feat(sim): EnvHub - allow loading envs from the hub (#2121)
* add env from the hub support * add safe loading * changes * add tests, docs * more * style/cleaning * order --------- Co-authored-by: Michel Aractingi <michel.aractingi@huggingface.co>
This commit is contained in:
@@ -41,6 +41,8 @@
|
||||
title: NVIDIA GR00T N1.5
|
||||
title: "Policies"
|
||||
- sections:
|
||||
- local: envhub
|
||||
title: Environments from the Hub
|
||||
- local: il_sim
|
||||
title: Imitation Learning in Sim
|
||||
- local: libero
|
||||
|
||||
424
docs/source/envhub.mdx
Normal file
424
docs/source/envhub.mdx
Normal file
@@ -0,0 +1,424 @@
|
||||
# Loading Environments from the Hub
|
||||
|
||||
The **EnvHub** feature allows you to load simulation environments directly from the Hugging Face Hub with a single line of code. This unlocks a powerful new model for collaboration: instead of environments being locked away inside monolithic libraries, anyone can publish custom environments and share them with the community.
|
||||
|
||||
## Overview
|
||||
|
||||
With EnvHub, you can:
|
||||
|
||||
- Load environments from the Hub instantly
|
||||
- Share your custom simulation tasks with the community
|
||||
- Version control your environments using Git
|
||||
- Distribute complex physics simulations without packaging hassles
|
||||
|
||||
## Quick Start
|
||||
|
||||
Loading an environment from the Hub is as simple as:
|
||||
|
||||
```python
|
||||
from lerobot.envs.factory import make_env
|
||||
|
||||
# Load a hub environment (requires explicit consent to run remote code)
|
||||
env = make_env("lerobot/cartpole-env", trust_remote_code=True)
|
||||
```
|
||||
|
||||
<Tip warning={true}>
|
||||
**Security Notice**: Loading environments from the Hub executes Python code
|
||||
from third-party repositories. Only use `trust_remote_code=True` with
|
||||
repositories you trust. We strongly recommend pinning to a specific commit
|
||||
hash for reproducibility and security.
|
||||
</Tip>
|
||||
|
||||
## What is EnvHub?
|
||||
|
||||
EnvHub is a framework that allows researchers and developers to:
|
||||
|
||||
1. **Publish environments** to the Hugging Face Hub as Git repositories
|
||||
2. **Load environments** dynamically without installing them as packages
|
||||
3. **Version and track** environment changes using Git semantics
|
||||
4. **Discover** new simulation tasks shared by the community
|
||||
|
||||
This design means you can go from discovering an interesting environment on the Hub to running experiments in seconds, without worrying about dependency conflicts or complex installation procedures.
|
||||
|
||||
## Repository Structure
|
||||
|
||||
To make your environment loadable from the Hub, your repository must contain at minimum:
|
||||
|
||||
### Required Files
|
||||
|
||||
**`env.py`** (or custom Python file)
|
||||
|
||||
- Must expose a `make_env(n_envs: int, use_async_envs: bool)` function
|
||||
- This function should return one of:
|
||||
- A `gym.vector.VectorEnv` (most common)
|
||||
- A single `gym.Env` (will be automatically wrapped)
|
||||
- A dict mapping `{suite_name: {task_id: VectorEnv}}` (for multi-task benchmarks)
|
||||
|
||||
### Optional Files
|
||||
|
||||
**`requirements.txt`**
|
||||
|
||||
- List any additional dependencies your environment needs
|
||||
- Users will need to install these manually before loading your environment
|
||||
|
||||
**`README.md`**
|
||||
|
||||
- Document your environment: what task it implements, observation/action spaces, rewards, etc.
|
||||
- Include usage examples and any special setup instructions
|
||||
|
||||
**`.gitignore`**
|
||||
|
||||
- Exclude unnecessary files from your repository
|
||||
|
||||
### Example Repository Structure
|
||||
|
||||
```
|
||||
my-environment-repo/
|
||||
├── env.py # Main environment definition (required)
|
||||
├── requirements.txt # Dependencies (optional)
|
||||
├── README.md # Documentation (recommended)
|
||||
├── assets/ # Images, videos, etc. (optional)
|
||||
│ └── demo.gif
|
||||
└── configs/ # Config files if needed (optional)
|
||||
└── task_config.yaml
|
||||
```
|
||||
|
||||
## Creating Your Environment Repository
|
||||
|
||||
### Step 1: Define Your Environment
|
||||
|
||||
Create an `env.py` file with a `make_env` function:
|
||||
|
||||
```python
|
||||
# env.py
|
||||
import gymnasium as gym
|
||||
|
||||
def make_env(n_envs: int = 1, use_async_envs: bool = False):
|
||||
"""
|
||||
Create vectorized environments for your custom task.
|
||||
|
||||
Args:
|
||||
n_envs: Number of parallel environments
|
||||
use_async_envs: Whether to use AsyncVectorEnv or SyncVectorEnv
|
||||
|
||||
Returns:
|
||||
gym.vector.VectorEnv or dict mapping suite names to vectorized envs
|
||||
"""
|
||||
def _make_single_env():
|
||||
# Create your custom environment
|
||||
return gym.make("CartPole-v1")
|
||||
|
||||
# Choose vector environment type
|
||||
env_cls = gym.vector.AsyncVectorEnv if use_async_envs else gym.vector.SyncVectorEnv
|
||||
|
||||
# Create vectorized environment
|
||||
vec_env = env_cls([_make_single_env for _ in range(n_envs)])
|
||||
|
||||
return vec_env
|
||||
```
|
||||
|
||||
### Step 2: Test Locally
|
||||
|
||||
Before uploading, test your environment locally:
|
||||
|
||||
```python
|
||||
from lerobot.envs.utils import _load_module_from_path, _call_make_env, _normalize_hub_result
|
||||
|
||||
# Load your module
|
||||
module = _load_module_from_path("./env.py")
|
||||
|
||||
# Test the make_env function
|
||||
result = _call_make_env(module, n_envs=2, use_async_envs=False)
|
||||
normalized = _normalize_hub_result(result)
|
||||
|
||||
# Verify it works
|
||||
suite_name = next(iter(normalized))
|
||||
env = normalized[suite_name][0]
|
||||
obs, info = env.reset()
|
||||
print(f"Observation shape: {obs.shape if hasattr(obs, 'shape') else type(obs)}")
|
||||
env.close()
|
||||
```
|
||||
|
||||
### Step 3: Upload to the Hub
|
||||
|
||||
Upload your repository to Hugging Face:
|
||||
|
||||
```bash
|
||||
# Install huggingface_hub if needed
|
||||
pip install huggingface_hub
|
||||
|
||||
# Login to Hugging Face
|
||||
huggingface-cli login
|
||||
|
||||
# Create a new repository
|
||||
huggingface-cli repo create my-custom-env --type space --org my-org
|
||||
|
||||
# Initialize git and push
|
||||
git init
|
||||
git add .
|
||||
git commit -m "Initial environment implementation"
|
||||
git remote add origin https://huggingface.co/my-org/my-custom-env
|
||||
git push -u origin main
|
||||
```
|
||||
|
||||
Alternatively, use the `huggingface_hub` Python API:
|
||||
|
||||
```python
|
||||
from huggingface_hub import HfApi
|
||||
|
||||
api = HfApi()
|
||||
|
||||
# Create repository
|
||||
api.create_repo("my-custom-env", repo_type="space")
|
||||
|
||||
# Upload files
|
||||
api.upload_folder(
|
||||
folder_path="./my-env-folder",
|
||||
repo_id="username/my-custom-env",
|
||||
repo_type="space",
|
||||
)
|
||||
```
|
||||
|
||||
## Loading Environments from the Hub
|
||||
|
||||
### Basic Usage
|
||||
|
||||
```python
|
||||
from lerobot.envs.factory import make_env
|
||||
|
||||
# Load from the hub
|
||||
envs_dict = make_env(
|
||||
"username/my-custom-env",
|
||||
n_envs=4,
|
||||
trust_remote_code=True
|
||||
)
|
||||
|
||||
# Access the environment
|
||||
suite_name = next(iter(envs_dict))
|
||||
env = envs_dict[suite_name][0]
|
||||
|
||||
# Use it like any gym environment
|
||||
obs, info = env.reset()
|
||||
action = env.action_space.sample()
|
||||
obs, reward, terminated, truncated, info = env.step(action)
|
||||
```
|
||||
|
||||
### Advanced: Pinning to Specific Versions
|
||||
|
||||
For reproducibility and security, pin to a specific Git revision:
|
||||
|
||||
```python
|
||||
# Pin to a specific branch
|
||||
env = make_env("username/my-env@main", trust_remote_code=True)
|
||||
|
||||
# Pin to a specific commit (recommended for papers/experiments)
|
||||
env = make_env("username/my-env@abc123def456", trust_remote_code=True)
|
||||
|
||||
# Pin to a tag
|
||||
env = make_env("username/my-env@v1.0.0", trust_remote_code=True)
|
||||
```
|
||||
|
||||
### Custom File Paths
|
||||
|
||||
If your environment definition is not in `env.py`:
|
||||
|
||||
```python
|
||||
# Load from a custom file
|
||||
env = make_env("username/my-env:custom_env.py", trust_remote_code=True)
|
||||
|
||||
# Combine with version pinning
|
||||
env = make_env("username/my-env@v1.0:envs/task_a.py", trust_remote_code=True)
|
||||
```
|
||||
|
||||
### Async Environments
|
||||
|
||||
For better performance with multiple environments:
|
||||
|
||||
```python
|
||||
envs_dict = make_env(
|
||||
"username/my-env",
|
||||
n_envs=8,
|
||||
use_async_envs=True, # Use AsyncVectorEnv for parallel execution
|
||||
trust_remote_code=True
|
||||
)
|
||||
```
|
||||
|
||||
## URL Format Reference
|
||||
|
||||
The hub URL format supports several patterns:
|
||||
|
||||
| Pattern | Description | Example |
|
||||
| -------------------- | ------------------------------ | -------------------------------------- |
|
||||
| `user/repo` | Load `env.py` from main branch | `make_env("lerobot/pusht-env")` |
|
||||
| `user/repo@revision` | Load from specific revision | `make_env("lerobot/pusht-env@main")` |
|
||||
| `user/repo:path` | Load custom file | `make_env("lerobot/envs:pusht.py")` |
|
||||
| `user/repo@rev:path` | Revision + custom file | `make_env("lerobot/envs@v1:pusht.py")` |
|
||||
|
||||
## Multi-Task Environments
|
||||
|
||||
For benchmarks with multiple tasks (like LIBERO), return a nested dictionary:
|
||||
|
||||
```python
|
||||
def make_env(n_envs: int = 1, use_async_envs: bool = False):
|
||||
env_cls = gym.vector.AsyncVectorEnv if use_async_envs else gym.vector.SyncVectorEnv
|
||||
|
||||
# Return dict: {suite_name: {task_id: VectorEnv}}
|
||||
return {
|
||||
"suite_1": {
|
||||
0: env_cls([lambda: gym.make("Task1-v0") for _ in range(n_envs)]),
|
||||
1: env_cls([lambda: gym.make("Task2-v0") for _ in range(n_envs)]),
|
||||
},
|
||||
"suite_2": {
|
||||
0: env_cls([lambda: gym.make("Task3-v0") for _ in range(n_envs)]),
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Security Considerations
|
||||
|
||||
<Tip warning={true}>
|
||||
**Important**: The `trust_remote_code=True` flag is required to execute
|
||||
environment code from the Hub. This is by design for security.
|
||||
</Tip>
|
||||
|
||||
When loading environments from the Hub:
|
||||
|
||||
1. **Review the code first**: Visit the repository and inspect `env.py` before loading
|
||||
2. **Pin to commits**: Use specific commit hashes for reproducibility
|
||||
3. **Check dependencies**: Review `requirements.txt` for suspicious packages
|
||||
4. **Use trusted sources**: Prefer official organizations or well-known researchers
|
||||
5. **Sandbox if needed**: Run untrusted code in isolated environments (containers, VMs)
|
||||
|
||||
Example of safe usage:
|
||||
|
||||
```python
|
||||
# ❌ BAD: Loading without inspection
|
||||
env = make_env("random-user/untrusted-env", trust_remote_code=True)
|
||||
|
||||
# ✅ GOOD: Review code, then pin to specific commit
|
||||
# 1. Visit https://huggingface.co/trusted-org/verified-env
|
||||
# 2. Review the env.py file
|
||||
# 3. Copy the commit hash
|
||||
env = make_env("trusted-org/verified-env@a1b2c3d4", trust_remote_code=True)
|
||||
```
|
||||
|
||||
## Example: CartPole from the Hub
|
||||
|
||||
Here's a complete example using the reference CartPole environment:
|
||||
|
||||
```python
|
||||
from lerobot.envs.factory import make_env
|
||||
import numpy as np
|
||||
|
||||
# Load the environment
|
||||
envs_dict = make_env("lerobot/cartpole-env", n_envs=4, trust_remote_code=True)
|
||||
|
||||
# Get the vectorized environment
|
||||
suite_name = next(iter(envs_dict))
|
||||
env = envs_dict[suite_name][0]
|
||||
|
||||
# Run a simple episode
|
||||
obs, info = env.reset()
|
||||
done = np.zeros(env.num_envs, dtype=bool)
|
||||
total_reward = np.zeros(env.num_envs)
|
||||
|
||||
while not done.all():
|
||||
# Random policy
|
||||
action = env.action_space.sample()
|
||||
obs, reward, terminated, truncated, info = env.step(action)
|
||||
total_reward += reward
|
||||
done = terminated | truncated
|
||||
|
||||
print(f"Average reward: {total_reward.mean():.2f}")
|
||||
env.close()
|
||||
```
|
||||
|
||||
## Benefits of EnvHub
|
||||
|
||||
### For Environment Authors
|
||||
|
||||
- **Easy distribution**: No PyPI packaging required
|
||||
- **Version control**: Use Git for environment versioning
|
||||
- **Rapid iteration**: Push updates instantly
|
||||
- **Documentation**: Hub README renders beautifully
|
||||
- **Community**: Reach LeRobot users directly
|
||||
|
||||
### For Researchers
|
||||
|
||||
- **Quick experiments**: Load any environment in one line
|
||||
- **Reproducibility**: Pin to specific commits
|
||||
- **Discovery**: Browse environments on the Hub
|
||||
- **No conflicts**: No need to install conflicting packages
|
||||
|
||||
### For the Community
|
||||
|
||||
- **Growing ecosystem**: More diverse simulation tasks
|
||||
- **Standardization**: Common `make_env` API
|
||||
- **Collaboration**: Fork and improve existing environments
|
||||
- **Accessibility**: Lower barrier to sharing research
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### "Refusing to execute remote code"
|
||||
|
||||
You must explicitly pass `trust_remote_code=True`:
|
||||
|
||||
```python
|
||||
env = make_env("user/repo", trust_remote_code=True)
|
||||
```
|
||||
|
||||
### "Module X not found"
|
||||
|
||||
The hub environment has dependencies you need to install:
|
||||
|
||||
```bash
|
||||
# Check the repo's requirements.txt and install dependencies
|
||||
pip install gymnasium numpy
|
||||
```
|
||||
|
||||
### "make_env not found in module"
|
||||
|
||||
Your `env.py` must expose a `make_env` function:
|
||||
|
||||
```python
|
||||
def make_env(n_envs: int, use_async_envs: bool):
|
||||
# Your implementation
|
||||
pass
|
||||
```
|
||||
|
||||
### Environment returns wrong type
|
||||
|
||||
The `make_env` function must return:
|
||||
|
||||
- A `gym.vector.VectorEnv`, or
|
||||
- A single `gym.Env`, or
|
||||
- A dict `{suite_name: {task_id: VectorEnv}}`
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. **Document your environment**: Include observation/action space descriptions, reward structure, and termination conditions in your README
|
||||
2. **Add requirements.txt**: List all dependencies with versions
|
||||
3. **Test thoroughly**: Verify your environment works locally before pushing
|
||||
4. **Use semantic versioning**: Tag releases with version numbers
|
||||
5. **Add examples**: Include usage examples in your README
|
||||
6. **Keep it simple**: Minimize dependencies when possible
|
||||
7. **License your work**: Add a LICENSE file to clarify usage terms
|
||||
|
||||
## Future Directions
|
||||
|
||||
The EnvHub ecosystem enables exciting possibilities:
|
||||
|
||||
- **GPU-accelerated physics**: Share Isaac Gym or Brax environments
|
||||
- **Photorealistic rendering**: Distribute environments with advanced graphics
|
||||
- **Multi-agent scenarios**: Complex interaction tasks
|
||||
- **Real-world simulators**: Digital twins of physical setups
|
||||
- **Procedural generation**: Infinite task variations
|
||||
- **Domain randomization**: Pre-configured DR pipelines
|
||||
|
||||
As more researchers and developers contribute, the diversity and quality of available environments will grow, benefiting the entire robotics learning community.
|
||||
|
||||
## See Also
|
||||
|
||||
- [Hugging Face Hub Documentation](https://huggingface.co/docs/hub/en/index)
|
||||
- [Gymnasium Documentation](https://gymnasium.farama.org/index.html)
|
||||
- [Example Hub Environment](https://huggingface.co/lerobot/cartpole-env)
|
||||
@@ -19,6 +19,7 @@ import gymnasium as gym
|
||||
from gymnasium.envs.registration import registry as gym_registry
|
||||
|
||||
from lerobot.envs.configs import AlohaEnv, EnvConfig, LiberoEnv, PushtEnv
|
||||
from lerobot.envs.utils import _call_make_env, _download_hub_file, _import_hub_module, _normalize_hub_result
|
||||
|
||||
|
||||
def make_env_config(env_type: str, **kwargs) -> EnvConfig:
|
||||
@@ -33,15 +34,24 @@ def make_env_config(env_type: str, **kwargs) -> EnvConfig:
|
||||
|
||||
|
||||
def make_env(
|
||||
cfg: EnvConfig, n_envs: int = 1, use_async_envs: bool = False
|
||||
cfg: EnvConfig | str,
|
||||
n_envs: int = 1,
|
||||
use_async_envs: bool = False,
|
||||
hub_cache_dir: str | None = None,
|
||||
trust_remote_code: bool = False,
|
||||
) -> dict[str, dict[int, gym.vector.VectorEnv]]:
|
||||
"""Makes a gym vector environment according to the config.
|
||||
"""Makes a gym vector environment according to the config or Hub reference.
|
||||
|
||||
Args:
|
||||
cfg (EnvConfig): the config of the environment to instantiate.
|
||||
cfg (EnvConfig | str): Either an `EnvConfig` object describing the environment to build locally,
|
||||
or a Hugging Face Hub repository identifier (e.g. `"username/repo"`). In the latter case,
|
||||
the repo must include a Python file (usually `env.py`).
|
||||
n_envs (int, optional): The number of parallelized env to return. Defaults to 1.
|
||||
use_async_envs (bool, optional): Whether to return an AsyncVectorEnv or a SyncVectorEnv. Defaults to
|
||||
False.
|
||||
hub_cache_dir (str | None): Optional cache path for downloaded hub files.
|
||||
trust_remote_code (bool): **Explicit consent** to execute remote code from the Hub.
|
||||
Default False — must be set to True to import/exec hub `env.py`.
|
||||
|
||||
Raises:
|
||||
ValueError: if n_envs < 1
|
||||
@@ -54,6 +64,21 @@ def make_env(
|
||||
- For single-task environments: a single suite entry (cfg.type) with task_id=0.
|
||||
|
||||
"""
|
||||
# if user passed a hub id string (e.g., "username/repo", "username/repo@main:env.py")
|
||||
# simplified: only support hub-provided `make_env`
|
||||
if isinstance(cfg, str):
|
||||
# _download_hub_file will raise the same RuntimeError if trust_remote_code is False
|
||||
repo_id, file_path, local_file, revision = _download_hub_file(cfg, trust_remote_code, hub_cache_dir)
|
||||
|
||||
# import and surface clear import errors
|
||||
module = _import_hub_module(local_file, repo_id)
|
||||
|
||||
# call the hub-provided make_env
|
||||
raw_result = _call_make_env(module, n_envs=n_envs, use_async_envs=use_async_envs)
|
||||
|
||||
# normalize the return into {suite: {task_id: vec_env}}
|
||||
return _normalize_hub_result(raw_result)
|
||||
|
||||
if n_envs < 1:
|
||||
raise ValueError("`n_envs` must be at least 1")
|
||||
|
||||
|
||||
@@ -13,6 +13,8 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import importlib.util
|
||||
import os
|
||||
import warnings
|
||||
from collections.abc import Mapping, Sequence
|
||||
from functools import singledispatch
|
||||
@@ -22,6 +24,7 @@ import einops
|
||||
import gymnasium as gym
|
||||
import numpy as np
|
||||
import torch
|
||||
from huggingface_hub import hf_hub_download, snapshot_download
|
||||
from torch import Tensor
|
||||
|
||||
from lerobot.configs.types import FeatureType, PolicyFeature
|
||||
@@ -195,3 +198,132 @@ def _(envs: Sequence) -> None:
|
||||
@close_envs.register
|
||||
def _(env: gym.Env) -> None:
|
||||
_close_single_env(env)
|
||||
|
||||
|
||||
# helper to safely load a python file as a module
|
||||
def _load_module_from_path(path: str, module_name: str | None = None):
|
||||
module_name = module_name or f"hub_env_{os.path.basename(path).replace('.', '_')}"
|
||||
spec = importlib.util.spec_from_file_location(module_name, path)
|
||||
if spec is None:
|
||||
raise ImportError(f"Could not load module spec for {module_name} from {path}")
|
||||
module = importlib.util.module_from_spec(spec)
|
||||
spec.loader.exec_module(module) # type: ignore
|
||||
return module
|
||||
|
||||
|
||||
# helper to parse hub string (supports "user/repo", "user/repo@rev", optional path)
|
||||
# examples:
|
||||
# "user/repo" -> will look for env.py at repo root
|
||||
# "user/repo@main:envs/my_env.py" -> explicit revision and path
|
||||
def _parse_hub_url(hub_uri: str):
|
||||
# very small parser: [repo_id][@revision][:path]
|
||||
# repo_id is required (user/repo or org/repo)
|
||||
revision = None
|
||||
file_path = "env.py"
|
||||
if "@" in hub_uri:
|
||||
repo_and_rev, *rest = hub_uri.split(":", 1)
|
||||
repo_id, rev = repo_and_rev.split("@", 1)
|
||||
revision = rev
|
||||
if rest:
|
||||
file_path = rest[0]
|
||||
else:
|
||||
repo_id, *rest = hub_uri.split(":", 1)
|
||||
if rest:
|
||||
file_path = rest[0]
|
||||
return repo_id, revision, file_path
|
||||
|
||||
|
||||
def _download_hub_file(
|
||||
cfg_str: str,
|
||||
trust_remote_code: bool,
|
||||
hub_cache_dir: str | None,
|
||||
) -> tuple[str, str, str, str]:
|
||||
"""
|
||||
Parse `cfg_str` (hub URL), enforce `trust_remote_code`, and return
|
||||
(repo_id, file_path, local_file, revision).
|
||||
"""
|
||||
if not trust_remote_code:
|
||||
raise RuntimeError(
|
||||
f"Refusing to execute remote code from the Hub for '{cfg_str}'. "
|
||||
"Executing hub env modules runs arbitrary Python code from third-party repositories. "
|
||||
"If you trust this repo and understand the risks, call `make_env(..., trust_remote_code=True)` "
|
||||
"and prefer pinning to a specific revision: 'user/repo@<commit-hash>:env.py'."
|
||||
)
|
||||
|
||||
repo_id, revision, file_path = _parse_hub_url(cfg_str)
|
||||
|
||||
try:
|
||||
local_file = hf_hub_download(
|
||||
repo_id=repo_id, filename=file_path, revision=revision, cache_dir=hub_cache_dir
|
||||
)
|
||||
except Exception as e:
|
||||
# fallback to snapshot download
|
||||
snapshot_dir = snapshot_download(repo_id=repo_id, revision=revision, cache_dir=hub_cache_dir)
|
||||
local_file = os.path.join(snapshot_dir, file_path)
|
||||
if not os.path.exists(local_file):
|
||||
raise FileNotFoundError(
|
||||
f"Could not find {file_path} in repository {repo_id}@{revision or 'main'}"
|
||||
) from e
|
||||
|
||||
return repo_id, file_path, local_file, revision
|
||||
|
||||
|
||||
def _import_hub_module(local_file: str, repo_id: str) -> Any:
|
||||
"""
|
||||
Import the downloaded file as a module and surface helpful import error messages.
|
||||
"""
|
||||
module_name = f"hub_env_{repo_id.replace('/', '_')}"
|
||||
try:
|
||||
module = _load_module_from_path(local_file, module_name=module_name)
|
||||
except ModuleNotFoundError as e:
|
||||
missing = getattr(e, "name", None) or str(e)
|
||||
raise ModuleNotFoundError(
|
||||
f"Hub env '{repo_id}:{os.path.basename(local_file)}' failed to import because the dependency "
|
||||
f"'{missing}' is not installed locally.\n\n"
|
||||
) from e
|
||||
except ImportError as e:
|
||||
raise ImportError(
|
||||
f"Failed to load hub env module '{repo_id}:{os.path.basename(local_file)}'. Import error: {e}\n\n"
|
||||
) from e
|
||||
return module
|
||||
|
||||
|
||||
def _call_make_env(module: Any, n_envs: int, use_async_envs: bool) -> Any:
|
||||
"""
|
||||
Ensure module exposes make_env and call it.
|
||||
"""
|
||||
if not hasattr(module, "make_env"):
|
||||
raise AttributeError(
|
||||
f"The hub module {getattr(module, '__name__', 'hub_module')} must expose `make_env(n_envs=int, use_async_envs=bool)`."
|
||||
)
|
||||
entry_fn = module.make_env
|
||||
return entry_fn(n_envs=n_envs, use_async_envs=use_async_envs)
|
||||
|
||||
|
||||
def _normalize_hub_result(result: Any) -> dict[str, dict[int, gym.vector.VectorEnv]]:
|
||||
"""
|
||||
Normalize possible return types from hub `make_env` into the mapping:
|
||||
{ suite_name: { task_id: vector_env } }
|
||||
Accepts:
|
||||
- dict (assumed already correct)
|
||||
- gym.vector.VectorEnv
|
||||
- gym.Env (will be wrapped into SyncVectorEnv)
|
||||
"""
|
||||
if isinstance(result, dict):
|
||||
return result
|
||||
|
||||
# VectorEnv: use its spec.id if available
|
||||
if isinstance(result, gym.vector.VectorEnv):
|
||||
suite_name = getattr(result, "spec", None) and getattr(result.spec, "id", None) or "hub_env"
|
||||
return {suite_name: {0: result}}
|
||||
|
||||
# Single Env: wrap into SyncVectorEnv
|
||||
if isinstance(result, gym.Env):
|
||||
vec = gym.vector.SyncVectorEnv([lambda: result])
|
||||
suite_name = getattr(result, "spec", None) and getattr(result.spec, "id", None) or "hub_env"
|
||||
return {suite_name: {0: vec}}
|
||||
|
||||
raise ValueError(
|
||||
"Hub `make_env` must return either a mapping {suite: {task_id: vec_env}}, "
|
||||
"a gym.vector.VectorEnv, or a single gym.Env."
|
||||
)
|
||||
|
||||
@@ -17,6 +17,7 @@ import importlib
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
import gymnasium as gym
|
||||
import numpy as np
|
||||
import pytest
|
||||
import torch
|
||||
from gymnasium.envs.registration import register, registry as gym_registry
|
||||
@@ -26,7 +27,11 @@ import lerobot
|
||||
from lerobot.configs.types import PolicyFeature
|
||||
from lerobot.envs.configs import EnvConfig
|
||||
from lerobot.envs.factory import make_env, make_env_config
|
||||
from lerobot.envs.utils import preprocess_observation
|
||||
from lerobot.envs.utils import (
|
||||
_normalize_hub_result,
|
||||
_parse_hub_url,
|
||||
preprocess_observation,
|
||||
)
|
||||
from tests.utils import require_env
|
||||
|
||||
OBS_TYPES = ["state", "pixels", "pixels_agent_pos"]
|
||||
@@ -108,3 +113,156 @@ def test_factory_custom_gym_id():
|
||||
finally:
|
||||
if gym_id in gym_registry:
|
||||
del gym_registry[gym_id]
|
||||
|
||||
|
||||
# Hub environment loading tests
|
||||
|
||||
|
||||
def test_make_env_hub_url_parsing():
|
||||
"""Test URL parsing for hub environment references."""
|
||||
# simple repo_id
|
||||
repo_id, revision, file_path = _parse_hub_url("user/repo")
|
||||
assert repo_id == "user/repo"
|
||||
assert revision is None
|
||||
assert file_path == "env.py"
|
||||
|
||||
# repo with revision
|
||||
repo_id, revision, file_path = _parse_hub_url("user/repo@main")
|
||||
assert repo_id == "user/repo"
|
||||
assert revision == "main"
|
||||
assert file_path == "env.py"
|
||||
|
||||
# repo with custom file path
|
||||
repo_id, revision, file_path = _parse_hub_url("user/repo:custom_env.py")
|
||||
assert repo_id == "user/repo"
|
||||
assert revision is None
|
||||
assert file_path == "custom_env.py"
|
||||
|
||||
# repo with revision and custom file path
|
||||
repo_id, revision, file_path = _parse_hub_url("user/repo@v1.0:envs/my_env.py")
|
||||
assert repo_id == "user/repo"
|
||||
assert revision == "v1.0"
|
||||
assert file_path == "envs/my_env.py"
|
||||
|
||||
# repo with commit hash
|
||||
repo_id, revision, file_path = _parse_hub_url("org/repo@abc123def456")
|
||||
assert repo_id == "org/repo"
|
||||
assert revision == "abc123def456"
|
||||
assert file_path == "env.py"
|
||||
|
||||
|
||||
def test_normalize_hub_result():
|
||||
"""Test normalization of different return types from hub make_env."""
|
||||
# test with VectorEnv (most common case)
|
||||
mock_vec_env = gym.vector.SyncVectorEnv([lambda: gym.make("CartPole-v1")])
|
||||
result = _normalize_hub_result(mock_vec_env)
|
||||
assert isinstance(result, dict)
|
||||
assert len(result) == 1
|
||||
suite_name = next(iter(result))
|
||||
assert 0 in result[suite_name]
|
||||
assert isinstance(result[suite_name][0], gym.vector.VectorEnv)
|
||||
mock_vec_env.close()
|
||||
|
||||
# test with single Env
|
||||
mock_env = gym.make("CartPole-v1")
|
||||
result = _normalize_hub_result(mock_env)
|
||||
assert isinstance(result, dict)
|
||||
suite_name = next(iter(result))
|
||||
assert 0 in result[suite_name]
|
||||
assert isinstance(result[suite_name][0], gym.vector.VectorEnv)
|
||||
result[suite_name][0].close()
|
||||
|
||||
# test with dict (already normalized)
|
||||
mock_vec_env = gym.vector.SyncVectorEnv([lambda: gym.make("CartPole-v1")])
|
||||
input_dict = {"my_suite": {0: mock_vec_env}}
|
||||
result = _normalize_hub_result(input_dict)
|
||||
assert result == input_dict
|
||||
assert "my_suite" in result
|
||||
assert 0 in result["my_suite"]
|
||||
mock_vec_env.close()
|
||||
|
||||
# test with invalid type
|
||||
with pytest.raises(ValueError, match="Hub `make_env` must return"):
|
||||
_normalize_hub_result("invalid_type")
|
||||
|
||||
|
||||
def test_make_env_from_hub_requires_trust_remote_code():
|
||||
"""Test that loading from hub requires explicit trust_remote_code=True."""
|
||||
hub_id = "lerobot/cartpole-env"
|
||||
|
||||
# Should raise RuntimeError when trust_remote_code=False (default)
|
||||
with pytest.raises(RuntimeError, match="Refusing to execute remote code"):
|
||||
make_env(hub_id, trust_remote_code=False)
|
||||
|
||||
# Should also raise when not specified (defaults to False)
|
||||
with pytest.raises(RuntimeError, match="Refusing to execute remote code"):
|
||||
make_env(hub_id)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"hub_id",
|
||||
[
|
||||
"lerobot/cartpole-env",
|
||||
"lerobot/cartpole-env@main",
|
||||
"lerobot/cartpole-env:env.py",
|
||||
],
|
||||
)
|
||||
def test_make_env_from_hub_with_trust(hub_id):
|
||||
"""Test loading environment from Hugging Face Hub with trust_remote_code=True."""
|
||||
# load environment from hub
|
||||
envs_dict = make_env(hub_id, n_envs=2, trust_remote_code=True)
|
||||
|
||||
# verify structure
|
||||
assert isinstance(envs_dict, dict)
|
||||
assert len(envs_dict) >= 1
|
||||
|
||||
# get the first suite and task
|
||||
suite_name = next(iter(envs_dict))
|
||||
task_id = next(iter(envs_dict[suite_name]))
|
||||
env = envs_dict[suite_name][task_id]
|
||||
|
||||
# verify it's a vector environment
|
||||
assert isinstance(env, gym.vector.VectorEnv)
|
||||
assert env.num_envs == 2
|
||||
|
||||
# test basic environment interaction
|
||||
obs, info = env.reset()
|
||||
assert obs is not None
|
||||
assert isinstance(obs, (dict, np.ndarray))
|
||||
|
||||
# take a random action
|
||||
action = env.action_space.sample()
|
||||
obs, reward, terminated, truncated, info = env.step(action)
|
||||
assert obs is not None
|
||||
assert isinstance(reward, np.ndarray)
|
||||
assert len(reward) == 2
|
||||
|
||||
# clean up
|
||||
env.close()
|
||||
|
||||
|
||||
def test_make_env_from_hub_async():
|
||||
"""Test loading hub environment with async vector environments."""
|
||||
hub_id = "lerobot/cartpole-env"
|
||||
|
||||
# load with async envs
|
||||
envs_dict = make_env(hub_id, n_envs=2, use_async_envs=True, trust_remote_code=True)
|
||||
|
||||
suite_name = next(iter(envs_dict))
|
||||
task_id = next(iter(envs_dict[suite_name]))
|
||||
env = envs_dict[suite_name][task_id]
|
||||
|
||||
# verify it's an async vector environment
|
||||
assert isinstance(env, gym.vector.AsyncVectorEnv)
|
||||
assert env.num_envs == 2
|
||||
|
||||
# test basic interaction
|
||||
obs, info = env.reset()
|
||||
assert obs is not None
|
||||
|
||||
action = env.action_space.sample()
|
||||
obs, reward, terminated, truncated, info = env.step(action)
|
||||
assert len(reward) == 2
|
||||
|
||||
# clean up
|
||||
env.close()
|
||||
|
||||
Reference in New Issue
Block a user