feat(sim): EnvHub - allow loading envs from the hub (#2121)

* add env from the hub support

* add safe loading

* changes

* add tests, docs

* more

* style/cleaning

* order

---------

Co-authored-by: Michel Aractingi <michel.aractingi@huggingface.co>
This commit is contained in:
Jade Choghari
2025-11-04 14:52:46 +01:00
committed by GitHub
parent 87ed3a2b6e
commit df0c335a5a
5 changed files with 745 additions and 4 deletions

View File

@@ -41,6 +41,8 @@
title: NVIDIA GR00T N1.5
title: "Policies"
- sections:
- local: envhub
title: Environments from the Hub
- local: il_sim
title: Imitation Learning in Sim
- local: libero

424
docs/source/envhub.mdx Normal file
View File

@@ -0,0 +1,424 @@
# Loading Environments from the Hub
The **EnvHub** feature allows you to load simulation environments directly from the Hugging Face Hub with a single line of code. This unlocks a powerful new model for collaboration: instead of environments being locked away inside monolithic libraries, anyone can publish custom environments and share them with the community.
## Overview
With EnvHub, you can:
- Load environments from the Hub instantly
- Share your custom simulation tasks with the community
- Version control your environments using Git
- Distribute complex physics simulations without packaging hassles
## Quick Start
Loading an environment from the Hub is as simple as:
```python
from lerobot.envs.factory import make_env
# Load a hub environment (requires explicit consent to run remote code)
env = make_env("lerobot/cartpole-env", trust_remote_code=True)
```
<Tip warning={true}>
**Security Notice**: Loading environments from the Hub executes Python code
from third-party repositories. Only use `trust_remote_code=True` with
repositories you trust. We strongly recommend pinning to a specific commit
hash for reproducibility and security.
</Tip>
## What is EnvHub?
EnvHub is a framework that allows researchers and developers to:
1. **Publish environments** to the Hugging Face Hub as Git repositories
2. **Load environments** dynamically without installing them as packages
3. **Version and track** environment changes using Git semantics
4. **Discover** new simulation tasks shared by the community
This design means you can go from discovering an interesting environment on the Hub to running experiments in seconds, without worrying about dependency conflicts or complex installation procedures.
## Repository Structure
To make your environment loadable from the Hub, your repository must contain at minimum:
### Required Files
**`env.py`** (or custom Python file)
- Must expose a `make_env(n_envs: int, use_async_envs: bool)` function
- This function should return one of:
- A `gym.vector.VectorEnv` (most common)
- A single `gym.Env` (will be automatically wrapped)
- A dict mapping `{suite_name: {task_id: VectorEnv}}` (for multi-task benchmarks)
### Optional Files
**`requirements.txt`**
- List any additional dependencies your environment needs
- Users will need to install these manually before loading your environment
**`README.md`**
- Document your environment: what task it implements, observation/action spaces, rewards, etc.
- Include usage examples and any special setup instructions
**`.gitignore`**
- Exclude unnecessary files from your repository
### Example Repository Structure
```
my-environment-repo/
├── env.py # Main environment definition (required)
├── requirements.txt # Dependencies (optional)
├── README.md # Documentation (recommended)
├── assets/ # Images, videos, etc. (optional)
│ └── demo.gif
└── configs/ # Config files if needed (optional)
└── task_config.yaml
```
## Creating Your Environment Repository
### Step 1: Define Your Environment
Create an `env.py` file with a `make_env` function:
```python
# env.py
import gymnasium as gym
def make_env(n_envs: int = 1, use_async_envs: bool = False):
"""
Create vectorized environments for your custom task.
Args:
n_envs: Number of parallel environments
use_async_envs: Whether to use AsyncVectorEnv or SyncVectorEnv
Returns:
gym.vector.VectorEnv or dict mapping suite names to vectorized envs
"""
def _make_single_env():
# Create your custom environment
return gym.make("CartPole-v1")
# Choose vector environment type
env_cls = gym.vector.AsyncVectorEnv if use_async_envs else gym.vector.SyncVectorEnv
# Create vectorized environment
vec_env = env_cls([_make_single_env for _ in range(n_envs)])
return vec_env
```
### Step 2: Test Locally
Before uploading, test your environment locally:
```python
from lerobot.envs.utils import _load_module_from_path, _call_make_env, _normalize_hub_result
# Load your module
module = _load_module_from_path("./env.py")
# Test the make_env function
result = _call_make_env(module, n_envs=2, use_async_envs=False)
normalized = _normalize_hub_result(result)
# Verify it works
suite_name = next(iter(normalized))
env = normalized[suite_name][0]
obs, info = env.reset()
print(f"Observation shape: {obs.shape if hasattr(obs, 'shape') else type(obs)}")
env.close()
```
### Step 3: Upload to the Hub
Upload your repository to Hugging Face:
```bash
# Install huggingface_hub if needed
pip install huggingface_hub
# Login to Hugging Face
huggingface-cli login
# Create a new repository
huggingface-cli repo create my-custom-env --type space --org my-org
# Initialize git and push
git init
git add .
git commit -m "Initial environment implementation"
git remote add origin https://huggingface.co/my-org/my-custom-env
git push -u origin main
```
Alternatively, use the `huggingface_hub` Python API:
```python
from huggingface_hub import HfApi
api = HfApi()
# Create repository
api.create_repo("my-custom-env", repo_type="space")
# Upload files
api.upload_folder(
folder_path="./my-env-folder",
repo_id="username/my-custom-env",
repo_type="space",
)
```
## Loading Environments from the Hub
### Basic Usage
```python
from lerobot.envs.factory import make_env
# Load from the hub
envs_dict = make_env(
"username/my-custom-env",
n_envs=4,
trust_remote_code=True
)
# Access the environment
suite_name = next(iter(envs_dict))
env = envs_dict[suite_name][0]
# Use it like any gym environment
obs, info = env.reset()
action = env.action_space.sample()
obs, reward, terminated, truncated, info = env.step(action)
```
### Advanced: Pinning to Specific Versions
For reproducibility and security, pin to a specific Git revision:
```python
# Pin to a specific branch
env = make_env("username/my-env@main", trust_remote_code=True)
# Pin to a specific commit (recommended for papers/experiments)
env = make_env("username/my-env@abc123def456", trust_remote_code=True)
# Pin to a tag
env = make_env("username/my-env@v1.0.0", trust_remote_code=True)
```
### Custom File Paths
If your environment definition is not in `env.py`:
```python
# Load from a custom file
env = make_env("username/my-env:custom_env.py", trust_remote_code=True)
# Combine with version pinning
env = make_env("username/my-env@v1.0:envs/task_a.py", trust_remote_code=True)
```
### Async Environments
For better performance with multiple environments:
```python
envs_dict = make_env(
"username/my-env",
n_envs=8,
use_async_envs=True, # Use AsyncVectorEnv for parallel execution
trust_remote_code=True
)
```
## URL Format Reference
The hub URL format supports several patterns:
| Pattern | Description | Example |
| -------------------- | ------------------------------ | -------------------------------------- |
| `user/repo` | Load `env.py` from main branch | `make_env("lerobot/pusht-env")` |
| `user/repo@revision` | Load from specific revision | `make_env("lerobot/pusht-env@main")` |
| `user/repo:path` | Load custom file | `make_env("lerobot/envs:pusht.py")` |
| `user/repo@rev:path` | Revision + custom file | `make_env("lerobot/envs@v1:pusht.py")` |
## Multi-Task Environments
For benchmarks with multiple tasks (like LIBERO), return a nested dictionary:
```python
def make_env(n_envs: int = 1, use_async_envs: bool = False):
env_cls = gym.vector.AsyncVectorEnv if use_async_envs else gym.vector.SyncVectorEnv
# Return dict: {suite_name: {task_id: VectorEnv}}
return {
"suite_1": {
0: env_cls([lambda: gym.make("Task1-v0") for _ in range(n_envs)]),
1: env_cls([lambda: gym.make("Task2-v0") for _ in range(n_envs)]),
},
"suite_2": {
0: env_cls([lambda: gym.make("Task3-v0") for _ in range(n_envs)]),
}
}
```
## Security Considerations
<Tip warning={true}>
**Important**: The `trust_remote_code=True` flag is required to execute
environment code from the Hub. This is by design for security.
</Tip>
When loading environments from the Hub:
1. **Review the code first**: Visit the repository and inspect `env.py` before loading
2. **Pin to commits**: Use specific commit hashes for reproducibility
3. **Check dependencies**: Review `requirements.txt` for suspicious packages
4. **Use trusted sources**: Prefer official organizations or well-known researchers
5. **Sandbox if needed**: Run untrusted code in isolated environments (containers, VMs)
Example of safe usage:
```python
# ❌ BAD: Loading without inspection
env = make_env("random-user/untrusted-env", trust_remote_code=True)
# ✅ GOOD: Review code, then pin to specific commit
# 1. Visit https://huggingface.co/trusted-org/verified-env
# 2. Review the env.py file
# 3. Copy the commit hash
env = make_env("trusted-org/verified-env@a1b2c3d4", trust_remote_code=True)
```
## Example: CartPole from the Hub
Here's a complete example using the reference CartPole environment:
```python
from lerobot.envs.factory import make_env
import numpy as np
# Load the environment
envs_dict = make_env("lerobot/cartpole-env", n_envs=4, trust_remote_code=True)
# Get the vectorized environment
suite_name = next(iter(envs_dict))
env = envs_dict[suite_name][0]
# Run a simple episode
obs, info = env.reset()
done = np.zeros(env.num_envs, dtype=bool)
total_reward = np.zeros(env.num_envs)
while not done.all():
# Random policy
action = env.action_space.sample()
obs, reward, terminated, truncated, info = env.step(action)
total_reward += reward
done = terminated | truncated
print(f"Average reward: {total_reward.mean():.2f}")
env.close()
```
## Benefits of EnvHub
### For Environment Authors
- **Easy distribution**: No PyPI packaging required
- **Version control**: Use Git for environment versioning
- **Rapid iteration**: Push updates instantly
- **Documentation**: Hub README renders beautifully
- **Community**: Reach LeRobot users directly
### For Researchers
- **Quick experiments**: Load any environment in one line
- **Reproducibility**: Pin to specific commits
- **Discovery**: Browse environments on the Hub
- **No conflicts**: No need to install conflicting packages
### For the Community
- **Growing ecosystem**: More diverse simulation tasks
- **Standardization**: Common `make_env` API
- **Collaboration**: Fork and improve existing environments
- **Accessibility**: Lower barrier to sharing research
## Troubleshooting
### "Refusing to execute remote code"
You must explicitly pass `trust_remote_code=True`:
```python
env = make_env("user/repo", trust_remote_code=True)
```
### "Module X not found"
The hub environment has dependencies you need to install:
```bash
# Check the repo's requirements.txt and install dependencies
pip install gymnasium numpy
```
### "make_env not found in module"
Your `env.py` must expose a `make_env` function:
```python
def make_env(n_envs: int, use_async_envs: bool):
# Your implementation
pass
```
### Environment returns wrong type
The `make_env` function must return:
- A `gym.vector.VectorEnv`, or
- A single `gym.Env`, or
- A dict `{suite_name: {task_id: VectorEnv}}`
## Best Practices
1. **Document your environment**: Include observation/action space descriptions, reward structure, and termination conditions in your README
2. **Add requirements.txt**: List all dependencies with versions
3. **Test thoroughly**: Verify your environment works locally before pushing
4. **Use semantic versioning**: Tag releases with version numbers
5. **Add examples**: Include usage examples in your README
6. **Keep it simple**: Minimize dependencies when possible
7. **License your work**: Add a LICENSE file to clarify usage terms
## Future Directions
The EnvHub ecosystem enables exciting possibilities:
- **GPU-accelerated physics**: Share Isaac Gym or Brax environments
- **Photorealistic rendering**: Distribute environments with advanced graphics
- **Multi-agent scenarios**: Complex interaction tasks
- **Real-world simulators**: Digital twins of physical setups
- **Procedural generation**: Infinite task variations
- **Domain randomization**: Pre-configured DR pipelines
As more researchers and developers contribute, the diversity and quality of available environments will grow, benefiting the entire robotics learning community.
## See Also
- [Hugging Face Hub Documentation](https://huggingface.co/docs/hub/en/index)
- [Gymnasium Documentation](https://gymnasium.farama.org/index.html)
- [Example Hub Environment](https://huggingface.co/lerobot/cartpole-env)

View File

@@ -19,6 +19,7 @@ import gymnasium as gym
from gymnasium.envs.registration import registry as gym_registry
from lerobot.envs.configs import AlohaEnv, EnvConfig, LiberoEnv, PushtEnv
from lerobot.envs.utils import _call_make_env, _download_hub_file, _import_hub_module, _normalize_hub_result
def make_env_config(env_type: str, **kwargs) -> EnvConfig:
@@ -33,15 +34,24 @@ def make_env_config(env_type: str, **kwargs) -> EnvConfig:
def make_env(
cfg: EnvConfig, n_envs: int = 1, use_async_envs: bool = False
cfg: EnvConfig | str,
n_envs: int = 1,
use_async_envs: bool = False,
hub_cache_dir: str | None = None,
trust_remote_code: bool = False,
) -> dict[str, dict[int, gym.vector.VectorEnv]]:
"""Makes a gym vector environment according to the config.
"""Makes a gym vector environment according to the config or Hub reference.
Args:
cfg (EnvConfig): the config of the environment to instantiate.
cfg (EnvConfig | str): Either an `EnvConfig` object describing the environment to build locally,
or a Hugging Face Hub repository identifier (e.g. `"username/repo"`). In the latter case,
the repo must include a Python file (usually `env.py`).
n_envs (int, optional): The number of parallelized env to return. Defaults to 1.
use_async_envs (bool, optional): Whether to return an AsyncVectorEnv or a SyncVectorEnv. Defaults to
False.
hub_cache_dir (str | None): Optional cache path for downloaded hub files.
trust_remote_code (bool): **Explicit consent** to execute remote code from the Hub.
Default False — must be set to True to import/exec hub `env.py`.
Raises:
ValueError: if n_envs < 1
@@ -54,6 +64,21 @@ def make_env(
- For single-task environments: a single suite entry (cfg.type) with task_id=0.
"""
# if user passed a hub id string (e.g., "username/repo", "username/repo@main:env.py")
# simplified: only support hub-provided `make_env`
if isinstance(cfg, str):
# _download_hub_file will raise the same RuntimeError if trust_remote_code is False
repo_id, file_path, local_file, revision = _download_hub_file(cfg, trust_remote_code, hub_cache_dir)
# import and surface clear import errors
module = _import_hub_module(local_file, repo_id)
# call the hub-provided make_env
raw_result = _call_make_env(module, n_envs=n_envs, use_async_envs=use_async_envs)
# normalize the return into {suite: {task_id: vec_env}}
return _normalize_hub_result(raw_result)
if n_envs < 1:
raise ValueError("`n_envs` must be at least 1")

View File

@@ -13,6 +13,8 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib.util
import os
import warnings
from collections.abc import Mapping, Sequence
from functools import singledispatch
@@ -22,6 +24,7 @@ import einops
import gymnasium as gym
import numpy as np
import torch
from huggingface_hub import hf_hub_download, snapshot_download
from torch import Tensor
from lerobot.configs.types import FeatureType, PolicyFeature
@@ -195,3 +198,132 @@ def _(envs: Sequence) -> None:
@close_envs.register
def _(env: gym.Env) -> None:
_close_single_env(env)
# helper to safely load a python file as a module
def _load_module_from_path(path: str, module_name: str | None = None):
module_name = module_name or f"hub_env_{os.path.basename(path).replace('.', '_')}"
spec = importlib.util.spec_from_file_location(module_name, path)
if spec is None:
raise ImportError(f"Could not load module spec for {module_name} from {path}")
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module) # type: ignore
return module
# helper to parse hub string (supports "user/repo", "user/repo@rev", optional path)
# examples:
# "user/repo" -> will look for env.py at repo root
# "user/repo@main:envs/my_env.py" -> explicit revision and path
def _parse_hub_url(hub_uri: str):
# very small parser: [repo_id][@revision][:path]
# repo_id is required (user/repo or org/repo)
revision = None
file_path = "env.py"
if "@" in hub_uri:
repo_and_rev, *rest = hub_uri.split(":", 1)
repo_id, rev = repo_and_rev.split("@", 1)
revision = rev
if rest:
file_path = rest[0]
else:
repo_id, *rest = hub_uri.split(":", 1)
if rest:
file_path = rest[0]
return repo_id, revision, file_path
def _download_hub_file(
cfg_str: str,
trust_remote_code: bool,
hub_cache_dir: str | None,
) -> tuple[str, str, str, str]:
"""
Parse `cfg_str` (hub URL), enforce `trust_remote_code`, and return
(repo_id, file_path, local_file, revision).
"""
if not trust_remote_code:
raise RuntimeError(
f"Refusing to execute remote code from the Hub for '{cfg_str}'. "
"Executing hub env modules runs arbitrary Python code from third-party repositories. "
"If you trust this repo and understand the risks, call `make_env(..., trust_remote_code=True)` "
"and prefer pinning to a specific revision: 'user/repo@<commit-hash>:env.py'."
)
repo_id, revision, file_path = _parse_hub_url(cfg_str)
try:
local_file = hf_hub_download(
repo_id=repo_id, filename=file_path, revision=revision, cache_dir=hub_cache_dir
)
except Exception as e:
# fallback to snapshot download
snapshot_dir = snapshot_download(repo_id=repo_id, revision=revision, cache_dir=hub_cache_dir)
local_file = os.path.join(snapshot_dir, file_path)
if not os.path.exists(local_file):
raise FileNotFoundError(
f"Could not find {file_path} in repository {repo_id}@{revision or 'main'}"
) from e
return repo_id, file_path, local_file, revision
def _import_hub_module(local_file: str, repo_id: str) -> Any:
"""
Import the downloaded file as a module and surface helpful import error messages.
"""
module_name = f"hub_env_{repo_id.replace('/', '_')}"
try:
module = _load_module_from_path(local_file, module_name=module_name)
except ModuleNotFoundError as e:
missing = getattr(e, "name", None) or str(e)
raise ModuleNotFoundError(
f"Hub env '{repo_id}:{os.path.basename(local_file)}' failed to import because the dependency "
f"'{missing}' is not installed locally.\n\n"
) from e
except ImportError as e:
raise ImportError(
f"Failed to load hub env module '{repo_id}:{os.path.basename(local_file)}'. Import error: {e}\n\n"
) from e
return module
def _call_make_env(module: Any, n_envs: int, use_async_envs: bool) -> Any:
"""
Ensure module exposes make_env and call it.
"""
if not hasattr(module, "make_env"):
raise AttributeError(
f"The hub module {getattr(module, '__name__', 'hub_module')} must expose `make_env(n_envs=int, use_async_envs=bool)`."
)
entry_fn = module.make_env
return entry_fn(n_envs=n_envs, use_async_envs=use_async_envs)
def _normalize_hub_result(result: Any) -> dict[str, dict[int, gym.vector.VectorEnv]]:
"""
Normalize possible return types from hub `make_env` into the mapping:
{ suite_name: { task_id: vector_env } }
Accepts:
- dict (assumed already correct)
- gym.vector.VectorEnv
- gym.Env (will be wrapped into SyncVectorEnv)
"""
if isinstance(result, dict):
return result
# VectorEnv: use its spec.id if available
if isinstance(result, gym.vector.VectorEnv):
suite_name = getattr(result, "spec", None) and getattr(result.spec, "id", None) or "hub_env"
return {suite_name: {0: result}}
# Single Env: wrap into SyncVectorEnv
if isinstance(result, gym.Env):
vec = gym.vector.SyncVectorEnv([lambda: result])
suite_name = getattr(result, "spec", None) and getattr(result.spec, "id", None) or "hub_env"
return {suite_name: {0: vec}}
raise ValueError(
"Hub `make_env` must return either a mapping {suite: {task_id: vec_env}}, "
"a gym.vector.VectorEnv, or a single gym.Env."
)

View File

@@ -17,6 +17,7 @@ import importlib
from dataclasses import dataclass, field
import gymnasium as gym
import numpy as np
import pytest
import torch
from gymnasium.envs.registration import register, registry as gym_registry
@@ -26,7 +27,11 @@ import lerobot
from lerobot.configs.types import PolicyFeature
from lerobot.envs.configs import EnvConfig
from lerobot.envs.factory import make_env, make_env_config
from lerobot.envs.utils import preprocess_observation
from lerobot.envs.utils import (
_normalize_hub_result,
_parse_hub_url,
preprocess_observation,
)
from tests.utils import require_env
OBS_TYPES = ["state", "pixels", "pixels_agent_pos"]
@@ -108,3 +113,156 @@ def test_factory_custom_gym_id():
finally:
if gym_id in gym_registry:
del gym_registry[gym_id]
# Hub environment loading tests
def test_make_env_hub_url_parsing():
"""Test URL parsing for hub environment references."""
# simple repo_id
repo_id, revision, file_path = _parse_hub_url("user/repo")
assert repo_id == "user/repo"
assert revision is None
assert file_path == "env.py"
# repo with revision
repo_id, revision, file_path = _parse_hub_url("user/repo@main")
assert repo_id == "user/repo"
assert revision == "main"
assert file_path == "env.py"
# repo with custom file path
repo_id, revision, file_path = _parse_hub_url("user/repo:custom_env.py")
assert repo_id == "user/repo"
assert revision is None
assert file_path == "custom_env.py"
# repo with revision and custom file path
repo_id, revision, file_path = _parse_hub_url("user/repo@v1.0:envs/my_env.py")
assert repo_id == "user/repo"
assert revision == "v1.0"
assert file_path == "envs/my_env.py"
# repo with commit hash
repo_id, revision, file_path = _parse_hub_url("org/repo@abc123def456")
assert repo_id == "org/repo"
assert revision == "abc123def456"
assert file_path == "env.py"
def test_normalize_hub_result():
"""Test normalization of different return types from hub make_env."""
# test with VectorEnv (most common case)
mock_vec_env = gym.vector.SyncVectorEnv([lambda: gym.make("CartPole-v1")])
result = _normalize_hub_result(mock_vec_env)
assert isinstance(result, dict)
assert len(result) == 1
suite_name = next(iter(result))
assert 0 in result[suite_name]
assert isinstance(result[suite_name][0], gym.vector.VectorEnv)
mock_vec_env.close()
# test with single Env
mock_env = gym.make("CartPole-v1")
result = _normalize_hub_result(mock_env)
assert isinstance(result, dict)
suite_name = next(iter(result))
assert 0 in result[suite_name]
assert isinstance(result[suite_name][0], gym.vector.VectorEnv)
result[suite_name][0].close()
# test with dict (already normalized)
mock_vec_env = gym.vector.SyncVectorEnv([lambda: gym.make("CartPole-v1")])
input_dict = {"my_suite": {0: mock_vec_env}}
result = _normalize_hub_result(input_dict)
assert result == input_dict
assert "my_suite" in result
assert 0 in result["my_suite"]
mock_vec_env.close()
# test with invalid type
with pytest.raises(ValueError, match="Hub `make_env` must return"):
_normalize_hub_result("invalid_type")
def test_make_env_from_hub_requires_trust_remote_code():
"""Test that loading from hub requires explicit trust_remote_code=True."""
hub_id = "lerobot/cartpole-env"
# Should raise RuntimeError when trust_remote_code=False (default)
with pytest.raises(RuntimeError, match="Refusing to execute remote code"):
make_env(hub_id, trust_remote_code=False)
# Should also raise when not specified (defaults to False)
with pytest.raises(RuntimeError, match="Refusing to execute remote code"):
make_env(hub_id)
@pytest.mark.parametrize(
"hub_id",
[
"lerobot/cartpole-env",
"lerobot/cartpole-env@main",
"lerobot/cartpole-env:env.py",
],
)
def test_make_env_from_hub_with_trust(hub_id):
"""Test loading environment from Hugging Face Hub with trust_remote_code=True."""
# load environment from hub
envs_dict = make_env(hub_id, n_envs=2, trust_remote_code=True)
# verify structure
assert isinstance(envs_dict, dict)
assert len(envs_dict) >= 1
# get the first suite and task
suite_name = next(iter(envs_dict))
task_id = next(iter(envs_dict[suite_name]))
env = envs_dict[suite_name][task_id]
# verify it's a vector environment
assert isinstance(env, gym.vector.VectorEnv)
assert env.num_envs == 2
# test basic environment interaction
obs, info = env.reset()
assert obs is not None
assert isinstance(obs, (dict, np.ndarray))
# take a random action
action = env.action_space.sample()
obs, reward, terminated, truncated, info = env.step(action)
assert obs is not None
assert isinstance(reward, np.ndarray)
assert len(reward) == 2
# clean up
env.close()
def test_make_env_from_hub_async():
"""Test loading hub environment with async vector environments."""
hub_id = "lerobot/cartpole-env"
# load with async envs
envs_dict = make_env(hub_id, n_envs=2, use_async_envs=True, trust_remote_code=True)
suite_name = next(iter(envs_dict))
task_id = next(iter(envs_dict[suite_name]))
env = envs_dict[suite_name][task_id]
# verify it's an async vector environment
assert isinstance(env, gym.vector.AsyncVectorEnv)
assert env.num_envs == 2
# test basic interaction
obs, info = env.reset()
assert obs is not None
action = env.action_space.sample()
obs, reward, terminated, truncated, info = env.step(action)
assert len(reward) == 2
# clean up
env.close()