Add multithreading for video generation, Speed policy sampling
This commit is contained in:
29
README.md
29
README.md
@@ -56,6 +56,35 @@ python lerobot/scripts/eval.py \
|
||||
- [ ] add diffusion
|
||||
- [ ] add aloha 2
|
||||
|
||||
## Profile
|
||||
|
||||
**Example**
|
||||
```python
|
||||
from torch.profiler import profile, record_function, ProfilerActivity
|
||||
|
||||
def trace_handler(prof):
|
||||
prof.export_chrome_trace(f"tmp/trace_schedule_{prof.step_num}.json")
|
||||
|
||||
with profile(
|
||||
activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],
|
||||
schedule=torch.profiler.schedule(
|
||||
wait=2,
|
||||
warmup=2,
|
||||
active=3,
|
||||
),
|
||||
on_trace_ready=trace_handler
|
||||
) as prof:
|
||||
with record_function("eval_policy"):
|
||||
for i in range(num_episodes):
|
||||
prof.step()
|
||||
```
|
||||
|
||||
```bash
|
||||
python lerobot/scripts/eval.py \
|
||||
pretrained_model_path=/home/rcadene/code/fowm/logs/xarm_lift/all/default/2/models/final.pt \
|
||||
eval_episodes=7
|
||||
```
|
||||
|
||||
## Contribute
|
||||
|
||||
**style**
|
||||
|
||||
@@ -51,6 +51,11 @@ class TOLD(nn.Module):
|
||||
"""Predicts next latent state (d) and single-step reward (R)."""
|
||||
x = torch.cat([z, a], dim=-1)
|
||||
return self._dynamics(x), self._reward(x)
|
||||
|
||||
def next_dynamics(self, z, a):
|
||||
"""Predicts next latent state (d)."""
|
||||
x = torch.cat([z, a], dim=-1)
|
||||
return self._dynamics(x)
|
||||
|
||||
def pi(self, z, std=0):
|
||||
"""Samples an action from the learned policy (pi)."""
|
||||
@@ -191,7 +196,7 @@ class TDMPC(nn.Module):
|
||||
_z = z.repeat(num_pi_trajs, 1)
|
||||
for t in range(horizon):
|
||||
pi_actions[t] = self.model.pi(_z, self.cfg.min_std)
|
||||
_z, _ = self.model.next(_z, pi_actions[t])
|
||||
_z = self.model.next_dynamics(_z, pi_actions[t])
|
||||
|
||||
# Initialize state and parameters
|
||||
z = z.repeat(self.cfg.num_samples + num_pi_trajs, 1)
|
||||
@@ -241,6 +246,11 @@ class TDMPC(nn.Module):
|
||||
mean, std = self.cfg.momentum * mean + (1 - self.cfg.momentum) * _mean, _std
|
||||
|
||||
# Outputs
|
||||
# TODO(rcadene): remove numpy with
|
||||
# # Convert score tensor to probabilities using softmax
|
||||
# probabilities = torch.softmax(score, dim=0)
|
||||
# # Generate a random sample index based on the probabilities
|
||||
# sample_index = torch.multinomial(probabilities, 1).item()
|
||||
score = score.squeeze(1).cpu().numpy()
|
||||
actions = elite_actions[:, np.random.choice(np.arange(score.shape[0]), p=score)]
|
||||
self._prev_mean = mean
|
||||
|
||||
@@ -11,7 +11,10 @@ from torchrl.envs import EnvBase
|
||||
from lerobot.common.envs.factory import make_env
|
||||
from lerobot.common.tdmpc import TDMPC
|
||||
from lerobot.common.utils import set_seed
|
||||
import threading
|
||||
|
||||
def write_video(video_path, stacked_frames, fps):
|
||||
imageio.mimsave(video_path, stacked_frames, fps=fps)
|
||||
|
||||
def eval_policy(
|
||||
env: EnvBase,
|
||||
@@ -29,6 +32,7 @@ def eval_policy(
|
||||
sum_rewards = []
|
||||
max_rewards = []
|
||||
successes = []
|
||||
threads = []
|
||||
for i in range(num_episodes):
|
||||
ep_frames = []
|
||||
|
||||
@@ -63,7 +67,12 @@ def eval_policy(
|
||||
if save_video:
|
||||
video_dir.mkdir(parents=True, exist_ok=True)
|
||||
video_path = video_dir / f"eval_episode_{i}.mp4"
|
||||
imageio.mimsave(video_path, stacked_frames, fps=fps)
|
||||
thread = threading.Thread(
|
||||
target=write_video,
|
||||
args=(str(video_path), stacked_frames, fps),
|
||||
)
|
||||
thread.start()
|
||||
threads.append(thread)
|
||||
|
||||
first_episode = i == 0
|
||||
if wandb and first_episode:
|
||||
@@ -72,6 +81,9 @@ def eval_policy(
|
||||
)
|
||||
wandb.log({"eval_video": eval_video}, step=env_step)
|
||||
|
||||
for thread in threads:
|
||||
thread.join()
|
||||
|
||||
metrics = {
|
||||
"avg_sum_reward": np.nanmean(sum_rewards),
|
||||
"avg_max_reward": np.nanmean(max_rewards),
|
||||
@@ -90,6 +102,7 @@ def eval(cfg: dict, out_dir=None):
|
||||
raise NotImplementedError()
|
||||
|
||||
assert torch.cuda.is_available()
|
||||
torch.backends.cudnn.benchmark = True
|
||||
set_seed(cfg.seed)
|
||||
print(colored("Log dir:", "yellow", attrs=["bold"]), out_dir)
|
||||
|
||||
@@ -98,9 +111,9 @@ def eval(cfg: dict, out_dir=None):
|
||||
if cfg.pretrained_model_path:
|
||||
policy = TDMPC(cfg)
|
||||
if "offline" in cfg.pretrained_model_path:
|
||||
policy.step = 25000
|
||||
policy.step[0] = 25000
|
||||
elif "final" in cfg.pretrained_model_path:
|
||||
policy.step = 100000
|
||||
policy.step[0] = 100000
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
policy.load(cfg.pretrained_model_path)
|
||||
|
||||
@@ -46,6 +46,7 @@ def train(cfg: dict, out_dir=None, job_name=None):
|
||||
raise NotImplementedError()
|
||||
|
||||
assert torch.cuda.is_available()
|
||||
torch.backends.cudnn.benchmark = True
|
||||
set_seed(cfg.seed)
|
||||
print(colored("Work dir:", "yellow", attrs=["bold"]), out_dir)
|
||||
|
||||
@@ -55,9 +56,9 @@ def train(cfg: dict, out_dir=None, job_name=None):
|
||||
# TODO(rcadene): hack for old pretrained models from fowm
|
||||
if "fowm" in cfg.pretrained_model_path:
|
||||
if "offline" in cfg.pretrained_model_path:
|
||||
policy.step = 25000
|
||||
policy.step[0] = 25000
|
||||
elif "final" in cfg.pretrained_model_path:
|
||||
policy.step = 100000
|
||||
policy.step[0] = 100000
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
policy.load(cfg.pretrained_model_path)
|
||||
|
||||
Reference in New Issue
Block a user