="step1")
step2 = RegisteredMockStep()
pipeline = RobotProcessor([step1, step2])
with tempfile.TemporaryDirectory() as tmp_dir:
pipeline.save_pretrained(tmp_dir)
# Test with invalid override key
overrides = {"WrongStepName": {"param": "value"}}
with pytest.raises(KeyError) as exc_info:
RobotProcessor.from_pretrained(tmp_dir, overrides=overrides)
error_msg = str(exc_info.value)
assert "WrongStepName" in error_msg
assert "Available step keys" in error_msg
assert "MockStepWithNonSerializableParam" in error_msg
assert "registered_mock_step" in error_msg
def test_repr_empty_processor():
"""Test __repr__ with empty processor."""
pipeline = RobotProcessor()
repr_str = repr(pipeline)
expected = "RobotProcessor(name='RobotProcessor', steps=0: [])"
assert repr_str == expected
def test_repr_single_step():
"""Test __repr__ with single step."""
step = MockStep("test_step")
pipeline = RobotProcessor([step])
repr_str = repr(pipeline)
expected = "RobotProcessor(name='RobotProcessor', steps=1: [MockStep])"
assert repr_str == expected
def test_repr_multiple_steps_under_limit():
"""Test __repr__ with 2-3 steps (all shown)."""
step1 = MockStep("step1")
step2 = MockStepWithoutOptionalMethods()
pipeline = RobotProcessor([step1, step2])
repr_str = repr(pipeline)
expected = "RobotProcessor(name='RobotProcessor', steps=2: [MockStep, MockStepWithoutOptionalMethods])"
assert repr_str == expected
# Test with 3 steps (boundary case)
step3 = MockStepWithTensorState()
pipeline = RobotProcessor([step1, step2, step3])
repr_str = repr(pipeline)
expected = "RobotProcessor(name='RobotProcessor', steps=3: [MockStep, MockStepWithoutOptionalMethods, MockStepWithTensorState])"
assert repr_str == expected
def test_repr_many_steps_truncated():
"""Test __repr__ with more than 3 steps (truncated with ellipsis)."""
step1 = MockStep("step1")
step2 = MockStepWithoutOptionalMethods()
step3 = MockStepWithTensorState()
step4 = MockModuleStep()
step5 = MockNonModuleStepWithState()
pipeline = RobotProcessor([step1, step2, step3, step4, step5])
repr_str = repr(pipeline)
expected = "RobotProcessor(name='RobotProcessor', steps=5: [MockStep, MockStepWithoutOptionalMethods, ..., MockNonModuleStepWithState])"
assert repr_str == expected
def test_repr_with_custom_name():
"""Test __repr__ with custom processor name."""
step = MockStep("test_step")
pipeline = RobotProcessor([step], name="CustomProcessor")
repr_str = repr(pipeline)
expected = "RobotProcessor(name='CustomProcessor', steps=1: [MockStep])"
assert repr_str == expected
def test_repr_with_seed():
"""Test __repr__ with seed parameter."""
step = MockStep("test_step")
pipeline = RobotProcessor([step])
repr_str = repr(pipeline)
expected = "RobotProcessor(name='RobotProcessor', steps=1: [MockStep])"
assert repr_str == expected
def test_repr_with_custom_name_and_seed():
"""Test __repr__ with both custom name and seed."""
step1 = MockStep("step1")
step2 = MockStepWithoutOptionalMethods()
pipeline = RobotProcessor([step1, step2], name="MyProcessor")
repr_str = repr(pipeline)
expected = "RobotProcessor(name='MyProcessor', steps=2: [MockStep, MockStepWithoutOptionalMethods])"
assert repr_str == expected
def test_repr_without_seed():
"""Test __repr__ when seed is explicitly None (should not show seed)."""
step = MockStep("test_step")
pipeline = RobotProcessor([step], name="TestProcessor")
repr_str = repr(pipeline)
expected = "RobotProcessor(name='TestProcessor', steps=1: [MockStep])"
assert repr_str == expected
def test_repr_various_step_types():
"""Test __repr__ with different types of steps to verify class name extraction."""
step1 = MockStep()
step2 = MockStepWithTensorState()
step3 = MockModuleStep()
step4 = MockNonModuleStepWithState()
pipeline = RobotProcessor([step1, step2, step3, step4], name="MixedSteps")
repr_str = repr(pipeline)
expected = "RobotProcessor(name='MixedSteps', steps=4: [MockStep, MockStepWithTensorState, ..., MockNonModuleStepWithState])"
assert repr_str == expected
def test_repr_edge_case_long_names():
"""Test __repr__ handles steps with long class names properly."""
step1 = MockStepWithNonSerializableParam()
step2 = MockStepWithoutOptionalMethods()
step3 = MockStepWithTensorState()
step4 = MockNonModuleStepWithState()
pipeline = RobotProcessor([step1, step2, step3, step4], name="LongNames")
repr_str = repr(pipeline)
expected = "RobotProcessor(name='LongNames', steps=4: [MockStepWithNonSerializableParam, MockStepWithoutOptionalMethods, ..., MockNonModuleStepWithState])"
assert repr_str == expected
# Tests for config filename features and multiple processors
def test_save_with_custom_config_filename():
"""Test saving processor with custom config filename."""
step = MockStep("test")
pipeline = RobotProcessor([step], name="TestProcessor")
with tempfile.TemporaryDirectory() as tmp_dir:
# Save with custom filename
pipeline.save_pretrained(tmp_dir, config_filename="my_custom_config.json")
# Check file exists
config_path = Path(tmp_dir) / "my_custom_config.json"
assert config_path.exists()
# Check content
with open(config_path) as f:
config = json.load(f)
assert config["name"] == "TestProcessor"
# Load with specific filename
loaded = RobotProcessor.from_pretrained(tmp_dir, config_filename="my_custom_config.json")
assert loaded.name == "TestProcessor"
def test_multiple_processors_same_directory():
"""Test saving multiple processors to the same directory with different config files."""
# Create different processors
preprocessor = RobotProcessor([MockStep("pre1"), MockStep("pre2")], name="preprocessor")
postprocessor = RobotProcessor([MockStepWithoutOptionalMethods(multiplier=0.5)], name="postprocessor")
with tempfile.TemporaryDirectory() as tmp_dir:
# Save both to same directory
preprocessor.save_pretrained(tmp_dir)
postprocessor.save_pretrained(tmp_dir)
# Check both config files exist
assert (Path(tmp_dir) / "preprocessor.json").exists()
assert (Path(tmp_dir) / "postprocessor.json").exists()
# Load them back
loaded_pre = RobotProcessor.from_pretrained(tmp_dir, config_filename="preprocessor.json")
loaded_post = RobotProcessor.from_pretrained(tmp_dir, config_filename="postprocessor.json")
assert loaded_pre.name == "preprocessor"
assert loaded_post.name == "postprocessor"
assert len(loaded_pre) == 2
assert len(loaded_post) == 1
def test_auto_detect_single_config():
"""Test automatic config detection when there's only one JSON file."""
step = MockStepWithTensorState()
pipeline = RobotProcessor([step], name="SingleConfig")
with tempfile.TemporaryDirectory() as tmp_dir:
pipeline.save_pretrained(tmp_dir)
# Load without specifying config_filename
loaded = RobotProcessor.from_pretrained(tmp_dir)
assert loaded.name == "SingleConfig"
def test_error_multiple_configs_no_filename():
"""Test error when multiple configs exist and no filename specified."""
proc1 = RobotProcessor([MockStep()], name="processor1")
proc2 = RobotProcessor([MockStep()], name="processor2")
with tempfile.TemporaryDirectory() as tmp_dir:
proc1.save_pretrained(tmp_dir)
proc2.save_pretrained(tmp_dir)
# Should raise error
with pytest.raises(ValueError, match="Multiple .json files found"):
RobotProcessor.from_pretrained(tmp_dir)
def test_state_file_naming_with_indices():
"""Test that state files include pipeline name and step indices to avoid conflicts."""
# Create multiple steps of same type with state
step1 = MockStepWithTensorState(name="norm1", window_size=5)
step2 = MockStepWithTensorState(name="norm2", window_size=10)
step3 = MockModuleStep(input_dim=5)
pipeline = RobotProcessor([step1, step2, step3])
# Process some data to create state
for i in range(5):
transition = create_transition(observation=torch.randn(2, 5), reward=float(i))
pipeline(transition)
with tempfile.TemporaryDirectory() as tmp_dir:
pipeline.save_pretrained(tmp_dir)
# Check state files have indices
state_files = sorted(Path(tmp_dir).glob("*.safetensors"))
assert len(state_files) == 3
# Files should be named with pipeline name prefix and indices
expected_names = [
"robotprocessor_step_0.safetensors",
"robotprocessor_step_1.safetensors",
"robotprocessor_step_2.safetensors",
]
actual_names = [f.name for f in state_files]
assert actual_names == expected_names
def test_state_file_naming_with_registry():
"""Test state file naming for registered steps includes pipeline name, index and registry name."""
# Register a test step
@ProcessorStepRegistry.register("test_stateful_step")
@dataclass
class TestStatefulStep:
value: int = 0
def __init__(self, value: int = 0):
self.value = value
self.state_tensor = torch.randn(3, 3)
def __call__(self, transition: EnvTransition) -> EnvTransition:
return transition
def get_config(self):
return {"value": self.value}
def state_dict(self):
return {"state_tensor": self.state_tensor}
def load_state_dict(self, state):
self.state_tensor = state["state_tensor"]
def feature_contract(self, features: dict[str, PolicyFeature]) -> dict[str, PolicyFeature]:
# We do not test feature_contract here
return features
try:
# Create pipeline with registered steps
step1 = TestStatefulStep(1)
step2 = TestStatefulStep(2)
pipeline = RobotProcessor([step1, step2])
with tempfile.TemporaryDirectory() as tmp_dir:
pipeline.save_pretrained(tmp_dir)
# Check state files
state_files = sorted(Path(tmp_dir).glob("*.safetensors"))
assert len(state_files) == 2
# Should include pipeline name, index and registry name
expected_names = [
"robotprocessor_step_0_test_stateful_step.safetensors",
"robotprocessor_step_1_test_stateful_step.safetensors",
]
actual_names = [f.name for f in state_files]
assert actual_names == expected_names
finally:
# Cleanup registry
ProcessorStepRegistry.unregister("test_stateful_step")
# More comprehensive override tests
def test_override_with_nested_config():
"""Test overrides with nested configuration dictionaries."""
@ProcessorStepRegistry.register("complex_config_step")
@dataclass
class ComplexConfigStep:
name: str = "complex"
simple_param: int = 42
nested_config: dict = None
def __post_init__(self):
if self.nested_config is None:
self.nested_config = {"level1": {"level2": "default"}}
def __call__(self, transition: EnvTransition) -> EnvTransition:
comp_data = transition.get(TransitionKey.COMPLEMENTARY_DATA, {})
comp_data = dict(comp_data)
comp_data["config_value"] = self.nested_config.get("level1", {}).get("level2", "missing")
new_transition = transition.copy()
new_transition[TransitionKey.COMPLEMENTARY_DATA] = comp_data
return new_transition
def get_config(self):
return {"name": self.name, "simple_param": self.simple_param, "nested_config": self.nested_config}
def feature_contract(self, features: dict[str, PolicyFeature]) -> dict[str, PolicyFeature]:
# We do not test feature_contract here
return features
try:
step = ComplexConfigStep()
pipeline = RobotProcessor([step])
with tempfile.TemporaryDirectory() as tmp_dir:
pipeline.save_pretrained(tmp_dir)
# Load with nested override
loaded = RobotProcessor.from_pretrained(
tmp_dir,
overrides={"complex_config_step": {"nested_config": {"level1": {"level2": "overridden"}}}},
)
# Test that override worked
transition = create_transition()
result = loaded(transition)
assert result[TransitionKey.COMPLEMENTARY_DATA]["config_value"] == "overridden"
finally:
ProcessorStepRegistry.unregister("complex_config_step")
def test_override_preserves_defaults():
"""Test that overrides only affect specified parameters."""
step = MockStepWithNonSerializableParam(name="test", multiplier=2.0)
pipeline = RobotProcessor([step])
with tempfile.TemporaryDirectory() as tmp_dir:
pipeline.save_pretrained(tmp_dir)
# Override only one parameter
loaded = RobotProcessor.from_pretrained(
tmp_dir,
overrides={
"MockStepWithNonSerializableParam": {
"multiplier": 5.0 # Only override multiplier
}
},
)
# Check that name was preserved from saved config
loaded_step = loaded.steps[0]
assert loaded_step.name == "test" # Original value
assert loaded_step.multiplier == 5.0 # Overridden value
def test_override_type_validation():
"""Test that type errors in overrides are caught properly."""
step = MockStepWithTensorState(learning_rate=0.01)
pipeline = RobotProcessor([step])
with tempfile.TemporaryDirectory() as tmp_dir:
pipeline.save_pretrained(tmp_dir)
# Try to override with wrong type
overrides = {
"MockStepWithTensorState": {
"window_size": "not_an_int" # Should be int
}
}
with pytest.raises(ValueError, match="Failed to instantiate"):
RobotProcessor.from_pretrained(tmp_dir, overrides=overrides)
def test_override_with_callables():
"""Test overriding with callable objects."""
@ProcessorStepRegistry.register("callable_step")
@dataclass
class CallableStep:
name: str = "callable_step"
transform_fn: Any = None
def __call__(self, transition: EnvTransition) -> EnvTransition:
obs = transition.get(TransitionKey.OBSERVATION)
if obs is not None and self.transform_fn is not None:
processed_obs = {}
for k, v in obs.items():
processed_obs[k] = self.transform_fn(v)
new_transition = transition.copy()
new_transition[TransitionKey.OBSERVATION] = processed_obs
return new_transition
return transition
def get_config(self):
return {"name": self.name}
def feature_contract(self, features: dict[str, PolicyFeature]) -> dict[str, PolicyFeature]:
# We do not test feature_contract here
return features
try:
step = CallableStep()
pipeline = RobotProcessor([step])
with tempfile.TemporaryDirectory() as tmp_dir:
pipeline.save_pretrained(tmp_dir)
# Define a transform function
def double_values(x):
if isinstance(x, (int, float)):
return x * 2
elif isinstance(x, torch.Tensor):
return x * 2
return x
# Load with callable override
loaded = RobotProcessor.from_pretrained(
tmp_dir, overrides={"callable_step": {"transform_fn": double_values}}
)
# Test it works
transition = create_transition(observation={"value": torch.tensor(5.0)})
result = loaded(transition)
assert result[TransitionKey.OBSERVATION]["value"].item() == 10.0
finally:
ProcessorStepRegistry.unregister("callable_step")
def test_override_multiple_same_class_warning():
"""Test behavior when multiple steps of same class exist."""
step1 = MockStepWithNonSerializableParam(name="step1", multiplier=1.0)
step2 = MockStepWithNonSerializableParam(name="step2", multiplier=2.0)
pipeline = RobotProcessor([step1, step2])
with tempfile.TemporaryDirectory() as tmp_dir:
pipeline.save_pretrained(tmp_dir)
# Override affects all instances of the class
loaded = RobotProcessor.from_pretrained(
tmp_dir, overrides={"MockStepWithNonSerializableParam": {"multiplier": 10.0}}
)
# Both steps get the same override
assert loaded.steps[0].multiplier == 10.0
assert loaded.steps[1].multiplier == 10.0
# But original names are preserved
assert loaded.steps[0].name == "step1"
assert loaded.steps[1].name == "step2"
def test_config_filename_special_characters():
"""Test config filenames with special characters are sanitized."""
# Processor name with special characters
pipeline = RobotProcessor([MockStep()], name="My/Processor\\With:Special*Chars")
with tempfile.TemporaryDirectory() as tmp_dir:
pipeline.save_pretrained(tmp_dir)
# Check that filename was sanitized
json_files = list(Path(tmp_dir).glob("*.json"))
assert len(json_files) == 1
# Should have replaced special chars with underscores
expected_name = "my_processor_with_special_chars.json"
assert json_files[0].name == expected_name
def test_state_file_naming_with_multiple_processors():
"""Test that state files are properly prefixed with pipeline names to avoid conflicts."""
# Create two processors with state
step1 = MockStepWithTensorState(name="norm", window_size=5)
preprocessor = RobotProcessor([step1], name="PreProcessor")
step2 = MockStepWithTensorState(name="norm", window_size=10)
postprocessor = RobotProcessor([step2], name="PostProcessor")
# Process some data to create state
for i in range(3):
transition = create_transition(reward=float(i))
preprocessor(transition)
postprocessor(transition)
with tempfile.TemporaryDirectory() as tmp_dir:
# Save both processors to the same directory
preprocessor.save_pretrained(tmp_dir)
postprocessor.save_pretrained(tmp_dir)
# Check that all files exist and are distinct
assert (Path(tmp_dir) / "preprocessor.json").exists()
assert (Path(tmp_dir) / "postprocessor.json").exists()
assert (Path(tmp_dir) / "preprocessor_step_0.safetensors").exists()
assert (Path(tmp_dir) / "postprocessor_step_0.safetensors").exists()
# Load both back and verify they work correctly
loaded_pre = RobotProcessor.from_pretrained(tmp_dir, config_filename="preprocessor.json")
loaded_post = RobotProcessor.from_pretrained(tmp_dir, config_filename="postprocessor.json")
assert loaded_pre.name == "PreProcessor"
assert loaded_post.name == "PostProcessor"
assert loaded_pre.steps[0].window_size == 5
assert loaded_post.steps[0].window_size == 10
def test_override_with_device_strings():
"""Test overriding device parameters with string values."""
@ProcessorStepRegistry.register("device_aware_step")
@dataclass
class DeviceAwareStep:
device: str = "cpu"
def __init__(self, device: str = "cpu"):
self.device = device
self.buffer = torch.zeros(10, device=device)
def __call__(self, transition: EnvTransition) -> EnvTransition:
return transition
def get_config(self):
return {"device": str(self.device)}
def state_dict(self):
return {"buffer": self.buffer}
def load_state_dict(self, state):
self.buffer = state["buffer"]
def feature_contract(self, features: dict[str, PolicyFeature]) -> dict[str, PolicyFeature]:
# We do not test feature_contract here
return features
try:
step = DeviceAwareStep(device="cpu")
pipeline = RobotProcessor([step])
with tempfile.TemporaryDirectory() as tmp_dir:
pipeline.save_pretrained(tmp_dir)
# Override device
if torch.cuda.is_available():
loaded = RobotProcessor.from_pretrained(
tmp_dir, overrides={"device_aware_step": {"device": "cuda:0"}}
)
loaded_step = loaded.steps[0]
assert loaded_step.device == "cuda:0"
# Note: buffer will still be on CPU from saved state
# until .to() is called on the processor
finally:
ProcessorStepRegistry.unregister("device_aware_step")
def test_from_pretrained_nonexistent_path():
"""Test error handling when loading from non-existent sources."""
from huggingface_hub.errors import HfHubHTTPError, HFValidationError
# Test with an invalid repo ID (too many slashes) - caught by HF validation
with pytest.raises(HFValidationError):
RobotProcessor.from_pretrained("/path/that/does/not/exist")
# Test with a non-existent but valid Hub repo format
with pytest.raises((FileNotFoundError, HfHubHTTPError)):
RobotProcessor.from_pretrained("nonexistent-user/nonexistent-repo")
# Test with a local directory that exists but has no config files
with tempfile.TemporaryDirectory() as tmp_dir:
with pytest.raises(FileNotFoundError, match="No .json configuration files found"):
RobotProcessor.from_pretrained(tmp_dir)
def test_save_load_with_custom_converter_functions():
"""Test that custom to_transition and to_output functions are NOT saved."""
def custom_to_transition(batch):
# Custom conversion logic
return {
TransitionKey.OBSERVATION: batch.get("obs"),
TransitionKey.ACTION: batch.get("act"),
TransitionKey.REWARD: batch.get("rew", 0.0),
TransitionKey.DONE: batch.get("done", False),
TransitionKey.TRUNCATED: batch.get("truncated", False),
TransitionKey.INFO: {},
TransitionKey.COMPLEMENTARY_DATA: {},
}
def custom_to_output(transition):
# Custom output format
return {
"obs": transition.get(TransitionKey.OBSERVATION),
"act": transition.get(TransitionKey.ACTION),
"rew": transition.get(TransitionKey.REWARD),
"done": transition.get(TransitionKey.DONE),
"truncated": transition.get(TransitionKey.TRUNCATED),
}
# Create processor with custom converters
pipeline = RobotProcessor([MockStep()], to_transition=custom_to_transition, to_output=custom_to_output)
with tempfile.TemporaryDirectory() as tmp_dir:
pipeline.save_pretrained(tmp_dir)
# Load - should use default converters
loaded = RobotProcessor.from_pretrained(tmp_dir)
# Verify it uses default converters by checking with standard batch format
batch = {
"observation.image": torch.randn(1, 3, 32, 32),
"action": torch.randn(1, 7),
"next.reward": torch.tensor([1.0]),
"next.done": torch.tensor([False]),
"next.truncated": torch.tensor([False]),
"info": {},
}
# Should work with standard format (wouldn't work with custom converter)
result = loaded(batch)
assert "observation.image" in result # Standard format preserved
class NonCompliantStep:
"""Intentionally non-compliant: missing feature_contract."""
def __call__(self, transition: EnvTransition) -> EnvTransition:
return transition
def test_construction_rejects_step_without_feature_contract():
with pytest.raises(TypeError, match=r"must define feature_contract\(features\) -> dict\[str, Any\]"):
RobotProcessor([NonCompliantStep()])
class NonCallableStep:
"""Intentionally non-compliant: missing __call__."""
def feature_contract(self, features: dict[str, PolicyFeature]) -> dict[str, PolicyFeature]:
return features
def test_construction_rejects_step_without_call():
with pytest.raises(TypeError, match=r"must define __call__"):
RobotProcessor([NonCallableStep()])
@dataclass
class FeatureContractAddStep:
"""Adds a PolicyFeature"""
key: str = "a"
value: PolicyFeature = PolicyFeature(type=FeatureType.STATE, shape=(1,))
def __call__(self, transition: EnvTransition) -> EnvTransition:
return transition
def feature_contract(self, features: dict[str, PolicyFeature]) -> dict[str, PolicyFeature]:
features[self.key] = self.value
return features
@dataclass
class FeatureContractMutateStep:
"""Mutates a PolicyFeature"""
key: str = "a"
fn: Callable[[PolicyFeature | None], PolicyFeature] = lambda x: x # noqa: E731
def __call__(self, transition: EnvTransition) -> EnvTransition:
return transition
def feature_contract(self, features: dict[str, PolicyFeature]) -> dict[str, PolicyFeature]:
features[self.key] = self.fn(features.get(self.key))
return features
@dataclass
class FeatureContractBadReturnStep:
"""Returns a non-dict"""
def __call__(self, transition: EnvTransition) -> EnvTransition:
return transition
def feature_contract(self, features: dict[str, PolicyFeature]) -> dict[str, PolicyFeature]:
return ["not-a-dict"]
@dataclass
class FeatureContractRemoveStep:
"""Removes a PolicyFeature"""
key: str
def __call__(self, transition: EnvTransition) -> EnvTransition:
return transition
def feature_contract(self, features: dict[str, PolicyFeature]) -> dict[str, PolicyFeature]:
features.pop(self.key, None)
return features
def test_feature_contract_orders_and_merges(policy_feature_factory):
p = RobotProcessor(
[
FeatureContractAddStep("a", policy_feature_factory(FeatureType.STATE, (1,))),
FeatureContractMutateStep("a", lambda v: PolicyFeature(type=v.type, shape=(3,))),
FeatureContractAddStep("b", policy_feature_factory(FeatureType.ENV, (2,))),
]
)
out = p.feature_contract({})
assert out["a"].type == FeatureType.STATE and out["a"].shape == (3,)
assert out["b"].type == FeatureType.ENV and out["b"].shape == (2,)
assert_contract_is_typed(out)
def test_feature_contract_respects_initial_without_mutation(policy_feature_factory):
initial = {
"seed": policy_feature_factory(FeatureType.STATE, (7,)),
"nested": policy_feature_factory(FeatureType.ENV, (0,)),
}
p = RobotProcessor(
[
FeatureContractMutateStep("seed", lambda v: PolicyFeature(type=v.type, shape=(v.shape[0] + 1,))),
FeatureContractMutateStep(
"nested", lambda v: PolicyFeature(type=v.type, shape=(v.shape[0] + 5,))
),
]
)
out = p.feature_contract(initial_features=initial)
assert out["seed"].shape == (8,)
assert out["nested"].shape == (5,)
# Initial dict must be preserved
assert initial["seed"].shape == (7,)
assert initial["nested"].shape == (0,)
assert_contract_is_typed(out)
def test_feature_contract_type_error_on_bad_step():
p = RobotProcessor([FeatureContractAddStep(), FeatureContractBadReturnStep()])
with pytest.raises(TypeError, match=r"\w+\.feature_contract must return dict\[str, Any\]"):
_ = p.feature_contract({})
def test_feature_contract_execution_order_tracking():
class Track:
def __init__(self, label):
self.label = label
def __call__(self, transition: EnvTransition) -> EnvTransition:
return transition
def feature_contract(self, features: dict[str, PolicyFeature]) -> dict[str, PolicyFeature]:
code = {"A": 1, "B": 2, "C": 3}[self.label]
pf = features.get("order", PolicyFeature(type=FeatureType.ENV, shape=()))
features["order"] = PolicyFeature(type=pf.type, shape=pf.shape + (code,))
return features
out = RobotProcessor([Track("A"), Track("B"), Track("C")]).feature_contract({})
assert out["order"].shape == (1, 2, 3)
def test_feature_contract_remove_key(policy_feature_factory):
p = RobotProcessor(
[
FeatureContractAddStep("a", policy_feature_factory(FeatureType.STATE, (1,))),
FeatureContractRemoveStep("a"),
]
)
out = p.feature_contract({})
assert "a" not in out
def test_feature_contract_remove_from_initial(policy_feature_factory):
initial = {
"keep": policy_feature_factory(FeatureType.STATE, (1,)),
"drop": policy_feature_factory(FeatureType.STATE, (1,)),
}
p = RobotProcessor([FeatureContractRemoveStep("drop")])
out = p.feature_contract(initial_features=initial)
assert "drop" not in out and out["keep"] == initial["keep"]