Clean the code and remove todo
This commit is contained in:
@@ -1,23 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team.
|
||||
# All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from dataclasses import dataclass
|
||||
|
||||
|
||||
@dataclass
|
||||
class HILSerlConfig:
|
||||
pass
|
||||
@@ -1,29 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team.
|
||||
# All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import torch.nn as nn
|
||||
from huggingface_hub import PyTorchModelHubMixin
|
||||
|
||||
|
||||
class HILSerlPolicy(
|
||||
nn.Module,
|
||||
PyTorchModelHubMixin,
|
||||
library_name="lerobot",
|
||||
repo_url="https://github.com/huggingface/lerobot",
|
||||
tags=["robotics", "hilserl"],
|
||||
):
|
||||
pass
|
||||
@@ -15,8 +15,6 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# TODO: (1) better device management
|
||||
|
||||
import math
|
||||
from dataclasses import asdict
|
||||
from typing import Callable, List, Literal, Optional, Tuple
|
||||
@@ -254,7 +252,6 @@ class SACPolicy(
|
||||
with torch.no_grad():
|
||||
next_action_preds, next_log_probs, _ = self.actor(next_observations, next_observation_features)
|
||||
|
||||
# TODO: (maractingi, azouitine) This is to slow, we should find a way to do this in a more efficient way
|
||||
next_action_preds = self.unnormalize_outputs({"action": next_action_preds})["action"]
|
||||
|
||||
# 2- compute q targets
|
||||
@@ -378,7 +375,6 @@ class SACPolicy(
|
||||
) -> Tensor:
|
||||
actions_pi, log_probs, _ = self.actor(observations, observation_features)
|
||||
|
||||
# TODO: (maractingi, azouitine) This is to slow, we should find a way to do this in a more efficient way
|
||||
actions_pi: Tensor = self.unnormalize_outputs({"action": actions_pi})["action"]
|
||||
|
||||
q_preds = self.critic_forward(
|
||||
|
||||
@@ -226,7 +226,6 @@ def act_with_policy(
|
||||
### Instantiate the policy in both the actor and learner processes
|
||||
### To avoid sending a SACPolicy object through the port, we create a policy instance
|
||||
### on both sides, the learner sends the updated parameters every n steps to update the actor's parameters
|
||||
# TODO: At some point we should just need make sac policy
|
||||
policy: SACPolicy = make_policy(
|
||||
cfg=cfg.policy,
|
||||
env_cfg=cfg.env,
|
||||
@@ -280,7 +279,6 @@ def act_with_policy(
|
||||
|
||||
# NOTE: We override the action if the intervention is True, because the action applied is the intervention action
|
||||
if "is_intervention" in info and info["is_intervention"]:
|
||||
# TODO: Check the shape
|
||||
# NOTE: The action space for demonstration before hand is with the full action space
|
||||
# but sometimes for example we want to deactivate the gripper
|
||||
action = info["action_intervention"]
|
||||
@@ -301,16 +299,13 @@ def act_with_policy(
|
||||
next_state=next_obs,
|
||||
done=done,
|
||||
truncated=truncated, # TODO: (azouitine) Handle truncation properly
|
||||
complementary_info=info, # TODO Handle information for the transition, is_demonstraction: bool
|
||||
complementary_info=info,
|
||||
)
|
||||
)
|
||||
# assign obs to the next obs and continue the rollout
|
||||
obs = next_obs
|
||||
|
||||
# HACK: We have only one env but we want to batch it, it will be resolved with the torch box
|
||||
# Because we are using a single environment we can index at zero
|
||||
if done or truncated:
|
||||
# TODO: Handle logging for episode information
|
||||
logging.info(f"[ACTOR] Global step {interaction_step}: Episode reward: {sum_reward_episode}")
|
||||
|
||||
update_policy_parameters(policy=policy.actor, parameters_queue=parameters_queue, device=device)
|
||||
@@ -342,9 +337,10 @@ def act_with_policy(
|
||||
}
|
||||
)
|
||||
)
|
||||
|
||||
# Reset intervention counters
|
||||
sum_reward_episode = 0.0
|
||||
episode_intervention = False
|
||||
# Reset intervention counters
|
||||
episode_intervention_steps = 0
|
||||
episode_total_steps = 0
|
||||
obs, info = online_env.reset()
|
||||
|
||||
Reference in New Issue
Block a user