Compare commits

...

3 Commits

Author SHA1 Message Date
Michel Aractingi
06fc9b89e1 pass entire config to make_optimizer 2024-09-02 08:20:17 +00:00
Michel Aractingi
3034272229 modified tests dirs 2024-09-02 08:04:56 +00:00
Michel Aractingi
bbce0eaeaf moved make optimizer and scheduler function to inside policy 2024-09-02 07:53:10 +00:00
7 changed files with 59 additions and 58 deletions

View File

@@ -160,6 +160,31 @@ class ACTPolicy(
return loss_dict
def make_optimizer_and_scheduler(self, cfg):
"""Create the optimizer and learning rate scheduler for ACT"""
optimizer_params_dicts = [
{
"params": [
p
for n, p in self.named_parameters()
if not n.startswith("model.backbone") and p.requires_grad
]
},
{
"params": [
p
for n, p in self.named_parameters()
if n.startswith("model.backbone") and p.requires_grad
],
"lr": cfg.training.lr_backbone,
},
]
optimizer = torch.optim.AdamW(
optimizer_params_dicts, lr=cfg.training.lr, weight_decay=cfg.training.weight_decay
)
lr_scheduler = None
return optimizer, lr_scheduler
class ACTTemporalEnsembler:
def __init__(self, temporal_ensemble_coeff: float, chunk_size: int) -> None:

View File

@@ -156,6 +156,25 @@ class DiffusionPolicy(
loss = self.diffusion.compute_loss(batch)
return {"loss": loss}
def make_optimizer_and_scheduler(self, cfg):
"""Create the optimizer and learning rate scheduler for Diffusion policy"""
optimizer = torch.optim.Adam(
self.diffusion.parameters(),
cfg.training.lr,
cfg.training.adam_betas,
cfg.training.adam_eps,
cfg.training.adam_weight_decay,
)
from diffusers.optimization import get_scheduler
lr_scheduler = get_scheduler(
cfg.training.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=cfg.training.lr_warmup_steps,
num_training_steps=cfg.training.offline_steps,
)
return optimizer, lr_scheduler
def _make_noise_scheduler(name: str, **kwargs: dict) -> DDPMScheduler | DDIMScheduler:
"""

View File

@@ -534,6 +534,12 @@ class TDMPCPolicy(
# we update every step and adjust the decay parameter `alpha` accordingly (0.99 -> 0.995)
update_ema_parameters(self.model_target, self.model, self.config.target_model_momentum)
def make_optimizer_and_scheduler(self, cfg):
"""Create the optimizer and learning rate scheduler for TD-MPC"""
optimizer = torch.optim.Adam(self.parameters(), cfg.training.lr)
lr_scheduler = None
return optimizer, lr_scheduler
class TDMPCTOLD(nn.Module):
"""Task-Oriented Latent Dynamics (TOLD) model used in TD-MPC."""

View File

@@ -152,6 +152,12 @@ class VQBeTPolicy(
return loss_dict
def make_optimizer_and_scheduler(self, cfg):
"""Create the optimizer and learning rate scheduler for VQ-BeT"""
optimizer = VQBeTOptimizer(self, cfg)
scheduler = VQBeTScheduler(optimizer, cfg)
return optimizer, scheduler
class SpatialSoftmax(nn.Module):
"""

View File

@@ -51,59 +51,6 @@ from lerobot.common.utils.utils import (
from lerobot.scripts.eval import eval_policy
def make_optimizer_and_scheduler(cfg, policy):
if cfg.policy.name == "act":
optimizer_params_dicts = [
{
"params": [
p
for n, p in policy.named_parameters()
if not n.startswith("model.backbone") and p.requires_grad
]
},
{
"params": [
p
for n, p in policy.named_parameters()
if n.startswith("model.backbone") and p.requires_grad
],
"lr": cfg.training.lr_backbone,
},
]
optimizer = torch.optim.AdamW(
optimizer_params_dicts, lr=cfg.training.lr, weight_decay=cfg.training.weight_decay
)
lr_scheduler = None
elif cfg.policy.name == "diffusion":
optimizer = torch.optim.Adam(
policy.diffusion.parameters(),
cfg.training.lr,
cfg.training.adam_betas,
cfg.training.adam_eps,
cfg.training.adam_weight_decay,
)
from diffusers.optimization import get_scheduler
lr_scheduler = get_scheduler(
cfg.training.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=cfg.training.lr_warmup_steps,
num_training_steps=cfg.training.offline_steps,
)
elif policy.name == "tdmpc":
optimizer = torch.optim.Adam(policy.parameters(), cfg.training.lr)
lr_scheduler = None
elif cfg.policy.name == "vqbet":
from lerobot.common.policies.vqbet.modeling_vqbet import VQBeTOptimizer, VQBeTScheduler
optimizer = VQBeTOptimizer(policy, cfg)
lr_scheduler = VQBeTScheduler(optimizer, cfg)
else:
raise NotImplementedError()
return optimizer, lr_scheduler
def update_policy(
policy,
batch,
@@ -334,7 +281,7 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
assert isinstance(policy, nn.Module)
# Create optimizer and scheduler
# Temporary hack to move optimizer out of policy
optimizer, lr_scheduler = make_optimizer_and_scheduler(cfg, policy)
optimizer, lr_scheduler = policy.make_optimizer_and_scheduler(cfg)
grad_scaler = GradScaler(enabled=cfg.use_amp)
step = 0 # number of policy updates (forward + backward + optim)

View File

@@ -22,7 +22,6 @@ from safetensors.torch import save_file
from lerobot.common.datasets.factory import make_dataset
from lerobot.common.policies.factory import make_policy
from lerobot.common.utils.utils import init_hydra_config, set_global_seed
from lerobot.scripts.train import make_optimizer_and_scheduler
from tests.utils import DEFAULT_CONFIG_PATH
@@ -40,7 +39,7 @@ def get_policy_stats(env_name, policy_name, extra_overrides):
dataset = make_dataset(cfg)
policy = make_policy(cfg, dataset_stats=dataset.stats)
policy.train()
optimizer, _ = make_optimizer_and_scheduler(cfg, policy)
optimizer, _ = policy.make_optimizer_and_scheduler(cfg)
dataloader = torch.utils.data.DataLoader(
dataset,

View File

@@ -37,7 +37,6 @@ from lerobot.common.policies.factory import (
from lerobot.common.policies.normalize import Normalize, Unnormalize
from lerobot.common.policies.policy_protocol import Policy
from lerobot.common.utils.utils import init_hydra_config, seeded_context
from lerobot.scripts.train import make_optimizer_and_scheduler
from tests.scripts.save_policy_to_safetensors import get_policy_stats
from tests.utils import DEFAULT_CONFIG_PATH, DEVICE, require_cpu, require_env, require_x86_64_kernel
@@ -214,7 +213,7 @@ def test_act_backbone_lr():
dataset = make_dataset(cfg)
policy = make_policy(hydra_cfg=cfg, dataset_stats=dataset.stats)
optimizer, _ = make_optimizer_and_scheduler(cfg, policy)
optimizer, _ = policy.make_optimizer_and_scheduler(cfg)
assert len(optimizer.param_groups) == 2
assert optimizer.param_groups[0]["lr"] == cfg.training.lr
assert optimizer.param_groups[1]["lr"] == cfg.training.lr_backbone