Add test_delta_timestamps.py

This commit is contained in:
Simon Alibert
2024-10-31 13:48:40 +01:00
parent ff84024ee9
commit e69f0c5059
3 changed files with 267 additions and 6 deletions

View File

@@ -202,7 +202,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
# Load actual data
self.download_episodes(download_videos)
self.hf_dataset = self.load_hf_dataset()
self.episode_data_index = get_episode_data_index(self.episodes, self.episode_dicts)
self.episode_data_index = get_episode_data_index(self.episode_dicts, self.episodes)
# Check timestamps
check_timestamps_sync(self.hf_dataset, self.episode_data_index, self.fps, self.tolerance_s)
@@ -740,7 +740,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
def consolidate(self, run_compute_stats: bool = True, keep_image_files: bool = False) -> None:
self.hf_dataset = self.load_hf_dataset()
self.episode_data_index = get_episode_data_index(self.episodes, self.episode_dicts)
self.episode_data_index = get_episode_data_index(self.episode_dicts, self.episodes)
check_timestamps_sync(self.hf_dataset, self.episode_data_index, self.fps, self.tolerance_s)
if len(self.video_keys) > 0:

View File

@@ -265,7 +265,9 @@ def create_empty_dataset_info(
}
def get_episode_data_index(episodes: list, episode_dicts: list[dict]) -> dict[str, torch.Tensor]:
def get_episode_data_index(
episode_dicts: list[dict], episodes: list[int] | None = None
) -> dict[str, torch.Tensor]:
episode_lengths = {ep_idx: ep_dict["length"] for ep_idx, ep_dict in enumerate(episode_dicts)}
if episodes is not None:
episode_lengths = {ep_idx: episode_lengths[ep_idx] for ep_idx in episodes}
@@ -289,8 +291,6 @@ def check_timestamps_sync(
account for possible numerical error.
"""
timestamps = torch.stack(hf_dataset["timestamp"])
# timestamps[2] += tolerance_s # TODO delete
# timestamps[-2] += tolerance_s/2 # TODO delete
diffs = torch.diff(timestamps)
within_tolerance = torch.abs(diffs - 1 / fps) <= tolerance_s
@@ -339,7 +339,7 @@ def check_delta_timestamps(
"""
outside_tolerance = {}
for key, delta_ts in delta_timestamps.items():
within_tolerance = [abs(ts * fps - round(ts * fps)) <= tolerance_s for ts in delta_ts]
within_tolerance = [abs(ts * fps - round(ts * fps)) / fps <= tolerance_s for ts in delta_ts]
if not all(within_tolerance):
outside_tolerance[key] = [
ts for ts, is_within in zip(delta_ts, within_tolerance, strict=True) if not is_within

View File

@@ -0,0 +1,261 @@
import pytest
import torch
from datasets import Dataset
from lerobot.common.datasets.utils import (
check_delta_timestamps,
check_timestamps_sync,
get_delta_indices,
hf_transform_to_torch,
)
@pytest.fixture(scope="module")
def synced_hf_dataset_factory(hf_dataset_factory, episode_dicts, tasks):
def _create_synced_hf_dataset(fps: int = 30, keys: list | None = None) -> Dataset:
if not keys:
keys = ["state", "action"]
shapes = {key: 10 for key in keys}
return hf_dataset_factory(episode_dicts, tasks, keys, shapes, fps=fps)
return _create_synced_hf_dataset
@pytest.fixture(scope="module")
def unsynced_hf_dataset_factory(synced_hf_dataset_factory):
def _create_unsynced_hf_dataset(
fps: int = 30, tolerance_s: float = 1e-4, keys: list | None = None
) -> Dataset:
hf_dataset = synced_hf_dataset_factory(fps=fps, keys=keys)
features = hf_dataset.features
df = hf_dataset.to_pandas()
dtype = df["timestamp"].dtype # This is to avoid pandas type warning
# Modify a single timestamp just outside tolerance
df.at[30, "timestamp"] = dtype.type(df.at[30, "timestamp"] + (tolerance_s * 1.1))
unsynced_hf_dataset = Dataset.from_pandas(df, features=features)
unsynced_hf_dataset.set_transform(hf_transform_to_torch)
return unsynced_hf_dataset
return _create_unsynced_hf_dataset
@pytest.fixture(scope="module")
def slightly_off_hf_dataset_factory(synced_hf_dataset_factory):
def _create_slightly_off_hf_dataset(
fps: int = 30, tolerance_s: float = 1e-4, keys: list | None = None
) -> Dataset:
hf_dataset = synced_hf_dataset_factory(fps=fps, keys=keys)
features = hf_dataset.features
df = hf_dataset.to_pandas()
dtype = df["timestamp"].dtype # This is to avoid pandas type warning
# Modify a single timestamp just inside tolerance
df.at[30, "timestamp"] = dtype.type(df.at[30, "timestamp"] + (tolerance_s * 0.9))
unsynced_hf_dataset = Dataset.from_pandas(df, features=features)
unsynced_hf_dataset.set_transform(hf_transform_to_torch)
return unsynced_hf_dataset
return _create_slightly_off_hf_dataset
@pytest.fixture(scope="module")
def valid_delta_timestamps_factory():
def _create_valid_delta_timestamps(fps: int = 30, keys: list | None = None) -> dict:
if not keys:
keys = ["state", "action"]
delta_timestamps = {key: [i * (1 / fps) for i in range(-10, 10)] for key in keys}
return delta_timestamps
return _create_valid_delta_timestamps
@pytest.fixture(scope="module")
def invalid_delta_timestamps_factory(valid_delta_timestamps_factory):
def _create_invalid_delta_timestamps(
fps: int = 30, tolerance_s: float = 1e-4, keys: list | None = None
) -> dict:
if not keys:
keys = ["state", "action"]
delta_timestamps = valid_delta_timestamps_factory(fps, keys)
# Modify a single timestamp just outside tolerance
for key in keys:
delta_timestamps[key][3] += tolerance_s * 1.1
return delta_timestamps
return _create_invalid_delta_timestamps
@pytest.fixture(scope="module")
def slightly_off_delta_timestamps_factory(valid_delta_timestamps_factory):
def _create_slightly_off_delta_timestamps(
fps: int = 30, tolerance_s: float = 1e-4, keys: list | None = None
) -> dict:
if not keys:
keys = ["state", "action"]
delta_timestamps = valid_delta_timestamps_factory(fps, keys)
# Modify a single timestamp just inside tolerance
for key in delta_timestamps:
delta_timestamps[key][3] += tolerance_s * 0.9
delta_timestamps[key][-3] += tolerance_s * 0.9
return delta_timestamps
return _create_slightly_off_delta_timestamps
@pytest.fixture(scope="module")
def delta_indices(keys: list | None = None) -> dict:
if not keys:
keys = ["state", "action"]
return {key: list(range(-10, 10)) for key in keys}
def test_check_timestamps_sync_synced(synced_hf_dataset_factory, episode_data_index):
fps = 30
tolerance_s = 1e-4
synced_hf_dataset = synced_hf_dataset_factory(fps)
result = check_timestamps_sync(
hf_dataset=synced_hf_dataset,
episode_data_index=episode_data_index,
fps=fps,
tolerance_s=tolerance_s,
)
assert result is True
def test_check_timestamps_sync_unsynced(unsynced_hf_dataset_factory, episode_data_index):
fps = 30
tolerance_s = 1e-4
unsynced_hf_dataset = unsynced_hf_dataset_factory(fps, tolerance_s)
with pytest.raises(ValueError):
check_timestamps_sync(
hf_dataset=unsynced_hf_dataset,
episode_data_index=episode_data_index,
fps=fps,
tolerance_s=tolerance_s,
)
def test_check_timestamps_sync_unsynced_no_exception(unsynced_hf_dataset_factory, episode_data_index):
fps = 30
tolerance_s = 1e-4
unsynced_hf_dataset = unsynced_hf_dataset_factory(fps, tolerance_s)
result = check_timestamps_sync(
hf_dataset=unsynced_hf_dataset,
episode_data_index=episode_data_index,
fps=fps,
tolerance_s=tolerance_s,
raise_value_error=False,
)
assert result is False
def test_check_timestamps_sync_slightly_off(slightly_off_hf_dataset_factory, episode_data_index):
fps = 30
tolerance_s = 1e-4
slightly_off_hf_dataset = slightly_off_hf_dataset_factory(fps, tolerance_s)
result = check_timestamps_sync(
hf_dataset=slightly_off_hf_dataset,
episode_data_index=episode_data_index,
fps=fps,
tolerance_s=tolerance_s,
)
assert result is True
def test_check_timestamps_sync_single_timestamp():
single_timestamp_hf_dataset = Dataset.from_dict({"timestamp": [0.0], "episode_index": [0]})
single_timestamp_hf_dataset.set_transform(hf_transform_to_torch)
episode_data_index = {"to": torch.tensor([1]), "from": torch.tensor([0])}
fps = 30
tolerance_s = 1e-4
result = check_timestamps_sync(
hf_dataset=single_timestamp_hf_dataset,
episode_data_index=episode_data_index,
fps=fps,
tolerance_s=tolerance_s,
)
assert result is True
# TODO(aliberts): change behavior of hf_transform_to_torch so that it can work with empty dataset
# def test_check_timestamps_sync_empty_dataset():
# fps = 30
# tolerance_s = 1e-4
# empty_hf_dataset = Dataset.from_dict({'timestamp': [], 'episode_index': []})
# empty_hf_dataset.set_transform(hf_transform_to_torch)
# episode_data_index = {'to': torch.tensor([], dtype=torch.int64), 'from': torch.tensor([], dtype=torch.int64)}
# result = check_timestamps_sync(
# hf_dataset=empty_hf_dataset,
# episode_data_index=episode_data_index,
# fps=fps,
# tolerance_s=tolerance_s,
# )
# assert result is True
def test_check_delta_timestamps_valid(valid_delta_timestamps_factory):
fps = 30
tolerance_s = 1e-4
valid_delta_timestamps = valid_delta_timestamps_factory(fps)
result = check_delta_timestamps(
delta_timestamps=valid_delta_timestamps,
fps=fps,
tolerance_s=tolerance_s,
)
assert result is True
def test_check_delta_timestamps_slightly_off(slightly_off_delta_timestamps_factory):
fps = 30
tolerance_s = 1e-4
slightly_off_delta_timestamps = slightly_off_delta_timestamps_factory(fps, tolerance_s)
result = check_delta_timestamps(
delta_timestamps=slightly_off_delta_timestamps,
fps=fps,
tolerance_s=tolerance_s,
)
assert result is True
def test_check_delta_timestamps_invalid(invalid_delta_timestamps_factory):
fps = 30
tolerance_s = 1e-4
invalid_delta_timestamps = invalid_delta_timestamps_factory(fps, tolerance_s)
with pytest.raises(ValueError):
check_delta_timestamps(
delta_timestamps=invalid_delta_timestamps,
fps=fps,
tolerance_s=tolerance_s,
)
def test_check_delta_timestamps_invalid_no_exception(invalid_delta_timestamps_factory):
fps = 30
tolerance_s = 1e-4
invalid_delta_timestamps = invalid_delta_timestamps_factory(fps, tolerance_s)
result = check_delta_timestamps(
delta_timestamps=invalid_delta_timestamps,
fps=fps,
tolerance_s=tolerance_s,
raise_value_error=False,
)
assert result is False
def test_check_delta_timestamps_empty():
delta_timestamps = {}
fps = 30
tolerance_s = 1e-4
result = check_delta_timestamps(
delta_timestamps=delta_timestamps,
fps=fps,
tolerance_s=tolerance_s,
)
assert result is True
def test_delta_indices(valid_delta_timestamps_factory, delta_indices):
fps = 30
delta_timestamps = valid_delta_timestamps_factory(fps)
expected_delta_indices = delta_indices
actual_delta_indices = get_delta_indices(delta_timestamps, fps)
assert expected_delta_indices == actual_delta_indices