Compare commits

...

9 Commits

Author SHA1 Message Date
Simon Alibert
c6a61e3ba2 WIP 2024-05-21 16:31:48 +02:00
Simon Alibert
62d3546f08 Move dependencies to extra 2024-05-21 16:29:44 +02:00
Simon Alibert
956f035d16 Merge remote-tracking branch 'origin/main' into user/aliberts/2024_05_14_compare_policies 2024-05-21 10:14:10 +02:00
Alexander Soare
b6c216b590 Add Automatic Mixed Precision option for training and evaluation. (#199) 2024-05-20 18:57:54 +01:00
Alexander Soare
2b270d085b Disable online training (#202)
Co-authored-by: Remi <re.cadene@gmail.com>
2024-05-20 18:27:54 +01:00
Simon Alibert
eb530fa595 Add '--independent' flag 2024-05-16 19:31:57 +02:00
Simon Alibert
fe31b7f4b7 Merge remote-tracking branch 'origin/main' into user/aliberts/2024_05_14_compare_policies 2024-05-16 17:04:33 +02:00
Simon Alibert
8f5cfcd73d Add argparse, refactor & cleanup 2024-05-16 16:55:40 +02:00
Simon Alibert
10036c1219 WIP add score tests 2024-05-15 17:50:12 +02:00
8 changed files with 839 additions and 197 deletions

View File

@@ -20,6 +20,8 @@ build-gpu:
test-end-to-end:
${MAKE} test-act-ete-train
${MAKE} test-act-ete-eval
${MAKE} test-act-ete-train-amp
${MAKE} test-act-ete-eval-amp
${MAKE} test-diffusion-ete-train
${MAKE} test-diffusion-ete-eval
${MAKE} test-tdmpc-ete-train
@@ -29,6 +31,7 @@ test-end-to-end:
test-act-ete-train:
python lerobot/scripts/train.py \
policy=act \
policy.dim_model=64 \
env=aloha \
wandb.enable=False \
training.offline_steps=2 \
@@ -51,9 +54,40 @@ test-act-ete-eval:
env.episode_length=8 \
device=cpu \
test-act-ete-train-amp:
python lerobot/scripts/train.py \
policy=act \
policy.dim_model=64 \
env=aloha \
wandb.enable=False \
training.offline_steps=2 \
training.online_steps=0 \
eval.n_episodes=1 \
eval.batch_size=1 \
device=cpu \
training.save_model=true \
training.save_freq=2 \
policy.n_action_steps=20 \
policy.chunk_size=20 \
training.batch_size=2 \
hydra.run.dir=tests/outputs/act/ \
use_amp=true
test-act-ete-eval-amp:
python lerobot/scripts/eval.py \
-p tests/outputs/act/checkpoints/000002 \
eval.n_episodes=1 \
eval.batch_size=1 \
env.episode_length=8 \
device=cpu \
use_amp=true
test-diffusion-ete-train:
python lerobot/scripts/train.py \
policy=diffusion \
policy.down_dims=\[64,128,256\] \
policy.diffusion_step_embed_dim=32 \
policy.num_inference_steps=10 \
env=pusht \
wandb.enable=False \
training.offline_steps=2 \
@@ -74,6 +108,7 @@ test-diffusion-ete-eval:
env.episode_length=8 \
device=cpu \
# TODO(alexander-soare): Restore online_steps to 2 when it is reinstated.
test-tdmpc-ete-train:
python lerobot/scripts/train.py \
policy=tdmpc \
@@ -82,7 +117,7 @@ test-tdmpc-ete-train:
dataset_repo_id=lerobot/xarm_lift_medium \
wandb.enable=False \
training.offline_steps=2 \
training.online_steps=2 \
training.online_steps=0 \
eval.n_episodes=1 \
eval.batch_size=1 \
env.episode_length=2 \
@@ -100,7 +135,6 @@ test-tdmpc-ete-eval:
env.episode_length=8 \
device=cpu \
test-default-ete-eval:
python lerobot/scripts/eval.py \
--config lerobot/configs/default.yaml \

View File

@@ -10,6 +10,9 @@ hydra:
name: default
device: cuda # cpu
# `use_amp` determines whether to use Automatic Mixed Precision (AMP) for training and evaluation. With AMP,
# automatic gradient scaling is used.
use_amp: false
# `seed` is used for training (eg: model initialization, dataset shuffling)
# AND for the evaluation environments.
seed: ???
@@ -17,6 +20,7 @@ dataset_repo_id: lerobot/pusht
training:
offline_steps: ???
# NOTE: `online_steps` is not implemented yet. It's here as a placeholder.
online_steps: ???
online_steps_between_rollouts: ???
online_sampling_ratio: 0.5

View File

@@ -5,7 +5,8 @@ dataset_repo_id: lerobot/xarm_lift_medium
training:
offline_steps: 25000
online_steps: 25000
# TODO(alexander-soare): uncomment when online training gets reinstated
online_steps: 0 # 25000 not implemented yet
eval_freq: 5000
online_steps_between_rollouts: 1
online_sampling_ratio: 0.5

View File

@@ -0,0 +1,340 @@
"""Compare two policies on based on metrics computed from an eval.
Usage example:
You just made changes to a policy and you want to assess its new performance against
the reference policy (i.e. before your changes).
```
python lerobot/scripts/compare_policies.py \
output/eval/ref_policy/eval_info.json \
output/eval/new_policy/eval_info.json
```
This script can accept `eval_info.json` dicts with identical seeds between each eval episode of ref_policy and
new_policy (paired-samples) or from evals performed with different seeds (independent samples).
The script will first perform normality tests to determine if parametric tests can be used or not, then
evaluate if policies metrics are significantly different using the appropriate tests.
CAVEATS: by default, this script will compare seeds numbers to determine if samples can be considered paired.
If changes have been made to this environment in-between the ref_policy eval and the new_policy eval, you
should use the `--independent` flag to override this and not pair the samples even if they have identical
seeds.
"""
import argparse
import json
import logging
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as stats
from scipy.stats import anderson, kstest, mannwhitneyu, normaltest, shapiro, ttest_ind, ttest_rel, wilcoxon
from statsmodels.stats.contingency_tables import mcnemar
from termcolor import colored
from terminaltables import AsciiTable
def init_logging() -> None:
logging.basicConfig(
level=logging.INFO,
format="%(message)s",
handlers=[logging.StreamHandler()],
)
logging.getLogger("matplotlib.font_manager").disabled = True
def log_section(title: str) -> None:
section_title = f"\n{'-'*21}\n {title.center(19)} \n{'-'*21}"
logging.info(section_title)
def log_test(msg: str, p_value: float):
if p_value < 0.01:
color, interpretation = "red", "H_0 Rejected"
elif 0.01 <= p_value < 0.05:
color, interpretation = "yellow", "Inconclusive"
else:
color, interpretation = "green", "H_0 Not Rejected"
logging.info(
f"{msg}, p-value = {colored(f'{p_value:.3f}', color)} -> {colored(f'{interpretation}', color, attrs=['bold'])}"
)
def get_eval_info_episodes(eval_info_path: Path) -> dict:
with open(eval_info_path) as f:
eval_info = json.load(f)
return {
"sum_rewards": np.array([ep_stat["sum_reward"] for ep_stat in eval_info["per_episode"]]),
"max_rewards": np.array([ep_stat["max_reward"] for ep_stat in eval_info["per_episode"]]),
"successes": np.array([ep_stat["success"] for ep_stat in eval_info["per_episode"]]),
"seeds": [ep_stat["seed"] for ep_stat in eval_info["per_episode"]],
"num_episodes": len(eval_info["per_episode"]),
}
def append_table_metric(table: list, metric: str, ref_sample: dict, new_sample: dict, mean_std: bool = False):
if mean_std:
ref_metric = f"{np.mean(ref_sample[metric]):.3f} ({np.std(ref_sample[metric]):.3f})"
new_metric = f"{np.mean(new_sample[metric]):.3f} ({np.std(new_sample[metric]):.3f})"
row_header = f"{metric} - mean (std)"
else:
ref_metric = ref_sample[metric]
new_metric = new_sample[metric]
row_header = metric
row = [row_header, ref_metric, new_metric]
table.append(row)
return table
def cohens_d(x, y):
return (np.mean(x) - np.mean(y)) / np.sqrt((np.std(x, ddof=1) ** 2 + np.std(y, ddof=1) ** 2) / 2)
def normality_tests(array: np.ndarray, name: str):
ap_stat, ap_p = normaltest(array)
sw_stat, sw_p = shapiro(array)
ks_stat, ks_p = kstest(array, "norm", args=(np.mean(array), np.std(array)))
ad_stat = anderson(array)
log_test(f"{name} - D'Agostino and Pearson test: statistic = {ap_stat:.3f}", ap_p)
log_test(f"{name} - Shapiro-Wilk test: statistic = {sw_stat:.3f}", sw_p)
log_test(f"{name} - Kolmogorov-Smirnov test: statistic = {ks_stat:.3f}", ks_p)
logging.info(f"{name} - Anderson-Darling test: statistic = {ad_stat.statistic:.3f}")
for i in range(len(ad_stat.critical_values)):
cv, sl = ad_stat.critical_values[i], ad_stat.significance_level[i]
logging.info(f" Critical value at {sl}%: {cv:.3f}")
return sw_p > 0.05 and ks_p > 0.05
def perform_tests(ref_sample: dict, new_sample: dict, output_dir: Path, independent: bool = False):
seeds_a, seeds_b = ref_sample["seeds"], new_sample["seeds"]
if (seeds_a == seeds_b) and not independent:
logging.info("\nSamples are paired (identical seeds).")
paired = True
else:
logging.info("\nSamples are considered independent (seeds are different).")
paired = False
table_data = [["Metric", "Ref.", "New"]]
table_data = append_table_metric(table_data, "num_episodes", ref_sample, new_sample)
table_data = append_table_metric(table_data, "successes", ref_sample, new_sample, mean_std=True)
table_data = append_table_metric(table_data, "max_rewards", ref_sample, new_sample, mean_std=True)
table_data = append_table_metric(table_data, "sum_rewards", ref_sample, new_sample, mean_std=True)
table = AsciiTable(table_data)
print(table.table)
log_section("Effect Size")
d_max_reward = cohens_d(ref_sample["max_rewards"], new_sample["max_rewards"])
d_sum_reward = cohens_d(ref_sample["sum_rewards"], new_sample["sum_rewards"])
logging.info(f"Cohen's d for Max Reward: {d_max_reward:.3f}")
logging.info(f"Cohen's d for Sum Reward: {d_sum_reward:.3f}")
if paired:
paired_sample_tests(ref_sample, new_sample)
else:
independent_sample_tests(ref_sample, new_sample)
output_dir.mkdir(exist_ok=True, parents=True)
plot_boxplot(
ref_sample["max_rewards"],
new_sample["max_rewards"],
["Ref Sample Max Reward", "New Sample Max Reward"],
"Boxplot of Max Rewards",
f"{output_dir}/boxplot_max_reward.png",
)
plot_boxplot(
ref_sample["sum_rewards"],
new_sample["sum_rewards"],
["Ref Sample Sum Reward", "New Sample Sum Reward"],
"Boxplot of Sum Rewards",
f"{output_dir}/boxplot_sum_reward.png",
)
plot_histogram(
ref_sample["max_rewards"],
new_sample["max_rewards"],
["Ref Sample Max Reward", "New Sample Max Reward"],
"Histogram of Max Rewards",
f"{output_dir}/histogram_max_reward.png",
)
plot_histogram(
ref_sample["sum_rewards"],
new_sample["sum_rewards"],
["Ref Sample Sum Reward", "New Sample Sum Reward"],
"Histogram of Sum Rewards",
f"{output_dir}/histogram_sum_reward.png",
)
plot_qqplot(
ref_sample["max_rewards"],
"Q-Q Plot of Ref Sample Max Rewards",
f"{output_dir}/qqplot_sample_a_max_reward.png",
)
plot_qqplot(
new_sample["max_rewards"],
"Q-Q Plot of New Sample Max Rewards",
f"{output_dir}/qqplot_sample_b_max_reward.png",
)
plot_qqplot(
ref_sample["sum_rewards"],
"Q-Q Plot of Ref Sample Sum Rewards",
f"{output_dir}/qqplot_sample_a_sum_reward.png",
)
plot_qqplot(
new_sample["sum_rewards"],
"Q-Q Plot of New Sample Sum Rewards",
f"{output_dir}/qqplot_sample_b_sum_reward.png",
)
def paired_sample_tests(ref_sample: dict, new_sample: dict):
log_section("Normality tests")
max_reward_diff = ref_sample["max_rewards"] - new_sample["max_rewards"]
sum_reward_diff = ref_sample["sum_rewards"] - new_sample["sum_rewards"]
normal_max_reward_diff = normality_tests(max_reward_diff, "Max Reward Difference")
normal_sum_reward_diff = normality_tests(sum_reward_diff, "Sum Reward Difference")
log_section("Paired-sample tests")
if normal_max_reward_diff:
t_stat_max_reward, p_val_max_reward = ttest_rel(ref_sample["max_rewards"], new_sample["max_rewards"])
log_test(f"Paired t-test for Max Reward: t-statistic = {t_stat_max_reward:.3f}", p_val_max_reward)
else:
w_stat_max_reward, p_wilcox_max_reward = wilcoxon(
ref_sample["max_rewards"], new_sample["max_rewards"]
)
log_test(f"Wilcoxon test for Max Reward: statistic = {w_stat_max_reward:.3f}", p_wilcox_max_reward)
if normal_sum_reward_diff:
t_stat_sum_reward, p_val_sum_reward = ttest_rel(ref_sample["sum_rewards"], new_sample["sum_rewards"])
log_test(f"Paired t-test for Sum Reward: t-statistic = {t_stat_sum_reward:.3f}", p_val_sum_reward)
else:
w_stat_sum_reward, p_wilcox_sum_reward = wilcoxon(
ref_sample["sum_rewards"], new_sample["sum_rewards"]
)
log_test(f"Wilcoxon test for Sum Reward: statistic = {w_stat_sum_reward:.3f}", p_wilcox_sum_reward)
table = np.array(
[
[
np.sum((ref_sample["successes"] == 1) & (new_sample["successes"] == 1)),
np.sum((ref_sample["successes"] == 1) & (new_sample["successes"] == 0)),
],
[
np.sum((ref_sample["successes"] == 0) & (new_sample["successes"] == 1)),
np.sum((ref_sample["successes"] == 0) & (new_sample["successes"] == 0)),
],
]
)
mcnemar_result = mcnemar(table, exact=True)
log_test(f"McNemar's test for Success: statistic = {mcnemar_result.statistic:.3f}", mcnemar_result.pvalue)
def independent_sample_tests(ref_sample: dict, new_sample: dict):
log_section("Normality tests")
normal_max_rewards_a = normality_tests(ref_sample["max_rewards"], "Max Rewards Ref Sample")
normal_max_rewards_b = normality_tests(new_sample["max_rewards"], "Max Rewards New Sample")
normal_sum_rewards_a = normality_tests(ref_sample["sum_rewards"], "Sum Rewards Ref Sample")
normal_sum_rewards_b = normality_tests(new_sample["sum_rewards"], "Sum Rewards New Sample")
log_section("Independent samples tests")
table = [["Test", "max_rewards", "sum_rewards"]]
if normal_max_rewards_a and normal_max_rewards_b:
table = append_independent_test(
table, ref_sample, new_sample, ttest_ind, "Two-Sample t-test", kwargs={"equal_var": False}
)
t_stat_max_reward, p_val_max_reward = ttest_ind(
ref_sample["max_rewards"], new_sample["max_rewards"], equal_var=False
)
log_test(f"Two-Sample t-test for Max Reward: t-statistic = {t_stat_max_reward:.3f}", p_val_max_reward)
else:
table = append_independent_test(table, ref_sample, new_sample, mannwhitneyu, "Mann-Whitney U")
u_stat_max_reward, p_u_max_reward = mannwhitneyu(ref_sample["max_rewards"], new_sample["max_rewards"])
log_test(f"Mann-Whitney U test for Max Reward: U-statistic = {u_stat_max_reward:.3f}", p_u_max_reward)
if normal_sum_rewards_a and normal_sum_rewards_b:
t_stat_sum_reward, p_val_sum_reward = ttest_ind(
ref_sample["sum_rewards"], new_sample["sum_rewards"], equal_var=False
)
log_test(f"Two-Sample t-test for Sum Reward: t-statistic = {t_stat_sum_reward:.3f}", p_val_sum_reward)
else:
u_stat_sum_reward, p_u_sum_reward = mannwhitneyu(ref_sample["sum_rewards"], new_sample["sum_rewards"])
log_test(f"Mann-Whitney U test for Sum Reward: U-statistic = {u_stat_sum_reward:.3f}", p_u_sum_reward)
table = AsciiTable(table)
print(table.table)
def append_independent_test(
table: list,
ref_sample: dict,
new_sample: dict,
test: callable,
test_name: str,
kwargs: dict | None = None,
) -> list:
kwargs = {} if kwargs is None else kwargs
row = [f"{test_name}: p-value ≥ alpha"]
for metric in table[0][1:]:
_, p_val = test(ref_sample[metric], new_sample[metric], **kwargs)
alpha = 0.05
status = "" if p_val >= alpha else ""
row.append(f"{status} {p_val:.3f}{alpha}")
table.append(row)
return table
def plot_boxplot(data_a: np.ndarray, data_b: np.ndarray, labels: list[str], title: str, filename: str):
plt.boxplot([data_a, data_b], labels=labels)
plt.title(title)
plt.savefig(filename)
plt.close()
def plot_histogram(data_a: np.ndarray, data_b: np.ndarray, labels: list[str], title: str, filename: str):
plt.hist(data_a, bins=30, alpha=0.7, label=labels[0])
plt.hist(data_b, bins=30, alpha=0.7, label=labels[1])
plt.title(title)
plt.legend()
plt.savefig(filename)
plt.close()
def plot_qqplot(data: np.ndarray, title: str, filename: str):
stats.probplot(data, dist="norm", plot=plt)
plt.title(title)
plt.savefig(filename)
plt.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter
)
parser.add_argument("ref_sample_path", type=Path, help="Path to the reference sample JSON file.")
parser.add_argument("new_sample_path", type=Path, help="Path to the new sample JSON file.")
parser.add_argument(
"--independent",
action="store_true",
help="Ignore seeds and consider samples to be independent (unpaired).",
)
parser.add_argument(
"--output_dir",
type=Path,
default=Path("outputs/compare/"),
help="Directory to save the output results. Defaults to outputs/compare/",
)
args = parser.parse_args()
init_logging()
ref_sample = get_eval_info_episodes(args.ref_sample_path)
new_sample = get_eval_info_episodes(args.new_sample_path)
perform_tests(ref_sample, new_sample, args.output_dir, args.independent)

View File

@@ -46,6 +46,7 @@ import json
import logging
import threading
import time
from contextlib import nullcontext
from copy import deepcopy
from datetime import datetime as dt
from pathlib import Path
@@ -520,7 +521,7 @@ def eval(
raise NotImplementedError()
# Check device is available
get_safe_torch_device(hydra_cfg.device, log=True)
device = get_safe_torch_device(hydra_cfg.device, log=True)
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
@@ -539,16 +540,17 @@ def eval(
policy = make_policy(hydra_cfg=hydra_cfg, dataset_stats=make_dataset(hydra_cfg).stats)
policy.eval()
info = eval_policy(
env,
policy,
hydra_cfg.eval.n_episodes,
max_episodes_rendered=10,
video_dir=Path(out_dir) / "eval",
start_seed=hydra_cfg.seed,
enable_progbar=True,
enable_inner_progbar=True,
)
with torch.no_grad(), torch.autocast(device_type=device.type) if hydra_cfg.use_amp else nullcontext():
info = eval_policy(
env,
policy,
hydra_cfg.eval.n_episodes,
max_episodes_rendered=10,
video_dir=Path(out_dir) / "eval",
start_seed=hydra_cfg.seed,
enable_progbar=True,
enable_inner_progbar=True,
)
print(info["aggregated"])
# Save info

View File

@@ -15,15 +15,14 @@
# limitations under the License.
import logging
import time
from contextlib import nullcontext
from copy import deepcopy
from pathlib import Path
import datasets
import hydra
import torch
from datasets import concatenate_datasets
from datasets.utils import disable_progress_bars, enable_progress_bars
from omegaconf import DictConfig
from torch.cuda.amp import GradScaler
from lerobot.common.datasets.factory import make_dataset
from lerobot.common.datasets.utils import cycle
@@ -31,6 +30,7 @@ from lerobot.common.envs.factory import make_env
from lerobot.common.logger import Logger, log_output_dir
from lerobot.common.policies.factory import make_policy
from lerobot.common.policies.policy_protocol import PolicyWithUpdate
from lerobot.common.policies.utils import get_device_from_parameters
from lerobot.common.utils.utils import (
format_big_number,
get_safe_torch_device,
@@ -69,7 +69,6 @@ def make_optimizer_and_scheduler(cfg, policy):
cfg.training.adam_eps,
cfg.training.adam_weight_decay,
)
assert cfg.training.online_steps == 0, "Diffusion Policy does not handle online training."
from diffusers.optimization import get_scheduler
lr_scheduler = get_scheduler(
@@ -87,21 +86,40 @@ def make_optimizer_and_scheduler(cfg, policy):
return optimizer, lr_scheduler
def update_policy(policy, batch, optimizer, grad_clip_norm, lr_scheduler=None):
def update_policy(
policy,
batch,
optimizer,
grad_clip_norm,
grad_scaler: GradScaler,
lr_scheduler=None,
use_amp: bool = False,
):
"""Returns a dictionary of items for logging."""
start_time = time.time()
start_time = time.perf_counter()
device = get_device_from_parameters(policy)
policy.train()
output_dict = policy.forward(batch)
# TODO(rcadene): policy.unnormalize_outputs(out_dict)
loss = output_dict["loss"]
loss.backward()
with torch.autocast(device_type=device.type) if use_amp else nullcontext():
output_dict = policy.forward(batch)
# TODO(rcadene): policy.unnormalize_outputs(out_dict)
loss = output_dict["loss"]
grad_scaler.scale(loss).backward()
# Unscale the graident of the optimzer's assigned params in-place **prior to gradient clipping**.
grad_scaler.unscale_(optimizer)
grad_norm = torch.nn.utils.clip_grad_norm_(
policy.parameters(),
grad_clip_norm,
error_if_nonfinite=False,
)
optimizer.step()
# Optimizer's gradients are already unscaled, so scaler.step does not unscale them,
# although it still skips optimizer.step() if the gradients contain infs or NaNs.
grad_scaler.step(optimizer)
# Updates the scale for next iteration.
grad_scaler.update()
optimizer.zero_grad()
if lr_scheduler is not None:
@@ -115,7 +133,7 @@ def update_policy(policy, batch, optimizer, grad_clip_norm, lr_scheduler=None):
"loss": loss.item(),
"grad_norm": float(grad_norm),
"lr": optimizer.param_groups[0]["lr"],
"update_s": time.time() - start_time,
"update_s": time.perf_counter() - start_time,
**{k: v for k, v in output_dict.items() if k != "loss"},
}
@@ -211,103 +229,6 @@ def log_eval_info(logger, info, step, cfg, dataset, is_offline):
logger.log_dict(info, step, mode="eval")
def calculate_online_sample_weight(n_off: int, n_on: int, pc_on: float):
"""
Calculate the sampling weight to be assigned to samples so that a specified percentage of the batch comes from online dataset (on average).
Parameters:
- n_off (int): Number of offline samples, each with a sampling weight of 1.
- n_on (int): Number of online samples.
- pc_on (float): Desired percentage of online samples in decimal form (e.g., 50% as 0.5).
The total weight of offline samples is n_off * 1.0.
The total weight of offline samples is n_on * w.
The total combined weight of all samples is n_off + n_on * w.
The fraction of the weight that is online is n_on * w / (n_off + n_on * w).
We want this fraction to equal pc_on, so we set up the equation n_on * w / (n_off + n_on * w) = pc_on.
The solution is w = - (n_off * pc_on) / (n_on * (pc_on - 1))
"""
assert 0.0 <= pc_on <= 1.0
return -(n_off * pc_on) / (n_on * (pc_on - 1))
def add_episodes_inplace(
online_dataset: torch.utils.data.Dataset,
concat_dataset: torch.utils.data.ConcatDataset,
sampler: torch.utils.data.WeightedRandomSampler,
hf_dataset: datasets.Dataset,
episode_data_index: dict[str, torch.Tensor],
pc_online_samples: float,
):
"""
Modifies the online_dataset, concat_dataset, and sampler in place by integrating
new episodes from hf_dataset into the online_dataset, updating the concatenated
dataset's structure and adjusting the sampling strategy based on the specified
percentage of online samples.
Parameters:
- online_dataset (torch.utils.data.Dataset): The existing online dataset to be updated.
- concat_dataset (torch.utils.data.ConcatDataset): The concatenated dataset that combines
offline and online datasets, used for sampling purposes.
- sampler (torch.utils.data.WeightedRandomSampler): A sampler that will be updated to
reflect changes in the dataset sizes and specified sampling weights.
- hf_dataset (datasets.Dataset): A Hugging Face dataset containing the new episodes to be added.
- episode_data_index (dict): A dictionary containing two keys ("from" and "to") associated to dataset indices.
They indicate the start index and end index of each episode in the dataset.
- pc_online_samples (float): The target percentage of samples that should come from
the online dataset during sampling operations.
Raises:
- AssertionError: If the first episode_id or index in hf_dataset is not 0
"""
first_episode_idx = hf_dataset.select_columns("episode_index")[0]["episode_index"].item()
last_episode_idx = hf_dataset.select_columns("episode_index")[-1]["episode_index"].item()
first_index = hf_dataset.select_columns("index")[0]["index"].item()
last_index = hf_dataset.select_columns("index")[-1]["index"].item()
# sanity check
assert first_episode_idx == 0, f"{first_episode_idx=} is not 0"
assert first_index == 0, f"{first_index=} is not 0"
assert first_index == episode_data_index["from"][first_episode_idx].item()
assert last_index == episode_data_index["to"][last_episode_idx].item() - 1
if len(online_dataset) == 0:
# initialize online dataset
online_dataset.hf_dataset = hf_dataset
online_dataset.episode_data_index = episode_data_index
else:
# get the starting indices of the new episodes and frames to be added
start_episode_idx = last_episode_idx + 1
start_index = last_index + 1
def shift_indices(episode_index, index):
# note: we dont shift "frame_index" since it represents the index of the frame in the episode it belongs to
example = {"episode_index": episode_index + start_episode_idx, "index": index + start_index}
return example
disable_progress_bars() # map has a tqdm progress bar
hf_dataset = hf_dataset.map(shift_indices, input_columns=["episode_index", "index"])
enable_progress_bars()
episode_data_index["from"] += start_index
episode_data_index["to"] += start_index
# extend online dataset
online_dataset.hf_dataset = concatenate_datasets([online_dataset.hf_dataset, hf_dataset])
# update the concatenated dataset length used during sampling
concat_dataset.cumulative_sizes = concat_dataset.cumsum(concat_dataset.datasets)
# update the sampling weights for each frame so that online frames get sampled a certain percentage of times
len_online = len(online_dataset)
len_offline = len(concat_dataset) - len_online
weight_offline = 1.0
weight_online = calculate_online_sample_weight(len_offline, len_online, pc_online_samples)
sampler.weights = torch.tensor([weight_offline] * len_offline + [weight_online] * len(online_dataset))
# update the total number of samples used during sampling
sampler.num_samples = len(concat_dataset)
def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = None):
if out_dir is None:
raise NotImplementedError()
@@ -316,11 +237,11 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
init_logging()
if cfg.training.online_steps > 0 and cfg.eval.batch_size > 1:
logging.warning("eval.batch_size > 1 not supported for online training steps")
if cfg.training.online_steps > 0:
raise NotImplementedError("Online training is not implemented yet.")
# Check device is available
get_safe_torch_device(cfg.device, log=True)
device = get_safe_torch_device(cfg.device, log=True)
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
@@ -338,6 +259,7 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
# Create optimizer and scheduler
# Temporary hack to move optimizer out of policy
optimizer, lr_scheduler = make_optimizer_and_scheduler(cfg, policy)
grad_scaler = GradScaler(enabled=cfg.use_amp)
num_learnable_params = sum(p.numel() for p in policy.parameters() if p.requires_grad)
num_total_params = sum(p.numel() for p in policy.parameters())
@@ -358,14 +280,15 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
def evaluate_and_checkpoint_if_needed(step):
if step % cfg.training.eval_freq == 0:
logging.info(f"Eval policy at step {step}")
eval_info = eval_policy(
eval_env,
policy,
cfg.eval.n_episodes,
video_dir=Path(out_dir) / "eval",
max_episodes_rendered=4,
start_seed=cfg.seed,
)
with torch.no_grad(), torch.autocast(device_type=device.type) if cfg.use_amp else nullcontext():
eval_info = eval_policy(
eval_env,
policy,
cfg.eval.n_episodes,
video_dir=Path(out_dir) / "eval",
max_episodes_rendered=4,
start_seed=cfg.seed,
)
log_eval_info(logger, eval_info["aggregated"], step, cfg, offline_dataset, is_offline)
if cfg.wandb.enable:
logger.log_video(eval_info["video_paths"][0], step, mode="eval")
@@ -389,23 +312,30 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
num_workers=4,
batch_size=cfg.training.batch_size,
shuffle=True,
pin_memory=cfg.device != "cpu",
pin_memory=device.type != "cpu",
drop_last=False,
)
dl_iter = cycle(dataloader)
policy.train()
step = 0 # number of policy update (forward + backward + optim)
is_offline = True
for offline_step in range(cfg.training.offline_steps):
if offline_step == 0:
for step in range(cfg.training.offline_steps):
if step == 0:
logging.info("Start offline training on a fixed dataset")
batch = next(dl_iter)
for key in batch:
batch[key] = batch[key].to(cfg.device, non_blocking=True)
batch[key] = batch[key].to(device, non_blocking=True)
train_info = update_policy(policy, batch, optimizer, cfg.training.grad_clip_norm, lr_scheduler)
train_info = update_policy(
policy,
batch,
optimizer,
cfg.training.grad_clip_norm,
grad_scaler=grad_scaler,
lr_scheduler=lr_scheduler,
use_amp=cfg.use_amp,
)
# TODO(rcadene): is it ok if step_t=0 = 0 and not 1 as previously done?
if step % cfg.training.log_freq == 0:
@@ -415,11 +345,6 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
# so we pass in step + 1.
evaluate_and_checkpoint_if_needed(step + 1)
step += 1
# create an env dedicated to online episodes collection from policy rollout
online_training_env = make_env(cfg, n_envs=1)
# create an empty online dataset similar to offline dataset
online_dataset = deepcopy(offline_dataset)
online_dataset.hf_dataset = {}
@@ -436,58 +361,11 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
num_workers=4,
batch_size=cfg.training.batch_size,
sampler=sampler,
pin_memory=cfg.device != "cpu",
pin_memory=device.type != "cpu",
drop_last=False,
)
dl_iter = cycle(dataloader)
online_step = 0
is_offline = False
for env_step in range(cfg.training.online_steps):
if env_step == 0:
logging.info("Start online training by interacting with environment")
policy.eval()
with torch.no_grad():
eval_info = eval_policy(
online_training_env,
policy,
n_episodes=1,
return_episode_data=True,
start_seed=cfg.training.online_env_seed,
enable_progbar=True,
)
add_episodes_inplace(
online_dataset,
concat_dataset,
sampler,
hf_dataset=eval_info["episodes"]["hf_dataset"],
episode_data_index=eval_info["episodes"]["episode_data_index"],
pc_online_samples=cfg.training.online_sampling_ratio,
)
policy.train()
for _ in range(cfg.training.online_steps_between_rollouts):
batch = next(dl_iter)
for key in batch:
batch[key] = batch[key].to(cfg.device, non_blocking=True)
train_info = update_policy(policy, batch, optimizer, cfg.training.grad_clip_norm, lr_scheduler)
if step % cfg.training.log_freq == 0:
log_train_info(logger, train_info, step, cfg, online_dataset, is_offline)
# Note: evaluate_and_checkpoint_if_needed happens **after** the `step`th training update has completed,
# so we pass in step + 1.
evaluate_and_checkpoint_if_needed(step + 1)
step += 1
online_step += 1
eval_env.close()
online_training_env.close()
logging.info("End of training")

385
poetry.lock generated
View File

@@ -1,4 +1,4 @@
# This file is automatically @generated by Poetry 1.8.1 and should not be changed by hand.
# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand.
[[package]]
name = "absl-py"
@@ -442,6 +442,69 @@ files = [
{file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"},
]
[[package]]
name = "contourpy"
version = "1.2.1"
description = "Python library for calculating contours of 2D quadrilateral grids"
optional = true
python-versions = ">=3.9"
files = [
{file = "contourpy-1.2.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:bd7c23df857d488f418439686d3b10ae2fbf9bc256cd045b37a8c16575ea1040"},
{file = "contourpy-1.2.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:5b9eb0ca724a241683c9685a484da9d35c872fd42756574a7cfbf58af26677fd"},
{file = "contourpy-1.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4c75507d0a55378240f781599c30e7776674dbaf883a46d1c90f37e563453480"},
{file = "contourpy-1.2.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:11959f0ce4a6f7b76ec578576a0b61a28bdc0696194b6347ba3f1c53827178b9"},
{file = "contourpy-1.2.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:eb3315a8a236ee19b6df481fc5f997436e8ade24a9f03dfdc6bd490fea20c6da"},
{file = "contourpy-1.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:39f3ecaf76cd98e802f094e0d4fbc6dc9c45a8d0c4d185f0f6c2234e14e5f75b"},
{file = "contourpy-1.2.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:94b34f32646ca0414237168d68a9157cb3889f06b096612afdd296003fdd32fd"},
{file = "contourpy-1.2.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:457499c79fa84593f22454bbd27670227874cd2ff5d6c84e60575c8b50a69619"},
{file = "contourpy-1.2.1-cp310-cp310-win32.whl", hash = "sha256:ac58bdee53cbeba2ecad824fa8159493f0bf3b8ea4e93feb06c9a465d6c87da8"},
{file = "contourpy-1.2.1-cp310-cp310-win_amd64.whl", hash = "sha256:9cffe0f850e89d7c0012a1fb8730f75edd4320a0a731ed0c183904fe6ecfc3a9"},
{file = "contourpy-1.2.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6022cecf8f44e36af10bd9118ca71f371078b4c168b6e0fab43d4a889985dbb5"},
{file = "contourpy-1.2.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ef5adb9a3b1d0c645ff694f9bca7702ec2c70f4d734f9922ea34de02294fdf72"},
{file = "contourpy-1.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6150ffa5c767bc6332df27157d95442c379b7dce3a38dff89c0f39b63275696f"},
{file = "contourpy-1.2.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4c863140fafc615c14a4bf4efd0f4425c02230eb8ef02784c9a156461e62c965"},
{file = "contourpy-1.2.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:00e5388f71c1a0610e6fe56b5c44ab7ba14165cdd6d695429c5cd94021e390b2"},
{file = "contourpy-1.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d4492d82b3bc7fbb7e3610747b159869468079fe149ec5c4d771fa1f614a14df"},
{file = "contourpy-1.2.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:49e70d111fee47284d9dd867c9bb9a7058a3c617274900780c43e38d90fe1205"},
{file = "contourpy-1.2.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:b59c0ffceff8d4d3996a45f2bb6f4c207f94684a96bf3d9728dbb77428dd8cb8"},
{file = "contourpy-1.2.1-cp311-cp311-win32.whl", hash = "sha256:7b4182299f251060996af5249c286bae9361fa8c6a9cda5efc29fe8bfd6062ec"},
{file = "contourpy-1.2.1-cp311-cp311-win_amd64.whl", hash = "sha256:2855c8b0b55958265e8b5888d6a615ba02883b225f2227461aa9127c578a4922"},
{file = "contourpy-1.2.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:62828cada4a2b850dbef89c81f5a33741898b305db244904de418cc957ff05dc"},
{file = "contourpy-1.2.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:309be79c0a354afff9ff7da4aaed7c3257e77edf6c1b448a779329431ee79d7e"},
{file = "contourpy-1.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e785e0f2ef0d567099b9ff92cbfb958d71c2d5b9259981cd9bee81bd194c9a4"},
{file = "contourpy-1.2.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1cac0a8f71a041aa587410424ad46dfa6a11f6149ceb219ce7dd48f6b02b87a7"},
{file = "contourpy-1.2.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:af3f4485884750dddd9c25cb7e3915d83c2db92488b38ccb77dd594eac84c4a0"},
{file = "contourpy-1.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ce6889abac9a42afd07a562c2d6d4b2b7134f83f18571d859b25624a331c90b"},
{file = "contourpy-1.2.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:a1eea9aecf761c661d096d39ed9026574de8adb2ae1c5bd7b33558af884fb2ce"},
{file = "contourpy-1.2.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:187fa1d4c6acc06adb0fae5544c59898ad781409e61a926ac7e84b8f276dcef4"},
{file = "contourpy-1.2.1-cp312-cp312-win32.whl", hash = "sha256:c2528d60e398c7c4c799d56f907664673a807635b857df18f7ae64d3e6ce2d9f"},
{file = "contourpy-1.2.1-cp312-cp312-win_amd64.whl", hash = "sha256:1a07fc092a4088ee952ddae19a2b2a85757b923217b7eed584fdf25f53a6e7ce"},
{file = "contourpy-1.2.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bb6834cbd983b19f06908b45bfc2dad6ac9479ae04abe923a275b5f48f1a186b"},
{file = "contourpy-1.2.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1d59e739ab0e3520e62a26c60707cc3ab0365d2f8fecea74bfe4de72dc56388f"},
{file = "contourpy-1.2.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bd3db01f59fdcbce5b22afad19e390260d6d0222f35a1023d9adc5690a889364"},
{file = "contourpy-1.2.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a12a813949e5066148712a0626895c26b2578874e4cc63160bb007e6df3436fe"},
{file = "contourpy-1.2.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fe0ccca550bb8e5abc22f530ec0466136379c01321fd94f30a22231e8a48d985"},
{file = "contourpy-1.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e1d59258c3c67c865435d8fbeb35f8c59b8bef3d6f46c1f29f6123556af28445"},
{file = "contourpy-1.2.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:f32c38afb74bd98ce26de7cc74a67b40afb7b05aae7b42924ea990d51e4dac02"},
{file = "contourpy-1.2.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:d31a63bc6e6d87f77d71e1abbd7387ab817a66733734883d1fc0021ed9bfa083"},
{file = "contourpy-1.2.1-cp39-cp39-win32.whl", hash = "sha256:ddcb8581510311e13421b1f544403c16e901c4e8f09083c881fab2be80ee31ba"},
{file = "contourpy-1.2.1-cp39-cp39-win_amd64.whl", hash = "sha256:10a37ae557aabf2509c79715cd20b62e4c7c28b8cd62dd7d99e5ed3ce28c3fd9"},
{file = "contourpy-1.2.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:a31f94983fecbac95e58388210427d68cd30fe8a36927980fab9c20062645609"},
{file = "contourpy-1.2.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ef2b055471c0eb466033760a521efb9d8a32b99ab907fc8358481a1dd29e3bd3"},
{file = "contourpy-1.2.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:b33d2bc4f69caedcd0a275329eb2198f560b325605810895627be5d4b876bf7f"},
{file = "contourpy-1.2.1.tar.gz", hash = "sha256:4d8908b3bee1c889e547867ca4cdc54e5ab6be6d3e078556814a22457f49423c"},
]
[package.dependencies]
numpy = ">=1.20"
[package.extras]
bokeh = ["bokeh", "selenium"]
docs = ["furo", "sphinx (>=7.2)", "sphinx-copybutton"]
mypy = ["contourpy[bokeh,docs]", "docutils-stubs", "mypy (==1.8.0)", "types-Pillow"]
test = ["Pillow", "contourpy[test-no-images]", "matplotlib"]
test-no-images = ["pytest", "pytest-cov", "pytest-xdist", "wurlitzer"]
[[package]]
name = "coverage"
version = "7.5.1"
@@ -509,6 +572,21 @@ tomli = {version = "*", optional = true, markers = "python_full_version <= \"3.1
[package.extras]
toml = ["tomli"]
[[package]]
name = "cycler"
version = "0.12.1"
description = "Composable style cycles"
optional = true
python-versions = ">=3.8"
files = [
{file = "cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30"},
{file = "cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c"},
]
[package.extras]
docs = ["ipython", "matplotlib", "numpydoc", "sphinx"]
tests = ["pytest", "pytest-cov", "pytest-xdist"]
[[package]]
name = "datasets"
version = "2.19.1"
@@ -830,6 +908,71 @@ docs = ["furo (>=2023.9.10)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1
testing = ["covdefaults (>=2.3)", "coverage (>=7.3.2)", "diff-cover (>=8.0.1)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)", "pytest-timeout (>=2.2)"]
typing = ["typing-extensions (>=4.8)"]
[[package]]
name = "fonttools"
version = "4.51.0"
description = "Tools to manipulate font files"
optional = true
python-versions = ">=3.8"
files = [
{file = "fonttools-4.51.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:84d7751f4468dd8cdd03ddada18b8b0857a5beec80bce9f435742abc9a851a74"},
{file = "fonttools-4.51.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:8b4850fa2ef2cfbc1d1f689bc159ef0f45d8d83298c1425838095bf53ef46308"},
{file = "fonttools-4.51.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b5b48a1121117047d82695d276c2af2ee3a24ffe0f502ed581acc2673ecf1037"},
{file = "fonttools-4.51.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:180194c7fe60c989bb627d7ed5011f2bef1c4d36ecf3ec64daec8302f1ae0716"},
{file = "fonttools-4.51.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:96a48e137c36be55e68845fc4284533bda2980f8d6f835e26bca79d7e2006438"},
{file = "fonttools-4.51.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:806e7912c32a657fa39d2d6eb1d3012d35f841387c8fc6cf349ed70b7c340039"},
{file = "fonttools-4.51.0-cp310-cp310-win32.whl", hash = "sha256:32b17504696f605e9e960647c5f64b35704782a502cc26a37b800b4d69ff3c77"},
{file = "fonttools-4.51.0-cp310-cp310-win_amd64.whl", hash = "sha256:c7e91abdfae1b5c9e3a543f48ce96013f9a08c6c9668f1e6be0beabf0a569c1b"},
{file = "fonttools-4.51.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:a8feca65bab31479d795b0d16c9a9852902e3a3c0630678efb0b2b7941ea9c74"},
{file = "fonttools-4.51.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:8ac27f436e8af7779f0bb4d5425aa3535270494d3bc5459ed27de3f03151e4c2"},
{file = "fonttools-4.51.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e19bd9e9964a09cd2433a4b100ca7f34e34731e0758e13ba9a1ed6e5468cc0f"},
{file = "fonttools-4.51.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b2b92381f37b39ba2fc98c3a45a9d6383bfc9916a87d66ccb6553f7bdd129097"},
{file = "fonttools-4.51.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:5f6bc991d1610f5c3bbe997b0233cbc234b8e82fa99fc0b2932dc1ca5e5afec0"},
{file = "fonttools-4.51.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9696fe9f3f0c32e9a321d5268208a7cc9205a52f99b89479d1b035ed54c923f1"},
{file = "fonttools-4.51.0-cp311-cp311-win32.whl", hash = "sha256:3bee3f3bd9fa1d5ee616ccfd13b27ca605c2b4270e45715bd2883e9504735034"},
{file = "fonttools-4.51.0-cp311-cp311-win_amd64.whl", hash = "sha256:0f08c901d3866a8905363619e3741c33f0a83a680d92a9f0e575985c2634fcc1"},
{file = "fonttools-4.51.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:4060acc2bfa2d8e98117828a238889f13b6f69d59f4f2d5857eece5277b829ba"},
{file = "fonttools-4.51.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:1250e818b5f8a679ad79660855528120a8f0288f8f30ec88b83db51515411fcc"},
{file = "fonttools-4.51.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76f1777d8b3386479ffb4a282e74318e730014d86ce60f016908d9801af9ca2a"},
{file = "fonttools-4.51.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8b5ad456813d93b9c4b7ee55302208db2b45324315129d85275c01f5cb7e61a2"},
{file = "fonttools-4.51.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:68b3fb7775a923be73e739f92f7e8a72725fd333eab24834041365d2278c3671"},
{file = "fonttools-4.51.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8e2f1a4499e3b5ee82c19b5ee57f0294673125c65b0a1ff3764ea1f9db2f9ef5"},
{file = "fonttools-4.51.0-cp312-cp312-win32.whl", hash = "sha256:278e50f6b003c6aed19bae2242b364e575bcb16304b53f2b64f6551b9c000e15"},
{file = "fonttools-4.51.0-cp312-cp312-win_amd64.whl", hash = "sha256:b3c61423f22165541b9403ee39874dcae84cd57a9078b82e1dce8cb06b07fa2e"},
{file = "fonttools-4.51.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:1621ee57da887c17312acc4b0e7ac30d3a4fb0fec6174b2e3754a74c26bbed1e"},
{file = "fonttools-4.51.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e9d9298be7a05bb4801f558522adbe2feea1b0b103d5294ebf24a92dd49b78e5"},
{file = "fonttools-4.51.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ee1af4be1c5afe4c96ca23badd368d8dc75f611887fb0c0dac9f71ee5d6f110e"},
{file = "fonttools-4.51.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c18b49adc721a7d0b8dfe7c3130c89b8704baf599fb396396d07d4aa69b824a1"},
{file = "fonttools-4.51.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:de7c29bdbdd35811f14493ffd2534b88f0ce1b9065316433b22d63ca1cd21f14"},
{file = "fonttools-4.51.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:cadf4e12a608ef1d13e039864f484c8a968840afa0258b0b843a0556497ea9ed"},
{file = "fonttools-4.51.0-cp38-cp38-win32.whl", hash = "sha256:aefa011207ed36cd280babfaa8510b8176f1a77261833e895a9d96e57e44802f"},
{file = "fonttools-4.51.0-cp38-cp38-win_amd64.whl", hash = "sha256:865a58b6e60b0938874af0968cd0553bcd88e0b2cb6e588727117bd099eef836"},
{file = "fonttools-4.51.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:60a3409c9112aec02d5fb546f557bca6efa773dcb32ac147c6baf5f742e6258b"},
{file = "fonttools-4.51.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f7e89853d8bea103c8e3514b9f9dc86b5b4120afb4583b57eb10dfa5afbe0936"},
{file = "fonttools-4.51.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:56fc244f2585d6c00b9bcc59e6593e646cf095a96fe68d62cd4da53dd1287b55"},
{file = "fonttools-4.51.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0d145976194a5242fdd22df18a1b451481a88071feadf251221af110ca8f00ce"},
{file = "fonttools-4.51.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:c5b8cab0c137ca229433570151b5c1fc6af212680b58b15abd797dcdd9dd5051"},
{file = "fonttools-4.51.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:54dcf21a2f2d06ded676e3c3f9f74b2bafded3a8ff12f0983160b13e9f2fb4a7"},
{file = "fonttools-4.51.0-cp39-cp39-win32.whl", hash = "sha256:0118ef998a0699a96c7b28457f15546815015a2710a1b23a7bf6c1be60c01636"},
{file = "fonttools-4.51.0-cp39-cp39-win_amd64.whl", hash = "sha256:599bdb75e220241cedc6faebfafedd7670335d2e29620d207dd0378a4e9ccc5a"},
{file = "fonttools-4.51.0-py3-none-any.whl", hash = "sha256:15c94eeef6b095831067f72c825eb0e2d48bb4cea0647c1b05c981ecba2bf39f"},
{file = "fonttools-4.51.0.tar.gz", hash = "sha256:dc0673361331566d7a663d7ce0f6fdcbfbdc1f59c6e3ed1165ad7202ca183c68"},
]
[package.extras]
all = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "fs (>=2.2.0,<3)", "lxml (>=4.0)", "lz4 (>=1.7.4.2)", "matplotlib", "munkres", "pycairo", "scipy", "skia-pathops (>=0.5.0)", "sympy", "uharfbuzz (>=0.23.0)", "unicodedata2 (>=15.1.0)", "xattr", "zopfli (>=0.1.4)"]
graphite = ["lz4 (>=1.7.4.2)"]
interpolatable = ["munkres", "pycairo", "scipy"]
lxml = ["lxml (>=4.0)"]
pathops = ["skia-pathops (>=0.5.0)"]
plot = ["matplotlib"]
repacker = ["uharfbuzz (>=0.23.0)"]
symfont = ["sympy"]
type1 = ["xattr"]
ufo = ["fs (>=2.2.0,<3)"]
unicode = ["unicodedata2 (>=15.1.0)"]
woff = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "zopfli (>=0.1.4)"]
[[package]]
name = "frozenlist"
version = "1.4.1"
@@ -1481,6 +1624,119 @@ MarkupSafe = ">=2.0"
[package.extras]
i18n = ["Babel (>=2.7)"]
[[package]]
name = "kiwisolver"
version = "1.4.5"
description = "A fast implementation of the Cassowary constraint solver"
optional = true
python-versions = ">=3.7"
files = [
{file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:05703cf211d585109fcd72207a31bb170a0f22144d68298dc5e61b3c946518af"},
{file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:146d14bebb7f1dc4d5fbf74f8a6cb15ac42baadee8912eb84ac0b3b2a3dc6ac3"},
{file = "kiwisolver-1.4.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6ef7afcd2d281494c0a9101d5c571970708ad911d028137cd558f02b851c08b4"},
{file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9eaa8b117dc8337728e834b9c6e2611f10c79e38f65157c4c38e9400286f5cb1"},
{file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ec20916e7b4cbfb1f12380e46486ec4bcbaa91a9c448b97023fde0d5bbf9e4ff"},
{file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:39b42c68602539407884cf70d6a480a469b93b81b7701378ba5e2328660c847a"},
{file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:aa12042de0171fad672b6c59df69106d20d5596e4f87b5e8f76df757a7c399aa"},
{file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2a40773c71d7ccdd3798f6489aaac9eee213d566850a9533f8d26332d626b82c"},
{file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:19df6e621f6d8b4b9c4d45f40a66839294ff2bb235e64d2178f7522d9170ac5b"},
{file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:83d78376d0d4fd884e2c114d0621624b73d2aba4e2788182d286309ebdeed770"},
{file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:e391b1f0a8a5a10ab3b9bb6afcfd74f2175f24f8975fb87ecae700d1503cdee0"},
{file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:852542f9481f4a62dbb5dd99e8ab7aedfeb8fb6342349a181d4036877410f525"},
{file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:59edc41b24031bc25108e210c0def6f6c2191210492a972d585a06ff246bb79b"},
{file = "kiwisolver-1.4.5-cp310-cp310-win32.whl", hash = "sha256:a6aa6315319a052b4ee378aa171959c898a6183f15c1e541821c5c59beaa0238"},
{file = "kiwisolver-1.4.5-cp310-cp310-win_amd64.whl", hash = "sha256:d0ef46024e6a3d79c01ff13801cb19d0cad7fd859b15037aec74315540acc276"},
{file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:11863aa14a51fd6ec28688d76f1735f8f69ab1fabf388851a595d0721af042f5"},
{file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:8ab3919a9997ab7ef2fbbed0cc99bb28d3c13e6d4b1ad36e97e482558a91be90"},
{file = "kiwisolver-1.4.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:fcc700eadbbccbf6bc1bcb9dbe0786b4b1cb91ca0dcda336eef5c2beed37b797"},
{file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dfdd7c0b105af050eb3d64997809dc21da247cf44e63dc73ff0fd20b96be55a9"},
{file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76c6a5964640638cdeaa0c359382e5703e9293030fe730018ca06bc2010c4437"},
{file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bbea0db94288e29afcc4c28afbf3a7ccaf2d7e027489c449cf7e8f83c6346eb9"},
{file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ceec1a6bc6cab1d6ff5d06592a91a692f90ec7505d6463a88a52cc0eb58545da"},
{file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:040c1aebeda72197ef477a906782b5ab0d387642e93bda547336b8957c61022e"},
{file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f91de7223d4c7b793867797bacd1ee53bfe7359bd70d27b7b58a04efbb9436c8"},
{file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:faae4860798c31530dd184046a900e652c95513796ef51a12bc086710c2eec4d"},
{file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:b0157420efcb803e71d1b28e2c287518b8808b7cf1ab8af36718fd0a2c453eb0"},
{file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:06f54715b7737c2fecdbf140d1afb11a33d59508a47bf11bb38ecf21dc9ab79f"},
{file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fdb7adb641a0d13bdcd4ef48e062363d8a9ad4a182ac7647ec88f695e719ae9f"},
{file = "kiwisolver-1.4.5-cp311-cp311-win32.whl", hash = "sha256:bb86433b1cfe686da83ce32a9d3a8dd308e85c76b60896d58f082136f10bffac"},
{file = "kiwisolver-1.4.5-cp311-cp311-win_amd64.whl", hash = "sha256:6c08e1312a9cf1074d17b17728d3dfce2a5125b2d791527f33ffbe805200a355"},
{file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:32d5cf40c4f7c7b3ca500f8985eb3fb3a7dfc023215e876f207956b5ea26632a"},
{file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f846c260f483d1fd217fe5ed7c173fb109efa6b1fc8381c8b7552c5781756192"},
{file = "kiwisolver-1.4.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5ff5cf3571589b6d13bfbfd6bcd7a3f659e42f96b5fd1c4830c4cf21d4f5ef45"},
{file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7269d9e5f1084a653d575c7ec012ff57f0c042258bf5db0954bf551c158466e7"},
{file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da802a19d6e15dffe4b0c24b38b3af68e6c1a68e6e1d8f30148c83864f3881db"},
{file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3aba7311af82e335dd1e36ffff68aaca609ca6290c2cb6d821a39aa075d8e3ff"},
{file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:763773d53f07244148ccac5b084da5adb90bfaee39c197554f01b286cf869228"},
{file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2270953c0d8cdab5d422bee7d2007f043473f9d2999631c86a223c9db56cbd16"},
{file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d099e745a512f7e3bbe7249ca835f4d357c586d78d79ae8f1dcd4d8adeb9bda9"},
{file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:74db36e14a7d1ce0986fa104f7d5637aea5c82ca6326ed0ec5694280942d1162"},
{file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:7e5bab140c309cb3a6ce373a9e71eb7e4873c70c2dda01df6820474f9889d6d4"},
{file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:0f114aa76dc1b8f636d077979c0ac22e7cd8f3493abbab152f20eb8d3cda71f3"},
{file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:88a2df29d4724b9237fc0c6eaf2a1adae0cdc0b3e9f4d8e7dc54b16812d2d81a"},
{file = "kiwisolver-1.4.5-cp312-cp312-win32.whl", hash = "sha256:72d40b33e834371fd330fb1472ca19d9b8327acb79a5821d4008391db8e29f20"},
{file = "kiwisolver-1.4.5-cp312-cp312-win_amd64.whl", hash = "sha256:2c5674c4e74d939b9d91dda0fae10597ac7521768fec9e399c70a1f27e2ea2d9"},
{file = "kiwisolver-1.4.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3a2b053a0ab7a3960c98725cfb0bf5b48ba82f64ec95fe06f1d06c99b552e130"},
{file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3cd32d6c13807e5c66a7cbb79f90b553642f296ae4518a60d8d76243b0ad2898"},
{file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:59ec7b7c7e1a61061850d53aaf8e93db63dce0c936db1fda2658b70e4a1be709"},
{file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:da4cfb373035def307905d05041c1d06d8936452fe89d464743ae7fb8371078b"},
{file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2400873bccc260b6ae184b2b8a4fec0e4082d30648eadb7c3d9a13405d861e89"},
{file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:1b04139c4236a0f3aff534479b58f6f849a8b351e1314826c2d230849ed48985"},
{file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:4e66e81a5779b65ac21764c295087de82235597a2293d18d943f8e9e32746265"},
{file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:7931d8f1f67c4be9ba1dd9c451fb0eeca1a25b89e4d3f89e828fe12a519b782a"},
{file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:b3f7e75f3015df442238cca659f8baa5f42ce2a8582727981cbfa15fee0ee205"},
{file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:bbf1d63eef84b2e8c89011b7f2235b1e0bf7dacc11cac9431fc6468e99ac77fb"},
{file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:4c380469bd3f970ef677bf2bcba2b6b0b4d5c75e7a020fb863ef75084efad66f"},
{file = "kiwisolver-1.4.5-cp37-cp37m-win32.whl", hash = "sha256:9408acf3270c4b6baad483865191e3e582b638b1654a007c62e3efe96f09a9a3"},
{file = "kiwisolver-1.4.5-cp37-cp37m-win_amd64.whl", hash = "sha256:5b94529f9b2591b7af5f3e0e730a4e0a41ea174af35a4fd067775f9bdfeee01a"},
{file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:11c7de8f692fc99816e8ac50d1d1aef4f75126eefc33ac79aac02c099fd3db71"},
{file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:53abb58632235cd154176ced1ae8f0d29a6657aa1aa9decf50b899b755bc2b93"},
{file = "kiwisolver-1.4.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:88b9f257ca61b838b6f8094a62418421f87ac2a1069f7e896c36a7d86b5d4c29"},
{file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3195782b26fc03aa9c6913d5bad5aeb864bdc372924c093b0f1cebad603dd712"},
{file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fc579bf0f502e54926519451b920e875f433aceb4624a3646b3252b5caa9e0b6"},
{file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5a580c91d686376f0f7c295357595c5a026e6cbc3d77b7c36e290201e7c11ecb"},
{file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:cfe6ab8da05c01ba6fbea630377b5da2cd9bcbc6338510116b01c1bc939a2c18"},
{file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:d2e5a98f0ec99beb3c10e13b387f8db39106d53993f498b295f0c914328b1333"},
{file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:a51a263952b1429e429ff236d2f5a21c5125437861baeed77f5e1cc2d2c7c6da"},
{file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:3edd2fa14e68c9be82c5b16689e8d63d89fe927e56debd6e1dbce7a26a17f81b"},
{file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:74d1b44c6cfc897df648cc9fdaa09bc3e7679926e6f96df05775d4fb3946571c"},
{file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:76d9289ed3f7501012e05abb8358bbb129149dbd173f1f57a1bf1c22d19ab7cc"},
{file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:92dea1ffe3714fa8eb6a314d2b3c773208d865a0e0d35e713ec54eea08a66250"},
{file = "kiwisolver-1.4.5-cp38-cp38-win32.whl", hash = "sha256:5c90ae8c8d32e472be041e76f9d2f2dbff4d0b0be8bd4041770eddb18cf49a4e"},
{file = "kiwisolver-1.4.5-cp38-cp38-win_amd64.whl", hash = "sha256:c7940c1dc63eb37a67721b10d703247552416f719c4188c54e04334321351ced"},
{file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:9407b6a5f0d675e8a827ad8742e1d6b49d9c1a1da5d952a67d50ef5f4170b18d"},
{file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:15568384086b6df3c65353820a4473575dbad192e35010f622c6ce3eebd57af9"},
{file = "kiwisolver-1.4.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0dc9db8e79f0036e8173c466d21ef18e1befc02de8bf8aa8dc0813a6dc8a7046"},
{file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:cdc8a402aaee9a798b50d8b827d7ecf75edc5fb35ea0f91f213ff927c15f4ff0"},
{file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:6c3bd3cde54cafb87d74d8db50b909705c62b17c2099b8f2e25b461882e544ff"},
{file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:955e8513d07a283056b1396e9a57ceddbd272d9252c14f154d450d227606eb54"},
{file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:346f5343b9e3f00b8db8ba359350eb124b98c99efd0b408728ac6ebf38173958"},
{file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b9098e0049e88c6a24ff64545cdfc50807818ba6c1b739cae221bbbcbc58aad3"},
{file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:00bd361b903dc4bbf4eb165f24d1acbee754fce22ded24c3d56eec268658a5cf"},
{file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7b8b454bac16428b22560d0a1cf0a09875339cab69df61d7805bf48919415901"},
{file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:f1d072c2eb0ad60d4c183f3fb44ac6f73fb7a8f16a2694a91f988275cbf352f9"},
{file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:31a82d498054cac9f6d0b53d02bb85811185bcb477d4b60144f915f3b3126342"},
{file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6512cb89e334e4700febbffaaa52761b65b4f5a3cf33f960213d5656cea36a77"},
{file = "kiwisolver-1.4.5-cp39-cp39-win32.whl", hash = "sha256:9db8ea4c388fdb0f780fe91346fd438657ea602d58348753d9fb265ce1bca67f"},
{file = "kiwisolver-1.4.5-cp39-cp39-win_amd64.whl", hash = "sha256:59415f46a37f7f2efeec758353dd2eae1b07640d8ca0f0c42548ec4125492635"},
{file = "kiwisolver-1.4.5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:5c7b3b3a728dc6faf3fc372ef24f21d1e3cee2ac3e9596691d746e5a536de920"},
{file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:620ced262a86244e2be10a676b646f29c34537d0d9cc8eb26c08f53d98013390"},
{file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:378a214a1e3bbf5ac4a8708304318b4f890da88c9e6a07699c4ae7174c09a68d"},
{file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaf7be1207676ac608a50cd08f102f6742dbfc70e8d60c4db1c6897f62f71523"},
{file = "kiwisolver-1.4.5-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:ba55dce0a9b8ff59495ddd050a0225d58bd0983d09f87cfe2b6aec4f2c1234e4"},
{file = "kiwisolver-1.4.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:fd32ea360bcbb92d28933fc05ed09bffcb1704ba3fc7942e81db0fd4f81a7892"},
{file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:5e7139af55d1688f8b960ee9ad5adafc4ac17c1c473fe07133ac092310d76544"},
{file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dced8146011d2bc2e883f9bd68618b8247387f4bbec46d7392b3c3b032640126"},
{file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c9bf3325c47b11b2e51bca0824ea217c7cd84491d8ac4eefd1e409705ef092bd"},
{file = "kiwisolver-1.4.5-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5794cf59533bc3f1b1c821f7206a3617999db9fbefc345360aafe2e067514929"},
{file = "kiwisolver-1.4.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e368f200bbc2e4f905b8e71eb38b3c04333bddaa6a2464a6355487b02bb7fb09"},
{file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e5d706eba36b4c4d5bc6c6377bb6568098765e990cfc21ee16d13963fab7b3e7"},
{file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:85267bd1aa8880a9c88a8cb71e18d3d64d2751a790e6ca6c27b8ccc724bcd5ad"},
{file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:210ef2c3a1f03272649aff1ef992df2e724748918c4bc2d5a90352849eb40bea"},
{file = "kiwisolver-1.4.5-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:11d011a7574eb3b82bcc9c1a1d35c1d7075677fdd15de527d91b46bd35e935ee"},
{file = "kiwisolver-1.4.5.tar.gz", hash = "sha256:e57e563a57fb22a142da34f38acc2fc1a5c864bc29ca1517a88abc963e60d6ec"},
]
[[package]]
name = "labmaze"
version = "1.0.6"
@@ -1673,6 +1929,7 @@ files = [
{file = "lxml-5.2.1-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:9e2addd2d1866fe112bc6f80117bcc6bc25191c5ed1bfbcf9f1386a884252ae8"},
{file = "lxml-5.2.1-cp37-cp37m-win32.whl", hash = "sha256:f51969bac61441fd31f028d7b3b45962f3ecebf691a510495e5d2cd8c8092dbd"},
{file = "lxml-5.2.1-cp37-cp37m-win_amd64.whl", hash = "sha256:b0b58fbfa1bf7367dde8a557994e3b1637294be6cf2169810375caf8571a085c"},
{file = "lxml-5.2.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:3e183c6e3298a2ed5af9d7a356ea823bccaab4ec2349dc9ed83999fd289d14d5"},
{file = "lxml-5.2.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:804f74efe22b6a227306dd890eecc4f8c59ff25ca35f1f14e7482bbce96ef10b"},
{file = "lxml-5.2.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:08802f0c56ed150cc6885ae0788a321b73505d2263ee56dad84d200cab11c07a"},
{file = "lxml-5.2.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0f8c09ed18ecb4ebf23e02b8e7a22a05d6411911e6fabef3a36e4f371f4f2585"},
@@ -1813,6 +2070,54 @@ files = [
{file = "MarkupSafe-2.1.5.tar.gz", hash = "sha256:d283d37a890ba4c1ae73ffadf8046435c76e7bc2247bbb63c00bd1a709c6544b"},
]
[[package]]
name = "matplotlib"
version = "3.8.4"
description = "Python plotting package"
optional = true
python-versions = ">=3.9"
files = [
{file = "matplotlib-3.8.4-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:abc9d838f93583650c35eca41cfcec65b2e7cb50fd486da6f0c49b5e1ed23014"},
{file = "matplotlib-3.8.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8f65c9f002d281a6e904976007b2d46a1ee2bcea3a68a8c12dda24709ddc9106"},
{file = "matplotlib-3.8.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ce1edd9f5383b504dbc26eeea404ed0a00656c526638129028b758fd43fc5f10"},
{file = "matplotlib-3.8.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ecd79298550cba13a43c340581a3ec9c707bd895a6a061a78fa2524660482fc0"},
{file = "matplotlib-3.8.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:90df07db7b599fe7035d2f74ab7e438b656528c68ba6bb59b7dc46af39ee48ef"},
{file = "matplotlib-3.8.4-cp310-cp310-win_amd64.whl", hash = "sha256:ac24233e8f2939ac4fd2919eed1e9c0871eac8057666070e94cbf0b33dd9c338"},
{file = "matplotlib-3.8.4-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:72f9322712e4562e792b2961971891b9fbbb0e525011e09ea0d1f416c4645661"},
{file = "matplotlib-3.8.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:232ce322bfd020a434caaffbd9a95333f7c2491e59cfc014041d95e38ab90d1c"},
{file = "matplotlib-3.8.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6addbd5b488aedb7f9bc19f91cd87ea476206f45d7116fcfe3d31416702a82fa"},
{file = "matplotlib-3.8.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cc4ccdc64e3039fc303defd119658148f2349239871db72cd74e2eeaa9b80b71"},
{file = "matplotlib-3.8.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:b7a2a253d3b36d90c8993b4620183b55665a429da8357a4f621e78cd48b2b30b"},
{file = "matplotlib-3.8.4-cp311-cp311-win_amd64.whl", hash = "sha256:8080d5081a86e690d7688ffa542532e87f224c38a6ed71f8fbed34dd1d9fedae"},
{file = "matplotlib-3.8.4-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:6485ac1f2e84676cff22e693eaa4fbed50ef5dc37173ce1f023daef4687df616"},
{file = "matplotlib-3.8.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:c89ee9314ef48c72fe92ce55c4e95f2f39d70208f9f1d9db4e64079420d8d732"},
{file = "matplotlib-3.8.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50bac6e4d77e4262c4340d7a985c30912054745ec99756ce213bfbc3cb3808eb"},
{file = "matplotlib-3.8.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f51c4c869d4b60d769f7b4406eec39596648d9d70246428745a681c327a8ad30"},
{file = "matplotlib-3.8.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:b12ba985837e4899b762b81f5b2845bd1a28f4fdd1a126d9ace64e9c4eb2fb25"},
{file = "matplotlib-3.8.4-cp312-cp312-win_amd64.whl", hash = "sha256:7a6769f58ce51791b4cb8b4d7642489df347697cd3e23d88266aaaee93b41d9a"},
{file = "matplotlib-3.8.4-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:843cbde2f0946dadd8c5c11c6d91847abd18ec76859dc319362a0964493f0ba6"},
{file = "matplotlib-3.8.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1c13f041a7178f9780fb61cc3a2b10423d5e125480e4be51beaf62b172413b67"},
{file = "matplotlib-3.8.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb44f53af0a62dc80bba4443d9b27f2fde6acfdac281d95bc872dc148a6509cc"},
{file = "matplotlib-3.8.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:606e3b90897554c989b1e38a258c626d46c873523de432b1462f295db13de6f9"},
{file = "matplotlib-3.8.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:9bb0189011785ea794ee827b68777db3ca3f93f3e339ea4d920315a0e5a78d54"},
{file = "matplotlib-3.8.4-cp39-cp39-win_amd64.whl", hash = "sha256:6209e5c9aaccc056e63b547a8152661324404dd92340a6e479b3a7f24b42a5d0"},
{file = "matplotlib-3.8.4-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:c7064120a59ce6f64103c9cefba8ffe6fba87f2c61d67c401186423c9a20fd35"},
{file = "matplotlib-3.8.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0e47eda4eb2614300fc7bb4657fced3e83d6334d03da2173b09e447418d499f"},
{file = "matplotlib-3.8.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:493e9f6aa5819156b58fce42b296ea31969f2aab71c5b680b4ea7a3cb5c07d94"},
{file = "matplotlib-3.8.4.tar.gz", hash = "sha256:8aac397d5e9ec158960e31c381c5ffc52ddd52bd9a47717e2a694038167dffea"},
]
[package.dependencies]
contourpy = ">=1.0.1"
cycler = ">=0.10"
fonttools = ">=4.22.0"
kiwisolver = ">=1.3.1"
numpy = ">=1.21"
packaging = ">=20.0"
pillow = ">=8"
pyparsing = ">=2.3.1"
python-dateutil = ">=2.7"
[[package]]
name = "mkl"
version = "2021.4.0"
@@ -2451,6 +2756,24 @@ sql-other = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-d
test = ["hypothesis (>=6.46.1)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)"]
xml = ["lxml (>=4.9.2)"]
[[package]]
name = "patsy"
version = "0.5.6"
description = "A Python package for describing statistical models and for building design matrices."
optional = true
python-versions = "*"
files = [
{file = "patsy-0.5.6-py2.py3-none-any.whl", hash = "sha256:19056886fd8fa71863fa32f0eb090267f21fb74be00f19f5c70b2e9d76c883c6"},
{file = "patsy-0.5.6.tar.gz", hash = "sha256:95c6d47a7222535f84bff7f63d7303f2e297747a598db89cf5c67f0c0c7d2cdb"},
]
[package.dependencies]
numpy = ">=1.4"
six = "*"
[package.extras]
test = ["pytest", "pytest-cov", "scipy"]
[[package]]
name = "pettingzoo"
version = "1.24.3"
@@ -3045,7 +3368,6 @@ files = [
{file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34"},
{file = "PyYAML-6.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28"},
{file = "PyYAML-6.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9"},
{file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a08c6f0fe150303c1c6b71ebcd7213c2858041a7e01975da3a99aed1e7a378ef"},
{file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0"},
{file = "PyYAML-6.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4"},
{file = "PyYAML-6.0.1-cp312-cp312-win32.whl", hash = "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54"},
@@ -3677,6 +3999,51 @@ files = [
{file = "soupsieve-2.5.tar.gz", hash = "sha256:5663d5a7b3bfaeee0bc4372e7fc48f9cff4940b3eec54a6451cc5299f1097690"},
]
[[package]]
name = "statsmodels"
version = "0.14.2"
description = "Statistical computations and models for Python"
optional = true
python-versions = ">=3.9"
files = [
{file = "statsmodels-0.14.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:df5d6f95c46f0341da6c79ee7617e025bf2b371e190a8e60af1ae9cabbdb7a97"},
{file = "statsmodels-0.14.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a87ef21fadb445b650f327340dde703f13aec1540f3d497afb66324499dea97a"},
{file = "statsmodels-0.14.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5827a12e3ede2b98a784476d61d6bec43011fedb64aa815f2098e0573bece257"},
{file = "statsmodels-0.14.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10f2b7611a61adb7d596a6d239abdf1a4d5492b931b00d5ed23d32844d40e48e"},
{file = "statsmodels-0.14.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c254c66142f1167b4c7d031cf8db55294cc62ff3280e090fc45bd10a7f5fd029"},
{file = "statsmodels-0.14.2-cp310-cp310-win_amd64.whl", hash = "sha256:0e46e9d59293c1af4cc1f4e5248f17e7e7bc596bfce44d327c789ac27f09111b"},
{file = "statsmodels-0.14.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:50fcb633987779e795142f51ba49fb27648d46e8a1382b32ebe8e503aaabaa9e"},
{file = "statsmodels-0.14.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:876794068abfaeed41df71b7887000031ecf44fbfa6b50d53ccb12ebb4ab747a"},
{file = "statsmodels-0.14.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7a91f6c4943de13e3ce2e20ee3b5d26d02bd42300616a421becd53756f5deb37"},
{file = "statsmodels-0.14.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4864a1c4615c5ea5f2e3b078a75bdedc90dd9da210a37e0738e064b419eccee2"},
{file = "statsmodels-0.14.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:afbd92410e0df06f3d8c4e7c0e2e71f63f4969531f280fb66059e2ecdb6e0415"},
{file = "statsmodels-0.14.2-cp311-cp311-win_amd64.whl", hash = "sha256:8e004cfad0e46ce73fe3f3812010c746f0d4cfd48e307b45c14e9e360f3d2510"},
{file = "statsmodels-0.14.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:eb0ba1ad3627705f5ae20af6b2982f500546d43892543b36c7bca3e2f87105e7"},
{file = "statsmodels-0.14.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:90fd2f0110b73fc3fa5a2f21c3ca99b0e22285cccf38e56b5b8fd8ce28791b0f"},
{file = "statsmodels-0.14.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ac780ad9ff552773798829a0b9c46820b0faa10e6454891f5e49a845123758ab"},
{file = "statsmodels-0.14.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:55d1742778400ae67acb04b50a2c7f5804182f8a874bd09ca397d69ed159a751"},
{file = "statsmodels-0.14.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:f870d14a587ea58a3b596aa994c2ed889cc051f9e450e887d2c83656fc6a64bf"},
{file = "statsmodels-0.14.2-cp312-cp312-win_amd64.whl", hash = "sha256:f450fcbae214aae66bd9d2b9af48e0f8ba1cb0e8596c6ebb34e6e3f0fec6542c"},
{file = "statsmodels-0.14.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:201c3d00929c4a67cda1fe05b098c8dcf1b1eeefa88e80a8f963a844801ed59f"},
{file = "statsmodels-0.14.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9edefa4ce08e40bc1d67d2f79bc686ee5e238e801312b5a029ee7786448c389a"},
{file = "statsmodels-0.14.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:29c78a7601fdae1aa32104c5ebff2e0b72c26f33e870e2f94ab1bcfd927ece9b"},
{file = "statsmodels-0.14.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f36494df7c03d63168fccee5038a62f469469ed6a4dd6eaeb9338abedcd0d5f5"},
{file = "statsmodels-0.14.2-cp39-cp39-win_amd64.whl", hash = "sha256:8875823bdd41806dc853333cc4e1b7ef9481bad2380a999e66ea42382cf2178d"},
{file = "statsmodels-0.14.2.tar.gz", hash = "sha256:890550147ad3a81cda24f0ba1a5c4021adc1601080bd00e191ae7cd6feecd6ad"},
]
[package.dependencies]
numpy = ">=1.22.3"
packaging = ">=21.3"
pandas = ">=1.4,<2.1.0 || >2.1.0"
patsy = ">=0.5.6"
scipy = ">=1.8,<1.9.2 || >1.9.2"
[package.extras]
build = ["cython (>=0.29.33)"]
develop = ["colorama", "cython (>=0.29.33)", "cython (>=3.0.10,<4)", "flake8", "isort", "joblib", "matplotlib (>=3)", "pytest (>=7.3.0,<8)", "pytest-cov", "pytest-randomly", "pytest-xdist", "pywinpty", "setuptools-scm[toml] (>=8.0,<9.0)"]
docs = ["ipykernel", "jupyter-client", "matplotlib", "nbconvert", "nbformat", "numpydoc", "pandas-datareader", "sphinx"]
[[package]]
name = "sympy"
version = "1.12"
@@ -3718,6 +4085,17 @@ files = [
[package.extras]
tests = ["pytest", "pytest-cov"]
[[package]]
name = "terminaltables"
version = "3.1.10"
description = "Generate simple tables in terminals from a nested list of strings."
optional = true
python-versions = ">=2.6"
files = [
{file = "terminaltables-3.1.10-py2.py3-none-any.whl", hash = "sha256:e4fdc4179c9e4aab5f674d80f09d76fa436b96fdc698a8505e0a36bf0804a874"},
{file = "terminaltables-3.1.10.tar.gz", hash = "sha256:ba6eca5cb5ba02bba4c9f4f985af80c54ec3dccf94cfcd190154386255e47543"},
]
[[package]]
name = "tifffile"
version = "2024.5.10"
@@ -4239,6 +4617,7 @@ testing = ["big-O", "jaraco.functools", "jaraco.itertools", "more-itertools", "p
[extras]
aloha = ["gym-aloha"]
compare = ["matplotlib", "statsmodels", "terminaltables"]
dev = ["debugpy", "pre-commit"]
pusht = ["gym-pusht"]
test = ["pytest", "pytest-cov"]
@@ -4248,4 +4627,4 @@ xarm = ["gym-xarm"]
[metadata]
lock-version = "2.0"
python-versions = ">=3.10,<3.13"
content-hash = "e4834d67df32c8c617c259b0e59bb33ddaccde08fe940d771e74046cbffe3399"
content-hash = "f85a71ac284fe1090a0b3188a6cfddeb346c8712c6d899f24c19b59962d557d4"

View File

@@ -58,15 +58,19 @@ imagecodecs = { version = ">=2024.1.1", optional = true }
pyav = ">=12.0.5"
moviepy = ">=1.0.3"
rerun-sdk = ">=0.15.1"
statsmodels = {version = ">=0.14.2", optional = true}
matplotlib = {version = ">=3.8.4", optional = true}
terminaltables = {version = ">=3.1.10", optional = true}
[tool.poetry.extras]
pusht = ["gym-pusht"]
xarm = ["gym-xarm"]
aloha = ["gym-aloha"]
umi = ["imagecodecs"]
compare = ["statsmodels", "matplotlib", "terminaltables"]
dev = ["pre-commit", "debugpy"]
test = ["pytest", "pytest-cov"]
umi = ["imagecodecs"]
[tool.ruff]
line-length = 110