Compare commits
74 Commits
user/miche
...
refactor/u
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
b83892092f | ||
|
|
3b8e714af6 | ||
|
|
e8a0bbcfb1 | ||
|
|
60cbde1a78 | ||
|
|
95ebc27d32 | ||
|
|
6fa290f961 | ||
|
|
ca82e9aebf | ||
|
|
5e160be3cc | ||
|
|
54da1d8181 | ||
|
|
7053cc6aaf | ||
|
|
8ce28a7d17 | ||
|
|
c1196e350c | ||
|
|
4a539b9d05 | ||
|
|
3c1b657fdd | ||
|
|
65ad0650b0 | ||
|
|
0c411a6832 | ||
|
|
4d9825bb1d | ||
|
|
47d5008407 | ||
|
|
95f3e53eba | ||
|
|
625bb9c9d8 | ||
|
|
95a951883e | ||
|
|
73bb9709a7 | ||
|
|
f8c7e59f83 | ||
|
|
7f7c431061 | ||
|
|
76f661f8b5 | ||
|
|
1c90cd1269 | ||
|
|
a36536dc07 | ||
|
|
33b8559060 | ||
|
|
91a5fafdae | ||
|
|
a653210173 | ||
|
|
eb2d967c85 | ||
|
|
7a4b9f0cbf | ||
|
|
18b56e1533 | ||
|
|
39a93a7b28 | ||
|
|
b3dafcfb07 | ||
|
|
39f908e9db | ||
|
|
99ea24d6a3 | ||
|
|
efd2849184 | ||
|
|
ab7565a666 | ||
|
|
525cd68e62 | ||
|
|
9812f2db09 | ||
|
|
85b0dd0ec1 | ||
|
|
41179d0996 | ||
|
|
3a08eddeab | ||
|
|
3890c38c12 | ||
|
|
05d8825bcb | ||
|
|
1f2cfd3828 | ||
|
|
295b96c539 | ||
|
|
f27f5f84b0 | ||
|
|
5daf552127 | ||
|
|
6797e1d92b | ||
|
|
859a369b29 | ||
|
|
cca647307b | ||
|
|
dae5f7c74d | ||
|
|
d6d8f29b5c | ||
|
|
27bb7c4d71 | ||
|
|
2d86812b97 | ||
|
|
57c2181ed2 | ||
|
|
81c49cecd0 | ||
|
|
4675b3cd02 | ||
|
|
dbce247ec1 | ||
|
|
904bc618ee | ||
|
|
ddd8fd325b | ||
|
|
7f34e1af9c | ||
|
|
3416036e34 | ||
|
|
2af8edcf74 | ||
|
|
b089c6db3a | ||
|
|
15b5d28f45 | ||
|
|
35c4b01752 | ||
|
|
6348f0f418 | ||
|
|
720a6374ba | ||
|
|
3297c7e802 | ||
|
|
0b5b438f50 | ||
|
|
8a6412b0db |
3
.gitattributes
vendored
@@ -11,10 +11,11 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
*.memmap filter=lfs diff=lfs merge=lfs -text
|
||||
*.stl filter=lfs diff=lfs merge=lfs -text
|
||||
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
||||
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
||||
*.arrow filter=lfs diff=lfs merge=lfs -text
|
||||
*.json !text !filter !merge !diff
|
||||
tests/artifacts/cameras/*.png filter=lfs diff=lfs merge=lfs -text
|
||||
*.bag filter=lfs diff=lfs merge=lfs -text
|
||||
|
||||
@@ -269,9 +269,6 @@ Follow these steps to start contributing:
|
||||
the PR as a draft PR. These are useful to avoid duplicated work, and to differentiate
|
||||
it from PRs ready to be merged;
|
||||
4. Make sure existing tests pass;
|
||||
<!-- 5. Add high-coverage tests. No quality testing = no merge.
|
||||
|
||||
See an example of a good PR here: https://github.com/huggingface/lerobot/pull/ -->
|
||||
|
||||
### Tests
|
||||
|
||||
|
||||
@@ -5,8 +5,22 @@
|
||||
title: Installation
|
||||
title: Get started
|
||||
- sections:
|
||||
- local: assemble_so101
|
||||
title: Assemble SO-101
|
||||
- local: getting_started_real_world_robot
|
||||
title: Getting Started with Real-World Robots
|
||||
- local: cameras
|
||||
title: Cameras
|
||||
title: "Tutorials"
|
||||
- sections:
|
||||
- local: so101
|
||||
title: SO-101
|
||||
- local: so100
|
||||
title: SO-100
|
||||
- local: koch
|
||||
title: Koch v1.1
|
||||
- local: lekiwi
|
||||
title: LeKiwi
|
||||
title: "Robots"
|
||||
- sections:
|
||||
- local: contributing
|
||||
title: Contribute to LeRobot
|
||||
title: "Contribute"
|
||||
|
||||
@@ -1,348 +0,0 @@
|
||||
# Assemble SO-101
|
||||
|
||||
In the steps below we explain how to assemble our flagship robot, the SO-101.
|
||||
|
||||
## Source the parts
|
||||
|
||||
Follow this [README](https://github.com/TheRobotStudio/SO-ARM100). It contains the bill of materials, with a link to source the parts, as well as the instructions to 3D print the parts,
|
||||
and advice if it's your first time printing or if you don't own a 3D printer.
|
||||
|
||||
Before assembling, you will first need to configure your motors. To this end, we provide a nice script, so let's first install LeRobot. After configuration, we will also guide you through assembly.
|
||||
|
||||
## Install LeRobot
|
||||
|
||||
To install LeRobot follow our [Installation Guide](./installation)
|
||||
|
||||
## Configure motors
|
||||
|
||||
To configure the motors designate one bus servo adapter and 6 motors for your leader arm, and similarly the other bus servo adapter and 6 motors for the follower arm. It's convenient to label them and write on each motor if it's for the follower `F` or for the leader `L` and it's ID from 1 to 6.
|
||||
|
||||
You now should plug the 5V or 12V power supply to the motor bus. 5V for the STS3215 7.4V motors and 12V for the STS3215 12V motors. Note that the leader arm always uses the 7.4V motors, so watch out that you plug in the right power supply if you have 12V and 7.4V motors, otherwise you might burn your motors! Now, connect the motor bus to your computer via USB. Note that the USB doesn't provide any power, and both the power supply and USB have to be plugged in.
|
||||
|
||||
### Find the USB ports associated to each arm
|
||||
|
||||
To find the port for each bus servo adapter, run this script:
|
||||
```bash
|
||||
python lerobot/scripts/find_motors_bus_port.py
|
||||
```
|
||||
##### Example outputs of script
|
||||
|
||||
<hfoptions id="example">
|
||||
<hfoption id="Mac">
|
||||
|
||||
Example output leader arm's port: `/dev/tty.usbmodem575E0031751`
|
||||
|
||||
```bash
|
||||
Finding all available ports for the MotorBus.
|
||||
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
|
||||
Remove the usb cable from your MotorsBus and press Enter when done.
|
||||
|
||||
[...Disconnect leader arm and press Enter...]
|
||||
|
||||
The port of this MotorsBus is /dev/tty.usbmodem575E0031751
|
||||
Reconnect the usb cable.
|
||||
```
|
||||
|
||||
Example output follower arm port: `/dev/tty.usbmodem575E0032081`
|
||||
|
||||
```
|
||||
Finding all available ports for the MotorBus.
|
||||
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
|
||||
Remove the usb cable from your MotorsBus and press Enter when done.
|
||||
|
||||
[...Disconnect follower arm and press Enter...]
|
||||
|
||||
The port of this MotorsBus is /dev/tty.usbmodem575E0032081
|
||||
Reconnect the usb cable.
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="Linux">
|
||||
|
||||
On Linux, you might need to give access to the USB ports by running:
|
||||
```bash
|
||||
sudo chmod 666 /dev/ttyACM0
|
||||
sudo chmod 666 /dev/ttyACM1
|
||||
```
|
||||
|
||||
Example output leader arm port: `/dev/ttyACM0`
|
||||
|
||||
```bash
|
||||
Finding all available ports for the MotorBus.
|
||||
['/dev/ttyACM0', '/dev/ttyACM1']
|
||||
Remove the usb cable from your MotorsBus and press Enter when done.
|
||||
|
||||
[...Disconnect leader arm and press Enter...]
|
||||
|
||||
The port of this MotorsBus is /dev/ttyACM0
|
||||
Reconnect the usb cable.
|
||||
```
|
||||
|
||||
Example output follower arm port: `/dev/ttyACM1`
|
||||
|
||||
```
|
||||
Finding all available ports for the MotorBus.
|
||||
['/dev/ttyACM0', '/dev/ttyACM1']
|
||||
Remove the usb cable from your MotorsBus and press Enter when done.
|
||||
|
||||
[...Disconnect follower arm and press Enter...]
|
||||
|
||||
The port of this MotorsBus is /dev/ttyACM1
|
||||
Reconnect the usb cable.
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
#### Update config file
|
||||
|
||||
Now that you have your ports, update the **port** default values of [`SO101RobotConfig`](https://github.com/huggingface/lerobot/blob/main/lerobot/common/robot_devices/robots/configs.py).
|
||||
You will find a class called `so101` where you can update the `port` values with your actual motor ports:
|
||||
```diff
|
||||
@RobotConfig.register_subclass("so101")
|
||||
@dataclass
|
||||
class So101RobotConfig(ManipulatorRobotConfig):
|
||||
calibration_dir: str = ".cache/calibration/so101"
|
||||
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||
# the number of motors in your follower arms.
|
||||
max_relative_target: int | None = None
|
||||
|
||||
leader_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"main": FeetechMotorsBusConfig(
|
||||
- port="/dev/tty.usbmodem58760431091",
|
||||
+ port="{ADD YOUR LEADER PORT}",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "sts3215"],
|
||||
"shoulder_lift": [2, "sts3215"],
|
||||
"elbow_flex": [3, "sts3215"],
|
||||
"wrist_flex": [4, "sts3215"],
|
||||
"wrist_roll": [5, "sts3215"],
|
||||
"gripper": [6, "sts3215"],
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
follower_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"main": FeetechMotorsBusConfig(
|
||||
- port="/dev/tty.usbmodem585A0076891",
|
||||
+ port="{ADD YOUR FOLLOWER PORT}",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "sts3215"],
|
||||
"shoulder_lift": [2, "sts3215"],
|
||||
"elbow_flex": [3, "sts3215"],
|
||||
"wrist_flex": [4, "sts3215"],
|
||||
"wrist_roll": [5, "sts3215"],
|
||||
"gripper": [6, "sts3215"],
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
Here is a video of the process:
|
||||
<div class="video-container">
|
||||
<video controls width="600">
|
||||
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/lerobot-find-motorbus.mp4" type="video/mp4" />
|
||||
</video>
|
||||
</div>
|
||||
|
||||
## Step-by-Step Assembly Instructions
|
||||
|
||||
The follower arm uses 6x STS3215 motors with 1/345 gearing. The leader however uses three differently geared motors to make sure it can both sustain its own weight and it can be moved without requiring much force. Which motor is needed for which joint is shown in table below.
|
||||
|
||||
| Leader-Arm Axis | Motor | Gear Ratio |
|
||||
|-----------------|:-------:|:----------:|
|
||||
| Base / Shoulder Yaw | 1 | 1 / 191 |
|
||||
| Shoulder Pitch | 2 | 1 / 345 |
|
||||
| Elbow | 3 | 1 / 191 |
|
||||
| Wrist Roll | 4 | 1 / 147 |
|
||||
| Wrist Pitch | 5 | 1 / 147 |
|
||||
| Gripper | 6 | 1 / 147 |
|
||||
|
||||
### Set motor IDs
|
||||
|
||||
Plug your motor in one of the two ports of the motor bus and run this script to set its ID to 1. Replace the text after --port to the corresponding control board port.
|
||||
```bash
|
||||
python lerobot/scripts/configure_motor.py \
|
||||
--port /dev/tty.usbmodem58760432961 \
|
||||
--brand feetech \
|
||||
--model sts3215 \
|
||||
--baudrate 1000000 \
|
||||
--ID 1
|
||||
```
|
||||
|
||||
Then unplug your motor and plug the second motor and set its ID to 2.
|
||||
```bash
|
||||
python lerobot/scripts/configure_motor.py \
|
||||
--port /dev/tty.usbmodem58760432961 \
|
||||
--brand feetech \
|
||||
--model sts3215 \
|
||||
--baudrate 1000000 \
|
||||
--ID 2
|
||||
```
|
||||
|
||||
Redo this process for all your motors until ID 6. Do the same for the 6 motors of the leader arm, but make sure to change the power supply if you use motors with different voltage and make sure you give the right ID to the right motor according to the table above.
|
||||
|
||||
Here is a video of the process:
|
||||
<div class="video-container">
|
||||
<video controls width="600">
|
||||
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/lerobot-configure-motor.mp4" type="video/mp4" />
|
||||
</video>
|
||||
</div>
|
||||
|
||||
### Clean Parts
|
||||
Remove all support material from the 3D-printed parts, the easiest way to do this is using a small screwdriver to get underneath the support material.
|
||||
|
||||
### Joint 1
|
||||
|
||||
- Place the first motor into the base.
|
||||
- Fasten the motor with 4 M2x6mm screws (smallest screws). Two from the top and two from bottom.
|
||||
- Slide over the first motor holder and fasten it using two M2x6mm screws (one on each side).
|
||||
- Install both motor horns, securing the top horn with a M3x6mm screw.
|
||||
- Attach the shoulder part.
|
||||
- Tighten the shoulder part with 4 M3x6mm screws on top and 4 M3x6mm screws on the bottom
|
||||
- Add the shoulder motor holder.
|
||||
|
||||
<div class="video-container">
|
||||
<video controls width="600">
|
||||
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/Joint1_v2.mp4" type="video/mp4" />
|
||||
</video>
|
||||
</div>
|
||||
|
||||
### Joint 2
|
||||
|
||||
- Slide the second motor in from the top.
|
||||
- Fasten the second motor with 4 M2x6mm screws.
|
||||
- Attach both motor horns to motor 2, again use the M3x6mm horn screw.
|
||||
- Attach the upper arm with 4 M3x6mm screws on each side.
|
||||
|
||||
<div class="video-container">
|
||||
<video controls width="600">
|
||||
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/Joint2_v2.mp4" type="video/mp4" />
|
||||
</video>
|
||||
</div>
|
||||
|
||||
### Joint 3
|
||||
|
||||
- Insert motor 3 and fasten using 4 M2x6mm screws
|
||||
- Attach both motor horns to motor 3 and secure one again with a M3x6mm horn screw.
|
||||
- Connect the forearm to motor 3 using 4 M3x6mm screws on each side.
|
||||
|
||||
<div class="video-container">
|
||||
<video controls width="600">
|
||||
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/Joint3_v2.mp4" type="video/mp4" />
|
||||
</video>
|
||||
</div>
|
||||
|
||||
### Joint 4
|
||||
|
||||
- Slide over motor holder 4.
|
||||
- Slide in motor 4.
|
||||
- Fasten motor 4 with 4 M2x6mm screws and attach its motor horns, use a M3x6mm horn screw.
|
||||
|
||||
<div class="video-container">
|
||||
<video controls width="600">
|
||||
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/Joint4_v2.mp4" type="video/mp4" />
|
||||
</video>
|
||||
</div>
|
||||
|
||||
### Joint 5
|
||||
|
||||
- Insert motor 5 into the wrist holder and secure it with 2 M2x6mm front screws.
|
||||
- Install only one motor horn on the wrist motor and secure it with a M3x6mm horn screw.
|
||||
- Secure the wrist to motor 4 using 4 M3x6mm screws on both sides.
|
||||
|
||||
<div class="video-container">
|
||||
<video controls width="600">
|
||||
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/Joint5_v2.mp4" type="video/mp4" />
|
||||
</video>
|
||||
</div>
|
||||
|
||||
### Gripper / Handle
|
||||
|
||||
<hfoptions id="assembly">
|
||||
<hfoption id="Follower">
|
||||
|
||||
- Attach the gripper to motor 5, attach it to the motor horn on the wrist using 4 M3x6mm screws.
|
||||
- Insert the gripper motor and secure it with 2 M2x6mm screws on each side.
|
||||
- Attach the motor horns and again use a M3x6mm horn screw.
|
||||
- Install the gripper claw and secure it with 4 M3x6mm screws on both sides.
|
||||
|
||||
<div class="video-container">
|
||||
<video controls width="600">
|
||||
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/Gripper_v2.mp4" type="video/mp4" />
|
||||
</video>
|
||||
</div>
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="Leader">
|
||||
|
||||
- Mount the leader holder onto the wrist and secure it with 4 M3x6mm screws.
|
||||
- Attach the handle to motor 5 using 1 M2x6mm screw.
|
||||
- Insert the gripper motor, secure it with 2 M2x6mm screws on each side, attach a motor horn using a M3x6mm horn screw.
|
||||
- Attach the follower trigger with 4 M3x6mm screws.
|
||||
|
||||
<div class="video-container">
|
||||
<video controls width="600">
|
||||
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/Leader_v2.mp4" type="video/mp4" />
|
||||
</video>
|
||||
</div>
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
##### Wiring
|
||||
|
||||
- Attach the motor controller on the back.
|
||||
- Then insert all wires, use the wire guides everywhere to make sure the wires don't unplug themselves and stay in place.
|
||||
|
||||
<div class="video-container">
|
||||
<video controls width="600">
|
||||
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/Wiring_v2.mp4" type="video/mp4" />
|
||||
</video>
|
||||
</div>
|
||||
|
||||
## Calibrate
|
||||
|
||||
Next, you'll need to calibrate your SO-101 robot to ensure that the leader and follower arms have the same position values when they are in the same physical position.
|
||||
The calibration process is very important because it allows a neural network trained on one SO-101 robot to work on another.
|
||||
|
||||
#### Manual calibration of follower arm
|
||||
|
||||
You will need to move the follower arm to these positions sequentially, note that the rotated position is on the right side of the robot and you have to open the gripper fully.
|
||||
|
||||
| 1. Middle position | 2. Zero position | 3. Rotated position | 4. Rest position |
|
||||
| ------------ |------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/follower_middle.webp?raw=true" alt="SO-101 leader arm middle position" title="SO-101 leader arm middle position" style="width:100%;"> | <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/follower_zero.webp?raw=true" alt="SO-101 leader arm zero position" title="SO-101 leader arm zero position" style="width:100%;"> | <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/follower_rotated.webp?raw=true" alt="SO-101 leader arm rotated position" title="SO-101 leader arm rotated position" style="width:100%;"> | <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/follower_rest.webp?raw=true" alt="SO-101 leader arm rest position" title="SO-101 leader arm rest position" style="width:100%;"> |
|
||||
|
||||
Make sure both arms are connected and run this script to launch manual calibration:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so101 \
|
||||
--robot.cameras='{}' \
|
||||
--control.type=calibrate \
|
||||
--control.arms='["main_follower"]'
|
||||
```
|
||||
|
||||
#### Manual calibration of leader arm
|
||||
You will also need to move the leader arm to these positions sequentially:
|
||||
|
||||
| 1. Middle position | 2. Zero position | 3. Rotated position | 4. Rest position |
|
||||
| ------------ |------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/leader_middle.webp?raw=true" alt="SO-101 leader arm middle position" title="SO-101 leader arm middle position" style="width:100%;"> | <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/leader_zero.webp?raw=true" alt="SO-101 leader arm zero position" title="SO-101 leader arm zero position" style="width:100%;"> | <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/leader_rotated.webp?raw=true" alt="SO-101 leader arm rotated position" title="SO-101 leader arm rotated position" style="width:100%;"> | <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/leader_rest.webp?raw=true" alt="SO-101 leader arm rest position" title="SO-101 leader arm rest position" style="width:100%;"> |
|
||||
|
||||
Run this script to launch manual calibration:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so101 \
|
||||
--robot.cameras='{}' \
|
||||
--control.type=calibrate \
|
||||
--control.arms='["main_leader"]'
|
||||
```
|
||||
|
||||
Congrats 🎉, your robot is all set to learn a task on its own. Start training it by following this tutorial: [Getting started with real-world robots](./getting_started_real_world_robot)
|
||||
190
docs/source/cameras.mdx
Normal file
@@ -0,0 +1,190 @@
|
||||
# Cameras
|
||||
|
||||
Here we describe how to set up and use a camera with LeRobot. We support different ways of capturing videos in LeRobot, such as using a phone camera, an integrated laptop camera, an external webcam, or an Intel realsense camera.
|
||||
## Set up Cameras
|
||||
|
||||
There are three ways to connect and use a camera with LeRobot:
|
||||
1. Use [Camera Class](./setup_cameras?use+phone=Mac#use-opencvcamera), which allows you to use any camera: usb, realsense, laptop webcam
|
||||
2. Use [iPhone camera](./setup_cameras?use+phone=Mac#use-your-phone) with MacOS
|
||||
3. Use [Phone camera](./setup_cameras?use+phone=Linux#use-your-phone) on Linux
|
||||
|
||||
### Use Camera Class
|
||||
|
||||
In LeRobot, you can efficiently record frames from most cameras using either the OpenCVCamera class or the RealSenseCamera class. For more details on compatibility for the OpenCVCamera class, see [Video I/O with OpenCV Overview](https://docs.opencv.org/4.x/d0/da7/videoio_overview.html).
|
||||
|
||||
To instantiate a camera, you need a camera index. When you only have one camera like a webcam of a laptop, the camera index is usually `0` but it might differ, and the camera index might change if you reboot your computer or re-plug your camera. This behavior depends on your operating system.
|
||||
|
||||
To find the camera indices, run the following script:
|
||||
```bash
|
||||
python lerobot/find_cameras.py list-cameras
|
||||
```
|
||||
|
||||
The output will look something like this if you have two cameras connected:
|
||||
```
|
||||
--- Detected Cameras ---
|
||||
Camera #0:
|
||||
Name: OpenCV Camera @ 0
|
||||
Type: OpenCV
|
||||
Id: 0
|
||||
Backend api: AVFOUNDATION
|
||||
Default stream profile:
|
||||
Format: 16.0
|
||||
Width: 1920
|
||||
Height: 1080
|
||||
Fps: 15.0
|
||||
--------------------
|
||||
Camera #1:
|
||||
Name: OpenCV Camera @ 1
|
||||
Type: OpenCV
|
||||
Id: 1
|
||||
Backend api: AVFOUNDATION
|
||||
Default stream profile:
|
||||
Format: 16.0
|
||||
Width: 1920
|
||||
Height: 1080
|
||||
Fps: 1.0
|
||||
--------------------
|
||||
```
|
||||
|
||||
> [!WARNING]
|
||||
> On , you could get this error: `Error finding RealSense cameras: failed to set power state`, this can be solved by running the same command with `sudo` permissions.
|
||||
|
||||
### Use your phone
|
||||
<hfoptions id="use phone">
|
||||
<hfoption id="Mac">
|
||||
|
||||
To use your iPhone as a camera on macOS, enable the Continuity Camera feature:
|
||||
- Ensure your Mac is running macOS 13 or later, and your iPhone is on iOS 16 or later.
|
||||
- Sign in both devices with the same Apple ID.
|
||||
- Connect your devices with a USB cable or turn on Wi-Fi and Bluetooth for a wireless connection.
|
||||
|
||||
For more details, visit [Apple support](https://support.apple.com/en-gb/guide/mac-help/mchl77879b8a/mac).
|
||||
|
||||
Your iPhone should be detected automatically when running the camera setup script in the next section.
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="Linux">
|
||||
|
||||
If you want to use your phone as a camera on Linux, follow these steps to set up a virtual camera
|
||||
|
||||
1. *Install `v4l2loopback-dkms` and `v4l-utils`*. Those packages are required to create virtual camera devices (`v4l2loopback`) and verify their settings with the `v4l2-ctl` utility from `v4l-utils`. Install them using:
|
||||
```python
|
||||
sudo apt install v4l2loopback-dkms v4l-utils
|
||||
```
|
||||
2. *Install [DroidCam](https://droidcam.app) on your phone*. This app is available for both iOS and Android.
|
||||
3. *Install [OBS Studio](https://obsproject.com)*. This software will help you manage the camera feed. Install it using [Flatpak](https://flatpak.org):
|
||||
```python
|
||||
flatpak install flathub com.obsproject.Studio
|
||||
```
|
||||
4. *Install the DroidCam OBS plugin*. This plugin integrates DroidCam with OBS Studio. Install it with:
|
||||
```python
|
||||
flatpak install flathub com.obsproject.Studio.Plugin.DroidCam
|
||||
```
|
||||
5. *Start OBS Studio*. Launch with:
|
||||
```python
|
||||
flatpak run com.obsproject.Studio
|
||||
```
|
||||
6. *Add your phone as a source*. Follow the instructions [here](https://droidcam.app/obs/usage). Be sure to set the resolution to `640x480`.
|
||||
7. *Adjust resolution settings*. In OBS Studio, go to `File > Settings > Video`. Change the `Base(Canvas) Resolution` and the `Output(Scaled) Resolution` to `640x480` by manually typing it in.
|
||||
8. *Start virtual camera*. In OBS Studio, follow the instructions [here](https://obsproject.com/kb/virtual-camera-guide).
|
||||
9. *Verify the virtual camera setup*. Use `v4l2-ctl` to list the devices:
|
||||
```python
|
||||
v4l2-ctl --list-devices
|
||||
```
|
||||
You should see an entry like:
|
||||
```
|
||||
VirtualCam (platform:v4l2loopback-000):
|
||||
/dev/video1
|
||||
```
|
||||
10. *Check the camera resolution*. Use `v4l2-ctl` to ensure that the virtual camera output resolution is `640x480`. Change `/dev/video1` to the port of your virtual camera from the output of `v4l2-ctl --list-devices`.
|
||||
```python
|
||||
v4l2-ctl -d /dev/video1 --get-fmt-video
|
||||
```
|
||||
You should see an entry like:
|
||||
```
|
||||
>>> Format Video Capture:
|
||||
>>> Width/Height : 640/480
|
||||
>>> Pixel Format : 'YUYV' (YUYV 4:2:2)
|
||||
```
|
||||
|
||||
Troubleshooting: If the resolution is not correct you will have to delete the Virtual Camera port and try again as it cannot be changed.
|
||||
|
||||
If everything is set up correctly, you can proceed with the rest of the tutorial.
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## Use Cameras
|
||||
|
||||
Below are two examples, demonstrating how to work with the API.
|
||||
|
||||
- **Asynchronous frame capture** using an OpenCV-based camera
|
||||
- **Color and depth capture** using an Intel RealSense camera
|
||||
|
||||
### Asynchronous OpenCV Camera
|
||||
|
||||
This snippet shows how to:
|
||||
|
||||
* Construct an `OpenCVCameraConfig` with your desired FPS, resolution, color mode, and rotation.
|
||||
* Instantiate and connect an `OpenCVCamera`, performing a warm-up read.
|
||||
* Read frames asynchronously in a loop via `async_read(timeout_ms)`.
|
||||
|
||||
```python
|
||||
from lerobot.common.cameras.opencv.configuration_opencv import OpenCVCameraConfig
|
||||
from lerobot.common.cameras.opencv.camera_opencv import OpenCVCamera
|
||||
from lerobot.common.cameras.configs import ColorMode, Cv2Rotation
|
||||
|
||||
config = OpenCVCameraConfig(
|
||||
index_or_path=0,
|
||||
fps=15,
|
||||
width=1920,
|
||||
height=1080,
|
||||
color_mode=ColorMode.RGB,
|
||||
rotation=Cv2Rotation.NO_ROTATION
|
||||
)
|
||||
|
||||
camera = OpenCVCamera(config)
|
||||
camera.connect(do_warmup_read=True)
|
||||
|
||||
try:
|
||||
for i in range(10):
|
||||
frame = camera.async_read(timeout_ms=1000)
|
||||
print(f"Async frame {i} shape:", frame.shape)
|
||||
finally:
|
||||
camera.disconnect()
|
||||
```
|
||||
|
||||
### Intel RealSense Camera (Color + Depth)
|
||||
|
||||
This snippet shows how to:
|
||||
|
||||
* Create a `RealSenseCameraConfig` specifying your camera’s serial number and enabling depth.
|
||||
* Instantiate and connect a `RealSenseCamera` with warm-up.
|
||||
* Capture a color frame via `read()` and a depth map via `read_depth()`.
|
||||
|
||||
```python
|
||||
from lerobot.common.cameras.intel.configuration_realsense import RealSenseCameraConfig
|
||||
from lerobot.common.cameras.intel.camera_realsense import RealSenseCamera
|
||||
from lerobot.common.cameras.configs import ColorMode, Cv2Rotation
|
||||
|
||||
config = RealSenseCameraConfig(
|
||||
serial_number="233522074606",
|
||||
fps=15,
|
||||
width=640,
|
||||
height=480,
|
||||
color_mode=ColorMode.RGB,
|
||||
use_depth=True,
|
||||
rotation=Cv2Rotation.NO_ROTATION
|
||||
)
|
||||
|
||||
camera = RealSenseCamera(config)
|
||||
camera.connect(do_warmup_read=True)
|
||||
|
||||
try:
|
||||
color_frame = camera.read()
|
||||
depth_map = camera.read_depth()
|
||||
print("Color frame shape:", color_frame.shape)
|
||||
print("Depth map shape:", depth_map.shape)
|
||||
finally:
|
||||
camera.disconnect()
|
||||
```
|
||||
1
docs/source/contributing.md
Symbolic link
@@ -0,0 +1 @@
|
||||
../../CONTRIBUTING.md
|
||||
@@ -1,173 +1,189 @@
|
||||
# Getting Started with Real-World Robots
|
||||
|
||||
This tutorial will explain you how to train a neural network to autonomously control a real robot.
|
||||
This tutorial will explain how to train a neural network to control a real robot autonomously.
|
||||
|
||||
**You'll learn:**
|
||||
1. How to record and visualize your dataset.
|
||||
2. How to train a policy using your data and prepare it for evaluation.
|
||||
3. How to evaluate your policy and visualize the results.
|
||||
|
||||
By following these steps, you'll be able to replicate tasks like picking up a Lego block and placing it in a bin with a high success rate, as demonstrated in [this video](https://x.com/RemiCadene/status/1814680760592572934).
|
||||
By following these steps, you'll be able to replicate tasks, such as picking up a Lego block and placing it in a bin with a high success rate, as shown in [this video](https://x.com/RemiCadene/status/1814680760592572934).
|
||||
|
||||
This tutorial is specifically made for the affordable [SO-101](https://github.com/TheRobotStudio/SO-ARM100) robot, but it contains additional information to be easily adapted to various types of robots like [Aloha bimanual robot](https://aloha-2.github.io) by changing some configurations. The SO-101 consists of a leader arm and a follower arm, each with 6 motors. It can work with one or several cameras to record the scene, which serve as visual sensors for the robot.
|
||||
This tutorial isn’t tied to a specific robot: we walk you through the commands and API snippets you can adapt for any supported platform.
|
||||
|
||||
During the data collection phase, you will control the follower arm by moving the leader arm. This process is known as "teleoperation." This technique is used to collect robot trajectories. Afterward, you'll train a neural network to imitate these trajectories and deploy the network to enable your robot to operate autonomously.
|
||||
During data collection, you’ll use a “teloperation” device, such as a leader arm or keyboard to teleoperate the robot and record its motion trajectories.
|
||||
|
||||
If you encounter any issues at any step of the tutorial, feel free to seek help on [Discord](https://discord.com/invite/s3KuuzsPFb) or don't hesitate to iterate with us on the tutorial by creating issues or pull requests.
|
||||
Once you’ve gathered enough trajectories, you’ll train a neural network to imitate these trajectories and deploy the trained model so your robot can perform the task autonomously.
|
||||
|
||||
## Setup and Calibrate
|
||||
If you run into any issues at any point, jump into our [Discord community](https://discord.com/invite/s3KuuzsPFb) for support.
|
||||
|
||||
If you haven't yet setup and calibrate the SO-101 follow these steps:
|
||||
1. [Find ports and update config file](./assemble_so101#find-the-usb-ports-associated-to-each-arm)
|
||||
2. [Calibrate](./assemble_so101#calibrate)
|
||||
## Set up and Calibrate
|
||||
|
||||
If you haven't yet set up and calibrated your robot and teleop device, please do so by following the robot-specific tutorial.
|
||||
|
||||
## Teleoperate
|
||||
|
||||
Run this simple script to teleoperate your robot (it won't connect and display the cameras):
|
||||
In this example, we’ll demonstrate how to teleoperate the SO101 robot. For each command, we also provide a corresponding API example.
|
||||
|
||||
<hfoptions id="teleoperate_so101">
|
||||
<hfoption id="Command">
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so101 \
|
||||
--robot.cameras='{}' \
|
||||
--control.type=teleoperate
|
||||
python -m lerobot.teleoperate \
|
||||
--robot.type=so101_follower \
|
||||
--robot.port=/dev/tty.usbmodem58760431541 \
|
||||
--robot.cameras="{}" \
|
||||
--robot.id=my_red_robot_arm \
|
||||
--teleop.type=so101_leader \
|
||||
--teleop.port=/dev/tty.usbmodem58760431551 \
|
||||
--teleop.id=my_blue_leader_arm
|
||||
```
|
||||
|
||||
The teleoperate command will automatically:
|
||||
1. Identify any missing calibrations and initiate the calibration procedure.
|
||||
2. Connect the robot and start teleoperation.
|
||||
|
||||
## Setup Cameras
|
||||
|
||||
To connect a camera you have three options:
|
||||
1. OpenCVCamera which allows us to use any camera: usb, realsense, laptop webcam
|
||||
2. iPhone camera with MacOS
|
||||
3. Phone camera on Linux
|
||||
|
||||
### Use OpenCVCamera
|
||||
|
||||
The [`OpenCVCamera`](../lerobot/common/robot_devices/cameras/opencv.py) class allows you to efficiently record frames from most cameras using the [`opencv2`](https://docs.opencv.org) library. For more details on compatibility, see [Video I/O with OpenCV Overview](https://docs.opencv.org/4.x/d0/da7/videoio_overview.html).
|
||||
|
||||
To instantiate an [`OpenCVCamera`](../lerobot/common/robot_devices/cameras/opencv.py), you need a camera index (e.g. `OpenCVCamera(camera_index=0)`). When you only have one camera like a webcam of a laptop, the camera index is usually `0` but it might differ, and the camera index might change if you reboot your computer or re-plug your camera. This behavior depends on your operating system.
|
||||
|
||||
To find the camera indices, run the following utility script, which will save a few frames from each detected camera:
|
||||
```bash
|
||||
python lerobot/common/robot_devices/cameras/opencv.py \
|
||||
--images-dir outputs/images_from_opencv_cameras
|
||||
```
|
||||
|
||||
The output will look something like this if you have two cameras connected:
|
||||
```
|
||||
Mac or Windows detected. Finding available camera indices through scanning all indices from 0 to 60
|
||||
[...]
|
||||
Camera found at index 0
|
||||
Camera found at index 1
|
||||
[...]
|
||||
Connecting cameras
|
||||
OpenCVCamera(0, fps=30.0, width=1920.0, height=1080.0, color_mode=rgb)
|
||||
OpenCVCamera(1, fps=24.0, width=1920.0, height=1080.0, color_mode=rgb)
|
||||
Saving images to outputs/images_from_opencv_cameras
|
||||
Frame: 0000 Latency (ms): 39.52
|
||||
[...]
|
||||
Frame: 0046 Latency (ms): 40.07
|
||||
Images have been saved to outputs/images_from_opencv_cameras
|
||||
```
|
||||
|
||||
Check the saved images in `outputs/images_from_opencv_cameras` to identify which camera index corresponds to which physical camera (e.g. `0` for `camera_00` or `1` for `camera_01`):
|
||||
```
|
||||
camera_00_frame_000000.png
|
||||
[...]
|
||||
camera_00_frame_000047.png
|
||||
camera_01_frame_000000.png
|
||||
[...]
|
||||
camera_01_frame_000047.png
|
||||
```
|
||||
|
||||
Note: Some cameras may take a few seconds to warm up, and the first frame might be black or green.
|
||||
|
||||
Now that you have the camera indexes, you should specify the camera's in the config.
|
||||
|
||||
### Use your phone
|
||||
<hfoptions id="use phone">
|
||||
<hfoption id="Mac">
|
||||
|
||||
To use your iPhone as a camera on macOS, enable the Continuity Camera feature:
|
||||
- Ensure your Mac is running macOS 13 or later, and your iPhone is on iOS 16 or later.
|
||||
- Sign in both devices with the same Apple ID.
|
||||
- Connect your devices with a USB cable or turn on Wi-Fi and Bluetooth for a wireless connection.
|
||||
|
||||
For more details, visit [Apple support](https://support.apple.com/en-gb/guide/mac-help/mchl77879b8a/mac).
|
||||
|
||||
Your iPhone should be detected automatically when running the camera setup script in the next section.
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="Linux">
|
||||
<hfoption id="API example">
|
||||
```python
|
||||
from lerobot.common.teleoperators.so101_leader import SO101LeaderConfig, SO101Leader
|
||||
from lerobot.common.robots.so101_follower import SO101FollowerConfig, SO101Follower
|
||||
|
||||
If you want to use your phone as a camera on Linux, follow these steps to set up a virtual camera
|
||||
robot_config = SO101FollowerConfig(
|
||||
port="/dev/tty.usbmodem58760431541",
|
||||
id="my_red_robot_arm",
|
||||
)
|
||||
|
||||
1. *Install `v4l2loopback-dkms` and `v4l-utils`*. Those packages are required to create virtual camera devices (`v4l2loopback`) and verify their settings with the `v4l2-ctl` utility from `v4l-utils`. Install them using:
|
||||
```python
|
||||
sudo apt install v4l2loopback-dkms v4l-utils
|
||||
```
|
||||
2. *Install [DroidCam](https://droidcam.app) on your phone*. This app is available for both iOS and Android.
|
||||
3. *Install [OBS Studio](https://obsproject.com)*. This software will help you manage the camera feed. Install it using [Flatpak](https://flatpak.org):
|
||||
```python
|
||||
flatpak install flathub com.obsproject.Studio
|
||||
```
|
||||
4. *Install the DroidCam OBS plugin*. This plugin integrates DroidCam with OBS Studio. Install it with:
|
||||
```python
|
||||
flatpak install flathub com.obsproject.Studio.Plugin.DroidCam
|
||||
```
|
||||
5. *Start OBS Studio*. Launch with:
|
||||
```python
|
||||
flatpak run com.obsproject.Studio
|
||||
```
|
||||
6. *Add your phone as a source*. Follow the instructions [here](https://droidcam.app/obs/usage). Be sure to set the resolution to `640x480`.
|
||||
7. *Adjust resolution settings*. In OBS Studio, go to `File > Settings > Video`. Change the `Base(Canvas) Resolution` and the `Output(Scaled) Resolution` to `640x480` by manually typing it in.
|
||||
8. *Start virtual camera*. In OBS Studio, follow the instructions [here](https://obsproject.com/kb/virtual-camera-guide).
|
||||
9. *Verify the virtual camera setup*. Use `v4l2-ctl` to list the devices:
|
||||
```python
|
||||
v4l2-ctl --list-devices
|
||||
```
|
||||
You should see an entry like:
|
||||
```
|
||||
VirtualCam (platform:v4l2loopback-000):
|
||||
/dev/video1
|
||||
```
|
||||
10. *Check the camera resolution*. Use `v4l2-ctl` to ensure that the virtual camera output resolution is `640x480`. Change `/dev/video1` to the port of your virtual camera from the output of `v4l2-ctl --list-devices`.
|
||||
```python
|
||||
v4l2-ctl -d /dev/video1 --get-fmt-video
|
||||
```
|
||||
You should see an entry like:
|
||||
```
|
||||
>>> Format Video Capture:
|
||||
>>> Width/Height : 640/480
|
||||
>>> Pixel Format : 'YUYV' (YUYV 4:2:2)
|
||||
```
|
||||
teleop_config = SO101LeaderConfig(
|
||||
port="/dev/tty.usbmodem58760431551",
|
||||
id="my_blue_leader_arm",
|
||||
)
|
||||
|
||||
Troubleshooting: If the resolution is not correct you will have to delete the Virtual Camera port and try again as it cannot be changed.
|
||||
|
||||
If everything is set up correctly, you can proceed with the rest of the tutorial.
|
||||
robot = SO101Follower(robot_config)
|
||||
teleop_device = SO101Leader(teleop_config)
|
||||
robot.connect()
|
||||
teleop_device.connect()
|
||||
|
||||
while True:
|
||||
action = teleop_device.get_action()
|
||||
robot.send_action(action)
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
The teleoperate command will automatically:
|
||||
1. Identify any missing calibrations and initiate the calibration procedure.
|
||||
2. Connect the robot and teleop device and start teleoperation.
|
||||
|
||||
## Cameras
|
||||
|
||||
To add cameras to your setup, follow this [Guide](./cameras#setup-cameras).
|
||||
|
||||
## Teleoperate with cameras
|
||||
|
||||
We can now teleoperate again while at the same time visualizing the cameras and joint positions with `rerun`.
|
||||
With `rerun`, you can teleoperate again while simultaneously visualizing the camera feeds and joint positions. In this example, we’re using the Koch arm.
|
||||
|
||||
<hfoptions id="teleoperate_koch_camera">
|
||||
<hfoption id="Command">
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so101 \
|
||||
--control.type=teleoperate
|
||||
--control.display_data=true
|
||||
python -m lerobot.teleoperate \
|
||||
--robot.type=koch_follower \
|
||||
--robot.port=/dev/tty.usbmodem58760431541 \
|
||||
--robot.id=my_koch_robot \
|
||||
--robot.cameras="{ front: {type: opencv, index_or_path: 0, width: 1920, height: 1080, fps: 30}}" \
|
||||
--teleop.type=koch_leader \
|
||||
--teleop.port=/dev/tty.usbmodem58760431551 \
|
||||
--teleop.id=my_koch_teleop \
|
||||
--display_data=true
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="API example">
|
||||
```python
|
||||
from lerobot.common.cameras.opencv.configuration_opencv import OpenCVCameraConfig
|
||||
from lerobot.common.teleoperators.koch_leader import KochLeaderConfig, KochLeader
|
||||
from lerobot.common.robots.koch_follower import KochFollowerConfig, KochFollower
|
||||
|
||||
camera_config = {
|
||||
"front": OpenCVCameraConfig(index_or_path=0, width=1920, height=1080, fps=30)
|
||||
}
|
||||
|
||||
robot_config = KochFollowerConfig(
|
||||
port="/dev/tty.usbmodem585A0076841",
|
||||
id="my_red_robot_arm",
|
||||
cameras=camera_config
|
||||
)
|
||||
|
||||
teleop_config = KochLeaderConfig(
|
||||
port="/dev/tty.usbmodem58760431551",
|
||||
id="my_blue_leader_arm",
|
||||
)
|
||||
|
||||
robot = KochFollower(robot_config)
|
||||
teleop_device = KochLeader(teleop_config)
|
||||
robot.connect()
|
||||
teleop_device.connect()
|
||||
|
||||
while True:
|
||||
observation = robot.get_observation()
|
||||
action = teleop_device.get_action()
|
||||
robot.send_action(action)
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## Teleoperate LeKiwi
|
||||
|
||||
> [!TIP]
|
||||
> If you're using a Mac, you might need to give Terminal permission to access your keyboard for teleoperation. Go to System Preferences > Security & Privacy > Input Monitoring and check the box for Terminal.
|
||||
|
||||
TODO(pepijn): modify these commands with new API, and explain you can also map the arms to a keyboard with the new API now
|
||||
|
||||
To teleoperate SSH into your Raspberry Pi, and run `conda activate lerobot` and this script:
|
||||
```bash
|
||||
python -m lerobot.common.robots.lekiwi.lekiwi_host
|
||||
```
|
||||
|
||||
Then on your laptop, also run `conda activate lerobot` and this script:
|
||||
```bash
|
||||
python -m lerobot.teleoperate \
|
||||
--robot.type=lekiwi \
|
||||
--robot.port=/dev/tty.usbmodem58760431541 \
|
||||
--robot.cameras="{}" \
|
||||
--robot.id=my_lekiwi \
|
||||
--teleop.type=so101_leader \
|
||||
--teleop.port=/dev/tty.usbmodem58760431551 \
|
||||
--teleop.id=my_blue_leader_arm
|
||||
```
|
||||
|
||||
> **NOTE:** To visualize the data, enable `--control.display_data=true`. This streams the data using `rerun`. For the `--control.type=remote_robot` you will also need to set `--control.viewer_ip` and `--control.viewer_port`
|
||||
|
||||
You should see on your laptop something like this: ```[INFO] Connected to remote robot at tcp://172.17.133.91:5555 and video stream at tcp://172.17.133.91:5556.``` Now you can move the leader arm and use the keyboard (w,a,s,d) to drive forward, left, backwards, right. And use (z,x) to turn left or turn right. You can use (r,f) to increase and decrease the speed of the mobile robot. There are three speed modes, see the table below:
|
||||
|
||||
| Speed Mode | Linear Speed (m/s) | Rotation Speed (deg/s) |
|
||||
| ---------- | ------------------ | ---------------------- |
|
||||
| Fast | 0.4 | 90 |
|
||||
| Medium | 0.25 | 60 |
|
||||
| Slow | 0.1 | 30 |
|
||||
|
||||
|
||||
| Key | Action |
|
||||
| --- | -------------- |
|
||||
| W | Move forward |
|
||||
| A | Move left |
|
||||
| S | Move backward |
|
||||
| D | Move right |
|
||||
| Z | Turn left |
|
||||
| X | Turn right |
|
||||
| R | Increase speed |
|
||||
| F | Decrease speed |
|
||||
|
||||
> [!TIP]
|
||||
> If you use a different keyboard, you can change the keys for each command in the [`LeKiwiConfig`](../lerobot/common/robot_devices/robots/configs.py).
|
||||
|
||||
### Wired version
|
||||
If you have the **wired** LeKiwi version, please run all commands on your laptop.
|
||||
|
||||
## Record a dataset
|
||||
|
||||
Once you're familiar with teleoperation, you can record your first dataset with SO-101.
|
||||
Once you're familiar with teleoperation, you can record your first dataset.
|
||||
|
||||
We use the Hugging Face hub features for uploading your dataset. If you haven't previously used the Hub, make sure you can login via the cli using a write-access token, this token can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens).
|
||||
|
||||
Add your token to the cli by running this command:
|
||||
Add your token to the CLI by running this command:
|
||||
```bash
|
||||
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
|
||||
```
|
||||
@@ -178,20 +194,20 @@ HF_USER=$(huggingface-cli whoami | head -n 1)
|
||||
echo $HF_USER
|
||||
```
|
||||
|
||||
Now you can record a dataset, to record 2 episodes and upload your dataset to the hub execute this command:
|
||||
Now you can record a dataset. To record 2 episodes and upload your dataset to the hub, execute this command tailored to the SO101.
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so101 \
|
||||
--control.type=record \
|
||||
--control.fps=30 \
|
||||
--control.single_task="Grasp a lego block and put it in the bin." \
|
||||
--control.repo_id=${HF_USER}/so101_test \
|
||||
--control.tags='["so101","tutorial"]' \
|
||||
--control.warmup_time_s=5 \
|
||||
--control.episode_time_s=30 \
|
||||
--control.reset_time_s=30 \
|
||||
--control.num_episodes=2 \
|
||||
--control.push_to_hub=true
|
||||
python -m lerobot.record \
|
||||
--robot.type=so101_follower \
|
||||
--robot.port=/dev/tty.usbmodem585A0076841 \
|
||||
--robot.id=my_red_robot_arm \
|
||||
--robot.cameras="{ front: {type: opencv, index_or_path: 0, width: 1920, height: 1080, fps: 30}}" \
|
||||
--teleop.type=so101_leader \
|
||||
--teleop.port=/dev/tty.usbmodem58760431551 \
|
||||
--teleop.id=my_blue_leader_arm \
|
||||
--display_data=true \
|
||||
--dataset.repo_id=aliberts/record-test \
|
||||
--dataset.num_episodes=2 \
|
||||
--dataset.single_task="Grab the black cube"
|
||||
```
|
||||
|
||||
You will see a lot of lines appearing like this one:
|
||||
@@ -212,7 +228,7 @@ INFO 2024-08-10 15:02:58 ol_robot.py:219 dt:33.34 (30.0hz) dtRlead: 5.06 (197.5h
|
||||
|
||||
|
||||
#### Dataset upload
|
||||
Locally your dataset is stored in this folder: `~/.cache/huggingface/lerobot/{repo-id}` (e.g. `data/cadene/so101_test`). At the end of data recording, your dataset will be uploaded on your Hugging Face page (e.g. https://huggingface.co/datasets/cadene/so101_test) that you can obtain by running:
|
||||
Locally, your dataset is stored in this folder: `~/.cache/huggingface/lerobot/{repo-id}` (e.g. `data/cadene/so101_test`). At the end of data recording, your dataset will be uploaded on your Hugging Face page (e.g. https://huggingface.co/datasets/cadene/so101_test) that you can obtain by running:
|
||||
```bash
|
||||
echo https://huggingface.co/datasets/${HF_USER}/so101_test
|
||||
```
|
||||
@@ -224,33 +240,29 @@ You can look for other LeRobot datasets on the hub by searching for `LeRobot` [t
|
||||
|
||||
The `record` function provides a suite of tools for capturing and managing data during robot operation:
|
||||
|
||||
##### 1. Frame Capture and Video Encoding
|
||||
- Frames from cameras are saved to disk during recording.
|
||||
- At the end of each episode, frames are encoded into video files.
|
||||
##### 1. Data Storage
|
||||
- Data is stored using the `LeRobotDataset` format and is stored on disk during recording.
|
||||
- By default, the dataset is pushed to your Hugging Face page after recording.
|
||||
- To disable uploading, use `--dataset.push_to_hub=False`.
|
||||
|
||||
##### 2. Data Storage
|
||||
- Data is stored using the `LeRobotDataset` format.
|
||||
- By default, the dataset is pushed to your Hugging Face page.
|
||||
- To disable uploading, use `--control.push_to_hub=false`.
|
||||
|
||||
##### 3. Checkpointing and Resuming
|
||||
##### 2. Checkpointing and Resuming
|
||||
- Checkpoints are automatically created during recording.
|
||||
- If an issue occurs, you can resume by re-running the same command with `--control.resume=true`.
|
||||
- To start recording from scratch, **manually delete** the dataset directory.
|
||||
|
||||
##### 4. Recording Parameters
|
||||
##### 3. Recording Parameters
|
||||
Set the flow of data recording using command-line arguments:
|
||||
- `--control.warmup_time_s=10`
|
||||
- `--warmup_time_s=10`
|
||||
Number of seconds before starting data collection (default: **10 seconds**).
|
||||
Allows devices to warm up and synchronize.
|
||||
- `--control.episode_time_s=60`
|
||||
- `--dataset.episode_time_s=60`
|
||||
Duration of each data recording episode (default: **60 seconds**).
|
||||
- `--control.reset_time_s=60`
|
||||
- `--dataset.reset_time_s=60`
|
||||
Duration for resetting the environment after each episode (default: **60 seconds**).
|
||||
- `--control.num_episodes=50`
|
||||
- `--dataset.num_episodes=50`
|
||||
Total number of episodes to record (default: **50**).
|
||||
|
||||
##### 5. Keyboard Controls During Recording
|
||||
##### 4. Keyboard Controls During Recording
|
||||
Control the data recording flow using keyboard shortcuts:
|
||||
- Press **Right Arrow (`→`)**: Early stop the current episode or reset time and move to the next.
|
||||
- Press **Left Arrow (`←`)**: Cancel the current episode and re-record it.
|
||||
@@ -264,6 +276,8 @@ In the following sections, you’ll train your neural network. After achieving r
|
||||
|
||||
Avoid adding too much variation too quickly, as it may hinder your results.
|
||||
|
||||
If you want to dive deeper into this important topic, you can check out the [blog post](https://huggingface.co/blog/lerobot-datasets#what-makes-a-good-dataset) we wrote on what makes a good dataset.
|
||||
|
||||
|
||||
#### Troubleshooting:
|
||||
- On Linux, if the left and right arrow keys and escape key don't have any effect during data recording, make sure you've set the `$DISPLAY` environment variable. See [pynput limitations](https://pynput.readthedocs.io/en/latest/limitations.html#linux).
|
||||
@@ -289,16 +303,16 @@ This will launch a local web server that looks like this:
|
||||
|
||||
## Replay an episode
|
||||
|
||||
A useful feature is the `replay` function, which allows to replay on your robot any episode that you've recorded or episodes from any dataset out there. This function helps you test the repeatability of your robot's actions and assess transferability across robots of the same model.
|
||||
A useful feature is the `replay` function, which allows you to replay any episode that you've recorded or episodes from any dataset out there. This function helps you test the repeatability of your robot's actions and assess transferability across robots of the same model.
|
||||
|
||||
You can replay the first episode on your robot with:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so101 \
|
||||
--control.type=replay \
|
||||
--control.fps=30 \
|
||||
--control.repo_id=${HF_USER}/so101_test \
|
||||
--control.episode=0
|
||||
python -m lerobot.replay \
|
||||
--robot.type=so101_follower \
|
||||
--robot.port=/dev/tty.usbmodem58760431541 \
|
||||
--robot.id=black \
|
||||
--dataset.repo_id=aliberts/record-test \
|
||||
--dataset.episode=2
|
||||
```
|
||||
|
||||
Your robot should replicate movements similar to those you recorded. For example, check out [this video](https://x.com/RemiCadene/status/1793654950905680090) where we use `replay` on a Aloha robot from [Trossen Robotics](https://www.trossenrobotics.com).
|
||||
@@ -348,21 +362,21 @@ huggingface-cli upload ${HF_USER}/act_so101_test${CKPT} \
|
||||
|
||||
## Evaluate your policy
|
||||
|
||||
You can use the `record` function from [`lerobot/scripts/control_robot.py`](../lerobot/scripts/control_robot.py) but with a policy checkpoint as input. For instance, run this command to record 10 evaluation episodes:
|
||||
TODO(pepijn): modify this command further
|
||||
|
||||
You can use the `record` script from [`lerobot/record.py`](https://github.com/huggingface/lerobot/blob/main/lerobot/record.py) but with a policy checkpoint as input. For instance, run this command to record 10 evaluation episodes:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so101 \
|
||||
--control.type=record \
|
||||
--control.fps=30 \
|
||||
--control.single_task="Grasp a lego block and put it in the bin." \
|
||||
--control.repo_id=${HF_USER}/eval_act_so101_test \
|
||||
--control.tags='["tutorial"]' \
|
||||
--control.warmup_time_s=5 \
|
||||
--control.episode_time_s=30 \
|
||||
--control.reset_time_s=30 \
|
||||
--control.num_episodes=10 \
|
||||
--control.push_to_hub=true \
|
||||
--control.policy.path=outputs/train/act_so101_test/checkpoints/last/pretrained_model
|
||||
python -m lerobot.record \
|
||||
--robot.type=so101_follower \
|
||||
--robot.port=/dev/tty.usbmodem585A0076841 \
|
||||
--robot.id=my_red_robot_arm \
|
||||
--robot.cameras="{ front: {type: opencv, index_or_path: 0, width: 1920, height: 1080, fps: 30}}" \
|
||||
--teleop.type=so101_leader \
|
||||
--teleop.port=/dev/tty.usbmodem58760431551 \
|
||||
--teleop.id=my_blue_leader_arm \
|
||||
--display_data=true \
|
||||
--dataset.repo_id=aliberts/eval_act \
|
||||
--policy.checkpoint_path=outputs/train/act_so101_test/checkpoints/last/pretrained_model \
|
||||
```
|
||||
|
||||
As you can see, it's almost the same command as previously used to record your training dataset. Two things changed:
|
||||
|
||||
@@ -55,7 +55,7 @@ conda install ffmpeg -c conda-forge
|
||||
|
||||
Install 🤗 LeRobot:
|
||||
```bash
|
||||
cd lerobot && pip install ".[feetech]"
|
||||
cd lerobot && pip install
|
||||
```
|
||||
|
||||
## Troubleshooting
|
||||
@@ -77,6 +77,22 @@ For instance, to install 🤗 LeRobot with aloha and pusht, use:
|
||||
pip install -e ".[aloha, pusht]"
|
||||
```
|
||||
|
||||
## Motor SDK
|
||||
For Koch v1.1 install the Dynamixel SDK, for SO100/SO101/Moss install the Feetech SDK.
|
||||
|
||||
<hfoptions id="install motors">
|
||||
<hfoption id="Feetech">
|
||||
```bash
|
||||
pip install -e ".[feetech]"
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="Dynamixel">
|
||||
```bash
|
||||
pip install -e ".[dynamixel]"
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## W&B
|
||||
To use [Weights and Biases](https://docs.wandb.ai/quickstart) for experiment tracking, log in with
|
||||
```bash
|
||||
|
||||
1
docs/source/koch.md
Symbolic link
@@ -0,0 +1 @@
|
||||
../../lerobot/common/robots/koch_follower/koch.md
|
||||
1
docs/source/lekiwi.md
Symbolic link
@@ -0,0 +1 @@
|
||||
../../lerobot/common/robots/lekiwi/lekiwi.md
|
||||
1
docs/source/so100.md
Symbolic link
@@ -0,0 +1 @@
|
||||
../../lerobot/common/robots/so100_follower/so100.md
|
||||
1
docs/source/so101.md
Symbolic link
@@ -0,0 +1 @@
|
||||
../../lerobot/common/robots/so101_follower/so101.md
|
||||
@@ -31,23 +31,27 @@ from pprint import pformat
|
||||
|
||||
import draccus
|
||||
|
||||
from lerobot.common.cameras import intel, opencv # noqa: F401
|
||||
from lerobot.common.cameras.opencv.configuration_opencv import OpenCVCameraConfig # noqa: F401
|
||||
from lerobot.common.cameras.realsense.configuration_realsense import RealSenseCameraConfig # noqa: F401
|
||||
from lerobot.common.robots import ( # noqa: F401
|
||||
Robot,
|
||||
RobotConfig,
|
||||
koch_follower,
|
||||
lekiwi,
|
||||
make_robot_from_config,
|
||||
so100_follower,
|
||||
so101_follower,
|
||||
)
|
||||
from lerobot.common.teleoperators import ( # noqa: F401
|
||||
Teleoperator,
|
||||
TeleoperatorConfig,
|
||||
koch_leader,
|
||||
make_teleoperator_from_config,
|
||||
so100_leader,
|
||||
so101_leader,
|
||||
)
|
||||
from lerobot.common.utils.utils import init_logging
|
||||
|
||||
from .common.teleoperators import koch_leader, so100_leader # noqa: F401
|
||||
|
||||
|
||||
@dataclass
|
||||
class CalibrateConfig:
|
||||
|
||||
@@ -1,3 +1,17 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from .camera import Camera
|
||||
from .configs import CameraConfig
|
||||
from .configs import CameraConfig, ColorMode, Cv2Rotation
|
||||
from .utils import make_cameras_from_configs
|
||||
|
||||
@@ -1,25 +1,122 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import abc
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import numpy as np
|
||||
|
||||
from .configs import CameraConfig, ColorMode
|
||||
|
||||
|
||||
class Camera(abc.ABC):
|
||||
"""Base class for camera implementations.
|
||||
|
||||
Defines a standard interface for camera operations across different backends.
|
||||
Subclasses must implement all abstract methods.
|
||||
|
||||
Manages basic camera properties (FPS, resolution) and core operations:
|
||||
- Connection/disconnection
|
||||
- Frame capture (sync/async)
|
||||
|
||||
Attributes:
|
||||
fps (int | None): Configured frames per second
|
||||
width (int | None): Frame width in pixels
|
||||
height (int | None): Frame height in pixels
|
||||
warmup_time (int | None): Time reading frames before returning from connect (in seconds)
|
||||
|
||||
Example:
|
||||
class MyCamera(Camera):
|
||||
def __init__(self, config): ...
|
||||
@property
|
||||
def is_connected(self) -> bool: ...
|
||||
def connect(self, warmup=True): ...
|
||||
# Plus other required methods
|
||||
"""
|
||||
|
||||
def __init__(self, config: CameraConfig):
|
||||
"""Initialize the camera with the given configuration.
|
||||
|
||||
Args:
|
||||
config: Camera configuration containing FPS and resolution.
|
||||
"""
|
||||
self.fps: int | None = config.fps
|
||||
self.width: int | None = config.width
|
||||
self.height: int | None = config.height
|
||||
self.warmup_time: int | None = config.warmup_time
|
||||
|
||||
@property
|
||||
@abc.abstractmethod
|
||||
def connect(self):
|
||||
def is_connected(self) -> bool:
|
||||
"""Check if the camera is currently connected.
|
||||
|
||||
Returns:
|
||||
bool: True if the camera is connected and ready to capture frames,
|
||||
False otherwise.
|
||||
"""
|
||||
pass
|
||||
|
||||
@staticmethod
|
||||
@abc.abstractmethod
|
||||
def find_cameras() -> List[Dict[str, Any]]:
|
||||
"""Detects available cameras connected to the system.
|
||||
Returns:
|
||||
List[Dict[str, Any]]: A list of dictionaries,
|
||||
where each dictionary contains information about a detected camera.
|
||||
"""
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def read(self, temporary_color: str | None = None) -> np.ndarray:
|
||||
def connect(self, warmup: bool = True) -> None:
|
||||
"""Establish connection to the camera.
|
||||
|
||||
Args:
|
||||
warmup: If True (default), captures a warmup frame before returning. Useful
|
||||
for cameras that require time to adjust capture settings.
|
||||
If False, skips the warmup frame.
|
||||
"""
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def async_read(self) -> np.ndarray:
|
||||
def read(self, color_mode: ColorMode | None = None) -> np.ndarray:
|
||||
"""Capture and return a single frame from the camera.
|
||||
|
||||
Args:
|
||||
color_mode: Desired color mode for the output frame. If None,
|
||||
uses the camera's default color mode.
|
||||
|
||||
Returns:
|
||||
np.ndarray: Captured frame as a numpy array.
|
||||
"""
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def disconnect(self):
|
||||
def async_read(self, timeout_ms: float = ...) -> np.ndarray:
|
||||
"""Asynchronously capture and return a single frame from the camera.
|
||||
|
||||
Args:
|
||||
timeout_ms: Maximum time to wait for a frame in milliseconds.
|
||||
Defaults to implementation-specific timeout.
|
||||
|
||||
Returns:
|
||||
np.ndarray: Captured frame as a numpy array.
|
||||
"""
|
||||
pass
|
||||
|
||||
def __del__(self):
|
||||
if getattr(self, "is_connected", False):
|
||||
self.disconnect()
|
||||
@abc.abstractmethod
|
||||
def disconnect(self) -> None:
|
||||
"""Disconnect from the camera and release resources."""
|
||||
pass
|
||||
|
||||
@@ -1,11 +1,45 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import abc
|
||||
from dataclasses import dataclass
|
||||
from enum import Enum
|
||||
|
||||
import draccus
|
||||
|
||||
|
||||
@dataclass
|
||||
class ColorMode(str, Enum):
|
||||
RGB = "rgb"
|
||||
BGR = "bgr"
|
||||
|
||||
|
||||
class Cv2Rotation(int, Enum):
|
||||
NO_ROTATION = 0
|
||||
ROTATE_90 = 90
|
||||
ROTATE_180 = 180
|
||||
ROTATE_270 = -90
|
||||
|
||||
|
||||
@dataclass(kw_only=True)
|
||||
class CameraConfig(draccus.ChoiceRegistry, abc.ABC):
|
||||
fps: int | None = None
|
||||
width: int | None = None
|
||||
height: int | None = None
|
||||
warmup_time: int | None = None
|
||||
|
||||
@property
|
||||
def type(self) -> str:
|
||||
return self.get_choice_name(self.__class__)
|
||||
|
||||
@@ -1,4 +0,0 @@
|
||||
from .camera_realsense import RealSenseCamera
|
||||
from .configuration_realsense import RealSenseCameraConfig
|
||||
|
||||
__all__ = ["RealSenseCamera", "RealSenseCameraConfig"]
|
||||
@@ -1,535 +0,0 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
This file contains utilities for recording frames from Intel Realsense cameras.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import concurrent.futures
|
||||
import logging
|
||||
import math
|
||||
import shutil
|
||||
import threading
|
||||
import time
|
||||
import traceback
|
||||
from collections import Counter
|
||||
from pathlib import Path
|
||||
from threading import Thread
|
||||
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
|
||||
from lerobot.common.utils.robot_utils import (
|
||||
busy_wait,
|
||||
)
|
||||
from lerobot.common.utils.utils import capture_timestamp_utc
|
||||
|
||||
from ..camera import Camera
|
||||
from .configuration_realsense import RealSenseCameraConfig
|
||||
|
||||
SERIAL_NUMBER_INDEX = 1
|
||||
|
||||
|
||||
def find_cameras(raise_when_empty=True, mock=False) -> list[dict]:
|
||||
"""
|
||||
Find the names and the serial numbers of the Intel RealSense cameras
|
||||
connected to the computer.
|
||||
"""
|
||||
if mock:
|
||||
import tests.cameras.mock_pyrealsense2 as rs
|
||||
else:
|
||||
import pyrealsense2 as rs
|
||||
|
||||
cameras = []
|
||||
for device in rs.context().query_devices():
|
||||
serial_number = int(device.get_info(rs.camera_info(SERIAL_NUMBER_INDEX)))
|
||||
name = device.get_info(rs.camera_info.name)
|
||||
cameras.append(
|
||||
{
|
||||
"serial_number": serial_number,
|
||||
"name": name,
|
||||
}
|
||||
)
|
||||
|
||||
if raise_when_empty and len(cameras) == 0:
|
||||
raise OSError(
|
||||
"Not a single camera was detected. Try re-plugging, or re-installing `librealsense` and its python wrapper `pyrealsense2`, or updating the firmware."
|
||||
)
|
||||
|
||||
return cameras
|
||||
|
||||
|
||||
def save_image(img_array, serial_number, frame_index, images_dir):
|
||||
try:
|
||||
img = Image.fromarray(img_array)
|
||||
path = images_dir / f"camera_{serial_number}_frame_{frame_index:06d}.png"
|
||||
path.parent.mkdir(parents=True, exist_ok=True)
|
||||
img.save(str(path), quality=100)
|
||||
logging.info(f"Saved image: {path}")
|
||||
except Exception as e:
|
||||
logging.error(f"Failed to save image for camera {serial_number} frame {frame_index}: {e}")
|
||||
|
||||
|
||||
def save_images_from_cameras(
|
||||
images_dir: Path,
|
||||
serial_numbers: list[int] | None = None,
|
||||
fps=None,
|
||||
width=None,
|
||||
height=None,
|
||||
record_time_s=2,
|
||||
mock=False,
|
||||
):
|
||||
"""
|
||||
Initializes all the cameras and saves images to the directory. Useful to visually identify the camera
|
||||
associated to a given serial number.
|
||||
"""
|
||||
if serial_numbers is None or len(serial_numbers) == 0:
|
||||
camera_infos = find_cameras(mock=mock)
|
||||
serial_numbers = [cam["serial_number"] for cam in camera_infos]
|
||||
|
||||
if mock:
|
||||
import tests.cameras.mock_cv2 as cv2
|
||||
else:
|
||||
import cv2
|
||||
|
||||
print("Connecting cameras")
|
||||
cameras = []
|
||||
for cam_sn in serial_numbers:
|
||||
print(f"{cam_sn=}")
|
||||
config = RealSenseCameraConfig(serial_number=cam_sn, fps=fps, width=width, height=height, mock=mock)
|
||||
camera = RealSenseCamera(config)
|
||||
camera.connect()
|
||||
print(
|
||||
f"RealSenseCamera({camera.serial_number}, fps={camera.fps}, width={camera.capture_width}, height={camera.capture_height}, color_mode={camera.color_mode})"
|
||||
)
|
||||
cameras.append(camera)
|
||||
|
||||
images_dir = Path(images_dir)
|
||||
if images_dir.exists():
|
||||
shutil.rmtree(
|
||||
images_dir,
|
||||
)
|
||||
images_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
print(f"Saving images to {images_dir}")
|
||||
frame_index = 0
|
||||
start_time = time.perf_counter()
|
||||
try:
|
||||
with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor:
|
||||
while True:
|
||||
now = time.perf_counter()
|
||||
|
||||
for camera in cameras:
|
||||
# If we use async_read when fps is None, the loop will go full speed, and we will end up
|
||||
# saving the same images from the cameras multiple times until the RAM/disk is full.
|
||||
image = camera.read() if fps is None else camera.async_read()
|
||||
if image is None:
|
||||
print("No Frame")
|
||||
|
||||
bgr_converted_image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
||||
|
||||
executor.submit(
|
||||
save_image,
|
||||
bgr_converted_image,
|
||||
camera.serial_number,
|
||||
frame_index,
|
||||
images_dir,
|
||||
)
|
||||
|
||||
if fps is not None:
|
||||
dt_s = time.perf_counter() - now
|
||||
busy_wait(1 / fps - dt_s)
|
||||
|
||||
if time.perf_counter() - start_time > record_time_s:
|
||||
break
|
||||
|
||||
print(f"Frame: {frame_index:04d}\tLatency (ms): {(time.perf_counter() - now) * 1000:.2f}")
|
||||
|
||||
frame_index += 1
|
||||
finally:
|
||||
print(f"Images have been saved to {images_dir}")
|
||||
for camera in cameras:
|
||||
camera.disconnect()
|
||||
|
||||
|
||||
class RealSenseCamera(Camera):
|
||||
"""
|
||||
The RealSenseCamera class is similar to OpenCVCamera class but adds additional features for Intel Real Sense cameras:
|
||||
- is instantiated with the serial number of the camera - won't randomly change as it can be the case of OpenCVCamera for Linux,
|
||||
- can also be instantiated with the camera's name — if it's unique — using RealSenseCamera.init_from_name(),
|
||||
- depth map can be returned.
|
||||
|
||||
To find the camera indices of your cameras, you can run our utility script that will save a few frames for each camera:
|
||||
```bash
|
||||
python lerobot/common/robot_devices/cameras/intelrealsense.py --images-dir outputs/images_from_intelrealsense_cameras
|
||||
```
|
||||
|
||||
When an RealSenseCamera is instantiated, if no specific config is provided, the default fps, width, height and color_mode
|
||||
of the given camera will be used.
|
||||
|
||||
Example of instantiating with a serial number:
|
||||
```python
|
||||
from lerobot.common.robot_devices.cameras.configs import RealSenseCameraConfig
|
||||
|
||||
config = RealSenseCameraConfig(serial_number=128422271347)
|
||||
camera = RealSenseCamera(config)
|
||||
camera.connect()
|
||||
color_image = camera.read()
|
||||
# when done using the camera, consider disconnecting
|
||||
camera.disconnect()
|
||||
```
|
||||
|
||||
Example of instantiating with a name if it's unique:
|
||||
```
|
||||
config = RealSenseCameraConfig(name="Intel RealSense D405")
|
||||
```
|
||||
|
||||
Example of changing default fps, width, height and color_mode:
|
||||
```python
|
||||
config = RealSenseCameraConfig(serial_number=128422271347, fps=30, width=1280, height=720)
|
||||
config = RealSenseCameraConfig(serial_number=128422271347, fps=90, width=640, height=480)
|
||||
config = RealSenseCameraConfig(serial_number=128422271347, fps=90, width=640, height=480, color_mode="bgr")
|
||||
# Note: might error out upon `camera.connect()` if these settings are not compatible with the camera
|
||||
```
|
||||
|
||||
Example of returning depth:
|
||||
```python
|
||||
config = RealSenseCameraConfig(serial_number=128422271347, use_depth=True)
|
||||
camera = RealSenseCamera(config)
|
||||
camera.connect()
|
||||
color_image, depth_map = camera.read()
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: RealSenseCameraConfig,
|
||||
):
|
||||
self.config = config
|
||||
if config.name is not None:
|
||||
self.serial_number = self.find_serial_number_from_name(config.name)
|
||||
else:
|
||||
self.serial_number = config.serial_number
|
||||
|
||||
# Store the raw (capture) resolution from the config.
|
||||
self.capture_width = config.width
|
||||
self.capture_height = config.height
|
||||
|
||||
# If rotated by ±90, swap width and height.
|
||||
if config.rotation in [-90, 90]:
|
||||
self.width = config.height
|
||||
self.height = config.width
|
||||
else:
|
||||
self.width = config.width
|
||||
self.height = config.height
|
||||
|
||||
self.fps = config.fps
|
||||
self.channels = config.channels
|
||||
self.color_mode = config.color_mode
|
||||
self.use_depth = config.use_depth
|
||||
self.force_hardware_reset = config.force_hardware_reset
|
||||
self.mock = config.mock
|
||||
|
||||
self.camera = None
|
||||
self.is_connected = False
|
||||
self.thread = None
|
||||
self.stop_event = None
|
||||
self.color_image = None
|
||||
self.depth_map = None
|
||||
self.logs = {}
|
||||
|
||||
if self.mock:
|
||||
import tests.cameras.mock_cv2 as cv2
|
||||
else:
|
||||
import cv2
|
||||
|
||||
self.rotation = None
|
||||
if config.rotation == -90:
|
||||
self.rotation = cv2.ROTATE_90_COUNTERCLOCKWISE
|
||||
elif config.rotation == 90:
|
||||
self.rotation = cv2.ROTATE_90_CLOCKWISE
|
||||
elif config.rotation == 180:
|
||||
self.rotation = cv2.ROTATE_180
|
||||
|
||||
def find_serial_number_from_name(self, name):
|
||||
camera_infos = find_cameras()
|
||||
camera_names = [cam["name"] for cam in camera_infos]
|
||||
this_name_count = Counter(camera_names)[name]
|
||||
if this_name_count > 1:
|
||||
# TODO(aliberts): Test this with multiple identical cameras (Aloha)
|
||||
raise ValueError(
|
||||
f"Multiple {name} cameras have been detected. Please use their serial number to instantiate them."
|
||||
)
|
||||
|
||||
name_to_serial_dict = {cam["name"]: cam["serial_number"] for cam in camera_infos}
|
||||
cam_sn = name_to_serial_dict[name]
|
||||
|
||||
return cam_sn
|
||||
|
||||
def connect(self):
|
||||
if self.is_connected:
|
||||
raise DeviceAlreadyConnectedError(f"RealSenseCamera({self.serial_number}) is already connected.")
|
||||
|
||||
if self.mock:
|
||||
import tests.cameras.mock_pyrealsense2 as rs
|
||||
else:
|
||||
import pyrealsense2 as rs
|
||||
|
||||
config = rs.config()
|
||||
config.enable_device(str(self.serial_number))
|
||||
|
||||
if self.fps and self.capture_width and self.capture_height:
|
||||
# TODO(rcadene): can we set rgb8 directly?
|
||||
config.enable_stream(
|
||||
rs.stream.color, self.capture_width, self.capture_height, rs.format.rgb8, self.fps
|
||||
)
|
||||
else:
|
||||
config.enable_stream(rs.stream.color)
|
||||
|
||||
if self.use_depth:
|
||||
if self.fps and self.capture_width and self.capture_height:
|
||||
config.enable_stream(
|
||||
rs.stream.depth, self.capture_width, self.capture_height, rs.format.z16, self.fps
|
||||
)
|
||||
else:
|
||||
config.enable_stream(rs.stream.depth)
|
||||
|
||||
self.camera = rs.pipeline()
|
||||
try:
|
||||
profile = self.camera.start(config)
|
||||
is_camera_open = True
|
||||
except RuntimeError:
|
||||
is_camera_open = False
|
||||
traceback.print_exc()
|
||||
|
||||
# If the camera doesn't work, display the camera indices corresponding to
|
||||
# valid cameras.
|
||||
if not is_camera_open:
|
||||
# Verify that the provided `serial_number` is valid before printing the traceback
|
||||
camera_infos = find_cameras()
|
||||
serial_numbers = [cam["serial_number"] for cam in camera_infos]
|
||||
if self.serial_number not in serial_numbers:
|
||||
raise ValueError(
|
||||
f"`serial_number` is expected to be one of these available cameras {serial_numbers}, but {self.serial_number} is provided instead. "
|
||||
"To find the serial number you should use, run `python lerobot/common/robot_devices/cameras/intelrealsense.py`."
|
||||
)
|
||||
|
||||
raise OSError(f"Can't access RealSenseCamera({self.serial_number}).")
|
||||
|
||||
color_stream = profile.get_stream(rs.stream.color)
|
||||
color_profile = color_stream.as_video_stream_profile()
|
||||
actual_fps = color_profile.fps()
|
||||
actual_width = color_profile.width()
|
||||
actual_height = color_profile.height()
|
||||
|
||||
# Using `math.isclose` since actual fps can be a float (e.g. 29.9 instead of 30)
|
||||
if self.fps is not None and not math.isclose(self.fps, actual_fps, rel_tol=1e-3):
|
||||
# Using `OSError` since it's a broad that encompasses issues related to device communication
|
||||
raise OSError(
|
||||
f"Can't set {self.fps=} for RealSenseCamera({self.serial_number}). Actual value is {actual_fps}."
|
||||
)
|
||||
if self.capture_width is not None and self.capture_width != actual_width:
|
||||
raise OSError(
|
||||
f"Can't set {self.capture_width=} for RealSenseCamera({self.serial_number}). Actual value is {actual_width}."
|
||||
)
|
||||
if self.capture_height is not None and self.capture_height != actual_height:
|
||||
raise OSError(
|
||||
f"Can't set {self.capture_height=} for RealSenseCamera({self.serial_number}). Actual value is {actual_height}."
|
||||
)
|
||||
|
||||
self.fps = round(actual_fps)
|
||||
self.capture_width = round(actual_width)
|
||||
self.capture_height = round(actual_height)
|
||||
|
||||
self.is_connected = True
|
||||
|
||||
def read(self, temporary_color: str | None = None) -> np.ndarray | tuple[np.ndarray, np.ndarray]:
|
||||
"""Read a frame from the camera returned in the format height x width x channels (e.g. 480 x 640 x 3)
|
||||
of type `np.uint8`, contrarily to the pytorch format which is float channel first.
|
||||
|
||||
When `use_depth=True`, returns a tuple `(color_image, depth_map)` with a depth map in the format
|
||||
height x width (e.g. 480 x 640) of type np.uint16.
|
||||
|
||||
Note: Reading a frame is done every `camera.fps` times per second, and it is blocking.
|
||||
If you are reading data from other sensors, we advise to use `camera.async_read()` which is non blocking version of `camera.read()`.
|
||||
"""
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(
|
||||
f"RealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
|
||||
)
|
||||
|
||||
if self.mock:
|
||||
import tests.cameras.mock_cv2 as cv2
|
||||
else:
|
||||
import cv2
|
||||
|
||||
start_time = time.perf_counter()
|
||||
|
||||
frame = self.camera.wait_for_frames(timeout_ms=5000)
|
||||
|
||||
color_frame = frame.get_color_frame()
|
||||
|
||||
if not color_frame:
|
||||
raise OSError(f"Can't capture color image from RealSenseCamera({self.serial_number}).")
|
||||
|
||||
color_image = np.asanyarray(color_frame.get_data())
|
||||
|
||||
requested_color_mode = self.color_mode if temporary_color is None else temporary_color
|
||||
if requested_color_mode not in ["rgb", "bgr"]:
|
||||
raise ValueError(
|
||||
f"Expected color values are 'rgb' or 'bgr', but {requested_color_mode} is provided."
|
||||
)
|
||||
|
||||
# IntelRealSense uses RGB format as default (red, green, blue).
|
||||
if requested_color_mode == "bgr":
|
||||
color_image = cv2.cvtColor(color_image, cv2.COLOR_RGB2BGR)
|
||||
|
||||
h, w, _ = color_image.shape
|
||||
if h != self.capture_height or w != self.capture_width:
|
||||
raise OSError(
|
||||
f"Can't capture color image with expected height and width ({self.height} x {self.width}). ({h} x {w}) returned instead."
|
||||
)
|
||||
|
||||
if self.rotation is not None:
|
||||
color_image = cv2.rotate(color_image, self.rotation)
|
||||
|
||||
# log the number of seconds it took to read the image
|
||||
self.logs["delta_timestamp_s"] = time.perf_counter() - start_time
|
||||
|
||||
# log the utc time at which the image was received
|
||||
self.logs["timestamp_utc"] = capture_timestamp_utc()
|
||||
|
||||
if self.use_depth:
|
||||
depth_frame = frame.get_depth_frame()
|
||||
if not depth_frame:
|
||||
raise OSError(f"Can't capture depth image from RealSenseCamera({self.serial_number}).")
|
||||
|
||||
depth_map = np.asanyarray(depth_frame.get_data())
|
||||
|
||||
h, w = depth_map.shape
|
||||
if h != self.capture_height or w != self.capture_width:
|
||||
raise OSError(
|
||||
f"Can't capture depth map with expected height and width ({self.height} x {self.width}). ({h} x {w}) returned instead."
|
||||
)
|
||||
|
||||
if self.rotation is not None:
|
||||
depth_map = cv2.rotate(depth_map, self.rotation)
|
||||
|
||||
return color_image, depth_map
|
||||
else:
|
||||
return color_image
|
||||
|
||||
def read_loop(self):
|
||||
while not self.stop_event.is_set():
|
||||
if self.use_depth:
|
||||
self.color_image, self.depth_map = self.read()
|
||||
else:
|
||||
self.color_image = self.read()
|
||||
|
||||
def async_read(self):
|
||||
"""Access the latest color image"""
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(
|
||||
f"RealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
|
||||
)
|
||||
|
||||
if self.thread is None:
|
||||
self.stop_event = threading.Event()
|
||||
self.thread = Thread(target=self.read_loop, args=())
|
||||
self.thread.daemon = True
|
||||
self.thread.start()
|
||||
|
||||
num_tries = 0
|
||||
while self.color_image is None:
|
||||
# TODO(rcadene, aliberts): intelrealsense has diverged compared to opencv over here
|
||||
num_tries += 1
|
||||
time.sleep(1 / self.fps)
|
||||
if num_tries > self.fps and (self.thread.ident is None or not self.thread.is_alive()):
|
||||
raise Exception(
|
||||
"The thread responsible for `self.async_read()` took too much time to start. There might be an issue. Verify that `self.thread.start()` has been called."
|
||||
)
|
||||
|
||||
if self.use_depth:
|
||||
return self.color_image, self.depth_map
|
||||
else:
|
||||
return self.color_image
|
||||
|
||||
def disconnect(self):
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(
|
||||
f"RealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
|
||||
)
|
||||
|
||||
if self.thread is not None and self.thread.is_alive():
|
||||
# wait for the thread to finish
|
||||
self.stop_event.set()
|
||||
self.thread.join()
|
||||
self.thread = None
|
||||
self.stop_event = None
|
||||
|
||||
self.camera.stop()
|
||||
self.camera = None
|
||||
|
||||
self.is_connected = False
|
||||
|
||||
def __del__(self):
|
||||
if getattr(self, "is_connected", False):
|
||||
self.disconnect()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Save a few frames using `RealSenseCamera` for all cameras connected to the computer, or a selected subset."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--serial-numbers",
|
||||
type=int,
|
||||
nargs="*",
|
||||
default=None,
|
||||
help="List of serial numbers used to instantiate the `RealSenseCamera`. If not provided, find and use all available camera indices.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--fps",
|
||||
type=int,
|
||||
default=30,
|
||||
help="Set the number of frames recorded per seconds for all cameras. If not provided, use the default fps of each camera.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--width",
|
||||
type=int,
|
||||
default=640,
|
||||
help="Set the width for all cameras. If not provided, use the default width of each camera.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--height",
|
||||
type=int,
|
||||
default=480,
|
||||
help="Set the height for all cameras. If not provided, use the default height of each camera.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--images-dir",
|
||||
type=Path,
|
||||
default="outputs/images_from_intelrealsense_cameras",
|
||||
help="Set directory to save a few frames for each camera.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--record-time-s",
|
||||
type=float,
|
||||
default=2.0,
|
||||
help="Set the number of seconds used to record the frames. By default, 2 seconds.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
save_images_from_cameras(**vars(args))
|
||||
@@ -1,71 +0,0 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from dataclasses import dataclass
|
||||
|
||||
from ..configs import CameraConfig
|
||||
|
||||
|
||||
@CameraConfig.register_subclass("intelrealsense")
|
||||
@dataclass
|
||||
class RealSenseCameraConfig(CameraConfig):
|
||||
"""
|
||||
Example of tested options for Intel Real Sense D405:
|
||||
|
||||
```python
|
||||
RealSenseCameraConfig(128422271347, 30, 640, 480)
|
||||
RealSenseCameraConfig(128422271347, 60, 640, 480)
|
||||
RealSenseCameraConfig(128422271347, 90, 640, 480)
|
||||
RealSenseCameraConfig(128422271347, 30, 1280, 720)
|
||||
RealSenseCameraConfig(128422271347, 30, 640, 480, use_depth=True)
|
||||
RealSenseCameraConfig(128422271347, 30, 640, 480, rotation=90)
|
||||
```
|
||||
"""
|
||||
|
||||
name: str | None = None
|
||||
serial_number: int | None = None
|
||||
fps: int | None = None
|
||||
width: int | None = None
|
||||
height: int | None = None
|
||||
color_mode: str = "rgb"
|
||||
channels: int | None = None
|
||||
use_depth: bool = False
|
||||
force_hardware_reset: bool = True
|
||||
rotation: int | None = None
|
||||
mock: bool = False
|
||||
|
||||
def __post_init__(self):
|
||||
# bool is stronger than is None, since it works with empty strings
|
||||
if bool(self.name) and bool(self.serial_number):
|
||||
raise ValueError(
|
||||
f"One of them must be set: name or serial_number, but {self.name=} and {self.serial_number=} provided."
|
||||
)
|
||||
|
||||
if self.color_mode not in ["rgb", "bgr"]:
|
||||
raise ValueError(
|
||||
f"`color_mode` is expected to be 'rgb' or 'bgr', but {self.color_mode} is provided."
|
||||
)
|
||||
|
||||
self.channels = 3
|
||||
|
||||
at_least_one_is_not_none = self.fps is not None or self.width is not None or self.height is not None
|
||||
at_least_one_is_none = self.fps is None or self.width is None or self.height is None
|
||||
if at_least_one_is_not_none and at_least_one_is_none:
|
||||
raise ValueError(
|
||||
"For `fps`, `width` and `height`, either all of them need to be set, or none of them, "
|
||||
f"but {self.fps=}, {self.width=}, {self.height=} were provided."
|
||||
)
|
||||
|
||||
if self.rotation not in [-90, None, 90, 180]:
|
||||
raise ValueError(f"`rotation` must be in [-90, None, 90, 180] (got {self.rotation})")
|
||||
@@ -1,4 +1,16 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from .camera_opencv import OpenCVCamera
|
||||
from .configuration_opencv import OpenCVCameraConfig
|
||||
|
||||
__all__ = ["OpenCVCamera", "OpenCVCameraConfig"]
|
||||
|
||||
@@ -13,507 +13,501 @@
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
This file contains utilities for recording frames from cameras. For more info look at `OpenCVCamera` docstring.
|
||||
Provides the OpenCVCamera class for capturing frames from cameras using OpenCV.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import concurrent.futures
|
||||
import contextlib
|
||||
import logging
|
||||
import math
|
||||
import platform
|
||||
import shutil
|
||||
import threading
|
||||
import queue
|
||||
import time
|
||||
from pathlib import Path
|
||||
from threading import Thread
|
||||
from threading import Event, Thread
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
|
||||
from lerobot.common.utils.robot_utils import (
|
||||
busy_wait,
|
||||
)
|
||||
from lerobot.common.utils.utils import capture_timestamp_utc
|
||||
|
||||
from ..camera import Camera
|
||||
from .configuration_opencv import OpenCVCameraConfig
|
||||
from ..utils import get_cv2_backend, get_cv2_rotation
|
||||
from .configuration_opencv import ColorMode, OpenCVCameraConfig
|
||||
|
||||
# The maximum opencv device index depends on your operating system. For instance,
|
||||
# NOTE(Steven): The maximum opencv device index depends on your operating system. For instance,
|
||||
# if you have 3 cameras, they should be associated to index 0, 1, and 2. This is the case
|
||||
# on MacOS. However, on Ubuntu, the indices are different like 6, 16, 23.
|
||||
# When you change the USB port or reboot the computer, the operating system might
|
||||
# treat the same cameras as new devices. Thus we select a higher bound to search indices.
|
||||
MAX_OPENCV_INDEX = 60
|
||||
|
||||
|
||||
def find_cameras(raise_when_empty=False, max_index_search_range=MAX_OPENCV_INDEX, mock=False) -> list[dict]:
|
||||
cameras = []
|
||||
if platform.system() == "Linux":
|
||||
print("Linux detected. Finding available camera indices through scanning '/dev/video*' ports")
|
||||
possible_ports = [str(port) for port in Path("/dev").glob("video*")]
|
||||
ports = _find_cameras(possible_ports, mock=mock)
|
||||
for port in ports:
|
||||
cameras.append(
|
||||
{
|
||||
"port": port,
|
||||
"index": int(port.removeprefix("/dev/video")),
|
||||
}
|
||||
)
|
||||
else:
|
||||
print(
|
||||
"Mac or Windows detected. Finding available camera indices through "
|
||||
f"scanning all indices from 0 to {MAX_OPENCV_INDEX}"
|
||||
)
|
||||
possible_indices = range(max_index_search_range)
|
||||
indices = _find_cameras(possible_indices, mock=mock)
|
||||
for index in indices:
|
||||
cameras.append(
|
||||
{
|
||||
"port": None,
|
||||
"index": index,
|
||||
}
|
||||
)
|
||||
|
||||
return cameras
|
||||
|
||||
|
||||
def _find_cameras(
|
||||
possible_camera_ids: list[int | str], raise_when_empty=False, mock=False
|
||||
) -> list[int | str]:
|
||||
if mock:
|
||||
import tests.cameras.mock_cv2 as cv2
|
||||
else:
|
||||
import cv2
|
||||
|
||||
camera_ids = []
|
||||
for camera_idx in possible_camera_ids:
|
||||
camera = cv2.VideoCapture(camera_idx)
|
||||
is_open = camera.isOpened()
|
||||
camera.release()
|
||||
|
||||
if is_open:
|
||||
print(f"Camera found at index {camera_idx}")
|
||||
camera_ids.append(camera_idx)
|
||||
|
||||
if raise_when_empty and len(camera_ids) == 0:
|
||||
raise OSError(
|
||||
"Not a single camera was detected. Try re-plugging, or re-installing `opencv2`, "
|
||||
"or your camera driver, or make sure your camera is compatible with opencv2."
|
||||
)
|
||||
|
||||
return camera_ids
|
||||
|
||||
|
||||
def is_valid_unix_path(path: str) -> bool:
|
||||
"""Note: if 'path' points to a symlink, this will return True only if the target exists"""
|
||||
p = Path(path)
|
||||
return p.is_absolute() and p.exists()
|
||||
|
||||
|
||||
def get_camera_index_from_unix_port(port: Path) -> int:
|
||||
return int(str(port.resolve()).removeprefix("/dev/video"))
|
||||
|
||||
|
||||
def save_image(img_array, camera_index, frame_index, images_dir):
|
||||
img = Image.fromarray(img_array)
|
||||
path = images_dir / f"camera_{camera_index:02d}_frame_{frame_index:06d}.png"
|
||||
path.parent.mkdir(parents=True, exist_ok=True)
|
||||
img.save(str(path), quality=100)
|
||||
|
||||
|
||||
def save_images_from_cameras(
|
||||
images_dir: Path,
|
||||
camera_ids: list | None = None,
|
||||
fps=None,
|
||||
width=None,
|
||||
height=None,
|
||||
record_time_s=2,
|
||||
mock=False,
|
||||
):
|
||||
"""
|
||||
Initializes all the cameras and saves images to the directory. Useful to visually identify the camera
|
||||
associated to a given camera index.
|
||||
"""
|
||||
if camera_ids is None or len(camera_ids) == 0:
|
||||
camera_infos = find_cameras(mock=mock)
|
||||
camera_ids = [cam["index"] for cam in camera_infos]
|
||||
|
||||
print("Connecting cameras")
|
||||
cameras = []
|
||||
for cam_idx in camera_ids:
|
||||
config = OpenCVCameraConfig(camera_index=cam_idx, fps=fps, width=width, height=height, mock=mock)
|
||||
camera = OpenCVCamera(config)
|
||||
camera.connect()
|
||||
print(
|
||||
f"OpenCVCamera({camera.camera_index}, fps={camera.fps}, width={camera.capture_width}, "
|
||||
f"height={camera.capture_height}, color_mode={camera.color_mode})"
|
||||
)
|
||||
cameras.append(camera)
|
||||
|
||||
images_dir = Path(images_dir)
|
||||
if images_dir.exists():
|
||||
shutil.rmtree(
|
||||
images_dir,
|
||||
)
|
||||
images_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
print(f"Saving images to {images_dir}")
|
||||
frame_index = 0
|
||||
start_time = time.perf_counter()
|
||||
with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor:
|
||||
while True:
|
||||
now = time.perf_counter()
|
||||
|
||||
for camera in cameras:
|
||||
# If we use async_read when fps is None, the loop will go full speed, and we will endup
|
||||
# saving the same images from the cameras multiple times until the RAM/disk is full.
|
||||
image = camera.read() if fps is None else camera.async_read()
|
||||
|
||||
executor.submit(
|
||||
save_image,
|
||||
image,
|
||||
camera.camera_index,
|
||||
frame_index,
|
||||
images_dir,
|
||||
)
|
||||
|
||||
if fps is not None:
|
||||
dt_s = time.perf_counter() - now
|
||||
busy_wait(1 / fps - dt_s)
|
||||
|
||||
print(f"Frame: {frame_index:04d}\tLatency (ms): {(time.perf_counter() - now) * 1000:.2f}")
|
||||
|
||||
if time.perf_counter() - start_time > record_time_s:
|
||||
break
|
||||
|
||||
frame_index += 1
|
||||
|
||||
print(f"Images have been saved to {images_dir}")
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class OpenCVCamera(Camera):
|
||||
"""
|
||||
The OpenCVCamera class allows to efficiently record images from cameras. It relies on opencv2 to communicate
|
||||
with the cameras. Most cameras are compatible. For more info, see the [Video I/O with OpenCV Overview](https://docs.opencv.org/4.x/d0/da7/videoio_overview.html).
|
||||
Manages camera interactions using OpenCV for efficient frame recording.
|
||||
|
||||
An OpenCVCamera instance requires a camera index (e.g. `OpenCVCamera(camera_index=0)`). When you only have one camera
|
||||
like a webcam of a laptop, the camera index is expected to be 0, but it might also be very different, and the camera index
|
||||
might change if you reboot your computer or re-plug your camera. This behavior depends on your operation system.
|
||||
This class provides a high-level interface to connect to, configure, and read
|
||||
frames from cameras compatible with OpenCV's VideoCapture. It supports both
|
||||
synchronous and asynchronous frame reading.
|
||||
|
||||
To find the camera indices of your cameras, you can run our utility script that will be save a few frames for each camera:
|
||||
An OpenCVCamera instance requires a camera index (e.g., 0) or a device path
|
||||
(e.g., '/dev/video0' on Linux). Camera indices can be unstable across reboots
|
||||
or port changes, especially on Linux. Use the provided utility script to find
|
||||
available camera indices or paths:
|
||||
```bash
|
||||
python lerobot/common/robot_devices/cameras/opencv.py --images-dir outputs/images_from_opencv_cameras
|
||||
python -m lerobot.find_cameras opencv
|
||||
```
|
||||
|
||||
When an OpenCVCamera is instantiated, if no specific config is provided, the default fps, width, height and color_mode
|
||||
of the given camera will be used.
|
||||
The camera's default settings (FPS, resolution, color mode) are used unless
|
||||
overridden in the configuration.
|
||||
|
||||
Example of usage:
|
||||
```python
|
||||
from lerobot.common.robot_devices.cameras.configs import OpenCVCameraConfig
|
||||
Example:
|
||||
```python
|
||||
from lerobot.common.cameras.opencv import OpenCVCamera
|
||||
from lerobot.common.cameras.configuration_opencv import OpenCVCameraConfig, ColorMode, Cv2Rotation
|
||||
|
||||
config = OpenCVCameraConfig(camera_index=0)
|
||||
camera = OpenCVCamera(config)
|
||||
camera.connect()
|
||||
color_image = camera.read()
|
||||
# when done using the camera, consider disconnecting
|
||||
camera.disconnect()
|
||||
```
|
||||
# Basic usage with camera index 0
|
||||
config = OpenCVCameraConfig(index_or_path=0)
|
||||
camera = OpenCVCamera(config)
|
||||
try:
|
||||
camera.connect()
|
||||
print(f"Connected to {camera}")
|
||||
color_image = camera.read() # Synchronous read
|
||||
print(f"Read frame shape: {color_image.shape}")
|
||||
async_image = camera.async_read() # Asynchronous read
|
||||
print(f"Async read frame shape: {async_image.shape}")
|
||||
except Exception as e:
|
||||
print(f"An error occurred: {e}")
|
||||
finally:
|
||||
camera.disconnect()
|
||||
print(f"Disconnected from {camera}")
|
||||
|
||||
Example of changing default fps, width, height and color_mode:
|
||||
```python
|
||||
config = OpenCVCameraConfig(camera_index=0, fps=30, width=1280, height=720)
|
||||
config = OpenCVCameraConfig(camera_index=0, fps=90, width=640, height=480)
|
||||
config = OpenCVCameraConfig(camera_index=0, fps=90, width=640, height=480, color_mode="bgr")
|
||||
# Note: might error out open `camera.connect()` if these settings are not compatible with the camera
|
||||
```
|
||||
# Example with custom settings
|
||||
custom_config = OpenCVCameraConfig(
|
||||
index_or_path='/dev/video0', # Or use an index
|
||||
fps=30,
|
||||
width=1280,
|
||||
height=720,
|
||||
color_mode=ColorMode.RGB,
|
||||
rotation=Cv2Rotation.ROTATE_90
|
||||
)
|
||||
custom_camera = OpenCVCamera(custom_config)
|
||||
# ... connect, read, disconnect ...
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(self, config: OpenCVCameraConfig):
|
||||
"""
|
||||
Initializes the OpenCVCamera instance.
|
||||
|
||||
Args:
|
||||
config: The configuration settings for the camera.
|
||||
"""
|
||||
super().__init__(config)
|
||||
|
||||
self.config = config
|
||||
self.camera_index = config.camera_index
|
||||
self.port = None
|
||||
|
||||
# Linux uses ports for connecting to cameras
|
||||
if platform.system() == "Linux":
|
||||
if isinstance(self.camera_index, int):
|
||||
self.port = Path(f"/dev/video{self.camera_index}")
|
||||
elif isinstance(self.camera_index, str) and is_valid_unix_path(self.camera_index):
|
||||
self.port = Path(self.camera_index)
|
||||
# Retrieve the camera index from a potentially symlinked path
|
||||
self.camera_index = get_camera_index_from_unix_port(self.port)
|
||||
else:
|
||||
raise ValueError(f"Please check the provided camera_index: {self.camera_index}")
|
||||
|
||||
# Store the raw (capture) resolution from the config.
|
||||
self.capture_width = config.width
|
||||
self.capture_height = config.height
|
||||
|
||||
# If rotated by ±90, swap width and height.
|
||||
if config.rotation in [-90, 90]:
|
||||
self.width = config.height
|
||||
self.height = config.width
|
||||
else:
|
||||
self.width = config.width
|
||||
self.height = config.height
|
||||
self.index_or_path = config.index_or_path
|
||||
|
||||
self.fps = config.fps
|
||||
self.channels = config.channels
|
||||
self.color_mode = config.color_mode
|
||||
self.mock = config.mock
|
||||
self.warmup_time = config.warmup_time
|
||||
|
||||
self.camera = None
|
||||
self.is_connected = False
|
||||
self.thread = None
|
||||
self.stop_event = None
|
||||
self.color_image = None
|
||||
self.logs = {}
|
||||
self.videocapture: cv2.VideoCapture | None = None
|
||||
|
||||
if self.mock:
|
||||
import tests.cameras.mock_cv2 as cv2
|
||||
else:
|
||||
import cv2
|
||||
self.thread: Thread | None = None
|
||||
self.stop_event: Event | None = None
|
||||
self.frame_queue: queue.Queue = queue.Queue(maxsize=1)
|
||||
|
||||
self.rotation = None
|
||||
if config.rotation == -90:
|
||||
self.rotation = cv2.ROTATE_90_COUNTERCLOCKWISE
|
||||
elif config.rotation == 90:
|
||||
self.rotation = cv2.ROTATE_90_CLOCKWISE
|
||||
elif config.rotation == 180:
|
||||
self.rotation = cv2.ROTATE_180
|
||||
self.rotation: int | None = get_cv2_rotation(config.rotation)
|
||||
self.backend: int = get_cv2_backend()
|
||||
|
||||
def connect(self):
|
||||
if self.height and self.width:
|
||||
if self.rotation in [cv2.ROTATE_90_CLOCKWISE, cv2.ROTATE_90_COUNTERCLOCKWISE]:
|
||||
self.capture_width, self.capture_height = self.height, self.width
|
||||
else:
|
||||
self.capture_width, self.capture_height = self.width, self.height
|
||||
|
||||
def __str__(self) -> str:
|
||||
return f"{self.__class__.__name__}({self.index_or_path})"
|
||||
|
||||
@property
|
||||
def is_connected(self) -> bool:
|
||||
"""Checks if the camera is currently connected and opened."""
|
||||
return isinstance(self.videocapture, cv2.VideoCapture) and self.videocapture.isOpened()
|
||||
|
||||
def connect(self, warmup: bool = True):
|
||||
"""
|
||||
Connects to the OpenCV camera specified in the configuration.
|
||||
|
||||
Initializes the OpenCV VideoCapture object, sets desired camera properties
|
||||
(FPS, width, height), and performs initial checks.
|
||||
|
||||
Raises:
|
||||
DeviceAlreadyConnectedError: If the camera is already connected.
|
||||
ValueError: If the specified camera index/path is not found or accessible.
|
||||
ConnectionError: If the camera is found but fails to open.
|
||||
RuntimeError: If the camera opens but fails to apply requested FPS/resolution settings.
|
||||
"""
|
||||
if self.is_connected:
|
||||
raise DeviceAlreadyConnectedError(f"OpenCVCamera({self.camera_index}) is already connected.")
|
||||
raise DeviceAlreadyConnectedError(f"{self} is already connected.")
|
||||
|
||||
if self.mock:
|
||||
import tests.cameras.mock_cv2 as cv2
|
||||
else:
|
||||
import cv2
|
||||
# Use 1 thread for OpenCV operations to avoid potential conflicts or
|
||||
# blocking in multi-threaded applications, especially during data collection.
|
||||
cv2.setNumThreads(1)
|
||||
|
||||
# Use 1 thread to avoid blocking the main thread. Especially useful during data collection
|
||||
# when other threads are used to save the images.
|
||||
cv2.setNumThreads(1)
|
||||
self.videocapture = cv2.VideoCapture(self.index_or_path, self.backend)
|
||||
|
||||
backend = (
|
||||
cv2.CAP_V4L2
|
||||
if platform.system() == "Linux"
|
||||
else cv2.CAP_DSHOW
|
||||
if platform.system() == "Windows"
|
||||
else cv2.CAP_AVFOUNDATION
|
||||
if platform.system() == "Darwin"
|
||||
else cv2.CAP_ANY
|
||||
)
|
||||
if not self.videocapture.isOpened():
|
||||
self.videocapture.release()
|
||||
self.videocapture = None
|
||||
raise ConnectionError(
|
||||
f"Failed to open OpenCV camera {self.index_or_path}."
|
||||
f"Run 'python -m lerobot.find_cameras opencv' for details about the available cameras in your system."
|
||||
)
|
||||
|
||||
camera_idx = f"/dev/video{self.camera_index}" if platform.system() == "Linux" else self.camera_index
|
||||
# First create a temporary camera trying to access `camera_index`,
|
||||
# and verify it is a valid camera by calling `isOpened`.
|
||||
tmp_camera = cv2.VideoCapture(camera_idx, backend)
|
||||
is_camera_open = tmp_camera.isOpened()
|
||||
# Release camera to make it accessible for `find_camera_indices`
|
||||
tmp_camera.release()
|
||||
del tmp_camera
|
||||
self._configure_capture_settings()
|
||||
|
||||
# If the camera doesn't work, display the camera indices corresponding to
|
||||
# valid cameras.
|
||||
if not is_camera_open:
|
||||
# Verify that the provided `camera_index` is valid before printing the traceback
|
||||
cameras_info = find_cameras()
|
||||
available_cam_ids = [cam["index"] for cam in cameras_info]
|
||||
if self.camera_index not in available_cam_ids:
|
||||
if warmup:
|
||||
if self.warmup_time is None:
|
||||
raise ValueError(
|
||||
f"`camera_index` is expected to be one of these available cameras {available_cam_ids}, but {self.camera_index} is provided instead. "
|
||||
"To find the camera index you should use, run `python lerobot/common/robot_devices/cameras/opencv.py`."
|
||||
f"Warmup time is not set for {self}. Please set a warmup time in the configuration."
|
||||
)
|
||||
logger.debug(f"Reading a warm-up frames for {self} for {self.warmup_time} seconds...")
|
||||
start_time = time.time()
|
||||
while time.time() - start_time < self.warmup_time:
|
||||
self.read()
|
||||
time.sleep(0.1)
|
||||
|
||||
raise OSError(f"Can't access OpenCVCamera({camera_idx}).")
|
||||
logger.debug(f"Camera {self.index_or_path} connected and configured successfully.")
|
||||
|
||||
# Secondly, create the camera that will be used downstream.
|
||||
# Note: For some unknown reason, calling `isOpened` blocks the camera which then
|
||||
# needs to be re-created.
|
||||
self.camera = cv2.VideoCapture(camera_idx, backend)
|
||||
def _configure_capture_settings(self) -> None:
|
||||
"""
|
||||
Applies the specified FPS, width, and height settings to the connected camera.
|
||||
|
||||
if self.fps is not None:
|
||||
self.camera.set(cv2.CAP_PROP_FPS, self.fps)
|
||||
if self.capture_width is not None:
|
||||
self.camera.set(cv2.CAP_PROP_FRAME_WIDTH, self.capture_width)
|
||||
if self.capture_height is not None:
|
||||
self.camera.set(cv2.CAP_PROP_FRAME_HEIGHT, self.capture_height)
|
||||
This method attempts to set the camera properties via OpenCV. It checks if
|
||||
the camera successfully applied the settings and raises an error if not.
|
||||
|
||||
actual_fps = self.camera.get(cv2.CAP_PROP_FPS)
|
||||
actual_width = self.camera.get(cv2.CAP_PROP_FRAME_WIDTH)
|
||||
actual_height = self.camera.get(cv2.CAP_PROP_FRAME_HEIGHT)
|
||||
Args:
|
||||
fps: The desired frames per second. If None, the setting is skipped.
|
||||
width: The desired capture width. If None, the setting is skipped.
|
||||
height: The desired capture height. If None, the setting is skipped.
|
||||
|
||||
# Using `math.isclose` since actual fps can be a float (e.g. 29.9 instead of 30)
|
||||
if self.fps is not None and not math.isclose(self.fps, actual_fps, rel_tol=1e-3):
|
||||
# Using `OSError` since it's a broad that encompasses issues related to device communication
|
||||
raise OSError(
|
||||
f"Can't set {self.fps=} for OpenCVCamera({self.camera_index}). Actual value is {actual_fps}."
|
||||
)
|
||||
if self.capture_width is not None and not math.isclose(
|
||||
self.capture_width, actual_width, rel_tol=1e-3
|
||||
):
|
||||
raise OSError(
|
||||
f"Can't set {self.capture_width=} for OpenCVCamera({self.camera_index}). Actual value is {actual_width}."
|
||||
)
|
||||
if self.capture_height is not None and not math.isclose(
|
||||
self.capture_height, actual_height, rel_tol=1e-3
|
||||
):
|
||||
raise OSError(
|
||||
f"Can't set {self.capture_height=} for OpenCVCamera({self.camera_index}). Actual value is {actual_height}."
|
||||
)
|
||||
|
||||
self.fps = round(actual_fps)
|
||||
self.capture_width = round(actual_width)
|
||||
self.capture_height = round(actual_height)
|
||||
self.is_connected = True
|
||||
|
||||
def read(self, temporary_color_mode: str | None = None) -> np.ndarray:
|
||||
"""Read a frame from the camera returned in the format (height, width, channels)
|
||||
(e.g. 480 x 640 x 3), contrarily to the pytorch format which is channel first.
|
||||
|
||||
Note: Reading a frame is done every `camera.fps` times per second, and it is blocking.
|
||||
If you are reading data from other sensors, we advise to use `camera.async_read()` which is non blocking version of `camera.read()`.
|
||||
Raises:
|
||||
RuntimeError: If the camera fails to set any of the specified properties
|
||||
to the requested value.
|
||||
DeviceNotConnectedError: If the camera is not connected when attempting
|
||||
to configure settings.
|
||||
"""
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(
|
||||
f"OpenCVCamera({self.camera_index}) is not connected. Try running `camera.connect()` first."
|
||||
raise DeviceNotConnectedError(f"Cannot configure settings for {self} as it is not connected.")
|
||||
|
||||
if self.fps is None:
|
||||
self.fps = self.videocapture.get(cv2.CAP_PROP_FPS)
|
||||
logger.info(f"FPS set to camera default: {self.fps}.")
|
||||
else:
|
||||
self._validate_fps()
|
||||
|
||||
default_width = int(round(self.videocapture.get(cv2.CAP_PROP_FRAME_WIDTH)))
|
||||
default_height = int(round(self.videocapture.get(cv2.CAP_PROP_FRAME_HEIGHT)))
|
||||
|
||||
if self.width is None or self.height is None:
|
||||
if self.rotation in [cv2.ROTATE_90_CLOCKWISE, cv2.ROTATE_90_COUNTERCLOCKWISE]:
|
||||
self.width, self.height = default_height, default_width
|
||||
self.capture_width, self.capture_height = default_width, default_height
|
||||
else:
|
||||
self.width, self.height = default_width, default_height
|
||||
self.capture_width, self.capture_height = default_width, default_height
|
||||
logger.info(f"Capture width set to camera default: {self.width}.")
|
||||
logger.info(f"Capture height set to camera default: {self.height}.")
|
||||
else:
|
||||
self._validate_width_and_height()
|
||||
|
||||
def _validate_fps(self) -> None:
|
||||
"""Validates and sets the camera's frames per second (FPS)."""
|
||||
|
||||
success = self.videocapture.set(cv2.CAP_PROP_FPS, float(self.fps))
|
||||
actual_fps = self.videocapture.get(cv2.CAP_PROP_FPS)
|
||||
# Use math.isclose for robust float comparison
|
||||
if not success or not math.isclose(self.fps, actual_fps, rel_tol=1e-3):
|
||||
raise RuntimeError(
|
||||
f"Failed to set requested FPS {self.fps} for {self}. Actual value reported: {actual_fps} set success: {success})."
|
||||
)
|
||||
logger.debug(f"FPS set to {actual_fps} for {self}.")
|
||||
|
||||
def _validate_width_and_height(self) -> None:
|
||||
"""Validates and sets the camera's frame capture width and height."""
|
||||
|
||||
success = self.videocapture.set(cv2.CAP_PROP_FRAME_WIDTH, float(self.capture_width))
|
||||
actual_width = int(round(self.videocapture.get(cv2.CAP_PROP_FRAME_WIDTH)))
|
||||
if not success or self.capture_width != actual_width:
|
||||
raise RuntimeError(
|
||||
f"Failed to set requested capture width {self.capture_width} for {self}. Actual value: {actual_width} (set success: {success})."
|
||||
)
|
||||
logger.debug(f"Capture width set to {actual_width} for {self}.")
|
||||
|
||||
success = self.videocapture.set(cv2.CAP_PROP_FRAME_HEIGHT, float(self.capture_height))
|
||||
actual_height = int(round(self.videocapture.get(cv2.CAP_PROP_FRAME_HEIGHT)))
|
||||
if not success or self.capture_height != actual_height:
|
||||
raise RuntimeError(
|
||||
f"Failed to set requested capture height {self.capture_height} for {self}. Actual value: {actual_height} (set success: {success})."
|
||||
)
|
||||
logger.debug(f"Capture height set to {actual_height} for {self}.")
|
||||
|
||||
@staticmethod
|
||||
def find_cameras() -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Detects available OpenCV cameras connected to the system.
|
||||
|
||||
On Linux, it scans '/dev/video*' paths. On other systems (like macOS, Windows),
|
||||
it checks indices from 0 up to `MAX_OPENCV_INDEX`.
|
||||
|
||||
Returns:
|
||||
List[Dict[str, Any]]: A list of dictionaries,
|
||||
where each dictionary contains 'type', 'id' (port index or path),
|
||||
and the default profile properties (width, height, fps, format).
|
||||
"""
|
||||
found_cameras_info = []
|
||||
|
||||
if platform.system() == "Linux":
|
||||
possible_paths = sorted(Path("/dev").glob("video*"), key=lambda p: p.name)
|
||||
targets_to_scan = [str(p) for p in possible_paths]
|
||||
else:
|
||||
targets_to_scan = list(range(MAX_OPENCV_INDEX))
|
||||
|
||||
logger.debug(f"Found potential paths: {targets_to_scan}")
|
||||
for target in targets_to_scan:
|
||||
camera = cv2.VideoCapture(target)
|
||||
if camera.isOpened():
|
||||
default_width = int(camera.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||
default_height = int(camera.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||
default_fps = camera.get(cv2.CAP_PROP_FPS)
|
||||
default_format = camera.get(cv2.CAP_PROP_FORMAT)
|
||||
camera_info = {
|
||||
"name": f"OpenCV Camera @ {target}",
|
||||
"type": "OpenCV",
|
||||
"id": target,
|
||||
"backend_api": camera.getBackendName(),
|
||||
"default_stream_profile": {
|
||||
"format": default_format,
|
||||
"width": default_width,
|
||||
"height": default_height,
|
||||
"fps": default_fps,
|
||||
},
|
||||
}
|
||||
|
||||
found_cameras_info.append(camera_info)
|
||||
camera.release()
|
||||
|
||||
if not found_cameras_info:
|
||||
logger.warning("No OpenCV devices detected.")
|
||||
|
||||
logger.info(f"Detected OpenCV cameras: {[cam['id'] for cam in found_cameras_info]}")
|
||||
return found_cameras_info
|
||||
|
||||
def read(self, color_mode: ColorMode | None = None) -> np.ndarray:
|
||||
"""
|
||||
Reads a single frame synchronously from the camera.
|
||||
|
||||
This is a blocking call. It waits for the next available frame from the
|
||||
camera hardware via OpenCV.
|
||||
|
||||
Args:
|
||||
color_mode (Optional[ColorMode]): If specified, overrides the default
|
||||
color mode (`self.color_mode`) for this read operation (e.g.,
|
||||
request RGB even if default is BGR).
|
||||
|
||||
Returns:
|
||||
np.ndarray: The captured frame as a NumPy array in the format
|
||||
(height, width, channels), using the specified or default
|
||||
color mode and applying any configured rotation.
|
||||
|
||||
Raises:
|
||||
DeviceNotConnectedError: If the camera is not connected.
|
||||
RuntimeError: If reading the frame from the camera fails or if the
|
||||
received frame dimensions don't match expectations before rotation.
|
||||
ValueError: If an invalid `color_mode` is requested.
|
||||
"""
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(f"{self} is not connected.")
|
||||
|
||||
start_time = time.perf_counter()
|
||||
|
||||
ret, color_image = self.camera.read()
|
||||
# NOTE(Steven): Are we okay with this blocking an undefined amount of time?
|
||||
ret, frame = self.videocapture.read()
|
||||
|
||||
if not ret:
|
||||
raise OSError(f"Can't capture color image from camera {self.camera_index}.")
|
||||
if not ret or frame is None:
|
||||
raise RuntimeError(
|
||||
f"Failed to capture frame from {self}. '.read()' returned status={ret} and frame is None."
|
||||
)
|
||||
|
||||
requested_color_mode = self.color_mode if temporary_color_mode is None else temporary_color_mode
|
||||
# Post-process the frame (color conversion, dimension check, rotation)
|
||||
processed_frame = self._postprocess_image(frame, color_mode)
|
||||
|
||||
if requested_color_mode not in ["rgb", "bgr"]:
|
||||
read_duration_ms = (time.perf_counter() - start_time) * 1e3
|
||||
logger.debug(f"{self} synchronous read took: {read_duration_ms:.1f}ms")
|
||||
|
||||
return processed_frame
|
||||
|
||||
def _postprocess_image(self, image: np.ndarray, color_mode: ColorMode | None = None) -> np.ndarray:
|
||||
"""
|
||||
Applies color conversion, dimension validation, and rotation to a raw frame.
|
||||
|
||||
Args:
|
||||
image (np.ndarray): The raw image frame (expected BGR format from OpenCV).
|
||||
color_mode (Optional[ColorMode]): The target color mode (RGB or BGR). If None,
|
||||
uses the instance's default `self.color_mode`.
|
||||
|
||||
Returns:
|
||||
np.ndarray: The processed image frame.
|
||||
|
||||
Raises:
|
||||
ValueError: If the requested `color_mode` is invalid.
|
||||
RuntimeError: If the raw frame dimensions do not match the configured
|
||||
`width` and `height`.
|
||||
"""
|
||||
requested_color_mode = self.color_mode if color_mode is None else color_mode
|
||||
|
||||
if requested_color_mode not in (ColorMode.RGB, ColorMode.BGR):
|
||||
raise ValueError(
|
||||
f"Expected color values are 'rgb' or 'bgr', but {requested_color_mode} is provided."
|
||||
f"Invalid requested color mode '{requested_color_mode}'. Expected {ColorMode.RGB} or {ColorMode.BGR}."
|
||||
)
|
||||
|
||||
# OpenCV uses BGR format as default (blue, green, red) for all operations, including displaying images.
|
||||
# However, Deep Learning framework such as LeRobot uses RGB format as default to train neural networks,
|
||||
# so we convert the image color from BGR to RGB.
|
||||
if requested_color_mode == "rgb":
|
||||
if self.mock:
|
||||
import tests.cameras.mock_cv2 as cv2
|
||||
else:
|
||||
import cv2
|
||||
h, w, c = image.shape
|
||||
|
||||
color_image = cv2.cvtColor(color_image, cv2.COLOR_BGR2RGB)
|
||||
|
||||
h, w, _ = color_image.shape
|
||||
if h != self.capture_height or w != self.capture_width:
|
||||
raise OSError(
|
||||
f"Can't capture color image with expected height and width ({self.height} x {self.width}). ({h} x {w}) returned instead."
|
||||
raise RuntimeError(
|
||||
f"Captured frame dimensions ({h}x{w}) do not match configured capture dimensions ({self.capture_height}x{self.capture_width}) for {self}."
|
||||
)
|
||||
|
||||
if self.rotation is not None:
|
||||
color_image = cv2.rotate(color_image, self.rotation)
|
||||
processed_image = image
|
||||
if requested_color_mode == ColorMode.RGB:
|
||||
processed_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
||||
logger.debug(f"Converted frame from BGR to RGB for {self}.")
|
||||
|
||||
# log the number of seconds it took to read the image
|
||||
self.logs["delta_timestamp_s"] = time.perf_counter() - start_time
|
||||
if self.rotation in [cv2.ROTATE_90_CLOCKWISE, cv2.ROTATE_90_COUNTERCLOCKWISE]:
|
||||
processed_image = cv2.rotate(processed_image, self.rotation)
|
||||
logger.debug(f"Rotated frame by {self.config.rotation} degrees for {self}.")
|
||||
|
||||
# log the utc time at which the image was received
|
||||
self.logs["timestamp_utc"] = capture_timestamp_utc()
|
||||
return processed_image
|
||||
|
||||
self.color_image = color_image
|
||||
def _read_loop(self):
|
||||
"""
|
||||
Internal loop run by the background thread for asynchronous reading.
|
||||
|
||||
return color_image
|
||||
|
||||
def read_loop(self):
|
||||
Continuously reads frames from the camera using the synchronous `read()`
|
||||
method and places the latest frame into the `frame_queue`. It overwrites
|
||||
any previous frame in the queue.
|
||||
"""
|
||||
logger.debug(f"Starting read loop thread for {self}.")
|
||||
while not self.stop_event.is_set():
|
||||
try:
|
||||
self.color_image = self.read()
|
||||
color_image = self.read()
|
||||
|
||||
with contextlib.suppress(queue.Empty):
|
||||
_ = self.frame_queue.get_nowait()
|
||||
self.frame_queue.put(color_image)
|
||||
logger.debug(f"Frame placed in queue for {self}.")
|
||||
|
||||
except DeviceNotConnectedError:
|
||||
logger.error(f"Read loop for {self} stopped: Camera disconnected.")
|
||||
break
|
||||
except Exception as e:
|
||||
print(f"Error reading in thread: {e}")
|
||||
logger.warning(f"Error reading frame in background thread for {self}: {e}")
|
||||
|
||||
def async_read(self):
|
||||
logger.debug(f"Stopping read loop thread for {self}.")
|
||||
|
||||
def _start_read_thread(self) -> None:
|
||||
"""Starts or restarts the background read thread if it's not running."""
|
||||
if self.thread is not None and self.thread.is_alive():
|
||||
self.thread.join(timeout=0.1)
|
||||
if self.stop_event is not None:
|
||||
self.stop_event.set()
|
||||
|
||||
self.stop_event = Event()
|
||||
self.thread = Thread(
|
||||
target=self._read_loop, args=(), name=f"OpenCVCameraReadLoop-{self}-{self.index_or_path}"
|
||||
)
|
||||
self.thread.daemon = True
|
||||
self.thread.start()
|
||||
logger.debug(f"Read thread started for {self}.")
|
||||
|
||||
def _stop_read_thread(self) -> None:
|
||||
"""Signals the background read thread to stop and waits for it to join."""
|
||||
if self.stop_event is not None:
|
||||
self.stop_event.set()
|
||||
|
||||
if self.thread is not None and self.thread.is_alive():
|
||||
self.thread.join(timeout=2.0)
|
||||
if self.thread.is_alive():
|
||||
logger.warning(f"Read thread for {self} did not terminate gracefully after 2 seconds.")
|
||||
else:
|
||||
logger.debug(f"Read thread for {self} joined successfully.")
|
||||
|
||||
self.thread = None
|
||||
self.stop_event = None
|
||||
logger.debug(f"Read thread stopped for {self}.")
|
||||
|
||||
def async_read(self, timeout_ms: float = 2000) -> np.ndarray:
|
||||
"""
|
||||
Reads the latest available frame asynchronously.
|
||||
|
||||
This method retrieves the most recent frame captured by the background
|
||||
read thread. It does not block waiting for the camera hardware directly,
|
||||
only waits for a frame to appear in the internal queue up to the specified
|
||||
timeout.
|
||||
|
||||
Args:
|
||||
timeout_ms (float): Maximum time in milliseconds to wait for a frame
|
||||
to become available in the queue. Defaults to 2000ms (2 seconds).
|
||||
|
||||
Returns:
|
||||
np.ndarray: The latest captured frame as a NumPy array in the format
|
||||
(height, width, channels), processed according to configuration.
|
||||
|
||||
Raises:
|
||||
DeviceNotConnectedError: If the camera is not connected.
|
||||
TimeoutError: If no frame becomes available within the specified timeout.
|
||||
RuntimeError: If an unexpected error occurs while retrieving from the queue.
|
||||
"""
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(
|
||||
f"OpenCVCamera({self.camera_index}) is not connected. Try running `camera.connect()` first."
|
||||
)
|
||||
raise DeviceNotConnectedError(f"{self} is not connected.")
|
||||
|
||||
if self.thread is None:
|
||||
self.stop_event = threading.Event()
|
||||
self.thread = Thread(target=self.read_loop, args=())
|
||||
self.thread.daemon = True
|
||||
self.thread.start()
|
||||
if self.thread is None or not self.thread.is_alive():
|
||||
self._start_read_thread()
|
||||
|
||||
num_tries = 0
|
||||
while True:
|
||||
if self.color_image is not None:
|
||||
return self.color_image
|
||||
|
||||
time.sleep(1 / self.fps)
|
||||
num_tries += 1
|
||||
if num_tries > self.fps * 2:
|
||||
raise TimeoutError("Timed out waiting for async_read() to start.")
|
||||
try:
|
||||
return self.frame_queue.get(timeout=timeout_ms / 1000.0)
|
||||
except queue.Empty as e:
|
||||
thread_alive = self.thread is not None and self.thread.is_alive()
|
||||
raise TimeoutError(
|
||||
f"Timed out waiting for frame from camera {self} after {timeout_ms} ms. "
|
||||
f"Read thread alive: {thread_alive}."
|
||||
) from e
|
||||
except Exception as e:
|
||||
logger.exception(f"Unexpected error getting frame from queue for {self}: {e}")
|
||||
raise RuntimeError(f"Error getting frame from queue for camera {self.index_or_path}: {e}") from e
|
||||
|
||||
def disconnect(self):
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(
|
||||
f"OpenCVCamera({self.camera_index}) is not connected. Try running `camera.connect()` first."
|
||||
)
|
||||
"""
|
||||
Disconnects from the camera and cleans up resources.
|
||||
|
||||
Stops the background read thread (if running) and releases the OpenCV
|
||||
VideoCapture object.
|
||||
|
||||
Raises:
|
||||
DeviceNotConnectedError: If the camera is already disconnected.
|
||||
"""
|
||||
if not self.is_connected and self.thread is None:
|
||||
raise DeviceNotConnectedError(f"{self} not connected.")
|
||||
|
||||
if self.thread is not None:
|
||||
self.stop_event.set()
|
||||
self.thread.join() # wait for the thread to finish
|
||||
self.thread = None
|
||||
self.stop_event = None
|
||||
self._stop_read_thread()
|
||||
|
||||
self.camera.release()
|
||||
self.camera = None
|
||||
self.is_connected = False
|
||||
if self.videocapture is not None:
|
||||
self.videocapture.release()
|
||||
self.videocapture = None
|
||||
|
||||
def __del__(self):
|
||||
if getattr(self, "is_connected", False):
|
||||
self.disconnect()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Save a few frames using `OpenCVCamera` for all cameras connected to the computer, or a selected subset."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--camera-ids",
|
||||
type=int,
|
||||
nargs="*",
|
||||
default=None,
|
||||
help="List of camera indices used to instantiate the `OpenCVCamera`. If not provided, find and use all available camera indices.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--fps",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Set the number of frames recorded per seconds for all cameras. If not provided, use the default fps of each camera.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--width",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Set the width for all cameras. If not provided, use the default width of each camera.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--height",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Set the height for all cameras. If not provided, use the default height of each camera.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--images-dir",
|
||||
type=Path,
|
||||
default="outputs/images_from_opencv_cameras",
|
||||
help="Set directory to save a few frames for each camera.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--record-time-s",
|
||||
type=float,
|
||||
default=4.0,
|
||||
help="Set the number of seconds used to record the frames. By default, 2 seconds.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
save_images_from_cameras(**vars(args))
|
||||
logger.info(f"{self} disconnected.")
|
||||
|
||||
@@ -1,38 +1,71 @@
|
||||
from dataclasses import dataclass
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from ..configs import CameraConfig
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
|
||||
from ..configs import CameraConfig, ColorMode, Cv2Rotation
|
||||
|
||||
|
||||
@CameraConfig.register_subclass("opencv")
|
||||
@dataclass
|
||||
class OpenCVCameraConfig(CameraConfig):
|
||||
"""
|
||||
Example of tested options for Intel Real Sense D405:
|
||||
"""Configuration class for OpenCV-based camera devices or video files.
|
||||
|
||||
This class provides configuration options for cameras accessed through OpenCV,
|
||||
supporting both physical camera devices and video files. It includes settings
|
||||
for resolution, frame rate, color mode, and image rotation.
|
||||
|
||||
Example configurations:
|
||||
```python
|
||||
OpenCVCameraConfig(0, 30, 640, 480)
|
||||
OpenCVCameraConfig(0, 60, 640, 480)
|
||||
OpenCVCameraConfig(0, 90, 640, 480)
|
||||
OpenCVCameraConfig(0, 30, 1280, 720)
|
||||
# Basic configurations
|
||||
OpenCVCameraConfig(0, 30, 1280, 720) # 1280x720 @ 30FPS
|
||||
OpenCVCameraConfig(/dev/video4, 60, 640, 480) # 640x480 @ 60FPS
|
||||
|
||||
# Advanced configurations
|
||||
OpenCVCameraConfig(128422271347, 30, 640, 480, rotation=Cv2Rotation.ROTATE_90) # With 90° rotation
|
||||
```
|
||||
|
||||
Attributes:
|
||||
index_or_path: Either an integer representing the camera device index,
|
||||
or a Path object pointing to a video file.
|
||||
fps: Requested frames per second for the color stream.
|
||||
width: Requested frame width in pixels for the color stream.
|
||||
height: Requested frame height in pixels for the color stream.
|
||||
color_mode: Color mode for image output (RGB or BGR). Defaults to RGB.
|
||||
rotation: Image rotation setting (0°, 90°, 180°, or 270°). Defaults to no rotation.
|
||||
|
||||
Note:
|
||||
- Only 3-channel color output (RGB/BGR) is currently supported.
|
||||
"""
|
||||
|
||||
camera_index: int
|
||||
fps: int | None = None
|
||||
width: int | None = None
|
||||
height: int | None = None
|
||||
color_mode: str = "rgb"
|
||||
channels: int | None = None
|
||||
rotation: int | None = None
|
||||
mock: bool = False
|
||||
index_or_path: int | Path
|
||||
color_mode: ColorMode = ColorMode.RGB
|
||||
rotation: Cv2Rotation = Cv2Rotation.NO_ROTATION
|
||||
|
||||
def __post_init__(self):
|
||||
if self.color_mode not in ["rgb", "bgr"]:
|
||||
if self.color_mode not in (ColorMode.RGB, ColorMode.BGR):
|
||||
raise ValueError(
|
||||
f"`color_mode` is expected to be 'rgb' or 'bgr', but {self.color_mode} is provided."
|
||||
f"`color_mode` is expected to be {ColorMode.RGB.value} or {ColorMode.BGR.value}, but {self.color_mode} is provided."
|
||||
)
|
||||
|
||||
self.channels = 3
|
||||
|
||||
if self.rotation not in [-90, None, 90, 180]:
|
||||
raise ValueError(f"`rotation` must be in [-90, None, 90, 180] (got {self.rotation})")
|
||||
if self.rotation not in (
|
||||
Cv2Rotation.NO_ROTATION,
|
||||
Cv2Rotation.ROTATE_90,
|
||||
Cv2Rotation.ROTATE_180,
|
||||
Cv2Rotation.ROTATE_270,
|
||||
):
|
||||
raise ValueError(
|
||||
f"`rotation` is expected to be in {(Cv2Rotation.NO_ROTATION, Cv2Rotation.ROTATE_90, Cv2Rotation.ROTATE_180, Cv2Rotation.ROTATE_270)}, but {self.rotation} is provided."
|
||||
)
|
||||
|
||||
16
lerobot/common/cameras/realsense/__init__.py
Normal file
@@ -0,0 +1,16 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from .camera_realsense import RealSenseCamera
|
||||
from .configuration_realsense import RealSenseCameraConfig
|
||||
612
lerobot/common/cameras/realsense/camera_realsense.py
Normal file
@@ -0,0 +1,612 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
Provides the RealSenseCamera class for capturing frames from Intel RealSense cameras.
|
||||
"""
|
||||
|
||||
import contextlib
|
||||
import logging
|
||||
import queue
|
||||
import time
|
||||
from threading import Event, Thread
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
try:
|
||||
import pyrealsense2 as rs
|
||||
except Exception as e:
|
||||
logging.info(f"Could not import realsense: {e}")
|
||||
|
||||
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
|
||||
|
||||
from ..camera import Camera
|
||||
from ..configs import ColorMode
|
||||
from ..utils import get_cv2_rotation
|
||||
from .configuration_realsense import RealSenseCameraConfig
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class RealSenseCamera(Camera):
|
||||
"""
|
||||
Manages interactions with Intel RealSense cameras for frame and depth recording.
|
||||
|
||||
This class provides an interface similar to `OpenCVCamera` but tailored for
|
||||
RealSense devices, leveraging the `pyrealsense2` library. It uses the camera's
|
||||
unique serial number for identification, offering more stability than device
|
||||
indices, especially on Linux. It also supports capturing depth maps alongside
|
||||
color frames.
|
||||
|
||||
Use the provided utility script to find available camera indices and default profiles:
|
||||
```bash
|
||||
python -m lerobot.find_cameras realsense
|
||||
```
|
||||
|
||||
A `RealSenseCamera` instance requires a configuration object specifying the
|
||||
camera's serial number or a unique device name. If using the name, ensure only
|
||||
one camera with that name is connected.
|
||||
|
||||
The camera's default settings (FPS, resolution, color mode) from the stream
|
||||
profile are used unless overridden in the configuration.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from lerobot.common.cameras.realsense import RealSenseCamera, RealSenseCameraConfig
|
||||
from lerobot.common.cameras import ColorMode, Cv2Rotation
|
||||
|
||||
# Basic usage with serial number
|
||||
config = RealSenseCameraConfig(serial_number_or_name="1234567890") # Replace with actual SN
|
||||
camera = RealSenseCamera(config)
|
||||
camera.connect()
|
||||
|
||||
# Read 1 frame synchronously
|
||||
color_image = camera.read()
|
||||
print(color_image.shape)
|
||||
|
||||
# Read 1 frame asynchronously
|
||||
async_image = camera.async_read()
|
||||
|
||||
# When done, properly disconnect the camera using
|
||||
camera.disconnect()
|
||||
|
||||
# Example with depth capture and custom settings
|
||||
custom_config = RealSenseCameraConfig(
|
||||
serial_number_or_name="1234567890", # Replace with actual SN
|
||||
fps=30,
|
||||
width=1280,
|
||||
height=720,
|
||||
color_mode=ColorMode.BGR, # Request BGR output
|
||||
rotation=Cv2Rotation.NO_ROTATION,
|
||||
use_depth=True
|
||||
)
|
||||
depth_camera = RealSenseCamera(custom_config)
|
||||
try:
|
||||
depth_camera.connect()
|
||||
depth_map = depth_camera.read_depth()
|
||||
print(f"Depth shape: {depth_map.shape}")
|
||||
finally:
|
||||
depth_camera.disconnect()
|
||||
|
||||
# Example using a unique camera name
|
||||
name_config = RealSenseCameraConfig(serial_number_or_name="Intel RealSense D435") # If unique
|
||||
name_camera = RealSenseCamera(name_config)
|
||||
# ... connect, read, disconnect ...
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(self, config: RealSenseCameraConfig):
|
||||
"""
|
||||
Initializes the RealSenseCamera instance.
|
||||
|
||||
Args:
|
||||
config: The configuration settings for the camera.
|
||||
"""
|
||||
|
||||
super().__init__(config)
|
||||
|
||||
self.config = config
|
||||
|
||||
if isinstance(config.serial_number_or_name, int):
|
||||
self.serial_number = str(config.serial_number_or_name)
|
||||
else:
|
||||
self.serial_number = self._find_serial_number_from_name(config.serial_number_or_name)
|
||||
|
||||
self.fps = config.fps
|
||||
self.color_mode = config.color_mode
|
||||
self.use_depth = config.use_depth
|
||||
self.warmup_time = config.warmup_time
|
||||
|
||||
self.rs_pipeline: rs.pipeline | None = None
|
||||
self.rs_profile: rs.pipeline_profile | None = None
|
||||
|
||||
self.thread: Thread | None = None
|
||||
self.stop_event: Event | None = None
|
||||
self.frame_queue: queue.Queue = queue.Queue(maxsize=1)
|
||||
|
||||
self.rotation: int | None = get_cv2_rotation(config.rotation)
|
||||
|
||||
if self.height and self.width:
|
||||
if self.rotation in [cv2.ROTATE_90_CLOCKWISE, cv2.ROTATE_90_COUNTERCLOCKWISE]:
|
||||
self.capture_width, self.capture_height = self.height, self.width
|
||||
else:
|
||||
self.capture_width, self.capture_height = self.width, self.height
|
||||
|
||||
def __str__(self) -> str:
|
||||
return f"{self.__class__.__name__}({self.serial_number})"
|
||||
|
||||
@property
|
||||
def is_connected(self) -> bool:
|
||||
"""Checks if the camera pipeline is started and streams are active."""
|
||||
return self.rs_pipeline is not None and self.rs_profile is not None
|
||||
|
||||
def connect(self, warmup: bool = True):
|
||||
"""
|
||||
Connects to the RealSense camera specified in the configuration.
|
||||
|
||||
Initializes the RealSense pipeline, configures the required streams (color
|
||||
and optionally depth), starts the pipeline, and validates the actual stream settings.
|
||||
|
||||
Raises:
|
||||
DeviceAlreadyConnectedError: If the camera is already connected.
|
||||
ValueError: If the configuration is invalid (e.g., missing serial/name, name not unique).
|
||||
ConnectionError: If the camera is found but fails to start the pipeline or no RealSense devices are detected at all.
|
||||
RuntimeError: If the pipeline starts but fails to apply requested settings.
|
||||
"""
|
||||
if self.is_connected:
|
||||
raise DeviceAlreadyConnectedError(f"{self} is already connected.")
|
||||
|
||||
self.rs_pipeline = rs.pipeline()
|
||||
rs_config = self._make_rs_pipeline_config()
|
||||
|
||||
try:
|
||||
self.rs_profile = self.rs_pipeline.start(rs_config)
|
||||
logger.debug(f"Successfully started pipeline for camera {self.serial_number}.")
|
||||
except RuntimeError as e:
|
||||
self.rs_profile = None
|
||||
self.rs_pipeline = None
|
||||
raise ConnectionError(
|
||||
f"Failed to open {self} camera. Run 'python -m lerobot.find_cameras realsense' for details about the available cameras in your system."
|
||||
) from e
|
||||
|
||||
logger.debug(f"Validating stream configuration for {self}...")
|
||||
self._validate_capture_settings()
|
||||
|
||||
if warmup:
|
||||
if self.warmup_time is None:
|
||||
raise ValueError(
|
||||
f"Warmup time is not set for {self}. Please set a warmup time in the configuration."
|
||||
)
|
||||
logger.debug(f"Reading a warm-up frames for {self} for {self.warmup_time} seconds...")
|
||||
start_time = time.time()
|
||||
while time.time() - start_time < self.warmup_time:
|
||||
self.read()
|
||||
time.sleep(0.1)
|
||||
|
||||
logger.info(f"{self} connected.")
|
||||
|
||||
@staticmethod
|
||||
def find_cameras() -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Detects available Intel RealSense cameras connected to the system.
|
||||
|
||||
Returns:
|
||||
List[Dict[str, Any]]: A list of dictionaries,
|
||||
where each dictionary contains 'type', 'id' (serial number), 'name',
|
||||
firmware version, USB type, and other available specs, and the default profile properties (width, height, fps, format).
|
||||
|
||||
Raises:
|
||||
OSError: If pyrealsense2 is not installed.
|
||||
ImportError: If pyrealsense2 is not installed.
|
||||
"""
|
||||
found_cameras_info = []
|
||||
context = rs.context()
|
||||
devices = context.query_devices()
|
||||
|
||||
for device in devices:
|
||||
camera_info = {
|
||||
"name": device.get_info(rs.camera_info.name),
|
||||
"type": "RealSense",
|
||||
"id": device.get_info(rs.camera_info.serial_number),
|
||||
"firmware_version": device.get_info(rs.camera_info.firmware_version),
|
||||
"usb_type_descriptor": device.get_info(rs.camera_info.usb_type_descriptor),
|
||||
"physical_port": device.get_info(rs.camera_info.physical_port),
|
||||
"product_id": device.get_info(rs.camera_info.product_id),
|
||||
"product_line": device.get_info(rs.camera_info.product_line),
|
||||
}
|
||||
|
||||
# Get stream profiles for each sensor
|
||||
sensors = device.query_sensors()
|
||||
for sensor in sensors:
|
||||
profiles = sensor.get_stream_profiles()
|
||||
|
||||
for profile in profiles:
|
||||
if profile.is_video_stream_profile() and profile.is_default():
|
||||
vprofile = profile.as_video_stream_profile()
|
||||
stream_info = {
|
||||
"stream_type": vprofile.stream_name(),
|
||||
"format": vprofile.format().name,
|
||||
"width": vprofile.width(),
|
||||
"height": vprofile.height(),
|
||||
"fps": vprofile.fps(),
|
||||
}
|
||||
camera_info["default_stream_profile"] = stream_info
|
||||
|
||||
found_cameras_info.append(camera_info)
|
||||
|
||||
logger.info(f"Detected RealSense cameras: {[cam['id'] for cam in found_cameras_info]}")
|
||||
return found_cameras_info
|
||||
|
||||
def _find_serial_number_from_name(self, name: str) -> str:
|
||||
"""Finds the serial number for a given unique camera name."""
|
||||
camera_infos = self.find_cameras()
|
||||
found_devices = [cam for cam in camera_infos if str(cam["name"]) == name]
|
||||
|
||||
if not found_devices:
|
||||
available_names = [cam["name"] for cam in camera_infos]
|
||||
raise ValueError(
|
||||
f"No RealSense camera found with name '{name}'. Available camera names: {available_names}"
|
||||
)
|
||||
|
||||
if len(found_devices) > 1:
|
||||
serial_numbers = [dev["serial_number"] for dev in found_devices]
|
||||
raise ValueError(
|
||||
f"Multiple RealSense cameras found with name '{name}'. "
|
||||
f"Please use a unique serial number instead. Found SNs: {serial_numbers}"
|
||||
)
|
||||
|
||||
serial_number = str(found_devices[0]["serial_number"])
|
||||
logger.info(f"Found serial number '{serial_number}' for camera name '{name}'.")
|
||||
return serial_number
|
||||
|
||||
def _make_rs_pipeline_config(self) -> rs.config:
|
||||
"""Creates and configures the RealSense pipeline configuration object."""
|
||||
rs_config = rs.config()
|
||||
rs.config.enable_device(rs_config, self.serial_number)
|
||||
|
||||
if self.width and self.height and self.fps:
|
||||
logger.debug(
|
||||
f"Requesting Color Stream: {self.capture_width}x{self.capture_height} @ {self.fps} FPS, Format: {rs.format.rgb8}"
|
||||
)
|
||||
rs_config.enable_stream(
|
||||
rs.stream.color, self.capture_width, self.capture_height, rs.format.rgb8, self.fps
|
||||
)
|
||||
if self.use_depth:
|
||||
logger.debug(
|
||||
f"Requesting Depth Stream: {self.capture_width}x{self.capture_height} @ {self.fps} FPS, Format: {rs.format.z16}"
|
||||
)
|
||||
rs_config.enable_stream(
|
||||
rs.stream.depth, self.capture_width, self.capture_height, rs.format.z16, self.fps
|
||||
)
|
||||
else:
|
||||
logger.debug(f"Requesting Color Stream: Default settings, Format: {rs.stream.color}")
|
||||
rs_config.enable_stream(rs.stream.color)
|
||||
if self.use_depth:
|
||||
logger.debug(f"Requesting Depth Stream: Default settings, Format: {rs.stream.depth}")
|
||||
rs_config.enable_stream(rs.stream.depth)
|
||||
|
||||
return rs_config
|
||||
|
||||
def _validate_capture_settings(self) -> None:
|
||||
"""
|
||||
Validates if the actual stream settings match the requested configuration.
|
||||
|
||||
This method compares the requested FPS, width, and height against the
|
||||
actual settings obtained from the active RealSense profile after the
|
||||
pipeline has started.
|
||||
|
||||
Raises:
|
||||
RuntimeError: If the actual camera settings significantly deviate
|
||||
from the requested ones.
|
||||
DeviceNotConnectedError: If the camera is not connected when attempting
|
||||
to validate settings.
|
||||
"""
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(f"Cannot validate settings for {self} as it is not connected.")
|
||||
|
||||
stream = self.rs_profile.get_stream(rs.stream.color).as_video_stream_profile()
|
||||
|
||||
if self.fps is None:
|
||||
self.fps = stream.fps()
|
||||
|
||||
if self.width is None or self.height is None:
|
||||
actual_width = int(round(stream.width()))
|
||||
actual_height = int(round(stream.height()))
|
||||
if self.rotation in [cv2.ROTATE_90_CLOCKWISE, cv2.ROTATE_90_COUNTERCLOCKWISE]:
|
||||
self.width, self.height = actual_height, actual_width
|
||||
self.capture_width, self.capture_height = actual_width, actual_height
|
||||
else:
|
||||
self.width, self.height = actual_width, actual_height
|
||||
self.capture_width, self.capture_height = actual_width, actual_height
|
||||
logger.info(f"Capture width set to camera default: {self.width}.")
|
||||
logger.info(f"Capture height set to camera default: {self.height}.")
|
||||
else:
|
||||
self._validate_width_and_height(stream)
|
||||
|
||||
if self.use_depth:
|
||||
stream = self.rs_profile.get_stream(rs.stream.depth).as_video_stream_profile()
|
||||
self._validate_width_and_height(stream)
|
||||
|
||||
def _validate_width_and_height(self, stream) -> None:
|
||||
"""Validates and sets the internal capture width and height based on actual stream width."""
|
||||
actual_width = int(round(stream.width()))
|
||||
actual_height = int(round(stream.height()))
|
||||
|
||||
if self.capture_width != actual_width:
|
||||
raise RuntimeError(
|
||||
f"Failed to set requested capture width {self.capture_width} for {self}. Actual value: {actual_width}."
|
||||
)
|
||||
logger.debug(f"Capture width set to {actual_width} for {self}.")
|
||||
|
||||
if self.capture_height != actual_height:
|
||||
raise RuntimeError(
|
||||
f"Failed to set requested capture height {self.capture_height} for {self}. Actual value: {actual_height}."
|
||||
)
|
||||
logger.debug(f"Capture height set to {actual_height} for {self}.")
|
||||
|
||||
def read_depth(self, timeout_ms: int = 100) -> np.ndarray:
|
||||
"""
|
||||
Reads a single frame (depth) synchronously from the camera.
|
||||
|
||||
This is a blocking call. It waits for a coherent set of frames (depth)
|
||||
from the camera hardware via the RealSense pipeline.
|
||||
|
||||
Args:
|
||||
timeout_ms (int): Maximum time in milliseconds to wait for a frame. Defaults to 100ms.
|
||||
|
||||
Returns:
|
||||
np.ndarray: The depth map as a NumPy array (height, width)
|
||||
of type `np.uint16` (raw depth values in millimeters) and rotation.
|
||||
|
||||
Raises:
|
||||
DeviceNotConnectedError: If the camera is not connected.
|
||||
RuntimeError: If reading frames from the pipeline fails or frames are invalid.
|
||||
"""
|
||||
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(f"{self} is not connected.")
|
||||
if not self.use_depth:
|
||||
raise RuntimeError(
|
||||
f"Failed to capture depth frame '.read_depth()'. Depth stream is not enabled for {self}."
|
||||
)
|
||||
|
||||
start_time = time.perf_counter()
|
||||
|
||||
ret, frame = self.rs_pipeline.try_wait_for_frames(timeout_ms=timeout_ms)
|
||||
|
||||
if not ret or frame is None:
|
||||
raise RuntimeError(f"{self} failed to capture frame. Returned status='{ret}'.")
|
||||
|
||||
depth_frame = frame.get_depth_frame()
|
||||
depth_map = np.asanyarray(depth_frame.get_data())
|
||||
|
||||
depth_map_processed = self._postprocess_image(depth_map, depth_frame=True)
|
||||
|
||||
read_duration_ms = (time.perf_counter() - start_time) * 1e3
|
||||
logger.debug(f"{self} synchronous read took: {read_duration_ms:.1f}ms")
|
||||
|
||||
return depth_map_processed
|
||||
|
||||
def read(self, color_mode: ColorMode | None = None, timeout_ms: int = 100) -> np.ndarray:
|
||||
"""
|
||||
Reads a single frame (color) synchronously from the camera.
|
||||
|
||||
This is a blocking call. It waits for a coherent set of frames (color)
|
||||
from the camera hardware via the RealSense pipeline.
|
||||
|
||||
Args:
|
||||
timeout_ms (int): Maximum time in milliseconds to wait for a frame. Defaults to 100ms.
|
||||
|
||||
Returns:
|
||||
np.ndarray: The captured color frame as a NumPy array
|
||||
(height, width, channels), processed according to `color_mode` and rotation.
|
||||
|
||||
Raises:
|
||||
DeviceNotConnectedError: If the camera is not connected.
|
||||
RuntimeError: If reading frames from the pipeline fails or frames are invalid.
|
||||
ValueError: If an invalid `color_mode` is requested.
|
||||
"""
|
||||
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(f"{self} is not connected.")
|
||||
|
||||
start_time = time.perf_counter()
|
||||
|
||||
ret, frame = self.rs_pipeline.try_wait_for_frames(
|
||||
timeout_ms=timeout_ms
|
||||
) # NOTE(Steven): This read has a timeout while opencv doesn't
|
||||
|
||||
if not ret or frame is None:
|
||||
raise RuntimeError(
|
||||
f"Failed to capture frame from {self}. '.read()' returned status={ret} and frame is None."
|
||||
)
|
||||
|
||||
color_frame = frame.get_color_frame()
|
||||
color_image_raw = np.asanyarray(color_frame.get_data())
|
||||
|
||||
color_image_processed = self._postprocess_image(color_image_raw, color_mode)
|
||||
|
||||
read_duration_ms = (time.perf_counter() - start_time) * 1e3
|
||||
logger.debug(f"{self} synchronous read took: {read_duration_ms:.1f}ms")
|
||||
|
||||
return color_image_processed
|
||||
|
||||
def _postprocess_image(
|
||||
self, image: np.ndarray, color_mode: ColorMode | None = None, depth_frame: bool = False
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Applies color conversion, dimension validation, and rotation to a raw color frame.
|
||||
|
||||
Args:
|
||||
image (np.ndarray): The raw image frame (expected RGB format from RealSense).
|
||||
color_mode (Optional[ColorMode]): The target color mode (RGB or BGR). If None,
|
||||
uses the instance's default `self.color_mode`.
|
||||
|
||||
Returns:
|
||||
np.ndarray: The processed image frame according to `self.color_mode` and `self.rotation`.
|
||||
|
||||
Raises:
|
||||
ValueError: If the requested `color_mode` is invalid.
|
||||
RuntimeError: If the raw frame dimensions do not match the configured
|
||||
`width` and `height`.
|
||||
"""
|
||||
|
||||
if color_mode and color_mode not in (ColorMode.RGB, ColorMode.BGR):
|
||||
raise ValueError(
|
||||
f"Invalid requested color mode '{color_mode}'. Expected {ColorMode.RGB} or {ColorMode.BGR}."
|
||||
)
|
||||
|
||||
if depth_frame:
|
||||
h, w = image.shape
|
||||
else:
|
||||
h, w, _c = image.shape
|
||||
|
||||
if h != self.capture_height or w != self.capture_width:
|
||||
raise RuntimeError(
|
||||
f"Captured frame dimensions ({h}x{w}) do not match configured capture dimensions ({self.capture_height}x{self.capture_width}) for {self}."
|
||||
)
|
||||
|
||||
processed_image = image
|
||||
if self.color_mode == ColorMode.BGR:
|
||||
processed_image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
||||
logger.debug(f"Converted frame from RGB to BGR for {self}.")
|
||||
|
||||
if self.rotation in [cv2.ROTATE_90_CLOCKWISE, cv2.ROTATE_90_COUNTERCLOCKWISE]:
|
||||
processed_image = cv2.rotate(processed_image, self.rotation)
|
||||
logger.debug(f"Rotated frame by {self.config.rotation} degrees for {self}.")
|
||||
|
||||
return processed_image
|
||||
|
||||
def _read_loop(self):
|
||||
"""
|
||||
Internal loop run by the background thread for asynchronous reading.
|
||||
|
||||
Continuously reads frames (color and optional depth) using `read()`
|
||||
and places the latest result (single image or tuple) into the `frame_queue`.
|
||||
It overwrites any previous frame in the queue.
|
||||
"""
|
||||
logger.debug(f"Starting read loop thread for {self}.")
|
||||
while not self.stop_event.is_set():
|
||||
try:
|
||||
frame_data = self.read(timeout_ms=500)
|
||||
|
||||
with contextlib.suppress(queue.Empty):
|
||||
_ = self.frame_queue.get_nowait()
|
||||
self.frame_queue.put(frame_data)
|
||||
logger.debug(f"Frame data placed in queue for {self}.")
|
||||
|
||||
except DeviceNotConnectedError:
|
||||
logger.error(f"Read loop for {self} stopped: Camera disconnected.")
|
||||
break
|
||||
except Exception as e:
|
||||
logger.warning(f"Error reading frame in background thread for {self}: {e}")
|
||||
|
||||
logger.debug(f"Stopping read loop thread for {self}.")
|
||||
|
||||
def _start_read_thread(self) -> None:
|
||||
"""Starts or restarts the background read thread if it's not running."""
|
||||
if self.thread is not None and self.thread.is_alive():
|
||||
self.thread.join(timeout=0.1)
|
||||
if self.stop_event is not None:
|
||||
self.stop_event.set()
|
||||
|
||||
self.stop_event = Event()
|
||||
self.thread = Thread(target=self._read_loop, args=(), name=f"{self}_read_loop")
|
||||
self.thread.daemon = True
|
||||
self.thread.start()
|
||||
logger.debug(f"Read thread started for {self}.")
|
||||
|
||||
def _stop_read_thread(self):
|
||||
"""Signals the background read thread to stop and waits for it to join."""
|
||||
if self.stop_event is not None:
|
||||
self.stop_event.set()
|
||||
|
||||
if self.thread is not None and self.thread.is_alive():
|
||||
self.thread.join(timeout=2.0)
|
||||
if self.thread.is_alive():
|
||||
logger.warning(f"Read thread for {self} did not terminate gracefully after 2 seconds.")
|
||||
else:
|
||||
logger.debug(f"Read thread for {self} joined successfully.")
|
||||
|
||||
self.thread = None
|
||||
self.stop_event = None
|
||||
logger.debug(f"Read thread stopped for {self}.")
|
||||
|
||||
# NOTE(Steven): Missing implementation for depth for now
|
||||
def async_read(self, timeout_ms: float = 100) -> np.ndarray:
|
||||
"""
|
||||
Reads the latest available frame data (color or color+depth) asynchronously.
|
||||
|
||||
This method retrieves the most recent frame captured by the background
|
||||
read thread. It does not block waiting for the camera hardware directly,
|
||||
only waits for a frame to appear in the internal queue up to the specified
|
||||
timeout.
|
||||
|
||||
Args:
|
||||
timeout_ms (float): Maximum time in milliseconds to wait for a frame
|
||||
to become available in the queue. Defaults to 100ms (0.1 seconds).
|
||||
|
||||
Returns:
|
||||
np.ndarray:
|
||||
The latest captured frame data (color image), processed according to configuration.
|
||||
|
||||
Raises:
|
||||
DeviceNotConnectedError: If the camera is not connected.
|
||||
TimeoutError: If no frame data becomes available within the specified timeout.
|
||||
RuntimeError: If the background thread died unexpectedly or another queue error occurs.
|
||||
"""
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(f"{self} is not connected.")
|
||||
|
||||
if self.thread is None or not self.thread.is_alive():
|
||||
self._start_read_thread()
|
||||
|
||||
try:
|
||||
return self.frame_queue.get(timeout=timeout_ms / 1000.0)
|
||||
except queue.Empty as e:
|
||||
thread_alive = self.thread is not None and self.thread.is_alive()
|
||||
raise TimeoutError(
|
||||
f"Timed out waiting for frame from camera {self} after {timeout_ms} ms. "
|
||||
f"Read thread alive: {thread_alive}."
|
||||
) from e
|
||||
except Exception as e:
|
||||
raise RuntimeError(f"Error getting frame data from queue for camera {self}: {e}") from e
|
||||
|
||||
def disconnect(self):
|
||||
"""
|
||||
Disconnects from the camera, stops the pipeline, and cleans up resources.
|
||||
|
||||
Stops the background read thread (if running) and stops the RealSense pipeline.
|
||||
|
||||
Raises:
|
||||
DeviceNotConnectedError: If the camera is already disconnected (pipeline not running).
|
||||
"""
|
||||
|
||||
if not self.is_connected and self.thread is None:
|
||||
raise DeviceNotConnectedError(
|
||||
f"Attempted to disconnect {self}, but it appears already disconnected."
|
||||
)
|
||||
|
||||
if self.thread is not None:
|
||||
self._stop_read_thread()
|
||||
|
||||
if self.rs_pipeline is not None:
|
||||
logger.debug(f"Stopping RealSense pipeline object for {self}.")
|
||||
self.rs_pipeline.stop()
|
||||
self.rs_pipeline = None
|
||||
self.rs_profile = None
|
||||
|
||||
logger.info(f"{self} disconnected.")
|
||||
80
lerobot/common/cameras/realsense/configuration_realsense.py
Normal file
@@ -0,0 +1,80 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from dataclasses import dataclass
|
||||
|
||||
from ..configs import CameraConfig, ColorMode, Cv2Rotation
|
||||
|
||||
|
||||
@CameraConfig.register_subclass("intelrealsense")
|
||||
@dataclass
|
||||
class RealSenseCameraConfig(CameraConfig):
|
||||
"""Configuration class for Intel RealSense cameras.
|
||||
|
||||
This class provides specialized configuration options for Intel RealSense cameras,
|
||||
including support for depth sensing and device identification via serial number or name.
|
||||
|
||||
Example configurations for Intel RealSense D405:
|
||||
```python
|
||||
# Basic configurations
|
||||
RealSenseCameraConfig(128422271347, 30, 1280, 720) # 1280x720 @ 30FPS
|
||||
RealSenseCameraConfig(128422271347, 60, 640, 480) # 640x480 @ 60FPS
|
||||
|
||||
# Advanced configurations
|
||||
RealSenseCameraConfig(128422271347, 30, 640, 480, use_depth=True) # With depth sensing
|
||||
RealSenseCameraConfig(128422271347, 30, 640, 480, rotation=Cv2Rotation.ROTATE_90) # With 90° rotation
|
||||
```
|
||||
|
||||
Attributes:
|
||||
fps: Requested frames per second for the color stream.
|
||||
width: Requested frame width in pixels for the color stream.
|
||||
height: Requested frame height in pixels for the color stream.
|
||||
serial_number_or_name: Unique serial number or human-readable name to identify the camera.
|
||||
color_mode: Color mode for image output (RGB or BGR). Defaults to RGB.
|
||||
use_depth: Whether to enable depth stream. Defaults to False.
|
||||
rotation: Image rotation setting (0°, 90°, 180°, or 270°). Defaults to no rotation.
|
||||
|
||||
Note:
|
||||
- Either name or serial_number must be specified.
|
||||
- Depth stream configuration (if enabled) will use the same FPS as the color stream.
|
||||
- The actual resolution and FPS may be adjusted by the camera to the nearest supported mode.
|
||||
- For `fps`, `width` and `height`, either all of them need to be set, or none of them.
|
||||
"""
|
||||
|
||||
serial_number_or_name: int | str
|
||||
color_mode: ColorMode = ColorMode.RGB
|
||||
use_depth: bool = False
|
||||
rotation: Cv2Rotation = Cv2Rotation.NO_ROTATION # NOTE(Steven): Check if draccus can parse to an enum
|
||||
|
||||
def __post_init__(self):
|
||||
if self.color_mode not in (ColorMode.RGB, ColorMode.BGR):
|
||||
raise ValueError(
|
||||
f"`color_mode` is expected to be {ColorMode.RGB.value} or {ColorMode.BGR.value}, but {self.color_mode} is provided."
|
||||
)
|
||||
|
||||
if self.rotation not in (
|
||||
Cv2Rotation.NO_ROTATION,
|
||||
Cv2Rotation.ROTATE_90,
|
||||
Cv2Rotation.ROTATE_180,
|
||||
Cv2Rotation.ROTATE_270,
|
||||
):
|
||||
raise ValueError(
|
||||
f"`rotation` is expected to be in {(Cv2Rotation.NO_ROTATION, Cv2Rotation.ROTATE_90, Cv2Rotation.ROTATE_180, Cv2Rotation.ROTATE_270)}, but {self.rotation} is provided."
|
||||
)
|
||||
|
||||
values = (self.fps, self.width, self.height)
|
||||
if any(v is not None for v in values) and any(v is None for v in values):
|
||||
raise ValueError(
|
||||
"For `fps`, `width` and `height`, either all of them need to be set, or none of them."
|
||||
)
|
||||
@@ -1,5 +1,30 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import platform
|
||||
from pathlib import Path
|
||||
from typing import TypeAlias
|
||||
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
from .camera import Camera
|
||||
from .configs import CameraConfig
|
||||
from .configs import CameraConfig, Cv2Rotation
|
||||
|
||||
IndexOrPath: TypeAlias = int | Path
|
||||
|
||||
|
||||
def make_cameras_from_configs(camera_configs: dict[str, CameraConfig]) -> dict[str, Camera]:
|
||||
@@ -12,10 +37,39 @@ def make_cameras_from_configs(camera_configs: dict[str, CameraConfig]) -> dict[s
|
||||
cameras[key] = OpenCVCamera(cfg)
|
||||
|
||||
elif cfg.type == "intelrealsense":
|
||||
from .intel.camera_realsense import RealSenseCamera
|
||||
from .realsense.camera_realsense import RealSenseCamera
|
||||
|
||||
cameras[key] = RealSenseCamera(cfg)
|
||||
else:
|
||||
raise ValueError(f"The motor type '{cfg.type}' is not valid.")
|
||||
|
||||
return cameras
|
||||
|
||||
|
||||
def get_cv2_rotation(rotation: Cv2Rotation) -> int | None:
|
||||
import cv2
|
||||
|
||||
if rotation == Cv2Rotation.ROTATE_90:
|
||||
return cv2.ROTATE_90_CLOCKWISE
|
||||
elif rotation == Cv2Rotation.ROTATE_180:
|
||||
return cv2.ROTATE_180
|
||||
elif rotation == Cv2Rotation.ROTATE_270:
|
||||
return cv2.ROTATE_90_COUNTERCLOCKWISE
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
def get_cv2_backend() -> int:
|
||||
import cv2
|
||||
|
||||
if platform.system() == "Windows":
|
||||
return cv2.CAP_AVFOUNDATION
|
||||
else:
|
||||
return cv2.CAP_ANY
|
||||
|
||||
|
||||
def save_image(img_array: np.ndarray, camera_index: int, frame_index: int, images_dir: Path):
|
||||
img = Image.fromarray(img_array)
|
||||
path = images_dir / f"camera_{camera_index:02d}_frame_{frame_index:06d}.png"
|
||||
path.parent.mkdir(parents=True, exist_ok=True)
|
||||
img.save(str(path), quality=100)
|
||||
|
||||
@@ -26,6 +26,15 @@ class RobotConfig(draccus.ChoiceRegistry, abc.ABC):
|
||||
# Directory to store calibration file
|
||||
calibration_dir: Path | None = None
|
||||
|
||||
def __post_init__(self):
|
||||
if hasattr(self, "cameras") and self.cameras:
|
||||
for _, config in self.cameras.items():
|
||||
for attr in ["width", "height", "fps"]:
|
||||
if getattr(config, attr) is None:
|
||||
raise ValueError(
|
||||
f"Specifying '{attr}' is required for the camera to be used in a robot"
|
||||
)
|
||||
|
||||
@property
|
||||
def type(self) -> str:
|
||||
return self.get_choice_name(self.__class__)
|
||||
|
||||
@@ -1,328 +0,0 @@
|
||||
# Using the [Koch v1.1](https://github.com/jess-moss/koch-v1-1) with LeRobot
|
||||
|
||||
## Table of Contents
|
||||
|
||||
- [A. Order and Assemble the parts](#a-order-and-assemble-the-parts)
|
||||
- [B. Install LeRobot](#b-install-lerobot)
|
||||
- [C. Configure the Motors](#c-configure-the-motors)
|
||||
- [D. Calibrate](#d-calibrate)
|
||||
- [E. Teleoperate](#e-teleoperate)
|
||||
- [F. Record a dataset](#f-record-a-dataset)
|
||||
- [G. Visualize a dataset](#g-visualize-a-dataset)
|
||||
- [H. Replay an episode](#h-replay-an-episode)
|
||||
- [I. Train a policy](#i-train-a-policy)
|
||||
- [J. Evaluate your policy](#j-evaluate-your-policy)
|
||||
- [K. More Information](#k-more-information)
|
||||
|
||||
## A. Order and Assemble the parts
|
||||
|
||||
Follow the sourcing and assembling instructions provided on the [Koch v1.1 Github page](https://github.com/jess-moss/koch-v1-1). This will guide you through setting up both the follower and leader arms, as shown in the image below.
|
||||
|
||||
<div style="text-align:center;">
|
||||
<img src="../media/tutorial/koch_v1_1_leader_follower.webp?raw=true" alt="Koch v1.1 leader and follower arms" title="Koch v1.1 leader and follower arms" width="50%">
|
||||
</div>
|
||||
|
||||
For a visual walkthrough of the assembly process, you can refer to [this video tutorial](https://youtu.be/8nQIg9BwwTk).
|
||||
|
||||
> [!IMPORTANT]
|
||||
> Since the production of this video, we simplified the configuration phase (detailed in [section C](#c-configure-the-motors)) of the motors.
|
||||
> Because of this, two things differ from the instructions in that video:
|
||||
> - Don't plug all the motors cables right away and wait for being instructed to do so in [section C](#c-configure-the-motors).
|
||||
> - Don't screw in the controller board (PCB) to the base right away and wait for being instructed to do so in [section C](#c-configure-the-motors).
|
||||
|
||||
|
||||
## B. Install LeRobot
|
||||
|
||||
> [!TIP]
|
||||
> We use the Command Prompt (cmd) quite a lot. If you are not comfortable using the cmd or want to brush up using the command line you can have a look here: [Command line crash course](https://developer.mozilla.org/en-US/docs/Learn_web_development/Getting_started/Environment_setup/Command_line)
|
||||
|
||||
Follow instructions on our [README](https://github.com/huggingface/lerobot) to install LeRobot.
|
||||
|
||||
In addition to these instructions, you need to install the dynamixel sdk:
|
||||
```bash
|
||||
pip install -e ".[dynamixel]"
|
||||
```
|
||||
|
||||
## C. Configure the motors
|
||||
|
||||
### 1. Find the USB ports associated to each arm
|
||||
|
||||
For each controller board (Waveshare Serial Bus Servo Driver Board, one for the leader arm and one for the follower), connect it first to your computer through usb. To then find the internal port its connected to -which we will need later on- run the utility script:
|
||||
```bash
|
||||
python -m lerobot.find_port
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> Note: On Linux, you might need to give access to the USB ports by running:
|
||||
> ```bash
|
||||
> sudo chmod 666 /dev/ttyACM0
|
||||
> sudo chmod 666 /dev/ttyACM1
|
||||
> ```
|
||||
|
||||
This will first display all currently available ports on your computer. As prompted by the script, unplug the controller board usb cable from your computer. The script will then detect which port has been disconnected and will display it.
|
||||
|
||||
|
||||
Example output when identifying the leader arm's port (e.g., `/dev/tty.usbmodem575E0031751` on Mac, or possibly `/dev/ttyACM0` on Linux):
|
||||
```
|
||||
Finding all available ports for the MotorBus.
|
||||
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
|
||||
Remove the usb cable from your MotorsBus and press Enter when done.
|
||||
|
||||
[...Disconnect leader arm and press Enter...]
|
||||
|
||||
The port of this MotorsBus is /dev/tty.usbmodem575E0031751
|
||||
Reconnect the usb cable.
|
||||
```
|
||||
|
||||
You can now reconnect the usb cable to your computer.
|
||||
|
||||
### 2. Set the motors ids and baudrate
|
||||
|
||||
Each motor is identified by a unique id on the bus. When brand new, motors usually come with a default id of `1`. For the communication to work properly between the motors and the controller, we first need to set a unique, different id to each motor. Additionally, the speed at which data is transmitted on the bus is determined by the baudrate. In order to talk to each other, the controller and all the motors need to be configured with the same baudrate.
|
||||
|
||||
To that end, we first need to connect to each motor individually with the controller in order to set these. Since we will write these parameters in the non-volatile section of the motors' internal memory (EEPROM), we'll only need to do this once.
|
||||
|
||||
> [!NOTE]
|
||||
> Note: If you are repurposing motors from another robot, you will probably also need to perform this step as the ids and baudrate likely won't match.
|
||||
|
||||
Connect the usb cable from your computer and the 5V power supply to the leader arm's controller board. Then, run the following command with the port you got from the previous step. You'll also need to give your leader arm a name with the `id` parameter.
|
||||
|
||||
```bash
|
||||
python -m lerobot.setup_motors \
|
||||
--device.type=so100_leader \
|
||||
--device.port=/dev/tty.usbmodem575E0031751 # <- paste here the port found at previous step
|
||||
```
|
||||
|
||||
Note that the command above is equivalent to running the following script:
|
||||
<details>
|
||||
<summary>Setup script</summary>
|
||||
|
||||
```python
|
||||
from lerobot.common.teleoperators.koch import KochLeader, KochLeaderConfig
|
||||
|
||||
config = KochLeaderConfig(
|
||||
port="/dev/tty.usbmodem575E0031751",
|
||||
)
|
||||
leader = KochLeader(config)
|
||||
leader.setup_motors()
|
||||
```
|
||||
</details>
|
||||
|
||||
|
||||
You should see the following instruction
|
||||
```
|
||||
Connect the controller board to the 'gripper' motor only and press enter.
|
||||
```
|
||||
|
||||
As instructed, plug the gripper's motor. Make sure it's the only motor connected to the board, and that the motor itself is not yet daisy chained to any other motor. As you press `[Enter]`, the script will automatically set the id and baudrate for that motor.
|
||||
|
||||
|
||||
<details>
|
||||
<summary>Troubleshooting</summary>
|
||||
|
||||
If you get an error at that point, check your cables and make sure they are plugged-in properly:
|
||||
- Power supply
|
||||
- USB cable between from your computer to the controller board
|
||||
- The 3-pin cable from the controller board to the motor.
|
||||
|
||||
If you are using a Waveshare controller board, make sure that the two jumpers are set on the `B` channel (USB).
|
||||
</details>
|
||||
|
||||
You should then see the following message:
|
||||
```
|
||||
'gripper' motor id set to 6
|
||||
```
|
||||
|
||||
Followed by the next instruction:
|
||||
```
|
||||
Connect the controller board to the 'wrist_roll' motor only and press enter.
|
||||
```
|
||||
|
||||
You can disconnect the 3-pin cable from the controller board but you can leave it connected to the gripper motor on the other end as it will already be in the right place. Now, plug-in another 3-pin cable to the wrist roll motor and connect it to the controller board. As with the previous motor, make sure it is the only motor connected to the board and that the motor itself isn't connected to any other one.
|
||||
|
||||
Repeat the operation for each motor as instructed.
|
||||
|
||||
> [!TIP]
|
||||
> Check your cabling at each step before pressing Enter. For instance, the power supply cable is not solidly anchored to the board and might disconnect easily as you manipulate the board.
|
||||
|
||||
When you are done, the script will simply finish, at which point the motors are ready to be used. You can now plug the 3-pin cable from each motor to the next one, and the cable from the first motor (the 'shoulder pan' with id=1) to the controller board, which can now be attached to the base of the arm.
|
||||
|
||||
## D. Calibrate
|
||||
|
||||
Next, you'll need to calibrate your SO-100 robot to ensure that the leader and follower arms have the same position values when they are in the same physical position. This calibration is essential because it allows a neural network trained on one SO-100 robot to work on another.
|
||||
|
||||
#### a. Manual calibration of follower arm
|
||||
|
||||
> [!IMPORTANT]
|
||||
> Contrarily to step 6 of the [assembly video](https://youtu.be/FioA2oeFZ5I?t=724) which illustrates the auto calibration, we will actually do manual calibration of follower for now.
|
||||
|
||||
You will need to move the follower arm to these positions sequentially:
|
||||
|
||||
| 1. Zero position | 2. Rotated position | 3. Rest position |
|
||||
| ------------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| <img src="../media/so100/follower_zero.webp?raw=true" alt="SO-100 follower arm zero position" title="SO-100 follower arm zero position" style="width:100%;"> | <img src="../media/so100/follower_rotated.webp?raw=true" alt="SO-100 follower arm rotated position" title="SO-100 follower arm rotated position" style="width:100%;"> | <img src="../media/so100/follower_rest.webp?raw=true" alt="SO-100 follower arm rest position" title="SO-100 follower arm rest position" style="width:100%;"> |
|
||||
|
||||
Make sure both arms are connected and run this script to launch manual calibration:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so100 \
|
||||
--robot.cameras='{}' \
|
||||
--control.type=calibrate \
|
||||
--control.arms='["main_follower"]'
|
||||
```
|
||||
|
||||
#### b. Manual calibration of leader arm
|
||||
Follow step 6 of the [assembly video](https://youtu.be/FioA2oeFZ5I?t=724) which illustrates the manual calibration. You will need to move the leader arm to these positions sequentially:
|
||||
|
||||
| 1. Zero position | 2. Rotated position | 3. Rest position |
|
||||
| ------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| <img src="../media/so100/leader_zero.webp?raw=true" alt="SO-100 leader arm zero position" title="SO-100 leader arm zero position" style="width:100%;"> | <img src="../media/so100/leader_rotated.webp?raw=true" alt="SO-100 leader arm rotated position" title="SO-100 leader arm rotated position" style="width:100%;"> | <img src="../media/so100/leader_rest.webp?raw=true" alt="SO-100 leader arm rest position" title="SO-100 leader arm rest position" style="width:100%;"> |
|
||||
|
||||
Run this script to launch manual calibration:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so100 \
|
||||
--robot.cameras='{}' \
|
||||
--control.type=calibrate \
|
||||
--control.arms='["main_leader"]'
|
||||
```
|
||||
|
||||
## E. Teleoperate
|
||||
|
||||
**Simple teleop**
|
||||
Then you are ready to teleoperate your robot! Run this simple script (it won't connect and display the cameras):
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so100 \
|
||||
--robot.cameras='{}' \
|
||||
--control.type=teleoperate
|
||||
```
|
||||
|
||||
|
||||
#### a. Teleop with displaying cameras
|
||||
Follow [this guide to setup your cameras](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#c-add-your-cameras-with-opencvcamera). Then you will be able to display the cameras on your computer while you are teleoperating by running the following code. This is useful to prepare your setup before recording your first dataset.
|
||||
|
||||
> **NOTE:** To visualize the data, enable `--control.display_data=true`. This streams the data using `rerun`.
|
||||
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so100 \
|
||||
--control.type=teleoperate
|
||||
```
|
||||
|
||||
## F. Record a dataset
|
||||
|
||||
Once you're familiar with teleoperation, you can record your first dataset with SO-100.
|
||||
|
||||
If you want to use the Hugging Face hub features for uploading your dataset and you haven't previously done it, make sure you've logged in using a write-access token, which can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens):
|
||||
```bash
|
||||
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
|
||||
```
|
||||
|
||||
Store your Hugging Face repository name in a variable to run these commands:
|
||||
```bash
|
||||
HF_USER=$(huggingface-cli whoami | head -n 1)
|
||||
echo $HF_USER
|
||||
```
|
||||
|
||||
Record 2 episodes and upload your dataset to the hub:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so100 \
|
||||
--control.type=record \
|
||||
--control.fps=30 \
|
||||
--control.single_task="Grasp a lego block and put it in the bin." \
|
||||
--control.repo_id=${HF_USER}/so100_test \
|
||||
--control.tags='["so100","tutorial"]' \
|
||||
--control.warmup_time_s=5 \
|
||||
--control.episode_time_s=30 \
|
||||
--control.reset_time_s=30 \
|
||||
--control.num_episodes=2 \
|
||||
--control.push_to_hub=true
|
||||
```
|
||||
|
||||
Note: You can resume recording by adding `--control.resume=true`.
|
||||
|
||||
## G. Visualize a dataset
|
||||
|
||||
If you uploaded your dataset to the hub with `--control.push_to_hub=true`, you can [visualize your dataset online](https://huggingface.co/spaces/lerobot/visualize_dataset) by copy pasting your repo id given by:
|
||||
```bash
|
||||
echo ${HF_USER}/so100_test
|
||||
```
|
||||
|
||||
If you didn't upload with `--control.push_to_hub=false`, you can also visualize it locally with (a window can be opened in the browser `http://127.0.0.1:9090` with the visualization tool):
|
||||
```bash
|
||||
python lerobot/scripts/visualize_dataset_html.py \
|
||||
--repo-id ${HF_USER}/so100_test \
|
||||
--local-files-only 1
|
||||
```
|
||||
|
||||
## H. Replay an episode
|
||||
|
||||
Now try to replay the first episode on your robot:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so100 \
|
||||
--control.type=replay \
|
||||
--control.fps=30 \
|
||||
--control.repo_id=${HF_USER}/so100_test \
|
||||
--control.episode=0
|
||||
```
|
||||
|
||||
## I. Train a policy
|
||||
|
||||
To train a policy to control your robot, use the [`python lerobot/scripts/train.py`](../lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
|
||||
```bash
|
||||
python lerobot/scripts/train.py \
|
||||
--dataset.repo_id=${HF_USER}/so100_test \
|
||||
--policy.type=act \
|
||||
--output_dir=outputs/train/act_so100_test \
|
||||
--job_name=act_so100_test \
|
||||
--policy.device=cuda \
|
||||
--wandb.enable=true
|
||||
```
|
||||
|
||||
Let's explain it:
|
||||
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/so100_test`.
|
||||
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor sates, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
|
||||
4. We provided `policy.device=cuda` since we are training on a Nvidia GPU, but you could use `policy.device=mps` to train on Apple silicon.
|
||||
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
|
||||
|
||||
Training should take several hours. You will find checkpoints in `outputs/train/act_so100_test/checkpoints`.
|
||||
|
||||
To resume training from a checkpoint, below is an example command to resume from `last` checkpoint of the `act_so100_test` policy:
|
||||
```bash
|
||||
python lerobot/scripts/train.py \
|
||||
--config_path=outputs/train/act_so100_test/checkpoints/last/pretrained_model/train_config.json \
|
||||
--resume=true
|
||||
```
|
||||
|
||||
## J. Evaluate your policy
|
||||
|
||||
You can use the `record` function from [`lerobot/scripts/control_robot.py`](../lerobot/scripts/control_robot.py) but with a policy checkpoint as input. For instance, run this command to record 10 evaluation episodes:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so100 \
|
||||
--control.type=record \
|
||||
--control.fps=30 \
|
||||
--control.single_task="Grasp a lego block and put it in the bin." \
|
||||
--control.repo_id=${HF_USER}/eval_act_so100_test \
|
||||
--control.tags='["tutorial"]' \
|
||||
--control.warmup_time_s=5 \
|
||||
--control.episode_time_s=30 \
|
||||
--control.reset_time_s=30 \
|
||||
--control.num_episodes=10 \
|
||||
--control.push_to_hub=true \
|
||||
--control.policy.path=outputs/train/act_so100_test/checkpoints/last/pretrained_model
|
||||
```
|
||||
|
||||
As you can see, it's almost the same command as previously used to record your training dataset. Two things changed:
|
||||
1. There is an additional `--control.policy.path` argument which indicates the path to your policy checkpoint with (e.g. `outputs/train/eval_act_so100_test/checkpoints/last/pretrained_model`). You can also use the model repository if you uploaded a model checkpoint to the hub (e.g. `${HF_USER}/act_so100_test`).
|
||||
2. The name of dataset begins by `eval` to reflect that you are running inference (e.g. `${HF_USER}/eval_act_so100_test`).
|
||||
|
||||
## K. More Information
|
||||
|
||||
Follow this [previous tutorial](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#4-train-a-policy-on-your-data) for a more in-depth tutorial on controlling real robots with LeRobot.
|
||||
|
||||
> [!TIP]
|
||||
> If you have any questions or need help, please reach out on [Discord](https://discord.com/invite/s3KuuzsPFb) in the channel [`#so100-arm`](https://discord.com/channels/1216765309076115607/1237741463832363039).
|
||||
250
lerobot/common/robots/koch_follower/koch.md
Normal file
@@ -0,0 +1,250 @@
|
||||
# Koch v1.1
|
||||
|
||||
In the steps below, we explain how to assemble the Koch v1.1 robot.
|
||||
|
||||
## Order and assemble the parts
|
||||
|
||||
Follow the sourcing and assembling instructions provided in this [README](https://github.com/jess-moss/koch-v1-1). This will guide you through setting up both the follower and leader arms, as shown in the image below.
|
||||
|
||||
For a visual walkthrough of the assembly process, you can refer to [this video tutorial](https://youtu.be/8nQIg9BwwTk).
|
||||
|
||||
> [!WARNING]
|
||||
> Since the production of this video, we simplified the configuration phase. Because of this, two things differ from the instructions in that video:
|
||||
> - Don't plug in all the motor cables right away and wait to be instructed to do so in [Configure the motors](#configure-the-motors).
|
||||
> - Don't screw in the controller board (PCB) to the base right away and wait for being instructed to do so in [Configure the motors](#configure-the-motors).
|
||||
|
||||
|
||||
## Install LeRobot 🤗
|
||||
|
||||
To install LeRobot follow, our [Installation Guide](./installation)
|
||||
|
||||
In addition to these instructions, you need to install the Dynamixel SDK:
|
||||
```bash
|
||||
pip install -e ".[dynamixel]"
|
||||
```
|
||||
|
||||
## Configure the motors
|
||||
|
||||
### 1. Find the USB ports associated with each arm
|
||||
|
||||
To find the port for each bus servo adapter, run this script:
|
||||
```bash
|
||||
python lerobot/find_port.py
|
||||
```
|
||||
|
||||
<hfoptions id="example">
|
||||
<hfoption id="Mac">
|
||||
|
||||
Example output:
|
||||
|
||||
```
|
||||
Finding all available ports for the MotorBus.
|
||||
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
|
||||
Remove the USB cable from your MotorsBus and press Enter when done.
|
||||
|
||||
[...Disconnect corresponding leader or follower arm and press Enter...]
|
||||
|
||||
The port of this MotorsBus is /dev/tty.usbmodem575E0032081
|
||||
Reconnect the USB cable.
|
||||
```
|
||||
|
||||
Where the found port is: `/dev/tty.usbmodem575E0032081` corresponding to your leader or follower arm.
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="Linux">
|
||||
|
||||
On Linux, you might need to give access to the USB ports by running:
|
||||
```bash
|
||||
sudo chmod 666 /dev/ttyACM0
|
||||
sudo chmod 666 /dev/ttyACM1
|
||||
```
|
||||
|
||||
Example output:
|
||||
|
||||
```
|
||||
Finding all available ports for the MotorBus.
|
||||
['/dev/ttyACM0', '/dev/ttyACM1']
|
||||
Remove the usb cable from your MotorsBus and press Enter when done.
|
||||
|
||||
[...Disconnect corresponding leader or follower arm and press Enter...]
|
||||
|
||||
The port of this MotorsBus is /dev/ttyACM1
|
||||
Reconnect the USB cable.
|
||||
```
|
||||
|
||||
Where the found port is: `/dev/ttyACM1` corresponding to your leader or follower arm.
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
### 2. Set the motors ids and baudrates
|
||||
|
||||
Each motor is identified by a unique id on the bus. When brand new, motors usually come with a default id of `1`. For the communication to work properly between the motors and the controller, we first need to set a unique, different id to each motor. Additionally, the speed at which data is transmitted on the bus is determined by the baudrate. In order to talk to each other, the controller and all the motors need to be configured with the same baudrate.
|
||||
|
||||
To that end, we first need to connect to each motor individually with the controller in order to set these. Since we will write these parameters in the non-volatile section of the motors' internal memory (EEPROM), we'll only need to do this once.
|
||||
|
||||
If you are repurposing motors from another robot, you will probably also need to perform this step, as the ids and baudrate likely won't match.
|
||||
|
||||
#### Follower
|
||||
|
||||
Connect the usb cable from your computer and the 5V power supply to the follower arm's controller board. Then, run the following command or run the API example with the port you got from the previous step. You'll also need to give your leader arm a name with the `id` parameter.
|
||||
|
||||
For a visual reference on how to set the motor ids please refer to [this video](http://localhost:5173/so101#setup-motors-video) where we follow the process for the SO101 arm.
|
||||
|
||||
<hfoptions id="setup_motors">
|
||||
<hfoption id="Command">
|
||||
```bash
|
||||
python -m lerobot.setup_motors \
|
||||
--robot.type=koch_follower \
|
||||
--robot.port=/dev/tty.usbmodem575E0031751 # <- paste here the port found at previous step
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="API example">
|
||||
```python
|
||||
from lerobot.common.robots.koch_follower import KochFollower, KochFollowerConfig
|
||||
|
||||
config = KochFollowerConfig(
|
||||
port="/dev/tty.usbmodem575E0031751",
|
||||
id="my_awesome_follower_arm",
|
||||
)
|
||||
follower = KochFollower(config)
|
||||
follower.setup_motors()
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
You should see the following instruction.
|
||||
```
|
||||
Connect the controller board to the 'gripper' motor only and press enter.
|
||||
```
|
||||
|
||||
As instructed, plug the gripper's motor. Make sure it's the only motor connected to the board, and that the motor itself is not yet daisy-chained to any other motor. As you press `[Enter]`, the script will automatically set the id and baudrate for that motor.
|
||||
|
||||
<details>
|
||||
<summary>Troubleshooting</summary>
|
||||
|
||||
If you get an error at that point, check your cables and make sure they are plugged in properly:
|
||||
<ul>
|
||||
<li>Power supply</li>
|
||||
<li>USB cable between your computer and the controller board</li>
|
||||
<li>The 3-pin cable from the controller board to the motor</li>
|
||||
</ul>
|
||||
|
||||
If you are using a Waveshare controller board, make sure that the two jumpers are set on the `B` channel (USB).
|
||||
</details>
|
||||
|
||||
You should then see the following message:
|
||||
```
|
||||
'gripper' motor id set to 6
|
||||
```
|
||||
|
||||
Followed by the next instruction:
|
||||
```
|
||||
Connect the controller board to the 'wrist_roll' motor only and press enter.
|
||||
```
|
||||
|
||||
You can disconnect the 3-pin cable from the controller board but you can leave it connected to the gripper motor on the other end as it will already be in the right place. Now, plug in another 3-pin cable to the wrist roll motor and connect it to the controller board. As with the previous motor, make sure it is the only motor connected to the board and that the motor itself isn't connected to any other one.
|
||||
|
||||
Repeat the operation for each motor as instructed.
|
||||
|
||||
> [!TIP]
|
||||
> Check your cabling at each step before pressing Enter. For instance, the power supply cable might disconnect as you manipulate the board.
|
||||
|
||||
When you are done, the script will simply finish, at which point the motors are ready to be used. You can now plug the 3-pin cable from each motor to the next one, and the cable from the first motor (the 'shoulder pan' with id=1) to the controller board, which can now be attached to the base of the arm.
|
||||
|
||||
#### Leader
|
||||
Do the same steps for the leader arm but modify the command or script accordingly.
|
||||
|
||||
<hfoptions id="setup_motors">
|
||||
<hfoption id="Command">
|
||||
```bash
|
||||
python -m lerobot.setup_motors \
|
||||
--teleop.type=koch_leader \
|
||||
--teleop.port=/dev/tty.usbmodem575E0031751 \ # <- paste here the port found at previous step
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="API example">
|
||||
```python
|
||||
from lerobot.common.teleoperators.koch_leader import KochLeader, KochLeaderConfig
|
||||
|
||||
config = KochLeaderConfig(
|
||||
port="/dev/tty.usbmodem575E0031751",
|
||||
id="my_awesome_leader_arm",
|
||||
)
|
||||
leader = KochLeader(config)
|
||||
leader.setup_motors()
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## Calibrate
|
||||
|
||||
Next, you'll need to calibrate your robot to ensure that the leader and follower arms have the same position values when they are in the same physical position.
|
||||
The calibration process is very important because it allows a neural network trained on one robot to work on another.
|
||||
|
||||
#### Follower
|
||||
|
||||
Run the following command or API example to calibrate the follower arm:
|
||||
|
||||
<hfoptions id="calibrate_follower">
|
||||
<hfoption id="Command">
|
||||
```bash
|
||||
python -m lerobot.calibrate \
|
||||
--robot.type=koch_follower \
|
||||
--robot.port=/dev/tty.usbmodem58760431551 \ # <- The port of your robot
|
||||
--robot.id=my_awesome_follower_arm # <- Give the robot a unique name
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="API example">
|
||||
```python
|
||||
from lerobot.common.robots.koch_follower import KochFollowerConfig, KochFollower
|
||||
|
||||
config = KochFollowerConfig(
|
||||
port="/dev/tty.usbmodem585A0076891",
|
||||
id="my_awesome_follower_arm",
|
||||
)
|
||||
|
||||
follower = KochFollower(config)
|
||||
follower.connect(calibrate=False)
|
||||
follower.calibrate()
|
||||
follower.disconnect()
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
We unified the calibration method for most robots. Thus, the calibration steps for this Koch arm are the same as the steps for the SO100 and SO101. First, we have to move the robot to the position where each joint is in the middle of its range, then we press `Enter`. Secondly, we move all joints through their full range of motion. A video of this same process for the SO101 as reference can be found [here](http://localhost:5173/so101#calibration-video)
|
||||
|
||||
#### Leader
|
||||
|
||||
Do the same steps to calibrate the leader arm, run the following command or API example:
|
||||
|
||||
<hfoptions id="calibrate_leader">
|
||||
<hfoption id="Command">
|
||||
```bash
|
||||
python -m lerobot.calibrate \
|
||||
--teleop.type=koch_leader \
|
||||
--teleop.port=/dev/tty.usbmodem58760431551 \ # <- The port of your robot
|
||||
--teleop.id=my_awesome_leader_arm # <- Give the robot a unique name
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="API example">
|
||||
```python
|
||||
from lerobot.common.teleoperators.koch_leader import KochLeaderConfig, KochLeader
|
||||
|
||||
config = KochLeaderConfig(
|
||||
port="/dev/tty.usbmodem575E0031751",
|
||||
id="my_awesome_leader_arm",
|
||||
)
|
||||
|
||||
leader = KochLeader(config)
|
||||
leader.connect(calibrate=False)
|
||||
leader.calibrate()
|
||||
leader.disconnect()
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Congrats 🎉, your robot is all set to learn a task on its own. Start training it by following this tutorial: [Getting started with real-world robots](./getting_started_real_world_robot)
|
||||
|
||||
> [!TIP]
|
||||
> If you have any questions or need help, please reach out on [Discord](https://discord.com/invite/s3KuuzsPFb).
|
||||
@@ -1,597 +0,0 @@
|
||||
# Using the [LeKiwi](https://github.com/SIGRobotics-UIUC/LeKiwi) Robot with LeRobot
|
||||
|
||||
## Table of Contents
|
||||
|
||||
- [A. Source the parts](#a-source-the-parts)
|
||||
- [B. Install software Pi](#b-install-software-on-pi)
|
||||
- [C. Setup LeRobot laptop/pc](#c-install-lerobot-on-laptop)
|
||||
- [D. Assemble the arms](#d-assembly)
|
||||
- [E. Calibrate](#e-calibration)
|
||||
- [F. Teleoperate](#f-teleoperate)
|
||||
- [G. Record a dataset](#g-record-a-dataset)
|
||||
- [H. Visualize a dataset](#h-visualize-a-dataset)
|
||||
- [I. Replay an episode](#i-replay-an-episode)
|
||||
- [J. Train a policy](#j-train-a-policy)
|
||||
- [K. Evaluate your policy](#k-evaluate-your-policy)
|
||||
|
||||
> [!TIP]
|
||||
> If you have any questions or need help, please reach out on [Discord](https://discord.com/invite/s3KuuzsPFb) in the channel [`#mobile-so-100-arm`](https://discord.com/channels/1216765309076115607/1318390825528332371).
|
||||
|
||||
## A. Source the parts
|
||||
|
||||
Follow this [README](https://github.com/SIGRobotics-UIUC/LeKiwi). It contains the bill of materials, with a link to source the parts, as well as the instructions to 3D print the parts, and advice if it's your first time printing or if you don't own a 3D printer.
|
||||
|
||||
Before assembling, you will first need to configure your motors. To this end, we provide a nice script, so let's first install LeRobot. After configuration, we will also guide you through assembly.
|
||||
|
||||
### Wired version
|
||||
If you have the **wired** LeKiwi version you can skip the installation of the Raspberry Pi and setting up SSH. You can also run all commands directly on your PC for both the LeKiwi scripts and the leader arm scripts for teleoperating.
|
||||
|
||||
## B. Install software on Pi
|
||||
Now we have to setup the remote PC that will run on the LeKiwi Robot. This is normally a Raspberry Pi, but can be any PC that can run on 5V and has enough usb ports (2 or more) for the cameras and motor control board.
|
||||
|
||||
### Install OS
|
||||
For setting up the Raspberry Pi and its SD-card see: [Setup PI](https://www.raspberrypi.com/documentation/computers/getting-started.html). Here is explained how to download the [Imager](https://www.raspberrypi.com/software/) to install Raspberry Pi OS or Ubuntu.
|
||||
|
||||
### Setup SSH
|
||||
After setting up your Pi, you should enable and setup [SSH](https://www.raspberrypi.com/news/coding-on-raspberry-pi-remotely-with-visual-studio-code/) (Secure Shell Protocol) so you can login into the Pi from your laptop without requiring a screen, keyboard and mouse in the Pi. A great tutorial on how to do this can be found [here](https://www.raspberrypi.com/documentation/computers/remote-access.html#ssh). Logging into your Pi can be done in your Command Prompt (cmd) or if you use VSCode you can use [this](https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-ssh) extension.
|
||||
|
||||
### Install LeRobot
|
||||
|
||||
On your Raspberry Pi:
|
||||
|
||||
#### 1. [Install Miniconda](https://docs.anaconda.com/miniconda/install/#quick-command-line-install):
|
||||
|
||||
#### 2. Restart shell
|
||||
Copy paste in your shell: `source ~/.bashrc` or for Mac: `source ~/.bash_profile` or `source ~/.zshrc` if you're using zshell
|
||||
|
||||
#### 3. Create and activate a fresh conda environment for lerobot
|
||||
|
||||
<details>
|
||||
<summary><strong>Video install instructions</strong></summary>
|
||||
|
||||
<video src="https://github.com/user-attachments/assets/17172d3b-3b64-4b80-9cf1-b2b7c5cbd236"></video>
|
||||
|
||||
</details>
|
||||
|
||||
```bash
|
||||
conda create -y -n lerobot python=3.10
|
||||
```
|
||||
|
||||
Then activate your conda environment (do this each time you open a shell to use lerobot!):
|
||||
```bash
|
||||
conda activate lerobot
|
||||
```
|
||||
|
||||
#### 4. Clone LeRobot:
|
||||
```bash
|
||||
git clone https://github.com/huggingface/lerobot.git ~/lerobot
|
||||
```
|
||||
|
||||
#### 5. Install ffmpeg in your environment:
|
||||
When using `miniconda`, install `ffmpeg` in your environment:
|
||||
```bash
|
||||
conda install ffmpeg -c conda-forge
|
||||
```
|
||||
|
||||
#### 6. Install LeRobot with dependencies for the feetech motors:
|
||||
```bash
|
||||
cd ~/lerobot && pip install -e ".[feetech]"
|
||||
```
|
||||
|
||||
## C. Install LeRobot on laptop
|
||||
If you already have install LeRobot on your laptop you can skip this step, otherwise please follow along as we do the same steps we did on the Pi.
|
||||
|
||||
> [!TIP]
|
||||
> We use the Command Prompt (cmd) quite a lot. If you are not comfortable using the cmd or want to brush up using the command line you can have a look here: [Command line crash course](https://developer.mozilla.org/en-US/docs/Learn_web_development/Getting_started/Environment_setup/Command_line)
|
||||
|
||||
On your computer:
|
||||
|
||||
#### 1. [Install Miniconda](https://docs.anaconda.com/miniconda/install/#quick-command-line-install):
|
||||
|
||||
#### 2. Restart shell
|
||||
Copy paste in your shell: `source ~/.bashrc` or for Mac: `source ~/.bash_profile` or `source ~/.zshrc` if you're using zshell
|
||||
|
||||
#### 3. Create and activate a fresh conda environment for lerobot
|
||||
|
||||
<details>
|
||||
<summary><strong>Video install instructions</strong></summary>
|
||||
|
||||
<video src="https://github.com/user-attachments/assets/17172d3b-3b64-4b80-9cf1-b2b7c5cbd236"></video>
|
||||
|
||||
</details>
|
||||
|
||||
```bash
|
||||
conda create -y -n lerobot python=3.10
|
||||
```
|
||||
|
||||
Then activate your conda environment (do this each time you open a shell to use lerobot!):
|
||||
```bash
|
||||
conda activate lerobot
|
||||
```
|
||||
|
||||
#### 4. Clone LeRobot:
|
||||
```bash
|
||||
git clone https://github.com/huggingface/lerobot.git ~/lerobot
|
||||
```
|
||||
|
||||
#### 5. Install ffmpeg in your environment:
|
||||
When using `miniconda`, install `ffmpeg` in your environment:
|
||||
```bash
|
||||
conda install ffmpeg -c conda-forge
|
||||
```
|
||||
|
||||
#### 6. Install LeRobot with dependencies for the feetech motors:
|
||||
```bash
|
||||
cd ~/lerobot && pip install -e ".[feetech]"
|
||||
```
|
||||
|
||||
Great :hugs:! You are now done installing LeRobot and we can begin assembling the SO100 arms and Mobile base :robot:.
|
||||
Every time you now want to use LeRobot you can go to the `~/lerobot` folder where we installed LeRobot and run one of the commands.
|
||||
|
||||
# D. Assembly
|
||||
|
||||
First we will assemble the two SO100 arms. One to attach to the mobile base and one for teleoperation. Then we will assemble the mobile base.
|
||||
|
||||
## SO100 Arms
|
||||
### Configure motors
|
||||
The instructions for configuring the motors can be found [Here](https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md#c-configure-the-motors) in step C of the SO100 tutorial. Besides the ID's for the arm motors we also need to set the motor ID's for the mobile base. These need to be in a specific order to work. Below an image of the motor ID's and motor mounting positions for the mobile base. Note that we only use one Motor Control board on LeKiwi. This means the motor ID's for the wheels are 7, 8 and 9.
|
||||
|
||||
<img src="../media/lekiwi/motor_ids.webp?raw=true" alt="Motor ID's for mobile robot" title="Motor ID's for mobile robot" width="60%">
|
||||
|
||||
### Assemble arms
|
||||
[Assemble arms instruction](https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md#d-assemble-the-arms)
|
||||
|
||||
## Mobile base (LeKiwi)
|
||||
[Assemble LeKiwi](https://github.com/SIGRobotics-UIUC/LeKiwi)
|
||||
|
||||
### Update config
|
||||
Both config files on the LeKiwi LeRobot and on the laptop should be the same. First we should find the Ip address of the Raspberry Pi of the mobile manipulator. This is the same Ip address used in SSH. We also need the usb port of the control board of the leader arm on the laptop and the port of the control board on LeKiwi. We can find these ports with the following script.
|
||||
|
||||
#### a. Run the script to find port
|
||||
|
||||
<details>
|
||||
<summary><strong>Video finding port</strong></summary>
|
||||
<video src="https://github.com/user-attachments/assets/4a21a14d-2046-4805-93c4-ee97a30ba33f"></video>
|
||||
<video src="https://github.com/user-attachments/assets/1cc3aecf-c16d-4ff9-aec7-8c175afbbce2"></video>
|
||||
</details>
|
||||
|
||||
To find the port for each bus servo adapter, run the utility script:
|
||||
```bash
|
||||
python lerobot/scripts/find_motors_bus_port.py
|
||||
```
|
||||
|
||||
#### b. Example outputs
|
||||
|
||||
Example output when identifying the leader arm's port (e.g., `/dev/tty.usbmodem575E0031751` on Mac, or possibly `/dev/ttyACM0` on Linux):
|
||||
```
|
||||
Finding all available ports for the MotorBus.
|
||||
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
|
||||
Remove the usb cable from your DynamixelMotorsBus and press Enter when done.
|
||||
|
||||
[...Disconnect leader arm and press Enter...]
|
||||
|
||||
The port of this DynamixelMotorsBus is /dev/tty.usbmodem575E0031751
|
||||
Reconnect the usb cable.
|
||||
```
|
||||
Example output when identifying the follower arm's port (e.g., `/dev/tty.usbmodem575E0032081`, or possibly `/dev/ttyACM1` on Linux):
|
||||
```
|
||||
Finding all available ports for the MotorBus.
|
||||
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
|
||||
Remove the usb cable from your DynamixelMotorsBus and press Enter when done.
|
||||
|
||||
[...Disconnect follower arm and press Enter...]
|
||||
|
||||
The port of this DynamixelMotorsBus is /dev/tty.usbmodem575E0032081
|
||||
Reconnect the usb cable.
|
||||
```
|
||||
|
||||
#### c. Troubleshooting
|
||||
On Linux, you might need to give access to the USB ports by running:
|
||||
```bash
|
||||
sudo chmod 666 /dev/ttyACM0
|
||||
sudo chmod 666 /dev/ttyACM1
|
||||
```
|
||||
|
||||
#### d. Update config file
|
||||
|
||||
IMPORTANTLY: Now that you have your ports of leader and follower arm and ip address of the mobile-so100, update the **ip** in Network configuration, **port** in leader_arms and **port** in lekiwi. In the [`LeKiwiConfig`](../lerobot/common/robot_devices/robots/configs.py) file. Where you will find something like:
|
||||
```python
|
||||
@RobotConfig.register_subclass("lekiwi")
|
||||
@dataclass
|
||||
class LeKiwiConfig(RobotConfig):
|
||||
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||
# the number of motors in your follower arms.
|
||||
max_relative_target: int | None = None
|
||||
|
||||
# Network Configuration
|
||||
ip: str = "172.17.133.91"
|
||||
port: int = 5555
|
||||
video_port: int = 5556
|
||||
|
||||
cameras: dict[str, CameraConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"mobile": OpenCVCameraConfig(camera_index="/dev/video0", fps=30, width=640, height=480),
|
||||
"mobile2": OpenCVCameraConfig(camera_index="/dev/video2", fps=30, width=640, height=480),
|
||||
}
|
||||
)
|
||||
|
||||
calibration_dir: str = ".cache/calibration/lekiwi"
|
||||
|
||||
leader_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"main": FeetechMotorsBusConfig(
|
||||
port="/dev/tty.usbmodem585A0077581",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "sts3215"],
|
||||
"shoulder_lift": [2, "sts3215"],
|
||||
"elbow_flex": [3, "sts3215"],
|
||||
"wrist_flex": [4, "sts3215"],
|
||||
"wrist_roll": [5, "sts3215"],
|
||||
"gripper": [6, "sts3215"],
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
follower_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"main": FeetechMotorsBusConfig(
|
||||
port="/dev/ttyACM0",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "sts3215"],
|
||||
"shoulder_lift": [2, "sts3215"],
|
||||
"elbow_flex": [3, "sts3215"],
|
||||
"wrist_flex": [4, "sts3215"],
|
||||
"wrist_roll": [5, "sts3215"],
|
||||
"gripper": [6, "sts3215"],
|
||||
"left_wheel": (7, "sts3215"),
|
||||
"back_wheel": (8, "sts3215"),
|
||||
"right_wheel": (9, "sts3215"),
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
teleop_keys: dict[str, str] = field(
|
||||
default_factory=lambda: {
|
||||
# Movement
|
||||
"forward": "w",
|
||||
"backward": "s",
|
||||
"left": "a",
|
||||
"right": "d",
|
||||
"rotate_left": "z",
|
||||
"rotate_right": "x",
|
||||
# Speed control
|
||||
"speed_up": "r",
|
||||
"speed_down": "f",
|
||||
# quit teleop
|
||||
"quit": "q",
|
||||
}
|
||||
)
|
||||
|
||||
mock: bool = False
|
||||
```
|
||||
|
||||
## Wired version
|
||||
|
||||
For the wired LeKiwi version your configured IP address should refer to your own laptop (127.0.0.1), because leader arm and LeKiwi are in this case connected to own laptop. Below and example configuration for this wired setup:
|
||||
```python
|
||||
@RobotConfig.register_subclass("lekiwi")
|
||||
@dataclass
|
||||
class LeKiwiConfig(RobotConfig):
|
||||
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||
# the number of motors in your follower arms.
|
||||
max_relative_target: int | None = None
|
||||
|
||||
# Network Configuration
|
||||
ip: str = "127.0.0.1"
|
||||
port: int = 5555
|
||||
video_port: int = 5556
|
||||
|
||||
cameras: dict[str, CameraConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"front": OpenCVCameraConfig(
|
||||
camera_index=0, fps=30, width=640, height=480, rotation=90
|
||||
),
|
||||
"wrist": OpenCVCameraConfig(
|
||||
camera_index=1, fps=30, width=640, height=480, rotation=180
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
calibration_dir: str = ".cache/calibration/lekiwi"
|
||||
|
||||
leader_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"main": FeetechMotorsBusConfig(
|
||||
port="/dev/tty.usbmodem585A0077581",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "sts3215"],
|
||||
"shoulder_lift": [2, "sts3215"],
|
||||
"elbow_flex": [3, "sts3215"],
|
||||
"wrist_flex": [4, "sts3215"],
|
||||
"wrist_roll": [5, "sts3215"],
|
||||
"gripper": [6, "sts3215"],
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
follower_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"main": FeetechMotorsBusConfig(
|
||||
port="/dev/tty.usbmodem58760431061",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "sts3215"],
|
||||
"shoulder_lift": [2, "sts3215"],
|
||||
"elbow_flex": [3, "sts3215"],
|
||||
"wrist_flex": [4, "sts3215"],
|
||||
"wrist_roll": [5, "sts3215"],
|
||||
"gripper": [6, "sts3215"],
|
||||
"left_wheel": (7, "sts3215"),
|
||||
"back_wheel": (8, "sts3215"),
|
||||
"right_wheel": (9, "sts3215"),
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
teleop_keys: dict[str, str] = field(
|
||||
default_factory=lambda: {
|
||||
# Movement
|
||||
"forward": "w",
|
||||
"backward": "s",
|
||||
"left": "a",
|
||||
"right": "d",
|
||||
"rotate_left": "z",
|
||||
"rotate_right": "x",
|
||||
# Speed control
|
||||
"speed_up": "r",
|
||||
"speed_down": "f",
|
||||
# quit teleop
|
||||
"quit": "q",
|
||||
}
|
||||
)
|
||||
|
||||
mock: bool = False
|
||||
```
|
||||
|
||||
# E. Calibration
|
||||
Now we have to calibrate the leader arm and the follower arm. The wheel motors don't have to be calibrated.
|
||||
|
||||
|
||||
### Calibrate follower arm (on mobile base)
|
||||
> [!IMPORTANT]
|
||||
> Contrarily to step 6 of the [assembly video](https://youtu.be/FioA2oeFZ5I?t=724) which illustrates the auto calibration, we will actually do manual calibration of follower for now.
|
||||
|
||||
You will need to move the follower arm to these positions sequentially:
|
||||
|
||||
| 1. Zero position | 2. Rotated position | 3. Rest position |
|
||||
| ----------------------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| <img src="../media/lekiwi/mobile_calib_zero.webp?raw=true" alt="SO-100 follower arm zero position" title="SO-100 follower arm zero position" style="width:100%;"> | <img src="../media/lekiwi/mobile_calib_rotated.webp?raw=true" alt="SO-100 follower arm rotated position" title="SO-100 follower arm rotated position" style="width:100%;"> | <img src="../media/lekiwi/mobile_calib_rest.webp?raw=true" alt="SO-100 follower arm rest position" title="SO-100 follower arm rest position" style="width:100%;"> |
|
||||
|
||||
Make sure the arm is connected to the Raspberry Pi and run this script (on the Raspberry Pi) to launch manual calibration:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=lekiwi \
|
||||
--robot.cameras='{}' \
|
||||
--control.type=calibrate \
|
||||
--control.arms='["main_follower"]'
|
||||
```
|
||||
|
||||
### Wired version
|
||||
If you have the **wired** LeKiwi version please run all commands including this calibration command on your laptop.
|
||||
|
||||
### Calibrate leader arm
|
||||
Then to calibrate the leader arm (which is attached to the laptop/pc). You will need to move the leader arm to these positions sequentially:
|
||||
|
||||
| 1. Zero position | 2. Rotated position | 3. Rest position |
|
||||
| ------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| <img src="../media/so100/leader_zero.webp?raw=true" alt="SO-100 leader arm zero position" title="SO-100 leader arm zero position" style="width:100%;"> | <img src="../media/so100/leader_rotated.webp?raw=true" alt="SO-100 leader arm rotated position" title="SO-100 leader arm rotated position" style="width:100%;"> | <img src="../media/so100/leader_rest.webp?raw=true" alt="SO-100 leader arm rest position" title="SO-100 leader arm rest position" style="width:100%;"> |
|
||||
|
||||
Run this script (on your laptop/pc) to launch manual calibration:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=lekiwi \
|
||||
--robot.cameras='{}' \
|
||||
--control.type=calibrate \
|
||||
--control.arms='["main_leader"]'
|
||||
```
|
||||
|
||||
# F. Teleoperate
|
||||
|
||||
> [!TIP]
|
||||
> If you're using a Mac, you might need to give Terminal permission to access your keyboard. Go to System Preferences > Security & Privacy > Input Monitoring and check the box for Terminal.
|
||||
|
||||
To teleoperate SSH into your Raspberry Pi, and run `conda activate lerobot` and this script:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=lekiwi \
|
||||
--control.type=remote_robot
|
||||
```
|
||||
|
||||
Then on your laptop, also run `conda activate lerobot` and this script:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=lekiwi \
|
||||
--control.type=teleoperate \
|
||||
--control.fps=30
|
||||
```
|
||||
|
||||
> **NOTE:** To visualize the data, enable `--control.display_data=true`. This streams the data using `rerun`. For the `--control.type=remote_robot` you will also need to set `--control.viewer_ip` and `--control.viewer_port`
|
||||
|
||||
You should see on your laptop something like this: ```[INFO] Connected to remote robot at tcp://172.17.133.91:5555 and video stream at tcp://172.17.133.91:5556.``` Now you can move the leader arm and use the keyboard (w,a,s,d) to drive forward, left, backwards, right. And use (z,x) to turn left or turn right. You can use (r,f) to increase and decrease the speed of the mobile robot. There are three speed modes, see the table below:
|
||||
| Speed Mode | Linear Speed (m/s) | Rotation Speed (deg/s) |
|
||||
| ---------- | ------------------ | ---------------------- |
|
||||
| Fast | 0.4 | 90 |
|
||||
| Medium | 0.25 | 60 |
|
||||
| Slow | 0.1 | 30 |
|
||||
|
||||
|
||||
| Key | Action |
|
||||
| --- | -------------- |
|
||||
| W | Move forward |
|
||||
| A | Move left |
|
||||
| S | Move backward |
|
||||
| D | Move right |
|
||||
| Z | Turn left |
|
||||
| X | Turn right |
|
||||
| R | Increase speed |
|
||||
| F | Decrease speed |
|
||||
|
||||
> [!TIP]
|
||||
> If you use a different keyboard you can change the keys for each command in the [`LeKiwiConfig`](../lerobot/common/robot_devices/robots/configs.py).
|
||||
|
||||
### Wired version
|
||||
If you have the **wired** LeKiwi version please run all commands including both these teleoperation commands on your laptop.
|
||||
|
||||
## Troubleshoot communication
|
||||
|
||||
If you are having trouble connecting to the Mobile SO100, follow these steps to diagnose and resolve the issue.
|
||||
|
||||
### 1. Verify IP Address Configuration
|
||||
Make sure that the correct ip for the Pi is set in the configuration file. To check the Raspberry Pi's IP address, run (on the Pi command line):
|
||||
```bash
|
||||
hostname -I
|
||||
```
|
||||
|
||||
### 2. Check if Pi is reachable from laptop/pc
|
||||
Try pinging the Raspberry Pi from your laptop:
|
||||
```bach
|
||||
ping <your_pi_ip_address>
|
||||
```
|
||||
|
||||
If the ping fails:
|
||||
- Ensure the Pi is powered on and connected to the same network.
|
||||
- Check if SSH is enabled on the Pi.
|
||||
|
||||
### 3. Try SSH connection
|
||||
If you can't SSH into the Pi, it might not be properly connected. Use:
|
||||
```bash
|
||||
ssh <your_pi_user_name>@<your_pi_ip_address>
|
||||
```
|
||||
If you get a connection error:
|
||||
- Ensure SSH is enabled on the Pi by running:
|
||||
```bash
|
||||
sudo raspi-config
|
||||
```
|
||||
Then navigate to: **Interfacing Options -> SSH** and enable it.
|
||||
|
||||
### 4. Same config file
|
||||
Make sure the configuration file on both your laptop/pc and the Raspberry Pi is the same.
|
||||
|
||||
# G. Record a dataset
|
||||
Once you're familiar with teleoperation, you can record your first dataset with LeKiwi.
|
||||
|
||||
To start the program on LeKiwi, SSH into your Raspberry Pi, and run `conda activate lerobot` and this script:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=lekiwi \
|
||||
--control.type=remote_robot
|
||||
```
|
||||
|
||||
If you want to use the Hugging Face hub features for uploading your dataset and you haven't previously done it, make sure you've logged in using a write-access token, which can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens):
|
||||
```bash
|
||||
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
|
||||
```
|
||||
|
||||
Store your Hugging Face repository name in a variable to run these commands:
|
||||
```bash
|
||||
HF_USER=$(huggingface-cli whoami | head -n 1)
|
||||
echo $HF_USER
|
||||
```
|
||||
On your laptop then run this command to record 2 episodes and upload your dataset to the hub:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=lekiwi \
|
||||
--control.type=record \
|
||||
--control.fps=30 \
|
||||
--control.single_task="Grasp a lego block and put it in the bin." \
|
||||
--control.repo_id=${HF_USER}/lekiwi_test \
|
||||
--control.tags='["tutorial"]' \
|
||||
--control.warmup_time_s=5 \
|
||||
--control.episode_time_s=30 \
|
||||
--control.reset_time_s=30 \
|
||||
--control.num_episodes=2 \
|
||||
--control.push_to_hub=true
|
||||
```
|
||||
|
||||
Note: You can resume recording by adding `--control.resume=true`.
|
||||
|
||||
### Wired version
|
||||
If you have the **wired** LeKiwi version please run all commands including both these record dataset commands on your laptop.
|
||||
|
||||
# H. Visualize a dataset
|
||||
|
||||
If you uploaded your dataset to the hub with `--control.push_to_hub=true`, you can [visualize your dataset online](https://huggingface.co/spaces/lerobot/visualize_dataset) by copy pasting your repo id given by:
|
||||
```bash
|
||||
echo ${HF_USER}/lekiwi_test
|
||||
```
|
||||
|
||||
If you didn't upload with `--control.push_to_hub=false`, you can also visualize it locally with (a window can be opened in the browser `http://127.0.0.1:9090` with the visualization tool):
|
||||
```bash
|
||||
python lerobot/scripts/visualize_dataset_html.py \
|
||||
--repo-id ${HF_USER}/lekiwi_test \
|
||||
--local-files-only 1
|
||||
```
|
||||
|
||||
# I. Replay an episode
|
||||
Now try to replay the first episode on your robot:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=lekiwi \
|
||||
--control.type=replay \
|
||||
--control.fps=30 \
|
||||
--control.repo_id=${HF_USER}/lekiwi_test \
|
||||
--control.episode=0
|
||||
```
|
||||
|
||||
## J. Train a policy
|
||||
|
||||
To train a policy to control your robot, use the [`python lerobot/scripts/train.py`](../lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
|
||||
```bash
|
||||
python lerobot/scripts/train.py \
|
||||
--dataset.repo_id=${HF_USER}/lekiwi_test \
|
||||
--policy.type=act \
|
||||
--output_dir=outputs/train/act_lekiwi_test \
|
||||
--job_name=act_lekiwi_test \
|
||||
--policy.device=cuda \
|
||||
--wandb.enable=true
|
||||
```
|
||||
|
||||
Let's explain it:
|
||||
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/lekiwi_test`.
|
||||
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor states, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
|
||||
4. We provided `policy.device=cuda` since we are training on a Nvidia GPU, but you could use `policy.device=mps` to train on Apple silicon.
|
||||
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
|
||||
|
||||
Training should take several hours. You will find checkpoints in `outputs/train/act_lekiwi_test/checkpoints`.
|
||||
|
||||
## K. Evaluate your policy
|
||||
|
||||
You can use the `record` function from [`lerobot/scripts/control_robot.py`](../lerobot/scripts/control_robot.py) but with a policy checkpoint as input. For instance, run this command to record 10 evaluation episodes:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=lekiwi \
|
||||
--control.type=record \
|
||||
--control.fps=30 \
|
||||
--control.single_task="Drive to the red block and pick it up" \
|
||||
--control.repo_id=${HF_USER}/eval_act_lekiwi_test \
|
||||
--control.tags='["tutorial"]' \
|
||||
--control.warmup_time_s=5 \
|
||||
--control.episode_time_s=30 \
|
||||
--control.reset_time_s=30 \
|
||||
--control.num_episodes=10 \
|
||||
--control.push_to_hub=true \
|
||||
--control.policy.path=outputs/train/act_lekiwi_test/checkpoints/last/pretrained_model
|
||||
```
|
||||
|
||||
As you can see, it's almost the same command as previously used to record your training dataset. Two things changed:
|
||||
1. There is an additional `--control.policy.path` argument which indicates the path to your policy checkpoint with (e.g. `outputs/train/eval_act_lekiwi_test/checkpoints/last/pretrained_model`). You can also use the model repository if you uploaded a model checkpoint to the hub (e.g. `${HF_USER}/act_lekiwi_test`).
|
||||
2. The name of dataset begins by `eval` to reflect that you are running inference (e.g. `${HF_USER}/eval_act_lekiwi_test`).
|
||||
@@ -14,7 +14,7 @@
|
||||
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
from lerobot.common.cameras.configs import CameraConfig
|
||||
from lerobot.common.cameras.configs import CameraConfig, Cv2Rotation
|
||||
from lerobot.common.cameras.opencv.configuration_opencv import OpenCVCameraConfig
|
||||
|
||||
from ..config import RobotConfig
|
||||
@@ -34,11 +34,9 @@ class LeKiwiConfig(RobotConfig):
|
||||
|
||||
cameras: dict[str, CameraConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"front": OpenCVCameraConfig(
|
||||
camera_index="/dev/video0", fps=30, width=640, height=480, rotation=None
|
||||
),
|
||||
"front": OpenCVCameraConfig(index_or_path="/dev/video0", fps=30, width=640, height=480),
|
||||
"wrist": OpenCVCameraConfig(
|
||||
camera_index="/dev/video2", fps=30, width=640, height=480, rotation=180
|
||||
index_or_path="/dev/video2", fps=30, width=640, height=480, rotation=Cv2Rotation.ROTATE_90
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
153
lerobot/common/robots/lekiwi/lekiwi.md
Normal file
@@ -0,0 +1,153 @@
|
||||
# LeKiwi
|
||||
|
||||
In the steps below, we explain how to assemble the LeKiwi mobile robot.
|
||||
|
||||
## Source the parts
|
||||
|
||||
Follow this [README](https://github.com/SIGRobotics-UIUC/LeKiwi). It contains the bill of materials, with a link to source the parts, as well as the instructions to 3D print the parts.
|
||||
And advise if it's your first time printing or if you don't own a 3D printer.
|
||||
|
||||
### Wired version
|
||||
If you have the **wired** LeKiwi version, you can skip the installation of the Raspberry Pi and setting up SSH. You can also run all commands directly on your PC for both the LeKiwi scripts and the leader arm scripts for teleoperating.
|
||||
|
||||
## Install software on Pi
|
||||
Now we have to set up the remote PC that will run on the LeKiwi Robot. This is normally a Raspberry Pi, but can be any PC that can run on 5V and has enough usb ports (2 or more) for the cameras and motor control board.
|
||||
|
||||
### Install OS
|
||||
For setting up the Raspberry Pi and its SD-card see: [Setup PI](https://www.raspberrypi.com/documentation/computers/getting-started.html). Here is explained how to download the [Imager](https://www.raspberrypi.com/software/) to install Raspberry Pi OS or Ubuntu.
|
||||
|
||||
### Setup SSH
|
||||
After setting up your Pi, you should enable and set up [SSH](https://www.raspberrypi.com/news/coding-on-raspberry-pi-remotely-with-visual-studio-code/) (Secure Shell Protocol) so you can log in to the Pi from your laptop without requiring a screen, keyboard, and mouse on the Pi. A great tutorial on how to do this can be found [here](https://www.raspberrypi.com/documentation/computers/remote-access.html#ssh). Logging into your Pi can be done in your Command Prompt (cmd) or, if you use VSCode you can use [this](https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-ssh) extension.
|
||||
|
||||
### Install LeRobot on Pi 🤗
|
||||
|
||||
On your Raspberry Pi install LeRobot using our [Installation Guide](./installation)
|
||||
|
||||
In addition to these instructions, you need to install the Feetech sdk on your Pi:
|
||||
```bash
|
||||
pip install -e ".[feetech]"
|
||||
```
|
||||
|
||||
## Install LeRobot locally
|
||||
If you already have installed LeRobot on your laptop/pc you can skip this step; otherwise, please follow along as we do the same steps we did on the Pi.
|
||||
|
||||
Follow our [Installation Guide](./installation)
|
||||
|
||||
Great :hugs:! You are now done installing LeRobot, and we can begin assembling the SO100/SO101 arms and the mobile base :robot:.
|
||||
Every time you now want to use LeRobot, you can go to the `~/lerobot` folder where we installed LeRobot and run one of the commands.
|
||||
|
||||
# Step-by-Step Assembly Instructions
|
||||
|
||||
First, we will assemble the two SO100/SO101 arms. One to attach to the mobile base and one for teleoperation. Then we will assemble the mobile base. The instructions for assembling can be found on these two pages:
|
||||
|
||||
- [Assemble SO101](./so101#step-by-step-assembly-instructions)
|
||||
- [Assemble LeKiwi](https://github.com/SIGRobotics-UIUC/LeKiwi/blob/main/Assembly.md)
|
||||
|
||||
### Configure motors
|
||||
The instructions for configuring the motors can be found in the SO101 [docs](./so101#configure-the-motors). Besides the ids for the arm motors, we also need to set the motor ids for the mobile base. These need to be in a specific order to work. Below an image of the motor ids and motor mounting positions for the mobile base. Note that we only use one Motor Control board on LeKiwi. This means the motor ids for the wheels are 7, 8 and 9.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/blob/main/lerobot/motor_ids.webp" alt="Motor ID's for mobile robot" title="Motor ID's for mobile robot" width="60%">
|
||||
|
||||
### Troubleshoot communication
|
||||
|
||||
If you are having trouble connecting to the Mobile SO100, follow these steps to diagnose and resolve the issue.
|
||||
|
||||
#### 1. Verify IP Address Configuration
|
||||
Make sure that the correct IP for the Pi is used in the commands or in your code. To check the Raspberry Pi's IP address, run (on the Pi command line):
|
||||
```bash
|
||||
hostname -I
|
||||
```
|
||||
|
||||
#### 2. Check if Pi is reachable from laptop/pc
|
||||
Try pinging the Raspberry Pi from your laptop:
|
||||
```bach
|
||||
ping <your_pi_ip_address>
|
||||
```
|
||||
|
||||
If the ping fails:
|
||||
- Ensure the Pi is powered on and connected to the same network.
|
||||
- Check if SSH is enabled on the Pi.
|
||||
|
||||
#### 3. Try SSH connection
|
||||
If you can't SSH into the Pi, it might not be properly connected. Use:
|
||||
```bash
|
||||
ssh <your_pi_user_name>@<your_pi_ip_address>
|
||||
```
|
||||
If you get a connection error:
|
||||
- Ensure SSH is enabled on the Pi by running:
|
||||
```bash
|
||||
sudo raspi-config
|
||||
```
|
||||
Then navigate to: **Interfacing Options -> SSH** and enable it.
|
||||
|
||||
### Calibration
|
||||
|
||||
Now we have to calibrate the leader arm and the follower arm. The wheel motors don't have to be calibrated.
|
||||
The calibration process is very important because it allows a neural network trained on one robot to work on another.
|
||||
|
||||
### Calibrate follower arm (on mobile base)
|
||||
|
||||
Make sure the arm is connected to the Raspberry Pi and run this script or API example (on the Raspberry Pi via SSH) to launch calibration of the follower arm:
|
||||
<hfoptions id="calibrate_follower">
|
||||
<hfoption id="Command">
|
||||
```bash
|
||||
python -m lerobot.calibrate \
|
||||
--robot.type=lekiwi \
|
||||
--robot.port=/dev/ttyACM0 \ # <- The port of your robot
|
||||
--robot.id=my_awesome_kiwi # <- Give the robot a unique name
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="API example">
|
||||
```python
|
||||
from lerobot.common.robots.lekiwi import LeKiwiClient, LeKiwiClientConfig
|
||||
|
||||
config = LeKiwiClientConfig(
|
||||
remote_ip="192.168.0.23",
|
||||
id="my_awesome_kiwi",
|
||||
)
|
||||
|
||||
lekiwi = LeKiwiClient(config)
|
||||
lekiwi.connect(calibrate=False)
|
||||
lekiwi.calibrate()
|
||||
lekiwi.disconnect()
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
We unified the calibration method for most robots, thus, the calibration steps for this SO100 arm are the same as the steps for the Koch and SO101. First, we have to move the robot to the position where each joint is in the middle of its range, then we press `Enter`. Secondly, we move all joints through their full range of motion. A video of this same process for the SO101 as reference can be found [here](http://localhost:5173/so101#calibration-video)
|
||||
|
||||
### Wired version
|
||||
If you have the **wired** LeKiwi version, please run all commands on your laptop.
|
||||
|
||||
### Calibrate leader arm
|
||||
Then, to calibrate the leader arm (which is attached to the laptop/pc). Run the following command of API example on your laptop:
|
||||
<hfoptions id="calibrate_leader">
|
||||
<hfoption id="Command">
|
||||
```bash
|
||||
python -m lerobot.calibrate \
|
||||
--teleop.type=so100_leader \
|
||||
--teleop.port=/dev/tty.usbmodem58760431551 \ # <- The port of your robot
|
||||
--teleop.id=my_awesome_leader_arm # <- Give the robot a unique name
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="API example">
|
||||
```python
|
||||
from lerobot.common.teleoperators.so100_leader import SO100LeaderConfig, SO100Leader
|
||||
|
||||
config = SO100LeaderConfig(
|
||||
port="/dev/tty.usbmodem58760431551",
|
||||
id="my_awesome_leader_arm",
|
||||
)
|
||||
|
||||
leader = SO100Leader(config)
|
||||
leader.connect(calibrate=False)
|
||||
leader.calibrate()
|
||||
leader.disconnect()
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Congrats 🎉, your robot is all set to learn a task on its own. Start training it by following this tutorial: [Getting started with real-world robots](./getting_started_real_world_robot)
|
||||
|
||||
> [!TIP]
|
||||
> If you have any questions or need help, please reach out on [Discord](https://discord.com/invite/s3KuuzsPFb).
|
||||
@@ -1,624 +0,0 @@
|
||||
# Using the [SO-100](https://github.com/TheRobotStudio/SO-ARM100) with LeRobot
|
||||
|
||||
## Table of Contents
|
||||
|
||||
- [A. Source the parts](#a-source-the-parts)
|
||||
- [B. Install LeRobot](#b-install-lerobot)
|
||||
- [C. Configure the Motors](#c-configure-the-motors)
|
||||
- [D. Step-by-Step Assembly Instructions](#d-step-by-step-assembly-instructions)
|
||||
- [E. Calibrate](#e-calibrate)
|
||||
- [F. Teleoperate](#f-teleoperate)
|
||||
- [G. Record a dataset](#g-record-a-dataset)
|
||||
- [H. Visualize a dataset](#h-visualize-a-dataset)
|
||||
- [I. Replay an episode](#i-replay-an-episode)
|
||||
- [J. Train a policy](#j-train-a-policy)
|
||||
- [K. Evaluate your policy](#k-evaluate-your-policy)
|
||||
- [L. More Information](#l-more-information)
|
||||
|
||||
## A. Source the parts
|
||||
|
||||
Follow this [README](https://github.com/TheRobotStudio/SO-ARM100). It contains the bill of materials, with a link to source the parts, as well as the instructions to 3D print the parts,
|
||||
and advice if it's your first time printing or if you don't own a 3D printer.
|
||||
|
||||
Before assembling, you will first need to configure your motors. To this end, we provide a nice script, so let's first install LeRobot. After configuration, we will also guide you through assembly.
|
||||
|
||||
## B. Install LeRobot
|
||||
|
||||
> [!TIP]
|
||||
> We use the Command Prompt (cmd) quite a lot. If you are not comfortable using the cmd or want to brush up using the command line you can have a look here: [Command line crash course](https://developer.mozilla.org/en-US/docs/Learn_web_development/Getting_started/Environment_setup/Command_line)
|
||||
|
||||
On your computer:
|
||||
|
||||
#### 1. [Install Miniconda](https://docs.anaconda.com/miniconda/install/#quick-command-line-install):
|
||||
|
||||
#### 2. Restart shell
|
||||
Copy paste in your shell: `source ~/.bashrc` or for Mac: `source ~/.bash_profile` or `source ~/.zshrc` if you're using zshell
|
||||
|
||||
#### 3. Create and activate a fresh conda environment for lerobot
|
||||
|
||||
<details>
|
||||
<summary><strong>Video install instructions</strong></summary>
|
||||
|
||||
<video src="https://github.com/user-attachments/assets/17172d3b-3b64-4b80-9cf1-b2b7c5cbd236"></video>
|
||||
|
||||
</details>
|
||||
|
||||
```bash
|
||||
conda create -y -n lerobot python=3.10
|
||||
```
|
||||
|
||||
Then activate your conda environment (do this each time you open a shell to use lerobot!):
|
||||
```bash
|
||||
conda activate lerobot
|
||||
```
|
||||
|
||||
#### 4. Clone LeRobot:
|
||||
```bash
|
||||
git clone https://github.com/huggingface/lerobot.git ~/lerobot
|
||||
```
|
||||
|
||||
#### 5. Install ffmpeg in your environment:
|
||||
When using `miniconda`, install `ffmpeg` in your environment:
|
||||
```bash
|
||||
conda install ffmpeg -c conda-forge
|
||||
```
|
||||
|
||||
#### 6. Install LeRobot with dependencies for the feetech motors:
|
||||
```bash
|
||||
cd ~/lerobot && pip install -e ".[feetech]"
|
||||
```
|
||||
|
||||
Great :hugs:! You are now done installing LeRobot and we can begin assembling the SO100 arms :robot:.
|
||||
Every time you now want to use LeRobot you can go to the `~/lerobot` folder where we installed LeRobot and run one of the commands.
|
||||
|
||||
## C. Configure the motors
|
||||
|
||||
> [!NOTE]
|
||||
> Throughout this tutorial you will find videos on how to do the steps, the full video tutorial can be found here: [assembly video](https://www.youtube.com/watch?v=FioA2oeFZ5I).
|
||||
|
||||
### 1. Find the USB ports associated to each arm
|
||||
|
||||
Designate one bus servo adapter and 6 motors for your leader arm, and similarly the other bus servo adapter and 6 motors for the follower arm. It's convenient to label them and write on each motor if it's for the follower `F` or for the leader `L` and it's ID from 1 to 6 (F1...F6 and L1...L6).
|
||||
|
||||
#### a. Run the script to find port
|
||||
|
||||
<details>
|
||||
<summary><strong>Video finding port</strong></summary>
|
||||
<video src="https://github.com/user-attachments/assets/4a21a14d-2046-4805-93c4-ee97a30ba33f"></video>
|
||||
<video src="https://github.com/user-attachments/assets/1cc3aecf-c16d-4ff9-aec7-8c175afbbce2"></video>
|
||||
</details>
|
||||
|
||||
To find the port for each bus servo adapter, run the utility script:
|
||||
```bash
|
||||
python lerobot/scripts/find_motors_bus_port.py
|
||||
```
|
||||
|
||||
#### b. Example outputs
|
||||
|
||||
Example output when identifying the leader arm's port (e.g., `/dev/tty.usbmodem575E0031751` on Mac, or possibly `/dev/ttyACM0` on Linux):
|
||||
```
|
||||
Finding all available ports for the MotorBus.
|
||||
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
|
||||
Remove the usb cable from your MotorsBus and press Enter when done.
|
||||
|
||||
[...Disconnect leader arm and press Enter...]
|
||||
|
||||
The port of this MotorsBus is /dev/tty.usbmodem575E0031751
|
||||
Reconnect the usb cable.
|
||||
```
|
||||
Example output when identifying the follower arm's port (e.g., `/dev/tty.usbmodem575E0032081`, or possibly `/dev/ttyACM1` on Linux):
|
||||
```
|
||||
Finding all available ports for the MotorBus.
|
||||
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
|
||||
Remove the usb cable from your MotorsBus and press Enter when done.
|
||||
|
||||
[...Disconnect follower arm and press Enter...]
|
||||
|
||||
The port of this MotorsBus is /dev/tty.usbmodem575E0032081
|
||||
Reconnect the usb cable.
|
||||
```
|
||||
|
||||
#### c. Troubleshooting
|
||||
On Linux, you might need to give access to the USB ports by running:
|
||||
```bash
|
||||
sudo chmod 666 /dev/ttyACM0
|
||||
sudo chmod 666 /dev/ttyACM1
|
||||
```
|
||||
|
||||
#### d. Update config file
|
||||
|
||||
IMPORTANTLY: Now that you have your ports, update the **port** default values of [`SO100RobotConfig`](../lerobot/common/robot_devices/robots/configs.py). You will find something like:
|
||||
```diff
|
||||
@RobotConfig.register_subclass("so100")
|
||||
@dataclass
|
||||
class So100RobotConfig(ManipulatorRobotConfig):
|
||||
calibration_dir: str = ".cache/calibration/so100"
|
||||
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||
# the number of motors in your follower arms.
|
||||
max_relative_target: int | None = None
|
||||
|
||||
leader_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"main": FeetechMotorsBusConfig(
|
||||
- port="/dev/tty.usbmodem58760431091",
|
||||
+ port="{ADD YOUR LEADER PORT}",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "sts3215"],
|
||||
"shoulder_lift": [2, "sts3215"],
|
||||
"elbow_flex": [3, "sts3215"],
|
||||
"wrist_flex": [4, "sts3215"],
|
||||
"wrist_roll": [5, "sts3215"],
|
||||
"gripper": [6, "sts3215"],
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
follower_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"main": FeetechMotorsBusConfig(
|
||||
- port="/dev/tty.usbmodem585A0076891",
|
||||
+ port="{ADD YOUR FOLLOWER PORT}",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "sts3215"],
|
||||
"shoulder_lift": [2, "sts3215"],
|
||||
"elbow_flex": [3, "sts3215"],
|
||||
"wrist_flex": [4, "sts3215"],
|
||||
"wrist_roll": [5, "sts3215"],
|
||||
"gripper": [6, "sts3215"],
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
### 2. Assembling the Base
|
||||
Let's begin with assembling the follower arm base
|
||||
|
||||
#### a. Set IDs for all 12 motors
|
||||
|
||||
<details>
|
||||
<summary><strong>Video configuring motor</strong></summary>
|
||||
<video src="https://github.com/user-attachments/assets/ef9b3317-2e11-4858-b9d3-f0a02fb48ecf"></video>
|
||||
<video src="https://github.com/user-attachments/assets/f36b5ed5-c803-4ebe-8947-b39278776a0d"></video>
|
||||
</details>
|
||||
|
||||
Plug your first motor F1 and run this script to set its ID to 1. It will also set its present position to 2048, so expect your motor to rotate. Replace the text after --port to the corresponding follower control board port and run this command in cmd:
|
||||
```bash
|
||||
python lerobot/scripts/configure_motor.py \
|
||||
--port /dev/tty.usbmodem58760432961 \
|
||||
--brand feetech \
|
||||
--model sts3215 \
|
||||
--baudrate 1000000 \
|
||||
--id 1
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> These motors are currently limited. They can take values between 0 and 4096 only, which corresponds to a full turn. They can't turn more than that. 2048 is at the middle of this range, so we can take -2048 steps (180 degrees anticlockwise) and reach the maximum range, or take +2048 steps (180 degrees clockwise) and reach the maximum range. The configuration step also sets the homing offset to 0, so that if you misassembled the arm, you can always update the homing offset to account for a shift up to ± 2048 steps (± 180 degrees).
|
||||
|
||||
Then unplug your motor and plug the second motor and set its ID to 2.
|
||||
```bash
|
||||
python lerobot/scripts/configure_motor.py \
|
||||
--port /dev/tty.usbmodem58760432961 \
|
||||
--brand feetech \
|
||||
--model sts3215 \
|
||||
--baudrate 1000000 \
|
||||
--id 2
|
||||
```
|
||||
|
||||
Redo the process for all your motors until ID 6. Do the same for the 6 motors of the leader arm.
|
||||
|
||||
|
||||
#### b. Remove the gears of the 6 leader motors
|
||||
|
||||
<details>
|
||||
<summary><strong>Video removing gears</strong></summary>
|
||||
|
||||
<video src="https://github.com/user-attachments/assets/0c95b88c-5b85-413d-ba19-aee2f864f2a7"></video>
|
||||
|
||||
</details>
|
||||
|
||||
|
||||
Follow the video for removing gears. You need to remove the gear for the motors of the leader arm. As a result, you will only use the position encoding of the motor and reduce friction to more easily operate the leader arm.
|
||||
|
||||
## D. Step-by-Step Assembly Instructions
|
||||
|
||||
**Step 1: Clean Parts**
|
||||
- Remove all support material from the 3D-printed parts.
|
||||
---
|
||||
|
||||
### Additional Guidance
|
||||
|
||||
<details>
|
||||
<summary><strong>Video assembling arms</strong></summary>
|
||||
|
||||
<video src="https://github.com/user-attachments/assets/488a39de-0189-4461-9de3-05b015f90cca"></video>
|
||||
|
||||
</details>
|
||||
|
||||
**Note:**
|
||||
This video provides visual guidance for assembling the arms, but it doesn't specify when or how to do the wiring. Inserting the cables beforehand is much easier than doing it afterward. The first arm may take a bit more than 1 hour to assemble, but once you get used to it, you can assemble the second arm in under 1 hour.
|
||||
|
||||
---
|
||||
|
||||
### First Motor
|
||||
|
||||
**Step 2: Insert Wires**
|
||||
- Insert two wires into the first motor.
|
||||
|
||||
<img src="../media/tutorial/img1.jpg" style="height:300px;">
|
||||
|
||||
**Step 3: Install in Base**
|
||||
- Place the first motor into the base.
|
||||
|
||||
<img src="../media/tutorial/img2.jpg" style="height:300px;">
|
||||
|
||||
**Step 4: Secure Motor**
|
||||
- Fasten the motor with 4 screws. Two from the bottom and two from top.
|
||||
|
||||
**Step 5: Attach Motor Holder**
|
||||
- Slide over the first motor holder and fasten it using two screws (one on each side).
|
||||
|
||||
<img src="../media/tutorial/img4.jpg" style="height:300px;">
|
||||
|
||||
**Step 6: Attach Motor Horns**
|
||||
- Install both motor horns, securing the top horn with a screw. Try not to move the motor position when attaching the motor horn, especially for the leader arms, where we removed the gears.
|
||||
|
||||
<img src="../media/tutorial/img5.jpg" style="height:300px;">
|
||||
<details>
|
||||
<summary><strong>Video adding motor horn</strong></summary>
|
||||
<video src="https://github.com/user-attachments/assets/ef3391a4-ad05-4100-b2bd-1699bf86c969"></video>
|
||||
</details>
|
||||
|
||||
**Step 7: Attach Shoulder Part**
|
||||
- Route one wire to the back of the robot and the other to the left or in photo towards you (see photo).
|
||||
- Attach the shoulder part.
|
||||
|
||||
<img src="../media/tutorial/img6.jpg" style="height:300px;">
|
||||
|
||||
**Step 8: Secure Shoulder**
|
||||
- Tighten the shoulder part with 4 screws on top and 4 on the bottom
|
||||
*(access bottom holes by turning the shoulder).*
|
||||
|
||||
---
|
||||
|
||||
### Second Motor Assembly
|
||||
|
||||
**Step 9: Install Motor 2**
|
||||
- Slide the second motor in from the top and link the wire from motor 1 to motor 2.
|
||||
|
||||
<img src="../media/tutorial/img8.jpg" style="height:300px;">
|
||||
|
||||
**Step 10: Attach Shoulder Holder**
|
||||
- Add the shoulder motor holder.
|
||||
- Ensure the wire from motor 1 to motor 2 goes behind the holder while the other wire is routed upward (see photo).
|
||||
- This part can be tight to assemble, you can use a workbench like the image or a similar setup to push the part around the motor.
|
||||
|
||||
<div style="display: flex;">
|
||||
<img src="../media/tutorial/img9.jpg" style="height:250px;">
|
||||
<img src="../media/tutorial/img10.jpg" style="height:250px;">
|
||||
<img src="../media/tutorial/img12.jpg" style="height:250px;">
|
||||
</div>
|
||||
|
||||
**Step 11: Secure Motor 2**
|
||||
- Fasten the second motor with 4 screws.
|
||||
|
||||
**Step 12: Attach Motor Horn**
|
||||
- Attach both motor horns to motor 2, again use the horn screw.
|
||||
|
||||
**Step 13: Attach Base**
|
||||
- Install the base attachment using 2 screws.
|
||||
|
||||
<img src="../media/tutorial/img11.jpg" style="height:300px;">
|
||||
|
||||
**Step 14: Attach Upper Arm**
|
||||
- Attach the upper arm with 4 screws on each side.
|
||||
|
||||
<img src="../media/tutorial/img13.jpg" style="height:300px;">
|
||||
|
||||
---
|
||||
|
||||
### Third Motor Assembly
|
||||
|
||||
**Step 15: Install Motor 3**
|
||||
- Route the motor cable from motor 2 through the cable holder to motor 3, then secure motor 3 with 4 screws.
|
||||
|
||||
**Step 16: Attach Motor Horn**
|
||||
- Attach both motor horns to motor 3 and secure one again with a horn screw.
|
||||
|
||||
<img src="../media/tutorial/img14.jpg" style="height:300px;">
|
||||
|
||||
**Step 17: Attach Forearm**
|
||||
- Connect the forearm to motor 3 using 4 screws on each side.
|
||||
|
||||
<img src="../media/tutorial/img15.jpg" style="height:300px;">
|
||||
|
||||
---
|
||||
|
||||
### Fourth Motor Assembly
|
||||
|
||||
**Step 18: Install Motor 4**
|
||||
- Slide in motor 4, attach the cable from motor 3, and secure the cable in its holder with a screw.
|
||||
|
||||
<div style="display: flex;">
|
||||
<img src="../media/tutorial/img16.jpg" style="height:300px;">
|
||||
<img src="../media/tutorial/img19.jpg" style="height:300px;">
|
||||
</div>
|
||||
|
||||
**Step 19: Attach Motor Holder 4**
|
||||
- Install the fourth motor holder (a tight fit). Ensure one wire is routed upward and the wire from motor 3 is routed downward (see photo).
|
||||
|
||||
<img src="../media/tutorial/img17.jpg" style="height:300px;">
|
||||
|
||||
**Step 20: Secure Motor 4 & Attach Horn**
|
||||
- Fasten motor 4 with 4 screws and attach its motor horns, use for one a horn screw.
|
||||
|
||||
<img src="../media/tutorial/img18.jpg" style="height:300px;">
|
||||
|
||||
---
|
||||
|
||||
### Wrist Assembly
|
||||
|
||||
**Step 21: Install Motor 5**
|
||||
- Insert motor 5 into the wrist holder and secure it with 2 front screws.
|
||||
|
||||
<img src="../media/tutorial/img20.jpg" style="height:300px;">
|
||||
|
||||
**Step 22: Attach Wrist**
|
||||
- Connect the wire from motor 4 to motor 5. And already insert the other wire for the gripper.
|
||||
- Secure the wrist to motor 4 using 4 screws on both sides.
|
||||
|
||||
<img src="../media/tutorial/img22.jpg" style="height:300px;">
|
||||
|
||||
**Step 23: Attach Wrist Horn**
|
||||
- Install only one motor horn on the wrist motor and secure it with a horn screw.
|
||||
|
||||
<img src="../media/tutorial/img23.jpg" style="height:300px;">
|
||||
|
||||
---
|
||||
|
||||
### Follower Configuration
|
||||
|
||||
**Step 24: Attach Gripper**
|
||||
- Attach the gripper to motor 5.
|
||||
|
||||
<img src="../media/tutorial/img24.jpg" style="height:300px;">
|
||||
|
||||
**Step 25: Install Gripper Motor**
|
||||
- Insert the gripper motor, connect the motor wire from motor 5 to motor 6, and secure it with 3 screws on each side.
|
||||
|
||||
<img src="../media/tutorial/img25.jpg" style="height:300px;">
|
||||
|
||||
**Step 26: Attach Gripper Horn & Claw**
|
||||
- Attach the motor horns and again use a horn screw.
|
||||
- Install the gripper claw and secure it with 4 screws on both sides.
|
||||
|
||||
<img src="../media/tutorial/img26.jpg" style="height:300px;">
|
||||
|
||||
**Step 27: Mount Controller**
|
||||
- Attach the motor controller on the back.
|
||||
|
||||
<div style="display: flex;">
|
||||
<img src="../media/tutorial/img27.jpg" style="height:300px;">
|
||||
<img src="../media/tutorial/img28.jpg" style="height:300px;">
|
||||
</div>
|
||||
|
||||
*Assembly complete – proceed to Leader arm assembly.*
|
||||
|
||||
---
|
||||
|
||||
### Leader Configuration
|
||||
|
||||
For the leader configuration, perform **Steps 1–23**. Make sure that you removed the motor gears from the motors.
|
||||
|
||||
**Step 24: Attach Leader Holder**
|
||||
- Mount the leader holder onto the wrist and secure it with a screw.
|
||||
|
||||
<img src="../media/tutorial/img29.jpg" style="height:300px;">
|
||||
|
||||
**Step 25: Attach Handle**
|
||||
- Attach the handle to motor 5 using 4 screws.
|
||||
|
||||
<img src="../media/tutorial/img30.jpg" style="height:300px;">
|
||||
|
||||
**Step 26: Install Gripper Motor**
|
||||
- Insert the gripper motor, secure it with 3 screws on each side, attach a motor horn using a horn screw, and connect the motor wire.
|
||||
|
||||
<img src="../media/tutorial/img31.jpg" style="height:300px;">
|
||||
|
||||
**Step 27: Attach Trigger**
|
||||
- Attach the follower trigger with 4 screws.
|
||||
|
||||
<img src="../media/tutorial/img32.jpg" style="height:300px;">
|
||||
|
||||
**Step 28: Mount Controller**
|
||||
- Attach the motor controller on the back.
|
||||
|
||||
<div style="display: flex;">
|
||||
<img src="../media/tutorial/img27.jpg" style="height:300px;">
|
||||
<img src="../media/tutorial/img28.jpg" style="height:300px;">
|
||||
</div>
|
||||
|
||||
*Assembly complete – proceed to calibration.*
|
||||
|
||||
|
||||
## E. Calibrate
|
||||
|
||||
Next, you'll need to calibrate your SO-100 robot to ensure that the leader and follower arms have the same position values when they are in the same physical position.
|
||||
The calibration process is very important because it allows a neural network trained on one SO-100 robot to work on another.
|
||||
|
||||
#### Manual calibration of follower arm
|
||||
|
||||
You will need to move the follower arm to these positions sequentially, note that the rotated position is on the right side of the robot and you have to open the gripper fully.
|
||||
|
||||
| 1. Middle position | 2. Zero position | 3. Rotated position | 4. Rest position |
|
||||
| ------------ |------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| <img src="../media/so101/follower_middle.webp?raw=true" alt="SO-101 leader arm middle position" title="SO-101 leader arm middle position" style="width:100%;"> | <img src="../media/so101/follower_zero.webp?raw=true" alt="SO-101 leader arm zero position" title="SO-101 leader arm zero position" style="width:100%;"> | <img src="../media/so101/follower_rotated.webp?raw=true" alt="SO-101 leader arm rotated position" title="SO-101 leader arm rotated position" style="width:100%;"> | <img src="../media/so101/follower_rest.webp?raw=true" alt="SO-101 leader arm rest position" title="SO-101 leader arm rest position" style="width:100%;"> |
|
||||
|
||||
Make sure both arms are connected and run this script to launch manual calibration:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so100 \
|
||||
--robot.cameras='{}' \
|
||||
--control.type=calibrate \
|
||||
--control.arms='["main_follower"]'
|
||||
```
|
||||
|
||||
#### Manual calibration of leader arm
|
||||
You will also need to move the leader arm to these positions sequentially:
|
||||
|
||||
| 1. Middle position | 2. Zero position | 3. Rotated position | 4. Rest position |
|
||||
| ------------ |------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| <img src="../media/so101/leader_middle.webp?raw=true" alt="SO-100 leader arm middle position" title="SO-100 leader arm middle position" style="width:100%;"> | <img src="../media/so101/leader_zero.webp?raw=true" alt="SO-100 leader arm zero position" title="SO-100 leader arm zero position" style="width:100%;"> | <img src="../media/so101/leader_rotated.webp?raw=true" alt="SO-100 leader arm rotated position" title="SO-100 leader arm rotated position" style="width:100%;"> | <img src="../media/so101/leader_rest.webp?raw=true" alt="SO-100 leader arm rest position" title="SO-100 leader arm rest position" style="width:100%;"> |
|
||||
|
||||
Run this script to launch manual calibration:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so100 \
|
||||
--robot.cameras='{}' \
|
||||
--control.type=calibrate \
|
||||
--control.arms='["main_leader"]'
|
||||
```
|
||||
|
||||
## F. Teleoperate
|
||||
|
||||
**Simple teleop**
|
||||
Then you are ready to teleoperate your robot! Run this simple script (it won't connect and display the cameras):
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so100 \
|
||||
--robot.cameras='{}' \
|
||||
--control.type=teleoperate
|
||||
```
|
||||
|
||||
|
||||
#### a. Teleop with displaying cameras
|
||||
Follow [this guide to setup your cameras](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#c-add-your-cameras-with-opencvcamera). Then you will be able to display the cameras on your computer while you are teleoperating by running the following code. This is useful to prepare your setup before recording your first dataset.
|
||||
|
||||
> **NOTE:** To visualize the data, enable `--control.display_data=true`. This streams the data using `rerun`.
|
||||
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so100 \
|
||||
--control.type=teleoperate
|
||||
```
|
||||
|
||||
## G. Record a dataset
|
||||
|
||||
Once you're familiar with teleoperation, you can record your first dataset with SO-100.
|
||||
|
||||
If you want to use the Hugging Face hub features for uploading your dataset and you haven't previously done it, make sure you've logged in using a write-access token, which can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens):
|
||||
```bash
|
||||
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
|
||||
```
|
||||
|
||||
Store your Hugging Face repository name in a variable to run these commands:
|
||||
```bash
|
||||
HF_USER=$(huggingface-cli whoami | head -n 1)
|
||||
echo $HF_USER
|
||||
```
|
||||
|
||||
Record 2 episodes and upload your dataset to the hub:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so100 \
|
||||
--control.type=record \
|
||||
--control.fps=30 \
|
||||
--control.single_task="Grasp a lego block and put it in the bin." \
|
||||
--control.repo_id=${HF_USER}/so100_test \
|
||||
--control.tags='["so100","tutorial"]' \
|
||||
--control.warmup_time_s=5 \
|
||||
--control.episode_time_s=30 \
|
||||
--control.reset_time_s=30 \
|
||||
--control.num_episodes=2 \
|
||||
--control.push_to_hub=true
|
||||
```
|
||||
|
||||
Note: You can resume recording by adding `--control.resume=true`.
|
||||
|
||||
## H. Visualize a dataset
|
||||
|
||||
If you uploaded your dataset to the hub with `--control.push_to_hub=true`, you can [visualize your dataset online](https://huggingface.co/spaces/lerobot/visualize_dataset) by copy pasting your repo id given by:
|
||||
```bash
|
||||
echo ${HF_USER}/so100_test
|
||||
```
|
||||
|
||||
If you didn't upload with `--control.push_to_hub=false`, you can also visualize it locally with (a window can be opened in the browser `http://127.0.0.1:9090` with the visualization tool):
|
||||
```bash
|
||||
python lerobot/scripts/visualize_dataset_html.py \
|
||||
--repo-id ${HF_USER}/so100_test \
|
||||
--local-files-only 1
|
||||
```
|
||||
|
||||
## I. Replay an episode
|
||||
|
||||
Now try to replay the first episode on your robot:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so100 \
|
||||
--control.type=replay \
|
||||
--control.fps=30 \
|
||||
--control.repo_id=${HF_USER}/so100_test \
|
||||
--control.episode=0
|
||||
```
|
||||
|
||||
## J. Train a policy
|
||||
|
||||
To train a policy to control your robot, use the [`python lerobot/scripts/train.py`](../lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
|
||||
```bash
|
||||
python lerobot/scripts/train.py \
|
||||
--dataset.repo_id=${HF_USER}/so100_test \
|
||||
--policy.type=act \
|
||||
--output_dir=outputs/train/act_so100_test \
|
||||
--job_name=act_so100_test \
|
||||
--policy.device=cuda \
|
||||
--wandb.enable=true
|
||||
```
|
||||
|
||||
Let's explain it:
|
||||
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/so100_test`.
|
||||
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor states, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
|
||||
4. We provided `policy.device=cuda` since we are training on a Nvidia GPU, but you could use `policy.device=mps` to train on Apple silicon.
|
||||
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
|
||||
|
||||
Training should take several hours. You will find checkpoints in `outputs/train/act_so100_test/checkpoints`.
|
||||
|
||||
To resume training from a checkpoint, below is an example command to resume from `last` checkpoint of the `act_so100_test` policy:
|
||||
```bash
|
||||
python lerobot/scripts/train.py \
|
||||
--config_path=outputs/train/act_so100_test/checkpoints/last/pretrained_model/train_config.json \
|
||||
--resume=true
|
||||
```
|
||||
|
||||
## K. Evaluate your policy
|
||||
|
||||
You can use the `record` function from [`lerobot/scripts/control_robot.py`](../lerobot/scripts/control_robot.py) but with a policy checkpoint as input. For instance, run this command to record 10 evaluation episodes:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so100 \
|
||||
--control.type=record \
|
||||
--control.fps=30 \
|
||||
--control.single_task="Grasp a lego block and put it in the bin." \
|
||||
--control.repo_id=${HF_USER}/eval_act_so100_test \
|
||||
--control.tags='["tutorial"]' \
|
||||
--control.warmup_time_s=5 \
|
||||
--control.episode_time_s=30 \
|
||||
--control.reset_time_s=30 \
|
||||
--control.num_episodes=10 \
|
||||
--control.push_to_hub=true \
|
||||
--control.policy.path=outputs/train/act_so100_test/checkpoints/last/pretrained_model
|
||||
```
|
||||
|
||||
As you can see, it's almost the same command as previously used to record your training dataset. Two things changed:
|
||||
1. There is an additional `--control.policy.path` argument which indicates the path to your policy checkpoint with (e.g. `outputs/train/eval_act_so100_test/checkpoints/last/pretrained_model`). You can also use the model repository if you uploaded a model checkpoint to the hub (e.g. `${HF_USER}/act_so100_test`).
|
||||
2. The name of dataset begins by `eval` to reflect that you are running inference (e.g. `${HF_USER}/eval_act_so100_test`).
|
||||
|
||||
## L. More Information
|
||||
|
||||
Follow this [previous tutorial](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#4-train-a-policy-on-your-data) for a more in-depth tutorial on controlling real robots with LeRobot.
|
||||
|
||||
> [!TIP]
|
||||
> If you have any questions or need help, please reach out on [Discord](https://discord.com/invite/s3KuuzsPFb) in the channel [`#so100-arm`](https://discord.com/channels/1216765309076115607/1237741463832363039).
|
||||
470
lerobot/common/robots/so100_follower/so100.md
Normal file
@@ -0,0 +1,470 @@
|
||||
# SO-100
|
||||
|
||||
In the steps below, we explain how to assemble the SO-100 robot.
|
||||
|
||||
## Source the parts
|
||||
|
||||
Follow this [README](https://github.com/TheRobotStudio/SO-ARM100/blob/main/SO100.md). It contains the bill of materials, with a link to source the parts, as well as the instructions to 3D print the parts. And advise if it's your first time printing or if you don't own a 3D printer.
|
||||
|
||||
## Install LeRobot 🤗
|
||||
|
||||
To install LeRobot, follow our [Installation Guide](./installation)
|
||||
|
||||
In addition to these instructions, you need to install the Feetech SDK:
|
||||
```bash
|
||||
pip install -e ".[feetech]"
|
||||
```
|
||||
|
||||
## Step-by-Step Assembly Instructions
|
||||
|
||||
## Remove the gears of the 6 leader motors
|
||||
|
||||
<details>
|
||||
<summary><strong>Video removing gears</strong></summary>
|
||||
|
||||
<video src="https://github.com/user-attachments/assets/0c95b88c-5b85-413d-ba19-aee2f864f2a7"></video>
|
||||
|
||||
</details>
|
||||
|
||||
Follow the video for removing gears. You need to remove the gear for the motors of the leader arm. As a result, you will only use the position encoding of the motor and reduce friction to more easily operate the leader arm.
|
||||
|
||||
### Clean Parts
|
||||
Remove all support material from the 3D-printed parts. The easiest way to do this is using a small screwdriver to get underneath the support material.
|
||||
|
||||
### Additional Guidance
|
||||
|
||||
<details>
|
||||
<summary><strong>Video assembling arms</strong></summary>
|
||||
|
||||
<video src="https://github.com/user-attachments/assets/488a39de-0189-4461-9de3-05b015f90cca"></video>
|
||||
|
||||
</details>
|
||||
|
||||
**Note:**
|
||||
This video provides visual guidance for assembling the arms, but it doesn't specify when or how to do the wiring. Inserting the cables beforehand is much easier than doing it afterward. The first arm may take a bit more than 1 hour to assemble, but once you get used to it, you can assemble the second arm in under 1 hour.
|
||||
|
||||
---
|
||||
|
||||
### First Motor
|
||||
|
||||
**Step 2: Insert Wires**
|
||||
- Insert two wires into the first motor.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/blob/main/lerobot/so100_assembly_1.jpg" style="height:300px;">
|
||||
|
||||
**Step 3: Install in Base**
|
||||
- Place the first motor into the base.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/blob/main/lerobot/so100_assembly_2.jpg" style="height:300px;">
|
||||
|
||||
**Step 4: Secure Motor**
|
||||
- Fasten the motor with 4 screws. Two from the bottom and two from top.
|
||||
|
||||
**Step 5: Attach Motor Holder**
|
||||
- Slide over the first motor holder and fasten it using two screws (one on each side).
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/blob/main/lerobot/so100_assembly_4.jpg" style="height:300px;">
|
||||
|
||||
**Step 6: Attach Motor Horns**
|
||||
- Install both motor horns, securing the top horn with a screw. Try not to move the motor position when attaching the motor horn, especially for the leader arms, where we removed the gears.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/blob/main/lerobot/so100_assembly_5.jpg" style="height:300px;">
|
||||
<details>
|
||||
<summary><strong>Video adding motor horn</strong></summary>
|
||||
<video src="https://github.com/user-attachments/assets/ef3391a4-ad05-4100-b2bd-1699bf86c969"></video>
|
||||
</details>
|
||||
|
||||
**Step 7: Attach Shoulder Part**
|
||||
- Route one wire to the back of the robot and the other to the left or towards you (see photo).
|
||||
- Attach the shoulder part.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/blob/main/lerobot/so100_assembly_6.jpg" style="height:300px;">
|
||||
|
||||
**Step 8: Secure Shoulder**
|
||||
- Tighten the shoulder part with 4 screws on top and 4 on the bottom
|
||||
*(access bottom holes by turning the shoulder).*
|
||||
|
||||
---
|
||||
|
||||
### Second Motor Assembly
|
||||
|
||||
**Step 9: Install Motor 2**
|
||||
- Slide the second motor in from the top and link the wire from motor 1 to motor 2.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/blob/main/lerobot/so100_assembly_8.jpg" style="height:300px;">
|
||||
|
||||
**Step 10: Attach Shoulder Holder**
|
||||
- Add the shoulder motor holder.
|
||||
- Ensure the wire from motor 1 to motor 2 goes behind the holder while the other wire is routed upward (see photo).
|
||||
- This part can be tight to assemble, you can use a workbench like the image or a similar setup to push the part around the motor.
|
||||
|
||||
<div style="display: flex;">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/blob/main/lerobot/so100_assembly_9.jpg" style="height:250px;">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/blob/main/lerobot/so100_assembly_10.jpg" style="height:250px;">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/blob/main/lerobot/so100_assembly_12.jpg" style="height:250px;">
|
||||
</div>
|
||||
|
||||
**Step 11: Secure Motor 2**
|
||||
- Fasten the second motor with 4 screws.
|
||||
|
||||
**Step 12: Attach Motor Horn**
|
||||
- Attach both motor horns to motor 2, again use the horn screw.
|
||||
|
||||
**Step 13: Attach Base**
|
||||
- Install the base attachment using 2 screws.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/blob/main/lerobot/so100_assembly_11.jpg" style="height:300px;">
|
||||
|
||||
**Step 14: Attach Upper Arm**
|
||||
- Attach the upper arm with 4 screws on each side.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/blob/main/lerobot/so100_assembly_13.jpg" style="height:300px;">
|
||||
|
||||
---
|
||||
|
||||
### Third Motor Assembly
|
||||
|
||||
**Step 15: Install Motor 3**
|
||||
- Route the motor cable from motor 2 through the cable holder to motor 3, then secure motor 3 with 4 screws.
|
||||
|
||||
**Step 16: Attach Motor Horn**
|
||||
- Attach both motor horns to motor 3 and secure one again with a horn screw.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/blob/main/lerobot/so100_assembly_14.jpg" style="height:300px;">
|
||||
|
||||
**Step 17: Attach Forearm**
|
||||
- Connect the forearm to motor 3 using 4 screws on each side.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/blob/main/lerobot/so100_assembly_15.jpg" style="height:300px;">
|
||||
|
||||
---
|
||||
|
||||
### Fourth Motor Assembly
|
||||
|
||||
**Step 18: Install Motor 4**
|
||||
- Slide in motor 4, attach the cable from motor 3, and secure the cable in its holder with a screw.
|
||||
|
||||
<div style="display: flex;">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/blob/main/lerobot/so100_assembly_16.jpg" style="height:300px;">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/blob/main/lerobot/so100_assembly_19.jpg" style="height:300px;">
|
||||
</div>
|
||||
|
||||
**Step 19: Attach Motor Holder 4**
|
||||
- Install the fourth motor holder (a tight fit). Ensure one wire is routed upward and the wire from motor 3 is routed downward (see photo).
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/blob/main/lerobot/so100_assembly_17.jpg" style="height:300px;">
|
||||
|
||||
**Step 20: Secure Motor 4 & Attach Horn**
|
||||
- Fasten motor 4 with 4 screws and attach its motor horns, use for one a horn screw.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/blob/main/lerobot/so100_assembly_18.jpg" style="height:300px;">
|
||||
|
||||
---
|
||||
|
||||
### Wrist Assembly
|
||||
|
||||
**Step 21: Install Motor 5**
|
||||
- Insert motor 5 into the wrist holder and secure it with 2 front screws.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/blob/main/lerobot/so100_assembly_20.jpg" style="height:300px;">
|
||||
|
||||
**Step 22: Attach Wrist**
|
||||
- Connect the wire from motor 4 to motor 5. And already insert the other wire for the gripper.
|
||||
- Secure the wrist to motor 4 using 4 screws on both sides.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/blob/main/lerobot/so100_assembly_22.jpg" style="height:300px;">
|
||||
|
||||
**Step 23: Attach Wrist Horn**
|
||||
- Install only one motor horn on the wrist motor and secure it with a horn screw.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/blob/main/lerobot/so100_assembly_23.jpg" style="height:300px;">
|
||||
|
||||
---
|
||||
|
||||
### Follower Configuration
|
||||
|
||||
**Step 24: Attach Gripper**
|
||||
- Attach the gripper to motor 5.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/blob/main/lerobot/so100_assembly_24.jpg" style="height:300px;">
|
||||
|
||||
**Step 25: Install Gripper Motor**
|
||||
- Insert the gripper motor, connect the motor wire from motor 5 to motor 6, and secure it with 3 screws on each side.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/blob/main/lerobot/so100_assembly_25.jpg" style="height:300px;">
|
||||
|
||||
**Step 26: Attach Gripper Horn & Claw**
|
||||
- Attach the motor horns and again use a horn screw.
|
||||
- Install the gripper claw and secure it with 4 screws on both sides.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/blob/main/lerobot/so100_assembly_26.jpg" style="height:300px;">
|
||||
|
||||
**Step 27: Mount Controller**
|
||||
- Attach the motor controller to the back of the robot.
|
||||
|
||||
<div style="display: flex;">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/blob/main/lerobot/so100_assembly_27.jpg" style="height:300px;">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/blob/main/lerobot/so100_assembly_28.jpg" style="height:300px;">
|
||||
</div>
|
||||
|
||||
*Assembly complete – proceed to Leader arm assembly.*
|
||||
|
||||
---
|
||||
|
||||
### Leader Configuration
|
||||
|
||||
For the leader configuration, perform **Steps 1–23**. Make sure that you removed the motor gears from the motors.
|
||||
|
||||
**Step 24: Attach Leader Holder**
|
||||
- Mount the leader holder onto the wrist and secure it with a screw.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/blob/main/lerobot/so100_assembly_29.jpg" style="height:300px;">
|
||||
|
||||
**Step 25: Attach Handle**
|
||||
- Attach the handle to motor 5 using 4 screws.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/blob/main/lerobot/so100_assembly_30.jpg" style="height:300px;">
|
||||
|
||||
**Step 26: Install Gripper Motor**
|
||||
- Insert the gripper motor, secure it with 3 screws on each side, attach a motor horn using a horn screw, and connect the motor wire.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/blob/main/lerobot/so100_assembly_31.jpg" style="height:300px;">
|
||||
|
||||
**Step 27: Attach Trigger**
|
||||
- Attach the follower trigger with 4 screws.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/blob/main/lerobot/so100_assembly_32.jpg" style="height:300px;">
|
||||
|
||||
**Step 28: Mount Controller**
|
||||
- Attach the motor controller to the back of the robot.
|
||||
|
||||
<div style="display: flex;">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/blob/main/lerobot/so100_assembly_27.jpg" style="height:300px;">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/blob/main/lerobot/so100_assembly_28.jpg" style="height:300px;">
|
||||
</div>
|
||||
|
||||
## Configure the motors
|
||||
|
||||
### 1. Find the USB ports associated with each arm
|
||||
|
||||
To find the port for each bus servo adapter, run this script:
|
||||
```bash
|
||||
python lerobot/find_port.py
|
||||
```
|
||||
|
||||
<hfoptions id="example">
|
||||
<hfoption id="Mac">
|
||||
|
||||
Example output:
|
||||
|
||||
```
|
||||
Finding all available ports for the MotorBus.
|
||||
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
|
||||
Remove the USB cable from your MotorsBus and press Enter when done.
|
||||
|
||||
[...Disconnect corresponding leader or follower arm and press Enter...]
|
||||
|
||||
The port of this MotorsBus is /dev/tty.usbmodem575E0032081
|
||||
Reconnect the USB cable.
|
||||
```
|
||||
|
||||
Where the found port is: `/dev/tty.usbmodem575E0032081` corresponding to your leader or follower arm.
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="Linux">
|
||||
|
||||
On Linux, you might need to give access to the USB ports by running:
|
||||
```bash
|
||||
sudo chmod 666 /dev/ttyACM0
|
||||
sudo chmod 666 /dev/ttyACM1
|
||||
```
|
||||
|
||||
Example output:
|
||||
|
||||
```
|
||||
Finding all available ports for the MotorBus.
|
||||
['/dev/ttyACM0', '/dev/ttyACM1']
|
||||
Remove the usb cable from your MotorsBus and press Enter when done.
|
||||
|
||||
[...Disconnect corresponding leader or follower arm and press Enter...]
|
||||
|
||||
The port of this MotorsBus is /dev/ttyACM1
|
||||
Reconnect the USB cable.
|
||||
```
|
||||
|
||||
Where the found port is: `/dev/ttyACM1` corresponding to your leader or follower arm.
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
### 2. Set the motors ids and baudrates
|
||||
|
||||
Each motor is identified by a unique id on the bus. When brand new, motors usually come with a default id of `1`. For the communication to work properly between the motors and the controller, we first need to set a unique, different id to each motor. Additionally, the speed at which data is transmitted on the bus is determined by the baudrate. In order to talk to each other, the controller and all the motors need to be configured with the same baudrate.
|
||||
|
||||
To that end, we first need to connect to each motor individually with the controller in order to set these. Since we will write these parameters in the non-volatile section of the motors' internal memory (EEPROM), we'll only need to do this once.
|
||||
|
||||
If you are repurposing motors from another robot, you will probably also need to perform this step as the ids and baudrate likely won't match.
|
||||
|
||||
#### Follower
|
||||
|
||||
Connect the usb cable from your computer and the power supply to the follower arm's controller board. Then, run the following command or run the API example with the port you got from the previous step. You'll also need to give your leader arm a name with the `id` parameter.
|
||||
|
||||
For a visual reference on how to set the motor ids please refer to [this video](http://localhost:5173/so101#setup-motors-video) where we follow the process for the SO101 arm.
|
||||
|
||||
<hfoptions id="setup_motors">
|
||||
<hfoption id="Command">
|
||||
```bash
|
||||
python -m lerobot.setup_motors \
|
||||
--robot.type=so100_follower \
|
||||
--robot.port=/dev/tty.usbmodem585A0076841 # <- paste here the port found at previous step
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="API example">
|
||||
```python
|
||||
from lerobot.common.robots.so100_follower import SO100Follower, SO100FollowerConfig
|
||||
|
||||
config = SO100FollowerConfig(
|
||||
port="/dev/tty.usbmodem585A0076841",
|
||||
id="my_awesome_follower_arm",
|
||||
)
|
||||
follower = SO100Follower(config)
|
||||
follower.setup_motors()
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
You should see the following instruction
|
||||
```
|
||||
Connect the controller board to the 'gripper' motor only and press enter.
|
||||
```
|
||||
|
||||
As instructed, plug the gripper's motor. Make sure it's the only motor connected to the board, and that the motor itself is not yet daisy-chained to any other motor. As you press `[Enter]`, the script will automatically set the id and baudrate for that motor.
|
||||
|
||||
<details>
|
||||
<summary>Troubleshooting</summary>
|
||||
|
||||
If you get an error at that point, check your cables and make sure they are plugged in properly:
|
||||
<ul>
|
||||
<li>Power supply</li>
|
||||
<li>USB cable between your computer and the controller board</li>
|
||||
<li>The 3-pin cable from the controller board to the motor</li>
|
||||
</ul>
|
||||
|
||||
If you are using a Waveshare controller board, make sure that the two jumpers are set on the `B` channel (USB).
|
||||
</details>
|
||||
|
||||
You should then see the following message:
|
||||
```
|
||||
'gripper' motor id set to 6
|
||||
```
|
||||
|
||||
Followed by the next instruction:
|
||||
```
|
||||
Connect the controller board to the 'wrist_roll' motor only and press enter.
|
||||
```
|
||||
|
||||
You can disconnect the 3-pin cable from the controller board, but you can leave it connected to the gripper motor on the other end, as it will already be in the right place. Now, plug in another 3-pin cable to the wrist roll motor and connect it to the controller board. As with the previous motor, make sure it is the only motor connected to the board and that the motor itself isn't connected to any other one.
|
||||
|
||||
Repeat the operation for each motor as instructed.
|
||||
|
||||
> [!TIP]
|
||||
> Check your cabling at each step before pressing Enter. For instance, the power supply cable might disconnect as you manipulate the board.
|
||||
|
||||
When you are done, the script will simply finish, at which point the motors are ready to be used. You can now plug the 3-pin cable from each motor to the next one, and the cable from the first motor (the 'shoulder pan' with id=1) to the controller board, which can now be attached to the base of the arm.
|
||||
|
||||
#### Leader
|
||||
Do the same steps for the leader arm.
|
||||
|
||||
<hfoptions id="setup_motors">
|
||||
<hfoption id="Command">
|
||||
```bash
|
||||
python -m lerobot.setup_motors \
|
||||
--teleop.type=so100_leader \
|
||||
--teleop.port=/dev/tty.usbmodem575E0031751 # <- paste here the port found at previous step
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="API example">
|
||||
```python
|
||||
from lerobot.common.teleoperators.so100_leader import SO100Leader, SO100LeaderConfig
|
||||
|
||||
config = SO100LeaderConfig(
|
||||
port="/dev/tty.usbmodem585A0076841",
|
||||
id="my_awesome_leader_arm",
|
||||
)
|
||||
leader = SO100Leader(config)
|
||||
leader.setup_motors()
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## Calibrate
|
||||
|
||||
Next, you'll need to calibrate your robot to ensure that the leader and follower arms have the same position values when they are in the same physical position.
|
||||
The calibration process is very important because it allows a neural network trained on one robot to work on another.
|
||||
|
||||
#### Follower
|
||||
|
||||
Run the following command or API example to calibrate the follower arm:
|
||||
|
||||
<hfoptions id="calibrate_follower">
|
||||
<hfoption id="Command">
|
||||
```bash
|
||||
python -m lerobot.calibrate \
|
||||
--robot.type=so100_follower \
|
||||
--robot.port=/dev/tty.usbmodem58760431551 \ # <- The port of your robot
|
||||
--robot.id=my_awesome_follower_arm # <- Give the robot a unique name
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="API example">
|
||||
```python
|
||||
from lerobot.common.robots.so100_follower import SO100FollowerConfig, SO100Follower
|
||||
|
||||
config = SO100FollowerConfig(
|
||||
port="/dev/tty.usbmodem585A0076891",
|
||||
id="my_awesome_follower_arm",
|
||||
)
|
||||
|
||||
follower = SO100Follower(config)
|
||||
follower.connect(calibrate=False)
|
||||
follower.calibrate()
|
||||
follower.disconnect()
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
We unified the calibration method for most robots. Thus, the calibration steps for this SO100 arm are the same as the steps for the Koch and SO101. First, we have to move the robot to the position where each joint is in the middle of its range, then we press `Enter`. Secondly, we move all joints through their full range of motion. A video of this same process for the SO101 as reference can be found [here](http://localhost:5173/so101#calibration-video)
|
||||
|
||||
#### Leader
|
||||
|
||||
Do the same steps to calibrate the leader arm, run the following command or API example:
|
||||
|
||||
<hfoptions id="calibrate_leader">
|
||||
<hfoption id="Command">
|
||||
```bash
|
||||
python -m lerobot.calibrate \
|
||||
--teleop.type=so100_leader \
|
||||
--teleop.port=/dev/tty.usbmodem58760431551 \ # <- The port of your robot
|
||||
--teleop.id=my_awesome_leader_arm # <- Give the robot a unique name
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="API example">
|
||||
```python
|
||||
from lerobot.common.teleoperators.so100_leader import SO100LeaderConfig, SO100Leader
|
||||
|
||||
config = SO100LeaderConfig(
|
||||
port="/dev/tty.usbmodem58760431551",
|
||||
id="my_awesome_leader_arm",
|
||||
)
|
||||
|
||||
leader = SO100Leader(config)
|
||||
leader.connect(calibrate=False)
|
||||
leader.calibrate()
|
||||
leader.disconnect()
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Congrats 🎉, your robot is all set to learn a task on its own. Start training it by following this tutorial: [Getting started with real-world robots](./getting_started_real_world_robot)
|
||||
|
||||
> [!TIP]
|
||||
> If you have any questions or need help, please reach out on [Discord](https://discord.com/invite/s3KuuzsPFb).
|
||||
@@ -1,711 +0,0 @@
|
||||
# Assemble and use SO-101
|
||||
|
||||
In the steps below we explain how to assemble and use our flagship robot, the SO-101 with LeRobot 🤗.
|
||||
|
||||
## Source the parts
|
||||
|
||||
Follow this [README](https://github.com/TheRobotStudio/SO-ARM100). It contains the bill of materials, with a link to source the parts, as well as the instructions to 3D print the parts,
|
||||
and advice if it's your first time printing or if you don't own a 3D printer.
|
||||
|
||||
Before assembling, you will first need to configure your motors. To this end, we provide a nice script, so let's first install LeRobot. After configuration, we will also guide you through assembly.
|
||||
|
||||
## Install LeRobot
|
||||
|
||||
> [!TIP]
|
||||
> We use the Command Prompt (cmd) quite a lot. If you are not comfortable using the cmd or want to brush up using the command line you can have a look here: [Command line crash course](https://developer.mozilla.org/en-US/docs/Learn_web_development/Getting_started/Environment_setup/Command_line)
|
||||
|
||||
Download our source code:
|
||||
```bash
|
||||
git clone https://github.com/huggingface/lerobot.git
|
||||
cd lerobot
|
||||
```
|
||||
|
||||
Create a virtual environment with Python 3.10 and activate it, e.g. with [`miniconda`](https://docs.anaconda.com/miniconda/install/#quick-command-line-install):
|
||||
```bash
|
||||
conda create -y -n lerobot python=3.10
|
||||
```
|
||||
Now restart the shell by running:
|
||||
|
||||
##### Windows:
|
||||
```bash
|
||||
`source ~/.bashrc`
|
||||
```
|
||||
|
||||
##### Mac:
|
||||
```bash
|
||||
`source ~/.bash_profile`
|
||||
```
|
||||
|
||||
##### zshell:
|
||||
```bash
|
||||
`source ~/.zshrc`
|
||||
```
|
||||
|
||||
Then activate your conda environment, you have to do this each time you open a shell to use lerobot:
|
||||
```bash
|
||||
conda activate lerobot
|
||||
```
|
||||
|
||||
When using `miniconda`, install `ffmpeg` in your environment:
|
||||
```bash
|
||||
conda install ffmpeg -c conda-forge
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> This usually installs `ffmpeg 7.X` for your platform compiled with the `libsvtav1` encoder. If `libsvtav1` is not supported (check supported encoders with `ffmpeg -encoders`), you can:
|
||||
> - _[On any platform]_ Explicitly install `ffmpeg 7.X` using:
|
||||
> ```bash
|
||||
> conda install ffmpeg=7.1.1 -c conda-forge
|
||||
> ```
|
||||
> - _[On Linux only]_ Install [ffmpeg build dependencies](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu#GettheDependencies) and [compile ffmpeg from source with libsvtav1](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu#libsvtav1), and make sure you use the corresponding ffmpeg binary to your install with `which ffmpeg`.
|
||||
|
||||
Install 🤗 LeRobot:
|
||||
```bash
|
||||
cd lerobot && pip install ".[feetech]"
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> If you encounter build errors, you may need to install additional dependencies (`cmake`, `build-essential`, and `ffmpeg libs`). On Linux, run: `sudo apt-get install cmake build-essential python3-dev pkg-config libavformat-dev libavcodec-dev libavdevice-dev libavutil-dev libswscale-dev libswresample-dev libavfilter-dev pkg-config`. For other systems, see: [Compiling PyAV](https://pyav.org/docs/develop/overview/installation.html#bring-your-own-ffmpeg)
|
||||
|
||||
|
||||
## Configure motors
|
||||
|
||||
To configure the motors designate one bus servo adapter and 6 motors for your leader arm, and similarly the other bus servo adapter and 6 motors for the follower arm. It's convenient to label them and write on each motor if it's for the follower `F` or for the leader `L` and it's ID from 1 to 6.
|
||||
|
||||
You now should plug the 5V or 12V power supply to the motor bus. 5V for the STS3215 7.4V motors and 12V for the STS3215 12V motors. Note that the leader arm always uses the 7.4V motors, so watch out that you plug in the right power supply if you have 12V and 7.4V motors, otherwise you might burn your motors! Now, connect the motor bus to your computer via USB. Note that the USB doesn't provide any power, and both the power supply and USB have to be plugged in.
|
||||
|
||||
### Find the USB ports associated to each arm
|
||||
|
||||
To find the port for each bus servo adapter, run this script:
|
||||
```bash
|
||||
python lerobot/scripts/find_motors_bus_port.py
|
||||
```
|
||||
#### Example outputs of script
|
||||
|
||||
##### Mac:
|
||||
Example output leader arm's port: `/dev/tty.usbmodem575E0031751`
|
||||
|
||||
```bash
|
||||
Finding all available ports for the MotorBus.
|
||||
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
|
||||
Remove the usb cable from your MotorsBus and press Enter when done.
|
||||
|
||||
[...Disconnect leader arm and press Enter...]
|
||||
|
||||
The port of this MotorsBus is /dev/tty.usbmodem575E0031751
|
||||
Reconnect the usb cable.
|
||||
```
|
||||
|
||||
Example output follower arm port: `/dev/tty.usbmodem575E0032081`
|
||||
|
||||
```
|
||||
Finding all available ports for the MotorBus.
|
||||
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
|
||||
Remove the usb cable from your MotorsBus and press Enter when done.
|
||||
|
||||
[...Disconnect follower arm and press Enter...]
|
||||
|
||||
The port of this MotorsBus is /dev/tty.usbmodem575E0032081
|
||||
Reconnect the usb cable.
|
||||
```
|
||||
|
||||
##### Linux:
|
||||
On Linux, you might need to give access to the USB ports by running:
|
||||
```bash
|
||||
sudo chmod 666 /dev/ttyACM0
|
||||
sudo chmod 666 /dev/ttyACM1
|
||||
```
|
||||
|
||||
Example output leader arm port: `/dev/ttyACM0`
|
||||
|
||||
```bash
|
||||
Finding all available ports for the MotorBus.
|
||||
['/dev/ttyACM0', '/dev/ttyACM1']
|
||||
Remove the usb cable from your MotorsBus and press Enter when done.
|
||||
|
||||
[...Disconnect leader arm and press Enter...]
|
||||
|
||||
The port of this MotorsBus is /dev/ttyACM0
|
||||
Reconnect the usb cable.
|
||||
```
|
||||
|
||||
Example output follower arm port: `/dev/ttyACM1`
|
||||
|
||||
```
|
||||
Finding all available ports for the MotorBus.
|
||||
['/dev/ttyACM0', '/dev/ttyACM1']
|
||||
Remove the usb cable from your MotorsBus and press Enter when done.
|
||||
|
||||
[...Disconnect follower arm and press Enter...]
|
||||
|
||||
The port of this MotorsBus is /dev/ttyACM1
|
||||
Reconnect the usb cable.
|
||||
```
|
||||
|
||||
#### Update config file
|
||||
|
||||
Now that you have your ports, update the **port** default values of [`SO101RobotConfig`](https://github.com/huggingface/lerobot/blob/main/lerobot/common/robot_devices/robots/configs.py).
|
||||
You will find a class called `so101` where you can update the `port` values with your actual motor ports:
|
||||
```diff
|
||||
@RobotConfig.register_subclass("so101")
|
||||
@dataclass
|
||||
class So101RobotConfig(ManipulatorRobotConfig):
|
||||
calibration_dir: str = ".cache/calibration/so101"
|
||||
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||
# the number of motors in your follower arms.
|
||||
max_relative_target: int | None = None
|
||||
|
||||
leader_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"main": FeetechMotorsBusConfig(
|
||||
- port="/dev/tty.usbmodem58760431091",
|
||||
+ port="{ADD YOUR LEADER PORT}",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "sts3215"],
|
||||
"shoulder_lift": [2, "sts3215"],
|
||||
"elbow_flex": [3, "sts3215"],
|
||||
"wrist_flex": [4, "sts3215"],
|
||||
"wrist_roll": [5, "sts3215"],
|
||||
"gripper": [6, "sts3215"],
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
follower_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"main": FeetechMotorsBusConfig(
|
||||
- port="/dev/tty.usbmodem585A0076891",
|
||||
+ port="{ADD YOUR FOLLOWER PORT}",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "sts3215"],
|
||||
"shoulder_lift": [2, "sts3215"],
|
||||
"elbow_flex": [3, "sts3215"],
|
||||
"wrist_flex": [4, "sts3215"],
|
||||
"wrist_roll": [5, "sts3215"],
|
||||
"gripper": [6, "sts3215"],
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
Here is a video of the process:
|
||||
|
||||
<video controls width="640" src="https://github.com/user-attachments/assets/fc45d756-31bb-4a61-b973-a87d633d08a7" type="video/mp4"></video>
|
||||
|
||||
### Set motor IDs
|
||||
|
||||
Now we need to set the motor ID for each motor. Plug your motor in only one of the two ports of the motor bus and run this script to set its ID to 1. Replace the text after --port to the corresponding control board port.
|
||||
```bash
|
||||
python lerobot/scripts/configure_motor.py \
|
||||
--port /dev/tty.usbmodem58760432961 \
|
||||
--brand feetech \
|
||||
--model sts3215 \
|
||||
--baudrate 1000000 \
|
||||
--ID 1
|
||||
```
|
||||
|
||||
Then unplug your motor and plug the second motor and set its ID to 2.
|
||||
```bash
|
||||
python lerobot/scripts/configure_motor.py \
|
||||
--port /dev/tty.usbmodem58760432961 \
|
||||
--brand feetech \
|
||||
--model sts3215 \
|
||||
--baudrate 1000000 \
|
||||
--ID 2
|
||||
```
|
||||
|
||||
Redo this process for all your motors until ID 6. Do the same for the 6 motors of the leader arm, but make sure to change the power supply if you use motors with different voltage.
|
||||
|
||||
Here is a video of the process:
|
||||
|
||||
<video controls width="640" src="https://github.com/user-attachments/assets/b31c115f-e706-4dcd-b7f1-4535da62416d" type="video/mp4"></video>
|
||||
|
||||
## Step-by-Step Assembly Instructions
|
||||
|
||||
The follower arm uses 6x STS3215 motors with 1/345 gearing. The leader however uses three differently geared motors to make sure it can both sustain its own weight and it can be moved without requiring much force. Which motor is needed for which joint is shown in table below.
|
||||
|
||||
| Leader-Arm Axis | Motor | Gear Ratio |
|
||||
|-----------------|:-------:|:----------:|
|
||||
| Base / Shoulder Yaw | 1 | 1 / 191 |
|
||||
| Shoulder Pitch | 2 | 1 / 345 |
|
||||
| Elbow | 3 | 1 / 191 |
|
||||
| Wrist Roll | 4 | 1 / 147 |
|
||||
| Wrist Pitch | 5 | 1 / 147 |
|
||||
| Gripper | 6 | 1 / 147 |
|
||||
|
||||
|
||||
### Clean Parts
|
||||
Remove all support material from the 3D-printed parts.
|
||||
|
||||
### Joint 1
|
||||
|
||||
- Place the first motor into the base.
|
||||
- Fasten the motor with 4 M2x6mm screws (smallest screws). Two from the top and two from bottom.
|
||||
- Slide over the first motor holder and fasten it using two M2x6mm screws (one on each side).
|
||||
- Install both motor horns, securing the top horn with a M3x6mm screw.
|
||||
- Attach the shoulder part.
|
||||
- Tighten the shoulder part with 4 M3x6mm screws on top and 4 M3x6mm screws on the bottom
|
||||
- Add the shoulder motor holder.
|
||||
|
||||
<video controls width="640" src="https://github.com/user-attachments/assets/b0ee9dee-a2d0-445b-8489-02ebecb3d639" type="video/mp4"></video>
|
||||
|
||||
### Joint 2
|
||||
|
||||
- Slide the second motor in from the top.
|
||||
- Fasten the second motor with 4 M2x6mm screws.
|
||||
- Attach both motor horns to motor 2, again use the M3x6mm horn screw.
|
||||
- Attach the upper arm with 4 M3x6mm screws on each side.
|
||||
|
||||
<video controls width="640" src="https://github.com/user-attachments/assets/32453dc2-5006-4140-9f56-f0d78eae5155" type="video/mp4"></video>
|
||||
|
||||
### Joint 3
|
||||
|
||||
- Insert motor 3 and fasten using 4 M2x6mm screws
|
||||
- Attach both motor horns to motor 3 and secure one again with a M3x6mm horn screw.
|
||||
- Connect the forearm to motor 3 using 4 M3x6mm screws on each side.
|
||||
|
||||
<video controls width="640" src="https://github.com/user-attachments/assets/7384b9a7-a946-440c-b292-91391bcc4d6b" type="video/mp4"></video>
|
||||
|
||||
### Joint 4
|
||||
|
||||
- Slide over motor holder 4.
|
||||
- Slide in motor 4.
|
||||
- Fasten motor 4 with 4 M2x6mm screws and attach its motor horns, use a M3x6mm horn screw.
|
||||
|
||||
<video controls width="640" src="https://github.com/user-attachments/assets/dca78ad0-7c36-4bdf-8162-c9ac42a1506f" type="video/mp4"></video>
|
||||
|
||||
### Joint 5
|
||||
|
||||
- Insert motor 5 into the wrist holder and secure it with 2 M2x6mm front screws.
|
||||
- Install only one motor horn on the wrist motor and secure it with a M3x6mm horn screw.
|
||||
- Secure the wrist to motor 4 using 4 M3x6mm screws on both sides.
|
||||
|
||||
<video controls width="640" src="https://github.com/user-attachments/assets/55f5d245-976d-49ff-8b4a-59843c441b12" type="video/mp4"></video>
|
||||
|
||||
### Gripper / Handle
|
||||
|
||||
#### Follower:
|
||||
|
||||
- Attach the gripper to motor 5, attach it to the motor horn on the wrist using 4 M3x6mm screws.
|
||||
- Insert the gripper motor and secure it with 2 M2x6mm screws on each side.
|
||||
- Attach the motor horns and again use a M3x6mm horn screw.
|
||||
- Install the gripper claw and secure it with 4 M3x6mm screws on both sides.
|
||||
|
||||
<video controls width="640" src="https://github.com/user-attachments/assets/6f766aa9-cfae-4388-89e7-0247f198c086" type="video/mp4"></video>
|
||||
|
||||
#### Leader:
|
||||
|
||||
- Mount the leader holder onto the wrist and secure it with 4 M3x6mm screws.
|
||||
- Attach the handle to motor 5 using 1 M2x6mm screw.
|
||||
- Insert the gripper motor, secure it with 2 M2x6mm screws on each side, attach a motor horn using a M3x6mm horn screw.
|
||||
- Attach the follower trigger with 4 M3x6mm screws.
|
||||
|
||||
<video controls width="640" src="https://github.com/user-attachments/assets/1308c93d-2ef1-4560-8e93-a3812568a202" type="video/mp4"></video>
|
||||
|
||||
##### Wiring
|
||||
|
||||
- Attach the motor controller on the back.
|
||||
- Then insert all wires, use the wire guides everywhere to make sure the wires don't unplug themselves and stay in place.
|
||||
|
||||
<video controls width="640" src="https://github.com/user-attachments/assets/4c2cacfd-9276-4ee4-8bf2-ba2492667b78" type="video/mp4"></video>
|
||||
|
||||
## Calibrate
|
||||
|
||||
Next, you'll need to calibrate your SO-101 robot to ensure that the leader and follower arms have the same position values when they are in the same physical position.
|
||||
The calibration process is very important because it allows a neural network trained on one SO-101 robot to work on another.
|
||||
|
||||
#### Manual calibration of follower arm
|
||||
|
||||
You will need to move the follower arm to these positions sequentially, note that the rotated position is on the right side of the robot and you have to open the gripper fully.
|
||||
|
||||
| 1. Middle position | 2. Zero position | 3. Rotated position | 4. Rest position |
|
||||
| ------------ |------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| <img src="../media/so101/follower_middle.webp?raw=true" alt="SO-101 leader arm middle position" title="SO-101 leader arm middle position" style="width:100%;"> | <img src="../media/so101/follower_zero.webp?raw=true" alt="SO-101 leader arm zero position" title="SO-101 leader arm zero position" style="width:100%;"> | <img src="../media/so101/follower_rotated.webp?raw=true" alt="SO-101 leader arm rotated position" title="SO-101 leader arm rotated position" style="width:100%;"> | <img src="../media/so101/follower_rest.webp?raw=true" alt="SO-101 leader arm rest position" title="SO-101 leader arm rest position" style="width:100%;"> |
|
||||
|
||||
Make sure both arms are connected and run this script to launch manual calibration:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so101 \
|
||||
--robot.cameras='{}' \
|
||||
--control.type=calibrate \
|
||||
--control.arms='["main_follower"]'
|
||||
```
|
||||
|
||||
#### Manual calibration of leader arm
|
||||
You will also need to move the leader arm to these positions sequentially:
|
||||
|
||||
| 1. Middle position | 2. Zero position | 3. Rotated position | 4. Rest position |
|
||||
| ------------ |------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| <img src="../media/so101/leader_middle.webp?raw=true" alt="SO-101 leader arm middle position" title="SO-101 leader arm middle position" style="width:100%;"> | <img src="../media/so101/leader_zero.webp?raw=true" alt="SO-101 leader arm zero position" title="SO-101 leader arm zero position" style="width:100%;"> | <img src="../media/so101/leader_rotated.webp?raw=true" alt="SO-101 leader arm rotated position" title="SO-101 leader arm rotated position" style="width:100%;"> | <img src="../media/so101/leader_rest.webp?raw=true" alt="SO-101 leader arm rest position" title="SO-101 leader arm rest position" style="width:100%;"> |
|
||||
|
||||
Run this script to launch manual calibration:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so101 \
|
||||
--robot.cameras='{}' \
|
||||
--control.type=calibrate \
|
||||
--control.arms='["main_leader"]'
|
||||
```
|
||||
## Control your robot
|
||||
|
||||
Congrats 🎉, your robot is all set to learn a task on its own. Next we will explain to you how to train a neural network to autonomously control a real robot.
|
||||
|
||||
**You'll learn to:**
|
||||
1. How to record and visualize your dataset.
|
||||
2. How to train a policy using your data and prepare it for evaluation.
|
||||
3. How to evaluate your policy and visualize the results.
|
||||
|
||||
By following these steps, you'll be able to replicate tasks like picking up a Lego block and placing it in a bin with a high success rate, as demonstrated in [this video](https://x.com/RemiCadene/status/1814680760592572934).
|
||||
|
||||
This tutorial is specifically made for the affordable [SO-101](https://github.com/TheRobotStudio/SO-ARM100) robot, but it contains additional information to be easily adapted to various types of robots like [Aloha bimanual robot](https://aloha-2.github.io) by changing some configurations. The SO-101 consists of a leader arm and a follower arm, each with 6 motors. It can work with one or several cameras to record the scene, which serve as visual sensors for the robot.
|
||||
|
||||
During the data collection phase, you will control the follower arm by moving the leader arm. This process is known as "teleoperation." This technique is used to collect robot trajectories. Afterward, you'll train a neural network to imitate these trajectories and deploy the network to enable your robot to operate autonomously.
|
||||
|
||||
If you encounter any issues at any step of the tutorial, feel free to seek help on [Discord](https://discord.com/invite/s3KuuzsPFb) or don't hesitate to iterate with us on the tutorial by creating issues or pull requests.
|
||||
|
||||
## Teleoperate
|
||||
|
||||
Run this simple script to teleoperate your robot (it won't connect and display the cameras):
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so101 \
|
||||
--robot.cameras='{}' \
|
||||
--control.type=teleoperate
|
||||
```
|
||||
|
||||
The teleoperate command will automatically:
|
||||
1. Identify any missing calibrations and initiate the calibration procedure.
|
||||
2. Connect the robot and start teleoperation.
|
||||
|
||||
## Setup Cameras
|
||||
|
||||
To connect a camera you have three options:
|
||||
1. OpenCVCamera which allows us to use any camera: usb, realsense, laptop webcam
|
||||
2. iPhone camera with MacOS
|
||||
3. Phone camera on Linux
|
||||
|
||||
### Use OpenCVCamera
|
||||
|
||||
The [`OpenCVCamera`](../lerobot/common/robot_devices/cameras/opencv.py) class allows you to efficiently record frames from most cameras using the [`opencv2`](https://docs.opencv.org) library. For more details on compatibility, see [Video I/O with OpenCV Overview](https://docs.opencv.org/4.x/d0/da7/videoio_overview.html).
|
||||
|
||||
To instantiate an [`OpenCVCamera`](../lerobot/common/robot_devices/cameras/opencv.py), you need a camera index (e.g. `OpenCVCamera(camera_index=0)`). When you only have one camera like a webcam of a laptop, the camera index is usually `0` but it might differ, and the camera index might change if you reboot your computer or re-plug your camera. This behavior depends on your operating system.
|
||||
|
||||
To find the camera indices, run the following utility script, which will save a few frames from each detected camera:
|
||||
```bash
|
||||
python lerobot/common/robot_devices/cameras/opencv.py \
|
||||
--images-dir outputs/images_from_opencv_cameras
|
||||
```
|
||||
|
||||
The output will look something like this if you have two cameras connected:
|
||||
```
|
||||
Mac or Windows detected. Finding available camera indices through scanning all indices from 0 to 60
|
||||
[...]
|
||||
Camera found at index 0
|
||||
Camera found at index 1
|
||||
[...]
|
||||
Connecting cameras
|
||||
OpenCVCamera(0, fps=30.0, width=1920.0, height=1080.0, color_mode=rgb)
|
||||
OpenCVCamera(1, fps=24.0, width=1920.0, height=1080.0, color_mode=rgb)
|
||||
Saving images to outputs/images_from_opencv_cameras
|
||||
Frame: 0000 Latency (ms): 39.52
|
||||
[...]
|
||||
Frame: 0046 Latency (ms): 40.07
|
||||
Images have been saved to outputs/images_from_opencv_cameras
|
||||
```
|
||||
|
||||
Check the saved images in `outputs/images_from_opencv_cameras` to identify which camera index corresponds to which physical camera (e.g. `0` for `camera_00` or `1` for `camera_01`):
|
||||
```
|
||||
camera_00_frame_000000.png
|
||||
[...]
|
||||
camera_00_frame_000047.png
|
||||
camera_01_frame_000000.png
|
||||
[...]
|
||||
camera_01_frame_000047.png
|
||||
```
|
||||
|
||||
Note: Some cameras may take a few seconds to warm up, and the first frame might be black or green.
|
||||
|
||||
Now that you have the camera indexes, you should change them in the config. You can also change the fps, width or height of the camera.
|
||||
|
||||
The camera config is defined per robot, can be found here [`RobotConfig`](https://github.com/huggingface/lerobot/blob/main/lerobot/common/robot_devices/robots/configs.py) and looks like this:
|
||||
```python
|
||||
cameras: dict[str, CameraConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"wrist": OpenCVCameraConfig(
|
||||
camera_index=0, <-- UPDATE HERE
|
||||
fps=30,
|
||||
width=640,
|
||||
height=480,
|
||||
),
|
||||
"base": OpenCVCameraConfig(
|
||||
camera_index=1, <-- UPDATE HERE
|
||||
fps=30,
|
||||
width=640,
|
||||
height=480,
|
||||
),
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
### Use your phone
|
||||
#### Mac:
|
||||
|
||||
To use your iPhone as a camera on macOS, enable the Continuity Camera feature:
|
||||
- Ensure your Mac is running macOS 13 or later, and your iPhone is on iOS 16 or later.
|
||||
- Sign in both devices with the same Apple ID.
|
||||
- Connect your devices with a USB cable or turn on Wi-Fi and Bluetooth for a wireless connection.
|
||||
|
||||
For more details, visit [Apple support](https://support.apple.com/en-gb/guide/mac-help/mchl77879b8a/mac).
|
||||
|
||||
Your iPhone should be detected automatically when running the camera setup script in the next section.
|
||||
|
||||
#### Linux:
|
||||
|
||||
If you want to use your phone as a camera on Linux, follow these steps to set up a virtual camera
|
||||
|
||||
1. *Install `v4l2loopback-dkms` and `v4l-utils`*. Those packages are required to create virtual camera devices (`v4l2loopback`) and verify their settings with the `v4l2-ctl` utility from `v4l-utils`. Install them using:
|
||||
```python
|
||||
sudo apt install v4l2loopback-dkms v4l-utils
|
||||
```
|
||||
2. *Install [DroidCam](https://droidcam.app) on your phone*. This app is available for both iOS and Android.
|
||||
3. *Install [OBS Studio](https://obsproject.com)*. This software will help you manage the camera feed. Install it using [Flatpak](https://flatpak.org):
|
||||
```python
|
||||
flatpak install flathub com.obsproject.Studio
|
||||
```
|
||||
4. *Install the DroidCam OBS plugin*. This plugin integrates DroidCam with OBS Studio. Install it with:
|
||||
```python
|
||||
flatpak install flathub com.obsproject.Studio.Plugin.DroidCam
|
||||
```
|
||||
5. *Start OBS Studio*. Launch with:
|
||||
```python
|
||||
flatpak run com.obsproject.Studio
|
||||
```
|
||||
6. *Add your phone as a source*. Follow the instructions [here](https://droidcam.app/obs/usage). Be sure to set the resolution to `640x480`.
|
||||
7. *Adjust resolution settings*. In OBS Studio, go to `File > Settings > Video`. Change the `Base(Canvas) Resolution` and the `Output(Scaled) Resolution` to `640x480` by manually typing it in.
|
||||
8. *Start virtual camera*. In OBS Studio, follow the instructions [here](https://obsproject.com/kb/virtual-camera-guide).
|
||||
9. *Verify the virtual camera setup*. Use `v4l2-ctl` to list the devices:
|
||||
```python
|
||||
v4l2-ctl --list-devices
|
||||
```
|
||||
You should see an entry like:
|
||||
```
|
||||
VirtualCam (platform:v4l2loopback-000):
|
||||
/dev/video1
|
||||
```
|
||||
10. *Check the camera resolution*. Use `v4l2-ctl` to ensure that the virtual camera output resolution is `640x480`. Change `/dev/video1` to the port of your virtual camera from the output of `v4l2-ctl --list-devices`.
|
||||
```python
|
||||
v4l2-ctl -d /dev/video1 --get-fmt-video
|
||||
```
|
||||
You should see an entry like:
|
||||
```
|
||||
>>> Format Video Capture:
|
||||
>>> Width/Height : 640/480
|
||||
>>> Pixel Format : 'YUYV' (YUYV 4:2:2)
|
||||
```
|
||||
|
||||
Troubleshooting: If the resolution is not correct you will have to delete the Virtual Camera port and try again as it cannot be changed.
|
||||
|
||||
If everything is set up correctly, you can proceed with the rest of the tutorial.
|
||||
|
||||
### Add wrist camera
|
||||
If you have an additional camera you can add a wrist camera to the SO101. There are already many premade wrist camera holders that you can find in the SO101 repo: [Wrist camera's](https://github.com/TheRobotStudio/SO-ARM100#wrist-cameras)
|
||||
|
||||
## Teleoperate with cameras
|
||||
|
||||
We can now teleoperate again while at the same time visualizing the cameras and joint positions with `rerun`.
|
||||
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so101 \
|
||||
--control.type=teleoperate \
|
||||
--control.display_data=true
|
||||
```
|
||||
|
||||
## Record a dataset
|
||||
|
||||
Once you're familiar with teleoperation, you can record your first dataset with SO-101.
|
||||
|
||||
We use the Hugging Face hub features for uploading your dataset. If you haven't previously used the Hub, make sure you can login via the cli using a write-access token, this token can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens).
|
||||
|
||||
Add your token to the cli by running this command:
|
||||
```bash
|
||||
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
|
||||
```
|
||||
|
||||
Then store your Hugging Face repository name in a variable:
|
||||
```bash
|
||||
HF_USER=$(huggingface-cli whoami | head -n 1)
|
||||
echo $HF_USER
|
||||
```
|
||||
|
||||
Now you can record a dataset, to record 2 episodes and upload your dataset to the hub execute this command:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so101 \
|
||||
--control.type=record \
|
||||
--control.fps=30 \
|
||||
--control.single_task="Grasp a lego block and put it in the bin." \
|
||||
--control.repo_id=${HF_USER}/so101_test \
|
||||
--control.tags='["so101","tutorial"]' \
|
||||
--control.warmup_time_s=5 \
|
||||
--control.episode_time_s=30 \
|
||||
--control.reset_time_s=30 \
|
||||
--control.num_episodes=2 \
|
||||
--control.display_data=true \
|
||||
--control.push_to_hub=true
|
||||
```
|
||||
|
||||
You will see a lot of lines appearing like this one:
|
||||
```
|
||||
INFO 2024-08-10 15:02:58 ol_robot.py:219 dt:33.34 (30.0hz) dtRlead: 5.06 (197.5hz) dtWfoll: 0.25 (3963.7hz) dtRfoll: 6.22 (160.7hz) dtRlaptop: 32.57 (30.7hz) dtRphone: 33.84 (29.5hz)
|
||||
```
|
||||
It contains:
|
||||
- `2024-08-10 15:02:58` which is the date and time of the call to the print function,
|
||||
- `ol_robot.py:219` which is the end of the file name and the line number where the print function is called (`lerobot/scripts/control_robot.py` line `219`).
|
||||
- `dt:33.34 (30.0hz)` which is the "delta time" or the number of milliseconds spent between the previous call to `robot.teleop_step(record_data=True)` and the current one, associated with the frequency (33.34 ms equals 30.0 Hz) ; note that we use `--fps 30` so we expect 30.0 Hz ; when a step takes more time, the line appears in yellow.
|
||||
- `dtRlead: 5.06 (197.5hz)` which is the delta time of reading the present position of the leader arm.
|
||||
- `dtWfoll: 0.25 (3963.7hz)` which is the delta time of writing the goal position on the follower arm ; writing is asynchronous so it takes less time than reading.
|
||||
- `dtRfoll: 6.22 (160.7hz)` which is the delta time of reading the present position on the follower arm.
|
||||
- `dtRlaptop:32.57 (30.7hz) ` which is the delta time of capturing an image from the laptop camera in the thread running asynchronously.
|
||||
- `dtRphone:33.84 (29.5hz)` which is the delta time of capturing an image from the phone camera in the thread running asynchronously.
|
||||
|
||||
#### Dataset upload
|
||||
Locally your dataset is stored in this folder: `~/.cache/huggingface/lerobot/{repo-id}` (e.g. `data/cadene/so101_test`). At the end of data recording, your dataset will be uploaded on your Hugging Face page (e.g. https://huggingface.co/datasets/cadene/so101_test) that you can obtain by running:
|
||||
```bash
|
||||
echo https://huggingface.co/datasets/${HF_USER}/so101_test
|
||||
```
|
||||
Your dataset will be automatically tagged with `LeRobot` for the community to find it easily, and you can also add custom tags (in this case `tutorial` for example).
|
||||
|
||||
You can look for other LeRobot datasets on the hub by searching for `LeRobot` [tags](https://huggingface.co/datasets?other=LeRobot).
|
||||
|
||||
#### Record function
|
||||
|
||||
The `record` function provides a suite of tools for capturing and managing data during robot operation:
|
||||
1. Set the flow of data recording using command line arguments:
|
||||
- `--control.warmup_time_s=10` defines the number of seconds before starting data collection. It allows the robot devices to warmup and synchronize (10 seconds by default).
|
||||
- `--control.episode_time_s=60` defines the number of seconds for data recording for each episode (60 seconds by default).
|
||||
- `--control.reset_time_s=60` defines the number of seconds for resetting the environment after each episode (60 seconds by default).
|
||||
- `--control.num_episodes=50` defines the number of episodes to record (50 by default).
|
||||
2. Control the flow during data recording using keyboard keys:
|
||||
- Press right arrow `->` at any time during episode recording to early stop and go to resetting. Same during resetting, to early stop and to go to the next episode recording.
|
||||
- Press left arrow `<-` at any time during episode recording or resetting to early stop, cancel the current episode, and re-record it.
|
||||
- Press escape `ESC` at any time during episode recording to end the session early and go straight to video encoding and dataset uploading.
|
||||
3. Checkpoints are done set during recording, so if any issue occurs, you can resume recording by re-running the same command again with `--control.resume=true`. You will need to manually delete the dataset directory if you want to start recording from scratch.
|
||||
|
||||
#### Tips for gathering data
|
||||
|
||||
Once you're comfortable with data recording, you can create a larger dataset for training. A good starting task is grasping an object at different locations and placing it in a bin. We suggest recording at least 50 episodes, with 10 episodes per location. Keep the cameras fixed and maintain consistent grasping behavior throughout the recordings. Also make sure the object you are manipulating is visible on the camera's. A good rule of thumb is you should be able to do the task yourself by only looking at the camera images.
|
||||
|
||||
In the following sections, you’ll train your neural network. After achieving reliable grasping performance, you can start introducing more variations during data collection, such as additional grasp locations, different grasping techniques, and altering camera positions.
|
||||
|
||||
Avoid adding too much variation too quickly, as it may hinder your results.
|
||||
|
||||
#### Troubleshooting:
|
||||
- On Linux, if the left and right arrow keys and escape key don't have any effect during data recording, make sure you've set the `$DISPLAY` environment variable. See [pynput limitations](https://pynput.readthedocs.io/en/latest/limitations.html#linux).
|
||||
|
||||
## Visualize a dataset
|
||||
|
||||
If you uploaded your dataset to the hub with `--control.push_to_hub=true`, you can [visualize your dataset online](https://huggingface.co/spaces/lerobot/visualize_dataset) by copy pasting your repo id given by:
|
||||
```bash
|
||||
echo ${HF_USER}/so101_test
|
||||
```
|
||||
|
||||
If you didn't upload with `--control.push_to_hub=false`, you can visualize it locally with (via a window in the browser `http://127.0.0.1:9090` with the visualization tool):
|
||||
```bash
|
||||
python lerobot/scripts/visualize_dataset_html.py \
|
||||
--repo-id ${HF_USER}/so101_test \
|
||||
--local-files-only 1
|
||||
```
|
||||
|
||||
This will launch a local web server that looks like this:
|
||||
|
||||
<div style="text-align:center;">
|
||||
<img src="../media/tutorial/visualize_dataset_html.webp?raw=true" alt="Koch v1.1 leader and follower arms" title="Koch v1.1 leader and follower arms" width="100%"></img>
|
||||
</div>
|
||||
|
||||
## Replay an episode
|
||||
|
||||
A useful feature is the `replay` function, which allows to replay on your robot any episode that you've recorded or episodes from any dataset out there. This function helps you test the repeatability of your robot's actions and assess transferability across robots of the same model.
|
||||
|
||||
You can replay the first episode on your robot with:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so101 \
|
||||
--control.type=replay \
|
||||
--control.fps=30 \
|
||||
--control.repo_id=${HF_USER}/so101_test \
|
||||
--control.episode=0
|
||||
```
|
||||
|
||||
Your robot should replicate movements similar to those you recorded. For example, check out [this video](https://x.com/RemiCadene/status/1793654950905680090) where we use `replay` on a Aloha robot from [Trossen Robotics](https://www.trossenrobotics.com).
|
||||
|
||||
## Train a policy
|
||||
|
||||
To train a policy to control your robot, use the [`python lerobot/scripts/train.py`](../lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
|
||||
```bash
|
||||
python lerobot/scripts/train.py \
|
||||
--dataset.repo_id=${HF_USER}/so101_test \
|
||||
--policy.type=act \
|
||||
--output_dir=outputs/train/act_so101_test \
|
||||
--job_name=act_so101_test \
|
||||
--policy.device=cuda \
|
||||
--wandb.enable=true
|
||||
```
|
||||
|
||||
Let's explain the command:
|
||||
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/so101_test`.
|
||||
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor states, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
|
||||
4. We provided `policy.device=cuda` since we are training on a Nvidia GPU, but you could use `policy.device=mps` to train on Apple silicon.
|
||||
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
|
||||
|
||||
Training should take several hours. You will find checkpoints in `outputs/train/act_so101_test/checkpoints`.
|
||||
|
||||
To resume training from a checkpoint, below is an example command to resume from `last` checkpoint of the `act_so101_test` policy:
|
||||
```bash
|
||||
python lerobot/scripts/train.py \
|
||||
--config_path=outputs/train/act_so101_test/checkpoints/last/pretrained_model/train_config.json \
|
||||
--resume=true
|
||||
```
|
||||
|
||||
#### Upload policy checkpoints
|
||||
|
||||
Once training is done, upload the latest checkpoint with:
|
||||
```bash
|
||||
huggingface-cli upload ${HF_USER}/act_so101_test \
|
||||
outputs/train/act_so101_test/checkpoints/last/pretrained_model
|
||||
```
|
||||
|
||||
You can also upload intermediate checkpoints with:
|
||||
```bash
|
||||
CKPT=010000
|
||||
huggingface-cli upload ${HF_USER}/act_so101_test${CKPT} \
|
||||
outputs/train/act_so101_test/checkpoints/${CKPT}/pretrained_model
|
||||
```
|
||||
|
||||
## Evaluate your policy
|
||||
|
||||
You can use the `record` function from [`lerobot/scripts/control_robot.py`](../lerobot/scripts/control_robot.py) but with a policy checkpoint as input. For instance, run this command to record 10 evaluation episodes:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so101 \
|
||||
--control.type=record \
|
||||
--control.fps=30 \
|
||||
--control.single_task="Grasp a lego block and put it in the bin." \
|
||||
--control.repo_id=${HF_USER}/eval_act_so101_test \
|
||||
--control.tags='["tutorial"]' \
|
||||
--control.warmup_time_s=5 \
|
||||
--control.episode_time_s=30 \
|
||||
--control.reset_time_s=30 \
|
||||
--control.num_episodes=10 \
|
||||
--control.push_to_hub=true \
|
||||
--control.policy.path=outputs/train/act_so101_test/checkpoints/last/pretrained_model
|
||||
```
|
||||
|
||||
As you can see, it's almost the same command as previously used to record your training dataset. Two things changed:
|
||||
1. There is an additional `--control.policy.path` argument which indicates the path to your policy checkpoint with (e.g. `outputs/train/eval_act_so101_test/checkpoints/last/pretrained_model`). You can also use the model repository if you uploaded a model checkpoint to the hub (e.g. `${HF_USER}/act_so101_test`).
|
||||
2. The name of dataset begins by `eval` to reflect that you are running inference (e.g. `${HF_USER}/eval_act_so101_test`).
|
||||
373
lerobot/common/robots/so101_follower/so101.md
Normal file
@@ -0,0 +1,373 @@
|
||||
# SO-101
|
||||
|
||||
In the steps below, we explain how to assemble our flagship robot, the SO-101.
|
||||
|
||||
## Source the parts
|
||||
|
||||
Follow this [README](https://github.com/TheRobotStudio/SO-ARM100). It contains the bill of materials, with a link to source the parts, as well as the instructions to 3D print the parts.
|
||||
And advise if it's your first time printing or if you don't own a 3D printer.
|
||||
|
||||
## Install LeRobot 🤗
|
||||
|
||||
To install LeRobot, follow our [Installation Guide](./installation)
|
||||
|
||||
In addition to these instructions, you need to install the Feetech SDK:
|
||||
```bash
|
||||
pip install -e ".[feetech]"
|
||||
```
|
||||
|
||||
## Step-by-Step Assembly Instructions
|
||||
|
||||
The follower arm uses 6x STS3215 motors with 1/345 gearing. The leader, however, uses three differently geared motors to make sure it can both sustain its own weight and it can be moved without requiring much force. Which motor is needed for which joint is shown in the table below.
|
||||
|
||||
| Leader-Arm Axis | Motor | Gear Ratio |
|
||||
|-----------------|:-------:|:----------:|
|
||||
| Base / Shoulder Yaw | 1 | 1 / 191 |
|
||||
| Shoulder Pitch | 2 | 1 / 345 |
|
||||
| Elbow | 3 | 1 / 191 |
|
||||
| Wrist Roll | 4 | 1 / 147 |
|
||||
| Wrist Pitch | 5 | 1 / 147 |
|
||||
| Gripper | 6 | 1 / 147 |
|
||||
|
||||
### Clean Parts
|
||||
Remove all support material from the 3D-printed parts. The easiest way to do this is using a small screwdriver to get underneath the support material.
|
||||
|
||||
### Joint 1
|
||||
|
||||
- Place the first motor into the base.
|
||||
- Fasten the motor with 4 M2x6mm screws (smallest screws). Two from the top and two from the bottom.
|
||||
- Slide over the first motor holder and fasten it using two M2x6mm screws (one on each side).
|
||||
- Install both motor horns, securing the top horn with a M3x6mm screw.
|
||||
- Attach the shoulder part.
|
||||
- Tighten the shoulder part with 4 M3x6mm screws on top and 4 M3x6mm screws on the bottom
|
||||
- Add the shoulder motor holder.
|
||||
|
||||
<div class="video-container">
|
||||
<video controls width="600">
|
||||
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/Joint1_v2.mp4" type="video/mp4" />
|
||||
</video>
|
||||
</div>
|
||||
|
||||
### Joint 2
|
||||
|
||||
- Slide the second motor in from the top.
|
||||
- Fasten the second motor with 4 M2x6mm screws.
|
||||
- Attach both motor horns to motor 2, again use the M3x6mm horn screw.
|
||||
- Attach the upper arm with 4 M3x6mm screws on each side.
|
||||
|
||||
<div class="video-container">
|
||||
<video controls width="600">
|
||||
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/Joint2_v2.mp4" type="video/mp4" />
|
||||
</video>
|
||||
</div>
|
||||
|
||||
### Joint 3
|
||||
|
||||
- Insert motor 3 and fasten using 4 M2x6mm screws
|
||||
- Attach both motor horns to motor 3 and secure one again with a M3x6mm horn screw.
|
||||
- Connect the forearm to motor 3 using 4 M3x6mm screws on each side.
|
||||
|
||||
<div class="video-container">
|
||||
<video controls width="600">
|
||||
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/Joint3_v2.mp4" type="video/mp4" />
|
||||
</video>
|
||||
</div>
|
||||
|
||||
### Joint 4
|
||||
|
||||
- Slide over motor holder 4.
|
||||
- Slide in motor 4.
|
||||
- Fasten motor 4 with 4 M2x6mm screws and attach its motor horns, use a M3x6mm horn screw.
|
||||
|
||||
<div class="video-container">
|
||||
<video controls width="600">
|
||||
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/Joint4_v2.mp4" type="video/mp4" />
|
||||
</video>
|
||||
</div>
|
||||
|
||||
### Joint 5
|
||||
|
||||
- Insert motor 5 into the wrist holder and secure it with 2 M2x6mm front screws.
|
||||
- Install only one motor horn on the wrist motor and secure it with a M3x6mm horn screw.
|
||||
- Secure the wrist to motor 4 using 4 M3x6mm screws on both sides.
|
||||
|
||||
<div class="video-container">
|
||||
<video controls width="600">
|
||||
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/Joint5_v2.mp4" type="video/mp4" />
|
||||
</video>
|
||||
</div>
|
||||
|
||||
### Gripper / Handle
|
||||
|
||||
<hfoptions id="assembly">
|
||||
<hfoption id="Follower">
|
||||
|
||||
- Attach the gripper to motor 5, attach it to the motor horn on the wrist using 4 M3x6mm screws.
|
||||
- Insert the gripper motor and secure it with 2 M2x6mm screws on each side.
|
||||
- Attach the motor horns and again use a M3x6mm horn screw.
|
||||
- Install the gripper claw and secure it with 4 M3x6mm screws on both sides.
|
||||
|
||||
<div class="video-container">
|
||||
<video controls width="600">
|
||||
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/Gripper_v2.mp4" type="video/mp4" />
|
||||
</video>
|
||||
</div>
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="Leader">
|
||||
|
||||
- Mount the leader holder onto the wrist and secure it with 4 M3x6mm screws.
|
||||
- Attach the handle to motor 5 using 1 M2x6mm screw.
|
||||
- Insert the gripper motor, secure it with 2 M2x6mm screws on each side, attach a motor horn using a M3x6mm horn screw.
|
||||
- Attach the follower trigger with 4 M3x6mm screws.
|
||||
|
||||
<div class="video-container">
|
||||
<video controls width="600">
|
||||
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/Leader_v2.mp4" type="video/mp4" />
|
||||
</video>
|
||||
</div>
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## Configure the motors
|
||||
|
||||
### 1. Find the USB ports associated with each arm
|
||||
|
||||
To find the port for each bus servo adapter, run this script:
|
||||
```bash
|
||||
python lerobot/find_port.py
|
||||
```
|
||||
|
||||
<hfoptions id="example">
|
||||
<hfoption id="Mac">
|
||||
|
||||
Example output:
|
||||
|
||||
```
|
||||
Finding all available ports for the MotorBus.
|
||||
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
|
||||
Remove the USB cable from your MotorsBus and press Enter when done.
|
||||
|
||||
[...Disconnect corresponding leader or follower arm and press Enter...]
|
||||
|
||||
The port of this MotorsBus is /dev/tty.usbmodem575E0032081
|
||||
Reconnect the USB cable.
|
||||
```
|
||||
|
||||
Where the found port is: `/dev/tty.usbmodem575E0032081` corresponding to your leader or follower arm.
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="Linux">
|
||||
|
||||
On Linux, you might need to give access to the USB ports by running:
|
||||
```bash
|
||||
sudo chmod 666 /dev/ttyACM0
|
||||
sudo chmod 666 /dev/ttyACM1
|
||||
```
|
||||
|
||||
Example output:
|
||||
|
||||
```
|
||||
Finding all available ports for the MotorBus.
|
||||
['/dev/ttyACM0', '/dev/ttyACM1']
|
||||
Remove the usb cable from your MotorsBus and press Enter when done.
|
||||
|
||||
[...Disconnect corresponding leader or follower arm and press Enter...]
|
||||
|
||||
The port of this MotorsBus is /dev/ttyACM1
|
||||
Reconnect the USB cable.
|
||||
```
|
||||
|
||||
Where the found port is: `/dev/ttyACM1` corresponding to your leader or follower arm.
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
### 2. Set the motors ids and baudrates
|
||||
|
||||
Each motor is identified by a unique id on the bus. When brand new, motors usually come with a default id of `1`. For the communication to work properly between the motors and the controller, we first need to set a unique, different id to each motor. Additionally, the speed at which data is transmitted on the bus is determined by the baudrate. In order to talk to each other, the controller and all the motors need to be configured with the same baudrate.
|
||||
|
||||
To that end, we first need to connect to each motor individually with the controller in order to set these. Since we will write these parameters in the non-volatile section of the motors' internal memory (EEPROM), we'll only need to do this once.
|
||||
|
||||
If you are repurposing motors from another robot, you will probably also need to perform this step as the ids and baudrate likely won't match.
|
||||
|
||||
The video below shows the sequence of steps for setting the motor ids.
|
||||
|
||||
##### Setup motors video
|
||||
|
||||
<div class="video-container">
|
||||
<video controls width="600">
|
||||
<source src="https://huggingface.co/datasets/huggingface/documentation-images/blob/main/lerobot/setup_motors_so101-2-2.mp4" type="video/mp4" />
|
||||
</video>
|
||||
</div>
|
||||
|
||||
#### Follower
|
||||
|
||||
Connect the usb cable from your computer and the power supply to the follower arm's controller board. Then, run the following command or run the API example with the port you got from the previous step. You'll also need to give your leader arm a name with the `id` parameter.
|
||||
|
||||
<hfoptions id="setup_motors">
|
||||
<hfoption id="Command">
|
||||
```bash
|
||||
python -m lerobot.setup_motors \
|
||||
--robot.type=so101_follower \
|
||||
--robot.port=/dev/tty.usbmodem585A0076841 # <- paste here the port found at previous step
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="API example">
|
||||
```python
|
||||
from lerobot.common.robots.so101_follower import SO101Follower, SO101FollowerConfig
|
||||
|
||||
config = SO101FollowerConfig(
|
||||
port="/dev/tty.usbmodem585A0076841",
|
||||
id="my_awesome_follower_arm",
|
||||
)
|
||||
follower = SO101Follower(config)
|
||||
follower.setup_motors()
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
You should see the following instruction
|
||||
```bash
|
||||
Connect the controller board to the 'gripper' motor only and press enter.
|
||||
```
|
||||
|
||||
As instructed, plug the gripper's motor. Make sure it's the only motor connected to the board, and that the motor itself is not yet daisy-chained to any other motor. As you press `[Enter]`, the script will automatically set the id and baudrate for that motor.
|
||||
|
||||
<details>
|
||||
<summary>Troubleshooting</summary>
|
||||
|
||||
If you get an error at that point, check your cables and make sure they are plugged in properly:
|
||||
<ul>
|
||||
<li>Power supply</li>
|
||||
<li>USB cable between your computer and the controller board</li>
|
||||
<li>The 3-pin cable from the controller board to the motor</li>
|
||||
</ul>
|
||||
|
||||
If you are using a Waveshare controller board, make sure that the two jumpers are set on the `B` channel (USB).
|
||||
</details>
|
||||
|
||||
You should then see the following message:
|
||||
```bash
|
||||
'gripper' motor id set to 6
|
||||
```
|
||||
|
||||
Followed by the next instruction:
|
||||
```bash
|
||||
Connect the controller board to the 'wrist_roll' motor only and press enter.
|
||||
```
|
||||
|
||||
You can disconnect the 3-pin cable from the controller board, but you can leave it connected to the gripper motor on the other end, as it will already be in the right place. Now, plug in another 3-pin cable to the wrist roll motor and connect it to the controller board. As with the previous motor, make sure it is the only motor connected to the board and that the motor itself isn't connected to any other one.
|
||||
|
||||
Repeat the operation for each motor as instructed.
|
||||
|
||||
> [!TIP]
|
||||
> Check your cabling at each step before pressing Enter. For instance, the power supply cable might disconnect as you manipulate the board.
|
||||
|
||||
When you are done, the script will simply finish, at which point the motors are ready to be used. You can now plug the 3-pin cable from each motor to the next one, and the cable from the first motor (the 'shoulder pan' with id=1) to the controller board, which can now be attached to the base of the arm.
|
||||
|
||||
#### Leader
|
||||
Do the same steps for the leader arm.
|
||||
|
||||
<hfoptions id="setup_motors">
|
||||
<hfoption id="Command">
|
||||
```bash
|
||||
python -m lerobot.setup_motors \
|
||||
--teleop.type=so101_leader \
|
||||
--teleop.port=/dev/tty.usbmodem575E0031751 # <- paste here the port found at previous step
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="API example">
|
||||
```python
|
||||
from lerobot.common.teleoperators.so101_leader import SO101Leader, SO101LeaderConfig
|
||||
|
||||
config = SO101LeaderConfig(
|
||||
port="/dev/tty.usbmodem585A0076841",
|
||||
id="my_awesome_leader_arm",
|
||||
)
|
||||
leader = SO101Leader(config)
|
||||
leader.setup_motors()
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## Calibrate
|
||||
|
||||
Next, you'll need to calibrate your robot to ensure that the leader and follower arms have the same position values when they are in the same physical position.
|
||||
The calibration process is very important because it allows a neural network trained on one robot to work on another.
|
||||
|
||||
#### Follower
|
||||
|
||||
Run the following command or API example to calibrate the follower arm:
|
||||
|
||||
<hfoptions id="calibrate_follower">
|
||||
<hfoption id="Command">
|
||||
```bash
|
||||
python -m lerobot.calibrate \
|
||||
--robot.type=so101_follower \
|
||||
--robot.port=/dev/tty.usbmodem58760431551 \ # <- The port of your robot
|
||||
--robot.id=my_awesome_follower_arm # <- Give the robot a unique name
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="API example">
|
||||
```python
|
||||
from lerobot.common.robots.so101_follower import SO101FollowerConfig, SO101Follower
|
||||
|
||||
config = SO101FollowerConfig(
|
||||
port="/dev/tty.usbmodem585A0076891",
|
||||
id="my_awesome_follower_arm",
|
||||
)
|
||||
|
||||
follower = SO101Follower(config)
|
||||
follower.connect(calibrate=False)
|
||||
follower.calibrate()
|
||||
follower.disconnect()
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
The video below shows how to perform the calibration. First you need to move the robot to the position where all joints are in the middle of their ranges. Then after pressing enter you have to move each joint through its full range of motion.
|
||||
|
||||
##### Calibration video
|
||||
|
||||
<div class="video-container">
|
||||
<video controls width="600">
|
||||
<source src="https://huggingface.co/datasets/huggingface/documentation-images/blob/main/lerobot/calibrate_so101-2-2.mp4" type="video/mp4" />
|
||||
</video>
|
||||
</div>
|
||||
|
||||
#### Leader
|
||||
|
||||
Do the same steps to calibrate the leader arm, run the following command or API example:
|
||||
|
||||
<hfoptions id="calibrate_leader">
|
||||
<hfoption id="Command">
|
||||
```bash
|
||||
python -m lerobot.calibrate \
|
||||
--teleop.type=so101_leader \
|
||||
--teleop.port=/dev/tty.usbmodem58760431551 \ # <- The port of your robot
|
||||
--teleop.id=my_awesome_leader_arm # <- Give the robot a unique name
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="API example">
|
||||
```python
|
||||
from lerobot.common.teleoperators.so101_leader import SO101LeaderConfig, SO101Leader
|
||||
|
||||
config = SO101LeaderConfig(
|
||||
port="/dev/tty.usbmodem58760431551",
|
||||
id="my_awesome_leader_arm",
|
||||
)
|
||||
|
||||
leader = SO101Leader(config)
|
||||
leader.connect(calibrate=False)
|
||||
leader.calibrate()
|
||||
leader.disconnect()
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Congrats 🎉, your robot is all set to learn a task on its own. Start training it by following this tutorial: [Getting started with real-world robots](./getting_started_real_world_robot)
|
||||
|
||||
> [!TIP]
|
||||
> If you have any questions or need help, please reach out on [Discord](https://discord.com/invite/s3KuuzsPFb).
|
||||
@@ -15,8 +15,8 @@
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
from lerobot.common.cameras import CameraConfig
|
||||
from lerobot.common.cameras.intel import RealSenseCameraConfig
|
||||
from lerobot.common.cameras.opencv import OpenCVCameraConfig
|
||||
from lerobot.common.cameras.realsense import RealSenseCameraConfig
|
||||
|
||||
from ..config import RobotConfig
|
||||
|
||||
@@ -33,7 +33,7 @@ class Stretch3RobotConfig(RobotConfig):
|
||||
cameras: dict[str, CameraConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"navigation": OpenCVCameraConfig(
|
||||
camera_index="/dev/hello-nav-head-camera",
|
||||
index_or_path="/dev/hello-nav-head-camera",
|
||||
fps=10,
|
||||
width=1280,
|
||||
height=720,
|
||||
|
||||
@@ -140,7 +140,8 @@ class KochLeader(Teleoperator):
|
||||
self.bus.write("Operating_Mode", "gripper", OperatingMode.CURRENT_POSITION.value)
|
||||
# Set gripper's goal pos in current position mode so that we can use it as a trigger.
|
||||
self.bus.enable_torque("gripper")
|
||||
self.bus.write("Goal_Position", "gripper", self.config.gripper_open_pos)
|
||||
if self.is_calibrated:
|
||||
self.bus.write("Goal_Position", "gripper", self.config.gripper_open_pos)
|
||||
|
||||
def setup_motors(self) -> None:
|
||||
for motor in reversed(self.bus.motors):
|
||||
|
||||
336
lerobot/find_cameras.py
Normal file
@@ -0,0 +1,336 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
Helper to find the camera devices available in your system.
|
||||
|
||||
Example:
|
||||
|
||||
```shell
|
||||
python -m lerobot.find_cameras
|
||||
```
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import concurrent.futures
|
||||
import logging
|
||||
import shutil
|
||||
import time
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
from lerobot.common.cameras.configs import ColorMode
|
||||
from lerobot.common.cameras.opencv.camera_opencv import OpenCVCamera
|
||||
from lerobot.common.cameras.opencv.configuration_opencv import OpenCVCameraConfig
|
||||
from lerobot.common.cameras.realsense.camera_realsense import RealSenseCamera
|
||||
from lerobot.common.cameras.realsense.configuration_realsense import RealSenseCameraConfig
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def find_all_opencv_cameras() -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Finds all available OpenCV cameras plugged into the system.
|
||||
|
||||
Returns:
|
||||
A list of all available OpenCV cameras with their metadata.
|
||||
"""
|
||||
all_opencv_cameras_info: List[Dict[str, Any]] = []
|
||||
logger.info("Searching for OpenCV cameras...")
|
||||
try:
|
||||
opencv_cameras = OpenCVCamera.find_cameras()
|
||||
for cam_info in opencv_cameras:
|
||||
all_opencv_cameras_info.append(cam_info)
|
||||
logger.info(f"Found {len(opencv_cameras)} OpenCV cameras.")
|
||||
except Exception as e:
|
||||
logger.error(f"Error finding OpenCV cameras: {e}")
|
||||
|
||||
return all_opencv_cameras_info
|
||||
|
||||
|
||||
def find_all_realsense_cameras() -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Finds all available RealSense cameras plugged into the system.
|
||||
|
||||
Returns:
|
||||
A list of all available RealSense cameras with their metadata.
|
||||
"""
|
||||
all_realsense_cameras_info: List[Dict[str, Any]] = []
|
||||
logger.info("Searching for RealSense cameras...")
|
||||
try:
|
||||
realsense_cameras = RealSenseCamera.find_cameras()
|
||||
for cam_info in realsense_cameras:
|
||||
all_realsense_cameras_info.append(cam_info)
|
||||
logger.info(f"Found {len(realsense_cameras)} RealSense cameras.")
|
||||
except ImportError:
|
||||
logger.warning("Skipping RealSense camera search: pyrealsense2 library not found or not importable.")
|
||||
except Exception as e:
|
||||
logger.error(f"Error finding RealSense cameras: {e}")
|
||||
|
||||
return all_realsense_cameras_info
|
||||
|
||||
|
||||
def find_and_print_cameras(camera_type_filter: str | None = None) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Finds available cameras based on an optional filter and prints their information.
|
||||
|
||||
Args:
|
||||
camera_type_filter: Optional string to filter cameras ("realsense" or "opencv").
|
||||
If None, lists all cameras.
|
||||
|
||||
Returns:
|
||||
A list of all available cameras matching the filter, with their metadata.
|
||||
"""
|
||||
all_cameras_info: List[Dict[str, Any]] = []
|
||||
|
||||
if camera_type_filter:
|
||||
camera_type_filter = camera_type_filter.lower()
|
||||
|
||||
if camera_type_filter is None or camera_type_filter == "opencv":
|
||||
all_cameras_info.extend(find_all_opencv_cameras())
|
||||
if camera_type_filter is None or camera_type_filter == "realsense":
|
||||
all_cameras_info.extend(find_all_realsense_cameras())
|
||||
|
||||
if not all_cameras_info:
|
||||
if camera_type_filter:
|
||||
logger.warning(f"No {camera_type_filter} cameras were detected.")
|
||||
else:
|
||||
logger.warning("No cameras (OpenCV or RealSense) were detected.")
|
||||
else:
|
||||
print("\n--- Detected Cameras ---")
|
||||
for i, cam_info in enumerate(all_cameras_info):
|
||||
print(f"Camera #{i}:")
|
||||
for key, value in cam_info.items():
|
||||
if key == "default_stream_profile" and isinstance(value, dict):
|
||||
print(f" {key.replace('_', ' ').capitalize()}:")
|
||||
for sub_key, sub_value in value.items():
|
||||
print(f" {sub_key.capitalize()}: {sub_value}")
|
||||
else:
|
||||
print(f" {key.replace('_', ' ').capitalize()}: {value}")
|
||||
print("-" * 20)
|
||||
return all_cameras_info
|
||||
|
||||
|
||||
def save_image(
|
||||
img_array: np.ndarray,
|
||||
camera_identifier: str | int,
|
||||
images_dir: Path,
|
||||
camera_type: str,
|
||||
):
|
||||
"""
|
||||
Saves a single image to disk using Pillow. Handles color conversion if necessary.
|
||||
"""
|
||||
try:
|
||||
img = Image.fromarray(img_array, mode="RGB")
|
||||
|
||||
safe_identifier = str(camera_identifier).replace("/", "_").replace("\\", "_")
|
||||
filename_prefix = f"{camera_type.lower()}_{safe_identifier}"
|
||||
filename = f"{filename_prefix}.png"
|
||||
|
||||
path = images_dir / filename
|
||||
path.parent.mkdir(parents=True, exist_ok=True)
|
||||
img.save(str(path))
|
||||
logger.info(f"Saved image: {path}")
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to save image for camera {camera_identifier} (type {camera_type}): {e}")
|
||||
|
||||
|
||||
def initialize_output_directory(output_dir: str | Path) -> Path:
|
||||
"""Initialize and clean the output directory."""
|
||||
output_dir = Path(output_dir)
|
||||
if output_dir.exists():
|
||||
logger.info(f"Output directory {output_dir} exists. Removing previous content.")
|
||||
shutil.rmtree(output_dir)
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
logger.info(f"Saving images to {output_dir}")
|
||||
return output_dir
|
||||
|
||||
|
||||
def create_camera_instance(cam_meta: Dict[str, Any]) -> Dict[str, Any] | None:
|
||||
"""Create and connect to a camera instance based on metadata."""
|
||||
cam_type = cam_meta.get("type")
|
||||
cam_id = cam_meta.get("id")
|
||||
instance = None
|
||||
|
||||
logger.info(f"Preparing {cam_type} ID {cam_id} with default profile")
|
||||
|
||||
try:
|
||||
if cam_type == "OpenCV":
|
||||
cv_config = OpenCVCameraConfig(
|
||||
index_or_path=cam_id,
|
||||
color_mode=ColorMode.RGB,
|
||||
)
|
||||
instance = OpenCVCamera(cv_config)
|
||||
elif cam_type == "RealSense":
|
||||
rs_config = RealSenseCameraConfig(
|
||||
serial_number_or_name=int(cam_id),
|
||||
color_mode=ColorMode.RGB,
|
||||
)
|
||||
instance = RealSenseCamera(rs_config)
|
||||
else:
|
||||
logger.warning(f"Unknown camera type: {cam_type} for ID {cam_id}. Skipping.")
|
||||
return None
|
||||
|
||||
if instance:
|
||||
logger.info(f"Connecting to {cam_type} camera: {cam_id}...")
|
||||
instance.connect(warmup=False)
|
||||
return {"instance": instance, "meta": cam_meta}
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to connect or configure {cam_type} camera {cam_id}: {e}")
|
||||
if instance and instance.is_connected:
|
||||
instance.disconnect()
|
||||
return None
|
||||
|
||||
|
||||
def process_camera_image(
|
||||
cam_dict: Dict[str, Any], output_dir: Path, current_time: float
|
||||
) -> concurrent.futures.Future | None:
|
||||
"""Capture and process an image from a single camera."""
|
||||
cam = cam_dict["instance"]
|
||||
meta = cam_dict["meta"]
|
||||
cam_type_str = str(meta.get("type", "unknown"))
|
||||
cam_id_str = str(meta.get("id", "unknown"))
|
||||
|
||||
try:
|
||||
image_data = cam.read()
|
||||
|
||||
return save_image(
|
||||
image_data,
|
||||
cam_id_str,
|
||||
output_dir,
|
||||
cam_type_str,
|
||||
)
|
||||
except TimeoutError:
|
||||
logger.warning(
|
||||
f"Timeout reading from {cam_type_str} camera {cam_id_str} at time {current_time:.2f}s."
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error reading from {cam_type_str} camera {cam_id_str}: {e}")
|
||||
return None
|
||||
|
||||
|
||||
def cleanup_cameras(cameras_to_use: List[Dict[str, Any]]):
|
||||
"""Disconnect all cameras."""
|
||||
logger.info(f"Disconnecting {len(cameras_to_use)} cameras...")
|
||||
for cam_dict in cameras_to_use:
|
||||
try:
|
||||
if cam_dict["instance"] and cam_dict["instance"].is_connected:
|
||||
cam_dict["instance"].disconnect()
|
||||
except Exception as e:
|
||||
logger.error(f"Error disconnecting camera {cam_dict['meta'].get('id')}: {e}")
|
||||
|
||||
|
||||
def save_images_from_all_cameras(
|
||||
output_dir: str | Path,
|
||||
record_time_s: float = 2.0,
|
||||
camera_type_filter: str | None = None,
|
||||
):
|
||||
"""
|
||||
Connects to detected cameras (optionally filtered by type) and saves images from each.
|
||||
Uses default stream profiles for width, height, and FPS.
|
||||
|
||||
Args:
|
||||
output_dir: Directory to save images.
|
||||
record_time_s: Duration in seconds to record images.
|
||||
camera_type_filter: Optional string to filter cameras ("realsense" or "opencv").
|
||||
If None, uses all detected cameras.
|
||||
"""
|
||||
output_dir = initialize_output_directory(output_dir)
|
||||
all_camera_metadata = find_and_print_cameras(camera_type_filter=camera_type_filter)
|
||||
|
||||
if not all_camera_metadata:
|
||||
logger.warning("No cameras detected matching the criteria. Cannot save images.")
|
||||
return
|
||||
|
||||
cameras_to_use = []
|
||||
for cam_meta in all_camera_metadata:
|
||||
camera_instance = create_camera_instance(cam_meta)
|
||||
if camera_instance:
|
||||
cameras_to_use.append(camera_instance)
|
||||
|
||||
if not cameras_to_use:
|
||||
logger.warning("No cameras could be connected. Aborting image save.")
|
||||
return
|
||||
|
||||
logger.info(f"Starting image capture for {record_time_s} seconds from {len(cameras_to_use)} cameras.")
|
||||
start_time = time.perf_counter()
|
||||
|
||||
with concurrent.futures.ThreadPoolExecutor(max_workers=len(cameras_to_use) * 2) as executor:
|
||||
try:
|
||||
while time.perf_counter() - start_time < record_time_s:
|
||||
futures = []
|
||||
current_capture_time = time.perf_counter()
|
||||
|
||||
for cam_dict in cameras_to_use:
|
||||
future = process_camera_image(cam_dict, output_dir, current_capture_time)
|
||||
if future:
|
||||
futures.append(future)
|
||||
|
||||
if futures:
|
||||
concurrent.futures.wait(futures)
|
||||
|
||||
except KeyboardInterrupt:
|
||||
logger.info("Capture interrupted by user.")
|
||||
finally:
|
||||
print("\nFinalizing image saving...")
|
||||
executor.shutdown(wait=True)
|
||||
cleanup_cameras(cameras_to_use)
|
||||
logger.info(f"Image capture finished. Images saved to {output_dir}")
|
||||
|
||||
|
||||
# NOTE(Steven):
|
||||
# * realsense identified as opencv -> consistent in linux, we can even capture images
|
||||
# * opencv mac cams reporting different fps at init, not an issue as we don't enforce fps here
|
||||
# * opencv not opening in linux if we specify a backend
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Unified camera utility script for listing cameras and capturing images."
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"camera_type",
|
||||
type=str,
|
||||
nargs="?",
|
||||
default=None,
|
||||
choices=["realsense", "opencv"],
|
||||
help="Specify camera type to capture from (e.g., 'realsense', 'opencv'). Captures from all if omitted.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output-dir",
|
||||
type=Path,
|
||||
default="outputs/captured_images",
|
||||
help="Directory to save images. Default: outputs/captured_images",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--record-time-s",
|
||||
type=float,
|
||||
default=6.0,
|
||||
help="Time duration to attempt capturing frames. Default: 6 seconds.",
|
||||
)
|
||||
parser.set_defaults(
|
||||
func=lambda args: save_images_from_all_cameras(
|
||||
output_dir=args.output_dir,
|
||||
record_time_s=args.record_time_s,
|
||||
camera_type_filter=args.camera_type,
|
||||
)
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
args.func(args)
|
||||
@@ -44,9 +44,9 @@ import rerun as rr
|
||||
|
||||
from lerobot.common.cameras import ( # noqa: F401
|
||||
CameraConfig, # noqa: F401
|
||||
intel,
|
||||
opencv,
|
||||
)
|
||||
from lerobot.common.cameras.opencv.configuration_opencv import OpenCVCameraConfig # noqa: F401
|
||||
from lerobot.common.cameras.realsense.configuration_realsense import RealSenseCameraConfig # noqa: F401
|
||||
from lerobot.common.datasets.image_writer import safe_stop_image_writer
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
||||
from lerobot.common.datasets.utils import build_dataset_frame, hw_to_dataset_features
|
||||
@@ -58,6 +58,7 @@ from lerobot.common.robots import ( # noqa: F401
|
||||
koch_follower,
|
||||
make_robot_from_config,
|
||||
so100_follower,
|
||||
so101_follower,
|
||||
)
|
||||
from lerobot.common.teleoperators import ( # noqa: F401
|
||||
Teleoperator,
|
||||
@@ -81,7 +82,7 @@ from lerobot.common.utils.visualization_utils import _init_rerun
|
||||
from lerobot.configs import parser
|
||||
from lerobot.configs.policies import PreTrainedConfig
|
||||
|
||||
from .common.teleoperators import koch_leader, so100_leader # noqa: F401
|
||||
from .common.teleoperators import koch_leader, so100_leader, so101_leader # noqa: F401
|
||||
|
||||
|
||||
@dataclass
|
||||
|
||||
@@ -42,6 +42,7 @@ from lerobot.common.robots import ( # noqa: F401
|
||||
koch_follower,
|
||||
make_robot_from_config,
|
||||
so100_follower,
|
||||
so101_follower,
|
||||
)
|
||||
from lerobot.common.utils.robot_utils import busy_wait
|
||||
from lerobot.common.utils.utils import (
|
||||
|
||||
@@ -28,12 +28,20 @@ from dataclasses import dataclass
|
||||
|
||||
import draccus
|
||||
|
||||
from .common.robots import RobotConfig, koch_follower, make_robot_from_config, so100_follower # noqa: F401
|
||||
from .common.robots import ( # noqa: F401
|
||||
RobotConfig,
|
||||
koch_follower,
|
||||
lekiwi,
|
||||
make_robot_from_config,
|
||||
so100_follower,
|
||||
so101_follower,
|
||||
)
|
||||
from .common.teleoperators import ( # noqa: F401
|
||||
TeleoperatorConfig,
|
||||
koch_leader,
|
||||
make_teleoperator_from_config,
|
||||
so100_leader,
|
||||
so101_leader,
|
||||
)
|
||||
|
||||
COMPATIBLE_DEVICES = [
|
||||
@@ -41,6 +49,9 @@ COMPATIBLE_DEVICES = [
|
||||
"koch_leader",
|
||||
"so100_follower",
|
||||
"so100_leader",
|
||||
"so101_follower",
|
||||
"so101_leader",
|
||||
"lekiwi",
|
||||
]
|
||||
|
||||
|
||||
|
||||
@@ -19,13 +19,14 @@ Example:
|
||||
|
||||
```shell
|
||||
python -m lerobot.teleoperate \
|
||||
--robot.type=so100_follower \
|
||||
--robot.type=so101_follower \
|
||||
--robot.port=/dev/tty.usbmodem58760431541 \
|
||||
--robot.cameras="{laptop: {type: opencv, camera_index: 0}}" \
|
||||
--robot.cameras="{ front: {type: opencv, index_or_path: 0, width: 1920, height: 1080, fps: 30}}" \
|
||||
--robot.id=black \
|
||||
--teleop.type=so100_leader \
|
||||
--teleop.type=so101_leader \
|
||||
--teleop.port=/dev/tty.usbmodem58760431551 \
|
||||
--teleop.id=blue
|
||||
--teleop.id=blue \
|
||||
--display_data=true
|
||||
```
|
||||
"""
|
||||
|
||||
@@ -38,13 +39,15 @@ import draccus
|
||||
import numpy as np
|
||||
import rerun as rr
|
||||
|
||||
from lerobot.common.cameras import intel, opencv # noqa: F401
|
||||
from lerobot.common.cameras.opencv.configuration_opencv import OpenCVCameraConfig # noqa: F401
|
||||
from lerobot.common.cameras.realsense.configuration_realsense import RealSenseCameraConfig # noqa: F401
|
||||
from lerobot.common.robots import ( # noqa: F401
|
||||
Robot,
|
||||
RobotConfig,
|
||||
koch_follower,
|
||||
make_robot_from_config,
|
||||
so100_follower,
|
||||
so101_follower,
|
||||
)
|
||||
from lerobot.common.teleoperators import (
|
||||
Teleoperator,
|
||||
@@ -54,7 +57,7 @@ from lerobot.common.teleoperators import (
|
||||
from lerobot.common.utils.utils import init_logging, move_cursor_up
|
||||
from lerobot.common.utils.visualization_utils import _init_rerun
|
||||
|
||||
from .common.teleoperators import koch_leader, so100_leader # noqa: F401
|
||||
from .common.teleoperators import koch_leader, so100_leader, so101_leader # noqa: F401
|
||||
|
||||
|
||||
@dataclass
|
||||
|
||||
|
Before Width: | Height: | Size: 370 KiB |
|
Before Width: | Height: | Size: 391 KiB |
|
Before Width: | Height: | Size: 387 KiB |
|
Before Width: | Height: | Size: 479 KiB |
|
Before Width: | Height: | Size: 474 KiB |
|
Before Width: | Height: | Size: 471 KiB |
|
Before Width: | Height: | Size: 326 KiB |
|
Before Width: | Height: | Size: 312 KiB |
|
Before Width: | Height: | Size: 469 KiB |
|
Before Width: | Height: | Size: 339 KiB |
|
Before Width: | Height: | Size: 232 KiB |
|
Before Width: | Height: | Size: 484 KiB |
|
Before Width: | Height: | Size: 220 KiB |
|
Before Width: | Height: | Size: 272 KiB |
|
Before Width: | Height: | Size: 186 KiB |
|
Before Width: | Height: | Size: 185 KiB |
|
Before Width: | Height: | Size: 116 KiB |
|
Before Width: | Height: | Size: 153 KiB |
|
Before Width: | Height: | Size: 208 KiB |
|
Before Width: | Height: | Size: 296 KiB |
|
Before Width: | Height: | Size: 87 KiB |
|
Before Width: | Height: | Size: 114 KiB |
|
Before Width: | Height: | Size: 155 KiB |
|
Before Width: | Height: | Size: 194 KiB |
|
Before Width: | Height: | Size: 145 KiB |
|
Before Width: | Height: | Size: 95 KiB |
|
Before Width: | Height: | Size: 509 KiB |
|
Before Width: | Height: | Size: 88 KiB |
|
Before Width: | Height: | Size: 93 KiB |
|
Before Width: | Height: | Size: 528 KiB |
|
Before Width: | Height: | Size: 64 KiB |
|
Before Width: | Height: | Size: 41 KiB |
|
Before Width: | Height: | Size: 45 KiB |
|
Before Width: | Height: | Size: 64 KiB |
|
Before Width: | Height: | Size: 35 KiB |
|
Before Width: | Height: | Size: 39 KiB |
|
Before Width: | Height: | Size: 38 KiB |
|
Before Width: | Height: | Size: 30 KiB |
|
Before Width: | Height: | Size: 66 KiB |
|
Before Width: | Height: | Size: 127 KiB |
|
Before Width: | Height: | Size: 109 KiB |
|
Before Width: | Height: | Size: 80 KiB |
|
Before Width: | Height: | Size: 88 KiB |
|
Before Width: | Height: | Size: 86 KiB |
|
Before Width: | Height: | Size: 96 KiB |
|
Before Width: | Height: | Size: 84 KiB |
|
Before Width: | Height: | Size: 72 KiB |
|
Before Width: | Height: | Size: 78 KiB |
|
Before Width: | Height: | Size: 97 KiB |
|
Before Width: | Height: | Size: 88 KiB |
|
Before Width: | Height: | Size: 42 KiB |
|
Before Width: | Height: | Size: 85 KiB |
|
Before Width: | Height: | Size: 62 KiB |
|
Before Width: | Height: | Size: 54 KiB |
|
Before Width: | Height: | Size: 61 KiB |
|
Before Width: | Height: | Size: 76 KiB |
|
Before Width: | Height: | Size: 80 KiB |