Update feetech and manipulator

This commit is contained in:
Pepijn
2025-03-13 11:03:51 +01:00
parent b31283ed6c
commit ffc39a6a88
2 changed files with 99 additions and 20 deletions

View File

@@ -139,20 +139,19 @@ def convert_degrees_to_ticks(degrees, model):
def adjusted_to_homing_ticks(raw_motor_ticks: int, model: str, motorbus, motor_id: int) -> int:
"""
Shifts raw [0..4095] ticks by an encoder offset, modulo a single turn [0..4095].
Takes a raw reading [0..(res-1)] (e.g. 0..4095) and shifts it so that '2048'
becomes 0 in the homed coordinate system ([-2048..+2047] for 4096 resolution).
"""
resolutions = MODEL_RESOLUTION[model]
# Add offset and wrap within resolution
ticks = (raw_motor_ticks) % resolutions
# 1) Shift raw ticks by half-resolution so 2048 -> 0, then wrap [0..res-1].
ticks = (raw_motor_ticks - (resolutions // 2)) % resolutions
# # Re-center into a symmetric range (e.g., [-2048, 2047] if resolutions==4096) Thus the middle homing position will be virtual 0.
if ticks > resolutions // 2:
# 2) If above halfway, fold it into negative territory => [-2048..+2047].
if ticks > (resolutions // 2):
ticks -= resolutions
# Update direction of rotation of the motor to match between leader and follower.
# In fact, the motor of the leader for a given joint can be assembled in an
# opposite direction in term of rotation than the motor of the follower on the same joint.
# 3) Optionally flip sign if drive_mode is set.
drive_mode = 0
if motorbus.calibration is not None:
drive_mode = motorbus.calibration["drive_mode"][motor_id - 1]
@@ -165,11 +164,10 @@ def adjusted_to_homing_ticks(raw_motor_ticks: int, model: str, motorbus, motor_i
def adjusted_to_motor_ticks(adjusted_pos: int, model: str, motorbus, motor_id: int) -> int:
"""
Inverse of adjusted_to_homing_ticks().
Inverse of adjusted_to_homing_ticks(). Takes a 'homed' position in [-2048..+2047]
and recovers the raw [0..(res-1)] ticks with 2048 as midpoint.
"""
# Update direction of rotation of the motor to match between leader and follower.
# In fact, the motor of the leader for a given joint can be assembled in an
# opposite direction in term of rotation than the motor of the follower on the same joint.
# 1) Flip sign if drive_mode was set.
drive_mode = 0
if motorbus.calibration is not None:
drive_mode = motorbus.calibration["drive_mode"][motor_id - 1]
@@ -179,8 +177,9 @@ def adjusted_to_motor_ticks(adjusted_pos: int, model: str, motorbus, motor_id: i
resolutions = MODEL_RESOLUTION[model]
# Remove offset and wrap within resolution
ticks = (adjusted_pos) % resolutions
# 2) Shift by +half-resolution and wrap into [0..res-1].
# This undoes the earlier shift by -half-resolution.
ticks = (adjusted_pos + (resolutions // 2)) % resolutions
return ticks

View File

@@ -54,6 +54,74 @@ def ensure_safe_goal_position(
return safe_goal_pos
def apply_feetech_offsets_from_calibration(motorsbus, calibration_dict: dict):
"""
Reads 'calibration_dict' containing 'homing_offset' and 'motor_names',
then writes each motor's offset to the servo's internal Offset (0x1F) in EPROM,
except for any motor whose name contains "gripper" (skipped).
This version is modified so each homed position (originally 0) will now read
2047, i.e. 180° away from 0 in the 4096-count circle. Offsets are permanently
stored in EEPROM, so the servo's Present_Position is hardware-shifted even
after power cycling.
Steps:
1) Subtract 2047 from the old offset (so 0 -> 2047).
2) Clamp to [-2047..+2047].
3) Encode sign bit and magnitude into a 12-bit number.
4) Skip "gripper" motors, as they do not require this shift.
"""
homing_offsets = calibration_dict["homing_offset"]
motor_names = calibration_dict["motor_names"]
# 1) Open the write lock => Lock=1 => changes to EEPROM do NOT persist yet
motorsbus.write("Lock", 1)
# 2) For each motor, set the 'Offset' parameter
for m_name, old_offset in zip(motor_names, homing_offsets, strict=False):
# If bus doesnt have a motor named m_name, skip
if m_name not in motorsbus.motors:
print(f"Warning: '{m_name}' not found in motorsbus.motors; skipping offset.")
continue
if m_name == "gripper":
print("Skipping gripper")
continue
# Shift the offset so the homed position reads 2047
new_offset = old_offset - 2047
# Clamp to [-2047..+2047]
if new_offset > 2047:
new_offset = 2047
print(
f"Warning: '{new_offset}' is getting clamped because its larger then 2047; This should not happen!"
)
elif new_offset < -2047:
new_offset = -2047
print(
f"Warning: '{new_offset}' is getting clamped because its smaller then -2047; This should not happen!"
)
# Determine the direction (sign) bit and magnitude
direction_bit = 1 if new_offset < 0 else 0
magnitude = abs(new_offset)
# Combine sign bit (bit 11) with the magnitude (bits 0..10)
servo_offset = (direction_bit << 11) | magnitude
# Write to servo
motorsbus.write("Offset", servo_offset, motor_names=m_name)
print(
f"Set offset for {m_name}: "
f"old_offset={old_offset}, new_offset={new_offset}, servo_encoded={magnitude} + direction={direction_bit}"
)
motorsbus.write("Lock", 0)
print("Offsets have been saved to EEPROM successfully.")
class ManipulatorRobot:
# TODO(rcadene): Implement force feedback
"""This class allows to control any manipulator robot of various number of motors.
@@ -327,12 +395,24 @@ class ManipulatorRobot:
return calibration
for name, arm in self.follower_arms.items():
calibration = load_or_run_calibration_(name, arm, "follower")
arm.set_calibration(calibration)
for name, arm in self.leader_arms.items():
calibration = load_or_run_calibration_(name, arm, "leader")
arm.set_calibration(calibration)
# For each follower arm
for name, arm_bus in self.follower_arms.items():
calibration = load_or_run_calibration_(name, arm_bus, "follower")
arm_bus.set_calibration(calibration)
# If this is a Feetech robot, also set the servo offset into EEPROM
if self.robot_type in ["so100", "lekiwi"]:
apply_feetech_offsets_from_calibration(arm_bus, calibration)
# For each leader arm
for name, arm_bus in self.leader_arms.items():
calibration = load_or_run_calibration_(name, arm_bus, "leader")
arm_bus.set_calibration(calibration)
# Optionally also set offset for leader if you want the servo offsets as well
if self.robot_type in ["so100", "lekiwi"]:
apply_feetech_offsets_from_calibration(arm_bus, calibration)
def set_koch_robot_preset(self):
def set_operating_mode_(arm):