Fix typehint and address the mypy errors of src/lerobot/configs (#1746)

* fix: update policy handling and type annotations
added typehint and addressed the error of mypy

* fix: rename should_push_to_hub to push_to_hub
I find that there are other dependencies of push_to_hub so I fix the property name back to original one.

* fix: typo

* fix: changed the position of try-except block
As the copilot said, use raise before `hf_hub_download` would stop program even it is able to download

* fix: update pre-commit configuration and mypy settings
add args: --follow-imports=silent to pass error which have no relationship with src/lerobot/configs

* fix: remove the specific path in .pre-commit-config.yaml

* feat: enhance typehint to adapt mypy strict mode.

* fix: remove duplicate FileNotFoundError check in PreTrainedConfig

* fix: make "pre-commit run --all-files" pass

* fix: replace logging with logger for better logging practices

* fix: fixed extra changes of lint and  format changes

* fix: fixed extra changes out of "configs" module

* Update src/lerobot/configs/policies.py

Co-authored-by: Steven Palma <imstevenpmwork@ieee.org>
Signed-off-by: tetsugo02 <131431116+tetsugo02@users.noreply.github.com>

* fix: add logging for scratch job

---------

Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com>
Signed-off-by: tetsugo02 <131431116+tetsugo02@users.noreply.github.com>
Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
Co-authored-by: Steven Palma <imstevenpmwork@ieee.org>
This commit is contained in:
tetsugo02
2025-10-20 19:57:32 +09:00
committed by GitHub
parent c54cd529a2
commit eff8a6fd12
7 changed files with 90 additions and 50 deletions

View File

@@ -289,9 +289,19 @@ ignore_errors = false
# module = "lerobot.utils.*"
# ignore_errors = false
# [[tool.mypy.overrides]]
# module = "lerobot.configs.*"
# ignore_errors = false
[[tool.mypy.overrides]]
module = "lerobot.configs.*"
ignore_errors = false
# extra strictness for configs
disallow_untyped_defs = true
disallow_incomplete_defs = true
check_untyped_defs = true
# ignores
disable_error_code = ["attr-defined"] #TODO: draccus issue
# include = "src/lerobot/configs/**/*.py"
# [[tool.mypy.overrides]]
# module = "lerobot.optim.*"

View File

@@ -57,7 +57,7 @@ class EvalConfig:
# `use_async_envs` specifies whether to use asynchronous environments (multiprocessing).
use_async_envs: bool = False
def __post_init__(self):
def __post_init__(self) -> None:
if self.batch_size > self.n_episodes:
raise ValueError(
"The eval batch size is greater than the number of eval episodes "

View File

@@ -13,8 +13,8 @@
# limitations under the License.
import datetime as dt
import logging
from dataclasses import dataclass, field
from logging import getLogger
from pathlib import Path
from lerobot import envs, policies # noqa: F401
@@ -22,6 +22,8 @@ from lerobot.configs import parser
from lerobot.configs.default import EvalConfig
from lerobot.configs.policies import PreTrainedConfig
logger = getLogger(__name__)
@dataclass
class EvalPipelineConfig:
@@ -35,24 +37,28 @@ class EvalPipelineConfig:
job_name: str | None = None
seed: int | None = 1000
def __post_init__(self):
def __post_init__(self) -> None:
# HACK: We parse again the cli args here to get the pretrained path if there was one.
policy_path = parser.get_path_arg("policy")
if policy_path:
cli_overrides = parser.get_cli_overrides("policy")
self.policy = PreTrainedConfig.from_pretrained(policy_path, cli_overrides=cli_overrides)
self.policy.pretrained_path = policy_path
self.policy.pretrained_path = Path(policy_path)
else:
logging.warning(
logger.warning(
"No pretrained path was provided, evaluated policy will be built from scratch (random weights)."
)
if not self.job_name:
if self.env is None:
self.job_name = f"{self.policy.type}"
self.job_name = f"{self.policy.type if self.policy is not None else 'scratch'}"
else:
self.job_name = f"{self.env.type}_{self.policy.type}"
self.job_name = (
f"{self.env.type}_{self.policy.type if self.policy is not None else 'scratch'}"
)
logger.warning(f"No job name provided, using '{self.job_name}' as job name.")
if not self.output_dir:
now = dt.datetime.now()

View File

@@ -16,14 +16,19 @@ import inspect
import pkgutil
import sys
from argparse import ArgumentError
from collections.abc import Sequence
from collections.abc import Callable, Iterable, Sequence
from functools import wraps
from pathlib import Path
from pkgutil import ModuleInfo
from types import ModuleType
from typing import Any, TypeVar, cast
import draccus
from lerobot.utils.utils import has_method
F = TypeVar("F", bound=Callable[..., object])
PATH_KEY = "path"
PLUGIN_DISCOVERY_SUFFIX = "discover_packages_path"
@@ -60,7 +65,7 @@ def parse_arg(arg_name: str, args: Sequence[str] | None = None) -> str | None:
return None
def parse_plugin_args(plugin_arg_suffix: str, args: Sequence[str]) -> dict:
def parse_plugin_args(plugin_arg_suffix: str, args: Sequence[str]) -> dict[str, str]:
"""Parse plugin-related arguments from command-line arguments.
This function extracts arguments from command-line arguments that match a specified suffix pattern.
@@ -127,7 +132,7 @@ def load_plugin(plugin_path: str) -> None:
f"Failed to load plugin '{plugin_path}'. Verify the path and installation: {str(e)}"
) from e
def iter_namespace(ns_pkg):
def iter_namespace(ns_pkg: ModuleType) -> Iterable[ModuleInfo]:
return pkgutil.iter_modules(ns_pkg.__path__, ns_pkg.__name__ + ".")
try:
@@ -148,6 +153,8 @@ def get_type_arg(field_name: str, args: Sequence[str] | None = None) -> str | No
def filter_arg(field_to_filter: str, args: Sequence[str] | None = None) -> list[str]:
if args is None:
return []
return [arg for arg in args if not arg.startswith(f"--{field_to_filter}=")]
@@ -171,7 +178,8 @@ def filter_path_args(fields_to_filter: str | list[str], args: Sequence[str] | No
if isinstance(fields_to_filter, str):
fields_to_filter = [fields_to_filter]
filtered_args = args
filtered_args = [] if args is None else list(args)
for field in fields_to_filter:
if get_path_arg(field, args):
if get_type_arg(field, args):
@@ -184,7 +192,7 @@ def filter_path_args(fields_to_filter: str | list[str], args: Sequence[str] | No
return filtered_args
def wrap(config_path: Path | None = None):
def wrap(config_path: Path | None = None) -> Callable[[F], F]:
"""
HACK: Similar to draccus.wrap but does three additional things:
- Will remove '.path' arguments from CLI in order to process them later on.
@@ -195,9 +203,9 @@ def wrap(config_path: Path | None = None):
from the CLI '.type' arguments
"""
def wrapper_outer(fn):
def wrapper_outer(fn: F) -> F:
@wraps(fn)
def wrapper_inner(*args, **kwargs):
def wrapper_inner(*args: Any, **kwargs: Any) -> Any:
argspec = inspect.getfullargspec(fn)
argtype = argspec.annotations[argspec.args[0]]
if len(args) > 0 and type(args[0]) is argtype:
@@ -225,6 +233,6 @@ def wrap(config_path: Path | None = None):
response = fn(cfg, *args, **kwargs)
return response
return wrapper_inner
return cast(F, wrapper_inner)
return wrapper_outer
return cast(Callable[[F], F], wrapper_outer)

View File

@@ -14,12 +14,12 @@
import abc
import builtins
import json
import logging
import os
import tempfile
from dataclasses import dataclass, field
from logging import getLogger
from pathlib import Path
from typing import TypeVar
from typing import Any, TypeVar
import draccus
from huggingface_hub import hf_hub_download
@@ -34,10 +34,11 @@ from lerobot.utils.hub import HubMixin
from lerobot.utils.utils import auto_select_torch_device, is_amp_available, is_torch_device_available
T = TypeVar("T", bound="PreTrainedConfig")
logger = getLogger(__name__)
@dataclass
class PreTrainedConfig(draccus.ChoiceRegistry, HubMixin, abc.ABC):
class PreTrainedConfig(draccus.ChoiceRegistry, HubMixin, abc.ABC): # type: ignore[misc,name-defined] #TODO: draccus issue
"""
Base configuration class for policy models.
@@ -62,7 +63,7 @@ class PreTrainedConfig(draccus.ChoiceRegistry, HubMixin, abc.ABC):
# automatic gradient scaling is used.
use_amp: bool = False
push_to_hub: bool = True
push_to_hub: bool = True # type: ignore[assignment] # TODO: use a different name to avoid override
repo_id: str | None = None
# Upload on private repository on the Hugging Face hub.
@@ -73,38 +74,41 @@ class PreTrainedConfig(draccus.ChoiceRegistry, HubMixin, abc.ABC):
license: str | None = None
# Either the repo ID of a model hosted on the Hub or a path to a directory containing weights
# saved using `Policy.save_pretrained`. If not provided, the policy is initialized from scratch.
pretrained_path: str | None = None
pretrained_path: Path | None = None
def __post_init__(self):
def __post_init__(self) -> None:
if not self.device or not is_torch_device_available(self.device):
auto_device = auto_select_torch_device()
logging.warning(f"Device '{self.device}' is not available. Switching to '{auto_device}'.")
logger.warning(f"Device '{self.device}' is not available. Switching to '{auto_device}'.")
self.device = auto_device.type
# Automatically deactivate AMP if necessary
if self.use_amp and not is_amp_available(self.device):
logging.warning(
logger.warning(
f"Automatic Mixed Precision (amp) is not available on device '{self.device}'. Deactivating AMP."
)
self.use_amp = False
@property
def type(self) -> str:
return self.get_choice_name(self.__class__)
choice_name = self.get_choice_name(self.__class__)
if not isinstance(choice_name, str):
raise TypeError(f"Expected string from get_choice_name, got {type(choice_name)}")
return choice_name
@property
@abc.abstractmethod
def observation_delta_indices(self) -> list | None:
def observation_delta_indices(self) -> list | None: # type: ignore[type-arg] #TODO: No implementation
raise NotImplementedError
@property
@abc.abstractmethod
def action_delta_indices(self) -> list | None:
def action_delta_indices(self) -> list | None: # type: ignore[type-arg] #TODO: No implementation
raise NotImplementedError
@property
@abc.abstractmethod
def reward_delta_indices(self) -> list | None:
def reward_delta_indices(self) -> list | None: # type: ignore[type-arg] #TODO: No implementation
raise NotImplementedError
@abc.abstractmethod
@@ -154,13 +158,13 @@ class PreTrainedConfig(draccus.ChoiceRegistry, HubMixin, abc.ABC):
pretrained_name_or_path: str | Path,
*,
force_download: bool = False,
resume_download: bool = None,
proxies: dict | None = None,
resume_download: bool | None = None,
proxies: dict[Any, Any] | None = None,
token: str | bool | None = None,
cache_dir: str | Path | None = None,
local_files_only: bool = False,
revision: str | None = None,
**policy_kwargs,
**policy_kwargs: Any,
) -> T:
model_id = str(pretrained_name_or_path)
config_file: str | None = None
@@ -168,7 +172,7 @@ class PreTrainedConfig(draccus.ChoiceRegistry, HubMixin, abc.ABC):
if CONFIG_NAME in os.listdir(model_id):
config_file = os.path.join(model_id, CONFIG_NAME)
else:
print(f"{CONFIG_NAME} not found in {Path(model_id).resolve()}")
logger.error(f"{CONFIG_NAME} not found in {Path(model_id).resolve()}")
else:
try:
config_file = hf_hub_download(
@@ -194,6 +198,9 @@ class PreTrainedConfig(draccus.ChoiceRegistry, HubMixin, abc.ABC):
with draccus.config_type("json"):
orig_config = draccus.parse(cls, config_file, args=[])
if config_file is None:
raise FileNotFoundError(f"{CONFIG_NAME} not found in {model_id}")
with open(config_file) as f:
config = json.load(f)

View File

@@ -16,6 +16,7 @@ import datetime as dt
import os
from dataclasses import dataclass, field
from pathlib import Path
from typing import Any
import draccus
from huggingface_hub import hf_hub_download
@@ -63,18 +64,16 @@ class TrainPipelineConfig(HubMixin):
scheduler: LRSchedulerConfig | None = None
eval: EvalConfig = field(default_factory=EvalConfig)
wandb: WandBConfig = field(default_factory=WandBConfig)
checkpoint_path: Path | None = field(init=False, default=None)
def __post_init__(self):
self.checkpoint_path = None
def validate(self):
def validate(self) -> None:
# HACK: We parse again the cli args here to get the pretrained paths if there was some.
policy_path = parser.get_path_arg("policy")
if policy_path:
# Only load the policy config
cli_overrides = parser.get_cli_overrides("policy")
self.policy = PreTrainedConfig.from_pretrained(policy_path, cli_overrides=cli_overrides)
self.policy.pretrained_path = policy_path
self.policy.pretrained_path = Path(policy_path)
elif self.resume:
# The entire train config is already loaded, we just need to get the checkpoint dir
config_path = parser.parse_arg("config_path")
@@ -82,14 +81,22 @@ class TrainPipelineConfig(HubMixin):
raise ValueError(
f"A config_path is expected when resuming a run. Please specify path to {TRAIN_CONFIG_NAME}"
)
if not Path(config_path).resolve().exists():
raise NotADirectoryError(
f"{config_path=} is expected to be a local path. "
"Resuming from the hub is not supported for now."
)
policy_path = Path(config_path).parent
self.policy.pretrained_path = policy_path
self.checkpoint_path = policy_path.parent
policy_dir = Path(config_path).parent
if self.policy is not None:
self.policy.pretrained_path = policy_dir
self.checkpoint_path = policy_dir.parent
if self.policy is None:
raise ValueError(
"Policy is not configured. Please specify a pretrained policy with `--policy.path`."
)
if not self.job_name:
if self.env is None:
@@ -126,8 +133,8 @@ class TrainPipelineConfig(HubMixin):
"""This enables the parser to load config from the policy using `--policy.path=local/dir`"""
return ["policy"]
def to_dict(self) -> dict:
return draccus.encode(self)
def to_dict(self) -> dict[str, Any]:
return draccus.encode(self) # type: ignore[no-any-return] # because of the third-party library draccus uses Any as the return type
def _save_pretrained(self, save_directory: Path) -> None:
with open(save_directory / TRAIN_CONFIG_NAME, "w") as f, draccus.config_type("json"):
@@ -139,13 +146,13 @@ class TrainPipelineConfig(HubMixin):
pretrained_name_or_path: str | Path,
*,
force_download: bool = False,
resume_download: bool = None,
proxies: dict | None = None,
resume_download: bool | None = None,
proxies: dict[Any, Any] | None = None,
token: str | bool | None = None,
cache_dir: str | Path | None = None,
local_files_only: bool = False,
revision: str | None = None,
**kwargs,
**kwargs: Any,
) -> "TrainPipelineConfig":
model_id = str(pretrained_name_or_path)
config_file: str | None = None
@@ -181,4 +188,6 @@ class TrainPipelineConfig(HubMixin):
@dataclass(kw_only=True)
class TrainRLServerPipelineConfig(TrainPipelineConfig):
dataset: DatasetConfig | None = None # NOTE: In RL, we don't need an offline dataset
# NOTE: In RL, we don't need an offline dataset
# TODO: Make `TrainPipelineConfig.dataset` optional
dataset: DatasetConfig | None = None # type: ignore[assignment] # because the parent class has made it's type non-optional

View File

@@ -42,4 +42,4 @@ class NormalizationMode(str, Enum):
@dataclass
class PolicyFeature:
type: FeatureType
shape: tuple
shape: tuple[int, ...]