Compare commits

..

3 Commits

Author SHA1 Message Date
pre-commit-ci[bot]
2366d40cf9 [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
2025-06-04 15:46:31 +00:00
Dana
a9ebc6d4ae adding minimal info for docs 2025-06-04 17:43:40 +02:00
mshukor
bfd26eef5a Add SmolVLA (#1175)
Some checks failed
Secret Leaks / trufflehog (push) Has been cancelled
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: fracapuano <francesco.capuano@huggingface.co>
Co-authored-by: Steven Palma <imstevenpmwork@ieee.org>
Co-authored-by: Dana Aubakirova <118912928+danaaubakirova@users.noreply.github.com>
Co-authored-by: Remi <remi.cadene@huggingface.co>
2025-06-03 17:11:50 +02:00
6 changed files with 99 additions and 4 deletions

View File

@@ -10,3 +10,8 @@
- local: getting_started_real_world_robot
title: Getting Started with Real-World Robots
title: "Tutorials"
- sections:
- local: smolvla
title: Use SmolVLA
title: "Policies"

91
docs/source/smolvla.mdx Normal file
View File

@@ -0,0 +1,91 @@
# Use SmolVLA
SmolVLA is designed to be easy to use and integrate—whether you're finetuning on your own data or plugging it into an existing robotics stack.
<p align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/640e21ef3c82bd463ee5a76d/aooU0a3DMtYmy_1IWMaIM.png" alt="SmolVLA architecture." width="500"/>
<br/>
<em>Figure 2. SmolVLA takes as input a sequence of RGB images from multiple cameras, the robots current sensorimotor state, and a natural language instruction. The VLM encodes these into contextual features, which condition the action expert to generate a continuous sequence of actions.</em>
</p>
### Install
First, install the required dependencies:
```python
git clone https://github.com/huggingface/lerobot.git
cd lerobot
pip install -e ".[smolvla]"
```
### Finetune the pretrained model
Use [`smolvla_base`](https://hf.co/lerobot/smolvla_base), our pretrained 450M model, with the lerobot training framework:
```python
python lerobot/scripts/train.py \
--policy.path=lerobot/smolvla_base \
--dataset.repo_id=lerobot/svla_so100_stacking \
--batch_size=64 \
--steps=200000
```
<p align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/640e21ef3c82bd463ee5a76d/S-3vvVCulChREwHDkquoc.gif" alt="Comparison of SmolVLA across task variations." width="500"/>
<br/>
<em>Figure 1: Comparison of SmolVLA across task variations. From left to right: (1) asynchronous pick-place cube counting, (2) synchronous pick-place cube counting, (3) pick-place cube counting under perturbations, and (4) generalization on pick-and-place of the lego block with real-world SO101.</em>
</p>
### Train from scratch
If you'd like to build from the architecture (pretrained VLM + action expert) rather than a pretrained checkpoint:
```python
python lerobot/scripts/train.py \
--policy.type=smolvla \
--dataset.repo_id=lerobot/svla_so100_stacking \
--batch_size=64 \
--steps=200000
```
You can also load `SmolVLAPolicy` directly:
```python
from lerobot.common.policies.smolvla.modeling_smolvla import SmolVLAPolicy
policy = SmolVLAPolicy.from_pretrained("lerobot/smolvla_base")
```
## Evaluate the pretrained policy and run it in real-time
If you want to record the evaluation process and safe the videos on the hub, login to your HF account by running:
```python
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
```
Store your Hugging Face repository name in a variable to run these commands:
```python
HF_USER=$(huggingface-cli whoami | head -n 1)
echo $HF_USER
```
Now, indicate the path to the policy, which is `lerobot/smolvla_base` in this case, and run:
```python
python lerobot/scripts/control_robot.py \
--robot.type=so100 \
--control.type=record \
--control.fps=30 \
--control.single_task="Grasp a lego block and put it in the bin." \
--control.repo_id=${HF_USER}/eval_svla_base_test \
--control.tags='["tutorial"]' \
--control.warmup_time_s=5 \
--control.episode_time_s=30 \
--control.reset_time_s=30 \
--control.num_episodes=10 \
--control.push_to_hub=true \
--control.policy.path=lerobot/smolvla_base
```
Depending on your evaluation setup, you can configure the duration and the number of episodes to record for your evaluation suite.

View File

@@ -168,7 +168,7 @@ available_datasets = sorted(
)
# lists all available policies from `lerobot/common/policies`
available_policies = ["act", "diffusion", "tdmpc", "vqbet", "smolvla"]
available_policies = ["act", "diffusion", "tdmpc", "vqbet"]
# lists all available robots from `lerobot/common/robot_devices/robots`
available_robots = [

View File

@@ -662,7 +662,6 @@ class VLAFlowMatching(nn.Module):
self.config.max_period,
device=device,
)
time_emb = time_emb.type(dtype=dtype)
time_emb = time_emb[:, None, :].expand_as(action_emb)

View File

@@ -272,6 +272,7 @@ def control_loop(
action = {"action": action}
if dataset is not None:
observation = {k: v for k, v in observation.items() if k not in ["task", "robot_type"]}
frame = {**observation, **action, "task": single_task}
dataset.add_frame(frame)

View File

@@ -21,7 +21,6 @@ import pytest
import lerobot
from lerobot.common.policies.act.modeling_act import ACTPolicy
from lerobot.common.policies.diffusion.modeling_diffusion import DiffusionPolicy
from lerobot.common.policies.smolvla.modeling_smolvla import SmolVLAPolicy
from lerobot.common.policies.tdmpc.modeling_tdmpc import TDMPCPolicy
from lerobot.common.policies.vqbet.modeling_vqbet import VQBeTPolicy
from tests.utils import require_env
@@ -46,7 +45,7 @@ def test_available_policies():
This test verifies that the class attribute `name` for all policies is
consistent with those listed in `lerobot/__init__.py`.
"""
policy_classes = [ACTPolicy, DiffusionPolicy, TDMPCPolicy, VQBeTPolicy, SmolVLAPolicy]
policy_classes = [ACTPolicy, DiffusionPolicy, TDMPCPolicy, VQBeTPolicy]
policies = [pol_cls.name for pol_cls in policy_classes]
assert set(policies) == set(lerobot.available_policies), policies