Improve V3 aggregate implementation (#2077)
* fix return type * improve apply with vertorize op * Update src/lerobot/datasets/aggregate.py Co-authored-by: Michel Aractingi <michel.aractingi@huggingface.co>
This commit is contained in:
@@ -93,14 +93,13 @@ def update_data_df(df, src_meta, dst_meta):
|
||||
pd.DataFrame: Updated DataFrame with adjusted indices.
|
||||
"""
|
||||
|
||||
def _update(row):
|
||||
row["episode_index"] = row["episode_index"] + dst_meta.info["total_episodes"]
|
||||
row["index"] = row["index"] + dst_meta.info["total_frames"]
|
||||
task = src_meta.tasks.iloc[row["task_index"]].name
|
||||
row["task_index"] = dst_meta.tasks.loc[task].task_index.item()
|
||||
return row
|
||||
df["episode_index"] = df["episode_index"] + dst_meta.info["total_episodes"]
|
||||
df["index"] = df["index"] + dst_meta.info["total_frames"]
|
||||
|
||||
return df.apply(_update, axis=1)
|
||||
src_task_names = src_meta.tasks.index.take(df["task_index"].to_numpy())
|
||||
df["task_index"] = dst_meta.tasks.loc[src_task_names, "task_index"].to_numpy()
|
||||
|
||||
return df
|
||||
|
||||
|
||||
def update_meta_data(
|
||||
@@ -126,27 +125,21 @@ def update_meta_data(
|
||||
pd.DataFrame: Updated DataFrame with adjusted indices and timestamps.
|
||||
"""
|
||||
|
||||
def _update(row):
|
||||
row["meta/episodes/chunk_index"] = row["meta/episodes/chunk_index"] + meta_idx["chunk"]
|
||||
row["meta/episodes/file_index"] = row["meta/episodes/file_index"] + meta_idx["file"]
|
||||
row["data/chunk_index"] = row["data/chunk_index"] + data_idx["chunk"]
|
||||
row["data/file_index"] = row["data/file_index"] + data_idx["file"]
|
||||
for key, video_idx in videos_idx.items():
|
||||
row[f"videos/{key}/chunk_index"] = row[f"videos/{key}/chunk_index"] + video_idx["chunk"]
|
||||
row[f"videos/{key}/file_index"] = row[f"videos/{key}/file_index"] + video_idx["file"]
|
||||
row[f"videos/{key}/from_timestamp"] = (
|
||||
row[f"videos/{key}/from_timestamp"] + video_idx["latest_duration"]
|
||||
)
|
||||
row[f"videos/{key}/to_timestamp"] = (
|
||||
row[f"videos/{key}/to_timestamp"] + video_idx["latest_duration"]
|
||||
)
|
||||
df["meta/episodes/chunk_index"] = df["meta/episodes/chunk_index"] + meta_idx["chunk"]
|
||||
df["meta/episodes/file_index"] = df["meta/episodes/file_index"] + meta_idx["file"]
|
||||
df["data/chunk_index"] = df["data/chunk_index"] + data_idx["chunk"]
|
||||
df["data/file_index"] = df["data/file_index"] + data_idx["file"]
|
||||
for key, video_idx in videos_idx.items():
|
||||
df[f"videos/{key}/chunk_index"] = df[f"videos/{key}/chunk_index"] + video_idx["chunk"]
|
||||
df[f"videos/{key}/file_index"] = df[f"videos/{key}/file_index"] + video_idx["file"]
|
||||
df[f"videos/{key}/from_timestamp"] = df[f"videos/{key}/from_timestamp"] + video_idx["latest_duration"]
|
||||
df[f"videos/{key}/to_timestamp"] = df[f"videos/{key}/to_timestamp"] + video_idx["latest_duration"]
|
||||
|
||||
row["dataset_from_index"] = row["dataset_from_index"] + dst_meta.info["total_frames"]
|
||||
row["dataset_to_index"] = row["dataset_to_index"] + dst_meta.info["total_frames"]
|
||||
row["episode_index"] = row["episode_index"] + dst_meta.info["total_episodes"]
|
||||
return row
|
||||
df["dataset_from_index"] = df["dataset_from_index"] + dst_meta.info["total_frames"]
|
||||
df["dataset_to_index"] = df["dataset_to_index"] + dst_meta.info["total_frames"]
|
||||
df["episode_index"] = df["episode_index"] + dst_meta.info["total_episodes"]
|
||||
|
||||
return df.apply(_update, axis=1)
|
||||
return df
|
||||
|
||||
|
||||
def aggregate_datasets(
|
||||
|
||||
@@ -1027,7 +1027,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
# Reset episode buffer and clean up temporary images (if not already deleted during video encoding)
|
||||
self.clear_episode_buffer(delete_images=len(self.meta.image_keys) > 0)
|
||||
|
||||
def _batch_save_episode_video(self, start_episode: int, end_episode: int | None = None):
|
||||
def _batch_save_episode_video(self, start_episode: int, end_episode: int | None = None) -> None:
|
||||
"""
|
||||
Batch save videos for multiple episodes.
|
||||
|
||||
@@ -1153,7 +1153,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
}
|
||||
return metadata
|
||||
|
||||
def _save_episode_video(self, video_key: str, episode_index: int):
|
||||
def _save_episode_video(self, video_key: str, episode_index: int) -> dict:
|
||||
# Encode episode frames into a temporary video
|
||||
ep_path = self._encode_temporary_episode_video(video_key, episode_index)
|
||||
ep_size_in_mb = get_video_size_in_mb(ep_path)
|
||||
@@ -1258,7 +1258,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
if self.image_writer is not None:
|
||||
self.image_writer.wait_until_done()
|
||||
|
||||
def _encode_temporary_episode_video(self, video_key: str, episode_index: int) -> dict:
|
||||
def _encode_temporary_episode_video(self, video_key: str, episode_index: int) -> Path:
|
||||
"""
|
||||
Use ffmpeg to convert frames stored as png into mp4 videos.
|
||||
Note: `encode_video_frames` is a blocking call. Making it asynchronous shouldn't speedup encoding,
|
||||
|
||||
Reference in New Issue
Block a user