Compare commits
10 Commits
thom_arm
...
alexander-
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
946d191919 | ||
|
|
3b86050ab0 | ||
|
|
6d39b73399 | ||
|
|
aca424a481 | ||
|
|
35c1ce7a66 | ||
|
|
e67da1d7a6 | ||
|
|
b6c216b590 | ||
|
|
2b270d085b | ||
|
|
bceab3d303 | ||
|
|
b699a2f484 |
86
.github/workflows/build-docker-images.yml
vendored
86
.github/workflows/build-docker-images.yml
vendored
@@ -10,7 +10,6 @@ on:
|
|||||||
|
|
||||||
env:
|
env:
|
||||||
PYTHON_VERSION: "3.10"
|
PYTHON_VERSION: "3.10"
|
||||||
# CI_SLACK_CHANNEL: ${{ secrets.CI_DOCKER_CHANNEL }}
|
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
latest-cpu:
|
latest-cpu:
|
||||||
@@ -51,30 +50,6 @@ jobs:
|
|||||||
tags: huggingface/lerobot-cpu
|
tags: huggingface/lerobot-cpu
|
||||||
build-args: PYTHON_VERSION=${{ env.PYTHON_VERSION }}
|
build-args: PYTHON_VERSION=${{ env.PYTHON_VERSION }}
|
||||||
|
|
||||||
# - name: Post to a Slack channel
|
|
||||||
# id: slack
|
|
||||||
# #uses: slackapi/slack-github-action@v1.25.0
|
|
||||||
# uses: slackapi/slack-github-action@6c661ce58804a1a20f6dc5fbee7f0381b469e001
|
|
||||||
# with:
|
|
||||||
# # Slack channel id, channel name, or user id to post message.
|
|
||||||
# # See also: https://api.slack.com/methods/chat.postMessage#channels
|
|
||||||
# channel-id: ${{ env.CI_SLACK_CHANNEL }}
|
|
||||||
# # For posting a rich message using Block Kit
|
|
||||||
# payload: |
|
|
||||||
# {
|
|
||||||
# "text": "lerobot-cpu Docker Image build result: ${{ job.status }}\n${{ github.event.pull_request.html_url || github.event.head_commit.url }}",
|
|
||||||
# "blocks": [
|
|
||||||
# {
|
|
||||||
# "type": "section",
|
|
||||||
# "text": {
|
|
||||||
# "type": "mrkdwn",
|
|
||||||
# "text": "lerobot-cpu Docker Image build result: ${{ job.status }}\n${{ github.event.pull_request.html_url || github.event.head_commit.url }}"
|
|
||||||
# }
|
|
||||||
# }
|
|
||||||
# ]
|
|
||||||
# }
|
|
||||||
# env:
|
|
||||||
# SLACK_BOT_TOKEN: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
|
|
||||||
|
|
||||||
latest-cuda:
|
latest-cuda:
|
||||||
name: GPU
|
name: GPU
|
||||||
@@ -113,27 +88,40 @@ jobs:
|
|||||||
tags: huggingface/lerobot-gpu
|
tags: huggingface/lerobot-gpu
|
||||||
build-args: PYTHON_VERSION=${{ env.PYTHON_VERSION }}
|
build-args: PYTHON_VERSION=${{ env.PYTHON_VERSION }}
|
||||||
|
|
||||||
# - name: Post to a Slack channel
|
|
||||||
# id: slack
|
latest-cuda-dev:
|
||||||
# #uses: slackapi/slack-github-action@v1.25.0
|
name: GPU Dev
|
||||||
# uses: slackapi/slack-github-action@6c661ce58804a1a20f6dc5fbee7f0381b469e001
|
runs-on: ubuntu-latest
|
||||||
# with:
|
steps:
|
||||||
# # Slack channel id, channel name, or user id to post message.
|
- name: Cleanup disk
|
||||||
# # See also: https://api.slack.com/methods/chat.postMessage#channels
|
run: |
|
||||||
# channel-id: ${{ env.CI_SLACK_CHANNEL }}
|
sudo df -h
|
||||||
# # For posting a rich message using Block Kit
|
# sudo ls -l /usr/local/lib/
|
||||||
# payload: |
|
# sudo ls -l /usr/share/
|
||||||
# {
|
sudo du -sh /usr/local/lib/
|
||||||
# "text": "lerobot-gpu Docker Image build result: ${{ job.status }}\n${{ github.event.pull_request.html_url || github.event.head_commit.url }}",
|
sudo du -sh /usr/share/
|
||||||
# "blocks": [
|
sudo rm -rf /usr/local/lib/android
|
||||||
# {
|
sudo rm -rf /usr/share/dotnet
|
||||||
# "type": "section",
|
sudo du -sh /usr/local/lib/
|
||||||
# "text": {
|
sudo du -sh /usr/share/
|
||||||
# "type": "mrkdwn",
|
sudo df -h
|
||||||
# "text": "lerobot-gpu Docker Image build result: ${{ job.status }}\n${{ github.event.pull_request.html_url || github.event.head_commit.url }}"
|
- name: Set up Docker Buildx
|
||||||
# }
|
uses: docker/setup-buildx-action@v3
|
||||||
# }
|
|
||||||
# ]
|
- name: Check out code
|
||||||
# }
|
uses: actions/checkout@v4
|
||||||
# env:
|
|
||||||
# SLACK_BOT_TOKEN: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
|
- name: Login to DockerHub
|
||||||
|
uses: docker/login-action@v3
|
||||||
|
with:
|
||||||
|
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||||
|
password: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||||
|
|
||||||
|
- name: Build and Push GPU dev
|
||||||
|
uses: docker/build-push-action@v5
|
||||||
|
with:
|
||||||
|
context: .
|
||||||
|
file: ./docker/lerobot-gpu-dev/Dockerfile
|
||||||
|
push: true
|
||||||
|
tags: huggingface/lerobot-gpu:dev
|
||||||
|
build-args: PYTHON_VERSION=${{ env.PYTHON_VERSION }}
|
||||||
|
|||||||
32
.gitignore
vendored
32
.gitignore
vendored
@@ -2,12 +2,17 @@
|
|||||||
logs
|
logs
|
||||||
tmp
|
tmp
|
||||||
wandb
|
wandb
|
||||||
|
|
||||||
|
# Data
|
||||||
data
|
data
|
||||||
outputs
|
outputs
|
||||||
.vscode
|
|
||||||
rl
|
# Apple
|
||||||
.DS_Store
|
.DS_Store
|
||||||
|
|
||||||
|
# VS Code
|
||||||
|
.vscode
|
||||||
|
|
||||||
# HPC
|
# HPC
|
||||||
nautilus/*.yaml
|
nautilus/*.yaml
|
||||||
*.key
|
*.key
|
||||||
@@ -90,6 +95,7 @@ instance/
|
|||||||
docs/_build/
|
docs/_build/
|
||||||
|
|
||||||
# PyBuilder
|
# PyBuilder
|
||||||
|
.pybuilder/
|
||||||
target/
|
target/
|
||||||
|
|
||||||
# Jupyter Notebook
|
# Jupyter Notebook
|
||||||
@@ -102,13 +108,6 @@ ipython_config.py
|
|||||||
# pyenv
|
# pyenv
|
||||||
.python-version
|
.python-version
|
||||||
|
|
||||||
# pipenv
|
|
||||||
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
|
||||||
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
|
||||||
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
|
||||||
# install all needed dependencies.
|
|
||||||
#Pipfile.lock
|
|
||||||
|
|
||||||
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
||||||
__pypackages__/
|
__pypackages__/
|
||||||
|
|
||||||
@@ -119,6 +118,15 @@ celerybeat.pid
|
|||||||
# SageMath parsed files
|
# SageMath parsed files
|
||||||
*.sage.py
|
*.sage.py
|
||||||
|
|
||||||
|
# Environments
|
||||||
|
.env
|
||||||
|
.venv
|
||||||
|
env/
|
||||||
|
venv/
|
||||||
|
ENV/
|
||||||
|
env.bak/
|
||||||
|
venv.bak/
|
||||||
|
|
||||||
# Spyder project settings
|
# Spyder project settings
|
||||||
.spyderproject
|
.spyderproject
|
||||||
.spyproject
|
.spyproject
|
||||||
@@ -136,3 +144,9 @@ dmypy.json
|
|||||||
|
|
||||||
# Pyre type checker
|
# Pyre type checker
|
||||||
.pyre/
|
.pyre/
|
||||||
|
|
||||||
|
# pytype static type analyzer
|
||||||
|
.pytype/
|
||||||
|
|
||||||
|
# Cython debug symbols
|
||||||
|
cython_debug/
|
||||||
|
|||||||
57
Makefile
57
Makefile
@@ -20,15 +20,19 @@ build-gpu:
|
|||||||
test-end-to-end:
|
test-end-to-end:
|
||||||
${MAKE} test-act-ete-train
|
${MAKE} test-act-ete-train
|
||||||
${MAKE} test-act-ete-eval
|
${MAKE} test-act-ete-eval
|
||||||
|
${MAKE} test-act-ete-train-amp
|
||||||
|
${MAKE} test-act-ete-eval-amp
|
||||||
${MAKE} test-diffusion-ete-train
|
${MAKE} test-diffusion-ete-train
|
||||||
${MAKE} test-diffusion-ete-eval
|
${MAKE} test-diffusion-ete-eval
|
||||||
${MAKE} test-tdmpc-ete-train
|
${MAKE} test-tdmpc-ete-train
|
||||||
${MAKE} test-tdmpc-ete-eval
|
${MAKE} test-tdmpc-ete-eval
|
||||||
${MAKE} test-default-ete-eval
|
${MAKE} test-default-ete-eval
|
||||||
|
${MAKE} test-act-pusht-tutorial
|
||||||
|
|
||||||
test-act-ete-train:
|
test-act-ete-train:
|
||||||
python lerobot/scripts/train.py \
|
python lerobot/scripts/train.py \
|
||||||
policy=act \
|
policy=act \
|
||||||
|
policy.dim_model=64 \
|
||||||
env=aloha \
|
env=aloha \
|
||||||
wandb.enable=False \
|
wandb.enable=False \
|
||||||
training.offline_steps=2 \
|
training.offline_steps=2 \
|
||||||
@@ -51,9 +55,40 @@ test-act-ete-eval:
|
|||||||
env.episode_length=8 \
|
env.episode_length=8 \
|
||||||
device=cpu \
|
device=cpu \
|
||||||
|
|
||||||
|
test-act-ete-train-amp:
|
||||||
|
python lerobot/scripts/train.py \
|
||||||
|
policy=act \
|
||||||
|
policy.dim_model=64 \
|
||||||
|
env=aloha \
|
||||||
|
wandb.enable=False \
|
||||||
|
training.offline_steps=2 \
|
||||||
|
training.online_steps=0 \
|
||||||
|
eval.n_episodes=1 \
|
||||||
|
eval.batch_size=1 \
|
||||||
|
device=cpu \
|
||||||
|
training.save_model=true \
|
||||||
|
training.save_freq=2 \
|
||||||
|
policy.n_action_steps=20 \
|
||||||
|
policy.chunk_size=20 \
|
||||||
|
training.batch_size=2 \
|
||||||
|
hydra.run.dir=tests/outputs/act/ \
|
||||||
|
use_amp=true
|
||||||
|
|
||||||
|
test-act-ete-eval-amp:
|
||||||
|
python lerobot/scripts/eval.py \
|
||||||
|
-p tests/outputs/act/checkpoints/000002 \
|
||||||
|
eval.n_episodes=1 \
|
||||||
|
eval.batch_size=1 \
|
||||||
|
env.episode_length=8 \
|
||||||
|
device=cpu \
|
||||||
|
use_amp=true
|
||||||
|
|
||||||
test-diffusion-ete-train:
|
test-diffusion-ete-train:
|
||||||
python lerobot/scripts/train.py \
|
python lerobot/scripts/train.py \
|
||||||
policy=diffusion \
|
policy=diffusion \
|
||||||
|
policy.down_dims=\[64,128,256\] \
|
||||||
|
policy.diffusion_step_embed_dim=32 \
|
||||||
|
policy.num_inference_steps=10 \
|
||||||
env=pusht \
|
env=pusht \
|
||||||
wandb.enable=False \
|
wandb.enable=False \
|
||||||
training.offline_steps=2 \
|
training.offline_steps=2 \
|
||||||
@@ -74,6 +109,7 @@ test-diffusion-ete-eval:
|
|||||||
env.episode_length=8 \
|
env.episode_length=8 \
|
||||||
device=cpu \
|
device=cpu \
|
||||||
|
|
||||||
|
# TODO(alexander-soare): Restore online_steps to 2 when it is reinstated.
|
||||||
test-tdmpc-ete-train:
|
test-tdmpc-ete-train:
|
||||||
python lerobot/scripts/train.py \
|
python lerobot/scripts/train.py \
|
||||||
policy=tdmpc \
|
policy=tdmpc \
|
||||||
@@ -82,7 +118,7 @@ test-tdmpc-ete-train:
|
|||||||
dataset_repo_id=lerobot/xarm_lift_medium \
|
dataset_repo_id=lerobot/xarm_lift_medium \
|
||||||
wandb.enable=False \
|
wandb.enable=False \
|
||||||
training.offline_steps=2 \
|
training.offline_steps=2 \
|
||||||
training.online_steps=2 \
|
training.online_steps=0 \
|
||||||
eval.n_episodes=1 \
|
eval.n_episodes=1 \
|
||||||
eval.batch_size=1 \
|
eval.batch_size=1 \
|
||||||
env.episode_length=2 \
|
env.episode_length=2 \
|
||||||
@@ -100,7 +136,6 @@ test-tdmpc-ete-eval:
|
|||||||
env.episode_length=8 \
|
env.episode_length=8 \
|
||||||
device=cpu \
|
device=cpu \
|
||||||
|
|
||||||
|
|
||||||
test-default-ete-eval:
|
test-default-ete-eval:
|
||||||
python lerobot/scripts/eval.py \
|
python lerobot/scripts/eval.py \
|
||||||
--config lerobot/configs/default.yaml \
|
--config lerobot/configs/default.yaml \
|
||||||
@@ -108,3 +143,21 @@ test-default-ete-eval:
|
|||||||
eval.batch_size=1 \
|
eval.batch_size=1 \
|
||||||
env.episode_length=8 \
|
env.episode_length=8 \
|
||||||
device=cpu \
|
device=cpu \
|
||||||
|
|
||||||
|
|
||||||
|
test-act-pusht-tutorial:
|
||||||
|
cp examples/advanced/1_train_act_pusht/act_pusht.yaml lerobot/configs/policy/created_by_Makefile.yaml
|
||||||
|
python lerobot/scripts/train.py \
|
||||||
|
policy=created_by_Makefile.yaml \
|
||||||
|
env=pusht \
|
||||||
|
wandb.enable=False \
|
||||||
|
training.offline_steps=2 \
|
||||||
|
eval.n_episodes=1 \
|
||||||
|
eval.batch_size=1 \
|
||||||
|
env.episode_length=2 \
|
||||||
|
device=cpu \
|
||||||
|
training.save_model=true \
|
||||||
|
training.save_freq=2 \
|
||||||
|
training.batch_size=2 \
|
||||||
|
hydra.run.dir=tests/outputs/act_pusht/
|
||||||
|
rm lerobot/configs/policy/created_by_Makefile.yaml
|
||||||
|
|||||||
22
README.md
22
README.md
@@ -77,6 +77,10 @@ Install 🤗 LeRobot:
|
|||||||
pip install .
|
pip install .
|
||||||
```
|
```
|
||||||
|
|
||||||
|
> **NOTE:** Depending on your platform, If you encounter any build errors during this step
|
||||||
|
you may need to install `cmake` and `build-essential` for building some of our dependencies.
|
||||||
|
On linux: `sudo apt-get install cmake build-essential`
|
||||||
|
|
||||||
For simulations, 🤗 LeRobot comes with gymnasium environments that can be installed as extras:
|
For simulations, 🤗 LeRobot comes with gymnasium environments that can be installed as extras:
|
||||||
- [aloha](https://github.com/huggingface/gym-aloha)
|
- [aloha](https://github.com/huggingface/gym-aloha)
|
||||||
- [xarm](https://github.com/huggingface/gym-xarm)
|
- [xarm](https://github.com/huggingface/gym-xarm)
|
||||||
@@ -99,6 +103,7 @@ wandb login
|
|||||||
```
|
```
|
||||||
.
|
.
|
||||||
├── examples # contains demonstration examples, start here to learn about LeRobot
|
├── examples # contains demonstration examples, start here to learn about LeRobot
|
||||||
|
| └── advanced # contains even more examples for those who have mastered the basics
|
||||||
├── lerobot
|
├── lerobot
|
||||||
| ├── configs # contains hydra yaml files with all options that you can override in the command line
|
| ├── configs # contains hydra yaml files with all options that you can override in the command line
|
||||||
| | ├── default.yaml # selected by default, it loads pusht environment and diffusion policy
|
| | ├── default.yaml # selected by default, it loads pusht environment and diffusion policy
|
||||||
@@ -158,9 +163,10 @@ See `python lerobot/scripts/eval.py --help` for more instructions.
|
|||||||
|
|
||||||
### Train your own policy
|
### Train your own policy
|
||||||
|
|
||||||
Check out [example 3](./examples/3_train_policy.py) that illustrates how to start training a model.
|
Check out [example 3](./examples/3_train_policy.py) that illustrates how to train a model using our core library in python, and [example 4](./examples/4_train_policy_with_script.md) that shows how to use our training script from command line.
|
||||||
|
|
||||||
In general, you can use our training script to easily train any policy. Here is an example of training the ACT policy on trajectories collected by humans on the Aloha simulation environment for the insertion task:
|
In general, you can use our training script to easily train any policy. Here is an example of training the ACT policy on trajectories collected by humans on the Aloha simulation environment for the insertion task:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
python lerobot/scripts/train.py \
|
python lerobot/scripts/train.py \
|
||||||
policy=act \
|
policy=act \
|
||||||
@@ -184,7 +190,19 @@ A link to the wandb logs for the run will also show up in yellow in your termina
|
|||||||
|
|
||||||

|

|
||||||
|
|
||||||
Note: For efficiency, during training every checkpoint is evaluated on a low number of episodes. After training, you may want to re-evaluate your best checkpoints on more episodes or change the evaluation settings. See `python lerobot/scripts/eval.py --help` for more instructions.
|
Note: For efficiency, during training every checkpoint is evaluated on a low number of episodes. You may use `eval.n_episodes=500` to evaluate on more episodes than the default. Or, after training, you may want to re-evaluate your best checkpoints on more episodes or change the evaluation settings. See `python lerobot/scripts/eval.py --help` for more instructions.
|
||||||
|
|
||||||
|
#### Reproduce state-of-the-art (SOTA)
|
||||||
|
|
||||||
|
We have organized our configuration files (found under [`lerobot/configs`](./lerobot/configs)) such that they reproduce SOTA results from a given model variant in their respective original works. Simply running:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python lerobot/scripts/train.py policy=diffusion env=pusht
|
||||||
|
```
|
||||||
|
|
||||||
|
reproduces SOTA results for Diffusion Policy on the PushT task.
|
||||||
|
|
||||||
|
Pretrained policies, along with reproduction details, can be found under the "Models" section of https://huggingface.co/lerobot.
|
||||||
|
|
||||||
## Contribute
|
## Contribute
|
||||||
|
|
||||||
|
|||||||
40
docker/lerobot-gpu-dev/Dockerfile
Normal file
40
docker/lerobot-gpu-dev/Dockerfile
Normal file
@@ -0,0 +1,40 @@
|
|||||||
|
FROM nvidia/cuda:12.4.1-base-ubuntu22.04
|
||||||
|
|
||||||
|
# Configure image
|
||||||
|
ARG PYTHON_VERSION=3.10
|
||||||
|
ARG DEBIAN_FRONTEND=noninteractive
|
||||||
|
|
||||||
|
# Install apt dependencies
|
||||||
|
RUN apt-get update && apt-get install -y --no-install-recommends \
|
||||||
|
build-essential cmake \
|
||||||
|
git git-lfs openssh-client \
|
||||||
|
nano vim less util-linux \
|
||||||
|
htop atop nvtop \
|
||||||
|
sed gawk grep curl wget \
|
||||||
|
tcpdump sysstat screen tmux \
|
||||||
|
libglib2.0-0 libgl1-mesa-glx libegl1-mesa ffmpeg \
|
||||||
|
python${PYTHON_VERSION} python${PYTHON_VERSION}-venv \
|
||||||
|
&& apt-get clean && rm -rf /var/lib/apt/lists/*
|
||||||
|
|
||||||
|
# Install gh cli tool
|
||||||
|
RUN (type -p wget >/dev/null || (apt update && apt-get install wget -y)) \
|
||||||
|
&& mkdir -p -m 755 /etc/apt/keyrings \
|
||||||
|
&& wget -qO- https://cli.github.com/packages/githubcli-archive-keyring.gpg | tee /etc/apt/keyrings/githubcli-archive-keyring.gpg > /dev/null \
|
||||||
|
&& chmod go+r /etc/apt/keyrings/githubcli-archive-keyring.gpg \
|
||||||
|
&& echo "deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/githubcli-archive-keyring.gpg] https://cli.github.com/packages stable main" | tee /etc/apt/sources.list.d/github-cli.list > /dev/null \
|
||||||
|
&& apt update \
|
||||||
|
&& apt install gh -y \
|
||||||
|
&& apt clean && rm -rf /var/lib/apt/lists/*
|
||||||
|
|
||||||
|
# Setup `python`
|
||||||
|
RUN ln -s /usr/bin/python3 /usr/bin/python
|
||||||
|
|
||||||
|
# Install poetry
|
||||||
|
RUN curl -sSL https://install.python-poetry.org | python -
|
||||||
|
ENV PATH="/root/.local/bin:$PATH"
|
||||||
|
RUN echo 'if [ "$HOME" != "/root" ]; then ln -sf /root/.local/bin/poetry $HOME/.local/bin/poetry; fi' >> /root/.bashrc
|
||||||
|
RUN poetry config virtualenvs.create false
|
||||||
|
RUN poetry config virtualenvs.in-project true
|
||||||
|
|
||||||
|
# Set EGL as the rendering backend for MuJoCo
|
||||||
|
ENV MUJOCO_GL="egl"
|
||||||
@@ -4,18 +4,15 @@ FROM nvidia/cuda:12.4.1-base-ubuntu22.04
|
|||||||
ARG PYTHON_VERSION=3.10
|
ARG PYTHON_VERSION=3.10
|
||||||
ARG DEBIAN_FRONTEND=noninteractive
|
ARG DEBIAN_FRONTEND=noninteractive
|
||||||
|
|
||||||
|
|
||||||
# Install apt dependencies
|
# Install apt dependencies
|
||||||
RUN apt-get update && apt-get install -y --no-install-recommends \
|
RUN apt-get update && apt-get install -y --no-install-recommends \
|
||||||
build-essential cmake \
|
build-essential cmake \
|
||||||
git git-lfs openssh-client \
|
|
||||||
nano vim ffmpeg \
|
|
||||||
htop atop nvtop \
|
|
||||||
sed gawk grep curl wget \
|
|
||||||
tcpdump sysstat screen \
|
|
||||||
libglib2.0-0 libgl1-mesa-glx libegl1-mesa \
|
libglib2.0-0 libgl1-mesa-glx libegl1-mesa \
|
||||||
python${PYTHON_VERSION} python${PYTHON_VERSION}-venv \
|
python${PYTHON_VERSION} python${PYTHON_VERSION}-venv \
|
||||||
&& apt-get clean && rm -rf /var/lib/apt/lists/*
|
&& apt-get clean && rm -rf /var/lib/apt/lists/*
|
||||||
|
|
||||||
|
|
||||||
# Create virtual environment
|
# Create virtual environment
|
||||||
RUN ln -s /usr/bin/python${PYTHON_VERSION} /usr/bin/python
|
RUN ln -s /usr/bin/python${PYTHON_VERSION} /usr/bin/python
|
||||||
RUN python -m venv /opt/venv
|
RUN python -m venv /opt/venv
|
||||||
@@ -23,8 +20,7 @@ ENV PATH="/opt/venv/bin:$PATH"
|
|||||||
RUN echo "source /opt/venv/bin/activate" >> /root/.bashrc
|
RUN echo "source /opt/venv/bin/activate" >> /root/.bashrc
|
||||||
|
|
||||||
# Install LeRobot
|
# Install LeRobot
|
||||||
RUN git lfs install
|
COPY . /lerobot
|
||||||
RUN git clone https://github.com/huggingface/lerobot.git
|
|
||||||
WORKDIR /lerobot
|
WORKDIR /lerobot
|
||||||
RUN pip install --upgrade --no-cache-dir pip
|
RUN pip install --upgrade --no-cache-dir pip
|
||||||
RUN pip install --no-cache-dir ".[test, aloha, xarm, pusht]"
|
RUN pip install --no-cache-dir ".[test, aloha, xarm, pusht]"
|
||||||
|
|||||||
183
examples/4_train_policy_with_script.md
Normal file
183
examples/4_train_policy_with_script.md
Normal file
@@ -0,0 +1,183 @@
|
|||||||
|
This tutorial will explain the training script, how to use it, and particularly the use of Hydra to configure everything needed for the training run.
|
||||||
|
|
||||||
|
## The training script
|
||||||
|
|
||||||
|
LeRobot offers a training script at [`lerobot/scripts/train.py`](../../lerobot/scripts/train.py). At a high level it does the following:
|
||||||
|
|
||||||
|
- Loads a Hydra configuration file for the following steps (more on Hydra in a moment).
|
||||||
|
- Makes a simulation environment.
|
||||||
|
- Makes a dataset corresponding to that simulation environment.
|
||||||
|
- Makes a policy.
|
||||||
|
- Runs a standard training loop with forward pass, backward pass, optimization step, and occasional logging, evaluation (of the policy on the environment), and checkpointing.
|
||||||
|
|
||||||
|
## Basics of how we use Hydra
|
||||||
|
|
||||||
|
Explaining the ins and outs of [Hydra](https://hydra.cc/docs/intro/) is beyond the scope of this document, but here we'll share the main points you need to know.
|
||||||
|
|
||||||
|
First, `lerobot/configs` has a directory structure like this:
|
||||||
|
|
||||||
|
```
|
||||||
|
.
|
||||||
|
├── default.yaml
|
||||||
|
├── env
|
||||||
|
│ ├── aloha.yaml
|
||||||
|
│ ├── pusht.yaml
|
||||||
|
│ └── xarm.yaml
|
||||||
|
└── policy
|
||||||
|
├── act.yaml
|
||||||
|
├── diffusion.yaml
|
||||||
|
└── tdmpc.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
**_For brevity, in the rest of this document we'll drop the leading `lerobot/configs` path. So `default.yaml` really refers to `lerobot/configs/default.yaml`._**
|
||||||
|
|
||||||
|
When you run the training script with
|
||||||
|
|
||||||
|
```python
|
||||||
|
python lerobot/scripts/train.py
|
||||||
|
```
|
||||||
|
|
||||||
|
Hydra is set up to read `default.yaml` (via the `@hydra.main` decorator). If you take a look at the `@hydra.main`'s arguments you will see `config_path="../configs", config_name="default"`. At the top of `default.yaml`, is a `defaults` section which looks likes this:
|
||||||
|
|
||||||
|
```yaml
|
||||||
|
defaults:
|
||||||
|
- _self_
|
||||||
|
- env: pusht
|
||||||
|
- policy: diffusion
|
||||||
|
```
|
||||||
|
|
||||||
|
This logic tells Hydra to incorporate configuration parameters from `env/pusht.yaml` and `policy/diffusion.yaml`. _Note: Be aware of the order as any configuration parameters with the same name will be overidden. Thus, `default.yaml` is overriden by `env/pusht.yaml` which is overidden by `policy/diffusion.yaml`_.
|
||||||
|
|
||||||
|
Then, `default.yaml` also contains common configuration parameters such as `device: cuda` or `use_amp: false` (for enabling fp16 training). Some other parameters are set to `???` which indicates that they are expected to be set in additional yaml files. For instance, `training.offline_steps: ???` in `default.yaml` is set to `200000` in `diffusion.yaml`.
|
||||||
|
|
||||||
|
Thanks to this `defaults` section in `default.yaml`, if you want to train Diffusion Policy with PushT, you really only need to run:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python lerobot/scripts/train.py
|
||||||
|
```
|
||||||
|
|
||||||
|
However, you can be more explicit and launch the exact same Diffusion Policy training on PushT with:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python lerobot/scripts/train.py policy=diffusion env=pusht
|
||||||
|
```
|
||||||
|
|
||||||
|
This way of overriding defaults via the CLI is especially useful when you want to change the policy and/or environment. For instance, you can train ACT on the default Aloha environment with:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python lerobot/scripts/train.py policy=act env=aloha
|
||||||
|
```
|
||||||
|
|
||||||
|
There are two things to note here:
|
||||||
|
- Config overrides are passed as `param_name=param_value`.
|
||||||
|
- Here we have overridden the defaults section. `policy=act` tells Hydra to use `policy/act.yaml`, and `env=aloha` tells Hydra to use `env/pusht.yaml`.
|
||||||
|
|
||||||
|
_As an aside: we've set up all of our configurations so that they reproduce state-of-the-art results from papers in the literature._
|
||||||
|
|
||||||
|
## Overriding configuration parameters in the CLI
|
||||||
|
|
||||||
|
Now let's say that we want to train on a different task in the Aloha environment. If you look in `env/aloha.yaml` you will see something like:
|
||||||
|
|
||||||
|
```yaml
|
||||||
|
# lerobot/configs/env/aloha.yaml
|
||||||
|
env:
|
||||||
|
task: AlohaInsertion-v0
|
||||||
|
```
|
||||||
|
|
||||||
|
And if you look in `policy/act.yaml` you will see something like:
|
||||||
|
|
||||||
|
```yaml
|
||||||
|
# lerobot/configs/policy/act.yaml
|
||||||
|
dataset_repo_id: lerobot/aloha_sim_insertion_human
|
||||||
|
```
|
||||||
|
|
||||||
|
But our Aloha environment actually supports a cube transfer task as well. To train for this task, you could manually modify the two yaml configuration files respectively.
|
||||||
|
|
||||||
|
First, we'd need to switch to using the cube transfer task for the ALOHA environment.
|
||||||
|
|
||||||
|
```diff
|
||||||
|
# lerobot/configs/env/aloha.yaml
|
||||||
|
env:
|
||||||
|
- task: AlohaInsertion-v0
|
||||||
|
+ task: AlohaTransferCube-v0
|
||||||
|
```
|
||||||
|
|
||||||
|
Then, we'd also need to switch to using the cube transfer dataset.
|
||||||
|
|
||||||
|
```diff
|
||||||
|
# lerobot/configs/policy/act.yaml
|
||||||
|
-dataset_repo_id: lerobot/aloha_sim_insertion_human
|
||||||
|
+dataset_repo_id: lerobot/aloha_sim_transfer_cube_human
|
||||||
|
```
|
||||||
|
|
||||||
|
Then, you'd be able to run:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python lerobot/scripts/train.py policy=act env=aloha
|
||||||
|
```
|
||||||
|
|
||||||
|
and you'd be training and evaluating on the cube transfer task.
|
||||||
|
|
||||||
|
An alternative approach to editing the yaml configuration files, would be to override the defaults via the command line:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python lerobot/scripts/train.py \
|
||||||
|
policy=act \
|
||||||
|
dataset_repo_id=lerobot/aloha_sim_transfer_cube_human \
|
||||||
|
env=aloha \
|
||||||
|
env.task=AlohaTransferCube-v0
|
||||||
|
```
|
||||||
|
|
||||||
|
There's something new here. Notice the `.` delimiter used to traverse the configuration hierarchy. _But be aware that the `defaults` section is an exception. As you saw above, we didn't need to write `defaults.policy=act` in the CLI. `policy=act` was enough._
|
||||||
|
|
||||||
|
Putting all that knowledge together, here's the command that was used to train https://huggingface.co/lerobot/act_aloha_sim_transfer_cube_human.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python lerobot/scripts/train.py \
|
||||||
|
hydra.run.dir=outputs/train/act_aloha_sim_transfer_cube_human \
|
||||||
|
device=cuda
|
||||||
|
env=aloha \
|
||||||
|
env.task=AlohaTransferCube-v0 \
|
||||||
|
dataset_repo_id=lerobot/aloha_sim_transfer_cube_human \
|
||||||
|
policy=act \
|
||||||
|
training.eval_freq=10000 \
|
||||||
|
training.log_freq=250 \
|
||||||
|
training.offline_steps=100000 \
|
||||||
|
training.save_model=true \
|
||||||
|
training.save_freq=25000 \
|
||||||
|
eval.n_episodes=50 \
|
||||||
|
eval.batch_size=50 \
|
||||||
|
wandb.enable=false \
|
||||||
|
```
|
||||||
|
|
||||||
|
There's one new thing here: `hydra.run.dir=outputs/train/act_aloha_sim_transfer_cube_human`, which specifies where to save the training output.
|
||||||
|
|
||||||
|
## Using a configuration file not in `lerobot/configs`
|
||||||
|
|
||||||
|
Above we discusses the our training script is set up such that Hydra looks for `default.yaml` in `lerobot/configs`. But, if you have a configuration file elsewhere in your filesystem you may use:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python lerobot/scripts/train.py --config-dir PARENT/PATH --config-name FILE_NAME_WITHOUT_EXTENSION
|
||||||
|
```
|
||||||
|
|
||||||
|
Note: here we use regular syntax for providing CLI arguments to a Python script, not Hydra's `param_name=param_value` syntax.
|
||||||
|
|
||||||
|
As a concrete example, this becomes particularly handy when you have a folder with training outputs, and would like to re-run the training. For example, say you previously ran the training script with one of the earlier commands and have `outputs/train/my_experiment/checkpoints/pretrained_model/config.yaml`. This `config.yaml` file will have the full set of configuration parameters within it. To run the training with the same configuration again, do:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python lerobot/scripts/train.py --config-dir outputs/train/my_experiment/checkpoints/pretrained_model --config-name config
|
||||||
|
```
|
||||||
|
|
||||||
|
Note that you may still use the regular syntax for config parameter overrides (eg: by adding `training.offline_steps=200000`).
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
So far we've seen how to train Diffusion Policy for PushT and ACT for ALOHA. Now, what if we want to train ACT for PushT? Well, there are aspects of the ACT configuration that are specific to the ALOHA environments, and these happen to be incompatible with PushT. Therefore, trying to run the following will almost certainly raise an exception of sorts (eg: feature dimension mismatch):
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python lerobot/scripts/train.py policy=act env=pusht dataset_repo_id=lerobot/pusht
|
||||||
|
```
|
||||||
|
|
||||||
|
Please, head on over to our [advanced tutorial on adapting policy configuration to various environments](./advanced/train_act_pusht/train_act_pusht.md) to learn more.
|
||||||
|
|
||||||
|
Or in the meantime, happy coding! 🤗
|
||||||
87
examples/advanced/1_train_act_pusht/act_pusht.yaml
Normal file
87
examples/advanced/1_train_act_pusht/act_pusht.yaml
Normal file
@@ -0,0 +1,87 @@
|
|||||||
|
# @package _global_
|
||||||
|
|
||||||
|
# Change the seed to match what PushT eval uses
|
||||||
|
# (to avoid evaluating on seeds used for generating the training data).
|
||||||
|
seed: 100000
|
||||||
|
# Change the dataset repository to the PushT one.
|
||||||
|
dataset_repo_id: lerobot/pusht
|
||||||
|
|
||||||
|
override_dataset_stats:
|
||||||
|
observation.image:
|
||||||
|
# stats from imagenet, since we use a pretrained vision model
|
||||||
|
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
|
||||||
|
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
|
||||||
|
|
||||||
|
training:
|
||||||
|
offline_steps: 80000
|
||||||
|
online_steps: 0
|
||||||
|
eval_freq: 10000
|
||||||
|
save_freq: 100000
|
||||||
|
log_freq: 250
|
||||||
|
save_model: true
|
||||||
|
|
||||||
|
batch_size: 8
|
||||||
|
lr: 1e-5
|
||||||
|
lr_backbone: 1e-5
|
||||||
|
weight_decay: 1e-4
|
||||||
|
grad_clip_norm: 10
|
||||||
|
online_steps_between_rollouts: 1
|
||||||
|
|
||||||
|
delta_timestamps:
|
||||||
|
action: "[i / ${fps} for i in range(${policy.chunk_size})]"
|
||||||
|
|
||||||
|
eval:
|
||||||
|
n_episodes: 50
|
||||||
|
batch_size: 50
|
||||||
|
|
||||||
|
# See `configuration_act.py` for more details.
|
||||||
|
policy:
|
||||||
|
name: act
|
||||||
|
|
||||||
|
# Input / output structure.
|
||||||
|
n_obs_steps: 1
|
||||||
|
chunk_size: 100 # chunk_size
|
||||||
|
n_action_steps: 100
|
||||||
|
|
||||||
|
input_shapes:
|
||||||
|
observation.image: [3, 96, 96]
|
||||||
|
observation.state: ["${env.state_dim}"]
|
||||||
|
output_shapes:
|
||||||
|
action: ["${env.action_dim}"]
|
||||||
|
|
||||||
|
# Normalization / Unnormalization
|
||||||
|
input_normalization_modes:
|
||||||
|
observation.image: mean_std
|
||||||
|
# Use min_max normalization just because it's more standard.
|
||||||
|
observation.state: min_max
|
||||||
|
output_normalization_modes:
|
||||||
|
# Use min_max normalization just because it's more standard.
|
||||||
|
action: min_max
|
||||||
|
|
||||||
|
# Architecture.
|
||||||
|
# Vision backbone.
|
||||||
|
vision_backbone: resnet18
|
||||||
|
pretrained_backbone_weights: ResNet18_Weights.IMAGENET1K_V1
|
||||||
|
replace_final_stride_with_dilation: false
|
||||||
|
# Transformer layers.
|
||||||
|
pre_norm: false
|
||||||
|
dim_model: 512
|
||||||
|
n_heads: 8
|
||||||
|
dim_feedforward: 3200
|
||||||
|
feedforward_activation: relu
|
||||||
|
n_encoder_layers: 4
|
||||||
|
# Note: Although the original ACT implementation has 7 for `n_decoder_layers`, there is a bug in the code
|
||||||
|
# that means only the first layer is used. Here we match the original implementation by setting this to 1.
|
||||||
|
# See this issue https://github.com/tonyzhaozh/act/issues/25#issue-2258740521.
|
||||||
|
n_decoder_layers: 1
|
||||||
|
# VAE.
|
||||||
|
use_vae: true
|
||||||
|
latent_dim: 32
|
||||||
|
n_vae_encoder_layers: 4
|
||||||
|
|
||||||
|
# Inference.
|
||||||
|
temporal_ensemble_momentum: null
|
||||||
|
|
||||||
|
# Training and loss computation.
|
||||||
|
dropout: 0.1
|
||||||
|
kl_weight: 10.0
|
||||||
70
examples/advanced/1_train_act_pusht/train_act_pusht.md
Normal file
70
examples/advanced/1_train_act_pusht/train_act_pusht.md
Normal file
@@ -0,0 +1,70 @@
|
|||||||
|
In this tutorial we will learn how to adapt a policy configuration to be compatible with a new environment and dataset. As a concrete example, we will adapt the default configuration for ACT to be compatible with the PushT environment and dataset.
|
||||||
|
|
||||||
|
If you haven't already read our tutorial on the [training script and configuration tooling](../4_train_policy_with_script.md) please do so prior to tackling this tutorial.
|
||||||
|
|
||||||
|
Let's get started!
|
||||||
|
|
||||||
|
Suppose we want to train ACT for PushT. Well, there are aspects of the ACT configuration that are specific to the ALOHA environments, and these happen to be incompatible with PushT. Therefore, trying to run the following will almost certainly raise an exception of sorts (eg: feature dimension mismatch):
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python lerobot/scripts/train.py policy=act env=pusht dataset_repo_id=lerobot/pusht
|
||||||
|
```
|
||||||
|
|
||||||
|
We need to adapt the parameters of the ACT policy configuration to the PushT environment. The most important ones are the image keys.
|
||||||
|
|
||||||
|
ALOHA's datasets and environments typically use a variable number of cameras. In `lerobot/configs/policy/act.yaml` you may notice two relevant sections. Here we show you the minimal diff needed to adjust to PushT:
|
||||||
|
|
||||||
|
```diff
|
||||||
|
override_dataset_stats:
|
||||||
|
- observation.images.top:
|
||||||
|
+ observation.image:
|
||||||
|
# stats from imagenet, since we use a pretrained vision model
|
||||||
|
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
|
||||||
|
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
|
||||||
|
|
||||||
|
policy:
|
||||||
|
input_shapes:
|
||||||
|
- observation.images.top: [3, 480, 640]
|
||||||
|
+ observation.image: [3, 96, 96]
|
||||||
|
observation.state: ["${env.state_dim}"]
|
||||||
|
output_shapes:
|
||||||
|
action: ["${env.action_dim}"]
|
||||||
|
|
||||||
|
input_normalization_modes:
|
||||||
|
- observation.images.top: mean_std
|
||||||
|
+ observation.image: mean_std
|
||||||
|
observation.state: min_max
|
||||||
|
output_normalization_modes:
|
||||||
|
action: min_max
|
||||||
|
```
|
||||||
|
|
||||||
|
Here we've accounted for the following:
|
||||||
|
- PushT uses "observation.image" for its image key.
|
||||||
|
- PushT provides smaller images.
|
||||||
|
|
||||||
|
_Side note: technically we could override these via the CLI, but with many changes it gets a bit messy, and we also have a bit of a challenge in that we're using `.` in our observation keys which is treated by Hydra as a hierarchical separator_.
|
||||||
|
|
||||||
|
For your convenience, we provide [`act_pusht.yaml`](./act_pusht.yaml) in this directory. It contains the diff above, plus some other (optional) ones that are explained within. Please copy it into `lerobot/configs/policy` with:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
cp examples/advanced/1_train_act_pusht/act_pusht.yaml lerobot/configs/policy/act_pusht.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
(remember from a [previous tutorial](../4_train_policy_with_script.md) that Hydra will look in the `lerobot/configs` directory). Now try running the following.
|
||||||
|
|
||||||
|
<!-- Note to contributor: are you changing this command? Note that it's tested in `Makefile`, so change it there too! -->
|
||||||
|
```bash
|
||||||
|
python lerobot/scripts/train.py policy=act_pusht env=pusht
|
||||||
|
```
|
||||||
|
|
||||||
|
Notice that this is much the same as the command that failed at the start of the tutorial, only:
|
||||||
|
- Now we are using `policy=act_pusht` to point to our new configuration file.
|
||||||
|
- We can drop `dataset_repo_id=lerobot/pusht` as the change is incorporated in our new configuration file.
|
||||||
|
|
||||||
|
Hurrah! You're now training ACT for the PushT environment.
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
The bottom line of this tutorial is that when training policies for different environments and datasets you will need to understand what parts of the policy configuration are specific to those and make changes accordingly.
|
||||||
|
|
||||||
|
Happy coding! 🤗
|
||||||
@@ -16,15 +16,12 @@
|
|||||||
import logging
|
import logging
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from omegaconf import OmegaConf
|
from omegaconf import DictConfig, OmegaConf
|
||||||
|
|
||||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
||||||
|
|
||||||
|
|
||||||
def make_dataset(
|
def make_dataset(cfg: DictConfig, split="train") -> LeRobotDataset:
|
||||||
cfg,
|
|
||||||
split="train",
|
|
||||||
):
|
|
||||||
if cfg.env.name not in cfg.dataset_repo_id:
|
if cfg.env.name not in cfg.dataset_repo_id:
|
||||||
logging.warning(
|
logging.warning(
|
||||||
f"There might be a mismatch between your training dataset ({cfg.dataset_repo_id=}) and your "
|
f"There might be a mismatch between your training dataset ({cfg.dataset_repo_id=}) and your "
|
||||||
@@ -43,6 +40,7 @@ def make_dataset(
|
|||||||
cfg.dataset_repo_id,
|
cfg.dataset_repo_id,
|
||||||
split=split,
|
split=split,
|
||||||
delta_timestamps=delta_timestamps,
|
delta_timestamps=delta_timestamps,
|
||||||
|
n_end_keyframes_dropped=eval(cfg.training.get("n_end_keyframes_dropped", "0")),
|
||||||
)
|
)
|
||||||
|
|
||||||
if cfg.get("override_dataset_stats"):
|
if cfg.get("override_dataset_stats"):
|
||||||
|
|||||||
@@ -44,7 +44,26 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
|||||||
split: str = "train",
|
split: str = "train",
|
||||||
transform: callable = None,
|
transform: callable = None,
|
||||||
delta_timestamps: dict[list[float]] | None = None,
|
delta_timestamps: dict[list[float]] | None = None,
|
||||||
|
n_end_keyframes_dropped: int = 0,
|
||||||
):
|
):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
delta_timestamps: A dictionary mapping lists of relative times (Δt) to data keys. When a frame is
|
||||||
|
sampled from the underlying dataset, we treat it as a "keyframe" and load multiple frames
|
||||||
|
according to the list of Δt's. For example {"action": [-0.05, 0, 0.05]} indicates
|
||||||
|
that we want to load the current keyframe's action, as well as one from 50 ms ago, and one
|
||||||
|
50 ms into the future. The action key then contains a (3, action_dim) tensor (whereas without
|
||||||
|
`delta_timestamps` there would just be a (action_dim,) tensor. When the Δt's demand that
|
||||||
|
frames outside of an episode boundary are retrieved, a copy padding strategy is used. See
|
||||||
|
`load_previous_and_future_frames` for more details.
|
||||||
|
n_end_keyframes_dropped: Don't sample the last n items in each episode. This option is handy when
|
||||||
|
used in combination with `delta_timestamps` when, for example, the Δt's demand multiple future
|
||||||
|
frames, but we want to avoid introducing too much copy padding into the data distribution.
|
||||||
|
For example if `delta_timestamps = {"action": [0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30]}`
|
||||||
|
and we sample the last frame in the episode, we would end up padding with 6 frames worth of
|
||||||
|
copies. Instead, we might want no padding (in which case we need n=6), or we might be okay
|
||||||
|
with up to 2 frames of padding (in which case we need n=4).
|
||||||
|
"""
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.repo_id = repo_id
|
self.repo_id = repo_id
|
||||||
self.version = version
|
self.version = version
|
||||||
@@ -65,6 +84,12 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
|||||||
self.info = load_info(repo_id, version, root)
|
self.info = load_info(repo_id, version, root)
|
||||||
if self.video:
|
if self.video:
|
||||||
self.videos_dir = load_videos(repo_id, version, root)
|
self.videos_dir = load_videos(repo_id, version, root)
|
||||||
|
# If `n_end_keyframes_dropped == 0`, `self.index` contains exactly the indices of the hf_dataset. If
|
||||||
|
# `n_end_keyframes_dropped > 0`, `self.index` contains a subset of the indices of the hf_dataset where
|
||||||
|
# we drop those indices pertaining to the last n frames of each episode.
|
||||||
|
self.index = []
|
||||||
|
for from_ix, to_ix in zip(*self.episode_data_index.values(), strict=True):
|
||||||
|
self.index.extend(list(range(from_ix, to_ix - n_end_keyframes_dropped)))
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def fps(self) -> int:
|
def fps(self) -> int:
|
||||||
@@ -107,8 +132,11 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
|||||||
|
|
||||||
@property
|
@property
|
||||||
def num_samples(self) -> int:
|
def num_samples(self) -> int:
|
||||||
"""Number of samples/frames."""
|
"""Number of possible samples in the dataset.
|
||||||
return len(self.hf_dataset)
|
|
||||||
|
This is equivalent to the number of frames in the dataset minus n_end_keyframes_dropped.
|
||||||
|
"""
|
||||||
|
return len(self.index)
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def num_episodes(self) -> int:
|
def num_episodes(self) -> int:
|
||||||
@@ -128,7 +156,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
|||||||
return self.num_samples
|
return self.num_samples
|
||||||
|
|
||||||
def __getitem__(self, idx):
|
def __getitem__(self, idx):
|
||||||
item = self.hf_dataset[idx]
|
item = self.hf_dataset[self.index[idx]]
|
||||||
|
|
||||||
if self.delta_timestamps is not None:
|
if self.delta_timestamps is not None:
|
||||||
item = load_previous_and_future_frames(
|
item = load_previous_and_future_frames(
|
||||||
|
|||||||
@@ -304,7 +304,11 @@ class DiffusionModel(nn.Module):
|
|||||||
loss = F.mse_loss(pred, target, reduction="none")
|
loss = F.mse_loss(pred, target, reduction="none")
|
||||||
|
|
||||||
# Mask loss wherever the action is padded with copies (edges of the dataset trajectory).
|
# Mask loss wherever the action is padded with copies (edges of the dataset trajectory).
|
||||||
if self.config.do_mask_loss_for_padding and "action_is_pad" in batch:
|
if self.config.do_mask_loss_for_padding:
|
||||||
|
if "action_is_pad" not in batch:
|
||||||
|
raise ValueError(
|
||||||
|
f"You need to provide 'action_is_pad' in the batch when {self.config.do_mask_loss_for_padding=}."
|
||||||
|
)
|
||||||
in_episode_bound = ~batch["action_is_pad"]
|
in_episode_bound = ~batch["action_is_pad"]
|
||||||
loss = loss * in_episode_bound.unsqueeze(-1)
|
loss = loss * in_episode_bound.unsqueeze(-1)
|
||||||
|
|
||||||
|
|||||||
@@ -10,6 +10,9 @@ hydra:
|
|||||||
name: default
|
name: default
|
||||||
|
|
||||||
device: cuda # cpu
|
device: cuda # cpu
|
||||||
|
# `use_amp` determines whether to use Automatic Mixed Precision (AMP) for training and evaluation. With AMP,
|
||||||
|
# automatic gradient scaling is used.
|
||||||
|
use_amp: false
|
||||||
# `seed` is used for training (eg: model initialization, dataset shuffling)
|
# `seed` is used for training (eg: model initialization, dataset shuffling)
|
||||||
# AND for the evaluation environments.
|
# AND for the evaluation environments.
|
||||||
seed: ???
|
seed: ???
|
||||||
@@ -17,6 +20,7 @@ dataset_repo_id: lerobot/pusht
|
|||||||
|
|
||||||
training:
|
training:
|
||||||
offline_steps: ???
|
offline_steps: ???
|
||||||
|
# NOTE: `online_steps` is not implemented yet. It's here as a placeholder.
|
||||||
online_steps: ???
|
online_steps: ???
|
||||||
online_steps_between_rollouts: ???
|
online_steps_between_rollouts: ???
|
||||||
online_sampling_ratio: 0.5
|
online_sampling_ratio: 0.5
|
||||||
|
|||||||
@@ -39,11 +39,21 @@ training:
|
|||||||
adam_weight_decay: 1.0e-6
|
adam_weight_decay: 1.0e-6
|
||||||
online_steps_between_rollouts: 1
|
online_steps_between_rollouts: 1
|
||||||
|
|
||||||
|
# For each training batch we want (consider n_obs_steps=2, horizon=16):
|
||||||
|
# t | -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
|
||||||
|
# action | a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a
|
||||||
|
# observation | o, o, , , , , , , , , , , , , ,
|
||||||
|
# Note that at rollout we only use some of the actions (consider n_action_steps=8):
|
||||||
|
# action used | , a, a, a, a, a, a, a, a, , , , , , ,
|
||||||
delta_timestamps:
|
delta_timestamps:
|
||||||
observation.image: "[i / ${fps} for i in range(1 - ${policy.n_obs_steps}, 1)]"
|
observation.image: "[i / ${fps} for i in range(1 - ${policy.n_obs_steps}, 1)]"
|
||||||
observation.state: "[i / ${fps} for i in range(1 - ${policy.n_obs_steps}, 1)]"
|
observation.state: "[i / ${fps} for i in range(1 - ${policy.n_obs_steps}, 1)]"
|
||||||
action: "[i / ${fps} for i in range(1 - ${policy.n_obs_steps}, 1 - ${policy.n_obs_steps} + ${policy.horizon})]"
|
action: "[i / ${fps} for i in range(1 - ${policy.n_obs_steps}, 1 - ${policy.n_obs_steps} + ${policy.horizon})]"
|
||||||
|
|
||||||
|
# The original implementation doesn't sample keyframes for the last 7 steps. This is because, as described
|
||||||
|
# above, the last 7 actions from the diffusion model are not used.
|
||||||
|
n_end_keyframes_dropped: ${policy.horizon} - ${policy.n_action_steps} - ${policy.n_obs_steps} + 1
|
||||||
|
|
||||||
eval:
|
eval:
|
||||||
n_episodes: 50
|
n_episodes: 50
|
||||||
batch_size: 50
|
batch_size: 50
|
||||||
|
|||||||
@@ -5,7 +5,8 @@ dataset_repo_id: lerobot/xarm_lift_medium
|
|||||||
|
|
||||||
training:
|
training:
|
||||||
offline_steps: 25000
|
offline_steps: 25000
|
||||||
online_steps: 25000
|
# TODO(alexander-soare): uncomment when online training gets reinstated
|
||||||
|
online_steps: 0 # 25000 not implemented yet
|
||||||
eval_freq: 5000
|
eval_freq: 5000
|
||||||
online_steps_between_rollouts: 1
|
online_steps_between_rollouts: 1
|
||||||
online_sampling_ratio: 0.5
|
online_sampling_ratio: 0.5
|
||||||
|
|||||||
@@ -46,6 +46,7 @@ import json
|
|||||||
import logging
|
import logging
|
||||||
import threading
|
import threading
|
||||||
import time
|
import time
|
||||||
|
from contextlib import nullcontext
|
||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
from datetime import datetime as dt
|
from datetime import datetime as dt
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
@@ -520,7 +521,7 @@ def eval(
|
|||||||
raise NotImplementedError()
|
raise NotImplementedError()
|
||||||
|
|
||||||
# Check device is available
|
# Check device is available
|
||||||
get_safe_torch_device(hydra_cfg.device, log=True)
|
device = get_safe_torch_device(hydra_cfg.device, log=True)
|
||||||
|
|
||||||
torch.backends.cudnn.benchmark = True
|
torch.backends.cudnn.benchmark = True
|
||||||
torch.backends.cuda.matmul.allow_tf32 = True
|
torch.backends.cuda.matmul.allow_tf32 = True
|
||||||
@@ -539,16 +540,17 @@ def eval(
|
|||||||
policy = make_policy(hydra_cfg=hydra_cfg, dataset_stats=make_dataset(hydra_cfg).stats)
|
policy = make_policy(hydra_cfg=hydra_cfg, dataset_stats=make_dataset(hydra_cfg).stats)
|
||||||
policy.eval()
|
policy.eval()
|
||||||
|
|
||||||
info = eval_policy(
|
with torch.no_grad(), torch.autocast(device_type=device.type) if hydra_cfg.use_amp else nullcontext():
|
||||||
env,
|
info = eval_policy(
|
||||||
policy,
|
env,
|
||||||
hydra_cfg.eval.n_episodes,
|
policy,
|
||||||
max_episodes_rendered=10,
|
hydra_cfg.eval.n_episodes,
|
||||||
video_dir=Path(out_dir) / "eval",
|
max_episodes_rendered=10,
|
||||||
start_seed=hydra_cfg.seed,
|
video_dir=Path(out_dir) / "eval",
|
||||||
enable_progbar=True,
|
start_seed=hydra_cfg.seed,
|
||||||
enable_inner_progbar=True,
|
enable_progbar=True,
|
||||||
)
|
enable_inner_progbar=True,
|
||||||
|
)
|
||||||
print(info["aggregated"])
|
print(info["aggregated"])
|
||||||
|
|
||||||
# Save info
|
# Save info
|
||||||
|
|||||||
@@ -15,15 +15,14 @@
|
|||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
import logging
|
import logging
|
||||||
import time
|
import time
|
||||||
|
from contextlib import nullcontext
|
||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
import datasets
|
|
||||||
import hydra
|
import hydra
|
||||||
import torch
|
import torch
|
||||||
from datasets import concatenate_datasets
|
|
||||||
from datasets.utils import disable_progress_bars, enable_progress_bars
|
|
||||||
from omegaconf import DictConfig
|
from omegaconf import DictConfig
|
||||||
|
from torch.cuda.amp import GradScaler
|
||||||
|
|
||||||
from lerobot.common.datasets.factory import make_dataset
|
from lerobot.common.datasets.factory import make_dataset
|
||||||
from lerobot.common.datasets.utils import cycle
|
from lerobot.common.datasets.utils import cycle
|
||||||
@@ -31,6 +30,7 @@ from lerobot.common.envs.factory import make_env
|
|||||||
from lerobot.common.logger import Logger, log_output_dir
|
from lerobot.common.logger import Logger, log_output_dir
|
||||||
from lerobot.common.policies.factory import make_policy
|
from lerobot.common.policies.factory import make_policy
|
||||||
from lerobot.common.policies.policy_protocol import PolicyWithUpdate
|
from lerobot.common.policies.policy_protocol import PolicyWithUpdate
|
||||||
|
from lerobot.common.policies.utils import get_device_from_parameters
|
||||||
from lerobot.common.utils.utils import (
|
from lerobot.common.utils.utils import (
|
||||||
format_big_number,
|
format_big_number,
|
||||||
get_safe_torch_device,
|
get_safe_torch_device,
|
||||||
@@ -69,7 +69,6 @@ def make_optimizer_and_scheduler(cfg, policy):
|
|||||||
cfg.training.adam_eps,
|
cfg.training.adam_eps,
|
||||||
cfg.training.adam_weight_decay,
|
cfg.training.adam_weight_decay,
|
||||||
)
|
)
|
||||||
assert cfg.training.online_steps == 0, "Diffusion Policy does not handle online training."
|
|
||||||
from diffusers.optimization import get_scheduler
|
from diffusers.optimization import get_scheduler
|
||||||
|
|
||||||
lr_scheduler = get_scheduler(
|
lr_scheduler = get_scheduler(
|
||||||
@@ -87,21 +86,40 @@ def make_optimizer_and_scheduler(cfg, policy):
|
|||||||
return optimizer, lr_scheduler
|
return optimizer, lr_scheduler
|
||||||
|
|
||||||
|
|
||||||
def update_policy(policy, batch, optimizer, grad_clip_norm, lr_scheduler=None):
|
def update_policy(
|
||||||
|
policy,
|
||||||
|
batch,
|
||||||
|
optimizer,
|
||||||
|
grad_clip_norm,
|
||||||
|
grad_scaler: GradScaler,
|
||||||
|
lr_scheduler=None,
|
||||||
|
use_amp: bool = False,
|
||||||
|
):
|
||||||
"""Returns a dictionary of items for logging."""
|
"""Returns a dictionary of items for logging."""
|
||||||
start_time = time.time()
|
start_time = time.perf_counter()
|
||||||
|
device = get_device_from_parameters(policy)
|
||||||
policy.train()
|
policy.train()
|
||||||
output_dict = policy.forward(batch)
|
with torch.autocast(device_type=device.type) if use_amp else nullcontext():
|
||||||
# TODO(rcadene): policy.unnormalize_outputs(out_dict)
|
output_dict = policy.forward(batch)
|
||||||
loss = output_dict["loss"]
|
# TODO(rcadene): policy.unnormalize_outputs(out_dict)
|
||||||
loss.backward()
|
loss = output_dict["loss"]
|
||||||
|
grad_scaler.scale(loss).backward()
|
||||||
|
|
||||||
|
# Unscale the graident of the optimzer's assigned params in-place **prior to gradient clipping**.
|
||||||
|
grad_scaler.unscale_(optimizer)
|
||||||
|
|
||||||
grad_norm = torch.nn.utils.clip_grad_norm_(
|
grad_norm = torch.nn.utils.clip_grad_norm_(
|
||||||
policy.parameters(),
|
policy.parameters(),
|
||||||
grad_clip_norm,
|
grad_clip_norm,
|
||||||
error_if_nonfinite=False,
|
error_if_nonfinite=False,
|
||||||
)
|
)
|
||||||
|
|
||||||
optimizer.step()
|
# Optimizer's gradients are already unscaled, so scaler.step does not unscale them,
|
||||||
|
# although it still skips optimizer.step() if the gradients contain infs or NaNs.
|
||||||
|
grad_scaler.step(optimizer)
|
||||||
|
# Updates the scale for next iteration.
|
||||||
|
grad_scaler.update()
|
||||||
|
|
||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
|
|
||||||
if lr_scheduler is not None:
|
if lr_scheduler is not None:
|
||||||
@@ -115,7 +133,7 @@ def update_policy(policy, batch, optimizer, grad_clip_norm, lr_scheduler=None):
|
|||||||
"loss": loss.item(),
|
"loss": loss.item(),
|
||||||
"grad_norm": float(grad_norm),
|
"grad_norm": float(grad_norm),
|
||||||
"lr": optimizer.param_groups[0]["lr"],
|
"lr": optimizer.param_groups[0]["lr"],
|
||||||
"update_s": time.time() - start_time,
|
"update_s": time.perf_counter() - start_time,
|
||||||
**{k: v for k, v in output_dict.items() if k != "loss"},
|
**{k: v for k, v in output_dict.items() if k != "loss"},
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -211,103 +229,6 @@ def log_eval_info(logger, info, step, cfg, dataset, is_offline):
|
|||||||
logger.log_dict(info, step, mode="eval")
|
logger.log_dict(info, step, mode="eval")
|
||||||
|
|
||||||
|
|
||||||
def calculate_online_sample_weight(n_off: int, n_on: int, pc_on: float):
|
|
||||||
"""
|
|
||||||
Calculate the sampling weight to be assigned to samples so that a specified percentage of the batch comes from online dataset (on average).
|
|
||||||
|
|
||||||
Parameters:
|
|
||||||
- n_off (int): Number of offline samples, each with a sampling weight of 1.
|
|
||||||
- n_on (int): Number of online samples.
|
|
||||||
- pc_on (float): Desired percentage of online samples in decimal form (e.g., 50% as 0.5).
|
|
||||||
|
|
||||||
The total weight of offline samples is n_off * 1.0.
|
|
||||||
The total weight of offline samples is n_on * w.
|
|
||||||
The total combined weight of all samples is n_off + n_on * w.
|
|
||||||
The fraction of the weight that is online is n_on * w / (n_off + n_on * w).
|
|
||||||
We want this fraction to equal pc_on, so we set up the equation n_on * w / (n_off + n_on * w) = pc_on.
|
|
||||||
The solution is w = - (n_off * pc_on) / (n_on * (pc_on - 1))
|
|
||||||
"""
|
|
||||||
assert 0.0 <= pc_on <= 1.0
|
|
||||||
return -(n_off * pc_on) / (n_on * (pc_on - 1))
|
|
||||||
|
|
||||||
|
|
||||||
def add_episodes_inplace(
|
|
||||||
online_dataset: torch.utils.data.Dataset,
|
|
||||||
concat_dataset: torch.utils.data.ConcatDataset,
|
|
||||||
sampler: torch.utils.data.WeightedRandomSampler,
|
|
||||||
hf_dataset: datasets.Dataset,
|
|
||||||
episode_data_index: dict[str, torch.Tensor],
|
|
||||||
pc_online_samples: float,
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
Modifies the online_dataset, concat_dataset, and sampler in place by integrating
|
|
||||||
new episodes from hf_dataset into the online_dataset, updating the concatenated
|
|
||||||
dataset's structure and adjusting the sampling strategy based on the specified
|
|
||||||
percentage of online samples.
|
|
||||||
|
|
||||||
Parameters:
|
|
||||||
- online_dataset (torch.utils.data.Dataset): The existing online dataset to be updated.
|
|
||||||
- concat_dataset (torch.utils.data.ConcatDataset): The concatenated dataset that combines
|
|
||||||
offline and online datasets, used for sampling purposes.
|
|
||||||
- sampler (torch.utils.data.WeightedRandomSampler): A sampler that will be updated to
|
|
||||||
reflect changes in the dataset sizes and specified sampling weights.
|
|
||||||
- hf_dataset (datasets.Dataset): A Hugging Face dataset containing the new episodes to be added.
|
|
||||||
- episode_data_index (dict): A dictionary containing two keys ("from" and "to") associated to dataset indices.
|
|
||||||
They indicate the start index and end index of each episode in the dataset.
|
|
||||||
- pc_online_samples (float): The target percentage of samples that should come from
|
|
||||||
the online dataset during sampling operations.
|
|
||||||
|
|
||||||
Raises:
|
|
||||||
- AssertionError: If the first episode_id or index in hf_dataset is not 0
|
|
||||||
"""
|
|
||||||
first_episode_idx = hf_dataset.select_columns("episode_index")[0]["episode_index"].item()
|
|
||||||
last_episode_idx = hf_dataset.select_columns("episode_index")[-1]["episode_index"].item()
|
|
||||||
first_index = hf_dataset.select_columns("index")[0]["index"].item()
|
|
||||||
last_index = hf_dataset.select_columns("index")[-1]["index"].item()
|
|
||||||
# sanity check
|
|
||||||
assert first_episode_idx == 0, f"{first_episode_idx=} is not 0"
|
|
||||||
assert first_index == 0, f"{first_index=} is not 0"
|
|
||||||
assert first_index == episode_data_index["from"][first_episode_idx].item()
|
|
||||||
assert last_index == episode_data_index["to"][last_episode_idx].item() - 1
|
|
||||||
|
|
||||||
if len(online_dataset) == 0:
|
|
||||||
# initialize online dataset
|
|
||||||
online_dataset.hf_dataset = hf_dataset
|
|
||||||
online_dataset.episode_data_index = episode_data_index
|
|
||||||
else:
|
|
||||||
# get the starting indices of the new episodes and frames to be added
|
|
||||||
start_episode_idx = last_episode_idx + 1
|
|
||||||
start_index = last_index + 1
|
|
||||||
|
|
||||||
def shift_indices(episode_index, index):
|
|
||||||
# note: we dont shift "frame_index" since it represents the index of the frame in the episode it belongs to
|
|
||||||
example = {"episode_index": episode_index + start_episode_idx, "index": index + start_index}
|
|
||||||
return example
|
|
||||||
|
|
||||||
disable_progress_bars() # map has a tqdm progress bar
|
|
||||||
hf_dataset = hf_dataset.map(shift_indices, input_columns=["episode_index", "index"])
|
|
||||||
enable_progress_bars()
|
|
||||||
|
|
||||||
episode_data_index["from"] += start_index
|
|
||||||
episode_data_index["to"] += start_index
|
|
||||||
|
|
||||||
# extend online dataset
|
|
||||||
online_dataset.hf_dataset = concatenate_datasets([online_dataset.hf_dataset, hf_dataset])
|
|
||||||
|
|
||||||
# update the concatenated dataset length used during sampling
|
|
||||||
concat_dataset.cumulative_sizes = concat_dataset.cumsum(concat_dataset.datasets)
|
|
||||||
|
|
||||||
# update the sampling weights for each frame so that online frames get sampled a certain percentage of times
|
|
||||||
len_online = len(online_dataset)
|
|
||||||
len_offline = len(concat_dataset) - len_online
|
|
||||||
weight_offline = 1.0
|
|
||||||
weight_online = calculate_online_sample_weight(len_offline, len_online, pc_online_samples)
|
|
||||||
sampler.weights = torch.tensor([weight_offline] * len_offline + [weight_online] * len(online_dataset))
|
|
||||||
|
|
||||||
# update the total number of samples used during sampling
|
|
||||||
sampler.num_samples = len(concat_dataset)
|
|
||||||
|
|
||||||
|
|
||||||
def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = None):
|
def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = None):
|
||||||
if out_dir is None:
|
if out_dir is None:
|
||||||
raise NotImplementedError()
|
raise NotImplementedError()
|
||||||
@@ -316,11 +237,11 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
|
|||||||
|
|
||||||
init_logging()
|
init_logging()
|
||||||
|
|
||||||
if cfg.training.online_steps > 0 and cfg.eval.batch_size > 1:
|
if cfg.training.online_steps > 0:
|
||||||
logging.warning("eval.batch_size > 1 not supported for online training steps")
|
raise NotImplementedError("Online training is not implemented yet.")
|
||||||
|
|
||||||
# Check device is available
|
# Check device is available
|
||||||
get_safe_torch_device(cfg.device, log=True)
|
device = get_safe_torch_device(cfg.device, log=True)
|
||||||
|
|
||||||
torch.backends.cudnn.benchmark = True
|
torch.backends.cudnn.benchmark = True
|
||||||
torch.backends.cuda.matmul.allow_tf32 = True
|
torch.backends.cuda.matmul.allow_tf32 = True
|
||||||
@@ -338,6 +259,7 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
|
|||||||
# Create optimizer and scheduler
|
# Create optimizer and scheduler
|
||||||
# Temporary hack to move optimizer out of policy
|
# Temporary hack to move optimizer out of policy
|
||||||
optimizer, lr_scheduler = make_optimizer_and_scheduler(cfg, policy)
|
optimizer, lr_scheduler = make_optimizer_and_scheduler(cfg, policy)
|
||||||
|
grad_scaler = GradScaler(enabled=cfg.use_amp)
|
||||||
|
|
||||||
num_learnable_params = sum(p.numel() for p in policy.parameters() if p.requires_grad)
|
num_learnable_params = sum(p.numel() for p in policy.parameters() if p.requires_grad)
|
||||||
num_total_params = sum(p.numel() for p in policy.parameters())
|
num_total_params = sum(p.numel() for p in policy.parameters())
|
||||||
@@ -358,14 +280,15 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
|
|||||||
def evaluate_and_checkpoint_if_needed(step):
|
def evaluate_and_checkpoint_if_needed(step):
|
||||||
if step % cfg.training.eval_freq == 0:
|
if step % cfg.training.eval_freq == 0:
|
||||||
logging.info(f"Eval policy at step {step}")
|
logging.info(f"Eval policy at step {step}")
|
||||||
eval_info = eval_policy(
|
with torch.no_grad(), torch.autocast(device_type=device.type) if cfg.use_amp else nullcontext():
|
||||||
eval_env,
|
eval_info = eval_policy(
|
||||||
policy,
|
eval_env,
|
||||||
cfg.eval.n_episodes,
|
policy,
|
||||||
video_dir=Path(out_dir) / "eval",
|
cfg.eval.n_episodes,
|
||||||
max_episodes_rendered=4,
|
video_dir=Path(out_dir) / "eval",
|
||||||
start_seed=cfg.seed,
|
max_episodes_rendered=4,
|
||||||
)
|
start_seed=cfg.seed,
|
||||||
|
)
|
||||||
log_eval_info(logger, eval_info["aggregated"], step, cfg, offline_dataset, is_offline)
|
log_eval_info(logger, eval_info["aggregated"], step, cfg, offline_dataset, is_offline)
|
||||||
if cfg.wandb.enable:
|
if cfg.wandb.enable:
|
||||||
logger.log_video(eval_info["video_paths"][0], step, mode="eval")
|
logger.log_video(eval_info["video_paths"][0], step, mode="eval")
|
||||||
@@ -389,23 +312,30 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
|
|||||||
num_workers=4,
|
num_workers=4,
|
||||||
batch_size=cfg.training.batch_size,
|
batch_size=cfg.training.batch_size,
|
||||||
shuffle=True,
|
shuffle=True,
|
||||||
pin_memory=cfg.device != "cpu",
|
pin_memory=device.type != "cpu",
|
||||||
drop_last=False,
|
drop_last=False,
|
||||||
)
|
)
|
||||||
dl_iter = cycle(dataloader)
|
dl_iter = cycle(dataloader)
|
||||||
|
|
||||||
policy.train()
|
policy.train()
|
||||||
step = 0 # number of policy update (forward + backward + optim)
|
|
||||||
is_offline = True
|
is_offline = True
|
||||||
for offline_step in range(cfg.training.offline_steps):
|
for step in range(cfg.training.offline_steps):
|
||||||
if offline_step == 0:
|
if step == 0:
|
||||||
logging.info("Start offline training on a fixed dataset")
|
logging.info("Start offline training on a fixed dataset")
|
||||||
batch = next(dl_iter)
|
batch = next(dl_iter)
|
||||||
|
|
||||||
for key in batch:
|
for key in batch:
|
||||||
batch[key] = batch[key].to(cfg.device, non_blocking=True)
|
batch[key] = batch[key].to(device, non_blocking=True)
|
||||||
|
|
||||||
train_info = update_policy(policy, batch, optimizer, cfg.training.grad_clip_norm, lr_scheduler)
|
train_info = update_policy(
|
||||||
|
policy,
|
||||||
|
batch,
|
||||||
|
optimizer,
|
||||||
|
cfg.training.grad_clip_norm,
|
||||||
|
grad_scaler=grad_scaler,
|
||||||
|
lr_scheduler=lr_scheduler,
|
||||||
|
use_amp=cfg.use_amp,
|
||||||
|
)
|
||||||
|
|
||||||
# TODO(rcadene): is it ok if step_t=0 = 0 and not 1 as previously done?
|
# TODO(rcadene): is it ok if step_t=0 = 0 and not 1 as previously done?
|
||||||
if step % cfg.training.log_freq == 0:
|
if step % cfg.training.log_freq == 0:
|
||||||
@@ -415,11 +345,6 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
|
|||||||
# so we pass in step + 1.
|
# so we pass in step + 1.
|
||||||
evaluate_and_checkpoint_if_needed(step + 1)
|
evaluate_and_checkpoint_if_needed(step + 1)
|
||||||
|
|
||||||
step += 1
|
|
||||||
|
|
||||||
# create an env dedicated to online episodes collection from policy rollout
|
|
||||||
online_training_env = make_env(cfg, n_envs=1)
|
|
||||||
|
|
||||||
# create an empty online dataset similar to offline dataset
|
# create an empty online dataset similar to offline dataset
|
||||||
online_dataset = deepcopy(offline_dataset)
|
online_dataset = deepcopy(offline_dataset)
|
||||||
online_dataset.hf_dataset = {}
|
online_dataset.hf_dataset = {}
|
||||||
@@ -436,58 +361,11 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
|
|||||||
num_workers=4,
|
num_workers=4,
|
||||||
batch_size=cfg.training.batch_size,
|
batch_size=cfg.training.batch_size,
|
||||||
sampler=sampler,
|
sampler=sampler,
|
||||||
pin_memory=cfg.device != "cpu",
|
pin_memory=device.type != "cpu",
|
||||||
drop_last=False,
|
drop_last=False,
|
||||||
)
|
)
|
||||||
dl_iter = cycle(dataloader)
|
|
||||||
|
|
||||||
online_step = 0
|
|
||||||
is_offline = False
|
|
||||||
for env_step in range(cfg.training.online_steps):
|
|
||||||
if env_step == 0:
|
|
||||||
logging.info("Start online training by interacting with environment")
|
|
||||||
|
|
||||||
policy.eval()
|
|
||||||
with torch.no_grad():
|
|
||||||
eval_info = eval_policy(
|
|
||||||
online_training_env,
|
|
||||||
policy,
|
|
||||||
n_episodes=1,
|
|
||||||
return_episode_data=True,
|
|
||||||
start_seed=cfg.training.online_env_seed,
|
|
||||||
enable_progbar=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
add_episodes_inplace(
|
|
||||||
online_dataset,
|
|
||||||
concat_dataset,
|
|
||||||
sampler,
|
|
||||||
hf_dataset=eval_info["episodes"]["hf_dataset"],
|
|
||||||
episode_data_index=eval_info["episodes"]["episode_data_index"],
|
|
||||||
pc_online_samples=cfg.training.online_sampling_ratio,
|
|
||||||
)
|
|
||||||
|
|
||||||
policy.train()
|
|
||||||
for _ in range(cfg.training.online_steps_between_rollouts):
|
|
||||||
batch = next(dl_iter)
|
|
||||||
|
|
||||||
for key in batch:
|
|
||||||
batch[key] = batch[key].to(cfg.device, non_blocking=True)
|
|
||||||
|
|
||||||
train_info = update_policy(policy, batch, optimizer, cfg.training.grad_clip_norm, lr_scheduler)
|
|
||||||
|
|
||||||
if step % cfg.training.log_freq == 0:
|
|
||||||
log_train_info(logger, train_info, step, cfg, online_dataset, is_offline)
|
|
||||||
|
|
||||||
# Note: evaluate_and_checkpoint_if_needed happens **after** the `step`th training update has completed,
|
|
||||||
# so we pass in step + 1.
|
|
||||||
evaluate_and_checkpoint_if_needed(step + 1)
|
|
||||||
|
|
||||||
step += 1
|
|
||||||
online_step += 1
|
|
||||||
|
|
||||||
eval_env.close()
|
eval_env.close()
|
||||||
online_training_env.close()
|
|
||||||
logging.info("End of training")
|
logging.info("End of training")
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
629
poetry.lock
generated
629
poetry.lock
generated
@@ -1,4 +1,4 @@
|
|||||||
# This file is automatically @generated by Poetry 1.8.1 and should not be changed by hand.
|
# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand.
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "absl-py"
|
name = "absl-py"
|
||||||
@@ -404,28 +404,28 @@ files = [
|
|||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "cmake"
|
name = "cmake"
|
||||||
version = "3.29.2"
|
version = "3.29.3"
|
||||||
description = "CMake is an open-source, cross-platform family of tools designed to build, test and package software"
|
description = "CMake is an open-source, cross-platform family of tools designed to build, test and package software"
|
||||||
optional = false
|
optional = false
|
||||||
python-versions = ">=3.7"
|
python-versions = ">=3.7"
|
||||||
files = [
|
files = [
|
||||||
{file = "cmake-3.29.2-py3-none-macosx_10_10_universal2.macosx_10_10_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl", hash = "sha256:1d40c5451d6467b20a0a6015a5a6b6dc86f61b83f71f935740485b259100a34e"},
|
{file = "cmake-3.29.3-py3-none-macosx_10_10_universal2.macosx_10_10_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl", hash = "sha256:355f515826023338094514a2181724e297ed2145bc0792dacaa9ed3772b98733"},
|
||||||
{file = "cmake-3.29.2-py3-none-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:ed3108e646cd65a4e23fa1cbe8123569a29334a3f2a8ce214d871406b161bedb"},
|
{file = "cmake-3.29.3-py3-none-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:ab5eb91e7f5bbfc2f0e23c964c3a3e74c6e6a26e9b59b57b87192d249b1b7162"},
|
||||||
{file = "cmake-3.29.2-py3-none-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:40aafe612b03a9fa140cca4024ba60b74cd92372f3f349d8062cba1f021e5001"},
|
{file = "cmake-3.29.3-py3-none-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ae9e5dcd77822f89e042ad820ef25a52327bb0d15fd7a492ad4886edb31fae52"},
|
||||||
{file = "cmake-3.29.2-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:027eebe9bb74c31759581a543f27bc1828fc76e6fc45b2b48b51f27847904669"},
|
{file = "cmake-3.29.3-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b09d1f0f46a880fdfc50374917fd4c850d9428b244535343bb5411658a36e202"},
|
||||||
{file = "cmake-3.29.2-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f1f087985fc2460476b0901716fbddb2fd69b7fe7bf1350e1ab5dc508d22600e"},
|
{file = "cmake-3.29.3-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8d05cf16a6fb370cc344b3552ab321524cba1f067da240876c09cab571bf6ec0"},
|
||||||
{file = "cmake-3.29.2-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:df2c63ce6d504aa4c91a42fd22d3887065ab029569691deb56ec19d0decd0ae9"},
|
{file = "cmake-3.29.3-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6c0a23fbb3daeecdc42d233c1a2df233714c2db59e75ab154e2af469c1c308a5"},
|
||||||
{file = "cmake-3.29.2-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6ea5ce007893d7d1363e13433dde1c0c7c344372213a90ff3c56e896a335301d"},
|
{file = "cmake-3.29.3-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1037218e135302f396eca444e24ca892d8a440589f1a859313e06484f10c350f"},
|
||||||
{file = "cmake-3.29.2-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f9e941e73202cfa667ee488d1d88b8a758b516dcfa2a2728e73dbdcbfbdebf57"},
|
{file = "cmake-3.29.3-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c84eead2ea6f596fe5ac58beedbfc9bc1f460c410c481348b3783b4794f4b1a2"},
|
||||||
{file = "cmake-3.29.2-py3-none-musllinux_1_1_aarch64.whl", hash = "sha256:37222e23485338c72b7ea51f865d8c6847d519f7e2222922fb70b4896ca6e897"},
|
{file = "cmake-3.29.3-py3-none-musllinux_1_1_aarch64.whl", hash = "sha256:e1fd53ca2f24dc0aad54934c2472cb83e273b94b4bad23fcdbd438515881f5a7"},
|
||||||
{file = "cmake-3.29.2-py3-none-musllinux_1_1_i686.whl", hash = "sha256:eeed08932c748647488280dc97ac00bcfeae5d760451105200cfe66c52ce6468"},
|
{file = "cmake-3.29.3-py3-none-musllinux_1_1_i686.whl", hash = "sha256:00225a2be8422d4b6f2ad2da10d7dfe2ad844748bd1defa94f236bfabb0d2d44"},
|
||||||
{file = "cmake-3.29.2-py3-none-musllinux_1_1_ppc64le.whl", hash = "sha256:db7a05df020ba67bacd3070dd1645c76ca96fabd06d6aaa63288fd845706e47a"},
|
{file = "cmake-3.29.3-py3-none-musllinux_1_1_ppc64le.whl", hash = "sha256:28fe371f1865943118a0f669af87344c799751f85a5be084197c006ee6329d89"},
|
||||||
{file = "cmake-3.29.2-py3-none-musllinux_1_1_s390x.whl", hash = "sha256:83b35de822ddabaaa184a7d8f9827381350c42d627689c775b214347f57c9e41"},
|
{file = "cmake-3.29.3-py3-none-musllinux_1_1_s390x.whl", hash = "sha256:ad184528fa9560bf4167279e8e4e7168a5fa1cc87a9f0b4b99ffbc79588b0cf9"},
|
||||||
{file = "cmake-3.29.2-py3-none-musllinux_1_1_x86_64.whl", hash = "sha256:cc0e36752e581430a93e58a268e515bb4ec1373b9e9911571f2cac1d2a6b5bec"},
|
{file = "cmake-3.29.3-py3-none-musllinux_1_1_x86_64.whl", hash = "sha256:40cd0ec1310e52fa29b4e2b07829d56ae95f01ea0b2479ece359259849269f86"},
|
||||||
{file = "cmake-3.29.2-py3-none-win32.whl", hash = "sha256:a941e26fba81cf74832c8a0e17e007452e05b6ad4941b3d2d18c75faa4a677d8"},
|
{file = "cmake-3.29.3-py3-none-win32.whl", hash = "sha256:a2c15ab9e4922d71d98a6495a5fd661dd00b3d4ada79a3d183f996fff45db011"},
|
||||||
{file = "cmake-3.29.2-py3-none-win_amd64.whl", hash = "sha256:23336c8ca01205d18d92ed8de6c54e570c352a58e378b7f9adc02ef00f433960"},
|
{file = "cmake-3.29.3-py3-none-win_amd64.whl", hash = "sha256:dd8aaffe5d8dc2dd41421dc63c39b64df30a7109392e276e2b6d021805b770e9"},
|
||||||
{file = "cmake-3.29.2-py3-none-win_arm64.whl", hash = "sha256:e722a949f7c91084dba61f8f17a9854787182ab711ed0b84b1507b24a8e12e25"},
|
{file = "cmake-3.29.3-py3-none-win_arm64.whl", hash = "sha256:6672a873855e9a8f954390d0352c1d09b034a36b5f4cc5da012ae292f28623f7"},
|
||||||
{file = "cmake-3.29.2.tar.gz", hash = "sha256:6a4c1185cb2eca7263190a5754d0c9edf738d9e50bff464f78f48d0c05318e7c"},
|
{file = "cmake-3.29.3.tar.gz", hash = "sha256:d04adb1a8b878e92a734742cb0db9c59e3828abcf8ec9c930eb8a01faa00c9df"},
|
||||||
]
|
]
|
||||||
|
|
||||||
[package.extras]
|
[package.extras]
|
||||||
@@ -956,13 +956,13 @@ tqdm = ["tqdm"]
|
|||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "gdown"
|
name = "gdown"
|
||||||
version = "5.1.0"
|
version = "5.2.0"
|
||||||
description = "Google Drive Public File/Folder Downloader"
|
description = "Google Drive Public File/Folder Downloader"
|
||||||
optional = false
|
optional = false
|
||||||
python-versions = ">=3.8"
|
python-versions = ">=3.8"
|
||||||
files = [
|
files = [
|
||||||
{file = "gdown-5.1.0-py3-none-any.whl", hash = "sha256:421530fd238fa15d41ba43219a79fdc28efe8ac11022173abad333701b77de2c"},
|
{file = "gdown-5.2.0-py3-none-any.whl", hash = "sha256:33083832d82b1101bdd0e9df3edd0fbc0e1c5f14c9d8c38d2a35bf1683b526d6"},
|
||||||
{file = "gdown-5.1.0.tar.gz", hash = "sha256:550a72dc5ca2819fe4bcc15d80d05d7c98c0b90e57256254b77d0256b9df4683"},
|
{file = "gdown-5.2.0.tar.gz", hash = "sha256:2145165062d85520a3cd98b356c9ed522c5e7984d408535409fd46f94defc787"},
|
||||||
]
|
]
|
||||||
|
|
||||||
[package.dependencies]
|
[package.dependencies]
|
||||||
@@ -972,7 +972,7 @@ requests = {version = "*", extras = ["socks"]}
|
|||||||
tqdm = "*"
|
tqdm = "*"
|
||||||
|
|
||||||
[package.extras]
|
[package.extras]
|
||||||
test = ["build", "mypy", "pytest", "pytest-xdist", "ruff", "twine", "types-requests"]
|
test = ["build", "mypy", "pytest", "pytest-xdist", "ruff", "twine", "types-requests", "types-setuptools"]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "gitdb"
|
name = "gitdb"
|
||||||
@@ -1050,13 +1050,13 @@ test = ["pytest (>=8.1.0)", "pytest-cov (>=5.0.0)"]
|
|||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "gym-pusht"
|
name = "gym-pusht"
|
||||||
version = "0.1.3"
|
version = "0.1.4"
|
||||||
description = "A gymnasium environment for PushT."
|
description = "A gymnasium environment for PushT."
|
||||||
optional = true
|
optional = true
|
||||||
python-versions = "<4.0,>=3.10"
|
python-versions = "<4.0,>=3.10"
|
||||||
files = [
|
files = [
|
||||||
{file = "gym_pusht-0.1.3-py3-none-any.whl", hash = "sha256:feeb02493a03d1aacc45d43d6397962c50ed779ab7e4019d73af11d2f0b3831b"},
|
{file = "gym_pusht-0.1.4-py3-none-any.whl", hash = "sha256:04ec628fac80d77cf4edf280ed528ab06f7b8997e4452c78999b4730c2d269ab"},
|
||||||
{file = "gym_pusht-0.1.3.tar.gz", hash = "sha256:c8e9a5256035ba49841ebbc7c32a06c4fa2daa52f5fad80da941b607c4553e28"},
|
{file = "gym_pusht-0.1.4.tar.gz", hash = "sha256:5926ef8098bde7f6a180bdd34b4ce3a827fb333847cc54d8ad47c430e249f44c"},
|
||||||
]
|
]
|
||||||
|
|
||||||
[package.dependencies]
|
[package.dependencies]
|
||||||
@@ -1576,165 +1576,149 @@ files = [
|
|||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "lxml"
|
name = "lxml"
|
||||||
version = "5.2.1"
|
version = "5.2.2"
|
||||||
description = "Powerful and Pythonic XML processing library combining libxml2/libxslt with the ElementTree API."
|
description = "Powerful and Pythonic XML processing library combining libxml2/libxslt with the ElementTree API."
|
||||||
optional = true
|
optional = true
|
||||||
python-versions = ">=3.6"
|
python-versions = ">=3.6"
|
||||||
files = [
|
files = [
|
||||||
{file = "lxml-5.2.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:1f7785f4f789fdb522729ae465adcaa099e2a3441519df750ebdccc481d961a1"},
|
{file = "lxml-5.2.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:364d03207f3e603922d0d3932ef363d55bbf48e3647395765f9bfcbdf6d23632"},
|
||||||
{file = "lxml-5.2.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:6cc6ee342fb7fa2471bd9b6d6fdfc78925a697bf5c2bcd0a302e98b0d35bfad3"},
|
{file = "lxml-5.2.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:50127c186f191b8917ea2fb8b206fbebe87fd414a6084d15568c27d0a21d60db"},
|
||||||
{file = "lxml-5.2.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:794f04eec78f1d0e35d9e0c36cbbb22e42d370dda1609fb03bcd7aeb458c6377"},
|
{file = "lxml-5.2.2-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:74e4f025ef3db1c6da4460dd27c118d8cd136d0391da4e387a15e48e5c975147"},
|
||||||
{file = "lxml-5.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c817d420c60a5183953c783b0547d9eb43b7b344a2c46f69513d5952a78cddf3"},
|
{file = "lxml-5.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:981a06a3076997adf7c743dcd0d7a0415582661e2517c7d961493572e909aa1d"},
|
||||||
{file = "lxml-5.2.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2213afee476546a7f37c7a9b4ad4d74b1e112a6fafffc9185d6d21f043128c81"},
|
{file = "lxml-5.2.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:aef5474d913d3b05e613906ba4090433c515e13ea49c837aca18bde190853dff"},
|
||||||
{file = "lxml-5.2.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b070bbe8d3f0f6147689bed981d19bbb33070225373338df755a46893528104a"},
|
{file = "lxml-5.2.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1e275ea572389e41e8b039ac076a46cb87ee6b8542df3fff26f5baab43713bca"},
|
||||||
{file = "lxml-5.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e02c5175f63effbd7c5e590399c118d5db6183bbfe8e0d118bdb5c2d1b48d937"},
|
{file = "lxml-5.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f5b65529bb2f21ac7861a0e94fdbf5dc0daab41497d18223b46ee8515e5ad297"},
|
||||||
{file = "lxml-5.2.1-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:3dc773b2861b37b41a6136e0b72a1a44689a9c4c101e0cddb6b854016acc0aa8"},
|
{file = "lxml-5.2.2-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:bcc98f911f10278d1daf14b87d65325851a1d29153caaf146877ec37031d5f36"},
|
||||||
{file = "lxml-5.2.1-cp310-cp310-manylinux_2_28_ppc64le.whl", hash = "sha256:d7520db34088c96cc0e0a3ad51a4fd5b401f279ee112aa2b7f8f976d8582606d"},
|
{file = "lxml-5.2.2-cp310-cp310-manylinux_2_28_ppc64le.whl", hash = "sha256:b47633251727c8fe279f34025844b3b3a3e40cd1b198356d003aa146258d13a2"},
|
||||||
{file = "lxml-5.2.1-cp310-cp310-manylinux_2_28_s390x.whl", hash = "sha256:bcbf4af004f98793a95355980764b3d80d47117678118a44a80b721c9913436a"},
|
{file = "lxml-5.2.2-cp310-cp310-manylinux_2_28_s390x.whl", hash = "sha256:fbc9d316552f9ef7bba39f4edfad4a734d3d6f93341232a9dddadec4f15d425f"},
|
||||||
{file = "lxml-5.2.1-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a2b44bec7adf3e9305ce6cbfa47a4395667e744097faed97abb4728748ba7d47"},
|
{file = "lxml-5.2.2-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:13e69be35391ce72712184f69000cda04fc89689429179bc4c0ae5f0b7a8c21b"},
|
||||||
{file = "lxml-5.2.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:1c5bb205e9212d0ebddf946bc07e73fa245c864a5f90f341d11ce7b0b854475d"},
|
{file = "lxml-5.2.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:3b6a30a9ab040b3f545b697cb3adbf3696c05a3a68aad172e3fd7ca73ab3c835"},
|
||||||
{file = "lxml-5.2.1-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:2c9d147f754b1b0e723e6afb7ba1566ecb162fe4ea657f53d2139bbf894d050a"},
|
{file = "lxml-5.2.2-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:a233bb68625a85126ac9f1fc66d24337d6e8a0f9207b688eec2e7c880f012ec0"},
|
||||||
{file = "lxml-5.2.1-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:3545039fa4779be2df51d6395e91a810f57122290864918b172d5dc7ca5bb433"},
|
{file = "lxml-5.2.2-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:dfa7c241073d8f2b8e8dbc7803c434f57dbb83ae2a3d7892dd068d99e96efe2c"},
|
||||||
{file = "lxml-5.2.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:a91481dbcddf1736c98a80b122afa0f7296eeb80b72344d7f45dc9f781551f56"},
|
{file = "lxml-5.2.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:1a7aca7964ac4bb07680d5c9d63b9d7028cace3e2d43175cb50bba8c5ad33316"},
|
||||||
{file = "lxml-5.2.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:2ddfe41ddc81f29a4c44c8ce239eda5ade4e7fc305fb7311759dd6229a080052"},
|
{file = "lxml-5.2.2-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:ae4073a60ab98529ab8a72ebf429f2a8cc612619a8c04e08bed27450d52103c0"},
|
||||||
{file = "lxml-5.2.1-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:a7baf9ffc238e4bf401299f50e971a45bfcc10a785522541a6e3179c83eabf0a"},
|
{file = "lxml-5.2.2-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:ffb2be176fed4457e445fe540617f0252a72a8bc56208fd65a690fdb1f57660b"},
|
||||||
{file = "lxml-5.2.1-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:31e9a882013c2f6bd2f2c974241bf4ba68c85eba943648ce88936d23209a2e01"},
|
{file = "lxml-5.2.2-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:e290d79a4107d7d794634ce3e985b9ae4f920380a813717adf61804904dc4393"},
|
||||||
{file = "lxml-5.2.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:0a15438253b34e6362b2dc41475e7f80de76320f335e70c5528b7148cac253a1"},
|
{file = "lxml-5.2.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:96e85aa09274955bb6bd483eaf5b12abadade01010478154b0ec70284c1b1526"},
|
||||||
{file = "lxml-5.2.1-cp310-cp310-win32.whl", hash = "sha256:6992030d43b916407c9aa52e9673612ff39a575523c5f4cf72cdef75365709a5"},
|
{file = "lxml-5.2.2-cp310-cp310-win32.whl", hash = "sha256:f956196ef61369f1685d14dad80611488d8dc1ef00be57c0c5a03064005b0f30"},
|
||||||
{file = "lxml-5.2.1-cp310-cp310-win_amd64.whl", hash = "sha256:da052e7962ea2d5e5ef5bc0355d55007407087392cf465b7ad84ce5f3e25fe0f"},
|
{file = "lxml-5.2.2-cp310-cp310-win_amd64.whl", hash = "sha256:875a3f90d7eb5c5d77e529080d95140eacb3c6d13ad5b616ee8095447b1d22e7"},
|
||||||
{file = "lxml-5.2.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:70ac664a48aa64e5e635ae5566f5227f2ab7f66a3990d67566d9907edcbbf867"},
|
{file = "lxml-5.2.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:45f9494613160d0405682f9eee781c7e6d1bf45f819654eb249f8f46a2c22545"},
|
||||||
{file = "lxml-5.2.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:1ae67b4e737cddc96c99461d2f75d218bdf7a0c3d3ad5604d1f5e7464a2f9ffe"},
|
{file = "lxml-5.2.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b0b3f2df149efb242cee2ffdeb6674b7f30d23c9a7af26595099afaf46ef4e88"},
|
||||||
{file = "lxml-5.2.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f18a5a84e16886898e51ab4b1d43acb3083c39b14c8caeb3589aabff0ee0b270"},
|
{file = "lxml-5.2.2-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d28cb356f119a437cc58a13f8135ab8a4c8ece18159eb9194b0d269ec4e28083"},
|
||||||
{file = "lxml-5.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c6f2c8372b98208ce609c9e1d707f6918cc118fea4e2c754c9f0812c04ca116d"},
|
{file = "lxml-5.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:657a972f46bbefdbba2d4f14413c0d079f9ae243bd68193cb5061b9732fa54c1"},
|
||||||
{file = "lxml-5.2.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:394ed3924d7a01b5bd9a0d9d946136e1c2f7b3dc337196d99e61740ed4bc6fe1"},
|
{file = "lxml-5.2.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b74b9ea10063efb77a965a8d5f4182806fbf59ed068b3c3fd6f30d2ac7bee734"},
|
||||||
{file = "lxml-5.2.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d077bc40a1fe984e1a9931e801e42959a1e6598edc8a3223b061d30fbd26bbc"},
|
{file = "lxml-5.2.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:07542787f86112d46d07d4f3c4e7c760282011b354d012dc4141cc12a68cef5f"},
|
||||||
{file = "lxml-5.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:764b521b75701f60683500d8621841bec41a65eb739b8466000c6fdbc256c240"},
|
{file = "lxml-5.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:303f540ad2dddd35b92415b74b900c749ec2010e703ab3bfd6660979d01fd4ed"},
|
||||||
{file = "lxml-5.2.1-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:3a6b45da02336895da82b9d472cd274b22dc27a5cea1d4b793874eead23dd14f"},
|
{file = "lxml-5.2.2-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:2eb2227ce1ff998faf0cd7fe85bbf086aa41dfc5af3b1d80867ecfe75fb68df3"},
|
||||||
{file = "lxml-5.2.1-cp311-cp311-manylinux_2_28_ppc64le.whl", hash = "sha256:5ea7b6766ac2dfe4bcac8b8595107665a18ef01f8c8343f00710b85096d1b53a"},
|
{file = "lxml-5.2.2-cp311-cp311-manylinux_2_28_ppc64le.whl", hash = "sha256:1d8a701774dfc42a2f0b8ccdfe7dbc140500d1049e0632a611985d943fcf12df"},
|
||||||
{file = "lxml-5.2.1-cp311-cp311-manylinux_2_28_s390x.whl", hash = "sha256:e196a4ff48310ba62e53a8e0f97ca2bca83cdd2fe2934d8b5cb0df0a841b193a"},
|
{file = "lxml-5.2.2-cp311-cp311-manylinux_2_28_s390x.whl", hash = "sha256:56793b7a1a091a7c286b5f4aa1fe4ae5d1446fe742d00cdf2ffb1077865db10d"},
|
||||||
{file = "lxml-5.2.1-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:200e63525948e325d6a13a76ba2911f927ad399ef64f57898cf7c74e69b71095"},
|
{file = "lxml-5.2.2-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:eb00b549b13bd6d884c863554566095bf6fa9c3cecb2e7b399c4bc7904cb33b5"},
|
||||||
{file = "lxml-5.2.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:dae0ed02f6b075426accbf6b2863c3d0a7eacc1b41fb40f2251d931e50188dad"},
|
{file = "lxml-5.2.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:1a2569a1f15ae6c8c64108a2cd2b4a858fc1e13d25846be0666fc144715e32ab"},
|
||||||
{file = "lxml-5.2.1-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:ab31a88a651039a07a3ae327d68ebdd8bc589b16938c09ef3f32a4b809dc96ef"},
|
{file = "lxml-5.2.2-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:8cf85a6e40ff1f37fe0f25719aadf443686b1ac7652593dc53c7ef9b8492b115"},
|
||||||
{file = "lxml-5.2.1-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:df2e6f546c4df14bc81f9498bbc007fbb87669f1bb707c6138878c46b06f6510"},
|
{file = "lxml-5.2.2-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:d237ba6664b8e60fd90b8549a149a74fcc675272e0e95539a00522e4ca688b04"},
|
||||||
{file = "lxml-5.2.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5dd1537e7cc06efd81371f5d1a992bd5ab156b2b4f88834ca852de4a8ea523fa"},
|
{file = "lxml-5.2.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:0b3f5016e00ae7630a4b83d0868fca1e3d494c78a75b1c7252606a3a1c5fc2ad"},
|
||||||
{file = "lxml-5.2.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:9b9ec9c9978b708d488bec36b9e4c94d88fd12ccac3e62134a9d17ddba910ea9"},
|
{file = "lxml-5.2.2-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:23441e2b5339bc54dc949e9e675fa35efe858108404ef9aa92f0456929ef6fe8"},
|
||||||
{file = "lxml-5.2.1-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:8e77c69d5892cb5ba71703c4057091e31ccf534bd7f129307a4d084d90d014b8"},
|
{file = "lxml-5.2.2-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:2fb0ba3e8566548d6c8e7dd82a8229ff47bd8fb8c2da237607ac8e5a1b8312e5"},
|
||||||
{file = "lxml-5.2.1-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:a8d5c70e04aac1eda5c829a26d1f75c6e5286c74743133d9f742cda8e53b9c2f"},
|
{file = "lxml-5.2.2-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:79d1fb9252e7e2cfe4de6e9a6610c7cbb99b9708e2c3e29057f487de5a9eaefa"},
|
||||||
{file = "lxml-5.2.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:c94e75445b00319c1fad60f3c98b09cd63fe1134a8a953dcd48989ef42318534"},
|
{file = "lxml-5.2.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:6dcc3d17eac1df7859ae01202e9bb11ffa8c98949dcbeb1069c8b9a75917e01b"},
|
||||||
{file = "lxml-5.2.1-cp311-cp311-win32.whl", hash = "sha256:4951e4f7a5680a2db62f7f4ab2f84617674d36d2d76a729b9a8be4b59b3659be"},
|
{file = "lxml-5.2.2-cp311-cp311-win32.whl", hash = "sha256:4c30a2f83677876465f44c018830f608fa3c6a8a466eb223535035fbc16f3438"},
|
||||||
{file = "lxml-5.2.1-cp311-cp311-win_amd64.whl", hash = "sha256:5c670c0406bdc845b474b680b9a5456c561c65cf366f8db5a60154088c92d102"},
|
{file = "lxml-5.2.2-cp311-cp311-win_amd64.whl", hash = "sha256:49095a38eb333aaf44c06052fd2ec3b8f23e19747ca7ec6f6c954ffea6dbf7be"},
|
||||||
{file = "lxml-5.2.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:abc25c3cab9ec7fcd299b9bcb3b8d4a1231877e425c650fa1c7576c5107ab851"},
|
{file = "lxml-5.2.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:7429e7faa1a60cad26ae4227f4dd0459efde239e494c7312624ce228e04f6391"},
|
||||||
{file = "lxml-5.2.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:6935bbf153f9a965f1e07c2649c0849d29832487c52bb4a5c5066031d8b44fd5"},
|
{file = "lxml-5.2.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:50ccb5d355961c0f12f6cf24b7187dbabd5433f29e15147a67995474f27d1776"},
|
||||||
{file = "lxml-5.2.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d793bebb202a6000390a5390078e945bbb49855c29c7e4d56a85901326c3b5d9"},
|
{file = "lxml-5.2.2-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dc911208b18842a3a57266d8e51fc3cfaccee90a5351b92079beed912a7914c2"},
|
||||||
{file = "lxml-5.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:afd5562927cdef7c4f5550374acbc117fd4ecc05b5007bdfa57cc5355864e0a4"},
|
{file = "lxml-5.2.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:33ce9e786753743159799fdf8e92a5da351158c4bfb6f2db0bf31e7892a1feb5"},
|
||||||
{file = "lxml-5.2.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0e7259016bc4345a31af861fdce942b77c99049d6c2107ca07dc2bba2435c1d9"},
|
{file = "lxml-5.2.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ec87c44f619380878bd49ca109669c9f221d9ae6883a5bcb3616785fa8f94c97"},
|
||||||
{file = "lxml-5.2.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:530e7c04f72002d2f334d5257c8a51bf409db0316feee7c87e4385043be136af"},
|
{file = "lxml-5.2.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:08ea0f606808354eb8f2dfaac095963cb25d9d28e27edcc375d7b30ab01abbf6"},
|
||||||
{file = "lxml-5.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:59689a75ba8d7ffca577aefd017d08d659d86ad4585ccc73e43edbfc7476781a"},
|
{file = "lxml-5.2.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:75a9632f1d4f698b2e6e2e1ada40e71f369b15d69baddb8968dcc8e683839b18"},
|
||||||
{file = "lxml-5.2.1-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:f9737bf36262046213a28e789cc82d82c6ef19c85a0cf05e75c670a33342ac2c"},
|
{file = "lxml-5.2.2-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:74da9f97daec6928567b48c90ea2c82a106b2d500f397eeb8941e47d30b1ca85"},
|
||||||
{file = "lxml-5.2.1-cp312-cp312-manylinux_2_28_ppc64le.whl", hash = "sha256:3a74c4f27167cb95c1d4af1c0b59e88b7f3e0182138db2501c353555f7ec57f4"},
|
{file = "lxml-5.2.2-cp312-cp312-manylinux_2_28_ppc64le.whl", hash = "sha256:0969e92af09c5687d769731e3f39ed62427cc72176cebb54b7a9d52cc4fa3b73"},
|
||||||
{file = "lxml-5.2.1-cp312-cp312-manylinux_2_28_s390x.whl", hash = "sha256:68a2610dbe138fa8c5826b3f6d98a7cfc29707b850ddcc3e21910a6fe51f6ca0"},
|
{file = "lxml-5.2.2-cp312-cp312-manylinux_2_28_s390x.whl", hash = "sha256:9164361769b6ca7769079f4d426a41df6164879f7f3568be9086e15baca61466"},
|
||||||
{file = "lxml-5.2.1-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:f0a1bc63a465b6d72569a9bba9f2ef0334c4e03958e043da1920299100bc7c08"},
|
{file = "lxml-5.2.2-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:d26a618ae1766279f2660aca0081b2220aca6bd1aa06b2cf73f07383faf48927"},
|
||||||
{file = "lxml-5.2.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:c2d35a1d047efd68027817b32ab1586c1169e60ca02c65d428ae815b593e65d4"},
|
{file = "lxml-5.2.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:ab67ed772c584b7ef2379797bf14b82df9aa5f7438c5b9a09624dd834c1c1aaf"},
|
||||||
{file = "lxml-5.2.1-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:79bd05260359170f78b181b59ce871673ed01ba048deef4bf49a36ab3e72e80b"},
|
{file = "lxml-5.2.2-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:3d1e35572a56941b32c239774d7e9ad724074d37f90c7a7d499ab98761bd80cf"},
|
||||||
{file = "lxml-5.2.1-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:865bad62df277c04beed9478fe665b9ef63eb28fe026d5dedcb89b537d2e2ea6"},
|
{file = "lxml-5.2.2-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:8268cbcd48c5375f46e000adb1390572c98879eb4f77910c6053d25cc3ac2c67"},
|
||||||
{file = "lxml-5.2.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:44f6c7caff88d988db017b9b0e4ab04934f11e3e72d478031efc7edcac6c622f"},
|
{file = "lxml-5.2.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:e282aedd63c639c07c3857097fc0e236f984ceb4089a8b284da1c526491e3f3d"},
|
||||||
{file = "lxml-5.2.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:71e97313406ccf55d32cc98a533ee05c61e15d11b99215b237346171c179c0b0"},
|
{file = "lxml-5.2.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6dfdc2bfe69e9adf0df4915949c22a25b39d175d599bf98e7ddf620a13678585"},
|
||||||
{file = "lxml-5.2.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:057cdc6b86ab732cf361f8b4d8af87cf195a1f6dc5b0ff3de2dced242c2015e0"},
|
{file = "lxml-5.2.2-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:4aefd911793b5d2d7a921233a54c90329bf3d4a6817dc465f12ffdfe4fc7b8fe"},
|
||||||
{file = "lxml-5.2.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:f3bbbc998d42f8e561f347e798b85513ba4da324c2b3f9b7969e9c45b10f6169"},
|
{file = "lxml-5.2.2-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:8b8df03a9e995b6211dafa63b32f9d405881518ff1ddd775db4e7b98fb545e1c"},
|
||||||
{file = "lxml-5.2.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:491755202eb21a5e350dae00c6d9a17247769c64dcf62d8c788b5c135e179dc4"},
|
{file = "lxml-5.2.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:f11ae142f3a322d44513de1018b50f474f8f736bc3cd91d969f464b5bfef8836"},
|
||||||
{file = "lxml-5.2.1-cp312-cp312-win32.whl", hash = "sha256:8de8f9d6caa7f25b204fc861718815d41cbcf27ee8f028c89c882a0cf4ae4134"},
|
{file = "lxml-5.2.2-cp312-cp312-win32.whl", hash = "sha256:16a8326e51fcdffc886294c1e70b11ddccec836516a343f9ed0f82aac043c24a"},
|
||||||
{file = "lxml-5.2.1-cp312-cp312-win_amd64.whl", hash = "sha256:f2a9efc53d5b714b8df2b4b3e992accf8ce5bbdfe544d74d5c6766c9e1146a3a"},
|
{file = "lxml-5.2.2-cp312-cp312-win_amd64.whl", hash = "sha256:bbc4b80af581e18568ff07f6395c02114d05f4865c2812a1f02f2eaecf0bfd48"},
|
||||||
{file = "lxml-5.2.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:70a9768e1b9d79edca17890175ba915654ee1725975d69ab64813dd785a2bd5c"},
|
{file = "lxml-5.2.2-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:e3d9d13603410b72787579769469af730c38f2f25505573a5888a94b62b920f8"},
|
||||||
{file = "lxml-5.2.1-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c38d7b9a690b090de999835f0443d8aa93ce5f2064035dfc48f27f02b4afc3d0"},
|
{file = "lxml-5.2.2-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:38b67afb0a06b8575948641c1d6d68e41b83a3abeae2ca9eed2ac59892b36706"},
|
||||||
{file = "lxml-5.2.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5670fb70a828663cc37552a2a85bf2ac38475572b0e9b91283dc09efb52c41d1"},
|
{file = "lxml-5.2.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c689d0d5381f56de7bd6966a4541bff6e08bf8d3871bbd89a0c6ab18aa699573"},
|
||||||
{file = "lxml-5.2.1-cp36-cp36m-manylinux_2_28_x86_64.whl", hash = "sha256:958244ad566c3ffc385f47dddde4145088a0ab893504b54b52c041987a8c1863"},
|
{file = "lxml-5.2.2-cp36-cp36m-manylinux_2_28_x86_64.whl", hash = "sha256:cf2a978c795b54c539f47964ec05e35c05bd045db5ca1e8366988c7f2fe6b3ce"},
|
||||||
{file = "lxml-5.2.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:b6241d4eee5f89453307c2f2bfa03b50362052ca0af1efecf9fef9a41a22bb4f"},
|
{file = "lxml-5.2.2-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:739e36ef7412b2bd940f75b278749106e6d025e40027c0b94a17ef7968d55d56"},
|
||||||
{file = "lxml-5.2.1-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:2a66bf12fbd4666dd023b6f51223aed3d9f3b40fef06ce404cb75bafd3d89536"},
|
{file = "lxml-5.2.2-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:d8bbcd21769594dbba9c37d3c819e2d5847656ca99c747ddb31ac1701d0c0ed9"},
|
||||||
{file = "lxml-5.2.1-cp36-cp36m-musllinux_1_1_ppc64le.whl", hash = "sha256:9123716666e25b7b71c4e1789ec829ed18663152008b58544d95b008ed9e21e9"},
|
{file = "lxml-5.2.2-cp36-cp36m-musllinux_1_2_x86_64.whl", hash = "sha256:2304d3c93f2258ccf2cf7a6ba8c761d76ef84948d87bf9664e14d203da2cd264"},
|
||||||
{file = "lxml-5.2.1-cp36-cp36m-musllinux_1_1_s390x.whl", hash = "sha256:0c3f67e2aeda739d1cc0b1102c9a9129f7dc83901226cc24dd72ba275ced4218"},
|
{file = "lxml-5.2.2-cp36-cp36m-win32.whl", hash = "sha256:02437fb7308386867c8b7b0e5bc4cd4b04548b1c5d089ffb8e7b31009b961dc3"},
|
||||||
{file = "lxml-5.2.1-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:5d5792e9b3fb8d16a19f46aa8208987cfeafe082363ee2745ea8b643d9cc5b45"},
|
{file = "lxml-5.2.2-cp36-cp36m-win_amd64.whl", hash = "sha256:edcfa83e03370032a489430215c1e7783128808fd3e2e0a3225deee278585196"},
|
||||||
{file = "lxml-5.2.1-cp36-cp36m-musllinux_1_2_aarch64.whl", hash = "sha256:88e22fc0a6684337d25c994381ed8a1580a6f5ebebd5ad41f89f663ff4ec2885"},
|
{file = "lxml-5.2.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:28bf95177400066596cdbcfc933312493799382879da504633d16cf60bba735b"},
|
||||||
{file = "lxml-5.2.1-cp36-cp36m-musllinux_1_2_ppc64le.whl", hash = "sha256:21c2e6b09565ba5b45ae161b438e033a86ad1736b8c838c766146eff8ceffff9"},
|
{file = "lxml-5.2.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3a745cc98d504d5bd2c19b10c79c61c7c3df9222629f1b6210c0368177589fb8"},
|
||||||
{file = "lxml-5.2.1-cp36-cp36m-musllinux_1_2_s390x.whl", hash = "sha256:afbbdb120d1e78d2ba8064a68058001b871154cc57787031b645c9142b937a62"},
|
{file = "lxml-5.2.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b336b0416828022bfd5a2e3083e7f5ba54b96242159f83c7e3eebaec752f1716"},
|
||||||
{file = "lxml-5.2.1-cp36-cp36m-musllinux_1_2_x86_64.whl", hash = "sha256:627402ad8dea044dde2eccde4370560a2b750ef894c9578e1d4f8ffd54000461"},
|
{file = "lxml-5.2.2-cp37-cp37m-manylinux_2_28_x86_64.whl", hash = "sha256:4bc6cb140a7a0ad1f7bc37e018d0ed690b7b6520ade518285dc3171f7a117905"},
|
||||||
{file = "lxml-5.2.1-cp36-cp36m-win32.whl", hash = "sha256:e89580a581bf478d8dcb97d9cd011d567768e8bc4095f8557b21c4d4c5fea7d0"},
|
{file = "lxml-5.2.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:57f0a0bbc9868e10ebe874e9f129d2917750adf008fe7b9c1598c0fbbfdde6a6"},
|
||||||
{file = "lxml-5.2.1-cp36-cp36m-win_amd64.whl", hash = "sha256:59565f10607c244bc4c05c0c5fa0c190c990996e0c719d05deec7030c2aa8289"},
|
{file = "lxml-5.2.2-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:60499fe961b21264e17a471ec296dcbf4365fbea611bf9e303ab69db7159ce61"},
|
||||||
{file = "lxml-5.2.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:857500f88b17a6479202ff5fe5f580fc3404922cd02ab3716197adf1ef628029"},
|
{file = "lxml-5.2.2-cp37-cp37m-win32.whl", hash = "sha256:d9b342c76003c6b9336a80efcc766748a333573abf9350f4094ee46b006ec18f"},
|
||||||
{file = "lxml-5.2.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:56c22432809085b3f3ae04e6e7bdd36883d7258fcd90e53ba7b2e463efc7a6af"},
|
{file = "lxml-5.2.2-cp37-cp37m-win_amd64.whl", hash = "sha256:b16db2770517b8799c79aa80f4053cd6f8b716f21f8aca962725a9565ce3ee40"},
|
||||||
{file = "lxml-5.2.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a55ee573116ba208932e2d1a037cc4b10d2c1cb264ced2184d00b18ce585b2c0"},
|
{file = "lxml-5.2.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:7ed07b3062b055d7a7f9d6557a251cc655eed0b3152b76de619516621c56f5d3"},
|
||||||
{file = "lxml-5.2.1-cp37-cp37m-manylinux_2_28_x86_64.whl", hash = "sha256:6cf58416653c5901e12624e4013708b6e11142956e7f35e7a83f1ab02f3fe456"},
|
{file = "lxml-5.2.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f60fdd125d85bf9c279ffb8e94c78c51b3b6a37711464e1f5f31078b45002421"},
|
||||||
{file = "lxml-5.2.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:64c2baa7774bc22dd4474248ba16fe1a7f611c13ac6123408694d4cc93d66dbd"},
|
{file = "lxml-5.2.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8a7e24cb69ee5f32e003f50e016d5fde438010c1022c96738b04fc2423e61706"},
|
||||||
{file = "lxml-5.2.1-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:74b28c6334cca4dd704e8004cba1955af0b778cf449142e581e404bd211fb619"},
|
{file = "lxml-5.2.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:23cfafd56887eaed93d07bc4547abd5e09d837a002b791e9767765492a75883f"},
|
||||||
{file = "lxml-5.2.1-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:7221d49259aa1e5a8f00d3d28b1e0b76031655ca74bb287123ef56c3db92f213"},
|
{file = "lxml-5.2.2-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:19b4e485cd07b7d83e3fe3b72132e7df70bfac22b14fe4bf7a23822c3a35bff5"},
|
||||||
{file = "lxml-5.2.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:3dbe858ee582cbb2c6294dc85f55b5f19c918c2597855e950f34b660f1a5ede6"},
|
{file = "lxml-5.2.2-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:7ce7ad8abebe737ad6143d9d3bf94b88b93365ea30a5b81f6877ec9c0dee0a48"},
|
||||||
{file = "lxml-5.2.1-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:04ab5415bf6c86e0518d57240a96c4d1fcfc3cb370bb2ac2a732b67f579e5a04"},
|
{file = "lxml-5.2.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:e49b052b768bb74f58c7dda4e0bdf7b79d43a9204ca584ffe1fb48a6f3c84c66"},
|
||||||
{file = "lxml-5.2.1-cp37-cp37m-musllinux_1_2_ppc64le.whl", hash = "sha256:6ab833e4735a7e5533711a6ea2df26459b96f9eec36d23f74cafe03631647c41"},
|
{file = "lxml-5.2.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:d14a0d029a4e176795cef99c056d58067c06195e0c7e2dbb293bf95c08f772a3"},
|
||||||
{file = "lxml-5.2.1-cp37-cp37m-musllinux_1_2_s390x.whl", hash = "sha256:f443cdef978430887ed55112b491f670bba6462cea7a7742ff8f14b7abb98d75"},
|
{file = "lxml-5.2.2-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:be49ad33819d7dcc28a309b86d4ed98e1a65f3075c6acd3cd4fe32103235222b"},
|
||||||
{file = "lxml-5.2.1-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:9e2addd2d1866fe112bc6f80117bcc6bc25191c5ed1bfbcf9f1386a884252ae8"},
|
{file = "lxml-5.2.2-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:a6d17e0370d2516d5bb9062c7b4cb731cff921fc875644c3d751ad857ba9c5b1"},
|
||||||
{file = "lxml-5.2.1-cp37-cp37m-win32.whl", hash = "sha256:f51969bac61441fd31f028d7b3b45962f3ecebf691a510495e5d2cd8c8092dbd"},
|
{file = "lxml-5.2.2-cp38-cp38-win32.whl", hash = "sha256:5b8c041b6265e08eac8a724b74b655404070b636a8dd6d7a13c3adc07882ef30"},
|
||||||
{file = "lxml-5.2.1-cp37-cp37m-win_amd64.whl", hash = "sha256:b0b58fbfa1bf7367dde8a557994e3b1637294be6cf2169810375caf8571a085c"},
|
{file = "lxml-5.2.2-cp38-cp38-win_amd64.whl", hash = "sha256:f61efaf4bed1cc0860e567d2ecb2363974d414f7f1f124b1df368bbf183453a6"},
|
||||||
{file = "lxml-5.2.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:804f74efe22b6a227306dd890eecc4f8c59ff25ca35f1f14e7482bbce96ef10b"},
|
{file = "lxml-5.2.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:fb91819461b1b56d06fa4bcf86617fac795f6a99d12239fb0c68dbeba41a0a30"},
|
||||||
{file = "lxml-5.2.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:08802f0c56ed150cc6885ae0788a321b73505d2263ee56dad84d200cab11c07a"},
|
{file = "lxml-5.2.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:d4ed0c7cbecde7194cd3228c044e86bf73e30a23505af852857c09c24e77ec5d"},
|
||||||
{file = "lxml-5.2.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0f8c09ed18ecb4ebf23e02b8e7a22a05d6411911e6fabef3a36e4f371f4f2585"},
|
{file = "lxml-5.2.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:54401c77a63cc7d6dc4b4e173bb484f28a5607f3df71484709fe037c92d4f0ed"},
|
||||||
{file = "lxml-5.2.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e3d30321949861404323c50aebeb1943461a67cd51d4200ab02babc58bd06a86"},
|
{file = "lxml-5.2.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:625e3ef310e7fa3a761d48ca7ea1f9d8718a32b1542e727d584d82f4453d5eeb"},
|
||||||
{file = "lxml-5.2.1-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:b560e3aa4b1d49e0e6c847d72665384db35b2f5d45f8e6a5c0072e0283430533"},
|
{file = "lxml-5.2.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:519895c99c815a1a24a926d5b60627ce5ea48e9f639a5cd328bda0515ea0f10c"},
|
||||||
{file = "lxml-5.2.1-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:058a1308914f20784c9f4674036527e7c04f7be6fb60f5d61353545aa7fcb739"},
|
{file = "lxml-5.2.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c7079d5eb1c1315a858bbf180000757db8ad904a89476653232db835c3114001"},
|
||||||
{file = "lxml-5.2.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:adfb84ca6b87e06bc6b146dc7da7623395db1e31621c4785ad0658c5028b37d7"},
|
{file = "lxml-5.2.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:343ab62e9ca78094f2306aefed67dcfad61c4683f87eee48ff2fd74902447726"},
|
||||||
{file = "lxml-5.2.1-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:417d14450f06d51f363e41cace6488519038f940676ce9664b34ebf5653433a5"},
|
{file = "lxml-5.2.2-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:cd9e78285da6c9ba2d5c769628f43ef66d96ac3085e59b10ad4f3707980710d3"},
|
||||||
{file = "lxml-5.2.1-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:a2dfe7e2473f9b59496247aad6e23b405ddf2e12ef0765677b0081c02d6c2c0b"},
|
{file = "lxml-5.2.2-cp39-cp39-manylinux_2_28_ppc64le.whl", hash = "sha256:546cf886f6242dff9ec206331209db9c8e1643ae642dea5fdbecae2453cb50fd"},
|
||||||
{file = "lxml-5.2.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:bf2e2458345d9bffb0d9ec16557d8858c9c88d2d11fed53998512504cd9df49b"},
|
{file = "lxml-5.2.2-cp39-cp39-manylinux_2_28_s390x.whl", hash = "sha256:02f6a8eb6512fdc2fd4ca10a49c341c4e109aa6e9448cc4859af5b949622715a"},
|
||||||
{file = "lxml-5.2.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:58278b29cb89f3e43ff3e0c756abbd1518f3ee6adad9e35b51fb101c1c1daaec"},
|
{file = "lxml-5.2.2-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:339ee4a4704bc724757cd5dd9dc8cf4d00980f5d3e6e06d5847c1b594ace68ab"},
|
||||||
{file = "lxml-5.2.1-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:64641a6068a16201366476731301441ce93457eb8452056f570133a6ceb15fca"},
|
{file = "lxml-5.2.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0a028b61a2e357ace98b1615fc03f76eb517cc028993964fe08ad514b1e8892d"},
|
||||||
{file = "lxml-5.2.1-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:78bfa756eab503673991bdcf464917ef7845a964903d3302c5f68417ecdc948c"},
|
{file = "lxml-5.2.2-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:f90e552ecbad426eab352e7b2933091f2be77115bb16f09f78404861c8322981"},
|
||||||
{file = "lxml-5.2.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:11a04306fcba10cd9637e669fd73aa274c1c09ca64af79c041aa820ea992b637"},
|
{file = "lxml-5.2.2-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:d83e2d94b69bf31ead2fa45f0acdef0757fa0458a129734f59f67f3d2eb7ef32"},
|
||||||
{file = "lxml-5.2.1-cp38-cp38-win32.whl", hash = "sha256:66bc5eb8a323ed9894f8fa0ee6cb3e3fb2403d99aee635078fd19a8bc7a5a5da"},
|
{file = "lxml-5.2.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a02d3c48f9bb1e10c7788d92c0c7db6f2002d024ab6e74d6f45ae33e3d0288a3"},
|
||||||
{file = "lxml-5.2.1-cp38-cp38-win_amd64.whl", hash = "sha256:9676bfc686fa6a3fa10cd4ae6b76cae8be26eb5ec6811d2a325636c460da1806"},
|
{file = "lxml-5.2.2-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:6d68ce8e7b2075390e8ac1e1d3a99e8b6372c694bbe612632606d1d546794207"},
|
||||||
{file = "lxml-5.2.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:cf22b41fdae514ee2f1691b6c3cdeae666d8b7fa9434de445f12bbeee0cf48dd"},
|
{file = "lxml-5.2.2-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:453d037e09a5176d92ec0fd282e934ed26d806331a8b70ab431a81e2fbabf56d"},
|
||||||
{file = "lxml-5.2.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:ec42088248c596dbd61d4ae8a5b004f97a4d91a9fd286f632e42e60b706718d7"},
|
{file = "lxml-5.2.2-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:3b019d4ee84b683342af793b56bb35034bd749e4cbdd3d33f7d1107790f8c472"},
|
||||||
{file = "lxml-5.2.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cd53553ddad4a9c2f1f022756ae64abe16da1feb497edf4d9f87f99ec7cf86bd"},
|
{file = "lxml-5.2.2-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:cb3942960f0beb9f46e2a71a3aca220d1ca32feb5a398656be934320804c0df9"},
|
||||||
{file = "lxml-5.2.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:feaa45c0eae424d3e90d78823f3828e7dc42a42f21ed420db98da2c4ecf0a2cb"},
|
{file = "lxml-5.2.2-cp39-cp39-win32.whl", hash = "sha256:ac6540c9fff6e3813d29d0403ee7a81897f1d8ecc09a8ff84d2eea70ede1cdbf"},
|
||||||
{file = "lxml-5.2.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ddc678fb4c7e30cf830a2b5a8d869538bc55b28d6c68544d09c7d0d8f17694dc"},
|
{file = "lxml-5.2.2-cp39-cp39-win_amd64.whl", hash = "sha256:610b5c77428a50269f38a534057444c249976433f40f53e3b47e68349cca1425"},
|
||||||
{file = "lxml-5.2.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:853e074d4931dbcba7480d4dcab23d5c56bd9607f92825ab80ee2bd916edea53"},
|
{file = "lxml-5.2.2-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:b537bd04d7ccd7c6350cdaaaad911f6312cbd61e6e6045542f781c7f8b2e99d2"},
|
||||||
{file = "lxml-5.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cc4691d60512798304acb9207987e7b2b7c44627ea88b9d77489bbe3e6cc3bd4"},
|
{file = "lxml-5.2.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4820c02195d6dfb7b8508ff276752f6b2ff8b64ae5d13ebe02e7667e035000b9"},
|
||||||
{file = "lxml-5.2.1-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:beb72935a941965c52990f3a32d7f07ce869fe21c6af8b34bf6a277b33a345d3"},
|
{file = "lxml-5.2.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f2a09f6184f17a80897172863a655467da2b11151ec98ba8d7af89f17bf63dae"},
|
||||||
{file = "lxml-5.2.1-cp39-cp39-manylinux_2_28_ppc64le.whl", hash = "sha256:6588c459c5627fefa30139be4d2e28a2c2a1d0d1c265aad2ba1935a7863a4913"},
|
{file = "lxml-5.2.2-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:76acba4c66c47d27c8365e7c10b3d8016a7da83d3191d053a58382311a8bf4e1"},
|
||||||
{file = "lxml-5.2.1-cp39-cp39-manylinux_2_28_s390x.whl", hash = "sha256:588008b8497667f1ddca7c99f2f85ce8511f8f7871b4a06ceede68ab62dff64b"},
|
{file = "lxml-5.2.2-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:b128092c927eaf485928cec0c28f6b8bead277e28acf56800e972aa2c2abd7a2"},
|
||||||
{file = "lxml-5.2.1-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:b6787b643356111dfd4032b5bffe26d2f8331556ecb79e15dacb9275da02866e"},
|
{file = "lxml-5.2.2-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:ae791f6bd43305aade8c0e22f816b34f3b72b6c820477aab4d18473a37e8090b"},
|
||||||
{file = "lxml-5.2.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:7c17b64b0a6ef4e5affae6a3724010a7a66bda48a62cfe0674dabd46642e8b54"},
|
{file = "lxml-5.2.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:a2f6a1bc2460e643785a2cde17293bd7a8f990884b822f7bca47bee0a82fc66b"},
|
||||||
{file = "lxml-5.2.1-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:27aa20d45c2e0b8cd05da6d4759649170e8dfc4f4e5ef33a34d06f2d79075d57"},
|
{file = "lxml-5.2.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8e8d351ff44c1638cb6e980623d517abd9f580d2e53bfcd18d8941c052a5a009"},
|
||||||
{file = "lxml-5.2.1-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:d4f2cc7060dc3646632d7f15fe68e2fa98f58e35dd5666cd525f3b35d3fed7f8"},
|
{file = "lxml-5.2.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bec4bd9133420c5c52d562469c754f27c5c9e36ee06abc169612c959bd7dbb07"},
|
||||||
{file = "lxml-5.2.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ff46d772d5f6f73564979cd77a4fffe55c916a05f3cb70e7c9c0590059fb29ef"},
|
{file = "lxml-5.2.2-pp37-pypy37_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:55ce6b6d803890bd3cc89975fca9de1dff39729b43b73cb15ddd933b8bc20484"},
|
||||||
{file = "lxml-5.2.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:96323338e6c14e958d775700ec8a88346014a85e5de73ac7967db0367582049b"},
|
{file = "lxml-5.2.2-pp37-pypy37_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:8ab6a358d1286498d80fe67bd3d69fcbc7d1359b45b41e74c4a26964ca99c3f8"},
|
||||||
{file = "lxml-5.2.1-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:52421b41ac99e9d91934e4d0d0fe7da9f02bfa7536bb4431b4c05c906c8c6919"},
|
{file = "lxml-5.2.2-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:06668e39e1f3c065349c51ac27ae430719d7806c026fec462e5693b08b95696b"},
|
||||||
{file = "lxml-5.2.1-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:7a7efd5b6d3e30d81ec68ab8a88252d7c7c6f13aaa875009fe3097eb4e30b84c"},
|
{file = "lxml-5.2.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:9cd5323344d8ebb9fb5e96da5de5ad4ebab993bbf51674259dbe9d7a18049525"},
|
||||||
{file = "lxml-5.2.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:0ed777c1e8c99b63037b91f9d73a6aad20fd035d77ac84afcc205225f8f41188"},
|
{file = "lxml-5.2.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89feb82ca055af0fe797a2323ec9043b26bc371365847dbe83c7fd2e2f181c34"},
|
||||||
{file = "lxml-5.2.1-cp39-cp39-win32.whl", hash = "sha256:644df54d729ef810dcd0f7732e50e5ad1bd0a135278ed8d6bcb06f33b6b6f708"},
|
{file = "lxml-5.2.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e481bba1e11ba585fb06db666bfc23dbe181dbafc7b25776156120bf12e0d5a6"},
|
||||||
{file = "lxml-5.2.1-cp39-cp39-win_amd64.whl", hash = "sha256:9ca66b8e90daca431b7ca1408cae085d025326570e57749695d6a01454790e95"},
|
{file = "lxml-5.2.2-pp38-pypy38_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:9d6c6ea6a11ca0ff9cd0390b885984ed31157c168565702959c25e2191674a14"},
|
||||||
{file = "lxml-5.2.1-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:9b0ff53900566bc6325ecde9181d89afadc59c5ffa39bddf084aaedfe3b06a11"},
|
{file = "lxml-5.2.2-pp38-pypy38_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:3d98de734abee23e61f6b8c2e08a88453ada7d6486dc7cdc82922a03968928db"},
|
||||||
{file = "lxml-5.2.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fd6037392f2d57793ab98d9e26798f44b8b4da2f2464388588f48ac52c489ea1"},
|
{file = "lxml-5.2.2-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:69ab77a1373f1e7563e0fb5a29a8440367dec051da6c7405333699d07444f511"},
|
||||||
{file = "lxml-5.2.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8b9c07e7a45bb64e21df4b6aa623cb8ba214dfb47d2027d90eac197329bb5e94"},
|
{file = "lxml-5.2.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:34e17913c431f5ae01d8658dbf792fdc457073dcdfbb31dc0cc6ab256e664a8d"},
|
||||||
{file = "lxml-5.2.1-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:3249cc2989d9090eeac5467e50e9ec2d40704fea9ab72f36b034ea34ee65ca98"},
|
{file = "lxml-5.2.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:05f8757b03208c3f50097761be2dea0aba02e94f0dc7023ed73a7bb14ff11eb0"},
|
||||||
{file = "lxml-5.2.1-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:f42038016852ae51b4088b2862126535cc4fc85802bfe30dea3500fdfaf1864e"},
|
{file = "lxml-5.2.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6a520b4f9974b0a0a6ed73c2154de57cdfd0c8800f4f15ab2b73238ffed0b36e"},
|
||||||
{file = "lxml-5.2.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:533658f8fbf056b70e434dff7e7aa611bcacb33e01f75de7f821810e48d1bb66"},
|
{file = "lxml-5.2.2-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:5e097646944b66207023bc3c634827de858aebc226d5d4d6d16f0b77566ea182"},
|
||||||
{file = "lxml-5.2.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:622020d4521e22fb371e15f580d153134bfb68d6a429d1342a25f051ec72df1c"},
|
{file = "lxml-5.2.2-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:b5e4ef22ff25bfd4ede5f8fb30f7b24446345f3e79d9b7455aef2836437bc38a"},
|
||||||
{file = "lxml-5.2.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:efa7b51824aa0ee957ccd5a741c73e6851de55f40d807f08069eb4c5a26b2baa"},
|
{file = "lxml-5.2.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:ff69a9a0b4b17d78170c73abe2ab12084bdf1691550c5629ad1fe7849433f324"},
|
||||||
{file = "lxml-5.2.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9c6ad0fbf105f6bcc9300c00010a2ffa44ea6f555df1a2ad95c88f5656104817"},
|
{file = "lxml-5.2.2.tar.gz", hash = "sha256:bb2dc4898180bea79863d5487e5f9c7c34297414bad54bcd0f0852aee9cfdb87"},
|
||||||
{file = "lxml-5.2.1-pp37-pypy37_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:e233db59c8f76630c512ab4a4daf5a5986da5c3d5b44b8e9fc742f2a24dbd460"},
|
|
||||||
{file = "lxml-5.2.1-pp37-pypy37_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:6a014510830df1475176466b6087fc0c08b47a36714823e58d8b8d7709132a96"},
|
|
||||||
{file = "lxml-5.2.1-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:d38c8f50ecf57f0463399569aa388b232cf1a2ffb8f0a9a5412d0db57e054860"},
|
|
||||||
{file = "lxml-5.2.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:5aea8212fb823e006b995c4dda533edcf98a893d941f173f6c9506126188860d"},
|
|
||||||
{file = "lxml-5.2.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ff097ae562e637409b429a7ac958a20aab237a0378c42dabaa1e3abf2f896e5f"},
|
|
||||||
{file = "lxml-5.2.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0f5d65c39f16717a47c36c756af0fb36144069c4718824b7533f803ecdf91138"},
|
|
||||||
{file = "lxml-5.2.1-pp38-pypy38_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:3d0c3dd24bb4605439bf91068598d00c6370684f8de4a67c2992683f6c309d6b"},
|
|
||||||
{file = "lxml-5.2.1-pp38-pypy38_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:e32be23d538753a8adb6c85bd539f5fd3b15cb987404327c569dfc5fd8366e85"},
|
|
||||||
{file = "lxml-5.2.1-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:cc518cea79fd1e2f6c90baafa28906d4309d24f3a63e801d855e7424c5b34144"},
|
|
||||||
{file = "lxml-5.2.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:a0af35bd8ebf84888373630f73f24e86bf016642fb8576fba49d3d6b560b7cbc"},
|
|
||||||
{file = "lxml-5.2.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f8aca2e3a72f37bfc7b14ba96d4056244001ddcc18382bd0daa087fd2e68a354"},
|
|
||||||
{file = "lxml-5.2.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ca1e8188b26a819387b29c3895c47a5e618708fe6f787f3b1a471de2c4a94d9"},
|
|
||||||
{file = "lxml-5.2.1-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:c8ba129e6d3b0136a0f50345b2cb3db53f6bda5dd8c7f5d83fbccba97fb5dcb5"},
|
|
||||||
{file = "lxml-5.2.1-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:e998e304036198b4f6914e6a1e2b6f925208a20e2042563d9734881150c6c246"},
|
|
||||||
{file = "lxml-5.2.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:d3be9b2076112e51b323bdf6d5a7f8a798de55fb8d95fcb64bd179460cdc0704"},
|
|
||||||
{file = "lxml-5.2.1.tar.gz", hash = "sha256:3f7765e69bbce0906a7c74d5fe46d2c7a7596147318dbc08e4a2431f3060e306"},
|
|
||||||
]
|
]
|
||||||
|
|
||||||
[package.extras]
|
[package.extras]
|
||||||
@@ -2564,13 +2548,13 @@ xmp = ["defusedxml"]
|
|||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "platformdirs"
|
name = "platformdirs"
|
||||||
version = "4.2.1"
|
version = "4.2.2"
|
||||||
description = "A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`."
|
description = "A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`."
|
||||||
optional = false
|
optional = false
|
||||||
python-versions = ">=3.8"
|
python-versions = ">=3.8"
|
||||||
files = [
|
files = [
|
||||||
{file = "platformdirs-4.2.1-py3-none-any.whl", hash = "sha256:17d5a1161b3fd67b390023cb2d3b026bbd40abde6fdb052dfbd3a29c3ba22ee1"},
|
{file = "platformdirs-4.2.2-py3-none-any.whl", hash = "sha256:2d7a1657e36a80ea911db832a8a6ece5ee53d8de21edd5cc5879af6530b1bfee"},
|
||||||
{file = "platformdirs-4.2.1.tar.gz", hash = "sha256:031cd18d4ec63ec53e82dceaac0417d218a6863f7745dfcc9efe7793b7039bdf"},
|
{file = "platformdirs-4.2.2.tar.gz", hash = "sha256:38b7b51f512eed9e84a22788b4bce1de17c0adb134d6becb09836e37d8654cd3"},
|
||||||
]
|
]
|
||||||
|
|
||||||
[package.extras]
|
[package.extras]
|
||||||
@@ -2675,47 +2659,47 @@ test = ["enum34", "ipaddress", "mock", "pywin32", "wmi"]
|
|||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "pyarrow"
|
name = "pyarrow"
|
||||||
version = "16.0.0"
|
version = "16.1.0"
|
||||||
description = "Python library for Apache Arrow"
|
description = "Python library for Apache Arrow"
|
||||||
optional = false
|
optional = false
|
||||||
python-versions = ">=3.8"
|
python-versions = ">=3.8"
|
||||||
files = [
|
files = [
|
||||||
{file = "pyarrow-16.0.0-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:22a1fdb1254e5095d629e29cd1ea98ed04b4bbfd8e42cc670a6b639ccc208b60"},
|
{file = "pyarrow-16.1.0-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:17e23b9a65a70cc733d8b738baa6ad3722298fa0c81d88f63ff94bf25eaa77b9"},
|
||||||
{file = "pyarrow-16.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:574a00260a4ed9d118a14770edbd440b848fcae5a3024128be9d0274dbcaf858"},
|
{file = "pyarrow-16.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4740cc41e2ba5d641071d0ab5e9ef9b5e6e8c7611351a5cb7c1d175eaf43674a"},
|
||||||
{file = "pyarrow-16.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c0815d0ddb733b8c1b53a05827a91f1b8bde6240f3b20bf9ba5d650eb9b89cdf"},
|
{file = "pyarrow-16.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:98100e0268d04e0eec47b73f20b39c45b4006f3c4233719c3848aa27a03c1aef"},
|
||||||
{file = "pyarrow-16.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:df0080339387b5d30de31e0a149c0c11a827a10c82f0c67d9afae3981d1aabb7"},
|
{file = "pyarrow-16.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f68f409e7b283c085f2da014f9ef81e885d90dcd733bd648cfba3ef265961848"},
|
||||||
{file = "pyarrow-16.0.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:edf38cce0bf0dcf726e074159c60516447e4474904c0033f018c1f33d7dac6c5"},
|
{file = "pyarrow-16.1.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:a8914cd176f448e09746037b0c6b3a9d7688cef451ec5735094055116857580c"},
|
||||||
{file = "pyarrow-16.0.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:91d28f9a40f1264eab2af7905a4d95320ac2f287891e9c8b0035f264fe3c3a4b"},
|
{file = "pyarrow-16.1.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:48be160782c0556156d91adbdd5a4a7e719f8d407cb46ae3bb4eaee09b3111bd"},
|
||||||
{file = "pyarrow-16.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:99af421ee451a78884d7faea23816c429e263bd3618b22d38e7992c9ce2a7ad9"},
|
{file = "pyarrow-16.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:9cf389d444b0f41d9fe1444b70650fea31e9d52cfcb5f818b7888b91b586efff"},
|
||||||
{file = "pyarrow-16.0.0-cp311-cp311-macosx_10_15_x86_64.whl", hash = "sha256:d22d0941e6c7bafddf5f4c0662e46f2075850f1c044bf1a03150dd9e189427ce"},
|
{file = "pyarrow-16.1.0-cp311-cp311-macosx_10_15_x86_64.whl", hash = "sha256:d0ebea336b535b37eee9eee31761813086d33ed06de9ab6fc6aaa0bace7b250c"},
|
||||||
{file = "pyarrow-16.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:266ddb7e823f03733c15adc8b5078db2df6980f9aa93d6bb57ece615df4e0ba7"},
|
{file = "pyarrow-16.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2e73cfc4a99e796727919c5541c65bb88b973377501e39b9842ea71401ca6c1c"},
|
||||||
{file = "pyarrow-16.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5cc23090224b6594f5a92d26ad47465af47c1d9c079dd4a0061ae39551889efe"},
|
{file = "pyarrow-16.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bf9251264247ecfe93e5f5a0cd43b8ae834f1e61d1abca22da55b20c788417f6"},
|
||||||
{file = "pyarrow-16.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:56850a0afe9ef37249d5387355449c0f94d12ff7994af88f16803a26d38f2016"},
|
{file = "pyarrow-16.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ddf5aace92d520d3d2a20031d8b0ec27b4395cab9f74e07cc95edf42a5cc0147"},
|
||||||
{file = "pyarrow-16.0.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:705db70d3e2293c2f6f8e84874b5b775f690465798f66e94bb2c07bab0a6bb55"},
|
{file = "pyarrow-16.1.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:25233642583bf658f629eb230b9bb79d9af4d9f9229890b3c878699c82f7d11e"},
|
||||||
{file = "pyarrow-16.0.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:5448564754c154997bc09e95a44b81b9e31ae918a86c0fcb35c4aa4922756f55"},
|
{file = "pyarrow-16.1.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:a33a64576fddfbec0a44112eaf844c20853647ca833e9a647bfae0582b2ff94b"},
|
||||||
{file = "pyarrow-16.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:729f7b262aa620c9df8b9967db96c1575e4cfc8c25d078a06968e527b8d6ec05"},
|
{file = "pyarrow-16.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:185d121b50836379fe012753cf15c4ba9638bda9645183ab36246923875f8d1b"},
|
||||||
{file = "pyarrow-16.0.0-cp312-cp312-macosx_10_15_x86_64.whl", hash = "sha256:fb8065dbc0d051bf2ae2453af0484d99a43135cadabacf0af588a3be81fbbb9b"},
|
{file = "pyarrow-16.1.0-cp312-cp312-macosx_10_15_x86_64.whl", hash = "sha256:2e51ca1d6ed7f2e9d5c3c83decf27b0d17bb207a7dea986e8dc3e24f80ff7d6f"},
|
||||||
{file = "pyarrow-16.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:20ce707d9aa390593ea93218b19d0eadab56390311cb87aad32c9a869b0e958c"},
|
{file = "pyarrow-16.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:06ebccb6f8cb7357de85f60d5da50e83507954af617d7b05f48af1621d331c9a"},
|
||||||
{file = "pyarrow-16.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5823275c8addbbb50cd4e6a6839952682a33255b447277e37a6f518d6972f4e1"},
|
{file = "pyarrow-16.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b04707f1979815f5e49824ce52d1dceb46e2f12909a48a6a753fe7cafbc44a0c"},
|
||||||
{file = "pyarrow-16.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ab8b9050752b16a8b53fcd9853bf07d8daf19093533e990085168f40c64d978"},
|
{file = "pyarrow-16.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0d32000693deff8dc5df444b032b5985a48592c0697cb6e3071a5d59888714e2"},
|
||||||
{file = "pyarrow-16.0.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:42e56557bc7c5c10d3e42c3b32f6cff649a29d637e8f4e8b311d334cc4326730"},
|
{file = "pyarrow-16.1.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:8785bb10d5d6fd5e15d718ee1d1f914fe768bf8b4d1e5e9bf253de8a26cb1628"},
|
||||||
{file = "pyarrow-16.0.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:2a7abdee4a4a7cfa239e2e8d721224c4b34ffe69a0ca7981354fe03c1328789b"},
|
{file = "pyarrow-16.1.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:e1369af39587b794873b8a307cc6623a3b1194e69399af0efd05bb202195a5a7"},
|
||||||
{file = "pyarrow-16.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:ef2f309b68396bcc5a354106741d333494d6a0d3e1951271849787109f0229a6"},
|
{file = "pyarrow-16.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:febde33305f1498f6df85e8020bca496d0e9ebf2093bab9e0f65e2b4ae2b3444"},
|
||||||
{file = "pyarrow-16.0.0-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:ed66e5217b4526fa3585b5e39b0b82f501b88a10d36bd0d2a4d8aa7b5a48e2df"},
|
{file = "pyarrow-16.1.0-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:b5f5705ab977947a43ac83b52ade3b881eb6e95fcc02d76f501d549a210ba77f"},
|
||||||
{file = "pyarrow-16.0.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:cc8814310486f2a73c661ba8354540f17eef51e1b6dd090b93e3419d3a097b3a"},
|
{file = "pyarrow-16.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:0d27bf89dfc2576f6206e9cd6cf7a107c9c06dc13d53bbc25b0bd4556f19cf5f"},
|
||||||
{file = "pyarrow-16.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3c2f5e239db7ed43e0ad2baf46a6465f89c824cc703f38ef0fde927d8e0955f7"},
|
{file = "pyarrow-16.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0d07de3ee730647a600037bc1d7b7994067ed64d0eba797ac74b2bc77384f4c2"},
|
||||||
{file = "pyarrow-16.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f293e92d1db251447cb028ae12f7bc47526e4649c3a9924c8376cab4ad6b98bd"},
|
{file = "pyarrow-16.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fbef391b63f708e103df99fbaa3acf9f671d77a183a07546ba2f2c297b361e83"},
|
||||||
{file = "pyarrow-16.0.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:dd9334a07b6dc21afe0857aa31842365a62eca664e415a3f9536e3a8bb832c07"},
|
{file = "pyarrow-16.1.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:19741c4dbbbc986d38856ee7ddfdd6a00fc3b0fc2d928795b95410d38bb97d15"},
|
||||||
{file = "pyarrow-16.0.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:d91073d1e2fef2c121154680e2ba7e35ecf8d4969cc0af1fa6f14a8675858159"},
|
{file = "pyarrow-16.1.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:f2c5fb249caa17b94e2b9278b36a05ce03d3180e6da0c4c3b3ce5b2788f30eed"},
|
||||||
{file = "pyarrow-16.0.0-cp38-cp38-win_amd64.whl", hash = "sha256:71d52561cd7aefd22cf52538f262850b0cc9e4ec50af2aaa601da3a16ef48877"},
|
{file = "pyarrow-16.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:e6b6d3cd35fbb93b70ade1336022cc1147b95ec6af7d36906ca7fe432eb09710"},
|
||||||
{file = "pyarrow-16.0.0-cp39-cp39-macosx_10_15_x86_64.whl", hash = "sha256:b93c9a50b965ee0bf4fef65e53b758a7e8dcc0c2d86cebcc037aaaf1b306ecc0"},
|
{file = "pyarrow-16.1.0-cp39-cp39-macosx_10_15_x86_64.whl", hash = "sha256:18da9b76a36a954665ccca8aa6bd9f46c1145f79c0bb8f4f244f5f8e799bca55"},
|
||||||
{file = "pyarrow-16.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:d831690844706e374c455fba2fb8cfcb7b797bfe53ceda4b54334316e1ac4fa4"},
|
{file = "pyarrow-16.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:99f7549779b6e434467d2aa43ab2b7224dd9e41bdde486020bae198978c9e05e"},
|
||||||
{file = "pyarrow-16.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:35692ce8ad0b8c666aa60f83950957096d92f2a9d8d7deda93fb835e6053307e"},
|
{file = "pyarrow-16.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f07fdffe4fd5b15f5ec15c8b64584868d063bc22b86b46c9695624ca3505b7b4"},
|
||||||
{file = "pyarrow-16.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9dd3151d098e56f16a8389c1247137f9e4c22720b01c6f3aa6dec29a99b74d80"},
|
{file = "pyarrow-16.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ddfe389a08ea374972bd4065d5f25d14e36b43ebc22fc75f7b951f24378bf0b5"},
|
||||||
{file = "pyarrow-16.0.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:bd40467bdb3cbaf2044ed7a6f7f251c8f941c8b31275aaaf88e746c4f3ca4a7a"},
|
{file = "pyarrow-16.1.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:3b20bd67c94b3a2ea0a749d2a5712fc845a69cb5d52e78e6449bbd295611f3aa"},
|
||||||
{file = "pyarrow-16.0.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:00a1dcb22ad4ceb8af87f7bd30cc3354788776c417f493089e0a0af981bc8d80"},
|
{file = "pyarrow-16.1.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:ba8ac20693c0bb0bf4b238751d4409e62852004a8cf031c73b0e0962b03e45e3"},
|
||||||
{file = "pyarrow-16.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:fda9a7cebd1b1d46c97b511f60f73a5b766a6de4c5236f144f41a5d5afec1f35"},
|
{file = "pyarrow-16.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:31a1851751433d89a986616015841977e0a188662fcffd1a5677453f1df2de0a"},
|
||||||
{file = "pyarrow-16.0.0.tar.gz", hash = "sha256:59bb1f1edbbf4114c72415f039f1359f1a57d166a331c3229788ccbfbb31689a"},
|
{file = "pyarrow-16.1.0.tar.gz", hash = "sha256:15fbb22ea96d11f0b5768504a3f961edab25eaf4197c341720c4a387f6c60315"},
|
||||||
]
|
]
|
||||||
|
|
||||||
[package.dependencies]
|
[package.dependencies]
|
||||||
@@ -3045,7 +3029,6 @@ files = [
|
|||||||
{file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34"},
|
{file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34"},
|
||||||
{file = "PyYAML-6.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28"},
|
{file = "PyYAML-6.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28"},
|
||||||
{file = "PyYAML-6.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9"},
|
{file = "PyYAML-6.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9"},
|
||||||
{file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a08c6f0fe150303c1c6b71ebcd7213c2858041a7e01975da3a99aed1e7a378ef"},
|
|
||||||
{file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0"},
|
{file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0"},
|
||||||
{file = "PyYAML-6.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4"},
|
{file = "PyYAML-6.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4"},
|
||||||
{file = "PyYAML-6.0.1-cp312-cp312-win32.whl", hash = "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54"},
|
{file = "PyYAML-6.0.1-cp312-cp312-win32.whl", hash = "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54"},
|
||||||
@@ -3082,90 +3065,90 @@ files = [
|
|||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "regex"
|
name = "regex"
|
||||||
version = "2024.5.10"
|
version = "2024.5.15"
|
||||||
description = "Alternative regular expression module, to replace re."
|
description = "Alternative regular expression module, to replace re."
|
||||||
optional = false
|
optional = false
|
||||||
python-versions = ">=3.8"
|
python-versions = ">=3.8"
|
||||||
files = [
|
files = [
|
||||||
{file = "regex-2024.5.10-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:eda3dd46df535da787ffb9036b5140f941ecb91701717df91c9daf64cabef953"},
|
{file = "regex-2024.5.15-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a81e3cfbae20378d75185171587cbf756015ccb14840702944f014e0d93ea09f"},
|
||||||
{file = "regex-2024.5.10-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1d5bd666466c8f00a06886ce1397ba8b12371c1f1c6d1bef11013e9e0a1464a8"},
|
{file = "regex-2024.5.15-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:7b59138b219ffa8979013be7bc85bb60c6f7b7575df3d56dc1e403a438c7a3f6"},
|
||||||
{file = "regex-2024.5.10-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:32e5f3b8e32918bfbdd12eca62e49ab3031125c454b507127ad6ecbd86e62fca"},
|
{file = "regex-2024.5.15-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a0bd000c6e266927cb7a1bc39d55be95c4b4f65c5be53e659537537e019232b1"},
|
||||||
{file = "regex-2024.5.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:534efd2653ebc4f26fc0e47234e53bf0cb4715bb61f98c64d2774a278b58c846"},
|
{file = "regex-2024.5.15-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5eaa7ddaf517aa095fa8da0b5015c44d03da83f5bd49c87961e3c997daed0de7"},
|
||||||
{file = "regex-2024.5.10-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:193b7c6834a06f722f0ce1ba685efe80881de7c3de31415513862f601097648c"},
|
{file = "regex-2024.5.15-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ba68168daedb2c0bab7fd7e00ced5ba90aebf91024dea3c88ad5063c2a562cca"},
|
||||||
{file = "regex-2024.5.10-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:160ba087232c5c6e2a1e7ad08bd3a3f49b58c815be0504d8c8aacfb064491cd8"},
|
{file = "regex-2024.5.15-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6e8d717bca3a6e2064fc3a08df5cbe366369f4b052dcd21b7416e6d71620dca1"},
|
||||||
{file = "regex-2024.5.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:951be1eae7b47660412dc4938777a975ebc41936d64e28081bf2e584b47ec246"},
|
{file = "regex-2024.5.15-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1337b7dbef9b2f71121cdbf1e97e40de33ff114801263b275aafd75303bd62b5"},
|
||||||
{file = "regex-2024.5.10-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d8a0f0ab5453e409586b11ebe91c672040bc804ca98d03a656825f7890cbdf88"},
|
{file = "regex-2024.5.15-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f9ebd0a36102fcad2f03696e8af4ae682793a5d30b46c647eaf280d6cfb32796"},
|
||||||
{file = "regex-2024.5.10-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:9e6d4d6ae1827b2f8c7200aaf7501c37cf3f3896c86a6aaf2566448397c823dd"},
|
{file = "regex-2024.5.15-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:9efa1a32ad3a3ea112224897cdaeb6aa00381627f567179c0314f7b65d354c62"},
|
||||||
{file = "regex-2024.5.10-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:161a206c8f3511e2f5fafc9142a2cc25d7fe9a1ec5ad9b4ad2496a7c33e1c5d2"},
|
{file = "regex-2024.5.15-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:1595f2d10dff3d805e054ebdc41c124753631b6a471b976963c7b28543cf13b0"},
|
||||||
{file = "regex-2024.5.10-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:44b3267cea873684af022822195298501568ed44d542f9a2d9bebc0212e99069"},
|
{file = "regex-2024.5.15-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:b802512f3e1f480f41ab5f2cfc0e2f761f08a1f41092d6718868082fc0d27143"},
|
||||||
{file = "regex-2024.5.10-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:560278c9975694e1f0bc50da187abf2cdc1e4890739ea33df2bc4a85eeef143e"},
|
{file = "regex-2024.5.15-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:a0981022dccabca811e8171f913de05720590c915b033b7e601f35ce4ea7019f"},
|
||||||
{file = "regex-2024.5.10-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:70364a097437dd0a90b31cd77f09f7387ad9ac60ef57590971f43b7fca3082a5"},
|
{file = "regex-2024.5.15-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:19068a6a79cf99a19ccefa44610491e9ca02c2be3305c7760d3831d38a467a6f"},
|
||||||
{file = "regex-2024.5.10-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:42be5de7cc8c1edac55db92d82b68dc8e683b204d6f5414c5a51997a323d7081"},
|
{file = "regex-2024.5.15-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:1b5269484f6126eee5e687785e83c6b60aad7663dafe842b34691157e5083e53"},
|
||||||
{file = "regex-2024.5.10-cp310-cp310-win32.whl", hash = "sha256:9a8625849387b9d558d528e263ecc9c0fbde86cfa5c2f0eef43fff480ae24d71"},
|
{file = "regex-2024.5.15-cp310-cp310-win32.whl", hash = "sha256:ada150c5adfa8fbcbf321c30c751dc67d2f12f15bd183ffe4ec7cde351d945b3"},
|
||||||
{file = "regex-2024.5.10-cp310-cp310-win_amd64.whl", hash = "sha256:903350bf44d7e4116b4d5898b30b15755d61dcd3161e3413a49c7db76f0bee5a"},
|
{file = "regex-2024.5.15-cp310-cp310-win_amd64.whl", hash = "sha256:ac394ff680fc46b97487941f5e6ae49a9f30ea41c6c6804832063f14b2a5a145"},
|
||||||
{file = "regex-2024.5.10-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:bf9596cba92ce7b1fd32c7b07c6e3212c7eed0edc271757e48bfcd2b54646452"},
|
{file = "regex-2024.5.15-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f5b1dff3ad008dccf18e652283f5e5339d70bf8ba7c98bf848ac33db10f7bc7a"},
|
||||||
{file = "regex-2024.5.10-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:45cc13d398b6359a7708986386f72bd156ae781c3e83a68a6d4cee5af04b1ce9"},
|
{file = "regex-2024.5.15-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c6a2b494a76983df8e3d3feea9b9ffdd558b247e60b92f877f93a1ff43d26656"},
|
||||||
{file = "regex-2024.5.10-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ad45f3bccfcb00868f2871dce02a755529838d2b86163ab8a246115e80cfb7d6"},
|
{file = "regex-2024.5.15-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a32b96f15c8ab2e7d27655969a23895eb799de3665fa94349f3b2fbfd547236f"},
|
||||||
{file = "regex-2024.5.10-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:33d19f0cde6838c81acffff25c7708e4adc7dd02896c9ec25c3939b1500a1778"},
|
{file = "regex-2024.5.15-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:10002e86e6068d9e1c91eae8295ef690f02f913c57db120b58fdd35a6bb1af35"},
|
||||||
{file = "regex-2024.5.10-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0a9f89d7db5ef6bdf53e5cc8e6199a493d0f1374b3171796b464a74ebe8e508a"},
|
{file = "regex-2024.5.15-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ec54d5afa89c19c6dd8541a133be51ee1017a38b412b1321ccb8d6ddbeb4cf7d"},
|
||||||
{file = "regex-2024.5.10-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8c6c71cf92b09e5faa72ea2c68aa1f61c9ce11cb66fdc5069d712f4392ddfd00"},
|
{file = "regex-2024.5.15-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:10e4ce0dca9ae7a66e6089bb29355d4432caed736acae36fef0fdd7879f0b0cb"},
|
||||||
{file = "regex-2024.5.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7467ad8b0eac0b28e52679e972b9b234b3de0ea5cee12eb50091d2b68145fe36"},
|
{file = "regex-2024.5.15-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3e507ff1e74373c4d3038195fdd2af30d297b4f0950eeda6f515ae3d84a1770f"},
|
||||||
{file = "regex-2024.5.10-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bc0db93ad039fc2fe32ccd3dd0e0e70c4f3d6e37ae83f0a487e1aba939bd2fbd"},
|
{file = "regex-2024.5.15-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d1f059a4d795e646e1c37665b9d06062c62d0e8cc3c511fe01315973a6542e40"},
|
||||||
{file = "regex-2024.5.10-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:fa9335674d7c819674467c7b46154196c51efbaf5f5715187fd366814ba3fa39"},
|
{file = "regex-2024.5.15-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:0721931ad5fe0dda45d07f9820b90b2148ccdd8e45bb9e9b42a146cb4f695649"},
|
||||||
{file = "regex-2024.5.10-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:7dda3091838206969c2b286f9832dff41e2da545b99d1cfaea9ebd8584d02708"},
|
{file = "regex-2024.5.15-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:833616ddc75ad595dee848ad984d067f2f31be645d603e4d158bba656bbf516c"},
|
||||||
{file = "regex-2024.5.10-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:504b5116e2bd1821efd815941edff7535e93372a098e156bb9dffde30264e798"},
|
{file = "regex-2024.5.15-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:287eb7f54fc81546346207c533ad3c2c51a8d61075127d7f6d79aaf96cdee890"},
|
||||||
{file = "regex-2024.5.10-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:91b53dea84415e8115506cc62e441a2b54537359c63d856d73cb1abe05af4c9a"},
|
{file = "regex-2024.5.15-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:19dfb1c504781a136a80ecd1fff9f16dddf5bb43cec6871778c8a907a085bb3d"},
|
||||||
{file = "regex-2024.5.10-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:1a3903128f9e17a500618e80c68165c78c741ebb17dd1a0b44575f92c3c68b02"},
|
{file = "regex-2024.5.15-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:119af6e56dce35e8dfb5222573b50c89e5508d94d55713c75126b753f834de68"},
|
||||||
{file = "regex-2024.5.10-cp311-cp311-win32.whl", hash = "sha256:236cace6c1903effd647ed46ce6dd5d76d54985fc36dafc5256032886736c85d"},
|
{file = "regex-2024.5.15-cp311-cp311-win32.whl", hash = "sha256:1c1c174d6ec38d6c8a7504087358ce9213d4332f6293a94fbf5249992ba54efa"},
|
||||||
{file = "regex-2024.5.10-cp311-cp311-win_amd64.whl", hash = "sha256:12446827f43c7881decf2c126762e11425de5eb93b3b0d8b581344c16db7047a"},
|
{file = "regex-2024.5.15-cp311-cp311-win_amd64.whl", hash = "sha256:9e717956dcfd656f5055cc70996ee2cc82ac5149517fc8e1b60261b907740201"},
|
||||||
{file = "regex-2024.5.10-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:14905ed75c7a6edf423eb46c213ed3f4507c38115f1ed3c00f4ec9eafba50e58"},
|
{file = "regex-2024.5.15-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:632b01153e5248c134007209b5c6348a544ce96c46005d8456de1d552455b014"},
|
||||||
{file = "regex-2024.5.10-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:4fad420b14ae1970a1f322e8ae84a1d9d89375eb71e1b504060ab2d1bfe68f3c"},
|
{file = "regex-2024.5.15-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:e64198f6b856d48192bf921421fdd8ad8eb35e179086e99e99f711957ffedd6e"},
|
||||||
{file = "regex-2024.5.10-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:c46a76a599fcbf95f98755275c5527304cc4f1bb69919434c1e15544d7052910"},
|
{file = "regex-2024.5.15-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:68811ab14087b2f6e0fc0c2bae9ad689ea3584cad6917fc57be6a48bbd012c49"},
|
||||||
{file = "regex-2024.5.10-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0faecb6d5779753a6066a3c7a0471a8d29fe25d9981ca9e552d6d1b8f8b6a594"},
|
{file = "regex-2024.5.15-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f8ec0c2fea1e886a19c3bee0cd19d862b3aa75dcdfb42ebe8ed30708df64687a"},
|
||||||
{file = "regex-2024.5.10-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:aab65121229c2ecdf4a31b793d99a6a0501225bd39b616e653c87b219ed34a49"},
|
{file = "regex-2024.5.15-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d0c0c0003c10f54a591d220997dd27d953cd9ccc1a7294b40a4be5312be8797b"},
|
||||||
{file = "regex-2024.5.10-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:50e7e96a527488334379e05755b210b7da4a60fc5d6481938c1fa053e0c92184"},
|
{file = "regex-2024.5.15-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2431b9e263af1953c55abbd3e2efca67ca80a3de8a0437cb58e2421f8184717a"},
|
||||||
{file = "regex-2024.5.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba034c8db4b264ef1601eb33cd23d87c5013b8fb48b8161debe2e5d3bd9156b0"},
|
{file = "regex-2024.5.15-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4a605586358893b483976cffc1723fb0f83e526e8f14c6e6614e75919d9862cf"},
|
||||||
{file = "regex-2024.5.10-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:031219782d97550c2098d9a68ce9e9eaefe67d2d81d8ff84c8354f9c009e720c"},
|
{file = "regex-2024.5.15-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:391d7f7f1e409d192dba8bcd42d3e4cf9e598f3979cdaed6ab11288da88cb9f2"},
|
||||||
{file = "regex-2024.5.10-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:62b5f7910b639f3c1d122d408421317c351e213ca39c964ad4121f27916631c6"},
|
{file = "regex-2024.5.15-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:9ff11639a8d98969c863d4617595eb5425fd12f7c5ef6621a4b74b71ed8726d5"},
|
||||||
{file = "regex-2024.5.10-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:cd832bd9b6120d6074f39bdfbb3c80e416848b07ac72910f1c7f03131a6debc3"},
|
{file = "regex-2024.5.15-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:4eee78a04e6c67e8391edd4dad3279828dd66ac4b79570ec998e2155d2e59fd5"},
|
||||||
{file = "regex-2024.5.10-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:e91b1976358e17197157b405cab408a5f4e33310cda211c49fc6da7cffd0b2f0"},
|
{file = "regex-2024.5.15-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:8fe45aa3f4aa57faabbc9cb46a93363edd6197cbc43523daea044e9ff2fea83e"},
|
||||||
{file = "regex-2024.5.10-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:571452362d552de508c37191b6abbbb660028b8b418e2d68c20779e0bc8eaaa8"},
|
{file = "regex-2024.5.15-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:d0a3d8d6acf0c78a1fff0e210d224b821081330b8524e3e2bc5a68ef6ab5803d"},
|
||||||
{file = "regex-2024.5.10-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:5253dcb0bfda7214523de58b002eb0090cb530d7c55993ce5f6d17faf953ece7"},
|
{file = "regex-2024.5.15-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:c486b4106066d502495b3025a0a7251bf37ea9540433940a23419461ab9f2a80"},
|
||||||
{file = "regex-2024.5.10-cp312-cp312-win32.whl", hash = "sha256:2f30a5ab8902f93930dc6f627c4dd5da2703333287081c85cace0fc6e21c25af"},
|
{file = "regex-2024.5.15-cp312-cp312-win32.whl", hash = "sha256:c49e15eac7c149f3670b3e27f1f28a2c1ddeccd3a2812cba953e01be2ab9b5fe"},
|
||||||
{file = "regex-2024.5.10-cp312-cp312-win_amd64.whl", hash = "sha256:3799e36d60a35162bb35b2246d8bb012192b7437dff807ef79c14e7352706306"},
|
{file = "regex-2024.5.15-cp312-cp312-win_amd64.whl", hash = "sha256:673b5a6da4557b975c6c90198588181029c60793835ce02f497ea817ff647cb2"},
|
||||||
{file = "regex-2024.5.10-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:bbdc5db2c98ac2bf1971ffa1410c87ca7a15800415f788971e8ba8520fc0fda9"},
|
{file = "regex-2024.5.15-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:87e2a9c29e672fc65523fb47a90d429b70ef72b901b4e4b1bd42387caf0d6835"},
|
||||||
{file = "regex-2024.5.10-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:6ccdeef4584450b6f0bddd5135354908dacad95425fcb629fe36d13e48b60f32"},
|
{file = "regex-2024.5.15-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:c3bea0ba8b73b71b37ac833a7f3fd53825924165da6a924aec78c13032f20850"},
|
||||||
{file = "regex-2024.5.10-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:29d839829209f3c53f004e1de8c3113efce6d98029f044fa5cfee666253ee7e6"},
|
{file = "regex-2024.5.15-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:bfc4f82cabe54f1e7f206fd3d30fda143f84a63fe7d64a81558d6e5f2e5aaba9"},
|
||||||
{file = "regex-2024.5.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0709ba544cf50bd5cb843df4b8bb6701bae2b70a8e88da9add8386cbca5c1385"},
|
{file = "regex-2024.5.15-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e5bb9425fe881d578aeca0b2b4b3d314ec88738706f66f219c194d67179337cb"},
|
||||||
{file = "regex-2024.5.10-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:972b49f2fe1047b9249c958ec4fa1bdd2cf8ce305dc19d27546d5a38e57732d8"},
|
{file = "regex-2024.5.15-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:64c65783e96e563103d641760664125e91bd85d8e49566ee560ded4da0d3e704"},
|
||||||
{file = "regex-2024.5.10-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9cdbb1998da94607d5eec02566b9586f0e70d6438abf1b690261aac0edda7ab6"},
|
{file = "regex-2024.5.15-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cf2430df4148b08fb4324b848672514b1385ae3807651f3567871f130a728cc3"},
|
||||||
{file = "regex-2024.5.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf7c8ee4861d9ef5b1120abb75846828c811f932d63311596ad25fa168053e00"},
|
{file = "regex-2024.5.15-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5397de3219a8b08ae9540c48f602996aa6b0b65d5a61683e233af8605c42b0f2"},
|
||||||
{file = "regex-2024.5.10-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7d35d4cc9270944e95f9c88af757b0c9fc43f396917e143a5756608462c5223b"},
|
{file = "regex-2024.5.15-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:455705d34b4154a80ead722f4f185b04c4237e8e8e33f265cd0798d0e44825fa"},
|
||||||
{file = "regex-2024.5.10-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8722f72068b3e1156a4b2e1afde6810f1fc67155a9fa30a4b9d5b4bc46f18fb0"},
|
{file = "regex-2024.5.15-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:b2b6f1b3bb6f640c1a92be3bbfbcb18657b125b99ecf141fb3310b5282c7d4ed"},
|
||||||
{file = "regex-2024.5.10-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:696639a73ca78a380acfaa0a1f6dd8220616a99074c05bba9ba8bb916914b224"},
|
{file = "regex-2024.5.15-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:3ad070b823ca5890cab606c940522d05d3d22395d432f4aaaf9d5b1653e47ced"},
|
||||||
{file = "regex-2024.5.10-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:ea057306ab469130167014b662643cfaed84651c792948891d003cf0039223a5"},
|
{file = "regex-2024.5.15-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:5b5467acbfc153847d5adb21e21e29847bcb5870e65c94c9206d20eb4e99a384"},
|
||||||
{file = "regex-2024.5.10-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:b43b78f9386d3d932a6ce5af4b45f393d2e93693ee18dc4800d30a8909df700e"},
|
{file = "regex-2024.5.15-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:e6662686aeb633ad65be2a42b4cb00178b3fbf7b91878f9446075c404ada552f"},
|
||||||
{file = "regex-2024.5.10-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:c43395a3b7cc9862801a65c6994678484f186ce13c929abab44fb8a9e473a55a"},
|
{file = "regex-2024.5.15-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:2b4c884767504c0e2401babe8b5b7aea9148680d2e157fa28f01529d1f7fcf67"},
|
||||||
{file = "regex-2024.5.10-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:0bc94873ba11e34837bffd7e5006703abeffc4514e2f482022f46ce05bd25e67"},
|
{file = "regex-2024.5.15-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:3cd7874d57f13bf70078f1ff02b8b0aa48d5b9ed25fc48547516c6aba36f5741"},
|
||||||
{file = "regex-2024.5.10-cp38-cp38-win32.whl", hash = "sha256:1118ba9def608250250f4b3e3f48c62f4562ba16ca58ede491b6e7554bfa09ff"},
|
{file = "regex-2024.5.15-cp38-cp38-win32.whl", hash = "sha256:e4682f5ba31f475d58884045c1a97a860a007d44938c4c0895f41d64481edbc9"},
|
||||||
{file = "regex-2024.5.10-cp38-cp38-win_amd64.whl", hash = "sha256:458d68d34fb74b906709735c927c029e62f7d06437a98af1b5b6258025223210"},
|
{file = "regex-2024.5.15-cp38-cp38-win_amd64.whl", hash = "sha256:d99ceffa25ac45d150e30bd9ed14ec6039f2aad0ffa6bb87a5936f5782fc1569"},
|
||||||
{file = "regex-2024.5.10-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:15e593386ec6331e0ab4ac0795b7593f02ab2f4b30a698beb89fbdc34f92386a"},
|
{file = "regex-2024.5.15-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:13cdaf31bed30a1e1c2453ef6015aa0983e1366fad2667657dbcac7b02f67133"},
|
||||||
{file = "regex-2024.5.10-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:ca23b41355ba95929e9505ee04e55495726aa2282003ed9b012d86f857d3e49b"},
|
{file = "regex-2024.5.15-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:cac27dcaa821ca271855a32188aa61d12decb6fe45ffe3e722401fe61e323cd1"},
|
||||||
{file = "regex-2024.5.10-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:2c8982ee19ccecabbaeac1ba687bfef085a6352a8c64f821ce2f43e6d76a9298"},
|
{file = "regex-2024.5.15-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:7dbe2467273b875ea2de38ded4eba86cbcbc9a1a6d0aa11dcf7bd2e67859c435"},
|
||||||
{file = "regex-2024.5.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7117cb7d6ac7f2e985f3d18aa8a1728864097da1a677ffa69e970ca215baebf1"},
|
{file = "regex-2024.5.15-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:64f18a9a3513a99c4bef0e3efd4c4a5b11228b48aa80743be822b71e132ae4f5"},
|
||||||
{file = "regex-2024.5.10-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b66421f8878a0c82fc0c272a43e2121c8d4c67cb37429b764f0d5ad70b82993b"},
|
{file = "regex-2024.5.15-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d347a741ea871c2e278fde6c48f85136c96b8659b632fb57a7d1ce1872547600"},
|
||||||
{file = "regex-2024.5.10-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:224a9269f133564109ce668213ef3cb32bc72ccf040b0b51c72a50e569e9dc9e"},
|
{file = "regex-2024.5.15-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1878b8301ed011704aea4c806a3cadbd76f84dece1ec09cc9e4dc934cfa5d4da"},
|
||||||
{file = "regex-2024.5.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ab98016541543692a37905871a5ffca59b16e08aacc3d7d10a27297b443f572d"},
|
{file = "regex-2024.5.15-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4babf07ad476aaf7830d77000874d7611704a7fcf68c9c2ad151f5d94ae4bfc4"},
|
||||||
{file = "regex-2024.5.10-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:51d27844763c273a122e08a3e86e7aefa54ee09fb672d96a645ece0454d8425e"},
|
{file = "regex-2024.5.15-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:35cb514e137cb3488bce23352af3e12fb0dbedd1ee6e60da053c69fb1b29cc6c"},
|
||||||
{file = "regex-2024.5.10-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:853cc36e756ff673bf984e9044ccc8fad60b95a748915dddeab9488aea974c73"},
|
{file = "regex-2024.5.15-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:cdd09d47c0b2efee9378679f8510ee6955d329424c659ab3c5e3a6edea696294"},
|
||||||
{file = "regex-2024.5.10-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:4e7eaf9df15423d07b6050fb91f86c66307171b95ea53e2d87a7993b6d02c7f7"},
|
{file = "regex-2024.5.15-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:72d7a99cd6b8f958e85fc6ca5b37c4303294954eac1376535b03c2a43eb72629"},
|
||||||
{file = "regex-2024.5.10-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:169fd0acd7a259f58f417e492e93d0e15fc87592cd1e971c8c533ad5703b5830"},
|
{file = "regex-2024.5.15-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:a094801d379ab20c2135529948cb84d417a2169b9bdceda2a36f5f10977ebc16"},
|
||||||
{file = "regex-2024.5.10-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:334b79ce9c08f26b4659a53f42892793948a613c46f1b583e985fd5a6bf1c149"},
|
{file = "regex-2024.5.15-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:c0c18345010870e58238790a6779a1219b4d97bd2e77e1140e8ee5d14df071aa"},
|
||||||
{file = "regex-2024.5.10-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:f03b1dbd4d9596dd84955bb40f7d885204d6aac0d56a919bb1e0ff2fb7e1735a"},
|
{file = "regex-2024.5.15-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:16093f563098448ff6b1fa68170e4acbef94e6b6a4e25e10eae8598bb1694b5d"},
|
||||||
{file = "regex-2024.5.10-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:cfa6d61a76c77610ba9274c1a90a453062bdf6887858afbe214d18ad41cf6bde"},
|
{file = "regex-2024.5.15-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:e38a7d4e8f633a33b4c7350fbd8bad3b70bf81439ac67ac38916c4a86b465456"},
|
||||||
{file = "regex-2024.5.10-cp39-cp39-win32.whl", hash = "sha256:249fbcee0a277c32a3ce36d8e36d50c27c968fdf969e0fbe342658d4e010fbc8"},
|
{file = "regex-2024.5.15-cp39-cp39-win32.whl", hash = "sha256:71a455a3c584a88f654b64feccc1e25876066c4f5ef26cd6dd711308aa538694"},
|
||||||
{file = "regex-2024.5.10-cp39-cp39-win_amd64.whl", hash = "sha256:0ce56a923f4c01d7568811bfdffe156268c0a7aae8a94c902b92fe34c4bde785"},
|
{file = "regex-2024.5.15-cp39-cp39-win_amd64.whl", hash = "sha256:cab12877a9bdafde5500206d1020a584355a97884dfd388af3699e9137bf7388"},
|
||||||
{file = "regex-2024.5.10.tar.gz", hash = "sha256:304e7e2418146ae4d0ef0e9ffa28f881f7874b45b4994cc2279b21b6e7ae50c8"},
|
{file = "regex-2024.5.15.tar.gz", hash = "sha256:d3ee02d9e5f482cc8309134a91eeaacbdd2261ba111b0fef3748eeb4913e6a2c"},
|
||||||
]
|
]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
@@ -3192,22 +3175,22 @@ use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"]
|
|||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "rerun-sdk"
|
name = "rerun-sdk"
|
||||||
version = "0.15.1"
|
version = "0.16.0"
|
||||||
description = "The Rerun Logging SDK"
|
description = "The Rerun Logging SDK"
|
||||||
optional = false
|
optional = false
|
||||||
python-versions = "<3.13,>=3.8"
|
python-versions = "<3.13,>=3.8"
|
||||||
files = [
|
files = [
|
||||||
{file = "rerun_sdk-0.15.1-cp38-abi3-macosx_10_12_x86_64.whl", hash = "sha256:be8f4e55c53bd9734bd0b8e91a9765daeb55e56caddc1bacdb358d12121daaa0"},
|
{file = "rerun_sdk-0.16.0-cp38-abi3-macosx_10_12_x86_64.whl", hash = "sha256:1cc6dc66d089e296f945dc238301889efb61dd6d338b5d00f76981cf7aed0a74"},
|
||||||
{file = "rerun_sdk-0.15.1-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:e039ed441b6dcd5939e20f0f67fef4ffd54645777574822f48cd6f636efa3756"},
|
{file = "rerun_sdk-0.16.0-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:faf231897655e46eb975695df2b0ace07db362d697e697f9a3dff52f81c0dc5d"},
|
||||||
{file = "rerun_sdk-0.15.1-cp38-abi3-manylinux_2_31_aarch64.whl", hash = "sha256:5c067ba1c3304a0bb74bd33df8f7145ce7d405c823bfc8709396bbdd672a759e"},
|
{file = "rerun_sdk-0.16.0-cp38-abi3-manylinux_2_31_aarch64.whl", hash = "sha256:860a6394380d3e9b9e48bf34423bd56dda54d5b0158d2ae0e433698659b34198"},
|
||||||
{file = "rerun_sdk-0.15.1-cp38-abi3-manylinux_2_31_x86_64.whl", hash = "sha256:e8a96fff6e0c184a59b433430f5f87c96895e4b69dc0e43abb56a0e0737edc35"},
|
{file = "rerun_sdk-0.16.0-cp38-abi3-manylinux_2_31_x86_64.whl", hash = "sha256:5b8d1476f73a3ad1a5d3f21b61c633f3ab62aa80fa0b049f5ad10bf1227681ab"},
|
||||||
{file = "rerun_sdk-0.15.1-cp38-abi3-win_amd64.whl", hash = "sha256:377a888e0cbe06835f376cd160ab322e9935ebd1317384381856236bd4347950"},
|
{file = "rerun_sdk-0.16.0-cp38-abi3-win_amd64.whl", hash = "sha256:aff0051a263b8c3067243c0126d319845baf4fe640899f04aeef7daf151f35e4"},
|
||||||
]
|
]
|
||||||
|
|
||||||
[package.dependencies]
|
[package.dependencies]
|
||||||
attrs = ">=23.1.0"
|
attrs = ">=23.1.0"
|
||||||
numpy = ">=1.23,<2"
|
numpy = ">=1.23,<2"
|
||||||
pillow = "*"
|
pillow = ">=8.0.0"
|
||||||
pyarrow = ">=14.0.2"
|
pyarrow = ">=14.0.2"
|
||||||
typing-extensions = ">=4.5"
|
typing-extensions = ">=4.5"
|
||||||
|
|
||||||
@@ -3423,13 +3406,13 @@ test = ["array-api-strict", "asv", "gmpy2", "hypothesis (>=6.30)", "mpmath", "po
|
|||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "sentry-sdk"
|
name = "sentry-sdk"
|
||||||
version = "2.1.1"
|
version = "2.2.0"
|
||||||
description = "Python client for Sentry (https://sentry.io)"
|
description = "Python client for Sentry (https://sentry.io)"
|
||||||
optional = false
|
optional = false
|
||||||
python-versions = ">=3.6"
|
python-versions = ">=3.6"
|
||||||
files = [
|
files = [
|
||||||
{file = "sentry_sdk-2.1.1-py2.py3-none-any.whl", hash = "sha256:99aeb78fb76771513bd3b2829d12613130152620768d00cd3e45ac00cb17950f"},
|
{file = "sentry_sdk-2.2.0-py2.py3-none-any.whl", hash = "sha256:674f58da37835ea7447fe0e34c57b4a4277fad558b0a7cb4a6c83bcb263086be"},
|
||||||
{file = "sentry_sdk-2.1.1.tar.gz", hash = "sha256:95d8c0bb41c8b0bc37ab202c2c4a295bb84398ee05f4cdce55051cd75b926ec1"},
|
{file = "sentry_sdk-2.2.0.tar.gz", hash = "sha256:70eca103cf4c6302365a9d7cf522e7ed7720828910eb23d43ada8e50d1ecda9d"},
|
||||||
]
|
]
|
||||||
|
|
||||||
[package.dependencies]
|
[package.dependencies]
|
||||||
@@ -3921,13 +3904,13 @@ zstd = ["zstandard (>=0.18.0)"]
|
|||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "virtualenv"
|
name = "virtualenv"
|
||||||
version = "20.26.1"
|
version = "20.26.2"
|
||||||
description = "Virtual Python Environment builder"
|
description = "Virtual Python Environment builder"
|
||||||
optional = true
|
optional = true
|
||||||
python-versions = ">=3.7"
|
python-versions = ">=3.7"
|
||||||
files = [
|
files = [
|
||||||
{file = "virtualenv-20.26.1-py3-none-any.whl", hash = "sha256:7aa9982a728ae5892558bff6a2839c00b9ed145523ece2274fad6f414690ae75"},
|
{file = "virtualenv-20.26.2-py3-none-any.whl", hash = "sha256:a624db5e94f01ad993d476b9ee5346fdf7b9de43ccaee0e0197012dc838a0e9b"},
|
||||||
{file = "virtualenv-20.26.1.tar.gz", hash = "sha256:604bfdceaeece392802e6ae48e69cec49168b9c5f4a44e483963f9242eb0e78b"},
|
{file = "virtualenv-20.26.2.tar.gz", hash = "sha256:82bf0f4eebbb78d36ddaee0283d43fe5736b53880b8a8cdcd37390a07ac3741c"},
|
||||||
]
|
]
|
||||||
|
|
||||||
[package.dependencies]
|
[package.dependencies]
|
||||||
@@ -4203,13 +4186,13 @@ multidict = ">=4.0"
|
|||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "zarr"
|
name = "zarr"
|
||||||
version = "2.18.0"
|
version = "2.18.1"
|
||||||
description = "An implementation of chunked, compressed, N-dimensional arrays for Python"
|
description = "An implementation of chunked, compressed, N-dimensional arrays for Python"
|
||||||
optional = false
|
optional = false
|
||||||
python-versions = ">=3.9"
|
python-versions = ">=3.9"
|
||||||
files = [
|
files = [
|
||||||
{file = "zarr-2.18.0-py3-none-any.whl", hash = "sha256:7f8532b6a3f50f22e809e130e09353637ec8b5bb5e95a5a0bfaae91f63978b5d"},
|
{file = "zarr-2.18.1-py3-none-any.whl", hash = "sha256:a1770d194eec4ec0a41a01295a6f724e1c3471d704d3aca906d3b3a7f8830245"},
|
||||||
{file = "zarr-2.18.0.tar.gz", hash = "sha256:c3b7d2c85b8a42b0ad0ad268a36fb6886ca852098358c125c6b126a417e0a598"},
|
{file = "zarr-2.18.1.tar.gz", hash = "sha256:28c360ed123e606c425a694a83300227a907cb86a995fc9eef620ecafbe5f92d"},
|
||||||
]
|
]
|
||||||
|
|
||||||
[package.dependencies]
|
[package.dependencies]
|
||||||
@@ -4224,18 +4207,18 @@ jupyter = ["ipytree (>=0.2.2)", "ipywidgets (>=8.0.0)", "notebook"]
|
|||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "zipp"
|
name = "zipp"
|
||||||
version = "3.18.1"
|
version = "3.18.2"
|
||||||
description = "Backport of pathlib-compatible object wrapper for zip files"
|
description = "Backport of pathlib-compatible object wrapper for zip files"
|
||||||
optional = false
|
optional = false
|
||||||
python-versions = ">=3.8"
|
python-versions = ">=3.8"
|
||||||
files = [
|
files = [
|
||||||
{file = "zipp-3.18.1-py3-none-any.whl", hash = "sha256:206f5a15f2af3dbaee80769fb7dc6f249695e940acca08dfb2a4769fe61e538b"},
|
{file = "zipp-3.18.2-py3-none-any.whl", hash = "sha256:dce197b859eb796242b0622af1b8beb0a722d52aa2f57133ead08edd5bf5374e"},
|
||||||
{file = "zipp-3.18.1.tar.gz", hash = "sha256:2884ed22e7d8961de1c9a05142eb69a247f120291bc0206a00a7642f09b5b715"},
|
{file = "zipp-3.18.2.tar.gz", hash = "sha256:6278d9ddbcfb1f1089a88fde84481528b07b0e10474e09dcfe53dad4069fa059"},
|
||||||
]
|
]
|
||||||
|
|
||||||
[package.extras]
|
[package.extras]
|
||||||
docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"]
|
docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"]
|
||||||
testing = ["big-O", "jaraco.functools", "jaraco.itertools", "more-itertools", "pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-ignore-flaky", "pytest-mypy", "pytest-ruff (>=0.2.1)"]
|
testing = ["big-O", "jaraco.functools", "jaraco.itertools", "jaraco.test", "more-itertools", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-ignore-flaky", "pytest-mypy", "pytest-ruff (>=0.2.1)"]
|
||||||
|
|
||||||
[extras]
|
[extras]
|
||||||
aloha = ["gym-aloha"]
|
aloha = ["gym-aloha"]
|
||||||
@@ -4248,4 +4231,4 @@ xarm = ["gym-xarm"]
|
|||||||
[metadata]
|
[metadata]
|
||||||
lock-version = "2.0"
|
lock-version = "2.0"
|
||||||
python-versions = ">=3.10,<3.13"
|
python-versions = ">=3.10,<3.13"
|
||||||
content-hash = "e4834d67df32c8c617c259b0e59bb33ddaccde08fe940d771e74046cbffe3399"
|
content-hash = "c3044329cfad91ffd91b411e85f16d8dfdcdfd7b9186d38fff5e18f4ee647e7b"
|
||||||
|
|||||||
@@ -41,7 +41,7 @@ numba = ">=0.59.0"
|
|||||||
torch = "^2.2.1"
|
torch = "^2.2.1"
|
||||||
opencv-python = ">=4.9.0"
|
opencv-python = ">=4.9.0"
|
||||||
diffusers = "^0.27.2"
|
diffusers = "^0.27.2"
|
||||||
torchvision = ">=0.18.0"
|
torchvision = ">=0.17.1"
|
||||||
h5py = ">=3.10.0"
|
h5py = ">=3.10.0"
|
||||||
huggingface-hub = {extras = ["hf-transfer"], version = "^0.23.0"}
|
huggingface-hub = {extras = ["hf-transfer"], version = "^0.23.0"}
|
||||||
gymnasium = ">=0.29.1"
|
gymnasium = ">=0.29.1"
|
||||||
|
|||||||
@@ -115,6 +115,7 @@ def test_compute_stats_on_xarm():
|
|||||||
|
|
||||||
# reduce size of dataset sample on which stats compute is tested to 10 frames
|
# reduce size of dataset sample on which stats compute is tested to 10 frames
|
||||||
dataset.hf_dataset = dataset.hf_dataset.select(range(10))
|
dataset.hf_dataset = dataset.hf_dataset.select(range(10))
|
||||||
|
dataset.index = [i for i in dataset.index if i < 10]
|
||||||
|
|
||||||
# Note: we set the batch size to be smaller than the whole dataset to make sure we are testing batched
|
# Note: we set the batch size to be smaller than the whole dataset to make sure we are testing batched
|
||||||
# computation of the statistics. While doing this, we also make sure it works when we don't divide the
|
# computation of the statistics. While doing this, we also make sure it works when we don't divide the
|
||||||
|
|||||||
@@ -45,11 +45,11 @@ def test_example_1():
|
|||||||
|
|
||||||
|
|
||||||
@require_package("gym_pusht")
|
@require_package("gym_pusht")
|
||||||
def test_examples_2_through_4():
|
def test_examples_basic2_basic3_advanced1():
|
||||||
"""
|
"""
|
||||||
Train a model with example 3, check the outputs.
|
Train a model with example 3, check the outputs.
|
||||||
Evaluate the trained model with example 2, check the outputs.
|
Evaluate the trained model with example 2, check the outputs.
|
||||||
Calculate the validation loss with example 4, check the outputs.
|
Calculate the validation loss with advanced example 1, check the outputs.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
### Test example 3
|
### Test example 3
|
||||||
@@ -97,7 +97,7 @@ def test_examples_2_through_4():
|
|||||||
assert Path("outputs/eval/example_pusht_diffusion/rollout.mp4").exists()
|
assert Path("outputs/eval/example_pusht_diffusion/rollout.mp4").exists()
|
||||||
|
|
||||||
## Test example 4
|
## Test example 4
|
||||||
file_contents = _read_file("examples/4_calculate_validation_loss.py")
|
file_contents = _read_file("examples/advanced/2_calculate_validation_loss.py")
|
||||||
|
|
||||||
# Run on a single example from the last episode, use CPU, and use the local model.
|
# Run on a single example from the last episode, use CPU, and use the local model.
|
||||||
file_contents = _find_and_replace(
|
file_contents = _find_and_replace(
|
||||||
|
|||||||
Reference in New Issue
Block a user