Added gamepad teleoperator and so100follower end effector robots
This commit is contained in:
committed by
AdilZouitine
parent
05fcfca374
commit
ab85147296
3
lerobot/common/model/__init__.py
Normal file
3
lerobot/common/model/__init__.py
Normal file
@@ -0,0 +1,3 @@
|
||||
from .kinematics import RobotKinematics
|
||||
|
||||
__all__ = ["RobotKinematics"]
|
||||
546
lerobot/common/model/kinematics.py
Normal file
546
lerobot/common/model/kinematics.py
Normal file
@@ -0,0 +1,546 @@
|
||||
# ruff: noqa: N806, N815, N803
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import numpy as np
|
||||
from scipy.spatial.transform import Rotation
|
||||
|
||||
|
||||
def skew_symmetric(w):
|
||||
"""Creates the skew-symmetric matrix from a 3D vector."""
|
||||
return np.array([[0, -w[2], w[1]], [w[2], 0, -w[0]], [-w[1], w[0], 0]])
|
||||
|
||||
|
||||
def rodrigues_rotation(w, theta):
|
||||
"""Computes the rotation matrix using Rodrigues' formula."""
|
||||
w_hat = skew_symmetric(w)
|
||||
return np.eye(3) + np.sin(theta) * w_hat + (1 - np.cos(theta)) * w_hat @ w_hat
|
||||
|
||||
|
||||
def screw_axis_to_transform(S, theta):
|
||||
"""Converts a screw axis to a 4x4 transformation matrix."""
|
||||
S_w = S[:3]
|
||||
S_v = S[3:]
|
||||
if np.allclose(S_w, 0) and np.linalg.norm(S_v) == 1: # Pure translation
|
||||
T = np.eye(4)
|
||||
T[:3, 3] = S_v * theta
|
||||
elif np.linalg.norm(S_w) == 1: # Rotation and translation
|
||||
w_hat = skew_symmetric(S_w)
|
||||
R = np.eye(3) + np.sin(theta) * w_hat + (1 - np.cos(theta)) * w_hat @ w_hat
|
||||
t = (np.eye(3) * theta + (1 - np.cos(theta)) * w_hat + (theta - np.sin(theta)) * w_hat @ w_hat) @ S_v
|
||||
T = np.eye(4)
|
||||
T[:3, :3] = R
|
||||
T[:3, 3] = t
|
||||
else:
|
||||
raise ValueError("Invalid screw axis parameters")
|
||||
return T
|
||||
|
||||
|
||||
def pose_difference_se3(pose1, pose2):
|
||||
"""
|
||||
Calculates the SE(3) difference between two 4x4 homogeneous transformation matrices.
|
||||
SE(3) (Special Euclidean Group) represents rigid body transformations in 3D space, combining rotation (SO(3)) and translation.
|
||||
Each 4x4 matrix has the following structure, a 3x3 rotation matrix in the top-left and a 3x1 translation vector in the top-right:
|
||||
|
||||
[R11 R12 R13 tx]
|
||||
[R21 R22 R23 ty]
|
||||
[R31 R32 R33 tz]
|
||||
[ 0 0 0 1]
|
||||
|
||||
where Rij is the 3x3 rotation matrix and [tx,ty,tz] is the translation vector.
|
||||
|
||||
pose1 - pose2
|
||||
|
||||
Args:
|
||||
pose1: A 4x4 numpy array representing the first pose.
|
||||
pose2: A 4x4 numpy array representing the second pose.
|
||||
|
||||
Returns:
|
||||
A tuple (translation_diff, rotation_diff) where:
|
||||
- translation_diff is a 3x1 numpy array representing the translational difference.
|
||||
- rotation_diff is a 3x1 numpy array representing the rotational difference in axis-angle representation.
|
||||
"""
|
||||
|
||||
# Extract rotation matrices from poses
|
||||
R1 = pose1[:3, :3]
|
||||
R2 = pose2[:3, :3]
|
||||
|
||||
# Calculate translational difference
|
||||
translation_diff = pose1[:3, 3] - pose2[:3, 3]
|
||||
|
||||
# Calculate rotational difference using scipy's Rotation library
|
||||
R_diff = Rotation.from_matrix(R1 @ R2.T)
|
||||
rotation_diff = R_diff.as_rotvec() # Convert to axis-angle representation
|
||||
|
||||
return np.concatenate([translation_diff, rotation_diff])
|
||||
|
||||
|
||||
def se3_error(target_pose, current_pose):
|
||||
pos_error = target_pose[:3, 3] - current_pose[:3, 3]
|
||||
R_target = target_pose[:3, :3]
|
||||
R_current = current_pose[:3, :3]
|
||||
R_error = R_target @ R_current.T
|
||||
rot_error = Rotation.from_matrix(R_error).as_rotvec()
|
||||
return np.concatenate([pos_error, rot_error])
|
||||
|
||||
|
||||
class RobotKinematics:
|
||||
"""Robot kinematics class supporting multiple robot models."""
|
||||
|
||||
# Robot measurements dictionary
|
||||
ROBOT_MEASUREMENTS = {
|
||||
"koch": {
|
||||
"gripper": [0.239, -0.001, 0.024],
|
||||
"wrist": [0.209, 0, 0.024],
|
||||
"forearm": [0.108, 0, 0.02],
|
||||
"humerus": [0, 0, 0.036],
|
||||
"shoulder": [0, 0, 0],
|
||||
"base": [0, 0, 0.02],
|
||||
},
|
||||
"so100": {
|
||||
"gripper": [0.320, 0, 0.050],
|
||||
"wrist": [0.278, 0, 0.050],
|
||||
"forearm": [0.143, 0, 0.044],
|
||||
"humerus": [0.031, 0, 0.072],
|
||||
"shoulder": [0, 0, 0],
|
||||
"base": [0, 0, 0.02],
|
||||
},
|
||||
"moss": {
|
||||
"gripper": [0.246, 0.013, 0.111],
|
||||
"wrist": [0.245, 0.002, 0.064],
|
||||
"forearm": [0.122, 0, 0.064],
|
||||
"humerus": [0.001, 0.001, 0.063],
|
||||
"shoulder": [0, 0, 0],
|
||||
"base": [0, 0, 0.02],
|
||||
},
|
||||
}
|
||||
|
||||
def __init__(self, robot_type="so100"):
|
||||
"""Initialize kinematics for the specified robot type.
|
||||
|
||||
Args:
|
||||
robot_type: String specifying the robot model ("koch", "so100", or "moss")
|
||||
"""
|
||||
if robot_type not in self.ROBOT_MEASUREMENTS:
|
||||
raise ValueError(
|
||||
f"Unknown robot type: {robot_type}. Available types: {list(self.ROBOT_MEASUREMENTS.keys())}"
|
||||
)
|
||||
|
||||
self.robot_type = robot_type
|
||||
self.measurements = self.ROBOT_MEASUREMENTS[robot_type]
|
||||
|
||||
# Initialize all transformation matrices and screw axes
|
||||
self._setup_transforms()
|
||||
|
||||
def _create_translation_matrix(self, x=0, y=0, z=0):
|
||||
"""Create a 4x4 translation matrix."""
|
||||
return np.array([[1, 0, 0, x], [0, 1, 0, y], [0, 0, 1, z], [0, 0, 0, 1]])
|
||||
|
||||
def _setup_transforms(self):
|
||||
"""Setup all transformation matrices and screw axes for the robot."""
|
||||
# Set up rotation matrices (constant across robot types)
|
||||
|
||||
# Gripper orientation
|
||||
self.gripper_X0 = np.array(
|
||||
[
|
||||
[1, 0, 0, 0],
|
||||
[0, 0, 1, 0],
|
||||
[0, -1, 0, 0],
|
||||
[0, 0, 0, 1],
|
||||
]
|
||||
)
|
||||
|
||||
# Wrist orientation
|
||||
self.wrist_X0 = np.array(
|
||||
[
|
||||
[0, -1, 0, 0],
|
||||
[1, 0, 0, 0],
|
||||
[0, 0, 1, 0],
|
||||
[0, 0, 0, 1],
|
||||
]
|
||||
)
|
||||
|
||||
# Base orientation
|
||||
self.base_X0 = np.array(
|
||||
[
|
||||
[0, 0, 1, 0],
|
||||
[1, 0, 0, 0],
|
||||
[0, 1, 0, 0],
|
||||
[0, 0, 0, 1],
|
||||
]
|
||||
)
|
||||
|
||||
# Gripper
|
||||
# Screw axis of gripper frame wrt base frame
|
||||
self.S_BG = np.array(
|
||||
[
|
||||
1,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
self.measurements["gripper"][2],
|
||||
-self.measurements["gripper"][1],
|
||||
]
|
||||
)
|
||||
|
||||
# Gripper origin to centroid transform
|
||||
self.X_GoGc = self._create_translation_matrix(x=0.07)
|
||||
|
||||
# Gripper origin to tip transform
|
||||
self.X_GoGt = self._create_translation_matrix(x=0.12)
|
||||
|
||||
# 0-position gripper frame pose wrt base
|
||||
self.X_BoGo = self._create_translation_matrix(
|
||||
x=self.measurements["gripper"][0],
|
||||
y=self.measurements["gripper"][1],
|
||||
z=self.measurements["gripper"][2],
|
||||
)
|
||||
|
||||
# Wrist
|
||||
# Screw axis of wrist frame wrt base frame
|
||||
self.S_BR = np.array([0, 1, 0, -self.measurements["wrist"][2], 0, self.measurements["wrist"][0]])
|
||||
|
||||
# 0-position origin to centroid transform
|
||||
self.X_RoRc = self._create_translation_matrix(x=0.0035, y=-0.002)
|
||||
|
||||
# 0-position wrist frame pose wrt base
|
||||
self.X_BR = self._create_translation_matrix(
|
||||
x=self.measurements["wrist"][0],
|
||||
y=self.measurements["wrist"][1],
|
||||
z=self.measurements["wrist"][2],
|
||||
)
|
||||
|
||||
# Forearm
|
||||
# Screw axis of forearm frame wrt base frame
|
||||
self.S_BF = np.array(
|
||||
[
|
||||
0,
|
||||
1,
|
||||
0,
|
||||
-self.measurements["forearm"][2],
|
||||
0,
|
||||
self.measurements["forearm"][0],
|
||||
]
|
||||
)
|
||||
|
||||
# Forearm origin + centroid transform
|
||||
self.X_FoFc = self._create_translation_matrix(x=0.036) # spellchecker:disable-line
|
||||
|
||||
# 0-position forearm frame pose wrt base
|
||||
self.X_BF = self._create_translation_matrix(
|
||||
x=self.measurements["forearm"][0],
|
||||
y=self.measurements["forearm"][1],
|
||||
z=self.measurements["forearm"][2],
|
||||
)
|
||||
|
||||
# Humerus
|
||||
# Screw axis of humerus frame wrt base frame
|
||||
self.S_BH = np.array(
|
||||
[
|
||||
0,
|
||||
-1,
|
||||
0,
|
||||
self.measurements["humerus"][2],
|
||||
0,
|
||||
-self.measurements["humerus"][0],
|
||||
]
|
||||
)
|
||||
|
||||
# Humerus origin to centroid transform
|
||||
self.X_HoHc = self._create_translation_matrix(x=0.0475)
|
||||
|
||||
# 0-position humerus frame pose wrt base
|
||||
self.X_BH = self._create_translation_matrix(
|
||||
x=self.measurements["humerus"][0],
|
||||
y=self.measurements["humerus"][1],
|
||||
z=self.measurements["humerus"][2],
|
||||
)
|
||||
|
||||
# Shoulder
|
||||
# Screw axis of shoulder frame wrt Base frame
|
||||
self.S_BS = np.array([0, 0, -1, 0, 0, 0])
|
||||
|
||||
# Shoulder origin to centroid transform
|
||||
self.X_SoSc = self._create_translation_matrix(x=-0.017, z=0.0235)
|
||||
|
||||
# 0-position shoulder frame pose wrt base
|
||||
self.X_BS = self._create_translation_matrix(
|
||||
x=self.measurements["shoulder"][0],
|
||||
y=self.measurements["shoulder"][1],
|
||||
z=self.measurements["shoulder"][2],
|
||||
)
|
||||
|
||||
# Base
|
||||
# Base origin to centroid transform
|
||||
self.X_BoBc = self._create_translation_matrix(y=0.015)
|
||||
|
||||
# World to base transform
|
||||
self.X_WoBo = self._create_translation_matrix(
|
||||
x=self.measurements["base"][0],
|
||||
y=self.measurements["base"][1],
|
||||
z=self.measurements["base"][2],
|
||||
)
|
||||
|
||||
# Pre-compute gripper post-multiplication matrix
|
||||
self._fk_gripper_post = self.X_GoGc @ self.X_BoGo @ self.gripper_X0
|
||||
|
||||
def fk_base(self):
|
||||
"""Forward kinematics for the base frame."""
|
||||
return self.X_WoBo @ self.X_BoBc @ self.base_X0
|
||||
|
||||
def fk_shoulder(self, robot_pos_deg):
|
||||
"""Forward kinematics for the shoulder frame."""
|
||||
robot_pos_rad = robot_pos_deg / 180 * np.pi
|
||||
return self.X_WoBo @ screw_axis_to_transform(self.S_BS, robot_pos_rad[0]) @ self.X_SoSc @ self.X_BS
|
||||
|
||||
def fk_humerus(self, robot_pos_deg):
|
||||
"""Forward kinematics for the humerus frame."""
|
||||
robot_pos_rad = robot_pos_deg / 180 * np.pi
|
||||
return (
|
||||
self.X_WoBo
|
||||
@ screw_axis_to_transform(self.S_BS, robot_pos_rad[0])
|
||||
@ screw_axis_to_transform(self.S_BH, robot_pos_rad[1])
|
||||
@ self.X_HoHc
|
||||
@ self.X_BH
|
||||
)
|
||||
|
||||
def fk_forearm(self, robot_pos_deg):
|
||||
"""Forward kinematics for the forearm frame."""
|
||||
robot_pos_rad = robot_pos_deg / 180 * np.pi
|
||||
return (
|
||||
self.X_WoBo
|
||||
@ screw_axis_to_transform(self.S_BS, robot_pos_rad[0])
|
||||
@ screw_axis_to_transform(self.S_BH, robot_pos_rad[1])
|
||||
@ screw_axis_to_transform(self.S_BF, robot_pos_rad[2])
|
||||
@ self.X_FoFc # spellchecker:disable-line
|
||||
@ self.X_BF
|
||||
)
|
||||
|
||||
def fk_wrist(self, robot_pos_deg):
|
||||
"""Forward kinematics for the wrist frame."""
|
||||
robot_pos_rad = robot_pos_deg / 180 * np.pi
|
||||
return (
|
||||
self.X_WoBo
|
||||
@ screw_axis_to_transform(self.S_BS, robot_pos_rad[0])
|
||||
@ screw_axis_to_transform(self.S_BH, robot_pos_rad[1])
|
||||
@ screw_axis_to_transform(self.S_BF, robot_pos_rad[2])
|
||||
@ screw_axis_to_transform(self.S_BR, robot_pos_rad[3])
|
||||
@ self.X_RoRc
|
||||
@ self.X_BR
|
||||
@ self.wrist_X0
|
||||
)
|
||||
|
||||
def fk_gripper(self, robot_pos_deg):
|
||||
"""Forward kinematics for the gripper frame."""
|
||||
robot_pos_rad = robot_pos_deg / 180 * np.pi
|
||||
return (
|
||||
self.X_WoBo
|
||||
@ screw_axis_to_transform(self.S_BS, robot_pos_rad[0])
|
||||
@ screw_axis_to_transform(self.S_BH, robot_pos_rad[1])
|
||||
@ screw_axis_to_transform(self.S_BF, robot_pos_rad[2])
|
||||
@ screw_axis_to_transform(self.S_BR, robot_pos_rad[3])
|
||||
@ screw_axis_to_transform(self.S_BG, robot_pos_rad[4])
|
||||
@ self._fk_gripper_post
|
||||
)
|
||||
|
||||
def fk_gripper_tip(self, robot_pos_deg):
|
||||
"""Forward kinematics for the gripper tip frame."""
|
||||
robot_pos_rad = robot_pos_deg / 180 * np.pi
|
||||
return (
|
||||
self.X_WoBo
|
||||
@ screw_axis_to_transform(self.S_BS, robot_pos_rad[0])
|
||||
@ screw_axis_to_transform(self.S_BH, robot_pos_rad[1])
|
||||
@ screw_axis_to_transform(self.S_BF, robot_pos_rad[2])
|
||||
@ screw_axis_to_transform(self.S_BR, robot_pos_rad[3])
|
||||
@ screw_axis_to_transform(self.S_BG, robot_pos_rad[4])
|
||||
@ self.X_GoGt
|
||||
@ self.X_BoGo
|
||||
@ self.gripper_X0
|
||||
)
|
||||
|
||||
def compute_jacobian(self, robot_pos_deg, fk_func=None):
|
||||
"""Finite differences to compute the Jacobian.
|
||||
J(i, j) represents how the ith component of the end-effector's velocity changes wrt a small change
|
||||
in the jth joint's velocity.
|
||||
|
||||
Args:
|
||||
robot_pos_deg: Current joint positions in degrees
|
||||
fk_func: Forward kinematics function to use (defaults to fk_gripper)
|
||||
"""
|
||||
if fk_func is None:
|
||||
fk_func = self.fk_gripper
|
||||
|
||||
eps = 1e-8
|
||||
jac = np.zeros(shape=(6, 5))
|
||||
delta = np.zeros(len(robot_pos_deg[:-1]), dtype=np.float64)
|
||||
for el_ix in range(len(robot_pos_deg[:-1])):
|
||||
delta *= 0
|
||||
delta[el_ix] = eps / 2
|
||||
Sdot = (
|
||||
pose_difference_se3(
|
||||
fk_func(robot_pos_deg[:-1] + delta),
|
||||
fk_func(robot_pos_deg[:-1] - delta),
|
||||
)
|
||||
/ eps
|
||||
)
|
||||
jac[:, el_ix] = Sdot
|
||||
return jac
|
||||
|
||||
def compute_positional_jacobian(self, robot_pos_deg, fk_func=None):
|
||||
"""Finite differences to compute the positional Jacobian.
|
||||
J(i, j) represents how the ith component of the end-effector's position changes wrt a small change
|
||||
in the jth joint's velocity.
|
||||
|
||||
Args:
|
||||
robot_pos_deg: Current joint positions in degrees
|
||||
fk_func: Forward kinematics function to use (defaults to fk_gripper)
|
||||
"""
|
||||
if fk_func is None:
|
||||
fk_func = self.fk_gripper
|
||||
|
||||
eps = 1e-8
|
||||
jac = np.zeros(shape=(3, 5))
|
||||
delta = np.zeros(len(robot_pos_deg[:-1]), dtype=np.float64)
|
||||
for el_ix in range(len(robot_pos_deg[:-1])):
|
||||
delta *= 0
|
||||
delta[el_ix] = eps / 2
|
||||
Sdot = (
|
||||
fk_func(robot_pos_deg[:-1] + delta)[:3, 3] - fk_func(robot_pos_deg[:-1] - delta)[:3, 3]
|
||||
) / eps
|
||||
jac[:, el_ix] = Sdot
|
||||
return jac
|
||||
|
||||
def ik(self, current_joint_state, desired_ee_pose, position_only=True, fk_func=None):
|
||||
"""Inverse kinematics using gradient descent.
|
||||
|
||||
Args:
|
||||
current_joint_state: Initial joint positions in degrees
|
||||
desired_ee_pose: Target end-effector pose as a 4x4 transformation matrix
|
||||
position_only: If True, only match end-effector position, not orientation
|
||||
fk_func: Forward kinematics function to use (defaults to fk_gripper)
|
||||
|
||||
Returns:
|
||||
Joint positions in degrees that achieve the desired end-effector pose
|
||||
"""
|
||||
if fk_func is None:
|
||||
fk_func = self.fk_gripper
|
||||
|
||||
# Do gradient descent.
|
||||
max_iterations = 5
|
||||
learning_rate = 1
|
||||
for _ in range(max_iterations):
|
||||
current_ee_pose = fk_func(current_joint_state)
|
||||
if not position_only:
|
||||
error = se3_error(desired_ee_pose, current_ee_pose)
|
||||
jac = self.compute_jacobian(current_joint_state, fk_func)
|
||||
else:
|
||||
error = desired_ee_pose[:3, 3] - current_ee_pose[:3, 3]
|
||||
jac = self.compute_positional_jacobian(current_joint_state, fk_func)
|
||||
delta_angles = np.linalg.pinv(jac) @ error
|
||||
current_joint_state[:-1] += learning_rate * delta_angles
|
||||
|
||||
if np.linalg.norm(error) < 5e-3:
|
||||
return current_joint_state
|
||||
return current_joint_state
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import time
|
||||
|
||||
def run_test(robot_type):
|
||||
"""Run test suite for a specific robot type."""
|
||||
print(f"\n--- Testing {robot_type.upper()} Robot ---")
|
||||
|
||||
# Initialize kinematics for this robot
|
||||
robot = RobotKinematics(robot_type)
|
||||
|
||||
# Test 1: Forward kinematics consistency
|
||||
print("Test 1: Forward kinematics consistency")
|
||||
test_angles = np.array([30, 45, -30, 20, 10, 0]) # Example joint angles in degrees
|
||||
|
||||
# Calculate FK for different joints
|
||||
shoulder_pose = robot.fk_shoulder(test_angles)
|
||||
humerus_pose = robot.fk_humerus(test_angles)
|
||||
forearm_pose = robot.fk_forearm(test_angles)
|
||||
wrist_pose = robot.fk_wrist(test_angles)
|
||||
gripper_pose = robot.fk_gripper(test_angles)
|
||||
gripper_tip_pose = robot.fk_gripper_tip(test_angles)
|
||||
|
||||
# Check that poses form a consistent kinematic chain (positions should be progressively further from origin)
|
||||
distances = [
|
||||
np.linalg.norm(shoulder_pose[:3, 3]),
|
||||
np.linalg.norm(humerus_pose[:3, 3]),
|
||||
np.linalg.norm(forearm_pose[:3, 3]),
|
||||
np.linalg.norm(wrist_pose[:3, 3]),
|
||||
np.linalg.norm(gripper_pose[:3, 3]),
|
||||
np.linalg.norm(gripper_tip_pose[:3, 3]),
|
||||
]
|
||||
|
||||
# Check if distances generally increase along the chain
|
||||
is_consistent = all(distances[i] <= distances[i + 1] for i in range(len(distances) - 1))
|
||||
print(f" Pose distances from origin: {[round(d, 3) for d in distances]}")
|
||||
print(f" Kinematic chain consistency: {'PASSED' if is_consistent else 'FAILED'}")
|
||||
|
||||
# Test 2: Jacobian computation
|
||||
print("Test 2: Jacobian computation")
|
||||
jacobian = robot.compute_jacobian(test_angles)
|
||||
positional_jacobian = robot.compute_positional_jacobian(test_angles)
|
||||
|
||||
# Check shapes
|
||||
jacobian_shape_ok = jacobian.shape == (6, 5)
|
||||
pos_jacobian_shape_ok = positional_jacobian.shape == (3, 5)
|
||||
|
||||
print(f" Jacobian shape: {'PASSED' if jacobian_shape_ok else 'FAILED'}")
|
||||
print(f" Positional Jacobian shape: {'PASSED' if pos_jacobian_shape_ok else 'FAILED'}")
|
||||
|
||||
# Test 3: Inverse kinematics
|
||||
print("Test 3: Inverse kinematics (position only)")
|
||||
|
||||
# Generate target pose from known joint angles
|
||||
original_angles = np.array([10, 20, 30, -10, 5, 0])
|
||||
target_pose = robot.fk_gripper(original_angles)
|
||||
|
||||
# Start IK from a different position
|
||||
initial_guess = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0])
|
||||
|
||||
# Measure IK performance
|
||||
start_time = time.time()
|
||||
computed_angles = robot.ik(initial_guess.copy(), target_pose)
|
||||
ik_time = time.time() - start_time
|
||||
|
||||
# Compute resulting pose from IK solution
|
||||
result_pose = robot.fk_gripper(computed_angles)
|
||||
|
||||
# Calculate position error
|
||||
pos_error = np.linalg.norm(target_pose[:3, 3] - result_pose[:3, 3])
|
||||
passed = pos_error < 0.01 # Accept errors less than 1cm
|
||||
|
||||
print(f" IK computation time: {ik_time:.4f} seconds")
|
||||
print(f" Position error: {pos_error:.4f}")
|
||||
print(f" IK position accuracy: {'PASSED' if passed else 'FAILED'}")
|
||||
|
||||
return is_consistent and jacobian_shape_ok and pos_jacobian_shape_ok and passed
|
||||
|
||||
# Run tests for all robot types
|
||||
results = {}
|
||||
for robot_type in ["koch", "so100", "moss"]:
|
||||
results[robot_type] = run_test(robot_type)
|
||||
|
||||
# Print overall summary
|
||||
print("\n=== Test Summary ===")
|
||||
all_passed = all(results.values())
|
||||
for robot_type, passed in results.items():
|
||||
print(f"{robot_type.upper()}: {'PASSED' if passed else 'FAILED'}")
|
||||
print(f"\nOverall: {'ALL TESTS PASSED' if all_passed else 'SOME TESTS FAILED'}")
|
||||
@@ -798,8 +798,11 @@ class MotorsBus(abc.ABC):
|
||||
if drive_mode:
|
||||
val *= -1
|
||||
val += homing_offset
|
||||
normalized_values[id_] = val / (self.model_resolution_table[self.motors[motor].model] // 2) * 180
|
||||
# TODO(alibers): degree mode
|
||||
normalized_values[id_] = (
|
||||
val / (self.model_resolution_table[self.motors[motor].model] // 2) * 180
|
||||
)
|
||||
else:
|
||||
# TODO(alibers): velocity and degree modes
|
||||
raise NotImplementedError
|
||||
|
||||
return normalized_values
|
||||
@@ -827,7 +830,9 @@ class MotorsBus(abc.ABC):
|
||||
unnormalized_values[id_] = int((bounded_val / 100) * (max_ - min_) + min_)
|
||||
elif self.motors[motor].norm_mode is MotorNormMode.DEGREE:
|
||||
homing_offset = self.calibration[motor].homing_offset
|
||||
unnormalized_values[id_] = int(val / 180 * (self.model_resolution_table[self.motors[motor].model] // 2))
|
||||
unnormalized_values[id_] = int(
|
||||
val / 180 * (self.model_resolution_table[self.motors[motor].model] // 2)
|
||||
)
|
||||
unnormalized_values[id_] -= homing_offset
|
||||
if drive_mode:
|
||||
unnormalized_values[id_] *= -1
|
||||
|
||||
@@ -0,0 +1,2 @@
|
||||
from .config_so100_follower_end_effector import SO100FollowerEndEffectorConfig
|
||||
from .so100_follower_end_effector import SO100FollowerEndEffector
|
||||
@@ -0,0 +1,45 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
from dataclasses import dataclass, field
|
||||
from lerobot.common.cameras import CameraConfig
|
||||
from ..config import RobotConfig
|
||||
|
||||
|
||||
@RobotConfig.register_subclass("so100_follower_end_effector")
|
||||
@dataclass
|
||||
class SO100FollowerEndEffectorConfig(RobotConfig):
|
||||
"""Configuration for the SO100FollowerEndEffector robot."""
|
||||
# Port to connect to the arm
|
||||
port: str
|
||||
|
||||
disable_torque_on_disconnect: bool = True
|
||||
|
||||
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||
# the number of motors in your follower arms.
|
||||
max_relative_target: int | None = None
|
||||
|
||||
# cameras
|
||||
cameras: dict[str, CameraConfig] = field(default_factory=dict)
|
||||
|
||||
# Default bounds for the end-effector position (in meters)
|
||||
bounds: Dict[str, List[float]] = field(default_factory=lambda: {
|
||||
"min": [0.1, -0.3, 0.0], # min x, y, z
|
||||
"max": [0.4, 0.3, 0.4], # max x, y, z
|
||||
} )
|
||||
@@ -0,0 +1,161 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import logging
|
||||
import numpy as np
|
||||
from typing import Any, Dict
|
||||
|
||||
from lerobot.common.errors import DeviceNotConnectedError
|
||||
from lerobot.common.model.kinematics import RobotKinematics
|
||||
|
||||
from ..so100_follower import SO100Follower
|
||||
from .config_so100_follower_end_effector import SO100FollowerEndEffectorConfig
|
||||
from lerobot.common.motors import Motor, MotorNormMode
|
||||
from lerobot.common.motors.feetech import FeetechMotorsBus
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class SO100FollowerEndEffector(SO100Follower):
|
||||
"""
|
||||
SO100Follower robot with end-effector space control.
|
||||
|
||||
This robot inherits from SO100Follower but transforms actions from
|
||||
end-effector space to joint space before sending them to the motors.
|
||||
"""
|
||||
|
||||
config_class = SO100FollowerEndEffectorConfig
|
||||
name = "so100_follower_end_effector"
|
||||
|
||||
def __init__(self, config: SO100FollowerEndEffectorConfig):
|
||||
super().__init__(config)
|
||||
self.bus = FeetechMotorsBus(
|
||||
port=self.config.port,
|
||||
motors={
|
||||
"shoulder_pan": Motor(1, "sts3215", MotorNormMode.DEGREE),
|
||||
"shoulder_lift": Motor(2, "sts3215", MotorNormMode.DEGREE),
|
||||
"elbow_flex": Motor(3, "sts3215", MotorNormMode.DEGREE),
|
||||
"wrist_flex": Motor(4, "sts3215", MotorNormMode.DEGREE),
|
||||
"wrist_roll": Motor(5, "sts3215", MotorNormMode.DEGREE),
|
||||
"gripper": Motor(6, "sts3215", MotorNormMode.RANGE_0_100),
|
||||
},
|
||||
calibration=self.calibration,
|
||||
)
|
||||
|
||||
self.config = config
|
||||
|
||||
# Initialize the kinematics module for the so100 robot
|
||||
self.kinematics = RobotKinematics(robot_type="so100")
|
||||
|
||||
# Set the forward kinematics function
|
||||
self.fk_function = self.kinematics.fk_gripper_tip
|
||||
|
||||
# Store the bounds for end-effector position
|
||||
self.bounds = self.config.bounds
|
||||
|
||||
# Store the joint mins and maxs
|
||||
self.joint_mins = None
|
||||
self.joint_maxs = None
|
||||
|
||||
@property
|
||||
def action_features(self) -> Dict[str, Any]:
|
||||
"""
|
||||
Define action features for end-effector control.
|
||||
Returns dictionary with dtype, shape, and names.
|
||||
"""
|
||||
return {
|
||||
"dtype": "float32",
|
||||
"shape": (4,),
|
||||
"names": {"delta_x": 0, "delta_y": 1, "delta_z": 2, "gripper": 3},
|
||||
}
|
||||
|
||||
def connect(self):
|
||||
super().connect()
|
||||
self.joint_mins = self.bus.sync_read("Min_Position_Limit")
|
||||
self.joint_maxs = self.bus.sync_read("Max_Position_Limit")
|
||||
|
||||
def send_action(self, action: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""
|
||||
Transform action from end-effector space to joint space and send to motors.
|
||||
|
||||
Args:
|
||||
action: Dictionary with keys 'delta_x', 'delta_y', 'delta_z' for end-effector control
|
||||
or a numpy array with [delta_x, delta_y, delta_z]
|
||||
|
||||
Returns:
|
||||
The joint-space action that was sent to the motors
|
||||
"""
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(f"{self} is not connected.")
|
||||
|
||||
# Convert action to numpy array if not already
|
||||
if isinstance(action, dict):
|
||||
if all(k in action for k in ["delta_x", "delta_y", "delta_z", "gripper"]):
|
||||
action = np.array([action["delta_x"], action["delta_y"], action["delta_z"], action["gripper"]], dtype=np.float32)
|
||||
else:
|
||||
logger.warning(f"Expected action keys 'delta_x', 'delta_y', 'delta_z', got {list(action.keys())}")
|
||||
action = np.zeros(4, dtype=np.float32)
|
||||
|
||||
|
||||
# Read current joint positions
|
||||
current_joint_pos = self.bus.sync_read("Present_Position")
|
||||
|
||||
# Convert dict to ordered list without gripper
|
||||
joint_names = ["shoulder_pan", "shoulder_lift", "elbow_flex", "wrist_flex", "wrist_roll", "gripper"]
|
||||
# Convert the joint positions from min-max to degrees
|
||||
current_joint_pos = np.array([current_joint_pos[name] for name in joint_names])
|
||||
|
||||
# Calculate current end-effector position using forward kinematics
|
||||
current_ee_pos = self.fk_function(current_joint_pos)
|
||||
|
||||
# Set desired end-effector position by adding delta
|
||||
desired_ee_pos = np.eye(4)
|
||||
desired_ee_pos[:3, :3] = current_ee_pos[:3, :3] # Keep orientation
|
||||
|
||||
# Add delta to position and clip to bounds
|
||||
desired_ee_pos[:3, 3] = current_ee_pos[:3, 3] + action[:3]
|
||||
if self.bounds is not None:
|
||||
desired_ee_pos[:3, 3] = np.clip(
|
||||
desired_ee_pos[:3, 3],
|
||||
self.bounds["min"],
|
||||
self.bounds["max"],
|
||||
)
|
||||
|
||||
# Compute inverse kinematics to get joint positions
|
||||
target_joint_values_in_degrees = self.kinematics.ik(
|
||||
current_joint_pos,
|
||||
desired_ee_pos,
|
||||
position_only=True,
|
||||
fk_func=self.fk_function,
|
||||
)
|
||||
|
||||
# Create joint space action dictionary
|
||||
joint_action = {
|
||||
f"{joint_names[i]}.pos": target_joint_values_in_degrees[i]
|
||||
for i in range(len(joint_names)-1) # Exclude gripper
|
||||
}
|
||||
|
||||
# Handle gripper separately if included in action
|
||||
if "gripper.pos" in action:
|
||||
joint_action["gripper.pos"] = action["gripper.pos"]
|
||||
else:
|
||||
# Keep current gripper position
|
||||
joint_action["gripper.pos"] = current_joint_pos[-1]
|
||||
|
||||
import time
|
||||
time.sleep(0.001)
|
||||
# Send joint space action to parent class
|
||||
return super().send_action(joint_action)
|
||||
@@ -14,12 +14,10 @@
|
||||
|
||||
import logging
|
||||
from pprint import pformat
|
||||
from typing import Type
|
||||
|
||||
from lerobot.common.robots import RobotConfig
|
||||
|
||||
from .robot import Robot
|
||||
from .robot_wrapper import RobotWrapper
|
||||
|
||||
|
||||
def make_robot_config(robot_type: str, **kwargs) -> RobotConfig:
|
||||
@@ -35,7 +33,9 @@ def make_robot_config(robot_type: str, **kwargs) -> RobotConfig:
|
||||
|
||||
return SO100FollowerConfig(**kwargs)
|
||||
elif robot_type == "so100_follower_end_effector":
|
||||
from .so100_follower_end_effector.config_so100_follower_end_effector import SO100FollowerEndEffectorConfig
|
||||
from .so100_follower_end_effector.config_so100_follower_end_effector import (
|
||||
SO100FollowerEndEffectorConfig,
|
||||
)
|
||||
|
||||
return SO100FollowerEndEffectorConfig(**kwargs)
|
||||
elif robot_type == "stretch":
|
||||
@@ -132,8 +132,3 @@ def get_arm_id(name, arm_type):
|
||||
"""
|
||||
return f"{name}_{arm_type}"
|
||||
|
||||
def convert_joint_m100_100_to_degrees(joint_positions: dict[str, float], mins: dict[str, float], maxs: dict[str, float]) -> dict[str, float]:
|
||||
return {key: ((value + 100) / 200) * (maxs[key] - mins[key]) + mins[key] for key, value in joint_positions.items()}
|
||||
|
||||
def convert_joint_degrees_to_m100_100(joint_positions: dict[str, float], mins: dict[str, float], maxs: dict[str, float]) -> dict[str, float]:
|
||||
return {key: (value - mins[key]) / (maxs[key] - mins[key]) * 200 - 100 for key, value in joint_positions.items()}
|
||||
|
||||
4
lerobot/common/teleoperators/gamepad/__init__.py
Normal file
4
lerobot/common/teleoperators/gamepad/__init__.py
Normal file
@@ -0,0 +1,4 @@
|
||||
from .configuration_gamepad import GamepadTeleopConfig
|
||||
from .teleop_gamepad import GamepadTeleop
|
||||
|
||||
__all__ = ["GamepadTeleopConfig", "GamepadTeleop"]
|
||||
@@ -0,0 +1,32 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from dataclasses import dataclass
|
||||
|
||||
from ..config import TeleoperatorConfig
|
||||
|
||||
|
||||
@TeleoperatorConfig.register_subclass("gamepad")
|
||||
@dataclass
|
||||
class GamepadTeleopConfig(TeleoperatorConfig):
|
||||
# TODO(Steven): Consider setting in here the keys that we want to capture/listen
|
||||
mock: bool = False
|
||||
|
||||
x_step_size: float = 0.05
|
||||
y_step_size: float = 0.05
|
||||
z_step_size: float = 0.05
|
||||
|
||||
use_gripper: bool = True
|
||||
719
lerobot/common/teleoperators/gamepad/gamepad_utils.py
Normal file
719
lerobot/common/teleoperators/gamepad/gamepad_utils.py
Normal file
@@ -0,0 +1,719 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import sys
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from lerobot.common.utils.robot_utils import busy_wait
|
||||
from lerobot.common.utils.utils import init_logging
|
||||
from lerobot.common.robots.kinematics import RobotKinematics
|
||||
|
||||
|
||||
class InputController:
|
||||
"""Base class for input controllers that generate motion deltas."""
|
||||
|
||||
def __init__(self, x_step_size=0.01, y_step_size=0.01, z_step_size=0.01):
|
||||
"""
|
||||
Initialize the controller.
|
||||
|
||||
Args:
|
||||
x_step_size: Base movement step size in meters
|
||||
y_step_size: Base movement step size in meters
|
||||
z_step_size: Base movement step size in meters
|
||||
"""
|
||||
self.x_step_size = x_step_size
|
||||
self.y_step_size = y_step_size
|
||||
self.z_step_size = z_step_size
|
||||
self.running = True
|
||||
self.episode_end_status = None # None, "success", or "failure"
|
||||
self.intervention_flag = False
|
||||
self.open_gripper_command = False
|
||||
self.close_gripper_command = False
|
||||
|
||||
def start(self):
|
||||
"""Start the controller and initialize resources."""
|
||||
pass
|
||||
|
||||
def stop(self):
|
||||
"""Stop the controller and release resources."""
|
||||
pass
|
||||
|
||||
def get_deltas(self):
|
||||
"""Get the current movement deltas (dx, dy, dz) in meters."""
|
||||
return 0.0, 0.0, 0.0
|
||||
|
||||
def should_quit(self):
|
||||
"""Return True if the user has requested to quit."""
|
||||
return not self.running
|
||||
|
||||
def update(self):
|
||||
"""Update controller state - call this once per frame."""
|
||||
pass
|
||||
|
||||
def __enter__(self):
|
||||
"""Support for use in 'with' statements."""
|
||||
self.start()
|
||||
return self
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
"""Ensure resources are released when exiting 'with' block."""
|
||||
self.stop()
|
||||
|
||||
def get_episode_end_status(self):
|
||||
"""
|
||||
Get the current episode end status.
|
||||
|
||||
Returns:
|
||||
None if episode should continue, "success" or "failure" otherwise
|
||||
"""
|
||||
status = self.episode_end_status
|
||||
self.episode_end_status = None # Reset after reading
|
||||
return status
|
||||
|
||||
def should_intervene(self):
|
||||
"""Return True if intervention flag was set."""
|
||||
return self.intervention_flag
|
||||
|
||||
def gripper_command(self):
|
||||
"""Return the current gripper command."""
|
||||
if self.open_gripper_command == self.close_gripper_command:
|
||||
return "no-op"
|
||||
elif self.open_gripper_command:
|
||||
return "open"
|
||||
elif self.close_gripper_command:
|
||||
return "close"
|
||||
|
||||
|
||||
class KeyboardController(InputController):
|
||||
"""Generate motion deltas from keyboard input."""
|
||||
|
||||
def __init__(self, x_step_size=0.01, y_step_size=0.01, z_step_size=0.01):
|
||||
super().__init__(x_step_size, y_step_size, z_step_size)
|
||||
self.key_states = {
|
||||
"forward_x": False,
|
||||
"backward_x": False,
|
||||
"forward_y": False,
|
||||
"backward_y": False,
|
||||
"forward_z": False,
|
||||
"backward_z": False,
|
||||
"quit": False,
|
||||
"success": False,
|
||||
"failure": False,
|
||||
}
|
||||
self.listener = None
|
||||
|
||||
def start(self):
|
||||
"""Start the keyboard listener."""
|
||||
from pynput import keyboard
|
||||
|
||||
def on_press(key):
|
||||
try:
|
||||
if key == keyboard.Key.up:
|
||||
self.key_states["forward_x"] = True
|
||||
elif key == keyboard.Key.down:
|
||||
self.key_states["backward_x"] = True
|
||||
elif key == keyboard.Key.left:
|
||||
self.key_states["forward_y"] = True
|
||||
elif key == keyboard.Key.right:
|
||||
self.key_states["backward_y"] = True
|
||||
elif key == keyboard.Key.shift:
|
||||
self.key_states["backward_z"] = True
|
||||
elif key == keyboard.Key.shift_r:
|
||||
self.key_states["forward_z"] = True
|
||||
elif key == keyboard.Key.esc:
|
||||
self.key_states["quit"] = True
|
||||
self.running = False
|
||||
return False
|
||||
elif key == keyboard.Key.enter:
|
||||
self.key_states["success"] = True
|
||||
self.episode_end_status = "success"
|
||||
elif key == keyboard.Key.backspace:
|
||||
self.key_states["failure"] = True
|
||||
self.episode_end_status = "failure"
|
||||
except AttributeError:
|
||||
pass
|
||||
|
||||
def on_release(key):
|
||||
try:
|
||||
if key == keyboard.Key.up:
|
||||
self.key_states["forward_x"] = False
|
||||
elif key == keyboard.Key.down:
|
||||
self.key_states["backward_x"] = False
|
||||
elif key == keyboard.Key.left:
|
||||
self.key_states["forward_y"] = False
|
||||
elif key == keyboard.Key.right:
|
||||
self.key_states["backward_y"] = False
|
||||
elif key == keyboard.Key.shift:
|
||||
self.key_states["backward_z"] = False
|
||||
elif key == keyboard.Key.shift_r:
|
||||
self.key_states["forward_z"] = False
|
||||
elif key == keyboard.Key.enter:
|
||||
self.key_states["success"] = False
|
||||
elif key == keyboard.Key.backspace:
|
||||
self.key_states["failure"] = False
|
||||
except AttributeError:
|
||||
pass
|
||||
|
||||
self.listener = keyboard.Listener(on_press=on_press, on_release=on_release)
|
||||
self.listener.start()
|
||||
|
||||
print("Keyboard controls:")
|
||||
print(" Arrow keys: Move in X-Y plane")
|
||||
print(" Shift and Shift_R: Move in Z axis")
|
||||
print(" Enter: End episode with SUCCESS")
|
||||
print(" Backspace: End episode with FAILURE")
|
||||
print(" ESC: Exit")
|
||||
|
||||
def stop(self):
|
||||
"""Stop the keyboard listener."""
|
||||
if self.listener and self.listener.is_alive():
|
||||
self.listener.stop()
|
||||
|
||||
def get_deltas(self):
|
||||
"""Get the current movement deltas from keyboard state."""
|
||||
delta_x = delta_y = delta_z = 0.0
|
||||
|
||||
if self.key_states["forward_x"]:
|
||||
delta_x += self.x_step_size
|
||||
if self.key_states["backward_x"]:
|
||||
delta_x -= self.x_step_size
|
||||
if self.key_states["forward_y"]:
|
||||
delta_y += self.y_step_size
|
||||
if self.key_states["backward_y"]:
|
||||
delta_y -= self.y_step_size
|
||||
if self.key_states["forward_z"]:
|
||||
delta_z += self.z_step_size
|
||||
if self.key_states["backward_z"]:
|
||||
delta_z -= self.z_step_size
|
||||
|
||||
return delta_x, delta_y, delta_z
|
||||
|
||||
def should_quit(self):
|
||||
"""Return True if ESC was pressed."""
|
||||
return self.key_states["quit"]
|
||||
|
||||
def should_save(self):
|
||||
"""Return True if Enter was pressed (save episode)."""
|
||||
return self.key_states["success"] or self.key_states["failure"]
|
||||
|
||||
|
||||
class GamepadController(InputController):
|
||||
"""Generate motion deltas from gamepad input."""
|
||||
|
||||
def __init__(self, x_step_size=0.01, y_step_size=0.01, z_step_size=0.01, deadzone=0.1):
|
||||
super().__init__(x_step_size, y_step_size, z_step_size)
|
||||
self.deadzone = deadzone
|
||||
self.joystick = None
|
||||
self.intervention_flag = False
|
||||
|
||||
def start(self):
|
||||
"""Initialize pygame and the gamepad."""
|
||||
import pygame
|
||||
|
||||
pygame.init()
|
||||
pygame.joystick.init()
|
||||
|
||||
if pygame.joystick.get_count() == 0:
|
||||
logging.error("No gamepad detected. Please connect a gamepad and try again.")
|
||||
self.running = False
|
||||
return
|
||||
|
||||
self.joystick = pygame.joystick.Joystick(0)
|
||||
self.joystick.init()
|
||||
logging.info(f"Initialized gamepad: {self.joystick.get_name()}")
|
||||
|
||||
print("Gamepad controls:")
|
||||
print(" Left analog stick: Move in X-Y plane")
|
||||
print(" Right analog stick (vertical): Move in Z axis")
|
||||
print(" B/Circle button: Exit")
|
||||
print(" Y/Triangle button: End episode with SUCCESS")
|
||||
print(" A/Cross button: End episode with FAILURE")
|
||||
print(" X/Square button: Rerecord episode")
|
||||
|
||||
def stop(self):
|
||||
"""Clean up pygame resources."""
|
||||
import pygame
|
||||
|
||||
if pygame.joystick.get_init():
|
||||
if self.joystick:
|
||||
self.joystick.quit()
|
||||
pygame.joystick.quit()
|
||||
pygame.quit()
|
||||
|
||||
def update(self):
|
||||
"""Process pygame events to get fresh gamepad readings."""
|
||||
import pygame
|
||||
|
||||
for event in pygame.event.get():
|
||||
if event.type == pygame.JOYBUTTONDOWN:
|
||||
if event.button == 3:
|
||||
self.episode_end_status = "success"
|
||||
# A button (1) for failure
|
||||
elif event.button == 1:
|
||||
self.episode_end_status = "failure"
|
||||
# X button (0) for rerecord
|
||||
elif event.button == 0:
|
||||
self.episode_end_status = "rerecord_episode"
|
||||
|
||||
# RB button (6) for closing gripper
|
||||
elif event.button == 6:
|
||||
self.close_gripper_command = True
|
||||
|
||||
# LT button (7) for opening gripper
|
||||
elif event.button == 7:
|
||||
self.open_gripper_command = True
|
||||
|
||||
# Reset episode status on button release
|
||||
elif event.type == pygame.JOYBUTTONUP:
|
||||
if event.button in [0, 2, 3]:
|
||||
self.episode_end_status = None
|
||||
|
||||
elif event.button == 6:
|
||||
self.close_gripper_command = False
|
||||
|
||||
elif event.button == 7:
|
||||
self.open_gripper_command = False
|
||||
|
||||
# Check for RB button (typically button 5) for intervention flag
|
||||
if self.joystick.get_button(5):
|
||||
self.intervention_flag = True
|
||||
else:
|
||||
self.intervention_flag = False
|
||||
|
||||
def get_deltas(self):
|
||||
"""Get the current movement deltas from gamepad state."""
|
||||
import pygame
|
||||
|
||||
try:
|
||||
# Read joystick axes
|
||||
# Left stick X and Y (typically axes 0 and 1)
|
||||
x_input = self.joystick.get_axis(0) # Left/Right
|
||||
y_input = self.joystick.get_axis(1) # Up/Down (often inverted)
|
||||
|
||||
# Right stick Y (typically axis 3 or 4)
|
||||
z_input = self.joystick.get_axis(3) # Up/Down for Z
|
||||
|
||||
# Apply deadzone to avoid drift
|
||||
x_input = 0 if abs(x_input) < self.deadzone else x_input
|
||||
y_input = 0 if abs(y_input) < self.deadzone else y_input
|
||||
z_input = 0 if abs(z_input) < self.deadzone else z_input
|
||||
|
||||
# Calculate deltas (note: may need to invert axes depending on controller)
|
||||
delta_x = -y_input * self.y_step_size # Forward/backward
|
||||
delta_y = -x_input * self.x_step_size # Left/right
|
||||
delta_z = -z_input * self.z_step_size # Up/down
|
||||
|
||||
return delta_x, delta_y, delta_z
|
||||
|
||||
except pygame.error:
|
||||
logging.error("Error reading gamepad. Is it still connected?")
|
||||
return 0.0, 0.0, 0.0
|
||||
|
||||
|
||||
class GamepadControllerHID(InputController):
|
||||
"""Generate motion deltas from gamepad input using HIDAPI."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
x_step_size=0.01,
|
||||
y_step_size=0.01,
|
||||
z_step_size=0.01,
|
||||
deadzone=0.1,
|
||||
vendor_id=0x046D,
|
||||
product_id=0xC219,
|
||||
):
|
||||
"""
|
||||
Initialize the HID gamepad controller.
|
||||
|
||||
Args:
|
||||
step_size: Base movement step size in meters
|
||||
z_scale: Scaling factor for Z-axis movement
|
||||
deadzone: Joystick deadzone to prevent drift
|
||||
vendor_id: USB vendor ID of the gamepad (default: Logitech)
|
||||
product_id: USB product ID of the gamepad (default: RumblePad 2)
|
||||
"""
|
||||
super().__init__(x_step_size, y_step_size, z_step_size)
|
||||
self.deadzone = deadzone
|
||||
self.vendor_id = vendor_id
|
||||
self.product_id = product_id
|
||||
self.device = None
|
||||
self.device_info = None
|
||||
|
||||
# Movement values (normalized from -1.0 to 1.0)
|
||||
self.left_x = 0.0
|
||||
self.left_y = 0.0
|
||||
self.right_x = 0.0
|
||||
self.right_y = 0.0
|
||||
|
||||
# Button states
|
||||
self.buttons = {}
|
||||
self.quit_requested = False
|
||||
self.save_requested = False
|
||||
|
||||
def find_device(self):
|
||||
"""Look for the gamepad device by vendor and product ID."""
|
||||
import hid
|
||||
|
||||
devices = hid.enumerate()
|
||||
for device in devices:
|
||||
if device["vendor_id"] == self.vendor_id and device["product_id"] == self.product_id:
|
||||
logging.info(f"Found gamepad: {device.get('product_string', 'Unknown')}")
|
||||
return device
|
||||
|
||||
logging.error(
|
||||
f"No gamepad with vendor ID 0x{self.vendor_id:04X} and product ID 0x{self.product_id:04X} found"
|
||||
)
|
||||
return None
|
||||
|
||||
def start(self):
|
||||
"""Connect to the gamepad using HIDAPI."""
|
||||
import hid
|
||||
|
||||
self.device_info = self.find_device()
|
||||
if not self.device_info:
|
||||
self.running = False
|
||||
return
|
||||
|
||||
try:
|
||||
logging.info(f"Connecting to gamepad at path: {self.device_info['path']}")
|
||||
self.device = hid.device()
|
||||
self.device.open_path(self.device_info["path"])
|
||||
self.device.set_nonblocking(1)
|
||||
|
||||
manufacturer = self.device.get_manufacturer_string()
|
||||
product = self.device.get_product_string()
|
||||
logging.info(f"Connected to {manufacturer} {product}")
|
||||
|
||||
logging.info("Gamepad controls (HID mode):")
|
||||
logging.info(" Left analog stick: Move in X-Y plane")
|
||||
logging.info(" Right analog stick: Move in Z axis (vertical)")
|
||||
logging.info(" Button 1/B/Circle: Exit")
|
||||
logging.info(" Button 2/A/Cross: End episode with SUCCESS")
|
||||
logging.info(" Button 3/X/Square: End episode with FAILURE")
|
||||
|
||||
except OSError as e:
|
||||
logging.error(f"Error opening gamepad: {e}")
|
||||
logging.error("You might need to run this with sudo/admin privileges on some systems")
|
||||
self.running = False
|
||||
|
||||
def stop(self):
|
||||
"""Close the HID device connection."""
|
||||
if self.device:
|
||||
self.device.close()
|
||||
self.device = None
|
||||
|
||||
def update(self):
|
||||
"""
|
||||
Read and process the latest gamepad data.
|
||||
Due to an issue with the HIDAPI, we need to read the read the device several times in order to get a stable reading
|
||||
"""
|
||||
for _ in range(10):
|
||||
self._update()
|
||||
|
||||
def _update(self):
|
||||
"""Read and process the latest gamepad data."""
|
||||
if not self.device or not self.running:
|
||||
return
|
||||
|
||||
try:
|
||||
# Read data from the gamepad
|
||||
data = self.device.read(64)
|
||||
# Interpret gamepad data - this will vary by controller model
|
||||
# These offsets are for the Logitech RumblePad 2
|
||||
if data and len(data) >= 8:
|
||||
# Normalize joystick values from 0-255 to -1.0-1.0
|
||||
self.left_x = (data[1] - 128) / 128.0
|
||||
self.left_y = (data[2] - 128) / 128.0
|
||||
self.right_x = (data[3] - 128) / 128.0
|
||||
self.right_y = (data[4] - 128) / 128.0
|
||||
|
||||
# Apply deadzone
|
||||
self.left_x = 0 if abs(self.left_x) < self.deadzone else self.left_x
|
||||
self.left_y = 0 if abs(self.left_y) < self.deadzone else self.left_y
|
||||
self.right_x = 0 if abs(self.right_x) < self.deadzone else self.right_x
|
||||
self.right_y = 0 if abs(self.right_y) < self.deadzone else self.right_y
|
||||
|
||||
# Parse button states (byte 5 in the Logitech RumblePad 2)
|
||||
buttons = data[5]
|
||||
|
||||
# Check if RB is pressed then the intervention flag should be set
|
||||
self.intervention_flag = data[6] in [2, 6, 10, 14]
|
||||
|
||||
# Check if RT is pressed
|
||||
self.open_gripper_command = data[6] in [8, 10, 12]
|
||||
|
||||
# Check if LT is pressed
|
||||
self.close_gripper_command = data[6] in [4, 6, 12]
|
||||
|
||||
# Check if Y/Triangle button (bit 7) is pressed for saving
|
||||
# Check if X/Square button (bit 5) is pressed for failure
|
||||
# Check if A/Cross button (bit 4) is pressed for rerecording
|
||||
if buttons & 1 << 7:
|
||||
self.episode_end_status = "success"
|
||||
elif buttons & 1 << 5:
|
||||
self.episode_end_status = "failure"
|
||||
elif buttons & 1 << 4:
|
||||
self.episode_end_status = "rerecord_episode"
|
||||
else:
|
||||
self.episode_end_status = None
|
||||
|
||||
except OSError as e:
|
||||
logging.error(f"Error reading from gamepad: {e}")
|
||||
|
||||
def get_deltas(self):
|
||||
"""Get the current movement deltas from gamepad state."""
|
||||
# Calculate deltas - invert as needed based on controller orientation
|
||||
delta_x = -self.left_y * self.x_step_size # Forward/backward
|
||||
delta_y = -self.left_x * self.y_step_size # Left/right
|
||||
delta_z = -self.right_y * self.z_step_size # Up/down
|
||||
|
||||
return delta_x, delta_y, delta_z
|
||||
|
||||
def should_quit(self):
|
||||
"""Return True if quit button was pressed."""
|
||||
return self.quit_requested
|
||||
|
||||
def should_save(self):
|
||||
"""Return True if save button was pressed."""
|
||||
return self.save_requested
|
||||
|
||||
|
||||
def test_forward_kinematics(robot, fps=10):
|
||||
logging.info("Testing Forward Kinematics")
|
||||
timestep = time.perf_counter()
|
||||
kinematics = RobotKinematics(robot.robot_type)
|
||||
while time.perf_counter() - timestep < 60.0:
|
||||
loop_start_time = time.perf_counter()
|
||||
robot.teleop_step()
|
||||
obs = robot.capture_observation()
|
||||
joint_positions = obs["observation.state"].cpu().numpy()
|
||||
ee_pos = kinematics.fk_gripper_tip(joint_positions)
|
||||
logging.info(f"EE Position: {ee_pos[:3, 3]}")
|
||||
busy_wait(1 / fps - (time.perf_counter() - loop_start_time))
|
||||
|
||||
|
||||
def test_inverse_kinematics(robot, fps=10):
|
||||
logging.info("Testing Inverse Kinematics")
|
||||
timestep = time.perf_counter()
|
||||
while time.perf_counter() - timestep < 60.0:
|
||||
loop_start_time = time.perf_counter()
|
||||
obs = robot.capture_observation()
|
||||
joint_positions = obs["observation.state"].cpu().numpy()
|
||||
ee_pos = RobotKinematics.fk_gripper_tip(joint_positions)
|
||||
desired_ee_pos = ee_pos
|
||||
target_joint_state = RobotKinematics.ik(joint_positions, desired_ee_pos, position_only=True)
|
||||
robot.send_action(torch.from_numpy(target_joint_state))
|
||||
logging.info(f"Target Joint State: {target_joint_state}")
|
||||
busy_wait(1 / fps - (time.perf_counter() - loop_start_time))
|
||||
|
||||
|
||||
def teleoperate_inverse_kinematics_with_leader(robot, fps=10):
|
||||
logging.info("Testing Inverse Kinematics")
|
||||
kinematics = RobotKinematics(robot.robot_type)
|
||||
timestep = time.perf_counter()
|
||||
while time.perf_counter() - timestep < 60.0:
|
||||
loop_start_time = time.perf_counter()
|
||||
obs = robot.capture_observation()
|
||||
joint_positions = obs["observation.state"].cpu().numpy()
|
||||
ee_pos = kinematics.fk_gripper_tip(joint_positions)
|
||||
|
||||
leader_joint_positions = robot.leader_arms["main"].read("Present_Position")
|
||||
leader_ee = kinematics.fk_gripper_tip(leader_joint_positions)
|
||||
|
||||
desired_ee_pos = leader_ee
|
||||
target_joint_state = kinematics.ik(
|
||||
joint_positions, desired_ee_pos, position_only=True, fk_func=kinematics.fk_gripper_tip
|
||||
)
|
||||
robot.send_action(torch.from_numpy(target_joint_state))
|
||||
logging.info(f"Leader EE: {leader_ee[:3, 3]}, Follower EE: {ee_pos[:3, 3]}")
|
||||
busy_wait(1 / fps - (time.perf_counter() - loop_start_time))
|
||||
|
||||
|
||||
def teleoperate_delta_inverse_kinematics_with_leader(robot, fps=10):
|
||||
logging.info("Testing Delta End-Effector Control")
|
||||
timestep = time.perf_counter()
|
||||
|
||||
# Initial position capture
|
||||
obs = robot.capture_observation()
|
||||
joint_positions = obs["observation.state"].cpu().numpy()
|
||||
|
||||
kinematics = RobotKinematics(robot.robot_type)
|
||||
|
||||
leader_joint_positions = robot.leader_arms["main"].read("Present_Position")
|
||||
initial_leader_ee = kinematics.fk_gripper_tip(leader_joint_positions)
|
||||
|
||||
desired_ee_pos = np.diag(np.ones(4))
|
||||
joint_positions = robot.follower_arms["main"].read("Present_Position")
|
||||
fixed_ee_pos = kinematics.fk_gripper_tip(joint_positions)
|
||||
|
||||
while time.perf_counter() - timestep < 60.0:
|
||||
loop_start_time = time.perf_counter()
|
||||
|
||||
# Get leader state for teleoperation
|
||||
leader_joint_positions = robot.leader_arms["main"].read("Present_Position")
|
||||
leader_ee = kinematics.fk_gripper_tip(leader_joint_positions)
|
||||
|
||||
# Get current state
|
||||
# obs = robot.capture_observation()
|
||||
# joint_positions = obs["observation.state"].cpu().numpy()
|
||||
joint_positions = robot.follower_arms["main"].read("Present_Position")
|
||||
current_ee_pos = kinematics.fk_gripper_tip(joint_positions)
|
||||
|
||||
# Calculate delta between leader and follower end-effectors
|
||||
# Scaling factor can be adjusted for sensitivity
|
||||
scaling_factor = 1.0
|
||||
ee_delta = -np.clip((leader_ee - initial_leader_ee) * scaling_factor, -0.05, 0.05)
|
||||
|
||||
# Apply delta to current position
|
||||
desired_ee_pos[0, 3] = fixed_ee_pos[0, 3] # current_ee_pos[0, 3] + ee_delta[0, 3] * 0
|
||||
desired_ee_pos[1, 3] = fixed_ee_pos[1, 3] # current_ee_pos[1, 3] + ee_delta[1, 3] * 0
|
||||
desired_ee_pos[2, 3] = current_ee_pos[2, 3] - ee_delta[2, 3]
|
||||
|
||||
# Compute joint targets via inverse kinematics
|
||||
target_joint_state = kinematics.ik(
|
||||
joint_positions, desired_ee_pos, position_only=True, fk_func=kinematics.fk_gripper_tip
|
||||
)
|
||||
|
||||
initial_leader_ee = leader_ee.copy()
|
||||
|
||||
# Send command to robot
|
||||
robot.send_action(torch.from_numpy(target_joint_state))
|
||||
|
||||
# Logging
|
||||
logging.info(f"Current EE: {current_ee_pos[:3, 3]}, Desired EE: {desired_ee_pos[:3, 3]}")
|
||||
logging.info(f"Delta EE: {ee_delta[:3, 3]}")
|
||||
|
||||
busy_wait(1 / fps - (time.perf_counter() - loop_start_time))
|
||||
|
||||
|
||||
def teleoperate_delta_inverse_kinematics(robot, controller, fps=10, bounds=None, fk_func=None):
|
||||
"""
|
||||
Control a robot using delta end-effector movements from any input controller.
|
||||
|
||||
Args:
|
||||
robot: Robot instance to control
|
||||
controller: InputController instance (keyboard, gamepad, etc.)
|
||||
fps: Control frequency in Hz
|
||||
bounds: Optional position limits
|
||||
fk_func: Forward kinematics function to use
|
||||
"""
|
||||
if fk_func is None:
|
||||
fk_func = RobotKinematics.fk_gripper_tip
|
||||
|
||||
logging.info(f"Testing Delta End-Effector Control with {controller.__class__.__name__}")
|
||||
|
||||
# Initial position capture
|
||||
obs = robot.capture_observation()
|
||||
joint_positions = obs["observation.state"].cpu().numpy()
|
||||
kinematics = RobotKinematics(robot.robot_type)
|
||||
current_ee_pos = kinematics.fk_gripper_tip(joint_positions)
|
||||
|
||||
# Initialize desired position with current position
|
||||
desired_ee_pos = np.eye(4) # Identity matrix
|
||||
|
||||
timestep = time.perf_counter()
|
||||
with controller:
|
||||
while not controller.should_quit() and time.perf_counter() - timestep < 60.0:
|
||||
loop_start_time = time.perf_counter()
|
||||
|
||||
# Process input events
|
||||
controller.update()
|
||||
|
||||
# Get current robot state
|
||||
joint_positions = robot.follower_arms["main"].read("Present_Position")
|
||||
current_ee_pos = kinematics.fk_gripper_tip(joint_positions)
|
||||
|
||||
# Get movement deltas from the controller
|
||||
delta_x, delta_y, delta_z = controller.get_deltas()
|
||||
|
||||
# Update desired position
|
||||
desired_ee_pos[0, 3] = current_ee_pos[0, 3] + delta_x
|
||||
desired_ee_pos[1, 3] = current_ee_pos[1, 3] + delta_y
|
||||
desired_ee_pos[2, 3] = current_ee_pos[2, 3] + delta_z
|
||||
|
||||
# Apply bounds if provided
|
||||
if bounds is not None:
|
||||
desired_ee_pos[:3, 3] = np.clip(desired_ee_pos[:3, 3], bounds["min"], bounds["max"])
|
||||
|
||||
# Only send commands if there's actual movement
|
||||
if any(abs(v) > 0.001 for v in [delta_x, delta_y, delta_z]):
|
||||
# Compute joint targets via inverse kinematics
|
||||
target_joint_state = kinematics.ik(joint_positions, desired_ee_pos, position_only=True)
|
||||
|
||||
# Send command to robot
|
||||
robot.send_action(torch.from_numpy(target_joint_state))
|
||||
|
||||
busy_wait(1 / fps - (time.perf_counter() - loop_start_time))
|
||||
|
||||
|
||||
def teleoperate_gym_env(env, controller, fps: int = 30):
|
||||
"""
|
||||
Control a robot through a gym environment using keyboard inputs.
|
||||
|
||||
Args:
|
||||
env: A gym environment created with make_robot_env
|
||||
fps: Target control frequency
|
||||
"""
|
||||
|
||||
logging.info("Testing Keyboard Control of Gym Environment")
|
||||
print("Keyboard controls:")
|
||||
print(" Arrow keys: Move in X-Y plane")
|
||||
print(" Shift and Shift_R: Move in Z axis")
|
||||
print(" ESC: Exit")
|
||||
|
||||
# Reset the environment to get initial observation
|
||||
obs, info = env.reset()
|
||||
|
||||
try:
|
||||
with controller:
|
||||
while not controller.should_quit():
|
||||
loop_start_time = time.perf_counter()
|
||||
|
||||
# Process input events
|
||||
controller.update()
|
||||
|
||||
# Get movement deltas from the controller
|
||||
delta_x, delta_y, delta_z = controller.get_deltas()
|
||||
|
||||
# Create the action vector
|
||||
action = np.array([delta_x, delta_y, delta_z])
|
||||
|
||||
# Skip if no movement
|
||||
if any(abs(v) > 0.001 for v in [delta_x, delta_y, delta_z]):
|
||||
# Step the environment - pass action as a tensor with intervention flag
|
||||
action_tensor = torch.from_numpy(action.astype(np.float32))
|
||||
obs, reward, terminated, truncated, info = env.step((action_tensor, False))
|
||||
|
||||
# Log information
|
||||
logging.info(f"Action: [{delta_x:.4f}, {delta_y:.4f}, {delta_z:.4f}]")
|
||||
logging.info(f"Reward: {reward}")
|
||||
|
||||
# Reset if episode ended
|
||||
if terminated or truncated:
|
||||
logging.info("Episode ended, resetting environment")
|
||||
obs, info = env.reset()
|
||||
|
||||
# Maintain target frame rate
|
||||
busy_wait(1 / fps - (time.perf_counter() - loop_start_time))
|
||||
|
||||
finally:
|
||||
# Close the environment
|
||||
env.close()
|
||||
135
lerobot/common/teleoperators/gamepad/teleop_gamepad.py
Normal file
135
lerobot/common/teleoperators/gamepad/teleop_gamepad.py
Normal file
@@ -0,0 +1,135 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import sys
|
||||
from queue import Queue
|
||||
from typing import Any
|
||||
from enum import IntEnum
|
||||
|
||||
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
|
||||
import numpy as np
|
||||
from ..teleoperator import Teleoperator
|
||||
from .configuration_gamepad import GamepadTeleopConfig
|
||||
|
||||
class GripperAction(IntEnum):
|
||||
CLOSE = 0
|
||||
STAY = 1
|
||||
OPEN = 2
|
||||
|
||||
gripper_action_map = {
|
||||
"close": GripperAction.CLOSE.value,
|
||||
"open": GripperAction.OPEN.value,
|
||||
"stay": GripperAction.STAY.value,
|
||||
}
|
||||
|
||||
|
||||
class GamepadTeleop(Teleoperator):
|
||||
"""
|
||||
Teleop class to use gamepad inputs for control.
|
||||
"""
|
||||
|
||||
config_class = GamepadTeleopConfig
|
||||
name = "gamepad"
|
||||
|
||||
def __init__(self, config: GamepadTeleopConfig):
|
||||
super().__init__(config)
|
||||
self.config = config
|
||||
self.robot_type = config.type
|
||||
|
||||
self.event_queue = Queue()
|
||||
self.current_pressed = {}
|
||||
self.listener = None
|
||||
self.logs = {}
|
||||
|
||||
self.gamepad = None
|
||||
|
||||
@property
|
||||
def action_features(self) -> dict:
|
||||
if self.config.use_gripper:
|
||||
return {
|
||||
"dtype": "float32",
|
||||
"shape": (4,),
|
||||
"names": {"delta_x": 0, "delta_y": 1, "delta_z": 2, "gripper": 3},
|
||||
}
|
||||
else:
|
||||
return {
|
||||
"dtype": "float32",
|
||||
"shape": (3,),
|
||||
"names": {"delta_x": 0, "delta_y": 1, "delta_z": 2},
|
||||
}
|
||||
|
||||
@property
|
||||
def feedback_features(self) -> dict:
|
||||
return {}
|
||||
|
||||
@property
|
||||
def is_connected(self) -> bool:
|
||||
pass
|
||||
|
||||
@property
|
||||
def is_calibrated(self) -> bool:
|
||||
return True
|
||||
|
||||
def connect(self) -> None:
|
||||
# use HidApi for macos
|
||||
if sys.platform == "darwin":
|
||||
# NOTE: On macOS, pygame doesn’t reliably detect input from some controllers so we fall back to hidapi
|
||||
from lerobot.scripts.server.end_effector_control_utils import GamepadControllerHID as Gamepad
|
||||
else:
|
||||
from lerobot.scripts.server.end_effector_control_utils import GamepadController as Gamepad
|
||||
|
||||
self.gamepad = Gamepad(
|
||||
x_step_size=self.config.x_step_size,
|
||||
y_step_size=self.config.y_step_size,
|
||||
z_step_size=self.config.z_step_size,
|
||||
)
|
||||
self.gamepad.start()
|
||||
|
||||
def calibrate(self) -> None:
|
||||
pass
|
||||
|
||||
def configure(self):
|
||||
pass
|
||||
|
||||
def get_action(self) -> dict[str, Any]:
|
||||
# Update the controller to get fresh inputs
|
||||
self.gamepad.update()
|
||||
|
||||
# Get movement deltas from the controller
|
||||
delta_x, delta_y, delta_z = self.gamepad.get_deltas()
|
||||
|
||||
# Create action from gamepad input
|
||||
gamepad_action = np.array([delta_x, delta_y, delta_z], dtype=np.float32)
|
||||
|
||||
action_dict = {
|
||||
"delta_x": gamepad_action[0],
|
||||
"delta_y": gamepad_action[1],
|
||||
"delta_z": gamepad_action[2],
|
||||
}
|
||||
|
||||
gripper_action = None
|
||||
if self.config.use_gripper:
|
||||
gripper_command = self.gamepad.gripper_command()
|
||||
gripper_action = gripper_action_map[gripper_command]
|
||||
action_dict["gripper"] = gripper_action
|
||||
|
||||
return action_dict
|
||||
|
||||
def send_feedback(self, feedback: dict[str, Any]) -> None:
|
||||
pass
|
||||
|
||||
def disconnect(self) -> None:
|
||||
pass
|
||||
@@ -17,10 +17,10 @@ import logging
|
||||
import os
|
||||
import os.path as osp
|
||||
import platform
|
||||
import subprocess
|
||||
import time
|
||||
import select
|
||||
import subprocess
|
||||
import sys
|
||||
import time
|
||||
from copy import copy, deepcopy
|
||||
from datetime import datetime, timezone
|
||||
from pathlib import Path
|
||||
@@ -254,6 +254,7 @@ def move_cursor_up(lines):
|
||||
"""Move the cursor up by a specified number of lines."""
|
||||
print(f"\033[{lines}A", end="")
|
||||
|
||||
|
||||
class TimerManager:
|
||||
"""
|
||||
Lightweight utility to measure elapsed time.
|
||||
|
||||
@@ -58,7 +58,7 @@ from lerobot.common.teleoperators import (
|
||||
from lerobot.common.utils.utils import init_logging, move_cursor_up
|
||||
from lerobot.common.utils.visualization_utils import _init_rerun
|
||||
|
||||
from .common.teleoperators import koch_leader, so100_leader, gamepad # noqa: F401
|
||||
from .common.teleoperators import gamepad, koch_leader, so100_leader # noqa: F401
|
||||
|
||||
|
||||
@dataclass
|
||||
|
||||
Reference in New Issue
Block a user