Compare commits

...

15 Commits

Author SHA1 Message Date
Quentin Gallouédec
0a33a414fb grad_clip_norm as arg of update policy 2024-04-25 12:12:06 +02:00
Quentin Gallouédec
cd76980d50 fix update 2024-04-25 12:05:33 +02:00
Quentin Gallouédec
1ffc0e0d94 format 2024-04-25 11:46:17 +02:00
Quentin Gallouédec
fda092d5bf DS_Store in gitignore 2024-04-25 11:42:30 +02:00
Quentin Gallouédec
2a9ea01d5a merge update functions 2024-04-25 11:42:20 +02:00
Quentin Gallouédec
0bca982fca move optimizer and scheduler outside policies 2024-04-25 11:26:40 +02:00
Quentin Gallouédec
dae901f556 move update outside policies 2024-04-25 10:45:10 +02:00
Cadene
7626b9a4a3 Refactor datasets into LeRobotDataset 2024-04-25 07:51:58 +00:00
Cadene
6d56bcb5de improve docstring 2024-04-24 21:40:42 +00:00
Cadene
0ec28bf71a address comments 2024-04-24 20:57:09 +00:00
Cadene
bc96284ca0 remove last update 2024-04-24 16:48:55 +00:00
Cadene
343579368b nit 2024-04-24 15:56:22 +00:00
Cadene
72751b7cf6 make load_state_dict work 2024-04-24 15:40:09 +00:00
Cadene
0660f71556 make unit tests pass 2024-04-23 21:39:39 +00:00
Cadene
42ed7bb670 Move normalize/unnormalize transforms to policy for act and diffusion 2024-04-23 17:55:54 +00:00
109 changed files with 728 additions and 664 deletions

1
.gitignore vendored
View File

@@ -6,6 +6,7 @@ data
outputs
.vscode
rl
.DS_Store
# HPC
nautilus/*.yaml

View File

@@ -73,15 +73,14 @@ environments ([aloha](https://github.com/huggingface/gym-aloha),
[pusht](https://github.com/huggingface/gym-pusht))
and follow the same api design.
When implementing a new dataset class (e.g. `AlohaDataset`) follow these steps:
- Update `available_datasets` in `lerobot/__init__.py`
- Copy it in the required `available_datasets` class attribute
When implementing a new dataset loadable with LeRobotDataset follow these steps:
- Update `available_datasets_per_env` in `lerobot/__init__.py`
When implementing a new environment (e.g. `gym_aloha`), follow these steps:
- Update `available_envs`, `available_tasks_per_env` and `available_datasets` in `lerobot/__init__.py`
- Update `available_tasks_per_env` and `available_datasets_per_env` in `lerobot/__init__.py`
When implementing a new policy class (e.g. `DiffusionPolicy`) follow these steps:
- Update `available_policies` in `lerobot/__init__.py`
- Update `available_policies` and `available_policies_per_env`, in `lerobot/__init__.py`
- Set the required `name` class attribute.
- Update variables in `tests/test_available.py` by importing your new Policy class

View File

@@ -118,30 +118,7 @@ wandb login
### Visualize datasets
You can import our dataset class, download the data from the HuggingFace hub and use our rendering utilities:
```python
""" Copy pasted from `examples/1_visualize_dataset.py` """
import os
from pathlib import Path
import lerobot
from lerobot.common.datasets.aloha import AlohaDataset
from lerobot.scripts.visualize_dataset import render_dataset
print(lerobot.available_datasets)
# >>> ['aloha_sim_insertion_human', 'aloha_sim_insertion_scripted', 'aloha_sim_transfer_cube_human', 'aloha_sim_transfer_cube_scripted', 'pusht', 'xarm_lift_medium']
# TODO(rcadene): remove DATA_DIR
dataset = AlohaDataset("pusht", root=Path(os.environ.get("DATA_DIR")))
video_paths = render_dataset(
dataset,
out_dir="outputs/visualize_dataset/example",
max_num_episodes=1,
)
print(video_paths)
# ['outputs/visualize_dataset/example/episode_0.mp4']
```
Check out [examples](./examples) to see how you can import our dataset class, download the data from the HuggingFace hub and use our rendering utilities.
Or you can achieve the same result by executing our script from the command line:
```bash
@@ -153,7 +130,7 @@ hydra.run.dir=outputs/visualize_dataset/example
### Evaluate a pretrained policy
Check out [example 2](./examples/2_evaluate_pretrained_policy.py) to see how you can load a pretrained policy from HuggingFace hub, load up the corresponding environment and model, and run an evaluation.
Check out [examples](./examples) to see how you can load a pretrained policy from HuggingFace hub, load up the corresponding environment and model, and run an evaluation.
Or you can achieve the same result by executing our script from the command line:
```bash
@@ -176,24 +153,30 @@ See `python lerobot/scripts/eval.py --help` for more instructions.
### Train your own policy
You can import our dataset, environment, policy classes, and use our training utilities (if some data is missing, it will be automatically downloaded from HuggingFace hub): check out [example 3](./examples/3_train_policy.py). After you run this, you may want to revisit [example 2](./examples/2_evaluate_pretrained_policy.py) to evaluate your training output!
Checkout [examples](./examples) to see how tou can start training a model on a dataset, which will be automatically downloaded if needed.
In general, you can use our training script to easily train any policy on any environment:
```bash
python lerobot/scripts/train.py \
env=aloha \
task=sim_insertion \
dataset_id=aloha_sim_insertion_scripted \
repo_id=lerobot/aloha_sim_insertion_scripted \
policy=act \
hydra.run.dir=outputs/train/aloha_act
```
After training, you may want to revisit model evaluation to change the evaluation settings. In fact, during training every checkpoints are already evaluated but on a low number of episodes for efficiency. Checkout [example](./examples) to evaluate any model checkpoint on more episodes to increase statistical significance.
## Contribute
If you would like to contribute to 🤗 LeRobot, please check out our [contribution guide](https://github.com/huggingface/lerobot/blob/main/CONTRIBUTING.md).
### Add a new dataset
```python
# TODO(rcadene, AdilZouitine): rewrite this section
```
To add a dataset to the hub, first login and use a token generated from [huggingface settings](https://huggingface.co/settings/tokens) with write access:
```bash
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
@@ -255,6 +238,10 @@ python tests/scripts/mock_dataset.py --in-data-dir data/$DATASET --out-data-dir
### Add a pretrained policy
```python
# TODO(rcadene, alexander-soare): rewrite this section
```
Once you have trained a policy you may upload it to the HuggingFace hub.
Firstly, make sure you have a model repository set up on the hub. The hub ID looks like HF_USER/REPO_NAME.
@@ -263,15 +250,13 @@ Secondly, assuming you have trained a policy, you need:
- `config.yaml` which you can get from the `.hydra` directory of your training output folder.
- `model.pt` which should be one of the saved models in the `models` directory of your training output folder (they won't be named `model.pt` but you will need to choose one).
- `stats.pth` which should point to the same file in the dataset directory (found in `data/{dataset_name}`).
To upload these to the hub, prepare a folder with the following structure (you can use symlinks rather than copying):
```
to_upload
├── config.yaml
── model.pt
└── stats.pth
── model.pt
```
With the folder prepared, run the following with a desired revision ID.

View File

@@ -23,6 +23,7 @@ from lerobot.common.datasets.utils import compute_stats, flatten_dict, hf_transf
def download_and_upload(root, revision, dataset_id):
# TODO(rcadene, adilzouitine): add community_id/user_id (e.g. "lerobot", "cadene") or repo_id (e.g. "lerobot/pusht")
if "pusht" in dataset_id:
download_and_upload_pusht(root, revision, dataset_id)
elif "xarm" in dataset_id:
@@ -149,11 +150,11 @@ def push_to_hub(hf_dataset, episode_data_index, info, stats, root, revision, dat
# copy in tests folder, the first episode and the meta_data directory
num_items_first_ep = episode_data_index["to"][0] - episode_data_index["from"][0]
hf_dataset.select(range(num_items_first_ep)).with_format("torch").save_to_disk(
f"tests/data/{dataset_id}/train"
f"tests/data/lerobot/{dataset_id}/train"
)
if Path(f"tests/data/{dataset_id}/meta_data").exists():
shutil.rmtree(f"tests/data/{dataset_id}/meta_data")
shutil.copytree(meta_data_dir, f"tests/data/{dataset_id}/meta_data")
if Path(f"tests/data/lerobot/{dataset_id}/meta_data").exists():
shutil.rmtree(f"tests/data/lerobot/{dataset_id}/meta_data")
shutil.copytree(meta_data_dir, f"tests/data/lerobot/{dataset_id}/meta_data")
def download_and_upload_pusht(root, revision, dataset_id="pusht", fps=10):

View File

@@ -44,7 +44,7 @@ from datasets import load_dataset
# TODO(rcadene): list available datasets on lerobot page using `datasets`
# download/load hugging face dataset in pyarrow format
hf_dataset, fps = load_dataset("lerobot/pusht", split="train"), 10
hf_dataset, fps = load_dataset("lerobot/pusht", split="train", revision="v1.1"), 10
# display name of dataset and its features
# TODO(rcadene): update to make the print pretty

View File

@@ -1,5 +1,5 @@
"""
This script demonstrates the use of the PushtDataset class for handling and processing robotic datasets from Hugging Face.
This script demonstrates the use of `LeRobotDataset` class for handling and processing robotic datasets from Hugging Face.
It illustrates how to load datasets, manipulate them, and apply transformations suitable for machine learning tasks in PyTorch.
Features included in this script:
@@ -11,22 +11,6 @@ Features included in this script:
- Demonstrating compatibility with PyTorch DataLoader for batch processing.
The script ends with examples of how to batch process data using PyTorch's DataLoader.
To try a different Hugging Face dataset, you can replace:
```python
dataset = PushtDataset()
```
by one of these:
```python
dataset = XarmDataset("xarm_lift_medium")
dataset = XarmDataset("xarm_lift_medium_replay")
dataset = XarmDataset("xarm_push_medium")
dataset = XarmDataset("xarm_push_medium_replay")
dataset = AlohaDataset("aloha_sim_insertion_human")
dataset = AlohaDataset("aloha_sim_insertion_scripted")
dataset = AlohaDataset("aloha_sim_transfer_cube_human")
dataset = AlohaDataset("aloha_sim_transfer_cube_scripted")
```
"""
from pathlib import Path
@@ -34,31 +18,33 @@ from pathlib import Path
import imageio
import torch
from lerobot.common.datasets.pusht import PushtDataset
import lerobot
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
# TODO(rcadene): List available datasets and their dataset ids (e.g. PushtDataset, AlohaDataset(dataset_id="aloha_sim_insertion_human"))
# print("List of available datasets", lerobot.available_datasets)
# # >>> ['aloha_sim_insertion_human', 'aloha_sim_insertion_scripted',
# # 'aloha_sim_transfer_cube_human', 'aloha_sim_transfer_cube_scripted',
# # 'pusht', 'xarm_lift_medium']
print("List of available datasets", lerobot.available_datasets)
# # >>> ['lerobot/aloha_sim_insertion_human', 'lerobot/aloha_sim_insertion_scripted',
# # 'lerobot/aloha_sim_transfer_cube_human', 'lerobot/aloha_sim_transfer_cube_scripted',
# # 'lerobot/pusht', 'lerobot/xarm_lift_medium']
repo_id = "lerobot/pusht"
# You can easily load datasets from LeRobot
dataset = PushtDataset()
# You can easily load a dataset from a Hugging Face repositery
dataset = LeRobotDataset(repo_id)
# All LeRobot datasets are actually a thin wrapper around an underlying Hugging Face dataset (see https://huggingface.co/docs/datasets/index for more information).
# LeRobotDataset is actually a thin wrapper around an underlying Hugging Face dataset (see https://huggingface.co/docs/datasets/index for more information).
# TODO(rcadene): update to make the print pretty
print(f"{dataset=}")
print(f"{dataset.hf_dataset=}")
# and provide additional utilities for robotics and compatibility with pytorch
# and provides additional utilities for robotics and compatibility with pytorch
print(f"number of samples/frames: {dataset.num_samples=}")
print(f"number of episodes: {dataset.num_episodes=}")
print(f"average number of frames per episode: {dataset.num_samples / dataset.num_episodes:.3f}")
print(f"frames per second used during data collection: {dataset.fps=}")
print(f"keys to access images from cameras: {dataset.image_keys=}")
# While the LeRobot dataset adds helpers for working within our library, we still expose the underling Hugging Face dataset. It may be freely replaced or modified in place. Here we use the filtering to keep only frames from episode 5.
# While the LeRobotDataset adds helpers for working within our library, we still expose the underling Hugging Face dataset.
# It may be freely replaced or modified in place. Here we use the filtering to keep only frames from episode 5.
# TODO(rcadene): remove this example of accessing hf_dataset
dataset.hf_dataset = dataset.hf_dataset.filter(lambda frame: frame["episode_index"] == 5)
@@ -85,7 +71,7 @@ delta_timestamps = {
# loads 64 action vectors: current frame, 1 frame in the future, 2 frames, ... 63 frames in the future
"action": [t / dataset.fps for t in range(64)],
}
dataset = PushtDataset(delta_timestamps=delta_timestamps)
dataset = LeRobotDataset(repo_id, delta_timestamps=delta_timestamps)
print(f"{dataset[0]['observation.image'].shape=}") # (4,c,h,w)
print(f"{dataset[0]['observation.state'].shape=}") # (8,c)
print(f"{dataset[0]['action'].shape=}") # (64,c)

View File

@@ -19,7 +19,6 @@ folder = Path(snapshot_download(hub_id))
config_path = folder / "config.yaml"
weights_path = folder / "model.pt"
stats_path = folder / "stats.pth" # normalization stats
# Override some config parameters to do with evaluation.
overrides = [
@@ -36,5 +35,4 @@ cfg = init_hydra_config(config_path, overrides)
eval(
cfg,
out_dir=f"outputs/eval/example_{cfg.env.name}_{cfg.policy.name}",
stats_path=stats_path,
)

View File

@@ -34,7 +34,7 @@ dataset = make_dataset(hydra_cfg)
# If you're doing something different, you will likely need to change at least some of the defaults.
cfg = DiffusionConfig()
# TODO(alexander-soare): Remove LR scheduler from the policy.
policy = DiffusionPolicy(cfg, lr_scheduler_num_training_steps=training_steps)
policy = DiffusionPolicy(cfg, lr_scheduler_num_training_steps=training_steps, dataset_stats=dataset.stats)
policy.train()
policy.to(device)
@@ -62,7 +62,6 @@ while not done:
done = True
break
# Save the policy, configuration, and normalization stats for later use.
# Save the policy and configuration for later use.
policy.save(output_directory / "model.pt")
OmegaConf.save(hydra_cfg, output_directory / "config.yaml")
torch.save(dataset.transform.transforms[-1].stats, output_directory / "stats.pth")

View File

@@ -8,31 +8,25 @@ Example:
print(lerobot.available_envs)
print(lerobot.available_tasks_per_env)
print(lerobot.available_datasets)
print(lerobot.available_datasets_per_env)
print(lerobot.available_policies)
print(lerobot.available_policies_per_env)
```
When implementing a new dataset class (e.g. `AlohaDataset`) follow these steps:
- Update `available_datasets` in `lerobot/__init__.py`
- Set the required `available_datasets` class attribute using the previously updated `lerobot.available_datasets`
When implementing a new dataset loadable with LeRobotDataset follow these steps:
- Update `available_datasets_per_env` in `lerobot/__init__.py`
When implementing a new environment (e.g. `gym_aloha`), follow these steps:
- Update `available_envs`, `available_tasks_per_env` and `available_datasets` in `lerobot/__init__.py`
- Update `available_tasks_per_env` and `available_datasets_per_env` in `lerobot/__init__.py`
When implementing a new policy class (e.g. `DiffusionPolicy`) follow these steps:
- Update `available_policies` in `lerobot/__init__.py`
- Update `available_policies` and `available_policies_per_env`, in `lerobot/__init__.py`
- Set the required `name` class attribute.
- Update variables in `tests/test_available.py` by importing your new Policy class
"""
from lerobot.__version__ import __version__ # noqa: F401
available_envs = [
"aloha",
"pusht",
"xarm",
]
available_tasks_per_env = {
"aloha": [
"AlohaInsertion-v0",
@@ -41,22 +35,24 @@ available_tasks_per_env = {
"pusht": ["PushT-v0"],
"xarm": ["XarmLift-v0"],
}
available_envs = list(available_tasks_per_env.keys())
available_datasets = {
available_datasets_per_env = {
"aloha": [
"aloha_sim_insertion_human",
"aloha_sim_insertion_scripted",
"aloha_sim_transfer_cube_human",
"aloha_sim_transfer_cube_scripted",
"lerobot/aloha_sim_insertion_human",
"lerobot/aloha_sim_insertion_scripted",
"lerobot/aloha_sim_transfer_cube_human",
"lerobot/aloha_sim_transfer_cube_scripted",
],
"pusht": ["pusht"],
"pusht": ["lerobot/pusht"],
"xarm": [
"xarm_lift_medium",
"xarm_lift_medium_replay",
"xarm_push_medium",
"xarm_push_medium_replay",
"lerobot/xarm_lift_medium",
"lerobot/xarm_lift_medium_replay",
"lerobot/xarm_push_medium",
"lerobot/xarm_push_medium_replay",
],
}
available_datasets = [dataset for datasets in available_datasets_per_env.values() for dataset in datasets]
available_policies = [
"act",
@@ -71,10 +67,12 @@ available_policies_per_env = {
}
env_task_pairs = [(env, task) for env, tasks in available_tasks_per_env.items() for task in tasks]
env_dataset_pairs = [(env, dataset) for env, datasets in available_datasets.items() for dataset in datasets]
env_dataset_pairs = [
(env, dataset) for env, datasets in available_datasets_per_env.items() for dataset in datasets
]
env_dataset_policy_triplets = [
(env, dataset, policy)
for env, datasets in available_datasets.items()
for env, datasets in available_datasets_per_env.items()
for dataset in datasets
for policy in available_policies_per_env[env]
]

View File

@@ -1,78 +0,0 @@
from pathlib import Path
import torch
from lerobot.common.datasets.utils import (
load_episode_data_index,
load_hf_dataset,
load_previous_and_future_frames,
load_stats,
)
class AlohaDataset(torch.utils.data.Dataset):
"""
https://huggingface.co/datasets/lerobot/aloha_sim_insertion_human
https://huggingface.co/datasets/lerobot/aloha_sim_insertion_scripted
https://huggingface.co/datasets/lerobot/aloha_sim_transfer_cube_human
https://huggingface.co/datasets/lerobot/aloha_sim_transfer_cube_scripted
"""
# Copied from lerobot/__init__.py
available_datasets = [
"aloha_sim_insertion_human",
"aloha_sim_insertion_scripted",
"aloha_sim_transfer_cube_human",
"aloha_sim_transfer_cube_scripted",
]
fps = 50
image_keys = ["observation.images.top"]
def __init__(
self,
dataset_id: str,
version: str | None = "v1.1",
root: Path | None = None,
split: str = "train",
transform: callable = None,
delta_timestamps: dict[list[float]] | None = None,
):
super().__init__()
self.dataset_id = dataset_id
self.version = version
self.root = root
self.split = split
self.transform = transform
self.delta_timestamps = delta_timestamps
# load data from hub or locally when root is provided
self.hf_dataset = load_hf_dataset(dataset_id, version, root, split)
self.episode_data_index = load_episode_data_index(dataset_id, version, root)
self.stats = load_stats(dataset_id, version, root)
@property
def num_samples(self) -> int:
return len(self.hf_dataset)
@property
def num_episodes(self) -> int:
return len(self.hf_dataset.unique("episode_index"))
def __len__(self):
return self.num_samples
def __getitem__(self, idx):
item = self.hf_dataset[idx]
if self.delta_timestamps is not None:
item = load_previous_and_future_frames(
item,
self.hf_dataset,
self.episode_data_index,
self.delta_timestamps,
tol=1 / self.fps - 1e-4, # 1e-4 to account for possible numerical error
)
if self.transform is not None:
item = self.transform(item)
return item

View File

@@ -1,76 +1,22 @@
import logging
import os
from pathlib import Path
import torch
from torchvision.transforms import v2
from omegaconf import OmegaConf
from lerobot.common.transforms import NormalizeTransform
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
DATA_DIR = Path(os.environ["DATA_DIR"]) if "DATA_DIR" in os.environ else None
def make_dataset(
cfg,
# set normalize=False to remove all transformations and keep images unnormalized in [0,255]
normalize=True,
stats_path=None,
split="train",
):
if cfg.env.name == "xarm":
from lerobot.common.datasets.xarm import XarmDataset
clsfunc = XarmDataset
elif cfg.env.name == "pusht":
from lerobot.common.datasets.pusht import PushtDataset
clsfunc = PushtDataset
elif cfg.env.name == "aloha":
from lerobot.common.datasets.aloha import AlohaDataset
clsfunc = AlohaDataset
else:
raise ValueError(cfg.env.name)
transforms = None
if normalize:
# TODO(rcadene): make normalization strategy configurable between mean_std, min_max, manual_min_max,
# min_max_from_spec
# TODO(rcadene): remove this and put it in config. Ideally we want to reproduce SOTA results just with mean_std
normalization_mode = "mean_std" if cfg.env.name == "aloha" else "min_max"
if cfg.policy.name == "diffusion" and cfg.env.name == "pusht":
stats = {}
# TODO(rcadene): we overwrite stats to have the same as pretrained model, but we should remove this
stats["observation.state"] = {}
stats["observation.state"]["min"] = torch.tensor([13.456424, 32.938293], dtype=torch.float32)
stats["observation.state"]["max"] = torch.tensor([496.14618, 510.9579], dtype=torch.float32)
stats["action"] = {}
stats["action"]["min"] = torch.tensor([12.0, 25.0], dtype=torch.float32)
stats["action"]["max"] = torch.tensor([511.0, 511.0], dtype=torch.float32)
elif stats_path is None:
# load a first dataset to access precomputed stats
stats_dataset = clsfunc(
dataset_id=cfg.dataset_id,
split="train",
root=DATA_DIR,
)
stats = stats_dataset.stats
else:
stats = torch.load(stats_path)
transforms = v2.Compose(
[
NormalizeTransform(
stats,
in_keys=[
"observation.state",
"action",
],
mode=normalization_mode,
),
]
if cfg.env.name not in cfg.dataset.repo_id:
logging.warning(
f"There might be a mismatch between your training dataset ({cfg.dataset.repo_id=}) and your environment ({cfg.env.name=})."
)
delta_timestamps = cfg.policy.get("delta_timestamps")
@@ -79,12 +25,20 @@ def make_dataset(
if isinstance(delta_timestamps[key], str):
delta_timestamps[key] = eval(delta_timestamps[key])
dataset = clsfunc(
dataset_id=cfg.dataset_id,
# TODO(rcadene): add data augmentations
dataset = LeRobotDataset(
cfg.dataset.repo_id,
split=split,
root=DATA_DIR,
delta_timestamps=delta_timestamps,
transform=transforms,
)
if cfg.get("override_dataset_stats"):
for key, stats_dict in cfg.override_dataset_stats.items():
for stats_type, listconfig in stats_dict.items():
# example of stats_type: min, max, mean, std
stats = OmegaConf.to_container(listconfig, resolve=True)
dataset.stats[key][stats_type] = torch.tensor(stats, dtype=torch.float32)
return dataset

View File

@@ -1,36 +1,21 @@
from pathlib import Path
import datasets
import torch
from lerobot.common.datasets.utils import (
load_episode_data_index,
load_hf_dataset,
load_info,
load_previous_and_future_frames,
load_stats,
)
class XarmDataset(torch.utils.data.Dataset):
"""
https://huggingface.co/datasets/lerobot/xarm_lift_medium
https://huggingface.co/datasets/lerobot/xarm_lift_medium_replay
https://huggingface.co/datasets/lerobot/xarm_push_medium
https://huggingface.co/datasets/lerobot/xarm_push_medium_replay
"""
# Copied from lerobot/__init__.py
available_datasets = [
"xarm_lift_medium",
"xarm_lift_medium_replay",
"xarm_push_medium",
"xarm_push_medium_replay",
]
fps = 15
image_keys = ["observation.image"]
class LeRobotDataset(torch.utils.data.Dataset):
def __init__(
self,
dataset_id: str,
repo_id: str,
version: str | None = "v1.1",
root: Path | None = None,
split: str = "train",
@@ -38,16 +23,25 @@ class XarmDataset(torch.utils.data.Dataset):
delta_timestamps: dict[list[float]] | None = None,
):
super().__init__()
self.dataset_id = dataset_id
self.repo_id = repo_id
self.version = version
self.root = root
self.split = split
self.transform = transform
self.delta_timestamps = delta_timestamps
# load data from hub or locally when root is provided
self.hf_dataset = load_hf_dataset(dataset_id, version, root, split)
self.episode_data_index = load_episode_data_index(dataset_id, version, root)
self.stats = load_stats(dataset_id, version, root)
self.hf_dataset = load_hf_dataset(repo_id, version, root, split)
self.episode_data_index = load_episode_data_index(repo_id, version, root)
self.stats = load_stats(repo_id, version, root)
self.info = load_info(repo_id, version, root)
@property
def fps(self) -> int:
return self.info["fps"]
@property
def image_keys(self) -> list[str]:
return [key for key, feats in self.hf_dataset.features.items() if isinstance(feats, datasets.Image)]
@property
def num_samples(self) -> int:

View File

@@ -1,76 +0,0 @@
from pathlib import Path
import torch
from lerobot.common.datasets.utils import (
load_episode_data_index,
load_hf_dataset,
load_previous_and_future_frames,
load_stats,
)
class PushtDataset(torch.utils.data.Dataset):
"""
https://huggingface.co/datasets/lerobot/pusht
Arguments
----------
delta_timestamps : dict[list[float]] | None, optional
Loads data from frames with a shift in timestamps with a different strategy for each data key (e.g. state, action or image)
If `None`, no shift is applied to current timestamp and the data from the current frame is loaded.
"""
# Copied from lerobot/__init__.py
available_datasets = ["pusht"]
fps = 10
image_keys = ["observation.image"]
def __init__(
self,
dataset_id: str = "pusht",
version: str | None = "v1.1",
root: Path | None = None,
split: str = "train",
transform: callable = None,
delta_timestamps: dict[list[float]] | None = None,
):
super().__init__()
self.dataset_id = dataset_id
self.version = version
self.root = root
self.split = split
self.transform = transform
self.delta_timestamps = delta_timestamps
# load data from hub or locally when root is provided
self.hf_dataset = load_hf_dataset(dataset_id, version, root, split)
self.episode_data_index = load_episode_data_index(dataset_id, version, root)
self.stats = load_stats(dataset_id, version, root)
@property
def num_samples(self) -> int:
return len(self.hf_dataset)
@property
def num_episodes(self) -> int:
return len(self.episode_data_index["from"])
def __len__(self):
return self.num_samples
def __getitem__(self, idx):
item = self.hf_dataset[idx]
if self.delta_timestamps is not None:
item = load_previous_and_future_frames(
item,
self.hf_dataset,
self.episode_data_index,
self.delta_timestamps,
tol=1 / self.fps - 1e-4, # 1e-4 to account for possible numerical error
)
if self.transform is not None:
item = self.transform(item)
return item

View File

@@ -1,3 +1,4 @@
import json
from copy import deepcopy
from math import ceil
from pathlib import Path
@@ -15,7 +16,7 @@ from torchvision import transforms
def flatten_dict(d, parent_key="", sep="/"):
"""Flatten a nested dictionary structure by collapsing nested keys into one key with a separator.
For example:
```
>>> dct = {"a": {"b": 1, "c": {"d": 2}}, "e": 3}`
@@ -61,19 +62,17 @@ def hf_transform_to_torch(items_dict):
return items_dict
def load_hf_dataset(dataset_id, version, root, split) -> datasets.Dataset:
def load_hf_dataset(repo_id, version, root, split) -> datasets.Dataset:
"""hf_dataset contains all the observations, states, actions, rewards, etc."""
if root is not None:
hf_dataset = load_from_disk(str(Path(root) / dataset_id / split))
hf_dataset = load_from_disk(str(Path(root) / repo_id / split))
else:
# TODO(rcadene): remove dataset_id everywhere and use repo_id instead
repo_id = f"lerobot/{dataset_id}"
hf_dataset = load_dataset(repo_id, revision=version, split=split)
hf_dataset.set_transform(hf_transform_to_torch)
return hf_dataset
def load_episode_data_index(dataset_id, version, root) -> dict[str, torch.Tensor]:
def load_episode_data_index(repo_id, version, root) -> dict[str, torch.Tensor]:
"""episode_data_index contains the range of indices for each episode
Example:
@@ -84,9 +83,8 @@ def load_episode_data_index(dataset_id, version, root) -> dict[str, torch.Tensor
```
"""
if root is not None:
path = Path(root) / dataset_id / "meta_data" / "episode_data_index.safetensors"
path = Path(root) / repo_id / "meta_data" / "episode_data_index.safetensors"
else:
repo_id = f"lerobot/{dataset_id}"
path = hf_hub_download(
repo_id, "meta_data/episode_data_index.safetensors", repo_type="dataset", revision=version
)
@@ -94,7 +92,7 @@ def load_episode_data_index(dataset_id, version, root) -> dict[str, torch.Tensor
return load_file(path)
def load_stats(dataset_id, version, root) -> dict[str, dict[str, torch.Tensor]]:
def load_stats(repo_id, version, root) -> dict[str, dict[str, torch.Tensor]]:
"""stats contains the statistics per modality computed over the full dataset, such as max, min, mean, std
Example:
@@ -103,15 +101,32 @@ def load_stats(dataset_id, version, root) -> dict[str, dict[str, torch.Tensor]]:
```
"""
if root is not None:
path = Path(root) / dataset_id / "meta_data" / "stats.safetensors"
path = Path(root) / repo_id / "meta_data" / "stats.safetensors"
else:
repo_id = f"lerobot/{dataset_id}"
path = hf_hub_download(repo_id, "meta_data/stats.safetensors", repo_type="dataset", revision=version)
stats = load_file(path)
return unflatten_dict(stats)
def load_info(repo_id, version, root) -> dict:
"""info contains useful information regarding the dataset that are not stored elsewhere
Example:
```python
print("frame per second used to collect the video", info["fps"])
```
"""
if root is not None:
path = Path(root) / repo_id / "meta_data" / "info.json"
else:
path = hf_hub_download(repo_id, "meta_data/info.json", repo_type="dataset", revision=version)
with open(path) as f:
info = json.load(f)
return info
def load_previous_and_future_frames(
item: dict[str, torch.Tensor],
hf_dataset: datasets.Dataset,

View File

@@ -1,10 +1,8 @@
import einops
import torch
from lerobot.common.transforms import apply_inverse_transform
def preprocess_observation(observation, transform=None):
def preprocess_observation(observation):
# map to expected inputs for the policy
obs = {}
@@ -24,7 +22,7 @@ def preprocess_observation(observation, transform=None):
assert img.dtype == torch.uint8, f"expect torch.uint8, but instead {img.dtype=}"
# convert to channel first of type float32 in range [0,1]
img = einops.rearrange(img, "b h w c -> b c h w")
img = einops.rearrange(img, "b h w c -> b c h w").contiguous()
img = img.type(torch.float32)
img /= 255
@@ -33,19 +31,11 @@ def preprocess_observation(observation, transform=None):
# TODO(rcadene): enable pixels only baseline with `obs_type="pixels"` in environment by removing requirement for "agent_pos"
obs["observation.state"] = torch.from_numpy(observation["agent_pos"]).float()
# apply same transforms as in training
if transform is not None:
for key in obs:
obs[key] = torch.stack([transform({key: item})[key] for item in obs[key]])
return obs
def postprocess_action(action, transform=None):
action = action.to("cpu")
# action is a batch (num_env,action_dim) instead of an item (action_dim),
# we assume applying inverse transform on a batch works the same
action = apply_inverse_transform({"action": action}, transform)["action"].numpy()
def postprocess_action(action):
action = action.to("cpu").numpy()
assert (
action.ndim == 2
), "we assume dimensions are respectively the number of parallel envs, action dimensions"

View File

@@ -21,10 +21,20 @@ class ActionChunkingTransformerConfig:
This should be no greater than the chunk size. For example, if the chunk size size 100, you may
set this to 50. This would mean that the model predicts 100 steps worth of actions, runs 50 in the
environment, and throws the other 50 out.
image_normalization_mean: Value to subtract from the input image pixels (inputs are assumed to be in
[0, 1]) for normalization.
image_normalization_std: Value by which to divide the input image pixels (after the mean has been
subtracted).
input_shapes: A dictionary defining the shapes of the input data for the policy.
The key represents the input data name, and the value is a list indicating the dimensions
of the corresponding data. For example, "observation.images.top" refers to an input from the
"top" camera with dimensions [3, 96, 96], indicating it has three color channels and 96x96 resolution.
Importantly, shapes doesnt include batch dimension or temporal dimension.
output_shapes: A dictionary defining the shapes of the output data for the policy.
The key represents the output data name, and the value is a list indicating the dimensions
of the corresponding data. For example, "action" refers to an output shape of [14], indicating
14-dimensional actions. Importantly, shapes doesnt include batch dimension or temporal dimension.
normalize_input_modes: A dictionary with key represents the modality (e.g. "observation.state"),
and the value specifies the normalization mode to apply. The two availables
modes are "mean_std" which substracts the mean and divide by the standard
deviation and "min_max" which rescale in a [-1, 1] range.
unnormalize_output_modes: Similar dictionary as `normalize_input_modes`, but to unormalize in original scale.
vision_backbone: Name of the torchvision resnet backbone to use for encoding images.
use_pretrained_backbone: Whether the backbone should be initialized with pretrained weights from
torchvision.
@@ -51,6 +61,7 @@ class ActionChunkingTransformerConfig:
"""
# Environment.
# TODO(rcadene, alexander-soare): remove these as they are defined in input_shapes, output_shapes
state_dim: int = 14
action_dim: int = 14
@@ -60,11 +71,30 @@ class ActionChunkingTransformerConfig:
chunk_size: int = 100
n_action_steps: int = 100
# Vision preprocessing.
image_normalization_mean: tuple[float, float, float] = field(
default_factory=lambda: [0.485, 0.456, 0.406]
input_shapes: dict[str, list[str]] = field(
default_factory=lambda: {
"observation.images.top": [3, 480, 640],
"observation.state": [14],
}
)
output_shapes: dict[str, list[str]] = field(
default_factory=lambda: {
"action": [14],
}
)
# Normalization / Unnormalization
normalize_input_modes: dict[str, str] = field(
default_factory=lambda: {
"observation.image": "mean_std",
"observation.state": "mean_std",
}
)
unnormalize_output_modes: dict[str, str] = field(
default_factory=lambda: {
"action": "mean_std",
}
)
image_normalization_std: tuple[float, float, float] = field(default_factory=lambda: [0.229, 0.224, 0.225])
# Architecture.
# Vision backbone.

View File

@@ -5,7 +5,6 @@ The majority of changes here involve removing unused code, unifying naming, and
"""
import math
import time
from collections import deque
from itertools import chain
from typing import Callable
@@ -15,12 +14,12 @@ import numpy as np
import torch
import torch.nn.functional as F # noqa: N812
import torchvision
import torchvision.transforms as transforms
from torch import Tensor, nn
from torchvision.models._utils import IntermediateLayerGetter
from torchvision.ops.misc import FrozenBatchNorm2d
from lerobot.common.policies.act.configuration_act import ActionChunkingTransformerConfig
from lerobot.common.policies.normalize import Normalize, Unnormalize
class ActionChunkingTransformerPolicy(nn.Module):
@@ -62,7 +61,7 @@ class ActionChunkingTransformerPolicy(nn.Module):
name = "act"
def __init__(self, cfg: ActionChunkingTransformerConfig | None = None):
def __init__(self, cfg: ActionChunkingTransformerConfig | None = None, dataset_stats=None):
"""
Args:
cfg: Policy configuration class instance or None, in which case the default instantiation of the
@@ -72,6 +71,8 @@ class ActionChunkingTransformerPolicy(nn.Module):
if cfg is None:
cfg = ActionChunkingTransformerConfig()
self.cfg = cfg
self.normalize_inputs = Normalize(cfg.input_shapes, cfg.normalize_input_modes, dataset_stats)
self.unnormalize_outputs = Unnormalize(cfg.output_shapes, cfg.unnormalize_output_modes, dataset_stats)
# BERT style VAE encoder with input [cls, *joint_space_configuration, *action_sequence].
# The cls token forms parameters of the latent's distribution (like this [*means, *log_variances]).
@@ -93,9 +94,6 @@ class ActionChunkingTransformerPolicy(nn.Module):
)
# Backbone for image feature extraction.
self.image_normalizer = transforms.Normalize(
mean=cfg.image_normalization_mean, std=cfg.image_normalization_std
)
backbone_model = getattr(torchvision.models, cfg.vision_backbone)(
replace_stride_with_dilation=[False, False, cfg.replace_final_stride_with_dilation],
pretrained=cfg.use_pretrained_backbone,
@@ -129,25 +127,6 @@ class ActionChunkingTransformerPolicy(nn.Module):
self.action_head = nn.Linear(cfg.d_model, cfg.action_dim)
self._reset_parameters()
self._create_optimizer()
def _create_optimizer(self):
optimizer_params_dicts = [
{
"params": [
p for n, p in self.named_parameters() if not n.startswith("backbone") and p.requires_grad
]
},
{
"params": [
p for n, p in self.named_parameters() if n.startswith("backbone") and p.requires_grad
],
"lr": self.cfg.lr_backbone,
},
]
self.optimizer = torch.optim.AdamW(
optimizer_params_dicts, lr=self.cfg.lr, weight_decay=self.cfg.weight_decay
)
def _reset_parameters(self):
"""Xavier-uniform initialization of the transformer parameters as in the original code."""
@@ -169,10 +148,18 @@ class ActionChunkingTransformerPolicy(nn.Module):
queue is empty.
"""
self.eval()
batch = self.normalize_inputs(batch)
if len(self._action_queue) == 0:
# `_forward` returns a (batch_size, n_action_steps, action_dim) tensor, but the queue effectively
# has shape (n_action_steps, batch_size, *), hence the transpose.
self._action_queue.extend(self._forward(batch)[0][: self.cfg.n_action_steps].transpose(0, 1))
actions = self._forward(batch)[0][: self.cfg.n_action_steps]
# TODO(rcadene): make _forward return output dictionary?
actions = self.unnormalize_outputs({"action": actions})["action"]
self._action_queue.extend(actions.transpose(0, 1))
return self._action_queue.popleft()
def forward(self, batch, **_) -> dict[str, Tensor]:
@@ -199,29 +186,6 @@ class ActionChunkingTransformerPolicy(nn.Module):
return loss_dict
def update(self, batch, **_) -> dict:
"""Run the model in train mode, compute the loss, and do an optimization step."""
start_time = time.time()
self.train()
loss_dict = self.forward(batch)
loss = loss_dict["loss"]
loss.backward()
grad_norm = torch.nn.utils.clip_grad_norm_(
self.parameters(), self.cfg.grad_clip_norm, error_if_nonfinite=False
)
self.optimizer.step()
self.optimizer.zero_grad()
info = {
"loss": loss.item(),
"grad_norm": float(grad_norm),
"lr": self.cfg.lr,
"update_s": time.time() - start_time,
}
return info
def _stack_images(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
"""Stacks all the images in a batch and puts them in a new key: "observation.images".
@@ -309,7 +273,7 @@ class ActionChunkingTransformerPolicy(nn.Module):
# Camera observation features and positional embeddings.
all_cam_features = []
all_cam_pos_embeds = []
images = self.image_normalizer(batch["observation.images"])
images = batch["observation.images"]
for cam_index in range(len(self.cfg.camera_names)):
cam_features = self.backbone(images[:, cam_index])["feature_map"]
cam_pos_embed = self.encoder_cam_feat_pos_embed(cam_features).to(dtype=cam_features.dtype)

View File

@@ -1,4 +1,4 @@
from dataclasses import dataclass
from dataclasses import dataclass, field
@dataclass
@@ -19,10 +19,20 @@ class DiffusionConfig:
horizon: Diffusion model action prediction size as detailed in `DiffusionPolicy.select_action`.
n_action_steps: The number of action steps to run in the environment for one invocation of the policy.
See `DiffusionPolicy.select_action` for more details.
image_normalization_mean: Value to subtract from the input image pixels (inputs are assumed to be in
[0, 1]) for normalization.
image_normalization_std: Value by which to divide the input image pixels (after the mean has been
subtracted).
input_shapes: A dictionary defining the shapes of the input data for the policy.
The key represents the input data name, and the value is a list indicating the dimensions
of the corresponding data. For example, "observation.image" refers to an input from
a camera with dimensions [3, 96, 96], indicating it has three color channels and 96x96 resolution.
Importantly, shapes doesnt include batch dimension or temporal dimension.
output_shapes: A dictionary defining the shapes of the output data for the policy.
The key represents the output data name, and the value is a list indicating the dimensions
of the corresponding data. For example, "action" refers to an output shape of [14], indicating
14-dimensional actions. Importantly, shapes doesnt include batch dimension or temporal dimension.
normalize_input_modes: A dictionary with key represents the modality (e.g. "observation.state"),
and the value specifies the normalization mode to apply. The two availables
modes are "mean_std" which substracts the mean and divide by the standard
deviation and "min_max" which rescale in a [-1, 1] range.
unnormalize_output_modes: Similar dictionary as `normalize_input_modes`, but to unormalize in original scale.
vision_backbone: Name of the torchvision resnet backbone to use for encoding images.
crop_shape: (H, W) shape to crop images to as a preprocessing step for the vision backbone. Must fit
within the image size. If None, no cropping is done.
@@ -60,6 +70,7 @@ class DiffusionConfig:
# Environment.
# Inherit these from the environment config.
# TODO(rcadene, alexander-soare): remove these as they are defined in input_shapes, output_shapes
state_dim: int = 2
action_dim: int = 2
image_size: tuple[int, int] = (96, 96)
@@ -69,9 +80,30 @@ class DiffusionConfig:
horizon: int = 16
n_action_steps: int = 8
# Vision preprocessing.
image_normalization_mean: tuple[float, float, float] = (0.5, 0.5, 0.5)
image_normalization_std: tuple[float, float, float] = (0.5, 0.5, 0.5)
input_shapes: dict[str, list[str]] = field(
default_factory=lambda: {
"observation.image": [3, 96, 96],
"observation.state": [2],
}
)
output_shapes: dict[str, list[str]] = field(
default_factory=lambda: {
"action": [2],
}
)
# Normalization / Unnormalization
normalize_input_modes: dict[str, str] = field(
default_factory=lambda: {
"observation.image": "mean_std",
"observation.state": "min_max",
}
)
unnormalize_output_modes: dict[str, str] = field(
default_factory=lambda: {
"action": "min_max",
}
)
# Architecture / modeling.
# Vision backbone.

View File

@@ -11,22 +11,20 @@ TODO(alexander-soare):
import copy
import logging
import math
import time
from collections import deque
from itertools import chain
from typing import Callable
import einops
import torch
import torch.nn.functional as F # noqa: N812
import torchvision
from diffusers.optimization import get_scheduler
from diffusers.schedulers.scheduling_ddpm import DDPMScheduler
from robomimic.models.base_nets import SpatialSoftmax
from torch import Tensor, nn
from torch.nn.modules.batchnorm import _BatchNorm
from lerobot.common.policies.diffusion.configuration_diffusion import DiffusionConfig
from lerobot.common.policies.normalize import Normalize, Unnormalize
from lerobot.common.policies.utils import (
get_device_from_parameters,
get_dtype_from_parameters,
@@ -42,7 +40,9 @@ class DiffusionPolicy(nn.Module):
name = "diffusion"
def __init__(self, cfg: DiffusionConfig | None, lr_scheduler_num_training_steps: int = 0):
def __init__(
self, cfg: DiffusionConfig | None, lr_scheduler_num_training_steps: int = 0, dataset_stats=None
):
"""
Args:
cfg: Policy configuration class instance or None, in which case the default instantiation of the
@@ -54,6 +54,8 @@ class DiffusionPolicy(nn.Module):
if cfg is None:
cfg = DiffusionConfig()
self.cfg = cfg
self.normalize_inputs = Normalize(cfg.input_shapes, cfg.normalize_input_modes, dataset_stats)
self.unnormalize_outputs = Unnormalize(cfg.output_shapes, cfg.unnormalize_output_modes, dataset_stats)
# queues are populated during rollout of the policy, they contain the n latest observations and actions
self._queues = None
@@ -67,25 +69,7 @@ class DiffusionPolicy(nn.Module):
self.ema_diffusion = copy.deepcopy(self.diffusion)
self.ema = _EMA(cfg, model=self.ema_diffusion)
# TODO(alexander-soare): Move optimizer out of policy.
self.optimizer = torch.optim.Adam(
self.diffusion.parameters(), cfg.lr, cfg.adam_betas, cfg.adam_eps, cfg.adam_weight_decay
)
# TODO(alexander-soare): Move LR scheduler out of policy.
# TODO(rcadene): modify lr scheduler so that it doesn't depend on epochs but steps
self.global_step = 0
# configure lr scheduler
self.lr_scheduler = get_scheduler(
cfg.lr_scheduler,
optimizer=self.optimizer,
num_warmup_steps=cfg.lr_warmup_steps,
num_training_steps=lr_scheduler_num_training_steps,
# pytorch assumes stepping LRScheduler every epoch
# however huggingface diffusers steps it every batch
last_epoch=self.global_step - 1,
)
def reset(self):
"""
@@ -126,6 +110,8 @@ class DiffusionPolicy(nn.Module):
assert "observation.state" in batch
assert len(batch) == 2
batch = self.normalize_inputs(batch)
self._queues = populate_queues(self._queues, batch)
if len(self._queues["action"]) == 0:
@@ -135,6 +121,10 @@ class DiffusionPolicy(nn.Module):
actions = self.ema_diffusion.generate_actions(batch)
else:
actions = self.diffusion.generate_actions(batch)
# TODO(rcadene): make above methods return output dictionary?
actions = self.unnormalize_outputs({"action": actions})["action"]
self._queues["action"].extend(actions.transpose(0, 1))
action = self._queues["action"].popleft()
@@ -145,37 +135,6 @@ class DiffusionPolicy(nn.Module):
loss = self.diffusion.compute_loss(batch)
return {"loss": loss}
def update(self, batch: dict[str, Tensor], **_) -> dict:
"""Run the model in train mode, compute the loss, and do an optimization step."""
start_time = time.time()
self.diffusion.train()
loss = self.forward(batch)["loss"]
loss.backward()
grad_norm = torch.nn.utils.clip_grad_norm_(
self.diffusion.parameters(),
self.cfg.grad_clip_norm,
error_if_nonfinite=False,
)
self.optimizer.step()
self.optimizer.zero_grad()
self.lr_scheduler.step()
if self.ema is not None:
self.ema.step(self.diffusion)
info = {
"loss": loss.item(),
"grad_norm": float(grad_norm),
"lr": self.lr_scheduler.get_last_lr()[0],
"update_s": time.time() - start_time,
}
return info
def save(self, fp):
torch.save(self.state_dict(), fp)
@@ -346,12 +305,6 @@ class _RgbEncoder(nn.Module):
def __init__(self, cfg: DiffusionConfig):
super().__init__()
# Set up optional preprocessing.
if all(v == 1.0 for v in chain(cfg.image_normalization_mean, cfg.image_normalization_std)):
self.normalizer = nn.Identity()
else:
self.normalizer = torchvision.transforms.Normalize(
mean=cfg.image_normalization_mean, std=cfg.image_normalization_std
)
if cfg.crop_shape is not None:
self.do_crop = True
# Always use center crop for eval
@@ -397,8 +350,7 @@ class _RgbEncoder(nn.Module):
Returns:
(B, D) image feature.
"""
# Preprocess: normalize and maybe crop (if it was set up in the __init__).
x = self.normalizer(x)
# Preprocess: maybe crop (if it was set up in the __init__).
if self.do_crop:
if self.training: # noqa: SIM108
x = self.maybe_random_crop(x)

View File

@@ -20,7 +20,7 @@ def _policy_cfg_from_hydra_cfg(policy_cfg_class, hydra_cfg):
return policy_cfg
def make_policy(hydra_cfg: DictConfig):
def make_policy(hydra_cfg: DictConfig, dataset_stats=None):
if hydra_cfg.policy.name == "tdmpc":
from lerobot.common.policies.tdmpc.policy import TDMPCPolicy
@@ -35,14 +35,14 @@ def make_policy(hydra_cfg: DictConfig):
from lerobot.common.policies.diffusion.modeling_diffusion import DiffusionPolicy
policy_cfg = _policy_cfg_from_hydra_cfg(DiffusionConfig, hydra_cfg)
policy = DiffusionPolicy(policy_cfg, hydra_cfg.offline_steps)
policy = DiffusionPolicy(policy_cfg, hydra_cfg.offline_steps, dataset_stats)
policy.to(get_safe_torch_device(hydra_cfg.device))
elif hydra_cfg.policy.name == "act":
from lerobot.common.policies.act.configuration_act import ActionChunkingTransformerConfig
from lerobot.common.policies.act.modeling_act import ActionChunkingTransformerPolicy
policy_cfg = _policy_cfg_from_hydra_cfg(ActionChunkingTransformerConfig, hydra_cfg)
policy = ActionChunkingTransformerPolicy(policy_cfg)
policy = ActionChunkingTransformerPolicy(policy_cfg, dataset_stats)
policy.to(get_safe_torch_device(hydra_cfg.device))
else:
raise ValueError(hydra_cfg.policy.name)

View File

@@ -0,0 +1,196 @@
import torch
from torch import nn
def create_stats_buffers(shapes, modes, stats=None):
"""
Create buffers per modality (e.g. "observation.image", "action") containing their mean, std, min, max statistics.
Parameters:
shapes (dict): A dictionary where keys are input modalities (e.g. "observation.image") and values are their shapes (e.g. `[3,96,96]`]).
These shapes are used to create the tensor buffer containing mean, std, min, max statistics. If the provided `shapes` contain keys related to images, the shape is adjusted to be invariant to height
and width, assuming a channel-first (c, h, w) format.
modes (dict): A dictionary where keys are output modalities (e.g. "observation.image") and values are their normalization modes among:
- "mean_std": substract the mean and divide by standard deviation.
- "min_max": map to [-1, 1] range.
stats (dict, optional): A dictionary where keys are output modalities (e.g. "observation.image") and values are dictionaries of statistic types and their values
(e.g. `{"mean": torch.randn(3,1,1)}, "std": torch.randn(3,1,1)}`). If provided, as expected for training the model for the first time,
these statistics will overwrite the default buffers. If not provided, as expected for finetuning or evaluation, the default buffers should to be
be overwritten by a call to `policy.load_state_dict(state_dict)`. That way, initializing the dataset is not needed to get the stats, since
they are already in the policy state_dict.
Returns:
dict: A dictionary where keys are modalities and values are `nn.ParameterDict` containing `nn.Parameters` set to
`requires_grad=False`, suitable to not be updated during backpropagation.
"""
stats_buffers = {}
for key, mode in modes.items():
assert mode in ["mean_std", "min_max"]
shape = tuple(shapes[key])
if "image" in key:
# sanity checks
assert len(shape) == 3, f"number of dimensions of {key} != 3 ({shape=}"
c, h, w = shape
assert c < h and c < w, f"{key} is not channel first ({shape=})"
# override image shape to be invariant to height and width
shape = (c, 1, 1)
# Note: we initialize mean, std, min, max to infinity. They should be overwritten
# downstream by `stats` or `policy.load_state_dict`, as expected. During forward,
# we assert they are not infinity anymore.
buffer = {}
if mode == "mean_std":
mean = torch.ones(shape, dtype=torch.float32) * torch.inf
std = torch.ones(shape, dtype=torch.float32) * torch.inf
buffer = nn.ParameterDict(
{
"mean": nn.Parameter(mean, requires_grad=False),
"std": nn.Parameter(std, requires_grad=False),
}
)
elif mode == "min_max":
min = torch.ones(shape, dtype=torch.float32) * torch.inf
max = torch.ones(shape, dtype=torch.float32) * torch.inf
buffer = nn.ParameterDict(
{
"min": nn.Parameter(min, requires_grad=False),
"max": nn.Parameter(max, requires_grad=False),
}
)
if stats is not None:
if mode == "mean_std":
buffer["mean"].data = stats[key]["mean"]
buffer["std"].data = stats[key]["std"]
elif mode == "min_max":
buffer["min"].data = stats[key]["min"]
buffer["max"].data = stats[key]["max"]
stats_buffers[key] = buffer
return stats_buffers
class Normalize(nn.Module):
"""
Normalizes the input data (e.g. "observation.image") for more stable and faster convergence during training.
Parameters:
shapes (dict): A dictionary where keys are input modalities (e.g. "observation.image") and values are their shapes (e.g. `[3,96,96]`]).
These shapes are used to create the tensor buffer containing mean, std, min, max statistics. If the provided `shapes` contain keys related to images, the shape is adjusted to be invariant to height
and width, assuming a channel-first (c, h, w) format.
modes (dict): A dictionary where keys are output modalities (e.g. "observation.image") and values are their normalization modes among:
- "mean_std": substract the mean and divide by standard deviation.
- "min_max": map to [-1, 1] range.
stats (dict, optional): A dictionary where keys are output modalities (e.g. "observation.image") and values are dictionaries of statistic types and their values
(e.g. `{"mean": torch.randn(3,1,1)}, "std": torch.randn(3,1,1)}`). If provided, as expected for training the model for the first time,
these statistics will overwrite the default buffers. If not provided, as expected for finetuning or evaluation, the default buffers should to be
be overwritten by a call to `policy.load_state_dict(state_dict)`. That way, initializing the dataset is not needed to get the stats, since
they are already in the policy state_dict.
"""
def __init__(self, shapes, modes, stats=None):
super().__init__()
self.shapes = shapes
self.modes = modes
self.stats = stats
# `self.buffer_observation_state["mean"]` contains `torch.tensor(state_dim)`
stats_buffers = create_stats_buffers(shapes, modes, stats)
for key, buffer in stats_buffers.items():
setattr(self, "buffer_" + key.replace(".", "_"), buffer)
# TODO(rcadene): should we remove torch.no_grad?
@torch.no_grad
def forward(self, batch):
for key, mode in self.modes.items():
buffer = getattr(self, "buffer_" + key.replace(".", "_"))
if mode == "mean_std":
mean = buffer["mean"]
std = buffer["std"]
assert not torch.isinf(
mean
).any(), "`mean` is infinity. You forgot to initialize with `stats` as argument, or called `policy.load_state_dict`."
assert not torch.isinf(
std
).any(), "`std` is infinity. You forgot to initialize with `stats` as argument, or called `policy.load_state_dict`."
batch[key] = (batch[key] - mean) / (std + 1e-8)
elif mode == "min_max":
min = buffer["min"]
max = buffer["max"]
assert not torch.isinf(
min
).any(), "`min` is infinity. You forgot to initialize with `stats` as argument, or called `policy.load_state_dict`."
assert not torch.isinf(
max
).any(), "`max` is infinity. You forgot to initialize with `stats` as argument, or called `policy.load_state_dict`."
# normalize to [0,1]
batch[key] = (batch[key] - min) / (max - min)
# normalize to [-1, 1]
batch[key] = batch[key] * 2 - 1
else:
raise ValueError(mode)
return batch
class Unnormalize(nn.Module):
"""
Similar to `Normalize` but unnormalizes output data (e.g. `{"action": torch.randn(b,c)}`) in their original range used by the environment.
Parameters:
shapes (dict): A dictionary where keys are output modalities (e.g. "action") and values are their shapes (e.g. [10]).
These shapes are used to create the tensor buffer containing mean, std, min, max statistics. If the provided `shapes` contain keys related to images, the shape is adjusted to be invariant to height
and width, assuming a channel-first (c, h, w) format.
modes (dict): A dictionary where keys are output modalities (e.g. "action") and values are their unnormalization modes among:
- "mean_std": multiply by standard deviation and add mean
- "min_max": go from [-1, 1] range to original range.
stats (dict, optional): A dictionary where keys are output modalities (e.g. "action") and values are dictionaries of statistic types and their values
(e.g. `{"max": torch.tensor(1)}, "min": torch.tensor(0)}`). If provided, as expected for training the model for the first time,
these statistics will overwrite the default buffers. If not provided, as expected for finetuning or evaluation, the default buffers should to be
be overwritten by a call to `policy.load_state_dict(state_dict)`. That way, initializing the dataset is not needed to get the stats, since
they are already in the policy state_dict.
"""
def __init__(self, shapes, modes, stats=None):
super().__init__()
self.shapes = shapes
self.modes = modes
self.stats = stats
# `self.buffer_observation_state["mean"]` contains `torch.tensor(state_dim)`
stats_buffers = create_stats_buffers(shapes, modes, stats)
for key, buffer in stats_buffers.items():
setattr(self, "buffer_" + key.replace(".", "_"), buffer)
# TODO(rcadene): should we remove torch.no_grad?
@torch.no_grad
def forward(self, batch):
for key, mode in self.modes.items():
buffer = getattr(self, "buffer_" + key.replace(".", "_"))
if mode == "mean_std":
mean = buffer["mean"]
std = buffer["std"]
assert not torch.isinf(
mean
).any(), "`mean` is infinity. You forgot to initialize with `stats` as argument, or called `policy.load_state_dict`."
assert not torch.isinf(
std
).any(), "`std` is infinity. You forgot to initialize with `stats` as argument, or called `policy.load_state_dict`."
batch[key] = batch[key] * std + mean
elif mode == "min_max":
min = buffer["min"]
max = buffer["max"]
assert not torch.isinf(
min
).any(), "`min` is infinity. You forgot to initialize with `stats` as argument, or called `policy.load_state_dict`."
assert not torch.isinf(
max
).any(), "`max` is infinity. You forgot to initialize with `stats` as argument, or called `policy.load_state_dict`."
batch[key] = (batch[key] + 1) / 2
batch[key] = batch[key] * (max - min) + min
else:
raise ValueError(mode)
return batch

View File

@@ -1,65 +0,0 @@
from torchvision.transforms.v2 import Compose, Transform
def apply_inverse_transform(item, transform):
transforms = transform.transforms if isinstance(transform, Compose) else [transform]
for tf in transforms[::-1]:
if tf.invertible:
item = tf.inverse_transform(item)
else:
raise ValueError(f"Inverse transform called on a non invertible transform ({tf}).")
return item
class NormalizeTransform(Transform):
invertible = True
def __init__(
self,
stats: dict,
in_keys: list[str] = None,
out_keys: list[str] | None = None,
in_keys_inv: list[str] | None = None,
out_keys_inv: list[str] | None = None,
mode="mean_std",
):
super().__init__()
self.in_keys = in_keys
self.out_keys = in_keys if out_keys is None else out_keys
self.in_keys_inv = self.out_keys if in_keys_inv is None else in_keys_inv
self.out_keys_inv = self.in_keys if out_keys_inv is None else out_keys_inv
self.stats = stats
assert mode in ["mean_std", "min_max"]
self.mode = mode
def forward(self, item):
for inkey, outkey in zip(self.in_keys, self.out_keys, strict=False):
if inkey not in item:
continue
if self.mode == "mean_std":
mean = self.stats[inkey]["mean"]
std = self.stats[inkey]["std"]
item[outkey] = (item[inkey] - mean) / (std + 1e-8)
else:
min = self.stats[inkey]["min"]
max = self.stats[inkey]["max"]
# normalize to [0,1]
item[outkey] = (item[inkey] - min) / (max - min)
# normalize to [-1, 1]
item[outkey] = item[outkey] * 2 - 1
return item
def inverse_transform(self, item):
for inkey, outkey in zip(self.in_keys_inv, self.out_keys_inv, strict=False):
if inkey not in item:
continue
if self.mode == "mean_std":
mean = self.stats[inkey]["mean"]
std = self.stats[inkey]["std"]
item[outkey] = item[inkey] * std + mean
else:
min = self.stats[inkey]["min"]
max = self.stats[inkey]["max"]
item[outkey] = (item[inkey] + 1) / 2
item[outkey] = item[outkey] * (max - min) + min
return item

View File

@@ -26,7 +26,8 @@ fps: ???
offline_prioritized_sampler: true
dataset_id: ???
dataset:
repo_id: ???
n_action_steps: ???
n_obs_steps: ???

View File

@@ -10,7 +10,8 @@ online_steps: 25000
fps: 50
dataset_id: aloha_sim_insertion_human
dataset:
repo_id: lerobot/aloha_sim_insertion_human
env:
name: aloha

View File

@@ -10,7 +10,8 @@ online_steps: 25000
fps: 10
dataset_id: pusht
dataset:
repo_id: lerobot/pusht
env:
name: pusht

View File

@@ -9,7 +9,8 @@ online_steps: 25000
fps: 15
dataset_id: xarm_lift_medium
dataset:
repo_id: lerobot/xarm_lift_medium
env:
name: xarm

View File

@@ -11,6 +11,12 @@ log_freq: 250
n_obs_steps: 1
# when temporal_agg=False, n_action_steps=horizon
override_dataset_stats:
observation.images.top:
# stats from imagenet, since we use a pretrained vision model
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
# See `configuration_act.py` for more details.
policy:
name: act
@@ -28,9 +34,19 @@ policy:
chunk_size: 100 # chunk_size
n_action_steps: 100
# Vision preprocessing.
image_normalization_mean: [0.485, 0.456, 0.406]
image_normalization_std: [0.229, 0.224, 0.225]
input_shapes:
# TODO(rcadene, alexander-soare): add variables for height and width from the dataset/env?
observation.images.top: [3, 480, 640]
observation.state: ["${policy.state_dim}"]
output_shapes:
action: ["${policy.action_dim}"]
# Normalization / Unnormalization
normalize_input_modes:
observation.images.top: mean_std
observation.state: mean_std
unnormalize_output_modes:
action: mean_std
# Architecture.
# Vision backbone.

View File

@@ -18,6 +18,20 @@ online_steps: 0
offline_prioritized_sampler: true
override_dataset_stats:
# TODO(rcadene, alexander-soare): should we remove image stats as well? do we use a pretrained vision model?
observation.image:
mean: [[[0.5]], [[0.5]], [[0.5]]] # (c,1,1)
std: [[[0.5]], [[0.5]], [[0.5]]] # (c,1,1)
# TODO(rcadene, alexander-soare): we override state and action stats to use the same as the pretrained model
# from the original codebase, but we should remove these and train our own pretrained model
observation.state:
min: [13.456424, 32.938293]
max: [496.14618, 510.9579]
action:
min: [12.0, 25.0]
max: [511.0, 511.0]
policy:
name: diffusion
@@ -36,9 +50,19 @@ policy:
horizon: ${horizon}
n_action_steps: ${n_action_steps}
# Vision preprocessing.
image_normalization_mean: [0.5, 0.5, 0.5]
image_normalization_std: [0.5, 0.5, 0.5]
input_shapes:
# TODO(rcadene, alexander-soare): add variables for height and width from the dataset/env?
observation.image: [3, 96, 96]
observation.state: ["${policy.state_dim}"]
output_shapes:
action: ["${policy.action_dim}"]
# Normalization / Unnormalization
normalize_input_modes:
observation.image: mean_std
observation.state: min_max
unnormalize_output_modes:
action: min_max
# Architecture / modeling.
# Vision backbone.

View File

@@ -46,7 +46,6 @@ from huggingface_hub import snapshot_download
from PIL import Image as PILImage
from tqdm import trange
from lerobot.common.datasets.factory import make_dataset
from lerobot.common.datasets.utils import hf_transform_to_torch
from lerobot.common.envs.factory import make_env
from lerobot.common.envs.utils import postprocess_action, preprocess_observation
@@ -64,8 +63,6 @@ def eval_policy(
policy: torch.nn.Module,
max_episodes_rendered: int = 0,
video_dir: Path = None,
# TODO(rcadene): make it possible to overwrite fps? we should use env.fps
transform: callable = None,
return_episode_data: bool = False,
seed=None,
):
@@ -132,10 +129,6 @@ def eval_policy(
if return_episode_data:
observations.append(deepcopy(observation))
# apply transform to normalize the observations
for key in observation:
observation[key] = torch.stack([transform({key: item})[key] for item in observation[key]])
# send observation to device/gpu
observation = {key: observation[key].to(device, non_blocking=True) for key in observation}
@@ -143,8 +136,8 @@ def eval_policy(
with torch.inference_mode():
action = policy.select_action(observation, step=step)
# apply inverse transform to unnormalize the action
action = postprocess_action(action, transform)
# convert to cpu numpy
action = postprocess_action(action)
# apply the next action
observation, reward, terminated, truncated, info = env.step(action)
@@ -360,7 +353,7 @@ def eval_policy(
return info
def eval(cfg: dict, out_dir=None, stats_path=None):
def eval(cfg: dict, out_dir=None):
if out_dir is None:
raise NotImplementedError()
@@ -375,10 +368,6 @@ def eval(cfg: dict, out_dir=None, stats_path=None):
log_output_dir(out_dir)
logging.info("Making transforms.")
# TODO(alexander-soare): Completely decouple datasets from evaluation.
transform = make_dataset(cfg, stats_path=stats_path).transform
logging.info("Making environment.")
env = make_env(cfg, num_parallel_envs=cfg.eval_episodes)
@@ -390,7 +379,6 @@ def eval(cfg: dict, out_dir=None, stats_path=None):
policy,
max_episodes_rendered=10,
video_dir=Path(out_dir) / "eval",
transform=transform,
return_episode_data=False,
seed=cfg.seed,
)
@@ -423,17 +411,13 @@ if __name__ == "__main__":
if args.config is not None:
# Note: For the config_path, Hydra wants a path relative to this script file.
cfg = init_hydra_config(args.config, args.overrides)
# TODO(alexander-soare): Save and load stats in trained model directory.
stats_path = None
elif args.hub_id is not None:
folder = Path(snapshot_download(args.hub_id, revision=args.revision))
cfg = init_hydra_config(
folder / "config.yaml", [f"policy.pretrained_model_path={folder / 'model.pt'}", *args.overrides]
)
stats_path = folder / "stats.pth"
eval(
cfg,
out_dir=f"outputs/eval/{dt.now().strftime('%Y-%m-%d/%H-%M-%S')}_{cfg.env.name}_{cfg.policy.name}",
stats_path=stats_path,
)

View File

@@ -1,4 +1,5 @@
import logging
import time
from copy import deepcopy
from pathlib import Path
@@ -7,6 +8,7 @@ import hydra
import torch
from datasets import concatenate_datasets
from datasets.utils import disable_progress_bars, enable_progress_bars
from diffusers.optimization import get_scheduler
from lerobot.common.datasets.factory import make_dataset
from lerobot.common.datasets.utils import cycle
@@ -22,6 +24,45 @@ from lerobot.common.utils.utils import (
from lerobot.scripts.eval import eval_policy
def update_policy(policy, batch, optimizer, grad_clip_norm, lr_scheduler=None):
start_time = time.time()
model = policy.diffusion if hasattr(policy, "diffusion") else policy # TODO: hacky, remove this line
model.train()
batch = policy.normalize_inputs(batch)
output_dict = policy.forward(batch)
# TODO(rcadene): policy.unnormalize_outputs(out_dict)
loss = output_dict["loss"]
loss.backward()
# Diffusion
model = policy.diffusion if hasattr(policy, "diffusion") else policy # TODO: hacky, remove this line
grad_norm = torch.nn.utils.clip_grad_norm_(
model.parameters(),
grad_clip_norm,
error_if_nonfinite=False,
)
optimizer.step()
optimizer.zero_grad()
if lr_scheduler is not None:
lr_scheduler.step()
if hasattr(policy, "ema") and policy.ema is not None:
policy.ema.step(model)
info = {
"loss": loss.item(),
"grad_norm": float(grad_norm),
"lr": optimizer.param_groups[0]['lr'],
"update_s": time.time() - start_time,
}
return info
@hydra.main(version_base=None, config_name="default", config_path="../configs")
def train_cli(cfg: dict):
train(
@@ -232,7 +273,36 @@ def train(cfg: dict, out_dir=None, job_name=None):
env = make_env(cfg, num_parallel_envs=cfg.eval_episodes)
logging.info("make_policy")
policy = make_policy(cfg)
policy = make_policy(cfg, dataset_stats=offline_dataset.stats)
# Create optimizer and scheduler
# Temporary hack to move optimizer out of policy
if cfg.policy.name == "act":
optimizer_params_dicts = [
{"params": [p for n, p in policy.named_parameters() if not n.startswith("backbone") and p.requires_grad]},
{
"params": [p for n, p in policy.named_parameters() if n.startswith("backbone") and p.requires_grad],
"lr": cfg.lr_backbone,
},
]
optimizer = torch.optim.AdamW(optimizer_params_dicts, lr=cfg.lr, weight_decay=cfg.weight_decay)
lr_scheduler = None
elif cfg.policy.name == "diffusion":
optimizer = torch.optim.Adam(
policy.diffusion.parameters(), cfg.lr, cfg.adam_betas, cfg.adam_eps, cfg.adam_weight_decay
)
# TODO(rcadene): modify lr scheduler so that it doesn't depend on epochs but steps
global_step = 0
# configure lr scheduler
lr_scheduler = get_scheduler(
cfg.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=cfg.lr_warmup_steps,
num_training_steps=cfg.offline_steps,
# pytorch assumes stepping LRScheduler every epoch
# however huggingface diffusers steps it every batch
last_epoch=global_step - 1,
)
num_learnable_params = sum(p.numel() for p in policy.parameters() if p.requires_grad)
num_total_params = sum(p.numel() for p in policy.parameters())
@@ -293,7 +363,7 @@ def train(cfg: dict, out_dir=None, job_name=None):
for key in batch:
batch[key] = batch[key].to(cfg.device, non_blocking=True)
train_info = policy.update(batch, step=step)
train_info = update_policy(policy, batch, optimizer, cfg.grad_clip_norm, lr_scheduler)
# TODO(rcadene): is it ok if step_t=0 = 0 and not 1 as previously done?
if step % cfg.log_freq == 0:
@@ -316,9 +386,7 @@ def train(cfg: dict, out_dir=None, job_name=None):
# create dataloader for online training
concat_dataset = torch.utils.data.ConcatDataset([offline_dataset, online_dataset])
weights = [1.0] * len(concat_dataset)
sampler = torch.utils.data.WeightedRandomSampler(
weights, num_samples=len(concat_dataset), replacement=True
)
sampler = torch.utils.data.WeightedRandomSampler(weights, num_samples=len(concat_dataset), replacement=True)
dataloader = torch.utils.data.DataLoader(
concat_dataset,
num_workers=4,
@@ -339,7 +407,6 @@ def train(cfg: dict, out_dir=None, job_name=None):
eval_info = eval_policy(
rollout_env,
policy,
transform=offline_dataset.transform,
return_episode_data=True,
seed=cfg.seed,
)

View File

@@ -50,11 +50,7 @@ def visualize_dataset(cfg: dict, out_dir=None):
log_output_dir(out_dir)
logging.info("make_dataset")
dataset = make_dataset(
cfg,
# remove all transformations such as rescale images from [0,255] to [0,1] or normalization
normalize=False,
)
dataset = make_dataset(cfg)
logging.info("Start rendering episodes from offline buffer")
video_paths = render_dataset(dataset, out_dir, MAX_NUM_STEPS * NUM_EPISODES_TO_RENDER)

Some files were not shown because too many files have changed in this diff Show More