Compare commits
1 Commits
recovered-
...
user/fraca
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
241e7076f2 |
60
lerobot/scripts/server/async_inference.proto
Normal file
60
lerobot/scripts/server/async_inference.proto
Normal file
@@ -0,0 +1,60 @@
|
||||
// fmt: off
|
||||
// flake8: noqa
|
||||
// !/usr/bin/env python
|
||||
|
||||
// Copyright 2024 The HuggingFace Inc. team.
|
||||
// All rights reserved.
|
||||
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
syntax = "proto3";
|
||||
|
||||
package async_inference;
|
||||
|
||||
// AsyncInference: from Robot perspective
|
||||
// Robot send observations to & executes action received from a remote Policy server
|
||||
service AsyncInference {
|
||||
// Robot -> Policy to share observations with a remote inference server
|
||||
// Policy -> Robot to share actions predicted for given observations
|
||||
rpc SendObservations(stream Observation) returns (Empty);
|
||||
rpc StreamActions(Empty) returns (stream Action);
|
||||
rpc SendPolicyInstructions(PolicySetup) returns (Empty);
|
||||
rpc Ready(Empty) returns (Empty);
|
||||
}
|
||||
|
||||
enum TransferState {
|
||||
TRANSFER_UNKNOWN = 0;
|
||||
TRANSFER_BEGIN = 1;
|
||||
TRANSFER_MIDDLE = 2;
|
||||
TRANSFER_END = 3;
|
||||
}
|
||||
|
||||
// Messages
|
||||
message Observation {
|
||||
// sent by Robot, to remote Policy
|
||||
TransferState transfer_state = 1;
|
||||
bytes data = 2;
|
||||
}
|
||||
|
||||
message Action {
|
||||
// sent by remote Policy, to Robot
|
||||
TransferState transfer_state = 1;
|
||||
bytes data = 2;
|
||||
}
|
||||
|
||||
message PolicySetup {
|
||||
// sent by Robot to remote server, to init Policy
|
||||
TransferState transfer_state = 1;
|
||||
bytes data = 2;
|
||||
}
|
||||
|
||||
message Empty {}
|
||||
48
lerobot/scripts/server/async_inference_pb2.py
Normal file
48
lerobot/scripts/server/async_inference_pb2.py
Normal file
@@ -0,0 +1,48 @@
|
||||
# fmt: off
|
||||
# flake8: noqa
|
||||
# -*- coding: utf-8 -*-
|
||||
# Generated by the protocol buffer compiler. DO NOT EDIT!
|
||||
# NO CHECKED-IN PROTOBUF GENCODE
|
||||
# source: async_inference.proto
|
||||
# Protobuf Python Version: 5.29.0
|
||||
"""Generated protocol buffer code."""
|
||||
from google.protobuf import descriptor as _descriptor
|
||||
from google.protobuf import descriptor_pool as _descriptor_pool
|
||||
from google.protobuf import runtime_version as _runtime_version
|
||||
from google.protobuf import symbol_database as _symbol_database
|
||||
from google.protobuf.internal import builder as _builder
|
||||
_runtime_version.ValidateProtobufRuntimeVersion(
|
||||
_runtime_version.Domain.PUBLIC,
|
||||
5,
|
||||
29,
|
||||
0,
|
||||
'',
|
||||
'async_inference.proto'
|
||||
)
|
||||
# @@protoc_insertion_point(imports)
|
||||
|
||||
_sym_db = _symbol_database.Default()
|
||||
|
||||
|
||||
|
||||
|
||||
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x15\x61sync_inference.proto\x12\x0f\x61sync_inference\"S\n\x0bObservation\x12\x36\n\x0etransfer_state\x18\x01 \x01(\x0e\x32\x1e.async_inference.TransferState\x12\x0c\n\x04\x64\x61ta\x18\x02 \x01(\x0c\"N\n\x06\x41\x63tion\x12\x36\n\x0etransfer_state\x18\x01 \x01(\x0e\x32\x1e.async_inference.TransferState\x12\x0c\n\x04\x64\x61ta\x18\x02 \x01(\x0c\"S\n\x0bPolicySetup\x12\x36\n\x0etransfer_state\x18\x01 \x01(\x0e\x32\x1e.async_inference.TransferState\x12\x0c\n\x04\x64\x61ta\x18\x02 \x01(\x0c\"\x07\n\x05\x45mpty*`\n\rTransferState\x12\x14\n\x10TRANSFER_UNKNOWN\x10\x00\x12\x12\n\x0eTRANSFER_BEGIN\x10\x01\x12\x13\n\x0fTRANSFER_MIDDLE\x10\x02\x12\x10\n\x0cTRANSFER_END\x10\x03\x32\xa9\x02\n\x0e\x41syncInference\x12J\n\x10SendObservations\x12\x1c.async_inference.Observation\x1a\x16.async_inference.Empty(\x01\x12\x42\n\rStreamActions\x12\x16.async_inference.Empty\x1a\x17.async_inference.Action0\x01\x12N\n\x16SendPolicyInstructions\x12\x1c.async_inference.PolicySetup\x1a\x16.async_inference.Empty\x12\x37\n\x05Ready\x12\x16.async_inference.Empty\x1a\x16.async_inference.Emptyb\x06proto3')
|
||||
|
||||
_globals = globals()
|
||||
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
|
||||
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'async_inference_pb2', _globals)
|
||||
if not _descriptor._USE_C_DESCRIPTORS:
|
||||
DESCRIPTOR._loaded_options = None
|
||||
_globals['_TRANSFERSTATE']._serialized_start=301
|
||||
_globals['_TRANSFERSTATE']._serialized_end=397
|
||||
_globals['_OBSERVATION']._serialized_start=42
|
||||
_globals['_OBSERVATION']._serialized_end=125
|
||||
_globals['_ACTION']._serialized_start=127
|
||||
_globals['_ACTION']._serialized_end=205
|
||||
_globals['_POLICYSETUP']._serialized_start=207
|
||||
_globals['_POLICYSETUP']._serialized_end=290
|
||||
_globals['_EMPTY']._serialized_start=292
|
||||
_globals['_EMPTY']._serialized_end=299
|
||||
_globals['_ASYNCINFERENCE']._serialized_start=400
|
||||
_globals['_ASYNCINFERENCE']._serialized_end=697
|
||||
# @@protoc_insertion_point(module_scope)
|
||||
236
lerobot/scripts/server/async_inference_pb2_grpc.py
Normal file
236
lerobot/scripts/server/async_inference_pb2_grpc.py
Normal file
@@ -0,0 +1,236 @@
|
||||
# fmt: off
|
||||
# flake8: noqa
|
||||
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
|
||||
"""Client and server classes corresponding to protobuf-defined services."""
|
||||
import grpc
|
||||
import warnings
|
||||
|
||||
import async_inference_pb2 as async__inference__pb2
|
||||
|
||||
GRPC_GENERATED_VERSION = '1.71.0'
|
||||
GRPC_VERSION = grpc.__version__
|
||||
_version_not_supported = False
|
||||
|
||||
try:
|
||||
from grpc._utilities import first_version_is_lower
|
||||
_version_not_supported = first_version_is_lower(GRPC_VERSION, GRPC_GENERATED_VERSION)
|
||||
except ImportError:
|
||||
_version_not_supported = True
|
||||
|
||||
if _version_not_supported:
|
||||
raise RuntimeError(
|
||||
f'The grpc package installed is at version {GRPC_VERSION},'
|
||||
+ f' but the generated code in async_inference_pb2_grpc.py depends on'
|
||||
+ f' grpcio>={GRPC_GENERATED_VERSION}.'
|
||||
+ f' Please upgrade your grpc module to grpcio>={GRPC_GENERATED_VERSION}'
|
||||
+ f' or downgrade your generated code using grpcio-tools<={GRPC_VERSION}.'
|
||||
)
|
||||
|
||||
|
||||
class AsyncInferenceStub:
|
||||
"""AsyncInference: from Robot perspective
|
||||
Robot send observations to & executes action received from a remote Policy server
|
||||
"""
|
||||
|
||||
def __init__(self, channel):
|
||||
"""Constructor.
|
||||
|
||||
Args:
|
||||
channel: A grpc.Channel.
|
||||
"""
|
||||
self.SendObservations = channel.stream_unary(
|
||||
'/async_inference.AsyncInference/SendObservations',
|
||||
request_serializer=async__inference__pb2.Observation.SerializeToString,
|
||||
response_deserializer=async__inference__pb2.Empty.FromString,
|
||||
_registered_method=True)
|
||||
self.StreamActions = channel.unary_stream(
|
||||
'/async_inference.AsyncInference/StreamActions',
|
||||
request_serializer=async__inference__pb2.Empty.SerializeToString,
|
||||
response_deserializer=async__inference__pb2.Action.FromString,
|
||||
_registered_method=True)
|
||||
self.SendPolicyInstructions = channel.unary_unary(
|
||||
'/async_inference.AsyncInference/SendPolicyInstructions',
|
||||
request_serializer=async__inference__pb2.PolicySetup.SerializeToString,
|
||||
response_deserializer=async__inference__pb2.Empty.FromString,
|
||||
_registered_method=True)
|
||||
self.Ready = channel.unary_unary(
|
||||
'/async_inference.AsyncInference/Ready',
|
||||
request_serializer=async__inference__pb2.Empty.SerializeToString,
|
||||
response_deserializer=async__inference__pb2.Empty.FromString,
|
||||
_registered_method=True)
|
||||
|
||||
|
||||
class AsyncInferenceServicer:
|
||||
"""AsyncInference: from Robot perspective
|
||||
Robot send observations to & executes action received from a remote Policy server
|
||||
"""
|
||||
|
||||
def SendObservations(self, request_iterator, context):
|
||||
"""Robot -> Policy to share observations with a remote inference server
|
||||
Policy -> Robot to share actions predicted for given observations
|
||||
"""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def StreamActions(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def SendPolicyInstructions(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Ready(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
|
||||
def add_AsyncInferenceServicer_to_server(servicer, server):
|
||||
rpc_method_handlers = {
|
||||
'SendObservations': grpc.stream_unary_rpc_method_handler(
|
||||
servicer.SendObservations,
|
||||
request_deserializer=async__inference__pb2.Observation.FromString,
|
||||
response_serializer=async__inference__pb2.Empty.SerializeToString,
|
||||
),
|
||||
'StreamActions': grpc.unary_stream_rpc_method_handler(
|
||||
servicer.StreamActions,
|
||||
request_deserializer=async__inference__pb2.Empty.FromString,
|
||||
response_serializer=async__inference__pb2.Action.SerializeToString,
|
||||
),
|
||||
'SendPolicyInstructions': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.SendPolicyInstructions,
|
||||
request_deserializer=async__inference__pb2.PolicySetup.FromString,
|
||||
response_serializer=async__inference__pb2.Empty.SerializeToString,
|
||||
),
|
||||
'Ready': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Ready,
|
||||
request_deserializer=async__inference__pb2.Empty.FromString,
|
||||
response_serializer=async__inference__pb2.Empty.SerializeToString,
|
||||
),
|
||||
}
|
||||
generic_handler = grpc.method_handlers_generic_handler(
|
||||
'async_inference.AsyncInference', rpc_method_handlers)
|
||||
server.add_generic_rpc_handlers((generic_handler,))
|
||||
server.add_registered_method_handlers('async_inference.AsyncInference', rpc_method_handlers)
|
||||
|
||||
|
||||
# This class is part of an EXPERIMENTAL API.
|
||||
class AsyncInference:
|
||||
"""AsyncInference: from Robot perspective
|
||||
Robot send observations to & executes action received from a remote Policy server
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def SendObservations(request_iterator,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.stream_unary(
|
||||
request_iterator,
|
||||
target,
|
||||
'/async_inference.AsyncInference/SendObservations',
|
||||
async__inference__pb2.Observation.SerializeToString,
|
||||
async__inference__pb2.Empty.FromString,
|
||||
options,
|
||||
channel_credentials,
|
||||
insecure,
|
||||
call_credentials,
|
||||
compression,
|
||||
wait_for_ready,
|
||||
timeout,
|
||||
metadata,
|
||||
_registered_method=True)
|
||||
|
||||
@staticmethod
|
||||
def StreamActions(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_stream(
|
||||
request,
|
||||
target,
|
||||
'/async_inference.AsyncInference/StreamActions',
|
||||
async__inference__pb2.Empty.SerializeToString,
|
||||
async__inference__pb2.Action.FromString,
|
||||
options,
|
||||
channel_credentials,
|
||||
insecure,
|
||||
call_credentials,
|
||||
compression,
|
||||
wait_for_ready,
|
||||
timeout,
|
||||
metadata,
|
||||
_registered_method=True)
|
||||
|
||||
@staticmethod
|
||||
def SendPolicyInstructions(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(
|
||||
request,
|
||||
target,
|
||||
'/async_inference.AsyncInference/SendPolicyInstructions',
|
||||
async__inference__pb2.PolicySetup.SerializeToString,
|
||||
async__inference__pb2.Empty.FromString,
|
||||
options,
|
||||
channel_credentials,
|
||||
insecure,
|
||||
call_credentials,
|
||||
compression,
|
||||
wait_for_ready,
|
||||
timeout,
|
||||
metadata,
|
||||
_registered_method=True)
|
||||
|
||||
@staticmethod
|
||||
def Ready(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(
|
||||
request,
|
||||
target,
|
||||
'/async_inference.AsyncInference/Ready',
|
||||
async__inference__pb2.Empty.SerializeToString,
|
||||
async__inference__pb2.Empty.FromString,
|
||||
options,
|
||||
channel_credentials,
|
||||
insecure,
|
||||
call_credentials,
|
||||
compression,
|
||||
wait_for_ready,
|
||||
timeout,
|
||||
metadata,
|
||||
_registered_method=True)
|
||||
12
lerobot/scripts/server/constants.py
Normal file
12
lerobot/scripts/server/constants.py
Normal file
@@ -0,0 +1,12 @@
|
||||
"""Server/Client side: Sometimes you just want the environment to wait a tiny bit"""
|
||||
|
||||
idle_wait = 0.01
|
||||
|
||||
"""Client side: The environment evolves with a time resolution equal to environment_dt"""
|
||||
environment_dt = 1 / 30
|
||||
|
||||
"""Server side: Running inference on (at most) environment_dt"""
|
||||
inference_latency = environment_dt
|
||||
|
||||
"""Supported policies"""
|
||||
supported_policies = ["act", "smolvla"]
|
||||
128
lerobot/scripts/server/helpers.py
Normal file
128
lerobot/scripts/server/helpers.py
Normal file
@@ -0,0 +1,128 @@
|
||||
import logging
|
||||
import logging.handlers
|
||||
import os
|
||||
import time
|
||||
from typing import Any
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
def setup_logging(prefix: str, info_bracket: str):
|
||||
"""Sets up logging"""
|
||||
# Create logs directory if it doesn't exist
|
||||
os.makedirs("logs", exist_ok=True)
|
||||
|
||||
# Delete any existing prefix_* log files
|
||||
for old_log_file in os.listdir("logs"):
|
||||
if old_log_file.startswith(prefix) and old_log_file.endswith(".log"):
|
||||
try:
|
||||
os.remove(os.path.join("logs", old_log_file))
|
||||
print(f"Deleted old log file: {old_log_file}")
|
||||
except Exception as e:
|
||||
print(f"Failed to delete old log file {old_log_file}: {e}")
|
||||
|
||||
# Set up logging with both console and file output
|
||||
logger = logging.getLogger(prefix)
|
||||
# Prevent propagation to root logger to avoid duplicate messages
|
||||
logger.propagate = False
|
||||
|
||||
logger.setLevel(logging.INFO)
|
||||
|
||||
# Console handler
|
||||
console_handler = logging.StreamHandler()
|
||||
console_handler.setFormatter(
|
||||
logging.Formatter(
|
||||
f"%(asctime)s.%(msecs)03d [{info_bracket}] [%(levelname)s] %(message)s",
|
||||
datefmt="%Y-%m-%d %H:%M:%S",
|
||||
)
|
||||
)
|
||||
logger.addHandler(console_handler)
|
||||
|
||||
# File handler - creates a new log file for each run
|
||||
file_handler = logging.handlers.RotatingFileHandler(
|
||||
f"logs/policy_server_{int(time.time())}.log",
|
||||
maxBytes=10 * 1024 * 1024, # 10MB
|
||||
backupCount=5,
|
||||
)
|
||||
file_handler.setFormatter(
|
||||
logging.Formatter(
|
||||
f"%(asctime)s.%(msecs)03d [{info_bracket}] [%(levelname)s] %(message)s",
|
||||
datefmt="%Y-%m-%d %H:%M:%S",
|
||||
)
|
||||
)
|
||||
logger.addHandler(file_handler)
|
||||
|
||||
return logger
|
||||
|
||||
|
||||
class TimedData:
|
||||
def __init__(self, timestamp: float, data: Any, timestep: int):
|
||||
"""Initialize a TimedData object.
|
||||
|
||||
Args:
|
||||
timestamp: Unix timestamp relative to data's creation.
|
||||
data: The actual data to wrap a timestamp around.
|
||||
timestep: The timestep of the data.
|
||||
"""
|
||||
self.timestamp = timestamp
|
||||
self.data = data
|
||||
self.timestep = timestep
|
||||
|
||||
def get_data(self):
|
||||
return self.data
|
||||
|
||||
def get_timestamp(self):
|
||||
return self.timestamp
|
||||
|
||||
def get_timestep(self):
|
||||
return self.timestep
|
||||
|
||||
|
||||
class TimedAction(TimedData):
|
||||
def __init__(self, timestamp: float, action: torch.Tensor, timestep: int):
|
||||
super().__init__(timestamp=timestamp, data=action, timestep=timestep)
|
||||
|
||||
def get_action(self):
|
||||
return self.get_data()
|
||||
|
||||
|
||||
class TimedObservation(TimedData):
|
||||
def __init__(
|
||||
self,
|
||||
timestamp: float,
|
||||
observation: dict[str, torch.Tensor],
|
||||
timestep: int,
|
||||
transfer_state: int = 0,
|
||||
must_go: bool = False,
|
||||
):
|
||||
super().__init__(timestamp=timestamp, data=observation, timestep=timestep)
|
||||
self.transfer_state = transfer_state
|
||||
self.must_go = must_go
|
||||
|
||||
def get_observation(self):
|
||||
return self.get_data()
|
||||
|
||||
|
||||
class TinyPolicyConfig:
|
||||
def __init__(
|
||||
self,
|
||||
policy_type: str = "act",
|
||||
pretrained_name_or_path: str = "fracapuano/act_so100_test",
|
||||
device: str = "cpu",
|
||||
):
|
||||
self.policy_type = policy_type
|
||||
self.pretrained_name_or_path = pretrained_name_or_path
|
||||
self.device = device
|
||||
|
||||
|
||||
def _compare_observation_states(obs1_state: torch.Tensor, obs2_state: torch.Tensor, atol: float) -> bool:
|
||||
"""Check if two observation states are similar, under a tolerance threshold"""
|
||||
return torch.linalg.norm(obs1_state - obs2_state) < atol
|
||||
|
||||
|
||||
def observations_similar(obs1: TimedObservation, obs2: TimedObservation, atol: float = 1) -> bool:
|
||||
"""Check if two observations are similar, under a tolerance threshold"""
|
||||
obs1_state = obs1.get_observation()["observation.state"]
|
||||
obs2_state = obs2.get_observation()["observation.state"]
|
||||
|
||||
return _compare_observation_states(obs1_state, obs2_state, atol=atol)
|
||||
429
lerobot/scripts/server/policy_server.py
Normal file
429
lerobot/scripts/server/policy_server.py
Normal file
@@ -0,0 +1,429 @@
|
||||
import itertools
|
||||
import pickle # nosec
|
||||
import time
|
||||
from concurrent import futures
|
||||
from queue import Queue
|
||||
from typing import Generator, List, Optional
|
||||
|
||||
import async_inference_pb2 # type: ignore
|
||||
import async_inference_pb2_grpc # type: ignore
|
||||
import grpc
|
||||
import torch
|
||||
from datasets import load_dataset
|
||||
|
||||
from lerobot.common.policies.factory import get_policy_class
|
||||
from lerobot.scripts.server.constants import environment_dt, idle_wait, inference_latency, supported_policies
|
||||
from lerobot.scripts.server.helpers import (
|
||||
TimedAction,
|
||||
TimedObservation,
|
||||
TinyPolicyConfig,
|
||||
observations_similar,
|
||||
setup_logging,
|
||||
)
|
||||
|
||||
|
||||
class PolicyServer(async_inference_pb2_grpc.AsyncInferenceServicer):
|
||||
prefix = "policy_server"
|
||||
info_bracket = "SERVER"
|
||||
logger = setup_logging(prefix, info_bracket)
|
||||
|
||||
def __init__(self):
|
||||
# Initialize dataset action generator (to debug this first version, will be removed in the future)
|
||||
self.action_generator = itertools.cycle(self._stream_action_chunks_from_dataset())
|
||||
|
||||
self._setup_server()
|
||||
|
||||
self.actions_per_chunk = 20
|
||||
self.actions_overlap = 10
|
||||
|
||||
self.running = True
|
||||
|
||||
def _setup_server(self) -> None:
|
||||
"""Flushes server state when new client connects."""
|
||||
# only running inference on the latest observation received by the server
|
||||
self.observation_queue = Queue(maxsize=1)
|
||||
self._predicted_timesteps = set()
|
||||
self._predicted_observations = Queue(maxsize=1)
|
||||
|
||||
def Ready(self, request, context): # noqa: N802
|
||||
client_id = context.peer()
|
||||
self.logger.info(f"Client {client_id} connected and ready")
|
||||
self._setup_server()
|
||||
|
||||
return async_inference_pb2.Empty()
|
||||
|
||||
def SendPolicyInstructions(self, request, context): # noqa: N802
|
||||
"""Receive policy instructions from the robot client"""
|
||||
client_id = context.peer()
|
||||
self.logger.debug(f"Receiving policy instructions from {client_id}")
|
||||
|
||||
policy_specs = pickle.loads(request.data) # nosec
|
||||
assert isinstance(policy_specs, TinyPolicyConfig), (
|
||||
f"Policy specs must be a TinyPolicyConfig. Got {type(policy_specs)}"
|
||||
)
|
||||
|
||||
self.logger.info(
|
||||
f"Policy type: {policy_specs.policy_type} | "
|
||||
f"Pretrained name or path: {policy_specs.pretrained_name_or_path} | "
|
||||
f"Device: {policy_specs.device}"
|
||||
)
|
||||
|
||||
assert policy_specs.policy_type in supported_policies, (
|
||||
f"Policy type {policy_specs.policy_type} not supported. Supported policies: {supported_policies}"
|
||||
)
|
||||
|
||||
self.device = policy_specs.device
|
||||
self.policy_type = policy_specs.policy_type # act, pi0, etc.
|
||||
|
||||
policy_class = get_policy_class(self.policy_type)
|
||||
|
||||
start = time.time()
|
||||
self.policy = policy_class.from_pretrained(policy_specs.pretrained_name_or_path)
|
||||
self.policy.to(self.device)
|
||||
end = time.time()
|
||||
|
||||
self.logger.info(f"Time taken to put policy on {self.device}: {end - start:.4f} seconds")
|
||||
|
||||
return async_inference_pb2.Empty()
|
||||
|
||||
def SendObservations(self, request_iterator, context): # noqa: N802
|
||||
"""Receive observations from the robot client"""
|
||||
client_id = context.peer()
|
||||
self.logger.debug(f"Receiving observations from {client_id}")
|
||||
|
||||
for observation in request_iterator:
|
||||
receive_time = time.time()
|
||||
timed_observation = pickle.loads(observation.data) # nosec
|
||||
deserialize_time = time.time()
|
||||
|
||||
self.logger.debug(f"Received observation #{timed_observation.get_timestep()}")
|
||||
|
||||
if not self._maybe_enqueue_observation(timed_observation):
|
||||
continue
|
||||
|
||||
queue_time = time.time()
|
||||
|
||||
obs_timestep = timed_observation.get_timestep()
|
||||
obs_timestamp = timed_observation.get_timestamp()
|
||||
|
||||
self.logger.info(
|
||||
f"Received observation #{obs_timestep} | "
|
||||
f"Client timestamp: {obs_timestamp:.6f} | "
|
||||
f"Server timestamp: {receive_time:.6f} | "
|
||||
)
|
||||
|
||||
if not hasattr(self, "previous_obs_timestamp"):
|
||||
self.previous_obs_timestamp = obs_timestamp
|
||||
|
||||
self.logger.debug(
|
||||
f"1/DeltaObsT (~frequency): {1 / (1e-6 + obs_timestamp - self.previous_obs_timestamp):.6f} Hz| "
|
||||
f"Network latency: {receive_time - obs_timestamp:.6f}s | "
|
||||
f"Deserialization time: {deserialize_time - receive_time:.6f}s | "
|
||||
f"Queue time: {queue_time - deserialize_time:.6f}s | "
|
||||
)
|
||||
|
||||
self.previous_obs_timestamp = obs_timestamp
|
||||
|
||||
return async_inference_pb2.Empty()
|
||||
|
||||
def StreamActions(self, request, context): # noqa: N802
|
||||
"""Stream actions to the robot client"""
|
||||
client_id = context.peer()
|
||||
self.logger.debug(f"Client {client_id} connected for action streaming")
|
||||
|
||||
# Generate action based on the most recent observation and its timestep
|
||||
try:
|
||||
obs = self.observation_queue.get()
|
||||
self.logger.info(
|
||||
f"Running inference for observation #{obs.get_timestep()} (must_go: {obs.must_go})"
|
||||
)
|
||||
|
||||
if obs:
|
||||
self.last_predicted_obs = obs
|
||||
self._predicted_timesteps.add(obs.get_timestep())
|
||||
start_time = time.time()
|
||||
action_chunk = self._predict_action_chunk(obs)
|
||||
# action_chunk = self._read_action_chunk(obs)
|
||||
inference_time = time.time() - start_time
|
||||
|
||||
start_time = time.time()
|
||||
action_bytes = pickle.dumps(action_chunk) # nosec
|
||||
serialize_time = time.time() - start_time
|
||||
|
||||
# Create and return the Action
|
||||
action = async_inference_pb2.Action(transfer_state=obs.transfer_state, data=action_bytes)
|
||||
|
||||
self.logger.info(
|
||||
f"Action chunk #{obs.get_timestep()} generated | Inference time: {inference_time:.6f}s |"
|
||||
)
|
||||
|
||||
self.logger.debug(
|
||||
f"Action chunk #{obs.get_timestep()} generated | "
|
||||
f"Inference time: {inference_time:.6f}s |"
|
||||
f"Serialize time: {serialize_time:.6f}s |"
|
||||
f"Total time: {inference_time + serialize_time:.6f}s"
|
||||
)
|
||||
|
||||
yield action
|
||||
else:
|
||||
self.logger.warning("No observation in queue yet!")
|
||||
time.sleep(idle_wait)
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error in StreamActions: {e}")
|
||||
|
||||
return async_inference_pb2.Empty()
|
||||
|
||||
def _enqueue_and_go(self, obs: TimedObservation):
|
||||
# If queue is full, get the old observation to make room
|
||||
if self.observation_queue.full():
|
||||
# pops from queue
|
||||
_ = self.observation_queue.get_nowait()
|
||||
self.logger.debug("Observation queue was full, removed oldest observation")
|
||||
|
||||
# Now put the new observation (never blocks as queue is non-full here)
|
||||
self.observation_queue.put(obs)
|
||||
return True
|
||||
|
||||
def _obs_sanity_checks(self, obs: TimedObservation, previous_obs: TimedObservation) -> bool:
|
||||
if obs.get_timestep() in self._predicted_timesteps:
|
||||
self.logger.debug(f"Skipping observation #{obs.get_timestep()} - Timestep predicted already!")
|
||||
return False
|
||||
|
||||
elif observations_similar(obs, previous_obs, atol=1):
|
||||
self.logger.debug(
|
||||
f"Skipping observation #{obs.get_timestep()} - Observation too similar to last obs predicted!"
|
||||
)
|
||||
return False
|
||||
|
||||
else:
|
||||
return True
|
||||
|
||||
def _maybe_enqueue_observation(self, obs: TimedObservation) -> bool:
|
||||
"""Enqueue an observation if it must go through processing, otherwise skip it.
|
||||
Observations not in queue are never run through the policy network"""
|
||||
|
||||
if obs.must_go or not hasattr(self, "last_predicted_obs"):
|
||||
self.logger.info(f"[MUST GO] Enqueued observation #{obs.get_timestep()} for direct processing!")
|
||||
return self._enqueue_and_go(obs)
|
||||
|
||||
else:
|
||||
if self._obs_sanity_checks(obs, self.last_predicted_obs):
|
||||
return self._enqueue_and_go(obs)
|
||||
else:
|
||||
return False
|
||||
|
||||
def _time_action_chunk(self, t_0: float, action_chunk: list[torch.Tensor], i_0: int) -> list[TimedAction]:
|
||||
"""Turn a chunk of actions into a list of TimedAction instances,
|
||||
with the first action corresponding to t_0 and the rest corresponding to
|
||||
t_0 + i*environment_dt for i in range(len(action_chunk))
|
||||
"""
|
||||
return [
|
||||
TimedAction(t_0 + i * environment_dt, action, i_0 + i) for i, action in enumerate(action_chunk)
|
||||
]
|
||||
|
||||
@torch.no_grad()
|
||||
def _run_act_policy(self, observation: dict[str, torch.Tensor]) -> torch.Tensor:
|
||||
"""Run ACT-like policies"""
|
||||
start_time = time.time()
|
||||
|
||||
# prepare observation for policy forward pass
|
||||
batch = self.policy.normalize_inputs(observation)
|
||||
normalize_time = time.time()
|
||||
self.logger.debug(f"Observation normalization time: {normalize_time - start_time:.6f}s")
|
||||
|
||||
if self.policy.config.image_features:
|
||||
batch = dict(batch) # shallow copy so that adding a key doesn't modify the original
|
||||
batch["observation.images"] = [batch[key] for key in self.policy.config.image_features]
|
||||
prep_time = time.time()
|
||||
self.logger.debug(f"Observation image preparation time: {prep_time - normalize_time:.6f}s")
|
||||
|
||||
# forward pass outputs up to policy.config.n_action_steps != actions_per_chunk
|
||||
actions = self.policy.model(batch)[0][:, : self.actions_per_chunk]
|
||||
|
||||
actions = self.policy.unnormalize_outputs({"action": actions})["action"]
|
||||
|
||||
end_time = time.time()
|
||||
self.logger.info(f"[ACT] Action chunk generation total time: {end_time - start_time:.6f}s")
|
||||
|
||||
return actions
|
||||
|
||||
@torch.no_grad()
|
||||
def _run_pi0_policy(self, observation: dict[str, torch.Tensor]) -> torch.Tensor:
|
||||
"""Run PI0-like policies"""
|
||||
raise NotImplementedError("PI0 policy not implemented yet")
|
||||
|
||||
@torch.no_grad()
|
||||
def _run_smolvla_policy(
|
||||
self, observation: dict[str, torch.Tensor], noise: Optional[torch.Tensor] = None
|
||||
) -> torch.Tensor:
|
||||
"""Run smolvla-like policies"""
|
||||
observation = self.policy.normalize_inputs(observation)
|
||||
|
||||
images, img_masks = self.policy.prepare_images(observation)
|
||||
state = self.policy.prepare_state(observation)
|
||||
lang_tokens, lang_masks = self.policy.prepare_language(observation)
|
||||
|
||||
actions = self.policy.model.sample_actions(
|
||||
images, img_masks, lang_tokens, lang_masks, state, noise=noise
|
||||
)
|
||||
|
||||
# Unpad actions
|
||||
original_action_dim = self.policy.config.action_feature.shape[0]
|
||||
actions = actions[:, :, :original_action_dim]
|
||||
|
||||
actions = self.policy.unnormalize_outputs(
|
||||
{"action": actions, "robot_type": [self.policy.config.robot_type]}
|
||||
)["action"]
|
||||
|
||||
return actions
|
||||
|
||||
def _get_action_chunk(
|
||||
self, observation: dict[str, torch.Tensor], policy_type: str = "act"
|
||||
) -> torch.Tensor:
|
||||
"""Get an action chunk from the policy"""
|
||||
if policy_type == "act":
|
||||
return self._run_act_policy(observation)
|
||||
elif policy_type == "smolvla":
|
||||
return self._run_smolvla_policy(observation)
|
||||
else:
|
||||
raise ValueError(f"Policy class {policy_type} not supported")
|
||||
|
||||
def _predict_action_chunk(self, observation_t: TimedObservation) -> list[TimedAction]:
|
||||
"""Predict an action based on the observation"""
|
||||
"""1. Prepare observation"""
|
||||
start_time = time.time()
|
||||
|
||||
observation = {
|
||||
"robot_type": [self.policy.config.robot_type],
|
||||
}
|
||||
for k, v in observation_t.get_observation().items():
|
||||
if isinstance(v, torch.Tensor): # VLAs present natural-language instructions
|
||||
if "image" in k:
|
||||
# Add batch dimension first, then reorder to NCHW format, then normalize to [0, 1]
|
||||
observation[k] = (
|
||||
v.unsqueeze(0).permute(0, 3, 1, 2).to(self.device, non_blocking=True) / 255.0
|
||||
)
|
||||
else:
|
||||
observation[k] = v.unsqueeze(0).to(self.device, non_blocking=True)
|
||||
else:
|
||||
observation[k] = v # textual instructions are passed as a list of strings
|
||||
|
||||
prep_time = time.time()
|
||||
self.logger.debug(f"Observation preparation time: {prep_time - start_time:.6f}s")
|
||||
|
||||
"""2. Get action chunk"""
|
||||
action_tensor = self._get_action_chunk(observation, self.policy_type)
|
||||
action_tensor = action_tensor.squeeze(0)
|
||||
|
||||
# Move to CPU before serializing
|
||||
action_tensor = action_tensor.cpu()
|
||||
|
||||
post_inference_time = time.time()
|
||||
self.logger.debug(f"Post-inference processing start: {post_inference_time - prep_time:.6f}s")
|
||||
|
||||
if action_tensor.dim() == 1:
|
||||
# No chunk dimension, so repeat action to create a (dummy) chunk of actions
|
||||
action_tensor = action_tensor.repeat(self.actions_per_chunk, 1)
|
||||
|
||||
action_chunk = self._time_action_chunk(
|
||||
observation_t.get_timestamp(), list(action_tensor), observation_t.get_timestep()
|
||||
)
|
||||
|
||||
chunk_time = time.time()
|
||||
self.logger.debug(f"Action chunk creation time: {chunk_time - post_inference_time:.6f}s")
|
||||
time.sleep(
|
||||
max(0, inference_latency - max(0, chunk_time - start_time))
|
||||
) # sleep to control inference latency
|
||||
|
||||
return action_chunk
|
||||
|
||||
def _stream_action_chunks_from_dataset(self) -> Generator[List[torch.Tensor], None, None]:
|
||||
"""Stream chunks of actions from a prerecorded dataset.
|
||||
|
||||
Returns:
|
||||
Generator that yields chunks of actions from the dataset
|
||||
"""
|
||||
import warnings
|
||||
|
||||
warnings.warn(
|
||||
"This method is deprecated and will be removed in the future.", DeprecationWarning, stacklevel=2
|
||||
)
|
||||
|
||||
dataset = load_dataset("fracapuano/so100_test", split="train").with_format("torch")
|
||||
|
||||
# 1. Select the action column only, where you will find tensors with 6 elements
|
||||
actions = dataset["action"]
|
||||
action_indices = torch.arange(len(actions))
|
||||
|
||||
# 2. Chunk the iterable of tensors into chunks with 10 elements each
|
||||
# sending only first element for debugging
|
||||
indices_chunks = action_indices.unfold(
|
||||
0, self.actions_per_chunk, self.actions_per_chunk - self.actions_overlap
|
||||
)
|
||||
|
||||
for idx_chunk in indices_chunks:
|
||||
yield actions[idx_chunk[0] : idx_chunk[-1] + 1, :]
|
||||
|
||||
def _read_action_chunk(self, observation: Optional[TimedObservation] = None) -> list[TimedAction]:
|
||||
"""Dummy function for predicting action chunk given observation.
|
||||
|
||||
Instead of computing actions on-the-fly, this method streams
|
||||
actions from a prerecorded dataset.
|
||||
"""
|
||||
import warnings
|
||||
|
||||
warnings.warn(
|
||||
"This method is deprecated and will be removed in the future.", DeprecationWarning, stacklevel=2
|
||||
)
|
||||
|
||||
start_time = time.time()
|
||||
if not observation:
|
||||
observation = TimedObservation(timestamp=time.time(), observation={}, timestep=0)
|
||||
|
||||
# Get chunk of actions from the generator
|
||||
actions_chunk = next(self.action_generator)
|
||||
|
||||
# Return a list of TimedActions, with timestamps starting from the observation timestamp
|
||||
actions_chunk = self._time_action_chunk(
|
||||
observation.get_timestamp(), actions_chunk, observation.get_timestep()
|
||||
)
|
||||
|
||||
chunk_time = time.time()
|
||||
self.logger.debug(f"Action chunk creation time: {chunk_time - start_time:.6f}s")
|
||||
|
||||
# slow action generation, emulates inference time
|
||||
time.sleep(max(0, inference_latency - max(0, chunk_time - start_time)))
|
||||
|
||||
return actions_chunk
|
||||
|
||||
def stop(self):
|
||||
"""Stop the server"""
|
||||
self.running = False
|
||||
self.logger.info("Server stopping...")
|
||||
|
||||
|
||||
def serve():
|
||||
port = 8080
|
||||
# Create the server instance first
|
||||
policy_server = PolicyServer()
|
||||
|
||||
# Setup and start gRPC server
|
||||
server = grpc.server(futures.ThreadPoolExecutor(max_workers=10))
|
||||
async_inference_pb2_grpc.add_AsyncInferenceServicer_to_server(policy_server, server)
|
||||
server.add_insecure_port(f"[::]:{port}")
|
||||
server.start()
|
||||
policy_server.logger.info(f"PolicyServer started on port {port}")
|
||||
|
||||
try:
|
||||
# Use the running attribute to control server lifetime
|
||||
while policy_server.running:
|
||||
time.sleep(1) # Check every second instead of sleeping indefinitely
|
||||
|
||||
except KeyboardInterrupt:
|
||||
policy_server.stop()
|
||||
policy_server.logger.info("Keyboard interrupt received")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
serve()
|
||||
608
lerobot/scripts/server/robot_client.py
Normal file
608
lerobot/scripts/server/robot_client.py
Normal file
@@ -0,0 +1,608 @@
|
||||
import argparse
|
||||
import os
|
||||
import pickle # nosec
|
||||
import threading
|
||||
import time
|
||||
from queue import Empty, Queue
|
||||
from typing import Callable, Optional
|
||||
|
||||
import async_inference_pb2 # type: ignore
|
||||
import async_inference_pb2_grpc # type: ignore
|
||||
import grpc
|
||||
import torch
|
||||
|
||||
from lerobot.common.robot_devices.robots.utils import make_robot
|
||||
from lerobot.scripts.server.constants import environment_dt, idle_wait
|
||||
from lerobot.scripts.server.helpers import TimedAction, TimedObservation, TinyPolicyConfig, setup_logging
|
||||
|
||||
|
||||
class RobotClient:
|
||||
prefix = "robot_client"
|
||||
info_bracket = "CLIENT"
|
||||
logger = setup_logging(prefix, info_bracket)
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
server_address: Optional[str] = None,
|
||||
policy_type: str = "smolvla",
|
||||
pretrained_name_or_path: str = "lerobot/smolvla_base",
|
||||
policy_device: str = "cuda",
|
||||
chunk_size_threshold: float = 0.5,
|
||||
robot: str = "so100",
|
||||
):
|
||||
# Use environment variable if server_address is not provided
|
||||
if server_address is None:
|
||||
server_address = os.getenv("SERVER_ADDRESS", "localhost:8080")
|
||||
self.logger.info(f"No server address provided, using default address: {server_address}")
|
||||
|
||||
self.policy_config = TinyPolicyConfig(policy_type, pretrained_name_or_path, policy_device)
|
||||
self.channel = grpc.insecure_channel(server_address)
|
||||
self.stub = async_inference_pb2_grpc.AsyncInferenceStub(self.channel)
|
||||
self.logger.info(f"Initializing client to connect to server at {server_address}")
|
||||
|
||||
self.running = False
|
||||
self.must_go = True # does the observation qualify for direct processing on the policy server?
|
||||
|
||||
self.latest_action = -1
|
||||
self.action_chunk_size = -1
|
||||
|
||||
self._chunk_size_threshold = chunk_size_threshold
|
||||
|
||||
self.action_queue = Queue()
|
||||
self.start_barrier = threading.Barrier(2) # 2 threads: action receiver, control loop
|
||||
|
||||
start_time = time.time()
|
||||
self.robot = make_robot(robot)
|
||||
self.robot.connect()
|
||||
|
||||
connect_time = time.time()
|
||||
self.logger.info(f"Robot connection time: {connect_time - start_time:.4f}s")
|
||||
|
||||
time.sleep(idle_wait) # sleep waiting for cameras to activate
|
||||
self.logger.info("Robot connected and ready")
|
||||
|
||||
def timestamps(self):
|
||||
"""Get the timestamps of the actions in the queue"""
|
||||
return sorted([action.get_timestep() for action in self.action_queue.queue])
|
||||
|
||||
def start(self):
|
||||
"""Start the robot client and connect to the policy server"""
|
||||
try:
|
||||
# client-server handshake
|
||||
start_time = time.time()
|
||||
self.stub.Ready(async_inference_pb2.Empty())
|
||||
end_time = time.time()
|
||||
self.logger.info(f"Connected to policy server in {end_time - start_time:.4f}s")
|
||||
|
||||
# send policy instructions
|
||||
policy_config_bytes = pickle.dumps(self.policy_config)
|
||||
policy_setup = async_inference_pb2.PolicySetup(
|
||||
transfer_state=async_inference_pb2.TRANSFER_BEGIN, data=policy_config_bytes
|
||||
)
|
||||
|
||||
self.logger.info("Sending policy instructions to policy server")
|
||||
self.logger.info(
|
||||
f"Policy type: {self.policy_config.policy_type} | "
|
||||
f"Pretrained name or path: {self.policy_config.pretrained_name_or_path} | "
|
||||
f"Device: {self.policy_config.device}"
|
||||
)
|
||||
|
||||
self.stub.SendPolicyInstructions(policy_setup)
|
||||
|
||||
self.running = True
|
||||
self.available_actions_size = []
|
||||
return True
|
||||
|
||||
except grpc.RpcError as e:
|
||||
self.logger.error(f"Failed to connect to policy server: {e}")
|
||||
return False
|
||||
|
||||
def stop(self):
|
||||
"""Stop the robot client"""
|
||||
self.running = False
|
||||
|
||||
self.robot.disconnect()
|
||||
self.logger.info("Robot disconnected")
|
||||
|
||||
self.channel.close()
|
||||
self.logger.info("Client stopped, channel closed")
|
||||
|
||||
def send_observation(
|
||||
self,
|
||||
obs: TimedObservation,
|
||||
transfer_state: async_inference_pb2.TransferState = async_inference_pb2.TRANSFER_MIDDLE,
|
||||
) -> bool:
|
||||
"""Send observation to the policy server.
|
||||
Returns True if the observation was sent successfully, False otherwise."""
|
||||
if not self.running:
|
||||
self.logger.warning("Client not running")
|
||||
return False
|
||||
|
||||
assert isinstance(obs, TimedObservation), "Input observation needs to be a TimedObservation!"
|
||||
|
||||
start_time = time.time()
|
||||
observation_bytes = pickle.dumps(obs)
|
||||
serialize_time = time.time()
|
||||
self.logger.debug(f"Observation serialization time: {serialize_time - start_time:.6f}s")
|
||||
|
||||
observation = async_inference_pb2.Observation(transfer_state=transfer_state, data=observation_bytes)
|
||||
|
||||
try:
|
||||
send_start = time.time()
|
||||
_ = self.stub.SendObservations(iter([observation]))
|
||||
send_end = time.time()
|
||||
|
||||
obs_timestep = obs.get_timestep()
|
||||
|
||||
self.logger.info(
|
||||
f"Sent observation #{obs_timestep} | "
|
||||
f"Serialize time: {serialize_time - start_time:.6f}s | "
|
||||
f"Network time: {send_end - send_start:.6f}s | "
|
||||
f"Total time: {send_end - start_time:.6f}s"
|
||||
)
|
||||
|
||||
self.last_obs_sent_time = send_end
|
||||
return True
|
||||
|
||||
except grpc.RpcError as e:
|
||||
self.logger.error(f"Error sending observation #{obs.get_timestep()}: {e}")
|
||||
return False
|
||||
|
||||
def _validate_action(self, action: TimedAction):
|
||||
"""Received actions are keps only when they have been produced for now or later, never before"""
|
||||
return not action.get_timestep() <= self.latest_action
|
||||
|
||||
def _inspect_action_queue(self):
|
||||
queue_size = self.action_queue.qsize()
|
||||
timestamps = sorted([action.get_timestep() for action in self.action_queue.queue])
|
||||
self.logger.debug(f"Queue size: {queue_size}, Queue contents: {timestamps}")
|
||||
return queue_size, timestamps
|
||||
|
||||
def _update_action_queue(self, actions: list[TimedAction]):
|
||||
"""Update the action queue with new actions, without ever emptying the queue"""
|
||||
|
||||
new_queue = Queue()
|
||||
for action in actions:
|
||||
if self._validate_action(action):
|
||||
new_queue.put(action)
|
||||
|
||||
self.action_queue = new_queue
|
||||
|
||||
def _aggregate_action_queues(
|
||||
self,
|
||||
incoming_actions: list[TimedAction],
|
||||
aggregate_fn: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
|
||||
):
|
||||
"""Finds the same timestep actions in the queue and aggregates them using the aggregate_fn"""
|
||||
# TODO(fracapuano): move outside of the function and make aggregate_fn an always required argument
|
||||
if not aggregate_fn:
|
||||
# default aggregate function: take the latest action
|
||||
def aggregate_fn(x1, x2):
|
||||
return x2
|
||||
|
||||
action_intersections: list[torch.Tensor] = []
|
||||
current_action_queue = {
|
||||
action.get_timestep(): action.get_action() for action in self.action_queue.queue
|
||||
}
|
||||
|
||||
for new_action in incoming_actions:
|
||||
if new_action.get_timestep() in current_action_queue:
|
||||
# TODO(fracapuano): There is probably a way to do this with broadcasting of the two action tensors
|
||||
action_intersections.append(
|
||||
TimedAction(
|
||||
timestamp=new_action.get_timestamp(),
|
||||
action=aggregate_fn(
|
||||
current_action_queue[new_action.get_timestep()], new_action.get_action()
|
||||
),
|
||||
timestep=new_action.get_timestep(),
|
||||
)
|
||||
)
|
||||
else:
|
||||
action_intersections.append(new_action)
|
||||
|
||||
new_queue = Queue()
|
||||
for action in action_intersections:
|
||||
if self._validate_action(action):
|
||||
new_queue.put(action)
|
||||
|
||||
self.action_queue = new_queue
|
||||
|
||||
def _clear_action_queue(self):
|
||||
"""Clear the existing queue"""
|
||||
while not self.action_queue.empty():
|
||||
try:
|
||||
self.action_queue.get_nowait()
|
||||
except Empty:
|
||||
break
|
||||
|
||||
def _fill_action_queue(self, actions: list[TimedAction]):
|
||||
"""Fill the action queue with incoming valid actions"""
|
||||
start_time = time.time()
|
||||
valid_count = 0
|
||||
|
||||
for action in actions:
|
||||
if self._validate_action(action):
|
||||
self.action_queue.put(action)
|
||||
valid_count += 1
|
||||
|
||||
end_time = time.time()
|
||||
self.logger.debug(
|
||||
f"Queue filled: {valid_count}/{len(actions)} valid actions added in {end_time - start_time:.6f}s"
|
||||
)
|
||||
|
||||
def _clear_and_fill_action_queue(self, actions: list[TimedAction]):
|
||||
self._clear_action_queue()
|
||||
self._fill_action_queue(actions)
|
||||
|
||||
def receive_actions(self):
|
||||
"""Receive actions from the policy server"""
|
||||
# Wait at barrier for synchronized start
|
||||
self.start_barrier.wait()
|
||||
self.logger.info("Action receiving thread starting")
|
||||
|
||||
while self.running:
|
||||
try:
|
||||
# Use StreamActions to get a stream of actions from the server
|
||||
for actions_chunk in self.stub.StreamActions(async_inference_pb2.Empty()):
|
||||
receive_time = time.time()
|
||||
|
||||
# Deserialize bytes back into list[TimedAction]
|
||||
deserialize_start = time.time()
|
||||
timed_actions = pickle.loads(actions_chunk.data) # nosec
|
||||
deserialize_end = time.time()
|
||||
|
||||
self.action_chunk_size = max(self.action_chunk_size, len(timed_actions))
|
||||
|
||||
start_time = time.time()
|
||||
|
||||
self.logger.info(f"Current latest action: {self.latest_action}")
|
||||
|
||||
# Get queue state before changes
|
||||
old_size, old_timesteps = self._inspect_action_queue()
|
||||
if not old_timesteps:
|
||||
old_timesteps = [self.latest_action] # queue was empty
|
||||
|
||||
# Log incoming actions
|
||||
incoming_timesteps = [a.get_timestep() for a in timed_actions]
|
||||
|
||||
# Calculate network latency if we have matching observations
|
||||
if len(timed_actions) > 0:
|
||||
first_action_timestep = timed_actions[0].get_timestep()
|
||||
server_to_client_latency = receive_time - self.last_obs_sent_time
|
||||
|
||||
self.logger.info(
|
||||
f"Received action chunk for step #{first_action_timestep} | "
|
||||
f"Latest action: #{self.latest_action} | "
|
||||
f"Network latency (server->client): {server_to_client_latency:.6f}s | "
|
||||
f"Deserialization time: {deserialize_end - deserialize_start:.6f}s"
|
||||
)
|
||||
|
||||
# Update action queue
|
||||
start_time = time.time()
|
||||
self._update_action_queue(timed_actions)
|
||||
queue_update_time = time.time() - start_time
|
||||
|
||||
self.must_go = (
|
||||
True # after receiving actions, next empty queue triggers must-go processing!
|
||||
)
|
||||
|
||||
# Get queue state after changes
|
||||
new_size, new_timesteps = self._inspect_action_queue()
|
||||
|
||||
self.logger.info(
|
||||
f"Queue update complete ({queue_update_time:.6f}s) | "
|
||||
f"Before: {old_size} items | "
|
||||
f"After: {new_size} items | "
|
||||
)
|
||||
self.logger.info(
|
||||
f"Latest action: {self.latest_action} | "
|
||||
f"Old action steps: {old_timesteps[0]}:{old_timesteps[-1]} | "
|
||||
f"Incoming action steps: {incoming_timesteps[0]}:{incoming_timesteps[-1]} | "
|
||||
f"Updated action steps: {new_timesteps[0]}:{new_timesteps[-1]}"
|
||||
)
|
||||
|
||||
except grpc.RpcError as e:
|
||||
self.logger.error(f"Error receiving actions: {e}")
|
||||
# Avoid tight loop on action receiver error
|
||||
time.sleep(idle_wait)
|
||||
|
||||
def _actions_available(self):
|
||||
"""Check if there are actions available in the queue"""
|
||||
return not self.action_queue.empty()
|
||||
|
||||
def _get_next_action(self) -> Optional[TimedAction]:
|
||||
"""Get the next action from the queue"""
|
||||
try:
|
||||
action = self.action_queue.get_nowait()
|
||||
return action
|
||||
|
||||
except Empty:
|
||||
return None
|
||||
|
||||
def _perform_action(self, timed_action: TimedAction):
|
||||
self.robot.send_action(timed_action.get_action())
|
||||
self.latest_action = timed_action.get_timestep()
|
||||
|
||||
self.logger.debug(
|
||||
f"Ts={timed_action.get_timestamp()} | "
|
||||
f"Action #{timed_action.get_timestep()} performed | "
|
||||
f"Queue size: {self.action_queue.qsize()}"
|
||||
)
|
||||
|
||||
def execute_actions(self):
|
||||
"""Continuously execute actions from the queue"""
|
||||
import warnings
|
||||
|
||||
warnings.warn("This method is deprecated! Will be removed soon!", stacklevel=2)
|
||||
# Wait at barrier for synchronized start
|
||||
self.start_barrier.wait()
|
||||
time.sleep(idle_wait) # wait for observation capture to start
|
||||
|
||||
self.logger.info("Action execution thread starting")
|
||||
|
||||
while self.running:
|
||||
# constantly monitor the size of the action queue
|
||||
self.available_actions_size.append(self.action_queue.qsize())
|
||||
|
||||
if self._actions_available():
|
||||
timed_action = self._get_next_action()
|
||||
self._perform_action(timed_action)
|
||||
|
||||
time.sleep(environment_dt)
|
||||
|
||||
else:
|
||||
self.logger.debug("No action available | Sleeping")
|
||||
time.sleep(idle_wait)
|
||||
|
||||
def stream_observations(self, get_observation_fn):
|
||||
"""Continuously stream observations to the server"""
|
||||
import warnings
|
||||
|
||||
warnings.warn("This method is deprecated! Will be removed soon!", stacklevel=2)
|
||||
|
||||
# Wait at barrier for synchronized start
|
||||
self.start_barrier.wait()
|
||||
self.logger.info("Observation streaming thread starting")
|
||||
|
||||
while self.running:
|
||||
try:
|
||||
# Get serialized observation bytes from the function
|
||||
start_time = time.time()
|
||||
observation = get_observation_fn()
|
||||
obs_capture_time = time.time() - start_time
|
||||
|
||||
self.logger.debug(f"Capturing observation took {obs_capture_time:.6f}s")
|
||||
|
||||
if not hasattr(self, "last_obs_timestamp"):
|
||||
self.last_obs_timestamp = observation.get_timestamp()
|
||||
|
||||
obs_timestep, obs_timestamp = observation.get_timestep(), observation.get_timestamp()
|
||||
self.logger.info(
|
||||
f"Ts={obs_timestamp} | "
|
||||
f"Captured observation #{obs_timestep} | "
|
||||
f"1/DeltaTs (~frequency)={1 / (1e-6 + obs_timestamp - self.last_obs_timestamp):.6f}"
|
||||
)
|
||||
|
||||
self.last_obs_timestamp = obs_timestamp
|
||||
|
||||
# Set appropriate transfer state
|
||||
if obs_timestep == 0:
|
||||
state = async_inference_pb2.TRANSFER_BEGIN
|
||||
else:
|
||||
state = async_inference_pb2.TRANSFER_MIDDLE
|
||||
|
||||
time.sleep(environment_dt)
|
||||
self.send_observation(observation, state)
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error in observation sender: {e}")
|
||||
time.sleep(idle_wait)
|
||||
|
||||
def control_loop_action(self):
|
||||
"""Reading and performing actions in local queue"""
|
||||
self.available_actions_size.append(self.action_queue.qsize())
|
||||
if self._actions_available():
|
||||
# Get action from queue
|
||||
get_start = time.time()
|
||||
timed_action = self._get_next_action()
|
||||
get_end = time.time() - get_start
|
||||
|
||||
self.logger.debug(
|
||||
f"Popping action from queue to perform took {get_end:.6f}s | "
|
||||
f"Queue size: {self.action_queue.qsize()}"
|
||||
)
|
||||
|
||||
self._perform_action(timed_action)
|
||||
|
||||
def _ready_to_send_observation(self):
|
||||
"""Flags when the client is ready to send an observation"""
|
||||
return self.action_queue.qsize() / self.action_chunk_size <= self._chunk_size_threshold
|
||||
|
||||
def control_loop_observation(self, get_observation_fn):
|
||||
try:
|
||||
# Get serialized observation bytes from the function
|
||||
start_time = time.time()
|
||||
observation = get_observation_fn()
|
||||
obs_capture_time = time.time() - start_time
|
||||
|
||||
# If there are no actions left in the queue, the observation must go through processing!
|
||||
observation.must_go = self.must_go and self.action_queue.empty()
|
||||
self.logger.debug(f"QUEUE SIZE: {self.action_queue.qsize()} (Must go: {observation.must_go})")
|
||||
if observation.must_go:
|
||||
# must-go flag will be set again after receiving actions
|
||||
self.must_go = False
|
||||
|
||||
if not hasattr(self, "last_obs_timestamp"):
|
||||
self.last_obs_timestamp = observation.get_timestamp()
|
||||
|
||||
obs_timestep, obs_timestamp = observation.get_timestep(), observation.get_timestamp()
|
||||
self.last_obs_timestamp = obs_timestamp
|
||||
|
||||
self.logger.info(
|
||||
f"Ts={obs_timestamp} | "
|
||||
f"Captured observation #{obs_timestep} | "
|
||||
f"1/DeltaTs (~frequency)={1 / (1e-6 + obs_timestamp - self.last_obs_timestamp):.6f}"
|
||||
)
|
||||
|
||||
self.logger.debug(f"Capturing observation took {obs_capture_time:.6f}s")
|
||||
|
||||
# Set appropriate transfer state
|
||||
if obs_timestep == 0:
|
||||
state = async_inference_pb2.TRANSFER_BEGIN
|
||||
else:
|
||||
state = async_inference_pb2.TRANSFER_MIDDLE
|
||||
|
||||
self.send_observation(observation, state)
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error in observation sender: {e}")
|
||||
|
||||
def control_loop(self, get_observation_fn):
|
||||
"""Combined function for executing actions and streaming observations"""
|
||||
# Wait at barrier for synchronized start
|
||||
self.start_barrier.wait()
|
||||
self.logger.info("Control loop thread starting")
|
||||
|
||||
control_loops = 0
|
||||
while self.running:
|
||||
control_loop_start = time.time()
|
||||
self.control_loop_action()
|
||||
|
||||
"""Control loop: (2) Streaming observations to the remote policy server"""
|
||||
if self._ready_to_send_observation() or control_loops == 0:
|
||||
self.control_loop_observation(get_observation_fn)
|
||||
|
||||
# Dynamically adjust sleep time to maintain the desired control frequency
|
||||
time.sleep(max(0, environment_dt - (time.time() - control_loop_start)))
|
||||
control_loops += 1
|
||||
|
||||
|
||||
def async_client(task_instruction: str, verbose: int = 0):
|
||||
client = RobotClient()
|
||||
|
||||
if client.start():
|
||||
# Function to get observations from the robot
|
||||
def get_observation():
|
||||
observation_content = None
|
||||
observation_content = client.robot.capture_observation()
|
||||
|
||||
observation_content["task"] = [task_instruction]
|
||||
|
||||
observation = TimedObservation(
|
||||
timestamp=time.time(), observation=observation_content, timestep=max(client.latest_action, 0)
|
||||
)
|
||||
|
||||
return observation
|
||||
|
||||
client.logger.info("Starting all threads...")
|
||||
|
||||
# Create and start action receiver thread
|
||||
action_receiver_thread = threading.Thread(target=client.receive_actions)
|
||||
action_receiver_thread.daemon = True
|
||||
|
||||
control_loop_thread = threading.Thread(target=client.control_loop, args=(get_observation,))
|
||||
control_loop_thread.daemon = True
|
||||
|
||||
# Start all threads
|
||||
action_receiver_thread.start()
|
||||
control_loop_thread.start()
|
||||
|
||||
try:
|
||||
while client.running:
|
||||
time.sleep(idle_wait)
|
||||
|
||||
except KeyboardInterrupt:
|
||||
pass
|
||||
|
||||
finally:
|
||||
client.stop()
|
||||
client.logger.info("Client stopped")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Robot client for executing tasks via policy server")
|
||||
parser.add_argument(
|
||||
"--task",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Task instruction for the robot to execute (e.g., 'fold my tshirt')",
|
||||
)
|
||||
parser.add_argument("--verbose", type=int, default=0, help="Verbosity level (default: 0)")
|
||||
parser.add_argument(
|
||||
"--server-port-address",
|
||||
type=str,
|
||||
default="localhost:8080",
|
||||
help="Server & port address (default: localhost:8080, or SERVER_ADDRESS env var)",
|
||||
)
|
||||
parser.add_argument("--policy-type", type=str, default="smolvla", help="Policy type (default: smolvla)")
|
||||
parser.add_argument(
|
||||
"--pretrained-name-or-path",
|
||||
type=str,
|
||||
default="lerobot/smolvla_base",
|
||||
help="Pretrained model name or path (default: lerobot/smolvla_base)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--policy-device", type=str, default="cuda", help="Device for policy inference (default: cuda)"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--chunk-size-threshold",
|
||||
type=float,
|
||||
default=0.5,
|
||||
help="Chunk size threshold (`g` in the paper, default: 0.5)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--robot",
|
||||
type=str,
|
||||
default="so100",
|
||||
help="Robot name, as per the `make_robot` function (default: so100)",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Create client with parsed arguments
|
||||
client = RobotClient(
|
||||
server_address=args.server_address,
|
||||
policy_type=args.policy_type,
|
||||
pretrained_name_or_path=args.pretrained_name_or_path,
|
||||
policy_device=args.policy_device,
|
||||
chunk_size_threshold=args.chunk_size_threshold,
|
||||
robot=args.robot,
|
||||
)
|
||||
|
||||
if client.start():
|
||||
# Function to get observations from the robot
|
||||
def get_observation():
|
||||
observation_content = None
|
||||
observation_content = client.robot.capture_observation()
|
||||
|
||||
observation_content["task"] = [args.task]
|
||||
|
||||
observation = TimedObservation(
|
||||
timestamp=time.time(), observation=observation_content, timestep=max(client.latest_action, 0)
|
||||
)
|
||||
|
||||
return observation
|
||||
|
||||
client.logger.info("Starting all threads...")
|
||||
|
||||
# Create and start action receiver thread
|
||||
action_receiver_thread = threading.Thread(target=client.receive_actions)
|
||||
action_receiver_thread.daemon = True
|
||||
|
||||
control_loop_thread = threading.Thread(target=client.control_loop, args=(get_observation,))
|
||||
control_loop_thread.daemon = True
|
||||
|
||||
# Start all threads
|
||||
action_receiver_thread.start()
|
||||
control_loop_thread.start()
|
||||
|
||||
try:
|
||||
while client.running:
|
||||
time.sleep(idle_wait)
|
||||
|
||||
except KeyboardInterrupt:
|
||||
pass
|
||||
|
||||
finally:
|
||||
client.stop()
|
||||
client.logger.info("Client stopped")
|
||||
Reference in New Issue
Block a user