Compare commits

...

128 Commits

Author SHA1 Message Date
KeWang
def42ff487 Port SAC WIP (#581)
Co-authored-by: KeWang1017 <ke.wang@helloleap.ai>
2024-12-17 16:16:59 +01:00
Michel Aractingi
c9af8e36a7 completed losses 2024-12-17 16:16:36 +01:00
Michel Aractingi
ed66c92383 nit in control_robot.py 2024-12-17 11:04:56 +07:00
Michel Aractingi
668d493bf9 Update lerobot/scripts/train_hilserl_classifier.py
Co-authored-by: Yoel <yoel.chornton@gmail.com>
2024-12-17 02:44:31 +07:00
Claudio Coppola
67f4d7ea7a LerobotDataset pushable to HF from any folder (#563) 2024-12-17 02:44:23 +07:00
berjaoui
4b0c88ff8e Update 7_get_started_with_real_robot.md (#559) 2024-12-17 02:44:11 +07:00
Michel Aractingi
b19fef9d18 Control simulated robot with real leader (#514)
Co-authored-by: Remi <remi.cadene@huggingface.co>
2024-12-17 02:44:03 +07:00
Remi
1612e00e63 Fix missing local_files_only in record/replay (#540)
Co-authored-by: Simon Alibert <alibert.sim@gmail.com>
2024-12-17 02:43:10 +07:00
Michel Aractingi
c3bc136420 Refactor OpenX (#505) 2024-12-17 02:42:59 +07:00
Eugene Mironov
1020bc3108 Fixup 2024-12-17 02:42:53 +07:00
Michel Aractingi
7fcf638c0d Add human intervention mechanism and eval_robot script to evaluate policy on the robot (#541)
Co-authored-by: Yoel <yoel.chornton@gmail.com>
2024-12-17 02:41:31 +07:00
Yoel
e35546f58e Reward classifier and training (#528)
Co-authored-by: Daniel Ritchie <daniel@brainwavecollective.ai>
Co-authored-by: resolver101757 <kelster101757@hotmail.com>
Co-authored-by: Jannik Grothusen <56967823+J4nn1K@users.noreply.github.com>
Co-authored-by: Remi <re.cadene@gmail.com>
Co-authored-by: Michel Aractingi <michel.aractingi@huggingface.co>
2024-12-17 02:41:29 +07:00
Michel Aractingi
1aa8d4ac91 nit 2024-12-17 02:39:15 +07:00
s1lent4gnt
66f8736598 fixing typo from 'teloperation' to 'teleoperation' (#566) 2024-12-11 05:57:52 -08:00
Simon Alibert
4c41f6fcc6 Fix example 6 (#572) 2024-12-11 10:32:18 +01:00
Claudio Coppola
44f9b21e74 LerobotDataset pushable to HF from any folder (#563) 2024-12-09 11:32:25 +01:00
berjaoui
03f49ceaf0 Update 7_get_started_with_real_robot.md (#559) 2024-12-09 00:17:49 +01:00
Michel Aractingi
8e7d6970ea Control simulated robot with real leader (#514)
Co-authored-by: Remi <remi.cadene@huggingface.co>
2024-12-03 12:20:05 +01:00
Remi
286bca37cc Fix missing local_files_only in record/replay (#540)
Co-authored-by: Simon Alibert <alibert.sim@gmail.com>
2024-12-03 10:53:21 +01:00
Michel Aractingi
a2c181992a Refactor OpenX (#505) 2024-12-03 00:51:55 +01:00
Simon Alibert
32eb0cec8f Dataset v2.0 (#461)
Co-authored-by: Remi <remi.cadene@huggingface.co>
2024-11-29 19:04:00 +01:00
KasparSLT
96c7052777 Rename deprecated argument (temporal_ensemble_momentum) (#490) 2024-11-25 21:05:13 +01:00
Jannik Grothusen
975c1c25c3 Add distinction between two unallowed cases in name check "eval_" (#489) 2024-11-22 19:19:57 +01:00
resolver101757
20f466768e bug causes error uploading to huggingface, unicode issue on windows. (#450) 2024-11-22 19:15:58 +01:00
Daniel Ritchie
8af693548e Add support for Windows (#494) 2024-11-22 19:14:25 +01:00
Ivelin Ivanov
963738d983 fix: broken images and a few minor typos in README (#499)
Signed-off-by: ivelin <ivelin117@gmail.com>
2024-11-05 15:30:59 +01:00
Arsen Ohanyan
e0df56de62 Fix config file (#495) 2024-10-31 16:41:49 +01:00
Hirokazu Ishida
538455a965 feat: enable to use multiple rgb encoders per camera in diffusion policy (#484)
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
2024-10-30 11:00:05 +01:00
Remi
172809a502 [Fix] Move back to manual calibration (#488) 2024-10-26 15:27:21 +02:00
Remi
55e4ff6742 Fix autocalib moss (#486) 2024-10-26 12:15:17 +02:00
Remi
07e8716315 Add FeetechMotorsBus, SO-100, Moss-v1 (#419)
Co-authored-by: jess-moss <jess.moss@huggingface.co>
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2024-10-25 11:23:55 +02:00
Arsen Ohanyan
114870d703 Fix link (#482)
Co-authored-by: Remi <remi.cadene@huggingface.co>
2024-10-23 16:24:06 +02:00
Bastian Krohg
2efee45ef1 Update 9_use_aloha.md, missing comma (#479) 2024-10-23 16:13:26 +02:00
Boris Zimka
c351e1fff9 Fix gymnasium version as pre-1.0.0 (#471)
Co-authored-by: Remi <re.cadene@gmail.com>
Co-authored-by: Remi <remi.cadene@huggingface.co>
2024-10-18 10:23:27 +02:00
Alexander Soare
cd0fc261c0 Make say(blocking=True) work for Linux (#460) 2024-10-17 15:22:21 +01:00
Remi
77478d50e5 Refactor record with add_frame (#468)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2024-10-16 20:51:35 +02:00
Remi
97b1feb0b3 Add policy/act_aloha_real.yaml + env/act_real.yaml (#429)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2024-10-10 17:12:45 +02:00
Eugene Mironov
c29e70e5a1 Fix issue with wrong using index instead of camera_index in opencv (#466) 2024-10-09 11:35:19 +02:00
Remi
d5b669634a Fix nightly by updating .cache in dockerignore (#464) 2024-10-07 11:35:35 +02:00
Simon Alibert
1a343c3591 Add support for Stretch (hello-robot) (#409)
Co-authored-by: Remi <remi.cadene@huggingface.co>
Co-authored-by: Remi Cadene <re.cadene@gmail.com>
2024-10-04 18:56:42 +02:00
Remi
26f97cfd17 Enable CI for robot devices with mocked versions (#398)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2024-10-03 17:05:23 +02:00
Simon Alibert
72f402d44b Fix dataset card (#453) 2024-09-25 16:56:05 +02:00
Alexander Soare
92573486a8 Don't use async envs by default (#448) 2024-09-20 15:22:52 +02:00
Simon Alibert
c712d68f6a Fix nightlies (#443) 2024-09-18 14:51:45 +02:00
Dana Aubakirova
f431a08efa small fix: assertion error message in envs/utils.py (#426)
Co-authored-by: Remi <re.cadene@gmail.com>
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
Co-authored-by: Remi <remi.cadene@huggingface.co>
2024-09-12 18:03:34 +02:00
Remi
beaa427504 Fix slow camera fps with Aloha (#433) 2024-09-12 14:20:24 +02:00
Mishig
a88dd602d9 [Vizualization] Better error message (#430)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2024-09-12 10:46:48 +02:00
Mishig
6c0324f467 [Vizualization] Fix video layout (#431) 2024-09-12 10:06:29 +02:00
Alexander Soare
a60d27b132 Raise ValueError if horizon is incompatible with downsampling (#422) 2024-09-09 17:22:46 +01:00
Mishig
9c463661c1 [Vizualization] Better UI on small screens (like in smartphones) (#423) 2024-09-09 15:39:40 +02:00
Mishig
4255655618 [Vizualization] Show user error if videos codec is not supported (#424) 2024-09-09 15:38:41 +02:00
Joe Clinton
f17d9a2ba1 Bug: Fix VQ-Bet not working when n_action_pred_token=1 (#420)
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
2024-09-09 09:41:13 +01:00
Remi
9ff829a3a1 Add comments for Aloha (#417)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2024-09-06 21:07:52 +02:00
Mishig
d6516f0e03 [Visualization tool] Fix when dim state != dim action (#415) 2024-09-06 17:07:26 +02:00
Jack Vial
b0b8612eff fix(calibrate): fix calibrate arms option type. should be str not int (#418)
Co-authored-by: Remi <remi.cadene@huggingface.co>
2024-09-06 14:44:31 +02:00
Mishig
1072a055db [Visualization tool] Fix videos sync (#416) 2024-09-06 10:16:08 +02:00
Remi
9c9f5cac90 Add IntelRealSenseCamera (#410)
Co-authored-by: Simon Alibert <simon.alibert@huggingface.co>
Co-authored-by: shantanuparab-tr <shantanu@trossenrobotics.com>
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2024-09-05 23:59:41 +02:00
Simon Alibert
9d0c6fe419 Fix nightlies & untrack json files from git lfs (#414) 2024-09-05 15:07:43 +02:00
Simon Alibert
54ac25cfc9 Revert "hotfix"
This reverts commit 150a292795.
2024-09-05 12:54:53 +02:00
Remi Cadene
150a292795 hotfix 2024-09-04 22:03:33 +02:00
Remi
429a463aff Control aloha robot natively (#316)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2024-09-04 19:28:05 +02:00
Jack Vial
27ba2951d1 fix(tdmpc): Add missing save_freq to tdmpc policy config (#404)
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
2024-09-02 19:04:41 +01:00
Jack Vial
b2896d38f5 fix(act): n_vae_encoder_layers config parameter wasn't being used (#400) 2024-09-02 18:29:27 +01:00
Kenneth Gerald Hamilton
c0da806232 repair mailto link (#397) 2024-09-01 00:11:39 +02:00
Mishig
114e09f570 rm EpisodeSampler from viz (#389) 2024-08-30 10:53:55 +02:00
Simon Alibert
04a995e7d1 Fix safe_action (#395) 2024-08-30 10:36:05 +02:00
Michel Aractingi
4806336816 Add the possibility to visualize language instructions in visualize_dataset_html.py (#388)
Co-authored-by: Mishig <dmishig@gmail.com>
2024-08-28 11:50:31 +02:00
Remi
1ce418e4a1 Add koch bimanual (#385) 2024-08-28 00:53:31 +02:00
Michel Aractingi
eb4c505cff Support for converting OpenX datasets from RLDS format to LeRobotDataset (#354)
Signed-off-by: youliangtan <tan_you_liang@hotmail.com>
Co-authored-by: Simon Alibert <alibert.sim@gmail.com>
Co-authored-by: youliangtan <tan_you_liang@hotmail.com>
Co-authored-by: Remi <re.cadene@gmail.com>
2024-08-27 09:07:00 +02:00
Mishig
aad59e6b6b Fix videos in visualize_dataset are not in sync (#382) 2024-08-26 17:38:48 +02:00
Alexander Soare
9ce98bb93c Add safety limits on relative action target (#373) 2024-08-26 14:30:18 +01:00
Alexander Soare
97086cdcdf Make gripper_open_degree a config param (#379) 2024-08-26 12:28:16 +01:00
Alexander Soare
9c7649f140 Make sure init_hydra_config does not require any keys (#376) 2024-08-23 12:27:08 +01:00
Zhuoheng Li
a2592a5563 Provide more information to the user (#358)
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
Co-authored-by: Remi <re.cadene@gmail.com>
2024-08-23 11:00:35 +01:00
ellacroix
b5ad79a7d3 Fix typo in tutorial (#371) 2024-08-21 14:14:01 +02:00
Remi
996468bcce Update README.md 2024-08-20 16:45:57 +02:00
Remi
f98200297d Slightly improve tutorial and README (#370)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2024-08-20 16:41:39 +02:00
NielsRogge
86bbd16d43 Improve discoverability on the hub (#325)
Co-authored-by: Lucain <lucainp@gmail.com>
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2024-08-19 15:16:46 +02:00
Alexander Soare
0f6e0f6d74 Fix input dim (#365) 2024-08-19 11:42:32 +01:00
Remi
fc3e545e03 Update README.md 2024-08-19 11:14:10 +02:00
Simon Alibert
b98ea415c1 Add dataset cards (#363) 2024-08-16 10:08:44 +02:00
Remi
bbe9057225 Improve control robot ; Add process to configure motor indices (#326)
Co-authored-by: Simon Alibert <alibert.sim@gmail.com>
Co-authored-by: jess-moss <jess.moss@dextrousrobotics.com>
Co-authored-by: Marina Barannikov <marina.barannikov@huggingface.co>
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
2024-08-15 18:11:33 +02:00
Alexander Soare
8c4643687c fix bug in example 2 (#361) 2024-08-15 13:59:47 +01:00
Julien Perez
fab037f78d feat for the GPU poors : Add GPU availability check in evaluate_pretr… (#359)
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
2024-08-13 16:03:05 +01:00
Simon Alibert
03d647269e Fix CI builds (#357) 2024-08-12 17:57:03 +02:00
Remi
2252b42337 Add visualize_dataset_html with http.server (#188) 2024-08-08 20:19:06 +03:00
Adrien
bc6384bb80 fix ci (#351)
Signed-off-by: Adrien <adrien@huggingface.co>
2024-08-05 16:12:26 +02:00
resolver101757
8df7e63d61 Update README for cross-platform installation compatibility (#347) 2024-07-30 00:48:41 +02:00
Halvard Bariller
7a3cb1ad34 Adjust the timestamps' description in Diffusion Policy (#343)
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
2024-07-26 12:47:03 +01:00
Alexander Soare
f8a6574698 Add online training with TD-MPC as proof of concept (#338) 2024-07-25 11:16:38 +01:00
Alexander Soare
abbb1d2367 Make sure policies don't mutate the batch (#323) 2024-07-22 20:38:33 +01:00
Simon Alibert
0b21210d72 Convert datasets to av1 encoding (#302) 2024-07-22 20:08:59 +02:00
Simon Alibert
461d5472d3 Fix visualize_image_transforms (#333) 2024-07-18 22:26:00 +02:00
Simon Alibert
c75ea789a8 Detect secrets in pre-commit (#332) 2024-07-18 19:39:15 +02:00
Simon Alibert
ee200e86cb Ensure no upper bound constraints on dependencies (#327) 2024-07-18 12:07:15 +02:00
Simon Alibert
8865e19c12 Fix datasets missing versions (#318) 2024-07-16 23:02:31 +02:00
Alexander Soare
5f5efe7cb9 Improve error message when attempting to overwrite a training output folder (#322) 2024-07-16 16:50:31 +01:00
Alexander Soare
c0101f0948 Fix ACT temporal ensembling (#319) 2024-07-16 10:27:21 +01:00
Remi
5e54e39795 Add real robot devices and scripts to control real robot (#288)
Co-authored-by: Simon Alibert <alibert.sim@gmail.com>
2024-07-15 17:43:10 +02:00
Remi
5ffcb48a9a Add available list of raw repo ids (#312) 2024-07-13 11:30:50 +02:00
Alexander Soare
471eab3d7e Make ACT compatible with "observation.environment_state" (#314) 2024-07-11 13:12:22 +01:00
Seungjae Lee
64425d5e00 Bug fix: fix error when setting select_target_actions_indices in vqbet (#310)
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
2024-07-10 17:56:11 +01:00
Simon Alibert
e410e5d711 Improve video benchmark (#282)
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
Co-authored-by: Remi <re.cadene@gmail.com>
2024-07-09 20:20:25 +02:00
Alexander Soare
cc2f6e7404 Train diffusion pusht_keypoints (#307)
Co-authored-by: Remi <re.cadene@gmail.com>
2024-07-09 12:35:50 +01:00
Alexander Soare
a4d77b99f0 Include observation.environment_state with keypoints in PushT dataset (#303)
Co-authored-by: Remi <re.cadene@gmail.com>
2024-07-09 08:27:40 +01:00
Alexander Soare
7bd5ab16d1 Fix generation of dataset test artifact (#306) 2024-07-05 11:02:26 +01:00
Simon Alibert
74362ac453 Add VQ-BeT copyrights (#299) 2024-07-04 13:02:31 +02:00
Simon Alibert
964f9e86d6 Cleanup config defaults (#300) 2024-07-04 11:53:29 +02:00
Nur Muhammad "Mahi" Shafiullah
7a5fc76b9f Added new credits and citations (#301) 2024-07-03 20:57:47 +02:00
Alexander Soare
342f429f1c Add test to make sure policy dataclass configs match yaml configs (#292) 2024-06-26 09:09:40 +01:00
Seungjae Lee
7d1542cae1 Add VQ-BeT (#166) 2024-06-26 08:55:02 +01:00
Alexander Soare
9aa4cdb976 Checkpoint on final step of training even when it doesn't coincide with save_freq. (#284) 2024-06-20 08:27:01 +01:00
Simon Alibert
2abef3bef9 Enable video_reader backend (#220)
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
2024-06-19 17:15:25 +02:00
Thomas Wolf
48951662f2 Bug fix: missing attention mask in VAE encoder in ACT policy (#279)
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
2024-06-19 12:07:21 +01:00
Thomas Wolf
56199fb76f Update readme to detail the lerobot dataset format (#275)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2024-06-18 13:40:03 +01:00
Thomas Wolf
11f1cb5dc9 Bug fix: fix setting different learning rates between backbone and main model in ACT policy (#280) 2024-06-18 13:31:35 +01:00
Jihoon Oh
b72d574891 fix Unet global_cond_dim to use state dim, not action dim (#278) 2024-06-17 15:17:28 +01:00
Alexander Soare
15dd682714 Add multi-image support to diffusion policy (#218) 2024-06-17 08:11:20 +01:00
Marina Barannikov
e28fa2344c added visualization for min and max transforms (#271)
Co-authored-by: Simon Alibert <alibert.sim@gmail.com>
2024-06-17 09:09:57 +02:00
Simon Alibert
a92d79fff2 Fix nightlies (#273) 2024-06-14 17:11:19 +01:00
Thomas Wolf
125bd93e29 Improve push_dataset_to_hub API + Add unit tests (#231)
Co-authored-by: Remi <re.cadene@gmail.com>
Co-authored-by: Simon Alibert <alibert.sim@gmail.com>
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2024-06-13 15:18:02 +02:00
Marina Barannikov
c38f535c9f FIx make_dataset to match transforms config (#264)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2024-06-12 19:45:42 +02:00
Marina Barannikov
ff8f6aa6cd Add data augmentation in LeRobotDataset (#234)
Co-authored-by: Simon Alibert <alibert.sim@gmail.com>
Co-authored-by: Remi Cadene <re.cadene@gmail.com>
2024-06-11 19:20:55 +02:00
Ikko Eltociear Ashimine
1cf050d412 chore: update 4_train_policy_with_script.md (#257)
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
2024-06-11 08:24:39 +01:00
Wael Karkoub
54c9776bde Improves Type Annotations (#252) 2024-06-10 19:09:48 +01:00
Luc Georges
a06598678c feat(ci): add trufflehog secrets detection (#254) 2024-06-10 14:25:43 +02:00
Thomas Lips
055a6f60c6 add root argument to the dataset visualizer to visualize local datasets (#249) 2024-06-10 10:44:32 +02:00
Simon Alibert
e54d6ea1eb Make display_sys_info.py install-agnostic (#253) 2024-06-07 15:02:17 +02:00
813 changed files with 36576 additions and 5972 deletions

View File

@@ -0,0 +1,68 @@
{
"homing_offset": [
2048,
3072,
3072,
-1024,
-1024,
2048,
-2048,
2048,
-2048
],
"drive_mode": [
1,
1,
1,
0,
0,
1,
0,
1,
0
],
"start_pos": [
2015,
3058,
3061,
1071,
1071,
2035,
2152,
2029,
2499
],
"end_pos": [
-1008,
-1963,
-1966,
2141,
2143,
-971,
3043,
-1077,
3144
],
"calib_mode": [
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"LINEAR"
],
"motor_names": [
"waist",
"shoulder",
"shoulder_shadow",
"elbow",
"elbow_shadow",
"forearm_roll",
"wrist_angle",
"wrist_rotate",
"gripper"
]
}

View File

@@ -0,0 +1,68 @@
{
"homing_offset": [
2048,
3072,
3072,
-1024,
-1024,
2048,
-2048,
2048,
-1024
],
"drive_mode": [
1,
1,
1,
0,
0,
1,
0,
1,
0
],
"start_pos": [
2035,
3024,
3019,
979,
981,
1982,
2166,
2124,
1968
],
"end_pos": [
-990,
-2017,
-2015,
2078,
2076,
-1030,
3117,
-1016,
2556
],
"calib_mode": [
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"LINEAR"
],
"motor_names": [
"waist",
"shoulder",
"shoulder_shadow",
"elbow",
"elbow_shadow",
"forearm_roll",
"wrist_angle",
"wrist_rotate",
"gripper"
]
}

View File

@@ -0,0 +1,68 @@
{
"homing_offset": [
2048,
3072,
3072,
-1024,
-1024,
2048,
-2048,
2048,
-2048
],
"drive_mode": [
1,
1,
1,
0,
0,
1,
0,
1,
0
],
"start_pos": [
2056,
2895,
2896,
1191,
1190,
2018,
2051,
2056,
2509
],
"end_pos": [
-1040,
-2004,
-2006,
2126,
2127,
-1010,
3050,
-1117,
3143
],
"calib_mode": [
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"LINEAR"
],
"motor_names": [
"waist",
"shoulder",
"shoulder_shadow",
"elbow",
"elbow_shadow",
"forearm_roll",
"wrist_angle",
"wrist_rotate",
"gripper"
]
}

View File

@@ -0,0 +1,68 @@
{
"homing_offset": [
2048,
3072,
3072,
-1024,
-1024,
2048,
-2048,
2048,
-2048
],
"drive_mode": [
1,
1,
1,
0,
0,
1,
0,
1,
0
],
"start_pos": [
2068,
3034,
3030,
1038,
1041,
1991,
1948,
2090,
1985
],
"end_pos": [
-1025,
-2014,
-2015,
2058,
2060,
-955,
3091,
-940,
2576
],
"calib_mode": [
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"LINEAR"
],
"motor_names": [
"waist",
"shoulder",
"shoulder_shadow",
"elbow",
"elbow_shadow",
"forearm_roll",
"wrist_angle",
"wrist_rotate",
"gripper"
]
}

View File

@@ -65,7 +65,6 @@ htmlcov/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
@@ -73,6 +72,11 @@ coverage.xml
.hypothesis/
.pytest_cache/
# Ignore .cache except calibration
.cache/*
!.cache/calibration/
!.cache/calibration/**
# Translations
*.mo
*.pot

2
.gitattributes vendored
View File

@@ -3,4 +3,4 @@
*.safetensors filter=lfs diff=lfs merge=lfs -text
*.mp4 filter=lfs diff=lfs merge=lfs -text
*.arrow filter=lfs diff=lfs merge=lfs -text
*.json filter=lfs diff=lfs merge=lfs -text
*.json !text !filter !merge !diff

View File

@@ -21,7 +21,7 @@ Provide a simple way for the reviewer to try out your changes.
Examples:
```bash
DATA_DIR=tests/data pytest -sx tests/test_stuff.py::test_something
pytest -sx tests/test_stuff.py::test_something
```
```bash
python lerobot/scripts/train.py --some.option=true

View File

@@ -14,20 +14,14 @@ env:
jobs:
latest-cpu:
name: CPU
runs-on: ubuntu-latest
runs-on:
group: aws-general-8-plus
steps:
- name: Cleanup disk
- name: Install Git LFS
run: |
sudo df -h
# sudo ls -l /usr/local/lib/
# sudo ls -l /usr/share/
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo rm -rf /usr/local/lib/android
sudo rm -rf /usr/share/dotnet
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo df -h
sudo apt-get update
sudo apt-get install git-lfs
git lfs install
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
@@ -55,20 +49,15 @@ jobs:
latest-cuda:
name: GPU
runs-on: ubuntu-latest
runs-on:
group: aws-general-8-plus
steps:
- name: Cleanup disk
- name: Install Git LFS
run: |
sudo df -h
# sudo ls -l /usr/local/lib/
# sudo ls -l /usr/share/
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo rm -rf /usr/local/lib/android
sudo rm -rf /usr/share/dotnet
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo df -h
sudo apt-get update
sudo apt-get install git-lfs
git lfs install
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
@@ -95,20 +84,9 @@ jobs:
latest-cuda-dev:
name: GPU Dev
runs-on: ubuntu-latest
runs-on:
group: aws-general-8-plus
steps:
- name: Cleanup disk
run: |
sudo df -h
# sudo ls -l /usr/local/lib/
# sudo ls -l /usr/share/
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo rm -rf /usr/local/lib/android
sudo rm -rf /usr/share/dotnet
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo df -h
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3

View File

@@ -7,16 +7,15 @@ on:
schedule:
- cron: "0 2 * * *"
env:
DATA_DIR: tests/data
# env:
# SLACK_API_TOKEN: ${{ secrets.SLACK_API_TOKEN }}
jobs:
run_all_tests_cpu:
name: CPU
strategy:
fail-fast: false
runs-on: ubuntu-latest
runs-on:
group: aws-general-8-plus
container:
image: huggingface/lerobot-cpu:latest
options: --shm-size "16gb"
@@ -29,13 +28,9 @@ jobs:
working-directory: /lerobot
steps:
- name: Tests
env:
DATA_DIR: tests/data
run: pytest -v --cov=./lerobot --disable-warnings tests
- name: Tests end-to-end
env:
DATA_DIR: tests/data
run: make test-end-to-end
@@ -43,7 +38,8 @@ jobs:
name: GPU
strategy:
fail-fast: false
runs-on: [single-gpu, nvidia-gpu, t4, ci]
runs-on:
group: aws-g6-4xlarge-plus
env:
CUDA_VISIBLE_DEVICES: "0"
TEST_TYPE: "single_gpu"

View File

@@ -54,3 +54,31 @@ jobs:
- name: Poetry check
run: poetry check
poetry_relax:
name: Poetry relax
runs-on: ubuntu-latest
steps:
- name: Checkout Repository
uses: actions/checkout@v3
- name: Install poetry
run: pipx install poetry
- name: Install poetry-relax
run: poetry self add poetry-relax
- name: Poetry relax
id: poetry_relax
run: |
output=$(poetry relax --check 2>&1)
if echo "$output" | grep -q "Proposing updates"; then
echo "$output"
echo ""
echo "Some dependencies have caret '^' version requirement added by poetry by default."
echo "Please replace them with '>='. You can do this by hand or use poetry-relax to do this."
exit 1
else
echo "$output"
fi

View File

@@ -42,26 +42,14 @@ jobs:
build_modified_dockerfiles:
name: Build modified Docker images
needs: get_changed_files
runs-on: ubuntu-latest
runs-on:
group: aws-general-8-plus
if: ${{ needs.get_changed_files.outputs.matrix }} != ''
strategy:
fail-fast: false
matrix:
docker-file: ${{ fromJson(needs.get_changed_files.outputs.matrix) }}
steps:
- name: Cleanup disk
run: |
sudo df -h
# sudo ls -l /usr/local/lib/
# sudo ls -l /usr/share/
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo rm -rf /usr/local/lib/android
sudo rm -rf /usr/share/dotnet
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo df -h
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3

View File

@@ -10,6 +10,8 @@ on:
- "examples/**"
- ".github/**"
- "poetry.lock"
- "Makefile"
- ".cache/**"
push:
branches:
- main
@@ -19,27 +21,32 @@ on:
- "examples/**"
- ".github/**"
- "poetry.lock"
- "Makefile"
- ".cache/**"
jobs:
pytest:
name: Pytest
runs-on: ubuntu-latest
env:
DATA_DIR: tests/data
MUJOCO_GL: egl
steps:
- uses: actions/checkout@v4
with:
lfs: true # Ensure LFS files are pulled
- name: Install EGL
run: sudo apt-get update && sudo apt-get install -y libegl1-mesa-dev
- name: Install apt dependencies
# portaudio19-dev is needed to install pyaudio
run: |
sudo apt-get update && \
sudo apt-get install -y libegl1-mesa-dev ffmpeg portaudio19-dev
- name: Install poetry
run: |
pipx install poetry && poetry config virtualenvs.in-project true
echo "${{ github.workspace }}/.venv/bin" >> $GITHUB_PATH
# TODO(rcadene, aliberts): python 3.12 seems to be used in the tests, not python 3.10
- name: Set up Python 3.10
uses: actions/setup-python@v5
with:
@@ -58,23 +65,25 @@ jobs:
-W ignore::UserWarning:gymnasium.utils.env_checker:247 \
&& rm -rf tests/outputs outputs
pytest-minimal:
name: Pytest (minimal install)
runs-on: ubuntu-latest
env:
DATA_DIR: tests/data
MUJOCO_GL: egl
steps:
- uses: actions/checkout@v4
with:
lfs: true # Ensure LFS files are pulled
- name: Install apt dependencies
run: sudo apt-get update && sudo apt-get install -y ffmpeg
- name: Install poetry
run: |
pipx install poetry && poetry config virtualenvs.in-project true
echo "${{ github.workspace }}/.venv/bin" >> $GITHUB_PATH
# TODO(rcadene, aliberts): python 3.12 seems to be used in the tests, not python 3.10
- name: Set up Python 3.10
uses: actions/setup-python@v5
with:
@@ -92,37 +101,39 @@ jobs:
-W ignore::UserWarning:gymnasium.utils.env_checker:247 \
&& rm -rf tests/outputs outputs
# TODO(aliberts, rcadene): redesign after v2 migration / removing hydra
# end-to-end:
# name: End-to-end
# runs-on: ubuntu-latest
# env:
# MUJOCO_GL: egl
# steps:
# - uses: actions/checkout@v4
# with:
# lfs: true # Ensure LFS files are pulled
end-to-end:
name: End-to-end
runs-on: ubuntu-latest
env:
DATA_DIR: tests/data
MUJOCO_GL: egl
steps:
- uses: actions/checkout@v4
with:
lfs: true # Ensure LFS files are pulled
# - name: Install apt dependencies
# # portaudio19-dev is needed to install pyaudio
# run: |
# sudo apt-get update && \
# sudo apt-get install -y libegl1-mesa-dev portaudio19-dev
- name: Install EGL
run: sudo apt-get update && sudo apt-get install -y libegl1-mesa-dev
# - name: Install poetry
# run: |
# pipx install poetry && poetry config virtualenvs.in-project true
# echo "${{ github.workspace }}/.venv/bin" >> $GITHUB_PATH
- name: Install poetry
run: |
pipx install poetry && poetry config virtualenvs.in-project true
echo "${{ github.workspace }}/.venv/bin" >> $GITHUB_PATH
# - name: Set up Python 3.10
# uses: actions/setup-python@v5
# with:
# python-version: "3.10"
# cache: "poetry"
- name: Set up Python 3.10
uses: actions/setup-python@v5
with:
python-version: "3.10"
cache: "poetry"
# - name: Install poetry dependencies
# run: |
# poetry install --all-extras
- name: Install poetry dependencies
run: |
poetry install --all-extras
- name: Test end-to-end
run: |
make test-end-to-end \
&& rm -rf outputs
# - name: Test end-to-end
# run: |
# make test-end-to-end \
# && rm -rf outputs

20
.github/workflows/trufflehog.yml vendored Normal file
View File

@@ -0,0 +1,20 @@
on:
push:
name: Secret Leaks
permissions:
contents: read
jobs:
trufflehog:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Secret Scanning
uses: trufflesecurity/trufflehog@main
with:
extra_args: --only-verified

8
.gitignore vendored
View File

@@ -66,7 +66,6 @@ htmlcov/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
@@ -74,6 +73,11 @@ coverage.xml
.hypothesis/
.pytest_cache/
# Ignore .cache except calibration
.cache/*
!.cache/calibration/
!.cache/calibration/**
# Translations
*.mo
*.pot
@@ -121,8 +125,8 @@ celerybeat.pid
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/

View File

@@ -3,7 +3,7 @@ default_language_version:
python: python3.10
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.6.0
rev: v5.0.0
hooks:
- id: check-added-large-files
- id: debug-statements
@@ -14,11 +14,11 @@ repos:
- id: end-of-file-fixer
- id: trailing-whitespace
- repo: https://github.com/asottile/pyupgrade
rev: v3.15.2
rev: v3.19.0
hooks:
- id: pyupgrade
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.4.3
rev: v0.8.2
hooks:
- id: ruff
args: [--fix]
@@ -31,3 +31,7 @@ repos:
args:
- "--check"
- "--no-update"
- repo: https://github.com/gitleaks/gitleaks
rev: v8.21.2
hooks:
- id: gitleaks

View File

@@ -20,7 +20,7 @@ Some of the ways you can contribute to 🤗 LeRobot:
* Contributing to the examples or to the documentation.
* Submitting issues related to bugs or desired new features.
Following the guides below, feel free to open issues and PRs and to coordinate your efforts with the community on our [Discord Channel](https://discord.gg/VjFz58wn3R). For specific inquiries, reach out to [Remi Cadene](remi.cadene@huggingface.co).
Following the guides below, feel free to open issues and PRs and to coordinate your efforts with the community on our [Discord Channel](https://discord.gg/VjFz58wn3R). For specific inquiries, reach out to [Remi Cadene](mailto:remi.cadene@huggingface.co).
If you are not sure how to contribute or want to know the next features we working on, look on this project page: [LeRobot TODO](https://github.com/orgs/huggingface/projects/46)
@@ -267,7 +267,7 @@ We use `pytest` in order to run the tests. From the root of the
repository, here's how to run tests with `pytest` for the library:
```bash
DATA_DIR="tests/data" python -m pytest -sv ./tests
python -m pytest -sv ./tests
```

View File

@@ -5,7 +5,7 @@ PYTHON_PATH := $(shell which python)
# If Poetry is installed, redefine PYTHON_PATH to use the Poetry-managed Python
POETRY_CHECK := $(shell command -v poetry)
ifneq ($(POETRY_CHECK),)
PYTHON_PATH := $(shell poetry run which python)
PYTHON_PATH := $(shell poetry run which python)
endif
export PATH := $(dir $(PYTHON_PATH)):$(PATH)
@@ -26,6 +26,7 @@ test-end-to-end:
${MAKE} DEVICE=$(DEVICE) test-diffusion-ete-train
${MAKE} DEVICE=$(DEVICE) test-diffusion-ete-eval
${MAKE} DEVICE=$(DEVICE) test-tdmpc-ete-train
${MAKE} DEVICE=$(DEVICE) test-tdmpc-ete-train-with-online
${MAKE} DEVICE=$(DEVICE) test-tdmpc-ete-eval
${MAKE} DEVICE=$(DEVICE) test-default-ete-eval
${MAKE} DEVICE=$(DEVICE) test-act-pusht-tutorial
@@ -46,6 +47,7 @@ test-act-ete-train:
policy.n_action_steps=20 \
policy.chunk_size=20 \
training.batch_size=2 \
training.image_transforms.enable=true \
hydra.run.dir=tests/outputs/act/
test-act-ete-eval:
@@ -73,6 +75,7 @@ test-act-ete-train-amp:
policy.chunk_size=20 \
training.batch_size=2 \
hydra.run.dir=tests/outputs/act_amp/ \
training.image_transforms.enable=true \
use_amp=true
test-act-ete-eval-amp:
@@ -100,6 +103,7 @@ test-diffusion-ete-train:
training.save_checkpoint=true \
training.save_freq=2 \
training.batch_size=2 \
training.image_transforms.enable=true \
hydra.run.dir=tests/outputs/diffusion/
test-diffusion-ete-eval:
@@ -110,7 +114,6 @@ test-diffusion-ete-eval:
env.episode_length=8 \
device=$(DEVICE) \
# TODO(alexander-soare): Restore online_steps to 2 when it is reinstated.
test-tdmpc-ete-train:
python lerobot/scripts/train.py \
policy=tdmpc \
@@ -127,8 +130,31 @@ test-tdmpc-ete-train:
training.save_checkpoint=true \
training.save_freq=2 \
training.batch_size=2 \
training.image_transforms.enable=true \
hydra.run.dir=tests/outputs/tdmpc/
test-tdmpc-ete-train-with-online:
python lerobot/scripts/train.py \
env=pusht \
env.gym.obs_type=environment_state_agent_pos \
policy=tdmpc_pusht_keypoints \
eval.n_episodes=1 \
eval.batch_size=1 \
env.episode_length=10 \
device=$(DEVICE) \
training.offline_steps=2 \
training.online_steps=20 \
training.save_checkpoint=false \
training.save_freq=10 \
training.batch_size=2 \
training.online_rollout_n_episodes=2 \
training.online_rollout_batch_size=2 \
training.online_steps_between_rollouts=10 \
training.online_buffer_capacity=15 \
eval.use_async_envs=true \
hydra.run.dir=tests/outputs/tdmpc_online/
test-tdmpc-ete-eval:
python lerobot/scripts/eval.py \
-p tests/outputs/tdmpc/checkpoints/000002/pretrained_model \
@@ -159,5 +185,6 @@ test-act-pusht-tutorial:
training.save_model=true \
training.save_freq=2 \
training.batch_size=2 \
training.image_transforms.enable=true \
hydra.run.dir=tests/outputs/act_pusht/
rm lerobot/configs/policy/created_by_Makefile.yaml

157
README.md
View File

@@ -22,8 +22,22 @@
</div>
<h2 align="center">
<p><a href="https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md">New robot in town: SO-100</a></p>
</h2>
<div align="center">
<img src="media/so100/leader_follower.webp?raw=true" alt="SO-100 leader and follower arms" title="SO-100 leader and follower arms" width="50%">
<p>We just added a new tutorial on how to build a more affordable robot, at the price of $110 per arm!</p>
<p>Teach it new skills by showing it a few moves with just a laptop.</p>
<p>Then watch your homemade robot act autonomously 🤯</p>
<p>Follow the link to the <a href="https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md">full tutorial for SO-100</a>.</p>
</div>
<br/>
<h3 align="center">
<p>State-of-the-art Machine Learning for real-world robotics</p>
<p>LeRobot: State-of-the-art AI for real-world robotics</p>
</h3>
---
@@ -41,9 +55,9 @@
<table>
<tr>
<td><img src="http://remicadene.com/assets/gif/aloha_act.gif" width="100%" alt="ACT policy on ALOHA env"/></td>
<td><img src="http://remicadene.com/assets/gif/simxarm_tdmpc.gif" width="100%" alt="TDMPC policy on SimXArm env"/></td>
<td><img src="http://remicadene.com/assets/gif/pusht_diffusion.gif" width="100%" alt="Diffusion policy on PushT env"/></td>
<td><img src="media/gym/aloha_act.gif" width="100%" alt="ACT policy on ALOHA env"/></td>
<td><img src="media/gym/simxarm_tdmpc.gif" width="100%" alt="TDMPC policy on SimXArm env"/></td>
<td><img src="media/gym/pusht_diffusion.gif" width="100%" alt="Diffusion policy on PushT env"/></td>
</tr>
<tr>
<td align="center">ACT policy on ALOHA env</td>
@@ -58,23 +72,26 @@
- Thanks to Cheng Chi, Zhenjia Xu and colleagues for open sourcing Diffusion policy, Pusht environment and datasets, as well as UMI datasets. Ours are adapted from [Diffusion Policy](https://diffusion-policy.cs.columbia.edu) and [UMI Gripper](https://umi-gripper.github.io).
- Thanks to Nicklas Hansen, Yunhai Feng and colleagues for open sourcing TDMPC policy, Simxarm environments and datasets. Ours are adapted from [TDMPC](https://github.com/nicklashansen/tdmpc) and [FOWM](https://www.yunhaifeng.com/FOWM).
- Thanks to Antonio Loquercio and Ashish Kumar for their early support.
- Thanks to [Seungjae (Jay) Lee](https://sjlee.cc/), [Mahi Shafiullah](https://mahis.life/) and colleagues for open sourcing [VQ-BeT](https://sjlee.cc/vq-bet/) policy and helping us adapt the codebase to our repository. The policy is adapted from [VQ-BeT repo](https://github.com/jayLEE0301/vq_bet_official).
## Installation
Download our source code:
```bash
git clone https://github.com/huggingface/lerobot.git && cd lerobot
git clone https://github.com/huggingface/lerobot.git
cd lerobot
```
Create a virtual environment with Python 3.10 and activate it, e.g. with [`miniconda`](https://docs.anaconda.com/free/miniconda/index.html):
```bash
conda create -y -n lerobot python=3.10 && conda activate lerobot
conda create -y -n lerobot python=3.10
conda activate lerobot
```
Install 🤗 LeRobot:
```bash
pip install .
pip install -e .
```
> **NOTE:** Depending on your platform, If you encounter any build errors during this step
@@ -88,7 +105,7 @@ For simulations, 🤗 LeRobot comes with gymnasium environments that can be inst
For instance, to install 🤗 LeRobot with aloha and pusht, use:
```bash
pip install ".[aloha, pusht]"
pip install -e ".[aloha, pusht]"
```
To use [Weights and Biases](https://docs.wandb.ai/quickstart) for experiment tracking, log in with
@@ -113,10 +130,12 @@ wandb login
| | ├── datasets # various datasets of human demonstrations: aloha, pusht, xarm
| | ├── envs # various sim environments: aloha, pusht, xarm
| | ├── policies # various policies: act, diffusion, tdmpc
| | ├── robot_devices # various real devices: dynamixel motors, opencv cameras, koch robots
| | └── utils # various utilities
| └── scripts # contains functions to execute via command line
| ├── eval.py # load policy and evaluate it on an environment
| ├── train.py # train a policy via imitation learning and/or reinforcement learning
| ├── control_robot.py # teleoperate a real robot, record data, run a policy
| ├── push_dataset_to_hub.py # convert your dataset into LeRobot dataset format and upload it to the Hugging Face hub
| └── visualize_dataset.py # load a dataset and render its demonstrations
├── outputs # contains results of scripts execution: logs, videos, model checkpoints
@@ -125,15 +144,25 @@ wandb login
### Visualize datasets
Check out [example 1](./examples/1_load_lerobot_dataset.py) that illustrates how to use our dataset class which automatically download data from the Hugging Face hub.
Check out [example 1](./examples/1_load_lerobot_dataset.py) that illustrates how to use our dataset class which automatically downloads data from the Hugging Face hub.
You can also locally visualize episodes from a dataset by executing our script from the command line:
You can also locally visualize episodes from a dataset on the hub by executing our script from the command line:
```bash
python lerobot/scripts/visualize_dataset.py \
--repo-id lerobot/pusht \
--episode-index 0
```
or from a dataset in a local folder with the `root` option and the `--local-files-only` (in the following case the dataset will be searched for in `./my_local_data_dir/lerobot/pusht`)
```bash
python lerobot/scripts/visualize_dataset.py \
--repo-id lerobot/pusht \
--root ./my_local_data_dir \
--local-files-only 1 \
--episode-index 0
```
It will open `rerun.io` and display the camera streams, robot states and actions, like this:
https://github-production-user-asset-6210df.s3.amazonaws.com/4681518/328035972-fd46b787-b532-47e2-bb6f-fd536a55a7ed.mov?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAVCODYLSA53PQK4ZA%2F20240505%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20240505T172924Z&X-Amz-Expires=300&X-Amz-Signature=d680b26c532eeaf80740f08af3320d22ad0b8a4e4da1bcc4f33142c15b509eda&X-Amz-SignedHeaders=host&actor_id=24889239&key_id=0&repo_id=748713144
@@ -141,6 +170,51 @@ https://github-production-user-asset-6210df.s3.amazonaws.com/4681518/328035972-f
Our script can also visualize datasets stored on a distant server. See `python lerobot/scripts/visualize_dataset.py --help` for more instructions.
### The `LeRobotDataset` format
A dataset in `LeRobotDataset` format is very simple to use. It can be loaded from a repository on the Hugging Face hub or a local folder simply with e.g. `dataset = LeRobotDataset("lerobot/aloha_static_coffee")` and can be indexed into like any Hugging Face and PyTorch dataset. For instance `dataset[0]` will retrieve a single temporal frame from the dataset containing observation(s) and an action as PyTorch tensors ready to be fed to a model.
A specificity of `LeRobotDataset` is that, rather than retrieving a single frame by its index, we can retrieve several frames based on their temporal relationship with the indexed frame, by setting `delta_timestamps` to a list of relative times with respect to the indexed frame. For example, with `delta_timestamps = {"observation.image": [-1, -0.5, -0.2, 0]}` one can retrieve, for a given index, 4 frames: 3 "previous" frames 1 second, 0.5 seconds, and 0.2 seconds before the indexed frame, and the indexed frame itself (corresponding to the 0 entry). See example [1_load_lerobot_dataset.py](examples/1_load_lerobot_dataset.py) for more details on `delta_timestamps`.
Under the hood, the `LeRobotDataset` format makes use of several ways to serialize data which can be useful to understand if you plan to work more closely with this format. We tried to make a flexible yet simple dataset format that would cover most type of features and specificities present in reinforcement learning and robotics, in simulation and in real-world, with a focus on cameras and robot states but easily extended to other types of sensory inputs as long as they can be represented by a tensor.
Here are the important details and internal structure organization of a typical `LeRobotDataset` instantiated with `dataset = LeRobotDataset("lerobot/aloha_static_coffee")`. The exact features will change from dataset to dataset but not the main aspects:
```
dataset attributes:
├ hf_dataset: a Hugging Face dataset (backed by Arrow/parquet). Typical features example:
│ ├ observation.images.cam_high (VideoFrame):
│ │ VideoFrame = {'path': path to a mp4 video, 'timestamp' (float32): timestamp in the video}
│ ├ observation.state (list of float32): position of an arm joints (for instance)
│ ... (more observations)
│ ├ action (list of float32): goal position of an arm joints (for instance)
│ ├ episode_index (int64): index of the episode for this sample
│ ├ frame_index (int64): index of the frame for this sample in the episode ; starts at 0 for each episode
│ ├ timestamp (float32): timestamp in the episode
│ ├ next.done (bool): indicates the end of en episode ; True for the last frame in each episode
│ └ index (int64): general index in the whole dataset
├ episode_data_index: contains 2 tensors with the start and end indices of each episode
│ ├ from (1D int64 tensor): first frame index for each episode — shape (num episodes,) starts with 0
│ └ to: (1D int64 tensor): last frame index for each episode — shape (num episodes,)
├ stats: a dictionary of statistics (max, mean, min, std) for each feature in the dataset, for instance
│ ├ observation.images.cam_high: {'max': tensor with same number of dimensions (e.g. `(c, 1, 1)` for images, `(c,)` for states), etc.}
│ ...
├ info: a dictionary of metadata on the dataset
│ ├ codebase_version (str): this is to keep track of the codebase version the dataset was created with
│ ├ fps (float): frame per second the dataset is recorded/synchronized to
│ ├ video (bool): indicates if frames are encoded in mp4 video files to save space or stored as png files
│ └ encoding (dict): if video, this documents the main options that were used with ffmpeg to encode the videos
├ videos_dir (Path): where the mp4 videos or png images are stored/accessed
└ camera_keys (list of string): the keys to access camera features in the item returned by the dataset (e.g. `["observation.images.cam_high", ...]`)
```
A `LeRobotDataset` is serialised using several widespread file formats for each of its parts, namely:
- hf_dataset stored using Hugging Face datasets library serialization to parquet
- videos are stored in mp4 format to save space
- metadata are stored in plain json/jsonl files
Dataset can be uploaded/downloaded from the HuggingFace hub seamlessly. To work on a local dataset, you can use the `local_files_only` argument and specify its location with the `root` argument if it's not in the default `~/.cache/huggingface/lerobot` location.
### Evaluate a pretrained policy
Check out [example 2](./examples/2_evaluate_pretrained_policy.py) that illustrates how to download a pretrained policy from Hugging Face hub, and run an evaluation on its corresponding environment.
@@ -193,13 +267,20 @@ checkpoints
│ └── training_state.pth # optimizer/scheduler/rng state and training step
```
To resume training from a checkpoint, you can add these to the `train.py` python command:
```bash
hydra.run.dir=your/original/experiment/dir resume=true
```
It will load the pretrained model, optimizer and scheduler states for training. For more information please see our tutorial on training resumption [here](https://github.com/huggingface/lerobot/blob/main/examples/5_resume_training.md).
To use wandb for logging training and evaluation curves, make sure you've run `wandb login` as a one-time setup step. Then, when running the training command above, enable WandB in the configuration by adding:
```bash
wandb.enable=true
```
A link to the wandb logs for the run will also show up in yellow in your terminal. Here is an example of what they look like in your browser:
A link to the wandb logs for the run will also show up in yellow in your terminal. Here is an example of what they look like in your browser. Please also check [here](https://github.com/huggingface/lerobot/blob/main/examples/4_train_policy_with_script.md#typical-logs-and-metrics) for the explanation of some commonly used metrics in logs.
![](media/wandb.png)
@@ -228,13 +309,13 @@ To add a dataset to the hub, you need to login using a write-access token, which
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
```
Then move your dataset folder in `data` directory (e.g. `data/aloha_static_pingpong_test`), and push your dataset to the hub with:
Then point to your raw dataset folder (e.g. `data/aloha_static_pingpong_test_raw`), and push your dataset to the hub with:
```bash
python lerobot/scripts/push_dataset_to_hub.py \
--data-dir data \
--dataset-id aloha_static_pingpong_test \
--raw-format aloha_hdf5 \
--community-id lerobot
--raw-dir data/aloha_static_pingpong_test_raw \
--out-dir data \
--repo-id lerobot/aloha_static_pingpong_test \
--raw-format aloha_hdf5
```
See `python lerobot/scripts/push_dataset_to_hub.py --help` for more instructions.
@@ -286,7 +367,7 @@ with profile(
## Citation
If you want, you can cite this work with:
```
```bibtex
@misc{cadene2024lerobot,
author = {Cadene, Remi and Alibert, Simon and Soare, Alexander and Gallouedec, Quentin and Zouitine, Adil and Wolf, Thomas},
title = {LeRobot: State-of-the-art Machine Learning for Real-World Robotics in Pytorch},
@@ -294,3 +375,45 @@ If you want, you can cite this work with:
year = {2024}
}
```
Additionally, if you are using any of the particular policy architecture, pretrained models, or datasets, it is recommended to cite the original authors of the work as they appear below:
- [Diffusion Policy](https://diffusion-policy.cs.columbia.edu)
```bibtex
@article{chi2024diffusionpolicy,
author = {Cheng Chi and Zhenjia Xu and Siyuan Feng and Eric Cousineau and Yilun Du and Benjamin Burchfiel and Russ Tedrake and Shuran Song},
title ={Diffusion Policy: Visuomotor Policy Learning via Action Diffusion},
journal = {The International Journal of Robotics Research},
year = {2024},
}
```
- [ACT or ALOHA](https://tonyzhaozh.github.io/aloha)
```bibtex
@article{zhao2023learning,
title={Learning fine-grained bimanual manipulation with low-cost hardware},
author={Zhao, Tony Z and Kumar, Vikash and Levine, Sergey and Finn, Chelsea},
journal={arXiv preprint arXiv:2304.13705},
year={2023}
}
```
- [TDMPC](https://www.nicklashansen.com/td-mpc/)
```bibtex
@inproceedings{Hansen2022tdmpc,
title={Temporal Difference Learning for Model Predictive Control},
author={Nicklas Hansen and Xiaolong Wang and Hao Su},
booktitle={ICML},
year={2022}
}
```
- [VQ-BeT](https://sjlee.cc/vq-bet/)
```bibtex
@article{lee2024behavior,
title={Behavior generation with latent actions},
author={Lee, Seungjae and Wang, Yibin and Etukuru, Haritheja and Kim, H Jin and Shafiullah, Nur Muhammad Mahi and Pinto, Lerrel},
journal={arXiv preprint arXiv:2403.03181},
year={2024}
}
```

271
benchmarks/video/README.md Normal file
View File

@@ -0,0 +1,271 @@
# Video benchmark
## Questions
What is the optimal trade-off between:
- maximizing loading time with random access,
- minimizing memory space on disk,
- maximizing success rate of policies,
- compatibility across devices/platforms for decoding videos (e.g. video players, web browsers).
How to encode videos?
- Which video codec (`-vcodec`) to use? h264, h265, AV1?
- What pixel format to use (`-pix_fmt`)? `yuv444p` or `yuv420p`?
- How much compression (`-crf`)? No compression with `0`, intermediate compression with `25` or extreme with `50+`?
- Which frequency to chose for key frames (`-g`)? A key frame every `10` frames?
How to decode videos?
- Which `decoder`? `torchvision`, `torchaudio`, `ffmpegio`, `decord`, or `nvc`?
- What scenarios to use for the requesting timestamps during benchmark? (`timestamps_mode`)
## Variables
**Image content & size**
We don't expect the same optimal settings for a dataset of images from a simulation, or from real-world in an appartment, or in a factory, or outdoor, or with lots of moving objects in the scene, etc. Similarly, loading times might not vary linearly with the image size (resolution).
For these reasons, we run this benchmark on four representative datasets:
- `lerobot/pusht_image`: (96 x 96 pixels) simulation with simple geometric shapes, fixed camera.
- `aliberts/aloha_mobile_shrimp_image`: (480 x 640 pixels) real-world indoor, moving camera.
- `aliberts/paris_street`: (720 x 1280 pixels) real-world outdoor, moving camera.
- `aliberts/kitchen`: (1080 x 1920 pixels) real-world indoor, fixed camera.
Note: The datasets used for this benchmark need to be image datasets, not video datasets.
**Data augmentations**
We might revisit this benchmark and find better settings if we train our policies with various data augmentations to make them more robust (e.g. robust to color changes, compression, etc.).
### Encoding parameters
| parameter | values |
|-------------|--------------------------------------------------------------|
| **vcodec** | `libx264`, `libx265`, `libsvtav1` |
| **pix_fmt** | `yuv444p`, `yuv420p` |
| **g** | `1`, `2`, `3`, `4`, `5`, `6`, `10`, `15`, `20`, `40`, `None` |
| **crf** | `0`, `5`, `10`, `15`, `20`, `25`, `30`, `40`, `50`, `None` |
Note that `crf` value might be interpreted differently by various video codecs. In other words, the same value used with one codec doesn't necessarily translate into the same compression level with another codec. In fact, the default value (`None`) isn't the same amongst the different video codecs. Importantly, it is also the case for many other ffmpeg arguments like `g` which specifies the frequency of the key frames.
For a comprehensive list and documentation of these parameters, see the ffmpeg documentation depending on the video codec used:
- h264: https://trac.ffmpeg.org/wiki/Encode/H.264
- h265: https://trac.ffmpeg.org/wiki/Encode/H.265
- AV1: https://trac.ffmpeg.org/wiki/Encode/AV1
### Decoding parameters
**Decoder**
We tested two video decoding backends from torchvision:
- `pyav` (default)
- `video_reader` (requires to build torchvision from source)
**Requested timestamps**
Given the way video decoding works, once a keyframe has been loaded, the decoding of subsequent frames is fast.
This of course is affected by the `-g` parameter during encoding, which specifies the frequency of the keyframes. Given our typical use cases in robotics policies which might request a few timestamps in different random places, we want to replicate these use cases with the following scenarios:
- `1_frame`: 1 frame,
- `2_frames`: 2 consecutive frames (e.g. `[t, t + 1 / fps]`),
- `6_frames`: 6 consecutive frames (e.g. `[t + i / fps for i in range(6)]`)
Note that this differs significantly from a typical use case like watching a movie, in which every frame is loaded sequentially from the beginning to the end and it's acceptable to have big values for `-g`.
Additionally, because some policies might request single timestamps that are a few frames appart, we also have the following scenario:
- `2_frames_4_space`: 2 frames with 4 consecutive frames of spacing in between (e.g `[t, t + 5 / fps]`),
However, due to how video decoding is implemented with `pyav`, we don't have access to an accurate seek so in practice this scenario is essentially the same as `6_frames` since all 6 frames between `t` and `t + 5 / fps` will be decoded.
## Metrics
**Data compression ratio (lower is better)**
`video_images_size_ratio` is the ratio of the memory space on disk taken by the encoded video over the memory space taken by the original images. For instance, `video_images_size_ratio=25%` means that the video takes 4 times less memory space on disk compared to the original images.
**Loading time ratio (lower is better)**
`video_images_load_time_ratio` is the ratio of the time it takes to decode frames from the video at a given timestamps over the time it takes to load the exact same original images. Lower is better. For instance, `video_images_load_time_ratio=200%` means that decoding from video is 2 times slower than loading the original images.
**Average Mean Square Error (lower is better)**
`avg_mse` is the average mean square error between each decoded frame and its corresponding original image over all requested timestamps, and also divided by the number of pixels in the image to be comparable when switching to different image sizes.
**Average Peak Signal to Noise Ratio (higher is better)**
`avg_psnr` measures the ratio between the maximum possible power of a signal and the power of corrupting noise that affects the fidelity of its representation. Higher PSNR indicates better quality.
**Average Structural Similarity Index Measure (higher is better)**
`avg_ssim` evaluates the perceived quality of images by comparing luminance, contrast, and structure. SSIM values range from -1 to 1, where 1 indicates perfect similarity.
One aspect that can't be measured here with those metrics is the compatibility of the encoding accross platforms, in particular on web browser, for visualization purposes.
h264, h265 and AV1 are all commonly used codecs and should not be pose an issue. However, the chroma subsampling (`pix_fmt`) format might affect compatibility:
- `yuv420p` is more widely supported across various platforms, including web browsers.
- `yuv444p` offers higher color fidelity but might not be supported as broadly.
<!-- **Loss of a pretrained policy (higher is better)** (not available)
`loss_pretrained` is the result of evaluating with the selected encoding/decoding settings a policy pretrained on original images. It is easier to understand than `avg_l2_error`.
**Success rate after retraining (higher is better)** (not available)
`success_rate` is the result of training and evaluating a policy with the selected encoding/decoding settings. It is the most difficult metric to get but also the very best. -->
## How the benchmark works
The benchmark evaluates both encoding and decoding of video frames on the first episode of each dataset.
**Encoding:** for each `vcodec` and `pix_fmt` pair, we use a default value for `g` and `crf` upon which we change a single value (either `g` or `crf`) to one of the specified values (we don't test every combination of those as this would be computationally too heavy).
This gives a unique set of encoding parameters which is used to encode the episode.
**Decoding:** Then, for each of those unique encodings, we iterate through every combination of the decoding parameters `backend` and `timestamps_mode`. For each of them, we record the metrics of a number of samples (given by `--num-samples`). This is parallelized for efficiency and the number of processes can be controlled with `--num-workers`. Ideally, it's best to have a `--num-samples` that is divisible by `--num-workers`.
Intermediate results saved for each `vcodec` and `pix_fmt` combination in csv tables.
These are then all concatenated to a single table ready for analysis.
## Caveats
We tried to measure the most impactful parameters for both encoding and decoding. However, for computational reasons we can't test out every combination.
Additional encoding parameters exist that are not included in this benchmark. In particular:
- `-preset` which allows for selecting encoding presets. This represents a collection of options that will provide a certain encoding speed to compression ratio. By leaving this parameter unspecified, it is considered to be `medium` for libx264 and libx265 and `8` for libsvtav1.
- `-tune` which allows to optimize the encoding for certains aspects (e.g. film quality, fast decoding, etc.).
See the documentation mentioned above for more detailled info on these settings and for a more comprehensive list of other parameters.
Similarly on the decoding side, other decoders exist but are not implemented in our current benchmark. To name a few:
- `torchaudio`
- `ffmpegio`
- `decord`
- `nvc`
Note as well that since we are mostly interested in the performance at decoding time (also because encoding is done only once before uploading a dataset), we did not measure encoding times nor have any metrics regarding encoding.
However, besides the necessity to build ffmpeg from source, encoding did not pose any issue and it didn't take a significant amount of time during this benchmark.
## Install
Building ffmpeg from source is required to include libx265 and libaom/libsvtav1 (av1) video codecs ([compilation guide](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu)).
**Note:** While you still need to build torchvision with a conda-installed `ffmpeg<4.3` to use the `video_reader` decoder (as described in [#220](https://github.com/huggingface/lerobot/pull/220)), you also need another version which is custom-built with all the video codecs for encoding. For the script to then use that version, you can prepend the command above with `PATH="$HOME/bin:$PATH"`, which is where ffmpeg should be built.
## Adding a video decoder
Right now, we're only benchmarking the two video decoder available with torchvision: `pyav` and `video_reader`.
You can easily add a new decoder to benchmark by adding it to this function in the script:
```diff
def decode_video_frames(
video_path: str,
timestamps: list[float],
tolerance_s: float,
backend: str,
) -> torch.Tensor:
if backend in ["pyav", "video_reader"]:
return decode_video_frames_torchvision(
video_path, timestamps, tolerance_s, backend
)
+ elif backend == ["your_decoder"]:
+ return your_decoder_function(
+ video_path, timestamps, tolerance_s, backend
+ )
else:
raise NotImplementedError(backend)
```
## Example
For a quick run, you can try these parameters:
```bash
python benchmark/video/run_video_benchmark.py \
--output-dir outputs/video_benchmark \
--repo-ids \
lerobot/pusht_image \
aliberts/aloha_mobile_shrimp_image \
--vcodec libx264 libx265 \
--pix-fmt yuv444p yuv420p \
--g 2 20 None \
--crf 10 40 None \
--timestamps-modes 1_frame 2_frames \
--backends pyav video_reader \
--num-samples 5 \
--num-workers 5 \
--save-frames 0
```
## Results
### Reproduce
We ran the benchmark with the following parameters:
```bash
# h264 and h265 encodings
python benchmark/video/run_video_benchmark.py \
--output-dir outputs/video_benchmark \
--repo-ids \
lerobot/pusht_image \
aliberts/aloha_mobile_shrimp_image \
aliberts/paris_street \
aliberts/kitchen \
--vcodec libx264 libx265 \
--pix-fmt yuv444p yuv420p \
--g 1 2 3 4 5 6 10 15 20 40 None \
--crf 0 5 10 15 20 25 30 40 50 None \
--timestamps-modes 1_frame 2_frames 6_frames \
--backends pyav video_reader \
--num-samples 50 \
--num-workers 5 \
--save-frames 1
# av1 encoding (only compatible with yuv420p and pyav decoder)
python benchmark/video/run_video_benchmark.py \
--output-dir outputs/video_benchmark \
--repo-ids \
lerobot/pusht_image \
aliberts/aloha_mobile_shrimp_image \
aliberts/paris_street \
aliberts/kitchen \
--vcodec libsvtav1 \
--pix-fmt yuv420p \
--g 1 2 3 4 5 6 10 15 20 40 None \
--crf 0 5 10 15 20 25 30 40 50 None \
--timestamps-modes 1_frame 2_frames 6_frames \
--backends pyav \
--num-samples 50 \
--num-workers 5 \
--save-frames 1
```
The full results are available [here](https://docs.google.com/spreadsheets/d/1OYJB43Qu8fC26k_OyoMFgGBBKfQRCi4BIuYitQnq3sw/edit?usp=sharing)
### Parameters selected for LeRobotDataset
Considering these results, we chose what we think is the best set of encoding parameter:
- vcodec: `libsvtav1`
- pix-fmt: `yuv420p`
- g: `2`
- crf: `30`
Since we're using av1 encoding, we're choosing the `pyav` decoder as `video_reader` does not support it (and `pyav` doesn't require a custom build of `torchvision`).
### Summary
These tables show the results for `g=2` and `crf=30`, using `timestamps-modes=6_frames` and `backend=pyav`
| video_images_size_ratio | vcodec | pix_fmt | | | |
|------------------------------------|------------|---------|-----------|-----------|-----------|
| | libx264 | | libx265 | | libsvtav1 |
| repo_id | yuv420p | yuv444p | yuv420p | yuv444p | yuv420p |
| lerobot/pusht_image | **16.97%** | 17.58% | 18.57% | 18.86% | 22.06% |
| aliberts/aloha_mobile_shrimp_image | 2.14% | 2.11% | 1.38% | **1.37%** | 5.59% |
| aliberts/paris_street | 2.12% | 2.13% | **1.54%** | **1.54%** | 4.43% |
| aliberts/kitchen | 1.40% | 1.39% | **1.00%** | **1.00%** | 2.52% |
| video_images_load_time_ratio | vcodec | pix_fmt | | | |
|------------------------------------|---------|---------|----------|---------|-----------|
| | libx264 | | libx265 | | libsvtav1 |
| repo_id | yuv420p | yuv444p | yuv420p | yuv444p | yuv420p |
| lerobot/pusht_image | 6.45 | 5.19 | **1.90** | 2.12 | 2.47 |
| aliberts/aloha_mobile_shrimp_image | 11.80 | 7.92 | 0.71 | 0.85 | **0.48** |
| aliberts/paris_street | 2.21 | 2.05 | 0.36 | 0.49 | **0.30** |
| aliberts/kitchen | 1.46 | 1.46 | 0.28 | 0.51 | **0.26** |
| | | vcodec | pix_fmt | | | |
|------------------------------------|----------|----------|--------------|----------|-----------|--------------|
| | | libx264 | | libx265 | | libsvtav1 |
| repo_id | metric | yuv420p | yuv444p | yuv420p | yuv444p | yuv420p |
| lerobot/pusht_image | avg_mse | 2.90E-04 | **2.03E-04** | 3.13E-04 | 2.29E-04 | 2.19E-04 |
| | avg_psnr | 35.44 | 37.07 | 35.49 | **37.30** | 37.20 |
| | avg_ssim | 98.28% | **98.85%** | 98.31% | 98.84% | 98.72% |
| aliberts/aloha_mobile_shrimp_image | avg_mse | 2.76E-04 | 2.59E-04 | 3.17E-04 | 3.06E-04 | **1.30E-04** |
| | avg_psnr | 35.91 | 36.21 | 35.88 | 36.09 | **40.17** |
| | avg_ssim | 95.19% | 95.18% | 95.00% | 95.05% | **97.73%** |
| aliberts/paris_street | avg_mse | 6.89E-04 | 6.70E-04 | 4.03E-03 | 4.02E-03 | **3.09E-04** |
| | avg_psnr | 33.48 | 33.68 | 32.05 | 32.15 | **35.40** |
| | avg_ssim | 93.76% | 93.75% | 89.46% | 89.46% | **95.46%** |
| aliberts/kitchen | avg_mse | 2.50E-04 | 2.24E-04 | 4.28E-04 | 4.18E-04 | **1.53E-04** |
| | avg_psnr | 36.73 | 37.33 | 36.56 | 36.75 | **39.12** |
| | avg_ssim | 95.47% | 95.58% | 95.52% | 95.53% | **96.82%** |

View File

@@ -0,0 +1,90 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Capture video feed from a camera as raw images."""
import argparse
import datetime as dt
from pathlib import Path
import cv2
def display_and_save_video_stream(output_dir: Path, fps: int, width: int, height: int):
now = dt.datetime.now()
capture_dir = output_dir / f"{now:%Y-%m-%d}" / f"{now:%H-%M-%S}"
if not capture_dir.exists():
capture_dir.mkdir(parents=True, exist_ok=True)
# Opens the default webcam
cap = cv2.VideoCapture(0)
if not cap.isOpened():
print("Error: Could not open video stream.")
return
cap.set(cv2.CAP_PROP_FPS, fps)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, width)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height)
frame_index = 0
while True:
ret, frame = cap.read()
if not ret:
print("Error: Could not read frame.")
break
cv2.imshow("Video Stream", frame)
cv2.imwrite(str(capture_dir / f"frame_{frame_index:06d}.png"), frame)
frame_index += 1
# Break the loop on 'q' key press
if cv2.waitKey(1) & 0xFF == ord("q"):
break
# Release the capture and destroy all windows
cap.release()
cv2.destroyAllWindows()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--output-dir",
type=Path,
default=Path("outputs/cam_capture/"),
help="Directory where the capture images are written. A subfolder named with the current date & time will be created inside it for each capture.",
)
parser.add_argument(
"--fps",
type=int,
default=30,
help="Frames Per Second of the capture.",
)
parser.add_argument(
"--width",
type=int,
default=1280,
help="Width of the captured images.",
)
parser.add_argument(
"--height",
type=int,
default=720,
help="Height of the captured images.",
)
args = parser.parse_args()
display_and_save_video_stream(**vars(args))

View File

@@ -0,0 +1,490 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Assess the performance of video decoding in various configurations.
This script will benchmark different video encoding and decoding parameters.
See the provided README.md or run `python benchmark/video/run_video_benchmark.py --help` for usage info.
"""
import argparse
import datetime as dt
import random
import shutil
from collections import OrderedDict
from concurrent.futures import ThreadPoolExecutor, as_completed
from pathlib import Path
import einops
import numpy as np
import pandas as pd
import PIL
import torch
from skimage.metrics import mean_squared_error, peak_signal_noise_ratio, structural_similarity
from tqdm import tqdm
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.datasets.video_utils import (
decode_video_frames_torchvision,
encode_video_frames,
)
from lerobot.common.utils.benchmark import TimeBenchmark
BASE_ENCODING = OrderedDict(
[
("vcodec", "libx264"),
("pix_fmt", "yuv444p"),
("g", 2),
("crf", None),
# TODO(aliberts): Add fastdecode
# ("fastdecode", 0),
]
)
# TODO(rcadene, aliberts): move to `utils.py` folder when we want to refactor
def parse_int_or_none(value) -> int | None:
if value.lower() == "none":
return None
try:
return int(value)
except ValueError as e:
raise argparse.ArgumentTypeError(f"Invalid int or None: {value}") from e
def check_datasets_formats(repo_ids: list) -> None:
for repo_id in repo_ids:
dataset = LeRobotDataset(repo_id)
if dataset.video:
raise ValueError(
f"Use only image dataset for running this benchmark. Video dataset provided: {repo_id}"
)
def get_directory_size(directory: Path) -> int:
total_size = 0
for item in directory.rglob("*"):
if item.is_file():
total_size += item.stat().st_size
return total_size
def load_original_frames(imgs_dir: Path, timestamps: list[float], fps: int) -> torch.Tensor:
frames = []
for ts in timestamps:
idx = int(ts * fps)
frame = PIL.Image.open(imgs_dir / f"frame_{idx:06d}.png")
frame = torch.from_numpy(np.array(frame))
frame = frame.type(torch.float32) / 255
frame = einops.rearrange(frame, "h w c -> c h w")
frames.append(frame)
return torch.stack(frames)
def save_decoded_frames(
imgs_dir: Path, save_dir: Path, frames: torch.Tensor, timestamps: list[float], fps: int
) -> None:
if save_dir.exists() and len(list(save_dir.glob("frame_*.png"))) == len(timestamps):
return
save_dir.mkdir(parents=True, exist_ok=True)
for i, ts in enumerate(timestamps):
idx = int(ts * fps)
frame_hwc = (frames[i].permute((1, 2, 0)) * 255).type(torch.uint8).cpu().numpy()
PIL.Image.fromarray(frame_hwc).save(save_dir / f"frame_{idx:06d}_decoded.png")
shutil.copyfile(imgs_dir / f"frame_{idx:06d}.png", save_dir / f"frame_{idx:06d}_original.png")
def save_first_episode(imgs_dir: Path, dataset: LeRobotDataset) -> None:
ep_num_images = dataset.episode_data_index["to"][0].item()
if imgs_dir.exists() and len(list(imgs_dir.glob("frame_*.png"))) == ep_num_images:
return
imgs_dir.mkdir(parents=True, exist_ok=True)
hf_dataset = dataset.hf_dataset.with_format(None)
# We only save images from the first camera
img_keys = [key for key in hf_dataset.features if key.startswith("observation.image")]
imgs_dataset = hf_dataset.select_columns(img_keys[0])
for i, item in enumerate(
tqdm(imgs_dataset, desc=f"saving {dataset.repo_id} first episode images", leave=False)
):
img = item[img_keys[0]]
img.save(str(imgs_dir / f"frame_{i:06d}.png"), quality=100)
if i >= ep_num_images - 1:
break
def sample_timestamps(timestamps_mode: str, ep_num_images: int, fps: int) -> list[float]:
# Start at 5 to allow for 2_frames_4_space and 6_frames
idx = random.randint(5, ep_num_images - 1)
match timestamps_mode:
case "1_frame":
frame_indexes = [idx]
case "2_frames":
frame_indexes = [idx - 1, idx]
case "2_frames_4_space":
frame_indexes = [idx - 5, idx]
case "6_frames":
frame_indexes = [idx - i for i in range(6)][::-1]
case _:
raise ValueError(timestamps_mode)
return [idx / fps for idx in frame_indexes]
def decode_video_frames(
video_path: str,
timestamps: list[float],
tolerance_s: float,
backend: str,
) -> torch.Tensor:
if backend in ["pyav", "video_reader"]:
return decode_video_frames_torchvision(video_path, timestamps, tolerance_s, backend)
else:
raise NotImplementedError(backend)
def benchmark_decoding(
imgs_dir: Path,
video_path: Path,
timestamps_mode: str,
backend: str,
ep_num_images: int,
fps: int,
num_samples: int = 50,
num_workers: int = 4,
save_frames: bool = False,
) -> dict:
def process_sample(sample: int):
time_benchmark = TimeBenchmark()
timestamps = sample_timestamps(timestamps_mode, ep_num_images, fps)
num_frames = len(timestamps)
result = {
"psnr_values": [],
"ssim_values": [],
"mse_values": [],
}
with time_benchmark:
frames = decode_video_frames(video_path, timestamps=timestamps, tolerance_s=5e-1, backend=backend)
result["load_time_video_ms"] = time_benchmark.result_ms / num_frames
with time_benchmark:
original_frames = load_original_frames(imgs_dir, timestamps, fps)
result["load_time_images_ms"] = time_benchmark.result_ms / num_frames
frames_np, original_frames_np = frames.numpy(), original_frames.numpy()
for i in range(num_frames):
result["mse_values"].append(mean_squared_error(original_frames_np[i], frames_np[i]))
result["psnr_values"].append(
peak_signal_noise_ratio(original_frames_np[i], frames_np[i], data_range=1.0)
)
result["ssim_values"].append(
structural_similarity(original_frames_np[i], frames_np[i], data_range=1.0, channel_axis=0)
)
if save_frames and sample == 0:
save_dir = video_path.with_suffix("") / f"{timestamps_mode}_{backend}"
save_decoded_frames(imgs_dir, save_dir, frames, timestamps, fps)
return result
load_times_video_ms = []
load_times_images_ms = []
mse_values = []
psnr_values = []
ssim_values = []
# A sample is a single set of decoded frames specified by timestamps_mode (e.g. a single frame, 2 frames, etc.).
# For each sample, we record metrics (loading time and quality metrics) which are then averaged over all samples.
# As these samples are independent, we run them in parallel threads to speed up the benchmark.
with ThreadPoolExecutor(max_workers=num_workers) as executor:
futures = [executor.submit(process_sample, i) for i in range(num_samples)]
for future in tqdm(as_completed(futures), total=num_samples, desc="samples", leave=False):
result = future.result()
load_times_video_ms.append(result["load_time_video_ms"])
load_times_images_ms.append(result["load_time_images_ms"])
psnr_values.extend(result["psnr_values"])
ssim_values.extend(result["ssim_values"])
mse_values.extend(result["mse_values"])
avg_load_time_video_ms = float(np.array(load_times_video_ms).mean())
avg_load_time_images_ms = float(np.array(load_times_images_ms).mean())
video_images_load_time_ratio = avg_load_time_video_ms / avg_load_time_images_ms
return {
"avg_load_time_video_ms": avg_load_time_video_ms,
"avg_load_time_images_ms": avg_load_time_images_ms,
"video_images_load_time_ratio": video_images_load_time_ratio,
"avg_mse": float(np.mean(mse_values)),
"avg_psnr": float(np.mean(psnr_values)),
"avg_ssim": float(np.mean(ssim_values)),
}
def benchmark_encoding_decoding(
dataset: LeRobotDataset,
video_path: Path,
imgs_dir: Path,
encoding_cfg: dict,
decoding_cfg: dict,
num_samples: int,
num_workers: int,
save_frames: bool,
overwrite: bool = False,
seed: int = 1337,
) -> list[dict]:
fps = dataset.fps
if overwrite or not video_path.is_file():
tqdm.write(f"encoding {video_path}")
encode_video_frames(
imgs_dir=imgs_dir,
video_path=video_path,
fps=fps,
vcodec=encoding_cfg["vcodec"],
pix_fmt=encoding_cfg["pix_fmt"],
g=encoding_cfg.get("g"),
crf=encoding_cfg.get("crf"),
# fast_decode=encoding_cfg.get("fastdecode"),
overwrite=True,
)
ep_num_images = dataset.episode_data_index["to"][0].item()
width, height = tuple(dataset[0][dataset.meta.camera_keys[0]].shape[-2:])
num_pixels = width * height
video_size_bytes = video_path.stat().st_size
images_size_bytes = get_directory_size(imgs_dir)
video_images_size_ratio = video_size_bytes / images_size_bytes
random.seed(seed)
benchmark_table = []
for timestamps_mode in tqdm(
decoding_cfg["timestamps_modes"], desc="decodings (timestamps_modes)", leave=False
):
for backend in tqdm(decoding_cfg["backends"], desc="decodings (backends)", leave=False):
benchmark_row = benchmark_decoding(
imgs_dir,
video_path,
timestamps_mode,
backend,
ep_num_images,
fps,
num_samples,
num_workers,
save_frames,
)
benchmark_row.update(
**{
"repo_id": dataset.repo_id,
"resolution": f"{width} x {height}",
"num_pixels": num_pixels,
"video_size_bytes": video_size_bytes,
"images_size_bytes": images_size_bytes,
"video_images_size_ratio": video_images_size_ratio,
"timestamps_mode": timestamps_mode,
"backend": backend,
},
**encoding_cfg,
)
benchmark_table.append(benchmark_row)
return benchmark_table
def main(
output_dir: Path,
repo_ids: list[str],
vcodec: list[str],
pix_fmt: list[str],
g: list[int],
crf: list[int],
# fastdecode: list[int],
timestamps_modes: list[str],
backends: list[str],
num_samples: int,
num_workers: int,
save_frames: bool,
):
check_datasets_formats(repo_ids)
encoding_benchmarks = {
"g": g,
"crf": crf,
# "fastdecode": fastdecode,
}
decoding_benchmarks = {
"timestamps_modes": timestamps_modes,
"backends": backends,
}
headers = ["repo_id", "resolution", "num_pixels"]
headers += list(BASE_ENCODING.keys())
headers += [
"timestamps_mode",
"backend",
"video_size_bytes",
"images_size_bytes",
"video_images_size_ratio",
"avg_load_time_video_ms",
"avg_load_time_images_ms",
"video_images_load_time_ratio",
"avg_mse",
"avg_psnr",
"avg_ssim",
]
file_paths = []
for video_codec in tqdm(vcodec, desc="encodings (vcodec)"):
for pixel_format in tqdm(pix_fmt, desc="encodings (pix_fmt)", leave=False):
benchmark_table = []
for repo_id in tqdm(repo_ids, desc="encodings (datasets)", leave=False):
dataset = LeRobotDataset(repo_id)
imgs_dir = output_dir / "images" / dataset.repo_id.replace("/", "_")
# We only use the first episode
save_first_episode(imgs_dir, dataset)
for key, values in tqdm(encoding_benchmarks.items(), desc="encodings (g, crf)", leave=False):
for value in tqdm(values, desc=f"encodings ({key})", leave=False):
encoding_cfg = BASE_ENCODING.copy()
encoding_cfg["vcodec"] = video_codec
encoding_cfg["pix_fmt"] = pixel_format
encoding_cfg[key] = value
args_path = Path("_".join(str(value) for value in encoding_cfg.values()))
video_path = output_dir / "videos" / args_path / f"{repo_id.replace('/', '_')}.mp4"
benchmark_table += benchmark_encoding_decoding(
dataset,
video_path,
imgs_dir,
encoding_cfg,
decoding_benchmarks,
num_samples,
num_workers,
save_frames,
)
# Save intermediate results
benchmark_df = pd.DataFrame(benchmark_table, columns=headers)
now = dt.datetime.now()
csv_path = (
output_dir
/ f"{now:%Y-%m-%d}_{now:%H-%M-%S}_{video_codec}_{pixel_format}_{num_samples}-samples.csv"
)
benchmark_df.to_csv(csv_path, header=True, index=False)
file_paths.append(csv_path)
del benchmark_df
# Concatenate all results
df_list = [pd.read_csv(csv_path) for csv_path in file_paths]
concatenated_df = pd.concat(df_list, ignore_index=True)
concatenated_path = output_dir / f"{now:%Y-%m-%d}_{now:%H-%M-%S}_all_{num_samples}-samples.csv"
concatenated_df.to_csv(concatenated_path, header=True, index=False)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--output-dir",
type=Path,
default=Path("outputs/video_benchmark"),
help="Directory where the video benchmark outputs are written.",
)
parser.add_argument(
"--repo-ids",
type=str,
nargs="*",
default=[
"lerobot/pusht_image",
"aliberts/aloha_mobile_shrimp_image",
"aliberts/paris_street",
"aliberts/kitchen",
],
help="Datasets repo-ids to test against. First episodes only are used. Must be images.",
)
parser.add_argument(
"--vcodec",
type=str,
nargs="*",
default=["libx264", "libx265", "libsvtav1"],
help="Video codecs to be tested",
)
parser.add_argument(
"--pix-fmt",
type=str,
nargs="*",
default=["yuv444p", "yuv420p"],
help="Pixel formats (chroma subsampling) to be tested",
)
parser.add_argument(
"--g",
type=parse_int_or_none,
nargs="*",
default=[1, 2, 3, 4, 5, 6, 10, 15, 20, 40, 100, None],
help="Group of pictures sizes to be tested.",
)
parser.add_argument(
"--crf",
type=parse_int_or_none,
nargs="*",
default=[0, 5, 10, 15, 20, 25, 30, 40, 50, None],
help="Constant rate factors to be tested.",
)
# parser.add_argument(
# "--fastdecode",
# type=int,
# nargs="*",
# default=[0, 1],
# help="Use the fastdecode tuning option. 0 disables it. "
# "For libx264 and libx265, only 1 is possible. "
# "For libsvtav1, 1, 2 or 3 are possible values with a higher number meaning a faster decoding optimization",
# )
parser.add_argument(
"--timestamps-modes",
type=str,
nargs="*",
default=[
"1_frame",
"2_frames",
"2_frames_4_space",
"6_frames",
],
help="Timestamps scenarios to be tested.",
)
parser.add_argument(
"--backends",
type=str,
nargs="*",
default=["pyav", "video_reader"],
help="Torchvision decoding backend to be tested.",
)
parser.add_argument(
"--num-samples",
type=int,
default=50,
help="Number of samples for each encoding x decoding config.",
)
parser.add_argument(
"--num-workers",
type=int,
default=10,
help="Number of processes for parallelized sample processing.",
)
parser.add_argument(
"--save-frames",
type=int,
default=0,
help="Whether to save decoded frames or not. Enter a non-zero number for true.",
)
args = parser.parse_args()
main(**vars(args))

View File

@@ -8,7 +8,8 @@ ARG DEBIAN_FRONTEND=noninteractive
# Install apt dependencies
RUN apt-get update && apt-get install -y --no-install-recommends \
build-essential cmake \
libglib2.0-0 libgl1-mesa-glx libegl1-mesa \
libglib2.0-0 libgl1-mesa-glx libegl1-mesa ffmpeg \
speech-dispatcher \
&& apt-get clean && rm -rf /var/lib/apt/lists/*
# Create virtual environment
@@ -21,7 +22,7 @@ RUN echo "source /opt/venv/bin/activate" >> /root/.bashrc
COPY . /lerobot
WORKDIR /lerobot
RUN pip install --upgrade --no-cache-dir pip
RUN pip install --no-cache-dir ".[test, aloha, xarm, pusht]" \
RUN pip install --no-cache-dir ".[test, aloha, xarm, pusht, dynamixel]" \
--extra-index-url https://download.pytorch.org/whl/cpu
# Set EGL as the rendering backend for MuJoCo

View File

@@ -1,4 +1,4 @@
FROM nvidia/cuda:12.4.1-base-ubuntu22.04
FROM nvidia/cuda:12.2.2-devel-ubuntu22.04
# Configure image
ARG PYTHON_VERSION=3.10
@@ -8,14 +8,42 @@ ARG DEBIAN_FRONTEND=noninteractive
RUN apt-get update && apt-get install -y --no-install-recommends \
build-essential cmake \
git git-lfs openssh-client \
nano vim less util-linux \
nano vim less util-linux tree \
htop atop nvtop \
sed gawk grep curl wget \
sed gawk grep curl wget zip unzip \
tcpdump sysstat screen tmux \
libglib2.0-0 libgl1-mesa-glx libegl1-mesa ffmpeg \
libglib2.0-0 libgl1-mesa-glx libegl1-mesa \
speech-dispatcher \
python${PYTHON_VERSION} python${PYTHON_VERSION}-venv \
&& apt-get clean && rm -rf /var/lib/apt/lists/*
# Install ffmpeg build dependencies. See:
# https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu
# TODO(aliberts): create image to build dependencies from source instead
RUN apt-get update && apt-get install -y --no-install-recommends \
autoconf automake yasm \
libass-dev \
libfreetype6-dev \
libgnutls28-dev \
libunistring-dev \
libmp3lame-dev \
libtool \
libvorbis-dev \
meson \
ninja-build \
pkg-config \
texinfo \
yasm \
zlib1g-dev \
nasm \
libx264-dev \
libx265-dev libnuma-dev \
libvpx-dev \
libfdk-aac-dev \
libopus-dev \
libsvtav1-dev libsvtav1enc-dev libsvtav1dec-dev \
libdav1d-dev
# Install gh cli tool
RUN (type -p wget >/dev/null || (apt update && apt-get install wget -y)) \
&& mkdir -p -m 755 /etc/apt/keyrings \

View File

@@ -8,8 +8,9 @@ ARG DEBIAN_FRONTEND=noninteractive
# Install apt dependencies
RUN apt-get update && apt-get install -y --no-install-recommends \
build-essential cmake \
libglib2.0-0 libgl1-mesa-glx libegl1-mesa \
python${PYTHON_VERSION} python${PYTHON_VERSION}-venv \
libglib2.0-0 libgl1-mesa-glx libegl1-mesa ffmpeg \
speech-dispatcher \
python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv \
&& apt-get clean && rm -rf /var/lib/apt/lists/*
@@ -23,7 +24,7 @@ RUN echo "source /opt/venv/bin/activate" >> /root/.bashrc
COPY . /lerobot
WORKDIR /lerobot
RUN pip install --upgrade --no-cache-dir pip
RUN pip install --no-cache-dir ".[test, aloha, xarm, pusht]"
RUN pip install --no-cache-dir ".[test, aloha, xarm, pusht, dynamixel]"
# Set EGL as the rendering backend for MuJoCo
ENV MUJOCO_GL="egl"

275
examples/10_use_so100.md Normal file
View File

@@ -0,0 +1,275 @@
This tutorial explains how to use [SO-100](https://github.com/TheRobotStudio/SO-ARM100) with LeRobot.
## Source the parts
Follow this [README](https://github.com/TheRobotStudio/SO-ARM100). It contains the bill of materials, with link to source the parts, as well as the instructions to 3D print the parts, and advices if it's your first time printing or if you don't own a 3D printer already.
**Important**: Before assembling, you will first need to configure your motors. To this end, we provide a nice script, so let's first install LeRobot. After configuration, we will also guide you through assembly.
## Install LeRobot
On your computer:
1. [Install Miniconda](https://docs.anaconda.com/miniconda/#quick-command-line-install):
```bash
mkdir -p ~/miniconda3
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
rm ~/miniconda3/miniconda.sh
~/miniconda3/bin/conda init bash
```
2. Restart shell or `source ~/.bashrc`
3. Create and activate a fresh conda environment for lerobot
```bash
conda create -y -n lerobot python=3.10 && conda activate lerobot
```
4. Clone LeRobot:
```bash
git clone https://github.com/huggingface/lerobot.git ~/lerobot
```
5. Install LeRobot with dependencies for the feetech motors:
```bash
cd ~/lerobot && pip install -e ".[feetech]"
```
For Linux only (not Mac), install extra dependencies for recording datasets:
```bash
conda install -y -c conda-forge ffmpeg
pip uninstall -y opencv-python
conda install -y -c conda-forge "opencv>=4.10.0"
```
## Configure the motors
Follow steps 1 of the [assembly video](https://www.youtube.com/watch?v=FioA2oeFZ5I) which illustrates the use of our scripts below.
**Find USB ports associated to your arms**
To find the correct ports for each arm, run the utility script twice:
```bash
python lerobot/scripts/find_motors_bus_port.py
```
Example output when identifying the leader arm's port (e.g., `/dev/tty.usbmodem575E0031751` on Mac, or possibly `/dev/ttyACM0` on Linux):
```
Finding all available ports for the MotorBus.
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
Remove the usb cable from your DynamixelMotorsBus and press Enter when done.
[...Disconnect leader arm and press Enter...]
The port of this DynamixelMotorsBus is /dev/tty.usbmodem575E0031751
Reconnect the usb cable.
```
Example output when identifying the follower arm's port (e.g., `/dev/tty.usbmodem575E0032081`, or possibly `/dev/ttyACM1` on Linux):
```
Finding all available ports for the MotorBus.
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
Remove the usb cable from your DynamixelMotorsBus and press Enter when done.
[...Disconnect follower arm and press Enter...]
The port of this DynamixelMotorsBus is /dev/tty.usbmodem575E0032081
Reconnect the usb cable.
```
Troubleshooting: On Linux, you might need to give access to the USB ports by running:
```bash
sudo chmod 666 /dev/ttyACM0
sudo chmod 666 /dev/ttyACM1
```
**Configure your motors**
Plug your first motor and run this script to set its ID to 1. It will also set its present position to 2048, so expect your motor to rotate:
```bash
python lerobot/scripts/configure_motor.py \
--port /dev/tty.usbmodem58760432961 \
--brand feetech \
--model sts3215 \
--baudrate 1000000 \
--ID 1
```
Note: These motors are currently limitated. They can take values between 0 and 4096 only, which corresponds to a full turn. They can't turn more than that. 2048 is at the middle of this range, so we can take -2048 steps (180 degrees anticlockwise) and reach the maximum range, or take +2048 steps (180 degrees clockwise) and reach the maximum range. The configuration step also sets the homing offset to 0, so that if you misassembled the arm, you can always update the homing offset to account for a shift up to ± 2048 steps (± 180 degrees).
Then unplug your motor and plug the second motor and set its ID to 2.
```bash
python lerobot/scripts/configure_motor.py \
--port /dev/tty.usbmodem58760432961 \
--brand feetech \
--model sts3215 \
--baudrate 1000000 \
--ID 2
```
Redo the process for all your motors until ID 6. Do the same for the 6 motors of the leader arm.
**Remove the gears of the 6 leader motors**
Follow step 2 of the [assembly video](https://www.youtube.com/watch?v=FioA2oeFZ5I). You need to remove the gear for the motors of the leader arm. As a result, you will only use the position encoding of the motor and reduce friction to more easily operate the leader arm.
**Add motor horn to the motors**
Follow step 3 of the [assembly video](https://www.youtube.com/watch?v=FioA2oeFZ5I). For SO-100, you need to align the holes on the motor horn to the motor spline to be approximately 1:30, 4:30, 7:30 and 10:30.
Try to avoid rotating the motor while doing so to keep position 2048 set during configuration. It is especially tricky for the leader motors as it is more sensible without the gears, but it's ok if it's a bit rotated.
## Assemble the arms
Follow step 4 of the [assembly video](https://www.youtube.com/watch?v=FioA2oeFZ5I). The first arm should take a bit more than 1 hour to assemble, but once you get use to it, you can do it under 1 hour for the second arm.
## Calibrate
Next, you'll need to calibrate your SO-100 robot to ensure that the leader and follower arms have the same position values when they are in the same physical position. This calibration is essential because it allows a neural network trained on one SO-100 robot to work on another.
**Manual calibration of follower arm**
/!\ Contrarily to step 6 of the [assembly video](https://www.youtube.com/watch?v=FioA2oeFZ5I) which illustrates the auto calibration, we will actually do manual calibration of follower for now.
You will need to move the follower arm to these positions sequentially:
| 1. Zero position | 2. Rotated position | 3. Rest position |
|---|---|---|
| <img src="../media/so100/follower_zero.webp?raw=true" alt="SO-100 follower arm zero position" title="SO-100 follower arm zero position" style="width:100%;"> | <img src="../media/so100/follower_rotated.webp?raw=true" alt="SO-100 follower arm rotated position" title="SO-100 follower arm rotated position" style="width:100%;"> | <img src="../media/so100/follower_rest.webp?raw=true" alt="SO-100 follower arm rest position" title="SO-100 follower arm rest position" style="width:100%;"> |
Make sure both arms are connected and run this script to launch manual calibration:
```bash
python lerobot/scripts/control_robot.py calibrate \
--robot-path lerobot/configs/robot/so100.yaml \
--robot-overrides '~cameras' --arms main_follower
```
**Manual calibration of leader arm**
Follow step 6 of the [assembly video](https://www.youtube.com/watch?v=FioA2oeFZ5I) which illustrates the manual calibration. You will need to move the leader arm to these positions sequentially:
| 1. Zero position | 2. Rotated position | 3. Rest position |
|---|---|---|
| <img src="../media/so100/leader_zero.webp?raw=true" alt="SO-100 leader arm zero position" title="SO-100 leader arm zero position" style="width:100%;"> | <img src="../media/so100/leader_rotated.webp?raw=true" alt="SO-100 leader arm rotated position" title="SO-100 leader arm rotated position" style="width:100%;"> | <img src="../media/so100/leader_rest.webp?raw=true" alt="SO-100 leader arm rest position" title="SO-100 leader arm rest position" style="width:100%;"> |
Run this script to launch manual calibration:
```bash
python lerobot/scripts/control_robot.py calibrate \
--robot-path lerobot/configs/robot/so100.yaml \
--robot-overrides '~cameras' --arms main_leader
```
## Teleoperate
**Simple teleop**
Then you are ready to teleoperate your robot! Run this simple script (it won't connect and display the cameras):
```bash
python lerobot/scripts/control_robot.py teleoperate \
--robot-path lerobot/configs/robot/so100.yaml \
--robot-overrides '~cameras' \
--display-cameras 0
```
**Teleop with displaying cameras**
Follow [this guide to setup your cameras](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#c-add-your-cameras-with-opencvcamera). Then you will be able to display the cameras on your computer while you are teleoperating by running the following code. This is useful to prepare your setup before recording your first dataset.
```bash
python lerobot/scripts/control_robot.py teleoperate \
--robot-path lerobot/configs/robot/so100.yaml
```
## Record a dataset
Once you're familiar with teleoperation, you can record your first dataset with SO-100.
If you want to use the Hugging Face hub features for uploading your dataset and you haven't previously done it, make sure you've logged in using a write-access token, which can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens):
```bash
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
```
Store your Hugging Face repository name in a variable to run these commands:
```bash
HF_USER=$(huggingface-cli whoami | head -n 1)
echo $HF_USER
```
Record 2 episodes and upload your dataset to the hub:
```bash
python lerobot/scripts/control_robot.py record \
--robot-path lerobot/configs/robot/so100.yaml \
--fps 30 \
--repo-id ${HF_USER}/so100_test \
--tags so100 tutorial \
--warmup-time-s 5 \
--episode-time-s 40 \
--reset-time-s 10 \
--num-episodes 2 \
--push-to-hub 1
```
## Visualize a dataset
If you uploaded your dataset to the hub with `--push-to-hub 1`, you can [visualize your dataset online](https://huggingface.co/spaces/lerobot/visualize_dataset) by copy pasting your repo id given by:
```bash
echo ${HF_USER}/so100_test
```
If you didn't upload with `--push-to-hub 0`, you can also visualize it locally with:
```bash
python lerobot/scripts/visualize_dataset_html.py \
--repo-id ${HF_USER}/so100_test
```
## Replay an episode
Now try to replay the first episode on your robot:
```bash
python lerobot/scripts/control_robot.py replay \
--robot-path lerobot/configs/robot/so100.yaml \
--fps 30 \
--repo-id ${HF_USER}/so100_test \
--episode 0
```
## Train a policy
To train a policy to control your robot, use the [`python lerobot/scripts/train.py`](../lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
```bash
python lerobot/scripts/train.py \
dataset_repo_id=${HF_USER}/so100_test \
policy=act_so100_real \
env=so100_real \
hydra.run.dir=outputs/train/act_so100_test \
hydra.job.name=act_so100_test \
device=cuda \
wandb.enable=true
```
Let's explain it:
1. We provided the dataset as argument with `dataset_repo_id=${HF_USER}/so100_test`.
2. We provided the policy with `policy=act_so100_real`. This loads configurations from [`lerobot/configs/policy/act_so100_real.yaml`](../lerobot/configs/policy/act_so100_real.yaml). Importantly, this policy uses 2 cameras as input `laptop`, `phone`.
3. We provided an environment as argument with `env=so100_real`. This loads configurations from [`lerobot/configs/env/so100_real.yaml`](../lerobot/configs/env/so100_real.yaml).
4. We provided `device=cuda` since we are training on a Nvidia GPU, but you can also use `device=mps` if you are using a Mac with Apple silicon, or `device=cpu` otherwise.
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
Training should take several hours. You will find checkpoints in `outputs/train/act_so100_test/checkpoints`.
## Evaluate your policy
You can use the `record` function from [`lerobot/scripts/control_robot.py`](../lerobot/scripts/control_robot.py) but with a policy checkpoint as input. For instance, run this command to record 10 evaluation episodes:
```bash
python lerobot/scripts/control_robot.py record \
--robot-path lerobot/configs/robot/so100.yaml \
--fps 30 \
--repo-id ${HF_USER}/eval_act_so100_test \
--tags so100 tutorial eval \
--warmup-time-s 5 \
--episode-time-s 40 \
--reset-time-s 10 \
--num-episodes 10 \
-p outputs/train/act_so100_test/checkpoints/last/pretrained_model
```
As you can see, it's almost the same command as previously used to record your training dataset. Two things changed:
1. There is an additional `-p` argument which indicates the path to your policy checkpoint with (e.g. `-p outputs/train/eval_so100_test/checkpoints/last/pretrained_model`). You can also use the model repository if you uploaded a model checkpoint to the hub (e.g. `-p ${HF_USER}/act_so100_test`).
2. The name of dataset begins by `eval` to reflect that you are running inference (e.g. `--repo-id ${HF_USER}/eval_act_so100_test`).
## More
Follow this [previous tutorial](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#4-train-a-policy-on-your-data) for a more in-depth tutorial on controlling real robots with LeRobot.
If you have any question or need help, please reach out on Discord in the channel [`#so100-arm`](https://discord.com/channels/1216765309076115607/1237741463832363039).

275
examples/11_use_moss.md Normal file
View File

@@ -0,0 +1,275 @@
This tutorial explains how to use [Moss v1](https://github.com/jess-moss/moss-robot-arms) with LeRobot.
## Source the parts
Follow this [README](https://github.com/jess-moss/moss-robot-arms). It contains the bill of materials, with link to source the parts, as well as the instructions to 3D print the parts, and advices if it's your first time printing or if you don't own a 3D printer already.
**Important**: Before assembling, you will first need to configure your motors. To this end, we provide a nice script, so let's first install LeRobot. After configuration, we will also guide you through assembly.
## Install LeRobot
On your computer:
1. [Install Miniconda](https://docs.anaconda.com/miniconda/#quick-command-line-install):
```bash
mkdir -p ~/miniconda3
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
rm ~/miniconda3/miniconda.sh
~/miniconda3/bin/conda init bash
```
2. Restart shell or `source ~/.bashrc`
3. Create and activate a fresh conda environment for lerobot
```bash
conda create -y -n lerobot python=3.10 && conda activate lerobot
```
4. Clone LeRobot:
```bash
git clone https://github.com/huggingface/lerobot.git ~/lerobot
```
5. Install LeRobot with dependencies for the feetech motors:
```bash
cd ~/lerobot && pip install -e ".[feetech]"
```
For Linux only (not Mac), install extra dependencies for recording datasets:
```bash
conda install -y -c conda-forge ffmpeg
pip uninstall -y opencv-python
conda install -y -c conda-forge "opencv>=4.10.0"
```
## Configure the motors
Follow steps 1 of the [assembly video](https://www.youtube.com/watch?v=DA91NJOtMic) which illustrates the use of our scripts below.
**Find USB ports associated to your arms**
To find the correct ports for each arm, run the utility script twice:
```bash
python lerobot/scripts/find_motors_bus_port.py
```
Example output when identifying the leader arm's port (e.g., `/dev/tty.usbmodem575E0031751` on Mac, or possibly `/dev/ttyACM0` on Linux):
```
Finding all available ports for the MotorBus.
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
Remove the usb cable from your DynamixelMotorsBus and press Enter when done.
[...Disconnect leader arm and press Enter...]
The port of this DynamixelMotorsBus is /dev/tty.usbmodem575E0031751
Reconnect the usb cable.
```
Example output when identifying the follower arm's port (e.g., `/dev/tty.usbmodem575E0032081`, or possibly `/dev/ttyACM1` on Linux):
```
Finding all available ports for the MotorBus.
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
Remove the usb cable from your DynamixelMotorsBus and press Enter when done.
[...Disconnect follower arm and press Enter...]
The port of this DynamixelMotorsBus is /dev/tty.usbmodem575E0032081
Reconnect the usb cable.
```
Troubleshooting: On Linux, you might need to give access to the USB ports by running:
```bash
sudo chmod 666 /dev/ttyACM0
sudo chmod 666 /dev/ttyACM1
```
**Configure your motors**
Plug your first motor and run this script to set its ID to 1. It will also set its present position to 2048, so expect your motor to rotate:
```bash
python lerobot/scripts/configure_motor.py \
--port /dev/tty.usbmodem58760432961 \
--brand feetech \
--model sts3215 \
--baudrate 1000000 \
--ID 1
```
Note: These motors are currently limitated. They can take values between 0 and 4096 only, which corresponds to a full turn. They can't turn more than that. 2048 is at the middle of this range, so we can take -2048 steps (180 degrees anticlockwise) and reach the maximum range, or take +2048 steps (180 degrees clockwise) and reach the maximum range. The configuration step also sets the homing offset to 0, so that if you misassembled the arm, you can always update the homing offset to account for a shift up to ± 2048 steps (± 180 degrees).
Then unplug your motor and plug the second motor and set its ID to 2.
```bash
python lerobot/scripts/configure_motor.py \
--port /dev/tty.usbmodem58760432961 \
--brand feetech \
--model sts3215 \
--baudrate 1000000 \
--ID 2
```
Redo the process for all your motors until ID 6. Do the same for the 6 motors of the leader arm.
**Remove the gears of the 6 leader motors**
Follow step 2 of the [assembly video](https://www.youtube.com/watch?v=DA91NJOtMic). You need to remove the gear for the motors of the leader arm. As a result, you will only use the position encoding of the motor and reduce friction to more easily operate the leader arm.
**Add motor horn to the motors**
Follow step 3 of the [assembly video](https://www.youtube.com/watch?v=DA91NJOtMic). For Moss v1, you need to align the holes on the motor horn to the motor spline to be approximately 3, 6, 9 and 12 o'clock.
Try to avoid rotating the motor while doing so to keep position 2048 set during configuration. It is especially tricky for the leader motors as it is more sensible without the gears, but it's ok if it's a bit rotated.
## Assemble the arms
Follow step 4 of the [assembly video](https://www.youtube.com/watch?v=DA91NJOtMic). The first arm should take a bit more than 1 hour to assemble, but once you get use to it, you can do it under 1 hour for the second arm.
## Calibrate
Next, you'll need to calibrate your Moss v1 robot to ensure that the leader and follower arms have the same position values when they are in the same physical position. This calibration is essential because it allows a neural network trained on one Moss v1 robot to work on another.
**Manual calibration of follower arm**
/!\ Contrarily to step 6 of the [assembly video](https://www.youtube.com/watch?v=DA91NJOtMic) which illustrates the auto calibration, we will actually do manual calibration of follower for now.
You will need to move the follower arm to these positions sequentially:
| 1. Zero position | 2. Rotated position | 3. Rest position |
|---|---|---|
| <img src="../media/moss/follower_zero.webp?raw=true" alt="Moss v1 follower arm zero position" title="Moss v1 follower arm zero position" style="width:100%;"> | <img src="../media/moss/follower_rotated.webp?raw=true" alt="Moss v1 follower arm rotated position" title="Moss v1 follower arm rotated position" style="width:100%;"> | <img src="../media/moss/follower_rest.webp?raw=true" alt="Moss v1 follower arm rest position" title="Moss v1 follower arm rest position" style="width:100%;"> |
Make sure both arms are connected and run this script to launch manual calibration:
```bash
python lerobot/scripts/control_robot.py calibrate \
--robot-path lerobot/configs/robot/moss.yaml \
--robot-overrides '~cameras' --arms main_follower
```
**Manual calibration of leader arm**
Follow step 6 of the [assembly video](https://www.youtube.com/watch?v=DA91NJOtMic) which illustrates the manual calibration. You will need to move the leader arm to these positions sequentially:
| 1. Zero position | 2. Rotated position | 3. Rest position |
|---|---|---|
| <img src="../media/moss/leader_zero.webp?raw=true" alt="Moss v1 leader arm zero position" title="Moss v1 leader arm zero position" style="width:100%;"> | <img src="../media/moss/leader_rotated.webp?raw=true" alt="Moss v1 leader arm rotated position" title="Moss v1 leader arm rotated position" style="width:100%;"> | <img src="../media/moss/leader_rest.webp?raw=true" alt="Moss v1 leader arm rest position" title="Moss v1 leader arm rest position" style="width:100%;"> |
Run this script to launch manual calibration:
```bash
python lerobot/scripts/control_robot.py calibrate \
--robot-path lerobot/configs/robot/moss.yaml \
--robot-overrides '~cameras' --arms main_leader
```
## Teleoperate
**Simple teleop**
Then you are ready to teleoperate your robot! Run this simple script (it won't connect and display the cameras):
```bash
python lerobot/scripts/control_robot.py teleoperate \
--robot-path lerobot/configs/robot/moss.yaml \
--robot-overrides '~cameras' \
--display-cameras 0
```
**Teleop with displaying cameras**
Follow [this guide to setup your cameras](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#c-add-your-cameras-with-opencvcamera). Then you will be able to display the cameras on your computer while you are teleoperating by running the following code. This is useful to prepare your setup before recording your first dataset.
```bash
python lerobot/scripts/control_robot.py teleoperate \
--robot-path lerobot/configs/robot/moss.yaml
```
## Record a dataset
Once you're familiar with teleoperation, you can record your first dataset with Moss v1.
If you want to use the Hugging Face hub features for uploading your dataset and you haven't previously done it, make sure you've logged in using a write-access token, which can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens):
```bash
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
```
Store your Hugging Face repository name in a variable to run these commands:
```bash
HF_USER=$(huggingface-cli whoami | head -n 1)
echo $HF_USER
```
Record 2 episodes and upload your dataset to the hub:
```bash
python lerobot/scripts/control_robot.py record \
--robot-path lerobot/configs/robot/moss.yaml \
--fps 30 \
--repo-id ${HF_USER}/moss_test \
--tags moss tutorial \
--warmup-time-s 5 \
--episode-time-s 40 \
--reset-time-s 10 \
--num-episodes 2 \
--push-to-hub 1
```
## Visualize a dataset
If you uploaded your dataset to the hub with `--push-to-hub 1`, you can [visualize your dataset online](https://huggingface.co/spaces/lerobot/visualize_dataset) by copy pasting your repo id given by:
```bash
echo ${HF_USER}/moss_test
```
If you didn't upload with `--push-to-hub 0`, you can also visualize it locally with:
```bash
python lerobot/scripts/visualize_dataset_html.py \
--repo-id ${HF_USER}/moss_test
```
## Replay an episode
Now try to replay the first episode on your robot:
```bash
python lerobot/scripts/control_robot.py replay \
--robot-path lerobot/configs/robot/moss.yaml \
--fps 30 \
--repo-id ${HF_USER}/moss_test \
--episode 0
```
## Train a policy
To train a policy to control your robot, use the [`python lerobot/scripts/train.py`](../lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
```bash
python lerobot/scripts/train.py \
dataset_repo_id=${HF_USER}/moss_test \
policy=act_moss_real \
env=moss_real \
hydra.run.dir=outputs/train/act_moss_test \
hydra.job.name=act_moss_test \
device=cuda \
wandb.enable=true
```
Let's explain it:
1. We provided the dataset as argument with `dataset_repo_id=${HF_USER}/moss_test`.
2. We provided the policy with `policy=act_moss_real`. This loads configurations from [`lerobot/configs/policy/act_moss_real.yaml`](../lerobot/configs/policy/act_moss_real.yaml). Importantly, this policy uses 2 cameras as input `laptop`, `phone`.
3. We provided an environment as argument with `env=moss_real`. This loads configurations from [`lerobot/configs/env/moss_real.yaml`](../lerobot/configs/env/moss_real.yaml).
4. We provided `device=cuda` since we are training on a Nvidia GPU, but you can also use `device=mps` if you are using a Mac with Apple silicon, or `device=cpu` otherwise.
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
Training should take several hours. You will find checkpoints in `outputs/train/act_moss_test/checkpoints`.
## Evaluate your policy
You can use the `record` function from [`lerobot/scripts/control_robot.py`](../lerobot/scripts/control_robot.py) but with a policy checkpoint as input. For instance, run this command to record 10 evaluation episodes:
```bash
python lerobot/scripts/control_robot.py record \
--robot-path lerobot/configs/robot/moss.yaml \
--fps 30 \
--repo-id ${HF_USER}/eval_act_moss_test \
--tags moss tutorial eval \
--warmup-time-s 5 \
--episode-time-s 40 \
--reset-time-s 10 \
--num-episodes 10 \
-p outputs/train/act_moss_test/checkpoints/last/pretrained_model
```
As you can see, it's almost the same command as previously used to record your training dataset. Two things changed:
1. There is an additional `-p` argument which indicates the path to your policy checkpoint with (e.g. `-p outputs/train/eval_moss_test/checkpoints/last/pretrained_model`). You can also use the model repository if you uploaded a model checkpoint to the hub (e.g. `-p ${HF_USER}/act_moss_test`).
2. The name of dataset begins by `eval` to reflect that you are running inference (e.g. `--repo-id ${HF_USER}/eval_act_moss_test`).
## More
Follow this [previous tutorial](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#4-train-a-policy-on-your-data) for a more in-depth tutorial on controlling real robots with LeRobot.
If you have any question or need help, please reach out on Discord in the channel [`#moss-arm`](https://discord.com/channels/1216765309076115607/1275374638985252925).

View File

@@ -0,0 +1,83 @@
# Training a HIL-SERL Reward Classifier with LeRobot
This tutorial provides step-by-step instructions for training a reward classifier using LeRobot.
---
## Training Script Overview
LeRobot includes a ready-to-use training script located at [`lerobot/scripts/train_hilserl_classifier.py`](../../lerobot/scripts/train_hilserl_classifier.py). Here's an outline of its workflow:
1. **Configuration Loading**
The script uses Hydra to load a configuration file for subsequent steps. (Details on Hydra follow below.)
2. **Dataset Initialization**
It loads a `LeRobotDataset` containing images and rewards. To optimize performance, a weighted random sampler is used to balance class sampling.
3. **Classifier Initialization**
A lightweight classification head is built on top of a frozen, pretrained image encoder from HuggingFace. The classifier outputs either:
- A single probability (binary classification), or
- Logits (multi-class classification).
4. **Training Loop Execution**
The script performs:
- Forward and backward passes,
- Optimization steps,
- Periodic logging, evaluation, and checkpoint saving.
---
## Configuring with Hydra
For detailed information about Hydra usage, refer to [`examples/4_train_policy_with_script.md`](../examples/4_train_policy_with_script.md). However, note that training the reward classifier differs slightly and requires a separate configuration file.
### Config File Setup
The default `default.yaml` cannot launch the reward classifier training directly. Instead, you need a configuration file like [`lerobot/configs/policy/hilserl_classifier.yaml`](../../lerobot/configs/policy/hilserl_classifier.yaml), with the following adjustment:
Replace the `dataset_repo_id` field with the identifier for your dataset, which contains images and sparse rewards:
```yaml
# Example: lerobot/configs/policy/reward_classifier.yaml
dataset_repo_id: "my_dataset_repo_id"
## Typical logs and metrics
```
When you start the training process, you will first see your full configuration being printed in the terminal. You can check it to make sure that you config it correctly and your config is not overrided by other files. The final configuration will also be saved with the checkpoint.
After that, you will see training log like this one:
```
[2024-11-29 18:26:36,999][root][INFO] -
Epoch 5/5
Training: 82%|██████████████████████████████████████████████████████████████████████████████▋ | 91/111 [00:50<00:09, 2.04it/s, loss=0.2999, acc=69.99%]
```
or evaluation log like:
```
Validation: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 28/28 [00:20<00:00, 1.37it/s]
```
### Metrics Tracking with Weights & Biases (WandB)
If `wandb.enable` is set to `true`, the training and evaluation logs will also be saved in WandB. This allows you to track key metrics in real-time, including:
- **Training Metrics**:
- `train/accuracy`
- `train/loss`
- `train/dataloading_s`
- **Evaluation Metrics**:
- `eval/accuracy`
- `eval/loss`
- `eval/eval_s`
#### Additional Features
You can also log sample predictions during evaluation. Each logged sample will include:
- The **input image**.
- The **predicted label**.
- The **true label**.
- The **classifier's "confidence" (logits/probability)**.
These logs can be useful for diagnosing and debugging performance issues.

View File

@@ -3,78 +3,120 @@ This script demonstrates the use of `LeRobotDataset` class for handling and proc
It illustrates how to load datasets, manipulate them, and apply transformations suitable for machine learning tasks in PyTorch.
Features included in this script:
- Loading a dataset and accessing its properties.
- Filtering data by episode number.
- Converting tensor data for visualization.
- Saving video files from dataset frames.
- Viewing a dataset's metadata and exploring its properties.
- Loading an existing dataset from the hub or a subset of it.
- Accessing frames by episode number.
- Using advanced dataset features like timestamp-based frame selection.
- Demonstrating compatibility with PyTorch DataLoader for batch processing.
The script ends with examples of how to batch process data using PyTorch's DataLoader.
"""
from pathlib import Path
from pprint import pprint
import imageio
import torch
from huggingface_hub import HfApi
import lerobot
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset, LeRobotDatasetMetadata
# We ported a number of existing datasets ourselves, use this to see the list:
print("List of available datasets:")
pprint(lerobot.available_datasets)
# Let's take one for this example
repo_id = "lerobot/pusht"
# You can also browse through the datasets created/ported by the community on the hub using the hub api:
hub_api = HfApi()
repo_ids = [info.id for info in hub_api.list_datasets(task_categories="robotics", tags=["LeRobot"])]
pprint(repo_ids)
# You can easily load a dataset from a Hugging Face repository
# Or simply explore them in your web browser directly at:
# https://huggingface.co/datasets?other=LeRobot
# Let's take this one for this example
repo_id = "lerobot/aloha_mobile_cabinet"
# We can have a look and fetch its metadata to know more about it:
ds_meta = LeRobotDatasetMetadata(repo_id)
# By instantiating just this class, you can quickly access useful information about the content and the
# structure of the dataset without downloading the actual data yet (only metadata files — which are
# lightweight).
print(f"Total number of episodes: {ds_meta.total_episodes}")
print(f"Average number of frames per episode: {ds_meta.total_frames / ds_meta.total_episodes:.3f}")
print(f"Frames per second used during data collection: {ds_meta.fps}")
print(f"Robot type: {ds_meta.robot_type}")
print(f"keys to access images from cameras: {ds_meta.camera_keys=}\n")
print("Tasks:")
print(ds_meta.tasks)
print("Features:")
pprint(ds_meta.features)
# You can also get a short summary by simply printing the object:
print(ds_meta)
# You can then load the actual dataset from the hub.
# Either load any subset of episodes:
dataset = LeRobotDataset(repo_id, episodes=[0, 10, 11, 23])
# And see how many frames you have:
print(f"Selected episodes: {dataset.episodes}")
print(f"Number of episodes selected: {dataset.num_episodes}")
print(f"Number of frames selected: {dataset.num_frames}")
# Or simply load the entire dataset:
dataset = LeRobotDataset(repo_id)
print(f"Number of episodes selected: {dataset.num_episodes}")
print(f"Number of frames selected: {dataset.num_frames}")
# LeRobotDataset is actually a thin wrapper around an underlying Hugging Face dataset
# (see https://huggingface.co/docs/datasets/index for more information).
print(dataset)
# The previous metadata class is contained in the 'meta' attribute of the dataset:
print(dataset.meta)
# LeRobotDataset actually wraps an underlying Hugging Face dataset
# (see https://huggingface.co/docs/datasets for more information).
print(dataset.hf_dataset)
# And provides additional utilities for robotics and compatibility with Pytorch
print(f"\naverage number of frames per episode: {dataset.num_samples / dataset.num_episodes:.3f}")
print(f"frames per second used during data collection: {dataset.fps=}")
print(f"keys to access images from cameras: {dataset.camera_keys=}\n")
# Access frame indexes associated to first episode
# LeRobot datasets also subclasses PyTorch datasets so you can do everything you know and love from working
# with the latter, like iterating through the dataset.
# The __getitem__ iterates over the frames of the dataset. Since our datasets are also structured by
# episodes, you can access the frame indices of any episode using the episode_data_index. Here, we access
# frame indices associated to the first episode:
episode_index = 0
from_idx = dataset.episode_data_index["from"][episode_index].item()
to_idx = dataset.episode_data_index["to"][episode_index].item()
# LeRobot datasets actually subclass PyTorch datasets so you can do everything you know and love from working
# with the latter, like iterating through the dataset. Here we grab all the image frames.
frames = [dataset[idx]["observation.image"] for idx in range(from_idx, to_idx)]
# Then we grab all the image frames from the first camera:
camera_key = dataset.meta.camera_keys[0]
frames = [dataset[idx][camera_key] for idx in range(from_idx, to_idx)]
# Video frames are now float32 in range [0,1] channel first (c,h,w) to follow pytorch convention. To visualize
# them, we convert to uint8 in range [0,255]
frames = [(frame * 255).type(torch.uint8) for frame in frames]
# and to channel last (h,w,c).
frames = [frame.permute((1, 2, 0)).numpy() for frame in frames]
# The objects returned by the dataset are all torch.Tensors
print(type(frames[0]))
print(frames[0].shape)
# Finally, we save the frames to a mp4 video for visualization.
Path("outputs/examples/1_load_lerobot_dataset").mkdir(parents=True, exist_ok=True)
imageio.mimsave("outputs/examples/1_load_lerobot_dataset/episode_0.mp4", frames, fps=dataset.fps)
# Since we're using pytorch, the shape is in pytorch, channel-first convention (c, h, w).
# We can compare this shape with the information available for that feature
pprint(dataset.features[camera_key])
# In particular:
print(dataset.features[camera_key]["shape"])
# The shape is in (h, w, c) which is a more universal format.
# For many machine learning applications we need to load the history of past observations or trajectories of
# future actions. Our datasets can load previous and future frames for each key/modality, using timestamps
# differences with the current loaded frame. For instance:
delta_timestamps = {
# loads 4 images: 1 second before current frame, 500 ms before, 200 ms before, and current frame
"observation.image": [-1, -0.5, -0.20, 0],
# loads 8 state vectors: 1.5 seconds before, 1 second before, ... 20 ms, 10 ms, and current frame
"observation.state": [-1.5, -1, -0.5, -0.20, -0.10, -0.02, -0.01, 0],
camera_key: [-1, -0.5, -0.20, 0],
# loads 8 state vectors: 1.5 seconds before, 1 second before, ... 200 ms, 100 ms, and current frame
"observation.state": [-1.5, -1, -0.5, -0.20, -0.10, 0],
# loads 64 action vectors: current frame, 1 frame in the future, 2 frames, ... 63 frames in the future
"action": [t / dataset.fps for t in range(64)],
}
# Note that in any case, these delta_timestamps values need to be multiples of (1/fps) so that added to any
# timestamp, you still get a valid timestamp.
dataset = LeRobotDataset(repo_id, delta_timestamps=delta_timestamps)
print(f"\n{dataset[0]['observation.image'].shape=}") # (4,c,h,w)
print(f"{dataset[0]['observation.state'].shape=}") # (8,c)
print(f"{dataset[0]['action'].shape=}\n") # (64,c)
print(f"\n{dataset[0][camera_key].shape=}") # (4, c, h, w)
print(f"{dataset[0]['observation.state'].shape=}") # (6, c)
print(f"{dataset[0]['action'].shape=}\n") # (64, c)
# Finally, our datasets are fully compatible with PyTorch dataloaders and samplers because they are just
# PyTorch datasets.
@@ -84,8 +126,9 @@ dataloader = torch.utils.data.DataLoader(
batch_size=32,
shuffle=True,
)
for batch in dataloader:
print(f"{batch['observation.image'].shape=}") # (32,4,c,h,w)
print(f"{batch['observation.state'].shape=}") # (32,8,c)
print(f"{batch['action'].shape=}") # (32,64,c)
print(f"{batch[camera_key].shape=}") # (32, 4, c, h, w)
print(f"{batch['observation.state'].shape=}") # (32, 5, c)
print(f"{batch['action'].shape=}") # (32, 64, c)
break

View File

@@ -18,8 +18,6 @@ from lerobot.common.policies.diffusion.modeling_diffusion import DiffusionPolicy
output_directory = Path("outputs/eval/example_pusht_diffusion")
output_directory.mkdir(parents=True, exist_ok=True)
device = torch.device("cuda")
# Download the diffusion policy for pusht environment
pretrained_policy_path = Path(snapshot_download("lerobot/diffusion_pusht"))
# OR uncomment the following to evaluate a policy from the local outputs/train folder.
@@ -27,6 +25,17 @@ pretrained_policy_path = Path(snapshot_download("lerobot/diffusion_pusht"))
policy = DiffusionPolicy.from_pretrained(pretrained_policy_path)
policy.eval()
# Check if GPU is available
if torch.cuda.is_available():
device = torch.device("cuda")
print("GPU is available. Device set to:", device)
else:
device = torch.device("cpu")
print(f"GPU is not available. Device set to: {device}. Inference will be slower than on GPU.")
# Decrease the number of reverse-diffusion steps (trades off a bit of quality for 10x speed)
policy.diffusion.num_inference_steps = 10
policy.to(device)
# Initialize evaluation environment to render two observation types:

View File

@@ -40,7 +40,7 @@ dataset = LeRobotDataset("lerobot/pusht", delta_timestamps=delta_timestamps)
# For this example, no arguments need to be passed because the defaults are set up for PushT.
# If you're doing something different, you will likely need to change at least some of the defaults.
cfg = DiffusionConfig()
policy = DiffusionPolicy(cfg, dataset_stats=dataset.stats)
policy = DiffusionPolicy(cfg, dataset_stats=dataset.meta.stats)
policy.train()
policy.to(device)

View File

@@ -46,7 +46,7 @@ defaults:
- policy: diffusion
```
This logic tells Hydra to incorporate configuration parameters from `env/pusht.yaml` and `policy/diffusion.yaml`. _Note: Be aware of the order as any configuration parameters with the same name will be overidden. Thus, `default.yaml` is overriden by `env/pusht.yaml` which is overidden by `policy/diffusion.yaml`_.
This logic tells Hydra to incorporate configuration parameters from `env/pusht.yaml` and `policy/diffusion.yaml`. _Note: Be aware of the order as any configuration parameters with the same name will be overidden. Thus, `default.yaml` is overridden by `env/pusht.yaml` which is overidden by `policy/diffusion.yaml`_.
Then, `default.yaml` also contains common configuration parameters such as `device: cuda` or `use_amp: false` (for enabling fp16 training). Some other parameters are set to `???` which indicates that they are expected to be set in additional yaml files. For instance, `training.offline_steps: ???` in `default.yaml` is set to `200000` in `diffusion.yaml`.
@@ -170,6 +170,36 @@ python lerobot/scripts/train.py --config-dir outputs/train/my_experiment/checkpo
Note that you may still use the regular syntax for config parameter overrides (eg: by adding `training.offline_steps=200000`).
## Typical logs and metrics
When you start the training process, you will first see your full configuration being printed in the terminal. You can check it to make sure that you config it correctly and your config is not overrided by other files. The final configuration will also be saved with the checkpoint.
After that, you will see training log like this one:
```
INFO 2024-08-14 13:35:12 ts/train.py:192 step:0 smpl:64 ep:1 epch:0.00 loss:1.112 grdn:15.387 lr:2.0e-07 updt_s:1.738 data_s:4.774
```
or evaluation log like:
```
INFO 2024-08-14 13:38:45 ts/train.py:226 step:100 smpl:6K ep:52 epch:0.25 ∑rwrd:20.693 success:0.0% eval_s:120.266
```
These logs will also be saved in wandb if `wandb.enable` is set to `true`. Here are the meaning of some abbreviations:
- `smpl`: number of samples seen during training.
- `ep`: number of episodes seen during training. An episode contains multiple samples in a complete manipulation task.
- `epch`: number of time all unique samples are seen (epoch).
- `grdn`: gradient norm.
- `∑rwrd`: compute the sum of rewards in every evaluation episode and then take an average of them.
- `success`: average success rate of eval episodes. Reward and success are usually different except for the sparsing reward setting, where reward=1 only when the task is completed successfully.
- `eval_s`: time to evaluate the policy in the environment, in second.
- `updt_s`: time to update the network parameters, in second.
- `data_s`: time to load a batch of data, in second.
Some metrics are useful for initial performance profiling. For example, if you find the current GPU utilization is low via the `nvidia-smi` command and `data_s` sometimes is too high, you may need to modify batch size or number of dataloading workers to accelerate dataloading. We also recommend [pytorch profiler](https://github.com/huggingface/lerobot?tab=readme-ov-file#improve-your-code-with-profiling) for detailed performance probing.
---
So far we've seen how to train Diffusion Policy for PushT and ACT for ALOHA. Now, what if we want to train ACT for PushT? Well, there are aspects of the ACT configuration that are specific to the ALOHA environments, and these happen to be incompatible with PushT. Therefore, trying to run the following will almost certainly raise an exception of sorts (eg: feature dimension mismatch):

View File

@@ -0,0 +1,53 @@
"""
This script demonstrates how to use torchvision's image transformation with LeRobotDataset for data
augmentation purposes. The transformations are passed to the dataset as an argument upon creation, and
transforms are applied to the observation images before they are returned in the dataset's __getitem__.
"""
from pathlib import Path
from torchvision.transforms import ToPILImage, v2
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
dataset_repo_id = "lerobot/aloha_static_screw_driver"
# Create a LeRobotDataset with no transformations
dataset = LeRobotDataset(dataset_repo_id, episodes=[0])
# This is equivalent to `dataset = LeRobotDataset(dataset_repo_id, image_transforms=None)`
# Get the index of the first observation in the first episode
first_idx = dataset.episode_data_index["from"][0].item()
# Get the frame corresponding to the first camera
frame = dataset[first_idx][dataset.meta.camera_keys[0]]
# Define the transformations
transforms = v2.Compose(
[
v2.ColorJitter(brightness=(0.5, 1.5)),
v2.ColorJitter(contrast=(0.5, 1.5)),
v2.ColorJitter(hue=(-0.1, 0.1)),
v2.RandomAdjustSharpness(sharpness_factor=2, p=1),
]
)
# Create another LeRobotDataset with the defined transformations
transformed_dataset = LeRobotDataset(dataset_repo_id, episodes=[0], image_transforms=transforms)
# Get a frame from the transformed dataset
transformed_frame = transformed_dataset[first_idx][transformed_dataset.meta.camera_keys[0]]
# Create a directory to store output images
output_dir = Path("outputs/image_transforms")
output_dir.mkdir(parents=True, exist_ok=True)
# Save the original frame
to_pil = ToPILImage()
to_pil(frame).save(output_dir / "original_frame.png", quality=100)
print(f"Original frame saved to {output_dir / 'original_frame.png'}.")
# Save the transformed frame
to_pil(transformed_frame).save(output_dir / "transformed_frame.png", quality=100)
print(f"Transformed frame saved to {output_dir / 'transformed_frame.png'}.")

File diff suppressed because it is too large Load Diff

156
examples/8_use_stretch.md Normal file
View File

@@ -0,0 +1,156 @@
This tutorial explains how to use [Stretch 3](https://hello-robot.com/stretch-3-product) with LeRobot.
## Setup
Familiarize yourself with Stretch by following its [tutorials](https://docs.hello-robot.com/0.3/getting_started/hello_robot/) (recommended).
To use LeRobot on Stretch, 3 options are available:
- [tethered setup](https://docs.hello-robot.com/0.3/getting_started/connecting_to_stretch/#tethered-setup)
- [untethered setup](https://docs.hello-robot.com/0.3/getting_started/connecting_to_stretch/#untethered-setup)
- ssh directly into Stretch (you will first need to install and configure openssh-server on stretch using one of the two above setups)
## Install LeRobot
On Stretch's CLI, follow these steps:
1. [Install Miniconda](https://docs.anaconda.com/miniconda/#quick-command-line-install):
```bash
mkdir -p ~/miniconda3
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
rm ~/miniconda3/miniconda.sh
~/miniconda3/bin/conda init bash
```
2. Comment out these lines in `~/.profile` (this can mess up paths used by conda and ~/.local/bin should already be in your PATH)
```
# set PATH so it includes user's private bin if it exists
if [ -d "$HOME/.local/bin" ] ; then
PATH="$HOME/.local/bin:$PATH"
fi
```
3. Restart shell or `source ~/.bashrc`
4. Create and activate a fresh conda environment for lerobot
```bash
conda create -y -n lerobot python=3.10 && conda activate lerobot
```
5. Clone LeRobot:
```bash
git clone https://github.com/huggingface/lerobot.git ~/lerobot
```
6. Install LeRobot with stretch dependencies:
```bash
cd ~/lerobot && pip install -e ".[stretch]"
```
> **Note:** If you get this message, you can ignore it: `ERROR: pip's dependency resolver does not currently take into account all the packages that are installed.`
For Linux only (not Mac), install extra dependencies for recording datasets:
```bash
conda install -y -c conda-forge ffmpeg
pip uninstall -y opencv-python
conda install -y -c conda-forge "opencv>=4.10.0"
```
7. Run a [system check](https://docs.hello-robot.com/0.3/getting_started/stretch_hardware_overview/#system-check) to make sure your robot is ready:
```bash
stretch_system_check.py
```
> **Note:** You may need to free the "robot process" after booting Stretch by running `stretch_free_robot_process.py`. For more info this Stretch's [doc](https://docs.hello-robot.com/0.3/getting_started/stretch_hardware_overview/#turning-off-gamepad-teleoperation).
You should get something like this:
```bash
For use with S T R E T C H (R) from Hello Robot Inc.
---------------------------------------------------------------------
Model = Stretch 3
Tool = DexWrist 3 w/ Gripper
Serial Number = stretch-se3-3054
---- Checking Hardware ----
[Pass] Comms are ready
[Pass] Actuators are ready
[Warn] Sensors not ready (IMU AZ = -10.19 out of range -10.1 to -9.5)
[Pass] Battery voltage is 13.6 V
---- Checking Software ----
[Pass] Ubuntu 22.04 is ready
[Pass] All APT pkgs are setup correctly
[Pass] Firmware is up-to-date
[Pass] Python pkgs are up-to-date
[Pass] ROS2 Humble is ready
```
## Teleoperate, record a dataset and run a policy
**Calibrate (Optional)**
Before operating Stretch, you need to [home](https://docs.hello-robot.com/0.3/getting_started/stretch_hardware_overview/#homing) it first. Be mindful about giving Stretch some space as this procedure will move the robot's arm and gripper. Now run this command:
```bash
python lerobot/scripts/control_robot.py calibrate \
--robot-path lerobot/configs/robot/stretch.yaml
```
This is equivalent to running `stretch_robot_home.py`
> **Note:** If you run any of the LeRobot scripts below and Stretch is not poperly homed, it will automatically home/calibrate first.
**Teleoperate**
Before trying teleoperation, you need activate the gamepad controller by pressing the middle button. For more info, see Stretch's [doc](https://docs.hello-robot.com/0.3/getting_started/hello_robot/#gamepad-teleoperation).
Now try out teleoperation (see above documentation to learn about the gamepad controls):
```bash
python lerobot/scripts/control_robot.py teleoperate \
--robot-path lerobot/configs/robot/stretch.yaml
```
This is essentially the same as running `stretch_gamepad_teleop.py`
**Record a dataset**
Once you're familiar with the gamepad controls and after a bit of practice, you can try to record your first dataset with Stretch.
If you want to use the Hugging Face hub features for uploading your dataset and you haven't previously done it, make sure you've logged in using a write-access token, which can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens):
```bash
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
```
Store your Hugging Face repository name in a variable to run these commands:
```bash
HF_USER=$(huggingface-cli whoami | head -n 1)
echo $HF_USER
```
Record one episode:
```bash
python lerobot/scripts/control_robot.py record \
--robot-path lerobot/configs/robot/stretch.yaml \
--fps 20 \
--repo-id ${HF_USER}/stretch_test \
--tags stretch tutorial \
--warmup-time-s 3 \
--episode-time-s 40 \
--reset-time-s 10 \
--num-episodes 1 \
--push-to-hub 0
```
> **Note:** If you're using ssh to connect to Stretch and run this script, you won't be able to visualize its cameras feed (though they will still be recording). To see the cameras stream, use [tethered](https://docs.hello-robot.com/0.3/getting_started/connecting_to_stretch/#tethered-setup) or [untethered setup](https://docs.hello-robot.com/0.3/getting_started/connecting_to_stretch/#untethered-setup).
**Replay an episode**
Now try to replay this episode (make sure the robot's initial position is the same):
```bash
python lerobot/scripts/control_robot.py replay \
--robot-path lerobot/configs/robot/stretch.yaml \
--fps 20 \
--repo-id ${HF_USER}/stretch_test \
--episode 0
```
Follow [previous tutorial](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#4-train-a-policy-on-your-data) to train a policy on your data and run inference on your robot. You will need to adapt the code for Stretch.
> TODO(rcadene, aliberts): Add already setup environment and policy yaml configuration files
If you need help, please reach out on Discord in the channel `#stretch3-mobile-arm`.

174
examples/9_use_aloha.md Normal file
View File

@@ -0,0 +1,174 @@
This tutorial explains how to use [Aloha and Aloha 2 stationary](https://www.trossenrobotics.com/aloha-stationary) with LeRobot.
## Setup
Follow the [documentation from Trossen Robotics](https://docs.trossenrobotics.com/aloha_docs/getting_started/stationary/hardware_setup.html) for setting up the hardware and plugging the 4 arms and 4 cameras to your computer.
## Install LeRobot
On your computer:
1. [Install Miniconda](https://docs.anaconda.com/miniconda/#quick-command-line-install):
```bash
mkdir -p ~/miniconda3
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
rm ~/miniconda3/miniconda.sh
~/miniconda3/bin/conda init bash
```
2. Restart shell or `source ~/.bashrc`
3. Create and activate a fresh conda environment for lerobot
```bash
conda create -y -n lerobot python=3.10 && conda activate lerobot
```
4. Clone LeRobot:
```bash
git clone https://github.com/huggingface/lerobot.git ~/lerobot
```
5. Install LeRobot with dependencies for the Aloha motors (dynamixel) and cameras (intelrealsense):
```bash
cd ~/lerobot && pip install -e ".[dynamixel, intelrealsense]"
```
For Linux only (not Mac), install extra dependencies for recording datasets:
```bash
conda install -y -c conda-forge ffmpeg
pip uninstall -y opencv-python
conda install -y -c conda-forge "opencv>=4.10.0"
```
## Teleoperate
**/!\ FOR SAFETY, READ THIS /!\**
Teleoperation consists in manually operating the leader arms to move the follower arms. Importantly:
1. Make sure your leader arms are in the same position as the follower arms, so that the follower arms don't move too fast to match the leader arms,
2. Our code assumes that your robot has been assembled following Trossen Robotics instructions. This allows us to skip calibration, as we use the pre-defined calibration files in `.cache/calibration/aloha_default`. If you replace a motor, make sure you follow the exact instructions from Trossen Robotics.
By running the following code, you can start your first **SAFE** teleoperation:
```bash
python lerobot/scripts/control_robot.py teleoperate \
--robot-path lerobot/configs/robot/aloha.yaml \
--robot-overrides max_relative_target=5
```
By adding `--robot-overrides max_relative_target=5`, we override the default value for `max_relative_target` defined in `lerobot/configs/robot/aloha.yaml`. It is expected to be `5` to limit the magnitude of the movement for more safety, but the teleoperation won't be smooth. When you feel confident, you can disable this limit by adding `--robot-overrides max_relative_target=null` to the command line:
```bash
python lerobot/scripts/control_robot.py teleoperate \
--robot-path lerobot/configs/robot/aloha.yaml \
--robot-overrides max_relative_target=null
```
## Record a dataset
Once you're familiar with teleoperation, you can record your first dataset with Aloha.
If you want to use the Hugging Face hub features for uploading your dataset and you haven't previously done it, make sure you've logged in using a write-access token, which can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens):
```bash
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
```
Store your Hugging Face repository name in a variable to run these commands:
```bash
HF_USER=$(huggingface-cli whoami | head -n 1)
echo $HF_USER
```
Record 2 episodes and upload your dataset to the hub:
```bash
python lerobot/scripts/control_robot.py record \
--robot-path lerobot/configs/robot/aloha.yaml \
--robot-overrides max_relative_target=null \
--fps 30 \
--repo-id ${HF_USER}/aloha_test \
--tags aloha tutorial \
--warmup-time-s 5 \
--episode-time-s 40 \
--reset-time-s 10 \
--num-episodes 2 \
--push-to-hub 1
```
## Visualize a dataset
If you uploaded your dataset to the hub with `--push-to-hub 1`, you can [visualize your dataset online](https://huggingface.co/spaces/lerobot/visualize_dataset) by copy pasting your repo id given by:
```bash
echo ${HF_USER}/aloha_test
```
If you didn't upload with `--push-to-hub 0`, you can also visualize it locally with:
```bash
python lerobot/scripts/visualize_dataset_html.py \
--repo-id ${HF_USER}/aloha_test
```
## Replay an episode
**/!\ FOR SAFETY, READ THIS /!\**
Replay consists in automatically replaying the sequence of actions (i.e. goal positions for your motors) recorded in a given dataset episode. Make sure the current initial position of your robot is similar to the one in your episode, so that your follower arms don't move too fast to go to the first goal positions. For safety, you might want to add `--robot-overrides max_relative_target=5` to your command line as explained above.
Now try to replay the first episode on your robot:
```bash
python lerobot/scripts/control_robot.py replay \
--robot-path lerobot/configs/robot/aloha.yaml \
--robot-overrides max_relative_target=null \
--fps 30 \
--repo-id ${HF_USER}/aloha_test \
--episode 0
```
## Train a policy
To train a policy to control your robot, use the [`python lerobot/scripts/train.py`](../lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
```bash
python lerobot/scripts/train.py \
dataset_repo_id=${HF_USER}/aloha_test \
policy=act_aloha_real \
env=aloha_real \
hydra.run.dir=outputs/train/act_aloha_test \
hydra.job.name=act_aloha_test \
device=cuda \
wandb.enable=true
```
Let's explain it:
1. We provided the dataset as argument with `dataset_repo_id=${HF_USER}/aloha_test`.
2. We provided the policy with `policy=act_aloha_real`. This loads configurations from [`lerobot/configs/policy/act_aloha_real.yaml`](../lerobot/configs/policy/act_aloha_real.yaml). Importantly, this policy uses 4 cameras as input `cam_right_wrist`, `cam_left_wrist`, `cam_high`, and `cam_low`.
3. We provided an environment as argument with `env=aloha_real`. This loads configurations from [`lerobot/configs/env/aloha_real.yaml`](../lerobot/configs/env/aloha_real.yaml). Note: this yaml defines 18 dimensions for the `state_dim` and `action_dim`, corresponding to 18 motors, not 14 motors as used in previous Aloha work. This is because, we include the `shoulder_shadow` and `elbow_shadow` motors for simplicity.
4. We provided `device=cuda` since we are training on a Nvidia GPU.
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
Training should take several hours. You will find checkpoints in `outputs/train/act_aloha_test/checkpoints`.
## Evaluate your policy
You can use the `record` function from [`lerobot/scripts/control_robot.py`](../lerobot/scripts/control_robot.py) but with a policy checkpoint as input. For instance, run this command to record 10 evaluation episodes:
```bash
python lerobot/scripts/control_robot.py record \
--robot-path lerobot/configs/robot/aloha.yaml \
--robot-overrides max_relative_target=null \
--fps 30 \
--repo-id ${HF_USER}/eval_act_aloha_test \
--tags aloha tutorial eval \
--warmup-time-s 5 \
--episode-time-s 40 \
--reset-time-s 10 \
--num-episodes 10 \
--num-image-writer-processes 1 \
-p outputs/train/act_aloha_test/checkpoints/last/pretrained_model
```
As you can see, it's almost the same command as previously used to record your training dataset. Two things changed:
1. There is an additional `-p` argument which indicates the path to your policy checkpoint with (e.g. `-p outputs/train/eval_aloha_test/checkpoints/last/pretrained_model`). You can also use the model repository if you uploaded a model checkpoint to the hub (e.g. `-p ${HF_USER}/act_aloha_test`).
2. The name of dataset begins by `eval` to reflect that you are running inference (e.g. `--repo-id ${HF_USER}/eval_act_aloha_test`).
3. We use `--num-image-writer-processes 1` instead of the default value (`0`). On our computer, using a dedicated process to write images from the 4 cameras on disk allows to reach constent 30 fps during inference. Feel free to explore different values for `--num-image-writer-processes`.
## More
Follow this [previous tutorial](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#4-train-a-policy-on-your-data) for a more in-depth explaination.
If you have any question or need help, please reach out on Discord in the channel `#aloha-arm`.

View File

@@ -80,7 +80,7 @@ policy:
n_vae_encoder_layers: 4
# Inference.
temporal_ensemble_momentum: null
temporal_ensemble_coeff: null
# Training and loss computation.
dropout: 0.1

View File

@@ -14,7 +14,7 @@ from pathlib import Path
import torch
from huggingface_hub import snapshot_download
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset, LeRobotDatasetMetadata
from lerobot.common.policies.diffusion.modeling_diffusion import DiffusionPolicy
device = torch.device("cuda")
@@ -41,26 +41,20 @@ delta_timestamps = {
}
# Load the last 10% of episodes of the dataset as a validation set.
# - Load full dataset
full_dataset = LeRobotDataset("lerobot/pusht", split="train")
# - Calculate train and val subsets
num_train_episodes = math.floor(full_dataset.num_episodes * 90 / 100)
num_val_episodes = full_dataset.num_episodes - num_train_episodes
print(f"Number of episodes in full dataset: {full_dataset.num_episodes}")
print(f"Number of episodes in training dataset (90% subset): {num_train_episodes}")
print(f"Number of episodes in validation dataset (10% subset): {num_val_episodes}")
# - Get first frame index of the validation set
first_val_frame_index = full_dataset.episode_data_index["from"][num_train_episodes].item()
# - Load frames subset belonging to validation set using the `split` argument.
# It utilizes the `datasets` library's syntax for slicing datasets.
# For more information on the Slice API, please see:
# https://huggingface.co/docs/datasets/v2.19.0/loading#slice-splits
train_dataset = LeRobotDataset(
"lerobot/pusht", split=f"train[:{first_val_frame_index}]", delta_timestamps=delta_timestamps
)
val_dataset = LeRobotDataset(
"lerobot/pusht", split=f"train[{first_val_frame_index}:]", delta_timestamps=delta_timestamps
)
# - Load dataset metadata
dataset_metadata = LeRobotDatasetMetadata("lerobot/pusht")
# - Calculate train and val episodes
total_episodes = dataset_metadata.total_episodes
episodes = list(range(dataset_metadata.total_episodes))
num_train_episodes = math.floor(total_episodes * 90 / 100)
train_episodes = episodes[:num_train_episodes]
val_episodes = episodes[num_train_episodes:]
print(f"Number of episodes in full dataset: {total_episodes}")
print(f"Number of episodes in training dataset (90% subset): {len(train_episodes)}")
print(f"Number of episodes in validation dataset (10% subset): {len(val_episodes)}")
# - Load train an val datasets
train_dataset = LeRobotDataset("lerobot/pusht", episodes=train_episodes, delta_timestamps=delta_timestamps)
val_dataset = LeRobotDataset("lerobot/pusht", episodes=val_episodes, delta_timestamps=delta_timestamps)
print(f"Number of frames in training dataset (90% subset): {len(train_dataset)}")
print(f"Number of frames in validation dataset (10% subset): {len(val_dataset)}")

View File

@@ -0,0 +1,222 @@
import shutil
from pathlib import Path
import numpy as np
import torch
from lerobot.common.datasets.lerobot_dataset import LEROBOT_HOME, LeRobotDataset
from lerobot.common.datasets.push_dataset_to_hub._download_raw import download_raw
PUSHT_TASK = "Push the T-shaped blue block onto the T-shaped green target surface."
PUSHT_FEATURES = {
"observation.state": {
"dtype": "float32",
"shape": (2,),
"names": {
"axes": ["x", "y"],
},
},
"action": {
"dtype": "float32",
"shape": (2,),
"names": {
"axes": ["x", "y"],
},
},
"next.reward": {
"dtype": "float32",
"shape": (1,),
"names": None,
},
"next.success": {
"dtype": "bool",
"shape": (1,),
"names": None,
},
"observation.environment_state": {
"dtype": "float32",
"shape": (16,),
"names": [
"keypoints",
],
},
"observation.image": {
"dtype": None,
"shape": (3, 96, 96),
"names": [
"channel",
"height",
"width",
],
},
}
def build_features(mode: str) -> dict:
features = PUSHT_FEATURES
if mode == "keypoints":
features.pop("observation.image")
else:
features.pop("observation.environment_state")
features["observation.image"]["dtype"] = mode
return features
def load_raw_dataset(zarr_path: Path):
try:
from lerobot.common.datasets.push_dataset_to_hub._diffusion_policy_replay_buffer import (
ReplayBuffer as DiffusionPolicyReplayBuffer,
)
except ModuleNotFoundError as e:
print("`gym_pusht` is not installed. Please install it with `pip install 'lerobot[gym_pusht]'`")
raise e
zarr_data = DiffusionPolicyReplayBuffer.copy_from_path(zarr_path)
return zarr_data
def calculate_coverage(zarr_data):
try:
import pymunk
from gym_pusht.envs.pusht import PushTEnv, pymunk_to_shapely
except ModuleNotFoundError as e:
print("`gym_pusht` is not installed. Please install it with `pip install 'lerobot[gym_pusht]'`")
raise e
block_pos = zarr_data["state"][:, 2:4]
block_angle = zarr_data["state"][:, 4]
num_frames = len(block_pos)
coverage = np.zeros((num_frames,))
# 8 keypoints with 2 coords each
keypoints = np.zeros((num_frames, 16))
# Set x, y, theta (in radians)
goal_pos_angle = np.array([256, 256, np.pi / 4])
goal_body = PushTEnv.get_goal_pose_body(goal_pos_angle)
for i in range(num_frames):
space = pymunk.Space()
space.gravity = 0, 0
space.damping = 0
# Add walls.
walls = [
PushTEnv.add_segment(space, (5, 506), (5, 5), 2),
PushTEnv.add_segment(space, (5, 5), (506, 5), 2),
PushTEnv.add_segment(space, (506, 5), (506, 506), 2),
PushTEnv.add_segment(space, (5, 506), (506, 506), 2),
]
space.add(*walls)
block_body, block_shapes = PushTEnv.add_tee(space, block_pos[i].tolist(), block_angle[i].item())
goal_geom = pymunk_to_shapely(goal_body, block_body.shapes)
block_geom = pymunk_to_shapely(block_body, block_body.shapes)
intersection_area = goal_geom.intersection(block_geom).area
goal_area = goal_geom.area
coverage[i] = intersection_area / goal_area
keypoints[i] = torch.from_numpy(PushTEnv.get_keypoints(block_shapes).flatten())
return coverage, keypoints
def calculate_success(coverage: float, success_threshold: float):
return coverage > success_threshold
def calculate_reward(coverage: float, success_threshold: float):
return np.clip(coverage / success_threshold, 0, 1)
def main(raw_dir: Path, repo_id: str, mode: str = "video", push_to_hub: bool = True):
if mode not in ["video", "image", "keypoints"]:
raise ValueError(mode)
if (LEROBOT_HOME / repo_id).exists():
shutil.rmtree(LEROBOT_HOME / repo_id)
if not raw_dir.exists():
download_raw(raw_dir, repo_id="lerobot-raw/pusht_raw")
zarr_data = load_raw_dataset(zarr_path=raw_dir / "pusht_cchi_v7_replay.zarr")
env_state = zarr_data["state"][:]
agent_pos = env_state[:, :2]
action = zarr_data["action"][:]
image = zarr_data["img"] # (b, h, w, c)
episode_data_index = {
"from": np.concatenate(([0], zarr_data.meta["episode_ends"][:-1])),
"to": zarr_data.meta["episode_ends"],
}
# Calculate success and reward based on the overlapping area
# of the T-object and the T-area.
coverage, keypoints = calculate_coverage(zarr_data)
success = calculate_success(coverage, success_threshold=0.95)
reward = calculate_reward(coverage, success_threshold=0.95)
features = build_features(mode)
dataset = LeRobotDataset.create(
repo_id=repo_id,
fps=10,
robot_type="2d pointer",
features=features,
image_writer_threads=4,
)
episodes = range(len(episode_data_index["from"]))
for ep_idx in episodes:
from_idx = episode_data_index["from"][ep_idx]
to_idx = episode_data_index["to"][ep_idx]
num_frames = to_idx - from_idx
for frame_idx in range(num_frames):
i = from_idx + frame_idx
frame = {
"action": torch.from_numpy(action[i]),
# Shift reward and success by +1 until the last item of the episode
"next.reward": reward[i + (frame_idx < num_frames - 1)],
"next.success": success[i + (frame_idx < num_frames - 1)],
}
frame["observation.state"] = torch.from_numpy(agent_pos[i])
if mode == "keypoints":
frame["observation.environment_state"] = torch.from_numpy(keypoints[i])
else:
frame["observation.image"] = torch.from_numpy(image[i])
dataset.add_frame(frame)
dataset.save_episode(task=PUSHT_TASK)
dataset.consolidate()
if push_to_hub:
dataset.push_to_hub()
if __name__ == "__main__":
# To try this script, modify the repo id with your own HuggingFace user (e.g cadene/pusht)
repo_id = "lerobot/pusht"
modes = ["video", "image", "keypoints"]
# Uncomment if you want to try with a specific mode
# modes = ["video"]
# modes = ["image"]
# modes = ["keypoints"]
raw_dir = Path("data/lerobot-raw/pusht_raw")
for mode in modes:
if mode in ["image", "keypoints"]:
repo_id += f"_{mode}"
# download and load raw dataset, create LeRobotDataset, populate it, push to hub
main(raw_dir, repo_id=repo_id, mode=mode)
# Uncomment if you want to load the local dataset and explore it
# dataset = LeRobotDataset(repo_id=repo_id, local_files_only=True)
# breakpoint()

View File

@@ -27,6 +27,9 @@ Example:
print(lerobot.available_real_world_datasets)
print(lerobot.available_policies)
print(lerobot.available_policies_per_env)
print(lerobot.available_robots)
print(lerobot.available_cameras)
print(lerobot.available_motors)
```
When implementing a new dataset loadable with LeRobotDataset follow these steps:
@@ -70,6 +73,8 @@ available_datasets_per_env = {
"lerobot/aloha_sim_transfer_cube_human_image",
"lerobot/aloha_sim_transfer_cube_scripted_image",
],
# TODO(alexander-soare): Add "lerobot/pusht_keypoints". Right now we can't because this is too tightly
# coupled with tests.
"pusht": ["lerobot/pusht", "lerobot/pusht_image"],
"xarm": [
"lerobot/xarm_lift_medium",
@@ -123,25 +128,100 @@ available_real_world_datasets = [
"lerobot/aloha_static_vinh_cup_left",
"lerobot/aloha_static_ziploc_slide",
"lerobot/umi_cup_in_the_wild",
"lerobot/unitreeh1_fold_clothes",
"lerobot/unitreeh1_rearrange_objects",
"lerobot/unitreeh1_two_robot_greeting",
"lerobot/unitreeh1_warehouse",
"lerobot/nyu_rot_dataset",
"lerobot/utokyo_saytap",
"lerobot/imperialcollege_sawyer_wrist_cam",
"lerobot/utokyo_xarm_bimanual",
"lerobot/tokyo_u_lsmo",
"lerobot/utokyo_pr2_opening_fridge",
"lerobot/cmu_franka_exploration_dataset",
"lerobot/cmu_stretch",
"lerobot/asu_table_top",
"lerobot/utokyo_pr2_tabletop_manipulation",
"lerobot/utokyo_xarm_pick_and_place",
"lerobot/ucsd_kitchen_dataset",
"lerobot/austin_buds_dataset",
"lerobot/dlr_sara_grid_clamp",
"lerobot/conq_hose_manipulation",
"lerobot/columbia_cairlab_pusht_real",
"lerobot/dlr_sara_pour",
"lerobot/dlr_edan_shared_control",
"lerobot/ucsd_pick_and_place_dataset",
"lerobot/berkeley_cable_routing",
"lerobot/nyu_franka_play_dataset",
"lerobot/austin_sirius_dataset",
"lerobot/cmu_play_fusion",
"lerobot/berkeley_gnm_sac_son",
"lerobot/nyu_door_opening_surprising_effectiveness",
"lerobot/berkeley_fanuc_manipulation",
"lerobot/jaco_play",
"lerobot/viola",
"lerobot/kaist_nonprehensile",
"lerobot/berkeley_mvp",
"lerobot/uiuc_d3field",
"lerobot/berkeley_gnm_recon",
"lerobot/austin_sailor_dataset",
"lerobot/utaustin_mutex",
"lerobot/roboturk",
"lerobot/stanford_hydra_dataset",
"lerobot/berkeley_autolab_ur5",
"lerobot/stanford_robocook",
"lerobot/toto",
"lerobot/fmb",
"lerobot/droid_100",
"lerobot/berkeley_rpt",
"lerobot/stanford_kuka_multimodal_dataset",
"lerobot/iamlab_cmu_pickup_insert",
"lerobot/taco_play",
"lerobot/berkeley_gnm_cory_hall",
"lerobot/usc_cloth_sim",
]
available_datasets = list(
itertools.chain(*available_datasets_per_env.values(), available_real_world_datasets)
available_datasets = sorted(
set(itertools.chain(*available_datasets_per_env.values(), available_real_world_datasets))
)
# lists all available policies from `lerobot/common/policies` by their class attribute: `name`.
# lists all available policies from `lerobot/common/policies`
available_policies = [
"act",
"diffusion",
"tdmpc",
"vqbet",
]
# lists all available robots from `lerobot/common/robot_devices/robots`
available_robots = [
"koch",
"koch_bimanual",
"aloha",
"so100",
"moss",
]
# lists all available cameras from `lerobot/common/robot_devices/cameras`
available_cameras = [
"opencv",
"intelrealsense",
]
# lists all available motors from `lerobot/common/robot_devices/motors`
available_motors = [
"dynamixel",
"feetech",
]
# keys and values refer to yaml files
available_policies_per_env = {
"aloha": ["act"],
"pusht": ["diffusion"],
"pusht": ["diffusion", "vqbet"],
"xarm": ["tdmpc"],
"dora_aloha_real": ["act_real"],
"koch_real": ["act_koch_real"],
"aloha_real": ["act_aloha_real"],
"dora_aloha_real": ["act_aloha_real"],
}
env_task_pairs = [(env, task) for env, tasks in available_tasks_per_env.items() for task in tasks]

View File

@@ -1,334 +0,0 @@
# Video benchmark
## Questions
What is the optimal trade-off between:
- maximizing loading time with random access,
- minimizing memory space on disk,
- maximizing success rate of policies?
How to encode videos?
- How much compression (`-crf`)? Low compression with `0`, normal compression with `20` or extreme with `56`?
- What pixel format to use (`-pix_fmt`)? `yuv444p` or `yuv420p`?
- How many key frames (`-g`)? A key frame every `10` frames?
How to decode videos?
- Which `decoder`? `torchvision`, `torchaudio`, `ffmpegio`, `decord`, or `nvc`?
## Metrics
**Percentage of data compression (higher is better)**
`compression_factor` is the ratio of the memory space on disk taken by the original images to encode, to the memory space taken by the encoded video. For instance, `compression_factor=4` means that the video takes 4 times less memory space on disk compared to the original images.
**Percentage of loading time (higher is better)**
`load_time_factor` is the ratio of the time it takes to load original images at given timestamps, to the time it takes to decode the exact same frames from the video. Higher is better. For instance, `load_time_factor=0.5` means that decoding from video is 2 times slower than loading the original images.
**Average L2 error per pixel (lower is better)**
`avg_per_pixel_l2_error` is the average L2 error between each decoded frame and its corresponding original image over all requested timestamps, and also divided by the number of pixels in the image to be comparable when switching to different image sizes.
**Loss of a pretrained policy (higher is better)** (not available)
`loss_pretrained` is the result of evaluating with the selected encoding/decoding settings a policy pretrained on original images. It is easier to understand than `avg_l2_error`.
**Success rate after retraining (higher is better)** (not available)
`success_rate` is the result of training and evaluating a policy with the selected encoding/decoding settings. It is the most difficult metric to get but also the very best.
## Variables
**Image content**
We don't expect the same optimal settings for a dataset of images from a simulation, or from real-world in an appartment, or in a factory, or outdoor, etc. Hence, we run this benchmark on two datasets: `pusht` (simulation) and `umi` (real-world outdoor).
**Requested timestamps**
In this benchmark, we focus on the loading time of random access, so we are not interested in sequentially loading all frames of a video like in a movie. However, the number of consecutive timestamps requested and their spacing can greatly affect the `load_time_factor`. In fact, it is expected to get faster loading time by decoding a large number of consecutive frames from a video, than to load the same data from individual images. To reflect our robotics use case, we consider a few settings:
- `single_frame`: 1 frame,
- `2_frames`: 2 consecutive frames (e.g. `[t, t + 1 / fps]`),
- `2_frames_4_space`: 2 consecutive frames with 4 frames of spacing (e.g `[t, t + 4 / fps]`),
**Data augmentations**
We might revisit this benchmark and find better settings if we train our policies with various data augmentations to make them more robust (e.g. robust to color changes, compression, etc.).
## Results
**`decoder`**
| repo_id | decoder | load_time_factor | avg_per_pixel_l2_error |
| --- | --- | --- | --- |
| lerobot/pusht | <span style="color: #32CD32;">torchvision</span> | 0.166 | 0.0000119 |
| lerobot/pusht | ffmpegio | 0.009 | 0.0001182 |
| lerobot/pusht | torchaudio | 0.138 | 0.0000359 |
| lerobot/umi_cup_in_the_wild | <span style="color: #32CD32;">torchvision</span> | 0.174 | 0.0000174 |
| lerobot/umi_cup_in_the_wild | ffmpegio | 0.010 | 0.0000735 |
| lerobot/umi_cup_in_the_wild | torchaudio | 0.154 | 0.0000340 |
### `1_frame`
**`pix_fmt`**
| repo_id | pix_fmt | compression_factor | load_time_factor | avg_per_pixel_l2_error |
| --- | --- | --- | --- | --- |
| lerobot/pusht | yuv420p | 3.788 | 0.224 | 0.0000760 |
| lerobot/pusht | yuv444p | 3.646 | 0.185 | 0.0000443 |
| lerobot/umi_cup_in_the_wild | yuv420p | 14.391 | 0.388 | 0.0000469 |
| lerobot/umi_cup_in_the_wild | yuv444p | 14.932 | 0.329 | 0.0000397 |
**`g`**
| repo_id | g | compression_factor | load_time_factor | avg_per_pixel_l2_error |
| --- | --- | --- | --- | --- |
| lerobot/pusht | 1 | 2.543 | 0.204 | 0.0000556 |
| lerobot/pusht | 2 | 3.646 | 0.182 | 0.0000443 |
| lerobot/pusht | 3 | 4.431 | 0.174 | 0.0000450 |
| lerobot/pusht | 4 | 5.103 | 0.163 | 0.0000448 |
| lerobot/pusht | 5 | 5.625 | 0.163 | 0.0000436 |
| lerobot/pusht | 6 | 5.974 | 0.155 | 0.0000427 |
| lerobot/pusht | 10 | 6.814 | 0.130 | 0.0000410 |
| lerobot/pusht | 15 | 7.431 | 0.105 | 0.0000406 |
| lerobot/pusht | 20 | 7.662 | 0.097 | 0.0000400 |
| lerobot/pusht | 40 | 8.163 | 0.061 | 0.0000405 |
| lerobot/pusht | 100 | 8.761 | 0.039 | 0.0000422 |
| lerobot/pusht | None | 8.909 | 0.024 | 0.0000431 |
| lerobot/umi_cup_in_the_wild | 1 | 14.411 | 0.444 | 0.0000601 |
| lerobot/umi_cup_in_the_wild | 2 | 14.932 | 0.345 | 0.0000397 |
| lerobot/umi_cup_in_the_wild | 3 | 20.174 | 0.282 | 0.0000416 |
| lerobot/umi_cup_in_the_wild | 4 | 24.889 | 0.271 | 0.0000415 |
| lerobot/umi_cup_in_the_wild | 5 | 28.825 | 0.260 | 0.0000415 |
| lerobot/umi_cup_in_the_wild | 6 | 31.635 | 0.249 | 0.0000415 |
| lerobot/umi_cup_in_the_wild | 10 | 39.418 | 0.195 | 0.0000399 |
| lerobot/umi_cup_in_the_wild | 15 | 44.577 | 0.169 | 0.0000394 |
| lerobot/umi_cup_in_the_wild | 20 | 47.907 | 0.140 | 0.0000390 |
| lerobot/umi_cup_in_the_wild | 40 | 52.554 | 0.096 | 0.0000384 |
| lerobot/umi_cup_in_the_wild | 100 | 58.241 | 0.046 | 0.0000390 |
| lerobot/umi_cup_in_the_wild | None | 60.530 | 0.022 | 0.0000400 |
**`crf`**
| repo_id | crf | compression_factor | load_time_factor | avg_per_pixel_l2_error |
| --- | --- | --- | --- | --- |
| lerobot/pusht | 0 | 1.699 | 0.175 | 0.0000035 |
| lerobot/pusht | 5 | 1.409 | 0.181 | 0.0000080 |
| lerobot/pusht | 10 | 1.842 | 0.172 | 0.0000123 |
| lerobot/pusht | 15 | 2.322 | 0.187 | 0.0000211 |
| lerobot/pusht | 20 | 3.050 | 0.181 | 0.0000346 |
| lerobot/pusht | None | 3.646 | 0.189 | 0.0000443 |
| lerobot/pusht | 25 | 3.969 | 0.186 | 0.0000521 |
| lerobot/pusht | 30 | 5.687 | 0.184 | 0.0000850 |
| lerobot/pusht | 40 | 10.818 | 0.193 | 0.0001726 |
| lerobot/pusht | 50 | 18.185 | 0.183 | 0.0002606 |
| lerobot/umi_cup_in_the_wild | 0 | 1.918 | 0.165 | 0.0000056 |
| lerobot/umi_cup_in_the_wild | 5 | 3.207 | 0.171 | 0.0000111 |
| lerobot/umi_cup_in_the_wild | 10 | 4.818 | 0.212 | 0.0000153 |
| lerobot/umi_cup_in_the_wild | 15 | 7.329 | 0.261 | 0.0000218 |
| lerobot/umi_cup_in_the_wild | 20 | 11.361 | 0.312 | 0.0000317 |
| lerobot/umi_cup_in_the_wild | None | 14.932 | 0.339 | 0.0000397 |
| lerobot/umi_cup_in_the_wild | 25 | 17.741 | 0.297 | 0.0000452 |
| lerobot/umi_cup_in_the_wild | 30 | 27.983 | 0.406 | 0.0000629 |
| lerobot/umi_cup_in_the_wild | 40 | 82.449 | 0.468 | 0.0001184 |
| lerobot/umi_cup_in_the_wild | 50 | 186.145 | 0.515 | 0.0001879 |
**best**
| repo_id | compression_factor | load_time_factor | avg_per_pixel_l2_error |
| --- | --- | --- | --- |
| lerobot/pusht | 3.646 | 0.188 | 0.0000443 |
| lerobot/umi_cup_in_the_wild | 14.932 | 0.339 | 0.0000397 |
### `2_frames`
**`pix_fmt`**
| repo_id | pix_fmt | compression_factor | load_time_factor | avg_per_pixel_l2_error |
| --- | --- | --- | --- | --- |
| lerobot/pusht | yuv420p | 3.788 | 0.314 | 0.0000799 |
| lerobot/pusht | yuv444p | 3.646 | 0.303 | 0.0000496 |
| lerobot/umi_cup_in_the_wild | yuv420p | 14.391 | 0.642 | 0.0000503 |
| lerobot/umi_cup_in_the_wild | yuv444p | 14.932 | 0.529 | 0.0000436 |
**`g`**
| repo_id | g | compression_factor | load_time_factor | avg_per_pixel_l2_error |
| --- | --- | --- | --- | --- |
| lerobot/pusht | 1 | 2.543 | 0.308 | 0.0000599 |
| lerobot/pusht | 2 | 3.646 | 0.279 | 0.0000496 |
| lerobot/pusht | 3 | 4.431 | 0.259 | 0.0000498 |
| lerobot/pusht | 4 | 5.103 | 0.243 | 0.0000501 |
| lerobot/pusht | 5 | 5.625 | 0.235 | 0.0000492 |
| lerobot/pusht | 6 | 5.974 | 0.230 | 0.0000481 |
| lerobot/pusht | 10 | 6.814 | 0.194 | 0.0000468 |
| lerobot/pusht | 15 | 7.431 | 0.152 | 0.0000460 |
| lerobot/pusht | 20 | 7.662 | 0.151 | 0.0000455 |
| lerobot/pusht | 40 | 8.163 | 0.095 | 0.0000454 |
| lerobot/pusht | 100 | 8.761 | 0.062 | 0.0000472 |
| lerobot/pusht | None | 8.909 | 0.037 | 0.0000479 |
| lerobot/umi_cup_in_the_wild | 1 | 14.411 | 0.638 | 0.0000625 |
| lerobot/umi_cup_in_the_wild | 2 | 14.932 | 0.537 | 0.0000436 |
| lerobot/umi_cup_in_the_wild | 3 | 20.174 | 0.493 | 0.0000437 |
| lerobot/umi_cup_in_the_wild | 4 | 24.889 | 0.458 | 0.0000446 |
| lerobot/umi_cup_in_the_wild | 5 | 28.825 | 0.438 | 0.0000445 |
| lerobot/umi_cup_in_the_wild | 6 | 31.635 | 0.424 | 0.0000444 |
| lerobot/umi_cup_in_the_wild | 10 | 39.418 | 0.345 | 0.0000435 |
| lerobot/umi_cup_in_the_wild | 15 | 44.577 | 0.313 | 0.0000417 |
| lerobot/umi_cup_in_the_wild | 20 | 47.907 | 0.264 | 0.0000421 |
| lerobot/umi_cup_in_the_wild | 40 | 52.554 | 0.185 | 0.0000414 |
| lerobot/umi_cup_in_the_wild | 100 | 58.241 | 0.090 | 0.0000420 |
| lerobot/umi_cup_in_the_wild | None | 60.530 | 0.042 | 0.0000424 |
**`crf`**
| repo_id | crf | compression_factor | load_time_factor | avg_per_pixel_l2_error |
| --- | --- | --- | --- | --- |
| lerobot/pusht | 0 | 1.699 | 0.302 | 0.0000097 |
| lerobot/pusht | 5 | 1.409 | 0.287 | 0.0000142 |
| lerobot/pusht | 10 | 1.842 | 0.283 | 0.0000184 |
| lerobot/pusht | 15 | 2.322 | 0.305 | 0.0000268 |
| lerobot/pusht | 20 | 3.050 | 0.285 | 0.0000402 |
| lerobot/pusht | None | 3.646 | 0.285 | 0.0000496 |
| lerobot/pusht | 25 | 3.969 | 0.293 | 0.0000572 |
| lerobot/pusht | 30 | 5.687 | 0.293 | 0.0000893 |
| lerobot/pusht | 40 | 10.818 | 0.319 | 0.0001762 |
| lerobot/pusht | 50 | 18.185 | 0.304 | 0.0002626 |
| lerobot/umi_cup_in_the_wild | 0 | 1.918 | 0.235 | 0.0000112 |
| lerobot/umi_cup_in_the_wild | 5 | 3.207 | 0.261 | 0.0000166 |
| lerobot/umi_cup_in_the_wild | 10 | 4.818 | 0.333 | 0.0000207 |
| lerobot/umi_cup_in_the_wild | 15 | 7.329 | 0.406 | 0.0000267 |
| lerobot/umi_cup_in_the_wild | 20 | 11.361 | 0.489 | 0.0000361 |
| lerobot/umi_cup_in_the_wild | None | 14.932 | 0.537 | 0.0000436 |
| lerobot/umi_cup_in_the_wild | 25 | 17.741 | 0.578 | 0.0000487 |
| lerobot/umi_cup_in_the_wild | 30 | 27.983 | 0.453 | 0.0000655 |
| lerobot/umi_cup_in_the_wild | 40 | 82.449 | 0.767 | 0.0001192 |
| lerobot/umi_cup_in_the_wild | 50 | 186.145 | 0.816 | 0.0001881 |
**best**
| repo_id | compression_factor | load_time_factor | avg_per_pixel_l2_error |
| --- | --- | --- | --- |
| lerobot/pusht | 3.646 | 0.283 | 0.0000496 |
| lerobot/umi_cup_in_the_wild | 14.932 | 0.543 | 0.0000436 |
### `2_frames_4_space`
**`pix_fmt`**
| repo_id | pix_fmt | compression_factor | load_time_factor | avg_per_pixel_l2_error |
| --- | --- | --- | --- | --- |
| lerobot/pusht | yuv420p | 3.788 | 0.257 | 0.0000855 |
| lerobot/pusht | yuv444p | 3.646 | 0.261 | 0.0000556 |
| lerobot/umi_cup_in_the_wild | yuv420p | 14.391 | 0.493 | 0.0000476 |
| lerobot/umi_cup_in_the_wild | yuv444p | 14.932 | 0.371 | 0.0000404 |
**`g`**
| repo_id | g | compression_factor | load_time_factor | avg_per_pixel_l2_error |
| --- | --- | --- | --- | --- |
| lerobot/pusht | 1 | 2.543 | 0.226 | 0.0000670 |
| lerobot/pusht | 2 | 3.646 | 0.222 | 0.0000556 |
| lerobot/pusht | 3 | 4.431 | 0.217 | 0.0000567 |
| lerobot/pusht | 4 | 5.103 | 0.204 | 0.0000555 |
| lerobot/pusht | 5 | 5.625 | 0.179 | 0.0000556 |
| lerobot/pusht | 6 | 5.974 | 0.188 | 0.0000544 |
| lerobot/pusht | 10 | 6.814 | 0.160 | 0.0000531 |
| lerobot/pusht | 15 | 7.431 | 0.150 | 0.0000521 |
| lerobot/pusht | 20 | 7.662 | 0.123 | 0.0000519 |
| lerobot/pusht | 40 | 8.163 | 0.092 | 0.0000519 |
| lerobot/pusht | 100 | 8.761 | 0.053 | 0.0000533 |
| lerobot/pusht | None | 8.909 | 0.034 | 0.0000541 |
| lerobot/umi_cup_in_the_wild | 1 | 14.411 | 0.409 | 0.0000607 |
| lerobot/umi_cup_in_the_wild | 2 | 14.932 | 0.381 | 0.0000404 |
| lerobot/umi_cup_in_the_wild | 3 | 20.174 | 0.355 | 0.0000418 |
| lerobot/umi_cup_in_the_wild | 4 | 24.889 | 0.346 | 0.0000425 |
| lerobot/umi_cup_in_the_wild | 5 | 28.825 | 0.354 | 0.0000419 |
| lerobot/umi_cup_in_the_wild | 6 | 31.635 | 0.336 | 0.0000419 |
| lerobot/umi_cup_in_the_wild | 10 | 39.418 | 0.314 | 0.0000402 |
| lerobot/umi_cup_in_the_wild | 15 | 44.577 | 0.269 | 0.0000397 |
| lerobot/umi_cup_in_the_wild | 20 | 47.907 | 0.246 | 0.0000395 |
| lerobot/umi_cup_in_the_wild | 40 | 52.554 | 0.171 | 0.0000390 |
| lerobot/umi_cup_in_the_wild | 100 | 58.241 | 0.091 | 0.0000399 |
| lerobot/umi_cup_in_the_wild | None | 60.530 | 0.043 | 0.0000409 |
**`crf`**
| repo_id | crf | compression_factor | load_time_factor | avg_per_pixel_l2_error |
| --- | --- | --- | --- | --- |
| lerobot/pusht | 0 | 1.699 | 0.212 | 0.0000193 |
| lerobot/pusht | 5 | 1.409 | 0.211 | 0.0000232 |
| lerobot/pusht | 10 | 1.842 | 0.199 | 0.0000270 |
| lerobot/pusht | 15 | 2.322 | 0.198 | 0.0000347 |
| lerobot/pusht | 20 | 3.050 | 0.211 | 0.0000469 |
| lerobot/pusht | None | 3.646 | 0.206 | 0.0000556 |
| lerobot/pusht | 25 | 3.969 | 0.210 | 0.0000626 |
| lerobot/pusht | 30 | 5.687 | 0.223 | 0.0000927 |
| lerobot/pusht | 40 | 10.818 | 0.227 | 0.0001763 |
| lerobot/pusht | 50 | 18.185 | 0.223 | 0.0002625 |
| lerobot/umi_cup_in_the_wild | 0 | 1.918 | 0.147 | 0.0000071 |
| lerobot/umi_cup_in_the_wild | 5 | 3.207 | 0.182 | 0.0000125 |
| lerobot/umi_cup_in_the_wild | 10 | 4.818 | 0.222 | 0.0000166 |
| lerobot/umi_cup_in_the_wild | 15 | 7.329 | 0.270 | 0.0000229 |
| lerobot/umi_cup_in_the_wild | 20 | 11.361 | 0.325 | 0.0000326 |
| lerobot/umi_cup_in_the_wild | None | 14.932 | 0.362 | 0.0000404 |
| lerobot/umi_cup_in_the_wild | 25 | 17.741 | 0.390 | 0.0000459 |
| lerobot/umi_cup_in_the_wild | 30 | 27.983 | 0.437 | 0.0000633 |
| lerobot/umi_cup_in_the_wild | 40 | 82.449 | 0.499 | 0.0001186 |
| lerobot/umi_cup_in_the_wild | 50 | 186.145 | 0.564 | 0.0001879 |
**best**
| repo_id | compression_factor | load_time_factor | avg_per_pixel_l2_error |
| --- | --- | --- | --- |
| lerobot/pusht | 3.646 | 0.224 | 0.0000556 |
| lerobot/umi_cup_in_the_wild | 14.932 | 0.368 | 0.0000404 |
### `6_frames`
**`pix_fmt`**
| repo_id | pix_fmt | compression_factor | load_time_factor | avg_per_pixel_l2_error |
| --- | --- | --- | --- | --- |
| lerobot/pusht | yuv420p | 3.788 | 0.660 | 0.0000839 |
| lerobot/pusht | yuv444p | 3.646 | 0.546 | 0.0000542 |
| lerobot/umi_cup_in_the_wild | yuv420p | 14.391 | 1.225 | 0.0000497 |
| lerobot/umi_cup_in_the_wild | yuv444p | 14.932 | 0.908 | 0.0000428 |
**`g`**
| repo_id | g | compression_factor | load_time_factor | avg_per_pixel_l2_error |
| --- | --- | --- | --- | --- |
| lerobot/pusht | 1 | 2.543 | 0.552 | 0.0000646 |
| lerobot/pusht | 2 | 3.646 | 0.534 | 0.0000542 |
| lerobot/pusht | 3 | 4.431 | 0.563 | 0.0000546 |
| lerobot/pusht | 4 | 5.103 | 0.537 | 0.0000545 |
| lerobot/pusht | 5 | 5.625 | 0.477 | 0.0000532 |
| lerobot/pusht | 6 | 5.974 | 0.515 | 0.0000530 |
| lerobot/pusht | 10 | 6.814 | 0.410 | 0.0000512 |
| lerobot/pusht | 15 | 7.431 | 0.405 | 0.0000503 |
| lerobot/pusht | 20 | 7.662 | 0.345 | 0.0000500 |
| lerobot/pusht | 40 | 8.163 | 0.247 | 0.0000496 |
| lerobot/pusht | 100 | 8.761 | 0.147 | 0.0000510 |
| lerobot/pusht | None | 8.909 | 0.100 | 0.0000519 |
| lerobot/umi_cup_in_the_wild | 1 | 14.411 | 0.997 | 0.0000620 |
| lerobot/umi_cup_in_the_wild | 2 | 14.932 | 0.911 | 0.0000428 |
| lerobot/umi_cup_in_the_wild | 3 | 20.174 | 0.869 | 0.0000433 |
| lerobot/umi_cup_in_the_wild | 4 | 24.889 | 0.874 | 0.0000438 |
| lerobot/umi_cup_in_the_wild | 5 | 28.825 | 0.864 | 0.0000439 |
| lerobot/umi_cup_in_the_wild | 6 | 31.635 | 0.834 | 0.0000440 |
| lerobot/umi_cup_in_the_wild | 10 | 39.418 | 0.781 | 0.0000421 |
| lerobot/umi_cup_in_the_wild | 15 | 44.577 | 0.679 | 0.0000411 |
| lerobot/umi_cup_in_the_wild | 20 | 47.907 | 0.652 | 0.0000410 |
| lerobot/umi_cup_in_the_wild | 40 | 52.554 | 0.465 | 0.0000404 |
| lerobot/umi_cup_in_the_wild | 100 | 58.241 | 0.245 | 0.0000413 |
| lerobot/umi_cup_in_the_wild | None | 60.530 | 0.116 | 0.0000417 |
**`crf`**
| repo_id | crf | compression_factor | load_time_factor | avg_per_pixel_l2_error |
| --- | --- | --- | --- | --- |
| lerobot/pusht | 0 | 1.699 | 0.534 | 0.0000163 |
| lerobot/pusht | 5 | 1.409 | 0.524 | 0.0000205 |
| lerobot/pusht | 10 | 1.842 | 0.510 | 0.0000245 |
| lerobot/pusht | 15 | 2.322 | 0.512 | 0.0000324 |
| lerobot/pusht | 20 | 3.050 | 0.508 | 0.0000452 |
| lerobot/pusht | None | 3.646 | 0.518 | 0.0000542 |
| lerobot/pusht | 25 | 3.969 | 0.534 | 0.0000616 |
| lerobot/pusht | 30 | 5.687 | 0.530 | 0.0000927 |
| lerobot/pusht | 40 | 10.818 | 0.552 | 0.0001777 |
| lerobot/pusht | 50 | 18.185 | 0.564 | 0.0002644 |
| lerobot/umi_cup_in_the_wild | 0 | 1.918 | 0.401 | 0.0000101 |
| lerobot/umi_cup_in_the_wild | 5 | 3.207 | 0.499 | 0.0000156 |
| lerobot/umi_cup_in_the_wild | 10 | 4.818 | 0.599 | 0.0000197 |
| lerobot/umi_cup_in_the_wild | 15 | 7.329 | 0.704 | 0.0000258 |
| lerobot/umi_cup_in_the_wild | 20 | 11.361 | 0.834 | 0.0000352 |
| lerobot/umi_cup_in_the_wild | None | 14.932 | 0.925 | 0.0000428 |
| lerobot/umi_cup_in_the_wild | 25 | 17.741 | 0.978 | 0.0000480 |
| lerobot/umi_cup_in_the_wild | 30 | 27.983 | 1.088 | 0.0000648 |
| lerobot/umi_cup_in_the_wild | 40 | 82.449 | 1.324 | 0.0001190 |
| lerobot/umi_cup_in_the_wild | 50 | 186.145 | 1.436 | 0.0001880 |
**best**
| repo_id | compression_factor | load_time_factor | avg_per_pixel_l2_error |
| --- | --- | --- | --- |
| lerobot/pusht | 3.646 | 0.546 | 0.0000542 |
| lerobot/umi_cup_in_the_wild | 14.932 | 0.934 | 0.0000428 |

View File

@@ -1,372 +0,0 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import random
import shutil
import subprocess
import time
from pathlib import Path
import einops
import numpy
import PIL
import torch
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.datasets.video_utils import (
decode_video_frames_torchvision,
)
def get_directory_size(directory):
total_size = 0
# Iterate over all files and subdirectories recursively
for item in directory.rglob("*"):
if item.is_file():
# Add the file size to the total
total_size += item.stat().st_size
return total_size
def run_video_benchmark(
output_dir,
cfg,
timestamps_mode,
seed=1337,
):
output_dir = Path(output_dir)
if output_dir.exists():
shutil.rmtree(output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
repo_id = cfg["repo_id"]
# TODO(rcadene): rewrite with hardcoding of original images and episodes
dataset = LeRobotDataset(repo_id)
# Get fps
fps = dataset.fps
# we only load first episode
ep_num_images = dataset.episode_data_index["to"][0].item()
# Save/Load image directory for the first episode
imgs_dir = Path(f"tmp/data/images/{repo_id}/observation.image_episode_000000")
if not imgs_dir.exists():
imgs_dir.mkdir(parents=True, exist_ok=True)
hf_dataset = dataset.hf_dataset.with_format(None)
imgs_dataset = hf_dataset.select_columns("observation.image")
for i, item in enumerate(imgs_dataset):
img = item["observation.image"]
img.save(str(imgs_dir / f"frame_{i:06d}.png"), quality=100)
if i >= ep_num_images - 1:
break
sum_original_frames_size_bytes = get_directory_size(imgs_dir)
# Encode images into video
video_path = output_dir / "episode_0.mp4"
g = cfg.get("g")
crf = cfg.get("crf")
pix_fmt = cfg["pix_fmt"]
cmd = f"ffmpeg -r {fps} "
cmd += "-f image2 "
cmd += "-loglevel error "
cmd += f"-i {str(imgs_dir / 'frame_%06d.png')} "
cmd += "-vcodec libx264 "
if g is not None:
cmd += f"-g {g} " # ensures at least 1 keyframe every 10 frames
# cmd += "-keyint_min 10 " set a minimum of 10 frames between 2 key frames
# cmd += "-sc_threshold 0 " disable scene change detection to lower the number of key frames
if crf is not None:
cmd += f"-crf {crf} "
cmd += f"-pix_fmt {pix_fmt} "
cmd += f"{str(video_path)}"
subprocess.run(cmd.split(" "), check=True)
video_size_bytes = video_path.stat().st_size
# Set decoder
decoder = cfg["decoder"]
decoder_kwgs = cfg["decoder_kwgs"]
device = cfg["device"]
if decoder == "torchvision":
decode_frames_fn = decode_video_frames_torchvision
else:
raise ValueError(decoder)
# Estimate average loading time
def load_original_frames(imgs_dir, timestamps):
frames = []
for ts in timestamps:
idx = int(ts * fps)
frame = PIL.Image.open(imgs_dir / f"frame_{idx:06d}.png")
frame = torch.from_numpy(numpy.array(frame))
frame = frame.type(torch.float32) / 255
frame = einops.rearrange(frame, "h w c -> c h w")
frames.append(frame)
return frames
list_avg_load_time = []
list_avg_load_time_from_images = []
per_pixel_l2_errors = []
random.seed(seed)
for t in range(50):
# test loading 2 frames that are 4 frames appart, which might be a common setting
ts = random.randint(fps, ep_num_images - fps) / fps
if timestamps_mode == "1_frame":
timestamps = [ts]
elif timestamps_mode == "2_frames":
timestamps = [ts - 1 / fps, ts]
elif timestamps_mode == "2_frames_4_space":
timestamps = [ts - 4 / fps, ts]
elif timestamps_mode == "6_frames":
timestamps = [ts - i / fps for i in range(6)][::-1]
else:
raise ValueError(timestamps_mode)
num_frames = len(timestamps)
start_time_s = time.monotonic()
frames = decode_frames_fn(
video_path, timestamps=timestamps, tolerance_s=1e-4, device=device, **decoder_kwgs
)
avg_load_time = (time.monotonic() - start_time_s) / num_frames
list_avg_load_time.append(avg_load_time)
start_time_s = time.monotonic()
original_frames = load_original_frames(imgs_dir, timestamps)
avg_load_time_from_images = (time.monotonic() - start_time_s) / num_frames
list_avg_load_time_from_images.append(avg_load_time_from_images)
# Estimate average L2 error between original frames and decoded frames
for i, ts in enumerate(timestamps):
# are_close = torch.allclose(frames[i], original_frames[i], atol=0.02)
num_pixels = original_frames[i].numel()
per_pixel_l2_error = torch.norm(frames[i] - original_frames[i], p=2).item() / num_pixels
# save decoded frames
if t == 0:
frame_hwc = (frames[i].permute((1, 2, 0)) * 255).type(torch.uint8).cpu().numpy()
PIL.Image.fromarray(frame_hwc).save(output_dir / f"frame_{i:06d}.png")
# save original_frames
idx = int(ts * fps)
if t == 0:
original_frame = PIL.Image.open(imgs_dir / f"frame_{idx:06d}.png")
original_frame.save(output_dir / f"original_frame_{i:06d}.png")
per_pixel_l2_errors.append(per_pixel_l2_error)
avg_load_time = float(numpy.array(list_avg_load_time).mean())
avg_load_time_from_images = float(numpy.array(list_avg_load_time_from_images).mean())
avg_per_pixel_l2_error = float(numpy.array(per_pixel_l2_errors).mean())
# Save benchmark info
info = {
"sum_original_frames_size_bytes": sum_original_frames_size_bytes,
"video_size_bytes": video_size_bytes,
"avg_load_time_from_images": avg_load_time_from_images,
"avg_load_time": avg_load_time,
"compression_factor": sum_original_frames_size_bytes / video_size_bytes,
"load_time_factor": avg_load_time_from_images / avg_load_time,
"avg_per_pixel_l2_error": avg_per_pixel_l2_error,
}
with open(output_dir / "info.json", "w") as f:
json.dump(info, f)
return info
def display_markdown_table(headers, rows):
for i, row in enumerate(rows):
new_row = []
for col in row:
if col is None:
new_col = "None"
elif isinstance(col, float):
new_col = f"{col:.3f}"
if new_col == "0.000":
new_col = f"{col:.7f}"
elif isinstance(col, int):
new_col = f"{col}"
else:
new_col = col
new_row.append(new_col)
rows[i] = new_row
header_line = "| " + " | ".join(headers) + " |"
separator_line = "| " + " | ".join(["---" for _ in headers]) + " |"
body_lines = ["| " + " | ".join(row) + " |" for row in rows]
markdown_table = "\n".join([header_line, separator_line] + body_lines)
print(markdown_table)
print()
def load_info(out_dir):
with open(out_dir / "info.json") as f:
info = json.load(f)
return info
def main():
out_dir = Path("tmp/run_video_benchmark")
dry_run = False
repo_ids = ["lerobot/pusht", "lerobot/umi_cup_in_the_wild"]
timestamps_modes = [
"1_frame",
"2_frames",
"2_frames_4_space",
"6_frames",
]
for timestamps_mode in timestamps_modes:
bench_dir = out_dir / timestamps_mode
print(f"### `{timestamps_mode}`")
print()
print("**`pix_fmt`**")
headers = ["repo_id", "pix_fmt", "compression_factor", "load_time_factor", "avg_per_pixel_l2_error"]
rows = []
for repo_id in repo_ids:
for pix_fmt in ["yuv420p", "yuv444p"]:
cfg = {
"repo_id": repo_id,
# video encoding
"g": 2,
"crf": None,
"pix_fmt": pix_fmt,
# video decoding
"device": "cpu",
"decoder": "torchvision",
"decoder_kwgs": {},
}
if not dry_run:
run_video_benchmark(bench_dir / repo_id / f"torchvision_{pix_fmt}", cfg, timestamps_mode)
info = load_info(bench_dir / repo_id / f"torchvision_{pix_fmt}")
rows.append(
[
repo_id,
pix_fmt,
info["compression_factor"],
info["load_time_factor"],
info["avg_per_pixel_l2_error"],
]
)
display_markdown_table(headers, rows)
print("**`g`**")
headers = ["repo_id", "g", "compression_factor", "load_time_factor", "avg_per_pixel_l2_error"]
rows = []
for repo_id in repo_ids:
for g in [1, 2, 3, 4, 5, 6, 10, 15, 20, 40, 100, None]:
cfg = {
"repo_id": repo_id,
# video encoding
"g": g,
"pix_fmt": "yuv444p",
# video decoding
"device": "cpu",
"decoder": "torchvision",
"decoder_kwgs": {},
}
if not dry_run:
run_video_benchmark(bench_dir / repo_id / f"torchvision_g_{g}", cfg, timestamps_mode)
info = load_info(bench_dir / repo_id / f"torchvision_g_{g}")
rows.append(
[
repo_id,
g,
info["compression_factor"],
info["load_time_factor"],
info["avg_per_pixel_l2_error"],
]
)
display_markdown_table(headers, rows)
print("**`crf`**")
headers = ["repo_id", "crf", "compression_factor", "load_time_factor", "avg_per_pixel_l2_error"]
rows = []
for repo_id in repo_ids:
for crf in [0, 5, 10, 15, 20, None, 25, 30, 40, 50]:
cfg = {
"repo_id": repo_id,
# video encoding
"g": 2,
"crf": crf,
"pix_fmt": "yuv444p",
# video decoding
"device": "cpu",
"decoder": "torchvision",
"decoder_kwgs": {},
}
if not dry_run:
run_video_benchmark(bench_dir / repo_id / f"torchvision_crf_{crf}", cfg, timestamps_mode)
info = load_info(bench_dir / repo_id / f"torchvision_crf_{crf}")
rows.append(
[
repo_id,
crf,
info["compression_factor"],
info["load_time_factor"],
info["avg_per_pixel_l2_error"],
]
)
display_markdown_table(headers, rows)
print("**best**")
headers = ["repo_id", "compression_factor", "load_time_factor", "avg_per_pixel_l2_error"]
rows = []
for repo_id in repo_ids:
cfg = {
"repo_id": repo_id,
# video encoding
"g": 2,
"crf": None,
"pix_fmt": "yuv444p",
# video decoding
"device": "cpu",
"decoder": "torchvision",
"decoder_kwgs": {},
}
if not dry_run:
run_video_benchmark(bench_dir / repo_id / "torchvision_best", cfg, timestamps_mode)
info = load_info(bench_dir / repo_id / "torchvision_best")
rows.append(
[
repo_id,
info["compression_factor"],
info["load_time_factor"],
info["avg_per_pixel_l2_error"],
]
)
display_markdown_table(headers, rows)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,27 @@
---
# For reference on dataset card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/datasetcard.md?plain=1
# Doc / guide: https://huggingface.co/docs/hub/datasets-cards
{{ card_data }}
---
This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
## Dataset Description
{{ dataset_description | default("", true) }}
- **Homepage:** {{ url | default("[More Information Needed]", true)}}
- **Paper:** {{ paper | default("[More Information Needed]", true)}}
- **License:** {{ license | default("[More Information Needed]", true)}}
## Dataset Structure
{{ dataset_structure | default("[More Information Needed]", true)}}
## Citation
**BibTeX:**
```bibtex
{{ citation_bibtex | default("[More Information Needed]", true)}}
```

View File

@@ -19,9 +19,6 @@ from math import ceil
import einops
import torch
import tqdm
from datasets import Image
from lerobot.common.datasets.video_utils import VideoFrame
def get_stats_einops_patterns(dataset, num_workers=0):
@@ -39,11 +36,13 @@ def get_stats_einops_patterns(dataset, num_workers=0):
batch = next(iter(dataloader))
stats_patterns = {}
for key, feats_type in dataset.features.items():
for key in dataset.features:
# sanity check that tensors are not float64
assert batch[key].dtype != torch.float64
if isinstance(feats_type, (VideoFrame, Image)):
# if isinstance(feats_type, (VideoFrame, Image)):
if key in dataset.meta.camera_keys:
# sanity check that images are channel first
_, c, h, w = batch[key].shape
assert c < h and c < w, f"expect channel first images, but instead {batch[key].shape}"
@@ -59,12 +58,12 @@ def get_stats_einops_patterns(dataset, num_workers=0):
elif batch[key].ndim == 1:
stats_patterns[key] = "b -> 1"
else:
raise ValueError(f"{key}, {feats_type}, {batch[key].shape}")
raise ValueError(f"{key}, {batch[key].shape}")
return stats_patterns
def compute_stats(dataset, batch_size=32, num_workers=16, max_num_samples=None):
def compute_stats(dataset, batch_size=8, num_workers=8, max_num_samples=None):
"""Compute mean/std and min/max statistics of all data keys in a LeRobotDataset."""
if max_num_samples is None:
max_num_samples = len(dataset)
@@ -171,39 +170,45 @@ def aggregate_stats(ls_datasets) -> dict[str, torch.Tensor]:
"""
data_keys = set()
for dataset in ls_datasets:
data_keys.update(dataset.stats.keys())
data_keys.update(dataset.meta.stats.keys())
stats = {k: {} for k in data_keys}
for data_key in data_keys:
for stat_key in ["min", "max"]:
# compute `max(dataset_0["max"], dataset_1["max"], ...)`
stats[data_key][stat_key] = einops.reduce(
torch.stack([d.stats[data_key][stat_key] for d in ls_datasets if data_key in d.stats], dim=0),
torch.stack(
[ds.meta.stats[data_key][stat_key] for ds in ls_datasets if data_key in ds.meta.stats],
dim=0,
),
"n ... -> ...",
stat_key,
)
total_samples = sum(d.num_samples for d in ls_datasets if data_key in d.stats)
total_samples = sum(d.num_frames for d in ls_datasets if data_key in d.meta.stats)
# Compute the "sum" statistic by multiplying each mean by the number of samples in the respective
# dataset, then divide by total_samples to get the overall "mean".
# NOTE: the brackets around (d.num_samples / total_samples) are needed tor minimize the risk of
# NOTE: the brackets around (d.num_frames / total_samples) are needed tor minimize the risk of
# numerical overflow!
stats[data_key]["mean"] = sum(
d.stats[data_key]["mean"] * (d.num_samples / total_samples)
d.meta.stats[data_key]["mean"] * (d.num_frames / total_samples)
for d in ls_datasets
if data_key in d.stats
if data_key in d.meta.stats
)
# The derivation for standard deviation is a little more involved but is much in the same spirit as
# the computation of the mean.
# Given two sets of data where the statistics are known:
# σ_combined = sqrt[ (n1 * (σ1^2 + d1^2) + n2 * (σ2^2 + d2^2)) / (n1 + n2) ]
# where d1 = μ1 - μ_combined, d2 = μ2 - μ_combined
# NOTE: the brackets around (d.num_samples / total_samples) are needed tor minimize the risk of
# NOTE: the brackets around (d.num_frames / total_samples) are needed tor minimize the risk of
# numerical overflow!
stats[data_key]["std"] = torch.sqrt(
sum(
(d.stats[data_key]["std"] ** 2 + (d.stats[data_key]["mean"] - stats[data_key]["mean"]) ** 2)
* (d.num_samples / total_samples)
(
d.meta.stats[data_key]["std"] ** 2
+ (d.meta.stats[data_key]["mean"] - stats[data_key]["mean"]) ** 2
)
* (d.num_frames / total_samples)
for d in ls_datasets
if data_key in d.stats
if data_key in d.meta.stats
)
)
return stats

View File

@@ -19,6 +19,7 @@ import torch
from omegaconf import ListConfig, OmegaConf
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset, MultiLeRobotDataset
from lerobot.common.datasets.transforms import get_image_transforms
def resolve_delta_timestamps(cfg):
@@ -71,17 +72,38 @@ def make_dataset(cfg, split: str = "train") -> LeRobotDataset | MultiLeRobotData
resolve_delta_timestamps(cfg)
# TODO(rcadene): add data augmentations
image_transforms = None
if cfg.training.image_transforms.enable:
cfg_tf = cfg.training.image_transforms
image_transforms = get_image_transforms(
brightness_weight=cfg_tf.brightness.weight,
brightness_min_max=cfg_tf.brightness.min_max,
contrast_weight=cfg_tf.contrast.weight,
contrast_min_max=cfg_tf.contrast.min_max,
saturation_weight=cfg_tf.saturation.weight,
saturation_min_max=cfg_tf.saturation.min_max,
hue_weight=cfg_tf.hue.weight,
hue_min_max=cfg_tf.hue.min_max,
sharpness_weight=cfg_tf.sharpness.weight,
sharpness_min_max=cfg_tf.sharpness.min_max,
max_num_transforms=cfg_tf.max_num_transforms,
random_order=cfg_tf.random_order,
)
if isinstance(cfg.dataset_repo_id, str):
# TODO (aliberts): add 'episodes' arg from config after removing hydra
dataset = LeRobotDataset(
cfg.dataset_repo_id,
split=split,
delta_timestamps=cfg.training.get("delta_timestamps"),
image_transforms=image_transforms,
video_backend=cfg.video_backend,
)
else:
dataset = MultiLeRobotDataset(
cfg.dataset_repo_id, split=split, delta_timestamps=cfg.training.get("delta_timestamps")
cfg.dataset_repo_id,
delta_timestamps=cfg.training.get("delta_timestamps"),
image_transforms=image_transforms,
video_backend=cfg.video_backend,
)
if cfg.get("override_dataset_stats"):
@@ -89,6 +111,6 @@ def make_dataset(cfg, split: str = "train") -> LeRobotDataset | MultiLeRobotData
for stats_type, listconfig in stats_dict.items():
# example of stats_type: min, max, mean, std
stats = OmegaConf.to_container(listconfig, resolve=True)
dataset.stats[key][stats_type] = torch.tensor(stats, dtype=torch.float32)
dataset.meta.stats[key][stats_type] = torch.tensor(stats, dtype=torch.float32)
return dataset

View File

@@ -0,0 +1,160 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import multiprocessing
import queue
import threading
from pathlib import Path
import numpy as np
import PIL.Image
import torch
def safe_stop_image_writer(func):
def wrapper(*args, **kwargs):
try:
return func(*args, **kwargs)
except Exception as e:
dataset = kwargs.get("dataset")
image_writer = getattr(dataset, "image_writer", None) if dataset else None
if image_writer is not None:
print("Waiting for image writer to terminate...")
image_writer.stop()
raise e
return wrapper
def image_array_to_image(image_array: np.ndarray) -> PIL.Image.Image:
# TODO(aliberts): handle 1 channel and 4 for depth images
if image_array.ndim == 3 and image_array.shape[0] in [1, 3]:
# Transpose from pytorch convention (C, H, W) to (H, W, C)
image_array = image_array.transpose(1, 2, 0)
if image_array.dtype != np.uint8:
# Assume the image is in [0, 1] range for floating-point data
image_array = np.clip(image_array, 0, 1)
image_array = (image_array * 255).astype(np.uint8)
return PIL.Image.fromarray(image_array)
def write_image(image: np.ndarray | PIL.Image.Image, fpath: Path):
try:
if isinstance(image, np.ndarray):
img = image_array_to_image(image)
elif isinstance(image, PIL.Image.Image):
img = image
else:
raise TypeError(f"Unsupported image type: {type(image)}")
img.save(fpath)
except Exception as e:
print(f"Error writing image {fpath}: {e}")
def worker_thread_loop(queue: queue.Queue):
while True:
item = queue.get()
if item is None:
queue.task_done()
break
image_array, fpath = item
write_image(image_array, fpath)
queue.task_done()
def worker_process(queue: queue.Queue, num_threads: int):
threads = []
for _ in range(num_threads):
t = threading.Thread(target=worker_thread_loop, args=(queue,))
t.daemon = True
t.start()
threads.append(t)
for t in threads:
t.join()
class AsyncImageWriter:
"""
This class abstract away the initialisation of processes or/and threads to
save images on disk asynchrounously, which is critical to control a robot and record data
at a high frame rate.
When `num_processes=0`, it creates a threads pool of size `num_threads`.
When `num_processes>0`, it creates processes pool of size `num_processes`, where each subprocess starts
their own threads pool of size `num_threads`.
The optimal number of processes and threads depends on your computer capabilities.
We advise to use 4 threads per camera with 0 processes. If the fps is not stable, try to increase or lower
the number of threads. If it is still not stable, try to use 1 subprocess, or more.
"""
def __init__(self, num_processes: int = 0, num_threads: int = 1):
self.num_processes = num_processes
self.num_threads = num_threads
self.queue = None
self.threads = []
self.processes = []
self._stopped = False
if num_threads <= 0 and num_processes <= 0:
raise ValueError("Number of threads and processes must be greater than zero.")
if self.num_processes == 0:
# Use threading
self.queue = queue.Queue()
for _ in range(self.num_threads):
t = threading.Thread(target=worker_thread_loop, args=(self.queue,))
t.daemon = True
t.start()
self.threads.append(t)
else:
# Use multiprocessing
self.queue = multiprocessing.JoinableQueue()
for _ in range(self.num_processes):
p = multiprocessing.Process(target=worker_process, args=(self.queue, self.num_threads))
p.daemon = True
p.start()
self.processes.append(p)
def save_image(self, image: torch.Tensor | np.ndarray | PIL.Image.Image, fpath: Path):
if isinstance(image, torch.Tensor):
# Convert tensor to numpy array to minimize main process time
image = image.cpu().numpy()
self.queue.put((image, fpath))
def wait_until_done(self):
self.queue.join()
def stop(self):
if self._stopped:
return
if self.num_processes == 0:
for _ in self.threads:
self.queue.put(None)
for t in self.threads:
t.join()
else:
num_nones = self.num_processes * self.num_threads
for _ in range(num_nones):
self.queue.put(None)
for p in self.processes:
p.join()
if p.is_alive():
p.terminate()
self.queue.close()
self.queue.join_thread()
self._stopped = True

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,384 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""An online buffer for the online training loop in train.py
Note to maintainers: This duplicates some logic from LeRobotDataset and EpisodeAwareSampler. We should
consider converging to one approach. Here we have opted to use numpy.memmap to back the data buffer. It's much
faster than using HuggingFace Datasets as there's no conversion to an intermediate non-python object. Also it
supports in-place slicing and mutation which is very handy for a dynamic buffer.
"""
import os
from pathlib import Path
from typing import Any
import numpy as np
import torch
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
def _make_memmap_safe(**kwargs) -> np.memmap:
"""Make a numpy memmap with checks on available disk space first.
Expected kwargs are: "filename", "dtype" (must by np.dtype), "mode" and "shape"
For information on dtypes:
https://numpy.org/doc/stable/reference/arrays.dtypes.html#arrays-dtypes-constructing
"""
if kwargs["mode"].startswith("w"):
required_space = kwargs["dtype"].itemsize * np.prod(kwargs["shape"]) # bytes
stats = os.statvfs(Path(kwargs["filename"]).parent)
available_space = stats.f_bavail * stats.f_frsize # bytes
if required_space >= available_space * 0.8:
raise RuntimeError(
f"You're about to take up {required_space} of {available_space} bytes available."
)
return np.memmap(**kwargs)
class OnlineBuffer(torch.utils.data.Dataset):
"""FIFO data buffer for the online training loop in train.py.
Follows the protocol of LeRobotDataset as much as is required to have it be used by the online training
loop in the same way that a LeRobotDataset would be used.
The underlying data structure will have data inserted in a circular fashion. Always insert after the
last index, and when you reach the end, wrap around to the start.
The data is stored in a numpy memmap.
"""
NEXT_INDEX_KEY = "_next_index"
OCCUPANCY_MASK_KEY = "_occupancy_mask"
INDEX_KEY = "index"
FRAME_INDEX_KEY = "frame_index"
EPISODE_INDEX_KEY = "episode_index"
TIMESTAMP_KEY = "timestamp"
IS_PAD_POSTFIX = "_is_pad"
def __init__(
self,
write_dir: str | Path,
data_spec: dict[str, Any] | None,
buffer_capacity: int | None,
fps: float | None = None,
delta_timestamps: dict[str, list[float]] | dict[str, np.ndarray] | None = None,
):
"""
The online buffer can be provided from scratch or you can load an existing online buffer by passing
a `write_dir` associated with an existing buffer.
Args:
write_dir: Where to keep the numpy memmap files. One memmap file will be stored for each data key.
Note that if the files already exist, they are opened in read-write mode (used for training
resumption.)
data_spec: A mapping from data key to data specification, like {data_key: {"shape": tuple[int],
"dtype": np.dtype}}. This should include all the data that you wish to record into the buffer,
but note that "index", "frame_index" and "episode_index" are already accounted for by this
class, so you don't need to include them.
buffer_capacity: How many frames should be stored in the buffer as a maximum. Be aware of your
system's available disk space when choosing this.
fps: Same as the fps concept in LeRobot dataset. Here it needs to be provided for the
delta_timestamps logic. You can pass None if you are not using delta_timestamps.
delta_timestamps: Same as the delta_timestamps concept in LeRobotDataset. This is internally
converted to dict[str, np.ndarray] for optimization purposes.
"""
self.set_delta_timestamps(delta_timestamps)
self._fps = fps
# Tolerance in seconds used to discard loaded frames when their timestamps are not close enough from
# the requested frames. It is only used when `delta_timestamps` is provided.
# minus 1e-4 to account for possible numerical error
self.tolerance_s = 1 / self.fps - 1e-4 if fps is not None else None
self._buffer_capacity = buffer_capacity
data_spec = self._make_data_spec(data_spec, buffer_capacity)
Path(write_dir).mkdir(parents=True, exist_ok=True)
self._data = {}
for k, v in data_spec.items():
self._data[k] = _make_memmap_safe(
filename=Path(write_dir) / k,
dtype=v["dtype"] if v is not None else None,
mode="r+" if (Path(write_dir) / k).exists() else "w+",
shape=tuple(v["shape"]) if v is not None else None,
)
@property
def delta_timestamps(self) -> dict[str, np.ndarray] | None:
return self._delta_timestamps
def set_delta_timestamps(self, value: dict[str, list[float]] | None):
"""Set delta_timestamps converting the values to numpy arrays.
The conversion is for an optimization in the __getitem__. The loop is much slower if the arrays
need to be converted into numpy arrays.
"""
if value is not None:
self._delta_timestamps = {k: np.array(v) for k, v in value.items()}
else:
self._delta_timestamps = None
def _make_data_spec(self, data_spec: dict[str, Any], buffer_capacity: int) -> dict[str, dict[str, Any]]:
"""Makes the data spec for np.memmap."""
if any(k.startswith("_") for k in data_spec):
raise ValueError(
"data_spec keys should not start with '_'. This prefix is reserved for internal logic."
)
preset_keys = {
OnlineBuffer.INDEX_KEY,
OnlineBuffer.FRAME_INDEX_KEY,
OnlineBuffer.EPISODE_INDEX_KEY,
OnlineBuffer.TIMESTAMP_KEY,
}
if len(intersection := set(data_spec).intersection(preset_keys)) > 0:
raise ValueError(
f"data_spec should not contain any of {preset_keys} as these are handled internally. "
f"The provided data_spec has {intersection}."
)
complete_data_spec = {
# _next_index will be a pointer to the next index that we should start filling from when we add
# more data.
OnlineBuffer.NEXT_INDEX_KEY: {"dtype": np.dtype("int64"), "shape": ()},
# Since the memmap is initialized with all-zeros, this keeps track of which indices are occupied
# with real data rather than the dummy initialization.
OnlineBuffer.OCCUPANCY_MASK_KEY: {"dtype": np.dtype("?"), "shape": (buffer_capacity,)},
OnlineBuffer.INDEX_KEY: {"dtype": np.dtype("int64"), "shape": (buffer_capacity,)},
OnlineBuffer.FRAME_INDEX_KEY: {"dtype": np.dtype("int64"), "shape": (buffer_capacity,)},
OnlineBuffer.EPISODE_INDEX_KEY: {"dtype": np.dtype("int64"), "shape": (buffer_capacity,)},
OnlineBuffer.TIMESTAMP_KEY: {"dtype": np.dtype("float64"), "shape": (buffer_capacity,)},
}
for k, v in data_spec.items():
complete_data_spec[k] = {"dtype": v["dtype"], "shape": (buffer_capacity, *v["shape"])}
return complete_data_spec
def add_data(self, data: dict[str, np.ndarray]):
"""Add new data to the buffer, which could potentially mean shifting old data out.
The new data should contain all the frames (in order) of any number of episodes. The indices should
start from 0 (note to the developer: this can easily be generalized). See the `rollout` and
`eval_policy` functions in `eval.py` for more information on how the data is constructed.
Shift the incoming data index and episode_index to continue on from the last frame. Note that this
will be done in place!
"""
if len(missing_keys := (set(self.data_keys).difference(set(data)))) > 0:
raise ValueError(f"Missing data keys: {missing_keys}")
new_data_length = len(data[self.data_keys[0]])
if not all(len(data[k]) == new_data_length for k in self.data_keys):
raise ValueError("All data items should have the same length")
next_index = self._data[OnlineBuffer.NEXT_INDEX_KEY]
# Sanity check to make sure that the new data indices start from 0.
assert data[OnlineBuffer.EPISODE_INDEX_KEY][0].item() == 0
assert data[OnlineBuffer.INDEX_KEY][0].item() == 0
# Shift the incoming indices if necessary.
if self.num_frames > 0:
last_episode_index = self._data[OnlineBuffer.EPISODE_INDEX_KEY][next_index - 1]
last_data_index = self._data[OnlineBuffer.INDEX_KEY][next_index - 1]
data[OnlineBuffer.EPISODE_INDEX_KEY] += last_episode_index + 1
data[OnlineBuffer.INDEX_KEY] += last_data_index + 1
# Insert the new data starting from next_index. It may be necessary to wrap around to the start.
n_surplus = max(0, new_data_length - (self._buffer_capacity - next_index))
for k in self.data_keys:
if n_surplus == 0:
slc = slice(next_index, next_index + new_data_length)
self._data[k][slc] = data[k]
self._data[OnlineBuffer.OCCUPANCY_MASK_KEY][slc] = True
else:
self._data[k][next_index:] = data[k][:-n_surplus]
self._data[OnlineBuffer.OCCUPANCY_MASK_KEY][next_index:] = True
self._data[k][:n_surplus] = data[k][-n_surplus:]
if n_surplus == 0:
self._data[OnlineBuffer.NEXT_INDEX_KEY] = next_index + new_data_length
else:
self._data[OnlineBuffer.NEXT_INDEX_KEY] = n_surplus
@property
def data_keys(self) -> list[str]:
keys = set(self._data)
keys.remove(OnlineBuffer.OCCUPANCY_MASK_KEY)
keys.remove(OnlineBuffer.NEXT_INDEX_KEY)
return sorted(keys)
@property
def fps(self) -> float | None:
return self._fps
@property
def num_episodes(self) -> int:
return len(
np.unique(self._data[OnlineBuffer.EPISODE_INDEX_KEY][self._data[OnlineBuffer.OCCUPANCY_MASK_KEY]])
)
@property
def num_frames(self) -> int:
return np.count_nonzero(self._data[OnlineBuffer.OCCUPANCY_MASK_KEY])
def __len__(self):
return self.num_frames
def _item_to_tensors(self, item: dict) -> dict:
item_ = {}
for k, v in item.items():
if isinstance(v, torch.Tensor):
item_[k] = v
elif isinstance(v, np.ndarray):
item_[k] = torch.from_numpy(v)
else:
item_[k] = torch.tensor(v)
return item_
def __getitem__(self, idx: int) -> dict[str, torch.Tensor]:
if idx >= len(self) or idx < -len(self):
raise IndexError
item = {k: v[idx] for k, v in self._data.items() if not k.startswith("_")}
if self.delta_timestamps is None:
return self._item_to_tensors(item)
episode_index = item[OnlineBuffer.EPISODE_INDEX_KEY]
current_ts = item[OnlineBuffer.TIMESTAMP_KEY]
episode_data_indices = np.where(
np.bitwise_and(
self._data[OnlineBuffer.EPISODE_INDEX_KEY] == episode_index,
self._data[OnlineBuffer.OCCUPANCY_MASK_KEY],
)
)[0]
episode_timestamps = self._data[OnlineBuffer.TIMESTAMP_KEY][episode_data_indices]
for data_key in self.delta_timestamps:
# Note: The logic in this loop is copied from `load_previous_and_future_frames`.
# Get timestamps used as query to retrieve data of previous/future frames.
query_ts = current_ts + self.delta_timestamps[data_key]
# Compute distances between each query timestamp and all timestamps of all the frames belonging to
# the episode.
dist = np.abs(query_ts[:, None] - episode_timestamps[None, :])
argmin_ = np.argmin(dist, axis=1)
min_ = dist[np.arange(dist.shape[0]), argmin_]
is_pad = min_ > self.tolerance_s
# Check violated query timestamps are all outside the episode range.
assert (
(query_ts[is_pad] < episode_timestamps[0]) | (episode_timestamps[-1] < query_ts[is_pad])
).all(), (
f"One or several timestamps unexpectedly violate the tolerance ({min_} > {self.tolerance_s=}"
") inside the episode range."
)
# Load frames for this data key.
item[data_key] = self._data[data_key][episode_data_indices[argmin_]]
item[f"{data_key}{OnlineBuffer.IS_PAD_POSTFIX}"] = is_pad
return self._item_to_tensors(item)
def get_data_by_key(self, key: str) -> torch.Tensor:
"""Returns all data for a given data key as a Tensor."""
return torch.from_numpy(self._data[key][self._data[OnlineBuffer.OCCUPANCY_MASK_KEY]])
def compute_sampler_weights(
offline_dataset: LeRobotDataset,
offline_drop_n_last_frames: int = 0,
online_dataset: OnlineBuffer | None = None,
online_sampling_ratio: float | None = None,
online_drop_n_last_frames: int = 0,
) -> torch.Tensor:
"""Compute the sampling weights for the online training dataloader in train.py.
Args:
offline_dataset: The LeRobotDataset used for offline pre-training.
online_drop_n_last_frames: Number of frames to drop from the end of each offline dataset episode.
online_dataset: The OnlineBuffer used in online training.
online_sampling_ratio: The proportion of data that should be sampled from the online dataset. If an
online dataset is provided, this value must also be provided.
online_drop_n_first_frames: See `offline_drop_n_last_frames`. This is the same, but for the online
dataset.
Returns:
Tensor of weights for [offline_dataset; online_dataset], normalized to 1.
Notes to maintainers:
- This duplicates some logic from EpisodeAwareSampler. We should consider converging to one approach.
- When used with `torch.utils.data.WeightedRandomSampler`, it could completely replace
`EpisodeAwareSampler` as the online dataset related arguments are optional. The only missing feature
is the ability to turn shuffling off.
- Options `drop_first_n_frames` and `episode_indices_to_use` can be added easily. They were not
included here to avoid adding complexity.
"""
if len(offline_dataset) == 0 and (online_dataset is None or len(online_dataset) == 0):
raise ValueError("At least one of `offline_dataset` or `online_dataset` should be contain data.")
if (online_dataset is None) ^ (online_sampling_ratio is None):
raise ValueError(
"`online_dataset` and `online_sampling_ratio` must be provided together or not at all."
)
offline_sampling_ratio = 0 if online_sampling_ratio is None else 1 - online_sampling_ratio
weights = []
if len(offline_dataset) > 0:
offline_data_mask_indices = []
for start_index, end_index in zip(
offline_dataset.episode_data_index["from"],
offline_dataset.episode_data_index["to"],
strict=True,
):
offline_data_mask_indices.extend(
range(start_index.item(), end_index.item() - offline_drop_n_last_frames)
)
offline_data_mask = torch.zeros(len(offline_dataset), dtype=torch.bool)
offline_data_mask[torch.tensor(offline_data_mask_indices)] = True
weights.append(
torch.full(
size=(len(offline_dataset),),
fill_value=offline_sampling_ratio / offline_data_mask.sum(),
)
* offline_data_mask
)
if online_dataset is not None and len(online_dataset) > 0:
online_data_mask_indices = []
episode_indices = online_dataset.get_data_by_key("episode_index")
for episode_idx in torch.unique(episode_indices):
where_episode = torch.where(episode_indices == episode_idx)
start_index = where_episode[0][0]
end_index = where_episode[0][-1] + 1
online_data_mask_indices.extend(
range(start_index.item(), end_index.item() - online_drop_n_last_frames)
)
online_data_mask = torch.zeros(len(online_dataset), dtype=torch.bool)
online_data_mask[torch.tensor(online_data_mask_indices)] = True
weights.append(
torch.full(
size=(len(online_dataset),),
fill_value=online_sampling_ratio / online_data_mask.sum(),
)
* online_data_mask
)
weights = torch.cat(weights)
if weights.sum() == 0:
weights += 1 / len(weights)
else:
weights /= weights.sum()
return weights

View File

@@ -0,0 +1,56 @@
## Using / Updating `CODEBASE_VERSION` (for maintainers)
Since our dataset pushed to the hub are decoupled with the evolution of this repo, we ensure compatibility of
the datasets with our code, we use a `CODEBASE_VERSION` (defined in
lerobot/common/datasets/lerobot_dataset.py) variable.
For instance, [`lerobot/pusht`](https://huggingface.co/datasets/lerobot/pusht) has many versions to maintain backward compatibility between LeRobot codebase versions:
- [v1.0](https://huggingface.co/datasets/lerobot/pusht/tree/v1.0)
- [v1.1](https://huggingface.co/datasets/lerobot/pusht/tree/v1.1)
- [v1.2](https://huggingface.co/datasets/lerobot/pusht/tree/v1.2)
- [v1.3](https://huggingface.co/datasets/lerobot/pusht/tree/v1.3)
- [v1.4](https://huggingface.co/datasets/lerobot/pusht/tree/v1.4)
- [v1.5](https://huggingface.co/datasets/lerobot/pusht/tree/v1.5)
- [v1.6](https://huggingface.co/datasets/lerobot/pusht/tree/v1.6) <-- last version
- [main](https://huggingface.co/datasets/lerobot/pusht/tree/main) <-- points to the last version
Starting with v1.6, every dataset pushed to the hub or saved locally also have this version number in their
`info.json` metadata.
### Uploading a new dataset
If you are pushing a new dataset, you don't need to worry about any of the instructions below, nor to be
compatible with previous codebase versions. The `push_dataset_to_hub.py` script will automatically tag your
dataset with the current `CODEBASE_VERSION`.
### Updating an existing dataset
If you want to update an existing dataset, you need to change the `CODEBASE_VERSION` from `lerobot_dataset.py`
before running `push_dataset_to_hub.py`. This is especially useful if you introduce a breaking change
intentionally or not (i.e. something not backward compatible such as modifying the reward functions used,
deleting some frames at the end of an episode, etc.). That way, people running a previous version of the
codebase won't be affected by your change and backward compatibility is maintained.
However, you will need to update the version of ALL the other datasets so that they have the new
`CODEBASE_VERSION` as a branch in their hugging face dataset repository. Don't worry, there is an easy way
that doesn't require to run `push_dataset_to_hub.py`. You can just "branch-out" from the `main` branch on HF
dataset repo by running this script which corresponds to a `git checkout -b` (so no copy or upload needed):
```python
from huggingface_hub import HfApi
from lerobot import available_datasets
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
api = HfApi()
for repo_id in available_datasets:
dataset_info = api.list_repo_refs(repo_id, repo_type="dataset")
branches = [b.name for b in dataset_info.branches]
if CODEBASE_VERSION in branches:
print(f"{repo_id} already @{CODEBASE_VERSION}, skipping.")
continue
else:
# Now create a branch named after the new version by branching out from "main"
# which is expected to be the preceding version
api.create_branch(repo_id, repo_type="dataset", branch=CODEBASE_VERSION, revision="main")
print(f"{repo_id} successfully updated @{CODEBASE_VERSION}")
```

View File

@@ -14,156 +14,189 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file contains all obsolete download scripts. They are centralized here to not have to load
useless dependencies when using datasets.
This file contains download scripts for raw datasets.
Example of usage:
```
python lerobot/common/datasets/push_dataset_to_hub/_download_raw.py \
--raw-dir data/lerobot-raw/pusht_raw \
--repo-id lerobot-raw/pusht_raw
```
"""
import io
import argparse
import logging
import shutil
import warnings
from pathlib import Path
import tqdm
from huggingface_hub import snapshot_download
from lerobot.common.datasets.push_dataset_to_hub.utils import check_repo_id
def download_raw(raw_dir, dataset_id):
if "aloha" in dataset_id or "image" in dataset_id:
download_hub(raw_dir, dataset_id)
elif "pusht" in dataset_id:
download_pusht(raw_dir)
elif "xarm" in dataset_id:
download_xarm(raw_dir)
elif "umi" in dataset_id:
download_umi(raw_dir)
else:
raise ValueError(dataset_id)
# {raw_repo_id: raw_format}
AVAILABLE_RAW_REPO_IDS = {
"lerobot-raw/aloha_mobile_cabinet_raw": "aloha_hdf5",
"lerobot-raw/aloha_mobile_chair_raw": "aloha_hdf5",
"lerobot-raw/aloha_mobile_elevator_raw": "aloha_hdf5",
"lerobot-raw/aloha_mobile_shrimp_raw": "aloha_hdf5",
"lerobot-raw/aloha_mobile_wash_pan_raw": "aloha_hdf5",
"lerobot-raw/aloha_mobile_wipe_wine_raw": "aloha_hdf5",
"lerobot-raw/aloha_sim_insertion_human_raw": "aloha_hdf5",
"lerobot-raw/aloha_sim_insertion_scripted_raw": "aloha_hdf5",
"lerobot-raw/aloha_sim_transfer_cube_human_raw": "aloha_hdf5",
"lerobot-raw/aloha_sim_transfer_cube_scripted_raw": "aloha_hdf5",
"lerobot-raw/aloha_static_battery_raw": "aloha_hdf5",
"lerobot-raw/aloha_static_candy_raw": "aloha_hdf5",
"lerobot-raw/aloha_static_coffee_new_raw": "aloha_hdf5",
"lerobot-raw/aloha_static_coffee_raw": "aloha_hdf5",
"lerobot-raw/aloha_static_cups_open_raw": "aloha_hdf5",
"lerobot-raw/aloha_static_fork_pick_up_raw": "aloha_hdf5",
"lerobot-raw/aloha_static_pingpong_test_raw": "aloha_hdf5",
"lerobot-raw/aloha_static_pro_pencil_raw": "aloha_hdf5",
"lerobot-raw/aloha_static_screw_driver_raw": "aloha_hdf5",
"lerobot-raw/aloha_static_tape_raw": "aloha_hdf5",
"lerobot-raw/aloha_static_thread_velcro_raw": "aloha_hdf5",
"lerobot-raw/aloha_static_towel_raw": "aloha_hdf5",
"lerobot-raw/aloha_static_vinh_cup_left_raw": "aloha_hdf5",
"lerobot-raw/aloha_static_vinh_cup_raw": "aloha_hdf5",
"lerobot-raw/aloha_static_ziploc_slide_raw": "aloha_hdf5",
"lerobot-raw/umi_cup_in_the_wild_raw": "umi_zarr",
"lerobot-raw/pusht_raw": "pusht_zarr",
"lerobot-raw/unitreeh1_fold_clothes_raw": "aloha_hdf5",
"lerobot-raw/unitreeh1_rearrange_objects_raw": "aloha_hdf5",
"lerobot-raw/unitreeh1_two_robot_greeting_raw": "aloha_hdf5",
"lerobot-raw/unitreeh1_warehouse_raw": "aloha_hdf5",
"lerobot-raw/xarm_lift_medium_raw": "xarm_pkl",
"lerobot-raw/xarm_lift_medium_replay_raw": "xarm_pkl",
"lerobot-raw/xarm_push_medium_raw": "xarm_pkl",
"lerobot-raw/xarm_push_medium_replay_raw": "xarm_pkl",
"lerobot-raw/fractal20220817_data_raw": "openx_rlds.fractal20220817_data",
"lerobot-raw/kuka_raw": "openx_rlds.kuka",
"lerobot-raw/bridge_openx_raw": "openx_rlds.bridge_openx",
"lerobot-raw/taco_play_raw": "openx_rlds.taco_play",
"lerobot-raw/jaco_play_raw": "openx_rlds.jaco_play",
"lerobot-raw/berkeley_cable_routing_raw": "openx_rlds.berkeley_cable_routing",
"lerobot-raw/roboturk_raw": "openx_rlds.roboturk",
"lerobot-raw/nyu_door_opening_surprising_effectiveness_raw": "openx_rlds.nyu_door_opening_surprising_effectiveness",
"lerobot-raw/viola_raw": "openx_rlds.viola",
"lerobot-raw/berkeley_autolab_ur5_raw": "openx_rlds.berkeley_autolab_ur5",
"lerobot-raw/toto_raw": "openx_rlds.toto",
"lerobot-raw/language_table_raw": "openx_rlds.language_table",
"lerobot-raw/columbia_cairlab_pusht_real_raw": "openx_rlds.columbia_cairlab_pusht_real",
"lerobot-raw/stanford_kuka_multimodal_dataset_raw": "openx_rlds.stanford_kuka_multimodal_dataset",
"lerobot-raw/nyu_rot_dataset_raw": "openx_rlds.nyu_rot_dataset",
"lerobot-raw/io_ai_tech_raw": "openx_rlds.io_ai_tech",
"lerobot-raw/stanford_hydra_dataset_raw": "openx_rlds.stanford_hydra_dataset",
"lerobot-raw/austin_buds_dataset_raw": "openx_rlds.austin_buds_dataset",
"lerobot-raw/nyu_franka_play_dataset_raw": "openx_rlds.nyu_franka_play_dataset",
"lerobot-raw/maniskill_dataset_raw": "openx_rlds.maniskill_dataset",
"lerobot-raw/furniture_bench_dataset_raw": "openx_rlds.furniture_bench_dataset",
"lerobot-raw/cmu_franka_exploration_dataset_raw": "openx_rlds.cmu_franka_exploration_dataset",
"lerobot-raw/ucsd_kitchen_dataset_raw": "openx_rlds.ucsd_kitchen_dataset",
"lerobot-raw/ucsd_pick_and_place_dataset_raw": "openx_rlds.ucsd_pick_and_place_dataset",
"lerobot-raw/spoc_raw": "openx_rlds.spoc",
"lerobot-raw/austin_sailor_dataset_raw": "openx_rlds.austin_sailor_dataset",
"lerobot-raw/austin_sirius_dataset_raw": "openx_rlds.austin_sirius_dataset",
"lerobot-raw/bc_z_raw": "openx_rlds.bc_z",
"lerobot-raw/utokyo_pr2_opening_fridge_raw": "openx_rlds.utokyo_pr2_opening_fridge",
"lerobot-raw/utokyo_pr2_tabletop_manipulation_raw": "openx_rlds.utokyo_pr2_tabletop_manipulation",
"lerobot-raw/utokyo_xarm_pick_and_place_raw": "openx_rlds.utokyo_xarm_pick_and_place",
"lerobot-raw/utokyo_xarm_bimanual_raw": "openx_rlds.utokyo_xarm_bimanual",
"lerobot-raw/utokyo_saytap_raw": "openx_rlds.utokyo_saytap",
"lerobot-raw/robo_net_raw": "openx_rlds.robo_net",
"lerobot-raw/robo_set_raw": "openx_rlds.robo_set",
"lerobot-raw/berkeley_mvp_raw": "openx_rlds.berkeley_mvp",
"lerobot-raw/berkeley_rpt_raw": "openx_rlds.berkeley_rpt",
"lerobot-raw/kaist_nonprehensile_raw": "openx_rlds.kaist_nonprehensile",
"lerobot-raw/stanford_mask_vit_raw": "openx_rlds.stanford_mask_vit",
"lerobot-raw/tokyo_u_lsmo_raw": "openx_rlds.tokyo_u_lsmo",
"lerobot-raw/dlr_sara_pour_raw": "openx_rlds.dlr_sara_pour",
"lerobot-raw/dlr_sara_grid_clamp_raw": "openx_rlds.dlr_sara_grid_clamp",
"lerobot-raw/dlr_edan_shared_control_raw": "openx_rlds.dlr_edan_shared_control",
"lerobot-raw/asu_table_top_raw": "openx_rlds.asu_table_top",
"lerobot-raw/stanford_robocook_raw": "openx_rlds.stanford_robocook",
"lerobot-raw/imperialcollege_sawyer_wrist_cam_raw": "openx_rlds.imperialcollege_sawyer_wrist_cam",
"lerobot-raw/iamlab_cmu_pickup_insert_raw": "openx_rlds.iamlab_cmu_pickup_insert",
"lerobot-raw/uiuc_d3field_raw": "openx_rlds.uiuc_d3field",
"lerobot-raw/utaustin_mutex_raw": "openx_rlds.utaustin_mutex",
"lerobot-raw/berkeley_fanuc_manipulation_raw": "openx_rlds.berkeley_fanuc_manipulation",
"lerobot-raw/cmu_playing_with_food_raw": "openx_rlds.cmu_playing_with_food",
"lerobot-raw/cmu_play_fusion_raw": "openx_rlds.cmu_play_fusion",
"lerobot-raw/cmu_stretch_raw": "openx_rlds.cmu_stretch",
"lerobot-raw/berkeley_gnm_recon_raw": "openx_rlds.berkeley_gnm_recon",
"lerobot-raw/berkeley_gnm_cory_hall_raw": "openx_rlds.berkeley_gnm_cory_hall",
"lerobot-raw/berkeley_gnm_sac_son_raw": "openx_rlds.berkeley_gnm_sac_son",
"lerobot-raw/droid_raw": "openx_rlds.droid",
"lerobot-raw/droid_100_raw": "openx_rlds.droid100",
"lerobot-raw/fmb_raw": "openx_rlds.fmb",
"lerobot-raw/dobbe_raw": "openx_rlds.dobbe",
"lerobot-raw/usc_cloth_sim_raw": "openx_rlds.usc_cloth_sim",
"lerobot-raw/plex_robosuite_raw": "openx_rlds.plex_robosuite",
"lerobot-raw/conq_hose_manipulation_raw": "openx_rlds.conq_hose_manipulation",
"lerobot-raw/vima_raw": "openx_rlds.vima",
"lerobot-raw/robot_vqa_raw": "openx_rlds.robot_vqa",
"lerobot-raw/mimic_play_raw": "openx_rlds.mimic_play",
"lerobot-raw/tidybot_raw": "openx_rlds.tidybot",
"lerobot-raw/eth_agent_affordances_raw": "openx_rlds.eth_agent_affordances",
}
def download_and_extract_zip(url: str, destination_folder: Path) -> bool:
import zipfile
def download_raw(raw_dir: Path, repo_id: str):
check_repo_id(repo_id)
user_id, dataset_id = repo_id.split("/")
import requests
if not dataset_id.endswith("_raw"):
warnings.warn(
f"""`dataset_id` ({dataset_id}) doesn't end with '_raw' (e.g. 'lerobot/pusht_raw'). Following this
naming convention by renaming your repository is advised, but not mandatory.""",
stacklevel=1,
)
print(f"downloading from {url}")
response = requests.get(url, stream=True)
if response.status_code == 200:
total_size = int(response.headers.get("content-length", 0))
progress_bar = tqdm.tqdm(total=total_size, unit="B", unit_scale=True)
zip_file = io.BytesIO()
for chunk in response.iter_content(chunk_size=1024):
if chunk:
zip_file.write(chunk)
progress_bar.update(len(chunk))
progress_bar.close()
zip_file.seek(0)
with zipfile.ZipFile(zip_file, "r") as zip_ref:
zip_ref.extractall(destination_folder)
def download_pusht(raw_dir: str):
pusht_url = "https://diffusion-policy.cs.columbia.edu/data/training/pusht.zip"
raw_dir = Path(raw_dir)
raw_dir.mkdir(parents=True, exist_ok=True)
download_and_extract_zip(pusht_url, raw_dir)
# file is created inside a useful "pusht" directory, so we move it out and delete the dir
zarr_path = raw_dir / "pusht_cchi_v7_replay.zarr"
shutil.move(raw_dir / "pusht" / "pusht_cchi_v7_replay.zarr", zarr_path)
shutil.rmtree(raw_dir / "pusht")
def download_xarm(raw_dir: Path):
"""Download all xarm datasets at once"""
import zipfile
import gdown
raw_dir = Path(raw_dir)
raw_dir.mkdir(parents=True, exist_ok=True)
# from https://github.com/fyhMer/fowm/blob/main/scripts/download_datasets.py
url = "https://drive.google.com/uc?id=1nhxpykGtPDhmQKm-_B8zBSywVRdgeVya"
zip_path = raw_dir / "data.zip"
gdown.download(url, str(zip_path), quiet=False)
print("Extracting...")
with zipfile.ZipFile(str(zip_path), "r") as zip_f:
for pkl_path in zip_f.namelist():
if pkl_path.startswith("data/xarm") and pkl_path.endswith(".pkl"):
zip_f.extract(member=pkl_path)
# move to corresponding raw directory
extract_dir = pkl_path.replace("/buffer.pkl", "")
raw_pkl_path = raw_dir / "buffer.pkl"
shutil.move(pkl_path, raw_pkl_path)
shutil.rmtree(extract_dir)
zip_path.unlink()
def download_hub(raw_dir: Path, dataset_id: str):
raw_dir = Path(raw_dir)
# Send warning if raw_dir isn't well formated
if raw_dir.parts[-2] != user_id or raw_dir.parts[-1] != dataset_id:
warnings.warn(
f"""`raw_dir` ({raw_dir}) doesn't contain a community or user id `/` the name of the dataset that
match the `repo_id` (e.g. 'data/lerobot/pusht_raw'). Following this naming convention is advised,
but not mandatory.""",
stacklevel=1,
)
raw_dir.mkdir(parents=True, exist_ok=True)
logging.info(f"Start downloading from huggingface.co/cadene for {dataset_id}")
snapshot_download(f"cadene/{dataset_id}_raw", repo_type="dataset", local_dir=raw_dir)
logging.info(f"Finish downloading from huggingface.co/cadene for {dataset_id}")
logging.info(f"Start downloading from huggingface.co/{user_id} for {dataset_id}")
snapshot_download(repo_id, repo_type="dataset", local_dir=raw_dir)
logging.info(f"Finish downloading from huggingface.co/{user_id} for {dataset_id}")
def download_umi(raw_dir: Path):
url_cup_in_the_wild = "https://real.stanford.edu/umi/data/zarr_datasets/cup_in_the_wild.zarr.zip"
zarr_path = raw_dir / "cup_in_the_wild.zarr"
def download_all_raw_datasets(data_dir: Path | None = None):
if data_dir is None:
data_dir = Path("data")
for repo_id in AVAILABLE_RAW_REPO_IDS:
raw_dir = data_dir / repo_id
download_raw(raw_dir, repo_id)
raw_dir = Path(raw_dir)
raw_dir.mkdir(parents=True, exist_ok=True)
download_and_extract_zip(url_cup_in_the_wild, zarr_path)
def main():
parser = argparse.ArgumentParser(
description=f"""A script to download raw datasets from Hugging Face hub to a local directory. Here is a
non exhaustive list of available repositories to use in `--repo-id`: {list(AVAILABLE_RAW_REPO_IDS.keys())}""",
)
parser.add_argument(
"--raw-dir",
type=Path,
required=True,
help="Directory containing input raw datasets (e.g. `data/aloha_mobile_chair_raw` or `data/pusht_raw).",
)
parser.add_argument(
"--repo-id",
type=str,
required=True,
help="""Repositery identifier on Hugging Face: a community or a user name `/` the name of
the dataset (e.g. `lerobot/pusht_raw`, `cadene/aloha_sim_insertion_human_raw`).""",
)
args = parser.parse_args()
download_raw(**vars(args))
if __name__ == "__main__":
data_dir = Path("data")
dataset_ids = [
"pusht_image",
"xarm_lift_medium_image",
"xarm_lift_medium_replay_image",
"xarm_push_medium_image",
"xarm_push_medium_replay_image",
"aloha_sim_insertion_human_image",
"aloha_sim_insertion_scripted_image",
"aloha_sim_transfer_cube_human_image",
"aloha_sim_transfer_cube_scripted_image",
"pusht",
"xarm_lift_medium",
"xarm_lift_medium_replay",
"xarm_push_medium",
"xarm_push_medium_replay",
"aloha_sim_insertion_human",
"aloha_sim_insertion_scripted",
"aloha_sim_transfer_cube_human",
"aloha_sim_transfer_cube_scripted",
"aloha_mobile_cabinet",
"aloha_mobile_chair",
"aloha_mobile_elevator",
"aloha_mobile_shrimp",
"aloha_mobile_wash_pan",
"aloha_mobile_wipe_wine",
"aloha_static_battery",
"aloha_static_candy",
"aloha_static_coffee",
"aloha_static_coffee_new",
"aloha_static_cups_open",
"aloha_static_fork_pick_up",
"aloha_static_pingpong_test",
"aloha_static_pro_pencil",
"aloha_static_screw_driver",
"aloha_static_tape",
"aloha_static_thread_velcro",
"aloha_static_towel",
"aloha_static_vinh_cup",
"aloha_static_vinh_cup_left",
"aloha_static_ziploc_slide",
"umi_cup_in_the_wild",
]
for dataset_id in dataset_ids:
raw_dir = data_dir / f"{dataset_id}_raw"
download_raw(raw_dir, dataset_id)
main()

View File

@@ -0,0 +1,184 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Use this script to batch encode lerobot dataset from their raw format to LeRobotDataset and push their updated
version to the hub. Under the hood, this script reuses 'push_dataset_to_hub.py'. It assumes that you already
downloaded raw datasets, which you can do with the related '_download_raw.py' script.
For instance, for codebase_version = 'v1.6', the following command was run, assuming raw datasets from
lerobot-raw were downloaded in 'raw/datasets/directory':
```bash
python lerobot/common/datasets/push_dataset_to_hub/_encode_datasets.py \
--raw-dir raw/datasets/directory \
--raw-repo-ids lerobot-raw \
--local-dir push/datasets/directory \
--tests-data-dir tests/data \
--push-repo lerobot \
--vcodec libsvtav1 \
--pix-fmt yuv420p \
--g 2 \
--crf 30
```
"""
import argparse
from pathlib import Path
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
from lerobot.common.datasets.push_dataset_to_hub._download_raw import AVAILABLE_RAW_REPO_IDS
from lerobot.common.datasets.push_dataset_to_hub.utils import check_repo_id
from lerobot.scripts.push_dataset_to_hub import push_dataset_to_hub
def get_push_repo_id_from_raw(raw_repo_id: str, push_repo: str) -> str:
dataset_id_raw = raw_repo_id.split("/")[1]
dataset_id = dataset_id_raw.removesuffix("_raw")
return f"{push_repo}/{dataset_id}"
def encode_datasets(
raw_dir: Path,
raw_repo_ids: list[str],
push_repo: str,
vcodec: str,
pix_fmt: str,
g: int,
crf: int,
local_dir: Path | None = None,
tests_data_dir: Path | None = None,
raw_format: str | None = None,
dry_run: bool = False,
) -> None:
if len(raw_repo_ids) == 1 and raw_repo_ids[0].lower() == "lerobot-raw":
raw_repo_ids_format = AVAILABLE_RAW_REPO_IDS
else:
if raw_format is None:
raise ValueError(raw_format)
raw_repo_ids_format = {id_: raw_format for id_ in raw_repo_ids}
for raw_repo_id, repo_raw_format in raw_repo_ids_format.items():
check_repo_id(raw_repo_id)
dataset_repo_id_push = get_push_repo_id_from_raw(raw_repo_id, push_repo)
dataset_raw_dir = raw_dir / raw_repo_id
dataset_dir = local_dir / dataset_repo_id_push if local_dir is not None else None
encoding = {
"vcodec": vcodec,
"pix_fmt": pix_fmt,
"g": g,
"crf": crf,
}
if not (dataset_raw_dir).is_dir():
raise NotADirectoryError(dataset_raw_dir)
if not dry_run:
push_dataset_to_hub(
dataset_raw_dir,
raw_format=repo_raw_format,
repo_id=dataset_repo_id_push,
local_dir=dataset_dir,
resume=True,
encoding=encoding,
tests_data_dir=tests_data_dir,
)
else:
print(
f"DRY RUN: {dataset_raw_dir} --> {dataset_dir} --> {dataset_repo_id_push}@{CODEBASE_VERSION}"
)
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--raw-dir",
type=Path,
default=Path("data"),
help="Directory where raw datasets are located.",
)
parser.add_argument(
"--raw-repo-ids",
type=str,
nargs="*",
default=["lerobot-raw"],
help="""Raw dataset repo ids. if 'lerobot-raw', the keys from `AVAILABLE_RAW_REPO_IDS` will be
used and raw datasets will be fetched from the 'lerobot-raw/' repo and pushed with their
associated format. It is assumed that each dataset is located at `raw_dir / raw_repo_id` """,
)
parser.add_argument(
"--raw-format",
type=str,
default=None,
help="""Raw format to use for the raw repo-ids. Must be specified if --raw-repo-ids is not
'lerobot-raw'""",
)
parser.add_argument(
"--local-dir",
type=Path,
default=None,
help="""When provided, writes the dataset converted to LeRobotDataset format in this directory
(e.g. `data/lerobot/aloha_mobile_chair`).""",
)
parser.add_argument(
"--push-repo",
type=str,
default="lerobot",
help="Repo to upload datasets to",
)
parser.add_argument(
"--vcodec",
type=str,
default="libsvtav1",
help="Codec to use for encoding videos",
)
parser.add_argument(
"--pix-fmt",
type=str,
default="yuv420p",
help="Pixel formats (chroma subsampling) to be used for encoding",
)
parser.add_argument(
"--g",
type=int,
default=2,
help="Group of pictures sizes to be used for encoding.",
)
parser.add_argument(
"--crf",
type=int,
default=30,
help="Constant rate factors to be used for encoding.",
)
parser.add_argument(
"--tests-data-dir",
type=Path,
default=None,
help=(
"When provided, save tests artifacts into the given directory "
"(e.g. `--tests-data-dir tests/data` will save to tests/data/{--repo-id})."
),
)
parser.add_argument(
"--dry-run",
type=int,
default=0,
help="If not set to 0, this script won't download or upload anything.",
)
args = parser.parse_args()
encode_datasets(**vars(args))
if __name__ == "__main__":
main()

View File

@@ -28,7 +28,13 @@ import tqdm
from datasets import Dataset, Features, Image, Sequence, Value
from PIL import Image as PILImage
from lerobot.common.datasets.push_dataset_to_hub.utils import concatenate_episodes, save_images_concurrently
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
from lerobot.common.datasets.push_dataset_to_hub.utils import (
calculate_episode_data_index,
concatenate_episodes,
get_default_encoding,
save_images_concurrently,
)
from lerobot.common.datasets.utils import (
hf_transform_to_torch,
)
@@ -70,16 +76,24 @@ def check_format(raw_dir) -> bool:
assert c < h and c < w, f"Expect (h,w,c) image format but ({h=},{w=},{c=}) provided."
def load_from_raw(raw_dir, out_dir, fps, video, debug):
def load_from_raw(
raw_dir: Path,
videos_dir: Path,
fps: int,
video: bool,
episodes: list[int] | None = None,
encoding: dict | None = None,
):
# only frames from simulation are uncompressed
compressed_images = "sim" not in raw_dir.name
hdf5_files = list(raw_dir.glob("*.hdf5"))
ep_dicts = []
episode_data_index = {"from": [], "to": []}
hdf5_files = sorted(raw_dir.glob("episode_*.hdf5"))
num_episodes = len(hdf5_files)
id_from = 0
for ep_idx, ep_path in tqdm.tqdm(enumerate(hdf5_files), total=len(hdf5_files)):
ep_dicts = []
ep_ids = episodes if episodes else range(num_episodes)
for ep_idx in tqdm.tqdm(ep_ids):
ep_path = hdf5_files[ep_idx]
with h5py.File(ep_path, "r") as ep:
num_frames = ep["/action"].shape[0]
@@ -114,13 +128,13 @@ def load_from_raw(raw_dir, out_dir, fps, video, debug):
if video:
# save png images in temporary directory
tmp_imgs_dir = out_dir / "tmp_images"
tmp_imgs_dir = videos_dir / "tmp_images"
save_images_concurrently(imgs_array, tmp_imgs_dir)
# encode images to a mp4 video
fname = f"{img_key}_episode_{ep_idx:06d}.mp4"
video_path = out_dir / "videos" / fname
encode_video_frames(tmp_imgs_dir, video_path, fps)
video_path = videos_dir / fname
encode_video_frames(tmp_imgs_dir, video_path, fps, **(encoding or {}))
# clean temporary images directory
shutil.rmtree(tmp_imgs_dir)
@@ -147,19 +161,13 @@ def load_from_raw(raw_dir, out_dir, fps, video, debug):
assert isinstance(ep_idx, int)
ep_dicts.append(ep_dict)
episode_data_index["from"].append(id_from)
episode_data_index["to"].append(id_from + num_frames)
id_from += num_frames
gc.collect()
# process first episode only
if debug:
break
data_dict = concatenate_episodes(ep_dicts)
return data_dict, episode_data_index
total_frames = data_dict["frame_index"].shape[0]
data_dict["index"] = torch.arange(0, total_frames, 1)
return data_dict
def to_hf_dataset(data_dict, video) -> Dataset:
@@ -197,18 +205,29 @@ def to_hf_dataset(data_dict, video) -> Dataset:
return hf_dataset
def from_raw_to_lerobot_format(raw_dir: Path, out_dir: Path, fps=None, video=True, debug=False):
def from_raw_to_lerobot_format(
raw_dir: Path,
videos_dir: Path,
fps: int | None = None,
video: bool = True,
episodes: list[int] | None = None,
encoding: dict | None = None,
):
# sanity check
check_format(raw_dir)
if fps is None:
fps = 50
data_dir, episode_data_index = load_from_raw(raw_dir, out_dir, fps, video, debug)
hf_dataset = to_hf_dataset(data_dir, video)
data_dict = load_from_raw(raw_dir, videos_dir, fps, video, episodes, encoding)
hf_dataset = to_hf_dataset(data_dict, video)
episode_data_index = calculate_episode_data_index(hf_dataset)
info = {
"codebase_version": CODEBASE_VERSION,
"fps": fps,
"video": video,
}
if video:
info["encoding"] = get_default_encoding()
return hf_dataset, episode_data_index, info

View File

@@ -0,0 +1,107 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Contains utilities to process raw data format of png images files recorded with capture_camera_feed.py
"""
from pathlib import Path
import torch
from datasets import Dataset, Features, Image, Value
from PIL import Image as PILImage
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
from lerobot.common.datasets.push_dataset_to_hub.utils import (
calculate_episode_data_index,
concatenate_episodes,
)
from lerobot.common.datasets.utils import hf_transform_to_torch
from lerobot.common.datasets.video_utils import VideoFrame
def check_format(raw_dir: Path) -> bool:
image_paths = list(raw_dir.glob("frame_*.png"))
if len(image_paths) == 0:
raise ValueError
def load_from_raw(raw_dir: Path, fps: int, episodes: list[int] | None = None):
if episodes is not None:
# TODO(aliberts): add support for multi-episodes.
raise NotImplementedError()
ep_dict = {}
ep_idx = 0
image_paths = sorted(raw_dir.glob("frame_*.png"))
num_frames = len(image_paths)
ep_dict["observation.image"] = [PILImage.open(x) for x in image_paths]
ep_dict["episode_index"] = torch.tensor([ep_idx] * num_frames)
ep_dict["frame_index"] = torch.arange(0, num_frames, 1)
ep_dict["timestamp"] = torch.arange(0, num_frames, 1) / fps
ep_dicts = [ep_dict]
data_dict = concatenate_episodes(ep_dicts)
total_frames = data_dict["frame_index"].shape[0]
data_dict["index"] = torch.arange(0, total_frames, 1)
return data_dict
def to_hf_dataset(data_dict, video) -> Dataset:
features = {}
if video:
features["observation.image"] = VideoFrame()
else:
features["observation.image"] = Image()
features["episode_index"] = Value(dtype="int64", id=None)
features["frame_index"] = Value(dtype="int64", id=None)
features["timestamp"] = Value(dtype="float32", id=None)
features["index"] = Value(dtype="int64", id=None)
hf_dataset = Dataset.from_dict(data_dict, features=Features(features))
hf_dataset.set_transform(hf_transform_to_torch)
return hf_dataset
def from_raw_to_lerobot_format(
raw_dir: Path,
videos_dir: Path,
fps: int | None = None,
video: bool = True,
episodes: list[int] | None = None,
encoding: dict | None = None,
):
if video or episodes or encoding is not None:
# TODO(aliberts): support this
raise NotImplementedError
# sanity check
check_format(raw_dir)
if fps is None:
fps = 30
data_dict = load_from_raw(raw_dir, videos_dir, fps, video, episodes)
hf_dataset = to_hf_dataset(data_dict, video)
episode_data_index = calculate_episode_data_index(hf_dataset)
info = {
"codebase_version": CODEBASE_VERSION,
"fps": fps,
"video": video,
}
return hf_dataset, episode_data_index, info

View File

@@ -17,19 +17,20 @@
Contains utilities to process raw data format from dora-record
"""
import logging
import re
import warnings
from pathlib import Path
import pandas as pd
import torch
from datasets import Dataset, Features, Image, Sequence, Value
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
from lerobot.common.datasets.push_dataset_to_hub.utils import calculate_episode_data_index
from lerobot.common.datasets.utils import (
hf_transform_to_torch,
)
from lerobot.common.datasets.video_utils import VideoFrame
from lerobot.common.utils.utils import init_logging
def check_format(raw_dir) -> bool:
@@ -41,7 +42,7 @@ def check_format(raw_dir) -> bool:
return True
def load_from_raw(raw_dir: Path, out_dir: Path, fps: int):
def load_from_raw(raw_dir: Path, videos_dir: Path, fps: int, video: bool, episodes: list[int] | None = None):
# Load data stream that will be used as reference for the timestamps synchronization
reference_files = list(raw_dir.glob("observation.images.cam_*.parquet"))
if len(reference_files) == 0:
@@ -122,8 +123,7 @@ def load_from_raw(raw_dir: Path, out_dir: Path, fps: int):
raise ValueError(f"Episodes indices go from {ep_ids} instead of {expected_ep_ids}")
# Create symlink to raw videos directory (that needs to be absolute not relative)
out_dir.mkdir(parents=True, exist_ok=True)
videos_dir = out_dir / "videos"
videos_dir.parent.mkdir(parents=True, exist_ok=True)
videos_dir.symlink_to((raw_dir / "videos").absolute())
# sanity check the video paths are well formated
@@ -156,16 +156,7 @@ def load_from_raw(raw_dir: Path, out_dir: Path, fps: int):
else:
raise ValueError(key)
# Get the episode index containing for each unique episode index
first_ep_index_df = df.groupby("episode_index").agg(start_index=("index", "first")).reset_index()
from_ = first_ep_index_df["start_index"].tolist()
to_ = from_[1:] + [len(df)]
episode_data_index = {
"from": from_,
"to": to_,
}
return data_dict, episode_data_index
return data_dict
def to_hf_dataset(data_dict, video) -> Dataset:
@@ -203,12 +194,14 @@ def to_hf_dataset(data_dict, video) -> Dataset:
return hf_dataset
def from_raw_to_lerobot_format(raw_dir: Path, out_dir: Path, fps=None, video=True, debug=False):
init_logging()
if debug:
logging.warning("debug=True not implemented. Falling back to debug=False.")
def from_raw_to_lerobot_format(
raw_dir: Path,
videos_dir: Path,
fps: int | None = None,
video: bool = True,
episodes: list[int] | None = None,
encoding: dict | None = None,
):
# sanity check
check_format(raw_dir)
@@ -220,11 +213,21 @@ def from_raw_to_lerobot_format(raw_dir: Path, out_dir: Path, fps=None, video=Tru
if not video:
raise NotImplementedError()
data_df, episode_data_index = load_from_raw(raw_dir, out_dir, fps)
hf_dataset = to_hf_dataset(data_df, video)
if encoding is not None:
warnings.warn(
"Video encoding is currently done outside of LeRobot for the dora_parquet format.",
stacklevel=1,
)
data_df = load_from_raw(raw_dir, videos_dir, fps, episodes)
hf_dataset = to_hf_dataset(data_df, video)
episode_data_index = calculate_episode_data_index(hf_dataset)
info = {
"codebase_version": CODEBASE_VERSION,
"fps": fps,
"video": video,
}
if video:
info["encoding"] = "unknown"
return hf_dataset, episode_data_index, info

View File

@@ -0,0 +1,312 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
For all datasets in the RLDS format.
For https://github.com/google-deepmind/open_x_embodiment (OPENX) datasets.
NOTE: You need to install tensorflow and tensorflow_datsets before running this script.
Example:
python lerobot/scripts/push_dataset_to_hub.py \
--raw-dir /path/to/data/bridge_dataset/1.0.0/ \
--repo-id your_hub/sampled_bridge_data_v2 \
--raw-format rlds \
--episodes 3 4 5 8 9
Exact dataset fps defined in openx/config.py, obtained from:
https://docs.google.com/spreadsheets/d/1rPBD77tk60AEIGZrGSODwyyzs5FgCU9Uz3h-3_t2A9g/edit?gid=0#gid=0&range=R:R
"""
import shutil
from pathlib import Path
import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfds
import torch
import tqdm
from datasets import Dataset, Features, Image, Sequence, Value
from PIL import Image as PILImage
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
from lerobot.common.datasets.push_dataset_to_hub.utils import (
calculate_episode_data_index,
concatenate_episodes,
get_default_encoding,
save_images_concurrently,
)
from lerobot.common.datasets.utils import (
hf_transform_to_torch,
)
from lerobot.common.datasets.video_utils import VideoFrame, encode_video_frames
np.set_printoptions(precision=2)
def tf_to_torch(data):
return torch.from_numpy(data.numpy())
def tf_img_convert(img):
if img.dtype == tf.string:
img = tf.io.decode_image(img, expand_animations=False, dtype=tf.uint8)
elif img.dtype != tf.uint8:
raise ValueError(f"Unsupported image dtype: found with dtype {img.dtype}")
return img.numpy()
def _broadcast_metadata_rlds(i: tf.Tensor, traj: dict) -> dict:
"""
In the RLDS format, each trajectory has some top-level metadata that is explicitly separated out, and a "steps"
entry. This function moves the "steps" entry to the top level, broadcasting any metadata to the length of the
trajectory. This function also adds the extra metadata fields `_len`, `_traj_index`, and `_frame_index`.
NOTE: adapted from DLimp library https://github.com/kvablack/dlimp/
"""
steps = traj.pop("steps")
traj_len = tf.shape(tf.nest.flatten(steps)[0])[0]
# broadcast metadata to the length of the trajectory
metadata = tf.nest.map_structure(lambda x: tf.repeat(x, traj_len), traj)
# put steps back in
assert "traj_metadata" not in steps
traj = {**steps, "traj_metadata": metadata}
assert "_len" not in traj
assert "_traj_index" not in traj
assert "_frame_index" not in traj
traj["_len"] = tf.repeat(traj_len, traj_len)
traj["_traj_index"] = tf.repeat(i, traj_len)
traj["_frame_index"] = tf.range(traj_len)
return traj
def load_from_raw(
raw_dir: Path,
videos_dir: Path,
fps: int,
video: bool,
episodes: list[int] | None = None,
encoding: dict | None = None,
):
"""
Args:
raw_dir (Path): _description_
videos_dir (Path): _description_
fps (int): _description_
video (bool): _description_
episodes (list[int] | None, optional): _description_. Defaults to None.
"""
ds_builder = tfds.builder_from_directory(str(raw_dir))
dataset = ds_builder.as_dataset(
split="all",
decoders={"steps": tfds.decode.SkipDecoding()},
)
dataset_info = ds_builder.info
print("dataset_info: ", dataset_info)
ds_length = len(dataset)
dataset = dataset.take(ds_length)
# "flatten" the dataset as such we can apply trajectory level map() easily
# each [obs][key] has a shape of (frame_size, ...)
dataset = dataset.enumerate().map(_broadcast_metadata_rlds)
# we will apply the standardization transform if the dataset_name is provided
# if the dataset name is not provided and the goal is to convert any rlds formatted dataset
# search for 'image' keys in the observations
image_keys = []
state_keys = []
observation_info = dataset_info.features["steps"]["observation"]
for key in observation_info:
# check whether the key is for an image or a vector observation
if len(observation_info[key].shape) == 3:
# only adding uint8 images discards depth images
if observation_info[key].dtype == tf.uint8:
image_keys.append(key)
else:
state_keys.append(key)
lang_key = "language_instruction" if "language_instruction" in dataset.element_spec else None
print(" - image_keys: ", image_keys)
print(" - lang_key: ", lang_key)
it = iter(dataset)
ep_dicts = []
# Init temp path to save ep_dicts in case of crash
tmp_ep_dicts_dir = videos_dir.parent.joinpath("ep_dicts")
tmp_ep_dicts_dir.mkdir(parents=True, exist_ok=True)
# check if ep_dicts have already been saved in /tmp
starting_ep_idx = 0
saved_ep_dicts = [ep.__str__() for ep in tmp_ep_dicts_dir.iterdir()]
if len(saved_ep_dicts) > 0:
saved_ep_dicts.sort()
# get last ep_idx number
starting_ep_idx = int(saved_ep_dicts[-1][-13:-3]) + 1
for i in range(starting_ep_idx):
episode = next(it)
ep_dicts.append(torch.load(saved_ep_dicts[i]))
# if we user specified episodes, skip the ones not in the list
if episodes is not None:
if ds_length == 0:
raise ValueError("No episodes found.")
# convert episodes index to sorted list
episodes = sorted(episodes)
for ep_idx in tqdm.tqdm(range(starting_ep_idx, ds_length)):
episode = next(it)
# if user specified episodes, skip the ones not in the list
if episodes is not None:
if len(episodes) == 0:
break
if ep_idx == episodes[0]:
# process this episode
print(" selecting episode idx: ", ep_idx)
episodes.pop(0)
else:
continue # skip
num_frames = episode["action"].shape[0]
ep_dict = {}
for key in state_keys:
ep_dict[f"observation.{key}"] = tf_to_torch(episode["observation"][key])
ep_dict["action"] = tf_to_torch(episode["action"])
ep_dict["next.reward"] = tf_to_torch(episode["reward"]).float()
ep_dict["next.done"] = tf_to_torch(episode["is_last"])
ep_dict["is_terminal"] = tf_to_torch(episode["is_terminal"])
ep_dict["is_first"] = tf_to_torch(episode["is_first"])
ep_dict["discount"] = tf_to_torch(episode["discount"])
# If lang_key is present, convert the entire tensor at once
if lang_key is not None:
ep_dict["language_instruction"] = [x.numpy().decode("utf-8") for x in episode[lang_key]]
ep_dict["timestamp"] = torch.arange(0, num_frames, 1) / fps
ep_dict["episode_index"] = torch.tensor([ep_idx] * num_frames)
ep_dict["frame_index"] = torch.arange(0, num_frames, 1)
image_array_dict = {key: [] for key in image_keys}
for im_key in image_keys:
imgs = episode["observation"][im_key]
image_array_dict[im_key] = [tf_img_convert(img) for img in imgs]
# loop through all cameras
for im_key in image_keys:
img_key = f"observation.images.{im_key}"
imgs_array = image_array_dict[im_key]
imgs_array = np.array(imgs_array)
if video:
# save png images in temporary directory
tmp_imgs_dir = videos_dir / "tmp_images"
save_images_concurrently(imgs_array, tmp_imgs_dir)
# encode images to a mp4 video
fname = f"{img_key}_episode_{ep_idx:06d}.mp4"
video_path = videos_dir / fname
encode_video_frames(tmp_imgs_dir, video_path, fps, **(encoding or {}))
# clean temporary images directory
shutil.rmtree(tmp_imgs_dir)
# store the reference to the video frame
ep_dict[img_key] = [
{"path": f"videos/{fname}", "timestamp": i / fps} for i in range(num_frames)
]
else:
ep_dict[img_key] = [PILImage.fromarray(x) for x in imgs_array]
path_ep_dict = tmp_ep_dicts_dir.joinpath(
"ep_dict_" + "0" * (10 - len(str(ep_idx))) + str(ep_idx) + ".pt"
)
torch.save(ep_dict, path_ep_dict)
ep_dicts.append(ep_dict)
data_dict = concatenate_episodes(ep_dicts)
total_frames = data_dict["frame_index"].shape[0]
data_dict["index"] = torch.arange(0, total_frames, 1)
return data_dict
def to_hf_dataset(data_dict, video) -> Dataset:
features = {}
for key in data_dict:
# check if vector state obs
if key.startswith("observation.") and "observation.images." not in key:
features[key] = Sequence(length=data_dict[key].shape[1], feature=Value(dtype="float32", id=None))
# check if image obs
elif "observation.images." in key:
if video:
features[key] = VideoFrame()
else:
features[key] = Image()
if "language_instruction" in data_dict:
features["language_instruction"] = Value(dtype="string", id=None)
features["action"] = Sequence(
length=data_dict["action"].shape[1], feature=Value(dtype="float32", id=None)
)
features["is_terminal"] = Value(dtype="bool", id=None)
features["is_first"] = Value(dtype="bool", id=None)
features["discount"] = Value(dtype="float32", id=None)
features["episode_index"] = Value(dtype="int64", id=None)
features["frame_index"] = Value(dtype="int64", id=None)
features["timestamp"] = Value(dtype="float32", id=None)
features["next.reward"] = Value(dtype="float32", id=None)
features["next.done"] = Value(dtype="bool", id=None)
features["index"] = Value(dtype="int64", id=None)
hf_dataset = Dataset.from_dict(data_dict, features=Features(features))
hf_dataset.set_transform(hf_transform_to_torch)
return hf_dataset
def from_raw_to_lerobot_format(
raw_dir: Path,
videos_dir: Path,
fps: int | None = None,
video: bool = True,
episodes: list[int] | None = None,
encoding: dict | None = None,
):
data_dict = load_from_raw(raw_dir, videos_dir, fps, video, episodes, encoding)
hf_dataset = to_hf_dataset(data_dict, video)
episode_data_index = calculate_episode_data_index(hf_dataset)
info = {
"codebase_version": CODEBASE_VERSION,
"fps": fps,
"video": video,
}
if video:
info["encoding"] = get_default_encoding()
return hf_dataset, episode_data_index, info

View File

@@ -25,7 +25,13 @@ import zarr
from datasets import Dataset, Features, Image, Sequence, Value
from PIL import Image as PILImage
from lerobot.common.datasets.push_dataset_to_hub.utils import concatenate_episodes, save_images_concurrently
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
from lerobot.common.datasets.push_dataset_to_hub.utils import (
calculate_episode_data_index,
concatenate_episodes,
get_default_encoding,
save_images_concurrently,
)
from lerobot.common.datasets.utils import (
hf_transform_to_torch,
)
@@ -53,7 +59,15 @@ def check_format(raw_dir):
assert all(nb_frames == zarr_data[dataset].shape[0] for dataset in required_datasets)
def load_from_raw(raw_dir, out_dir, fps, video, debug):
def load_from_raw(
raw_dir: Path,
videos_dir: Path,
fps: int,
video: bool,
episodes: list[int] | None = None,
keypoints_instead_of_image: bool = False,
encoding: dict | None = None,
):
try:
import pymunk
from gym_pusht.envs.pusht import PushTEnv, pymunk_to_shapely
@@ -71,7 +85,6 @@ def load_from_raw(raw_dir, out_dir, fps, video, debug):
zarr_data = DiffusionPolicyReplayBuffer.copy_from_path(zarr_path)
episode_ids = torch.from_numpy(zarr_data.get_episode_idxs())
num_episodes = zarr_data.meta["episode_ends"].shape[0]
assert len(
{zarr_data[key].shape[0] for key in zarr_data.keys()} # noqa: SIM118
), "Some data type dont have the same number of total frames."
@@ -84,32 +97,44 @@ def load_from_raw(raw_dir, out_dir, fps, video, debug):
states = torch.from_numpy(zarr_data["state"])
actions = torch.from_numpy(zarr_data["action"])
ep_dicts = []
episode_data_index = {"from": [], "to": []}
# load data indices from which each episode starts and ends
from_ids, to_ids = [], []
from_idx = 0
for to_idx in zarr_data.meta["episode_ends"]:
from_ids.append(from_idx)
to_ids.append(to_idx)
from_idx = to_idx
id_from = 0
for ep_idx in tqdm.tqdm(range(num_episodes)):
id_to = zarr_data.meta["episode_ends"][ep_idx]
num_frames = id_to - id_from
num_episodes = len(from_ids)
ep_dicts = []
ep_ids = episodes if episodes else range(num_episodes)
for ep_idx, selected_ep_idx in tqdm.tqdm(enumerate(ep_ids)):
from_idx = from_ids[selected_ep_idx]
to_idx = to_ids[selected_ep_idx]
num_frames = to_idx - from_idx
# sanity check
assert (episode_ids[id_from:id_to] == ep_idx).all()
assert (episode_ids[from_idx:to_idx] == ep_idx).all()
# get image
image = imgs[id_from:id_to]
assert image.min() >= 0.0
assert image.max() <= 255.0
image = image.type(torch.uint8)
if not keypoints_instead_of_image:
image = imgs[from_idx:to_idx]
assert image.min() >= 0.0
assert image.max() <= 255.0
image = image.type(torch.uint8)
# get state
state = states[id_from:id_to]
state = states[from_idx:to_idx]
agent_pos = state[:, :2]
block_pos = state[:, 2:4]
block_angle = state[:, 4]
# get reward, success, done
# get reward, success, done, and (maybe) keypoints
reward = torch.zeros(num_frames)
success = torch.zeros(num_frames, dtype=torch.bool)
if keypoints_instead_of_image:
keypoints = torch.zeros(num_frames, 16) # 8 keypoints each with 2 coords
done = torch.zeros(num_frames, dtype=torch.bool)
for i in range(num_frames):
space = pymunk.Space()
@@ -125,7 +150,7 @@ def load_from_raw(raw_dir, out_dir, fps, video, debug):
]
space.add(*walls)
block_body = PushTEnv.add_tee(space, block_pos[i].tolist(), block_angle[i].item())
block_body, block_shapes = PushTEnv.add_tee(space, block_pos[i].tolist(), block_angle[i].item())
goal_geom = pymunk_to_shapely(goal_body, block_body.shapes)
block_geom = pymunk_to_shapely(block_body, block_body.shapes)
intersection_area = goal_geom.intersection(block_geom).area
@@ -133,34 +158,41 @@ def load_from_raw(raw_dir, out_dir, fps, video, debug):
coverage = intersection_area / goal_area
reward[i] = np.clip(coverage / success_threshold, 0, 1)
success[i] = coverage > success_threshold
if keypoints_instead_of_image:
keypoints[i] = torch.from_numpy(PushTEnv.get_keypoints(block_shapes).flatten())
# last step of demonstration is considered done
done[-1] = True
ep_dict = {}
imgs_array = [x.numpy() for x in image]
img_key = "observation.image"
if video:
# save png images in temporary directory
tmp_imgs_dir = out_dir / "tmp_images"
save_images_concurrently(imgs_array, tmp_imgs_dir)
if not keypoints_instead_of_image:
imgs_array = [x.numpy() for x in image]
img_key = "observation.image"
if video:
# save png images in temporary directory
tmp_imgs_dir = videos_dir / "tmp_images"
save_images_concurrently(imgs_array, tmp_imgs_dir)
# encode images to a mp4 video
fname = f"{img_key}_episode_{ep_idx:06d}.mp4"
video_path = out_dir / "videos" / fname
encode_video_frames(tmp_imgs_dir, video_path, fps)
# encode images to a mp4 video
fname = f"{img_key}_episode_{ep_idx:06d}.mp4"
video_path = videos_dir / fname
encode_video_frames(tmp_imgs_dir, video_path, fps, **(encoding or {}))
# clean temporary images directory
shutil.rmtree(tmp_imgs_dir)
# clean temporary images directory
shutil.rmtree(tmp_imgs_dir)
# store the reference to the video frame
ep_dict[img_key] = [{"path": f"videos/{fname}", "timestamp": i / fps} for i in range(num_frames)]
else:
ep_dict[img_key] = [PILImage.fromarray(x) for x in imgs_array]
# store the reference to the video frame
ep_dict[img_key] = [
{"path": f"videos/{fname}", "timestamp": i / fps} for i in range(num_frames)
]
else:
ep_dict[img_key] = [PILImage.fromarray(x) for x in imgs_array]
ep_dict["observation.state"] = agent_pos
ep_dict["action"] = actions[id_from:id_to]
if keypoints_instead_of_image:
ep_dict["observation.environment_state"] = keypoints
ep_dict["action"] = actions[from_idx:to_idx]
ep_dict["episode_index"] = torch.tensor([ep_idx] * num_frames, dtype=torch.int64)
ep_dict["frame_index"] = torch.arange(0, num_frames, 1)
ep_dict["timestamp"] = torch.arange(0, num_frames, 1) / fps
@@ -171,31 +203,30 @@ def load_from_raw(raw_dir, out_dir, fps, video, debug):
ep_dict["next.done"] = torch.cat([done[1:], done[[-1]]])
ep_dict["next.success"] = torch.cat([success[1:], success[[-1]]])
ep_dicts.append(ep_dict)
episode_data_index["from"].append(id_from)
episode_data_index["to"].append(id_from + num_frames)
id_from += num_frames
# process first episode only
if debug:
break
data_dict = concatenate_episodes(ep_dicts)
return data_dict, episode_data_index
total_frames = data_dict["frame_index"].shape[0]
data_dict["index"] = torch.arange(0, total_frames, 1)
return data_dict
def to_hf_dataset(data_dict, video):
def to_hf_dataset(data_dict, video, keypoints_instead_of_image: bool = False):
features = {}
if video:
features["observation.image"] = VideoFrame()
else:
features["observation.image"] = Image()
if not keypoints_instead_of_image:
if video:
features["observation.image"] = VideoFrame()
else:
features["observation.image"] = Image()
features["observation.state"] = Sequence(
length=data_dict["observation.state"].shape[1], feature=Value(dtype="float32", id=None)
)
if keypoints_instead_of_image:
features["observation.environment_state"] = Sequence(
length=data_dict["observation.environment_state"].shape[1],
feature=Value(dtype="float32", id=None),
)
features["action"] = Sequence(
length=data_dict["action"].shape[1], feature=Value(dtype="float32", id=None)
)
@@ -212,18 +243,33 @@ def to_hf_dataset(data_dict, video):
return hf_dataset
def from_raw_to_lerobot_format(raw_dir: Path, out_dir: Path, fps=None, video=True, debug=False):
def from_raw_to_lerobot_format(
raw_dir: Path,
videos_dir: Path,
fps: int | None = None,
video: bool = True,
episodes: list[int] | None = None,
encoding: dict | None = None,
):
# Manually change this to True to use keypoints of the T instead of an image observation (but don't merge
# with True). Also make sure to use video = 0 in the `push_dataset_to_hub.py` script.
keypoints_instead_of_image = False
# sanity check
check_format(raw_dir)
if fps is None:
fps = 10
data_dict, episode_data_index = load_from_raw(raw_dir, out_dir, fps, video, debug)
hf_dataset = to_hf_dataset(data_dict, video)
data_dict = load_from_raw(raw_dir, videos_dir, fps, video, episodes, keypoints_instead_of_image, encoding)
hf_dataset = to_hf_dataset(data_dict, video, keypoints_instead_of_image)
episode_data_index = calculate_episode_data_index(hf_dataset)
info = {
"codebase_version": CODEBASE_VERSION,
"fps": fps,
"video": video,
"video": video if not keypoints_instead_of_image else 0,
}
if video:
info["encoding"] = get_default_encoding()
return hf_dataset, episode_data_index, info

View File

@@ -19,15 +19,20 @@ import logging
import shutil
from pathlib import Path
import numpy as np
import torch
import tqdm
import zarr
from datasets import Dataset, Features, Image, Sequence, Value
from PIL import Image as PILImage
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
from lerobot.common.datasets.push_dataset_to_hub._umi_imagecodecs_numcodecs import register_codecs
from lerobot.common.datasets.push_dataset_to_hub.utils import concatenate_episodes, save_images_concurrently
from lerobot.common.datasets.push_dataset_to_hub.utils import (
calculate_episode_data_index,
concatenate_episodes,
get_default_encoding,
save_images_concurrently,
)
from lerobot.common.datasets.utils import (
hf_transform_to_torch,
)
@@ -59,23 +64,14 @@ def check_format(raw_dir) -> bool:
assert all(nb_frames == zarr_data[dataset].shape[0] for dataset in required_datasets)
def get_episode_idxs(episode_ends: np.ndarray) -> np.ndarray:
# Optimized and simplified version of this function: https://github.com/real-stanford/universal_manipulation_interface/blob/298776ce251f33b6b3185a98d6e7d1f9ad49168b/diffusion_policy/common/replay_buffer.py#L374
from numba import jit
@jit(nopython=True)
def _get_episode_idxs(episode_ends):
result = np.zeros((episode_ends[-1],), dtype=np.int64)
start_idx = 0
for episode_number, end_idx in enumerate(episode_ends):
result[start_idx:end_idx] = episode_number
start_idx = end_idx
return result
return _get_episode_idxs(episode_ends)
def load_from_raw(raw_dir, out_dir, fps, video, debug):
def load_from_raw(
raw_dir: Path,
videos_dir: Path,
fps: int,
video: bool,
episodes: list[int] | None = None,
encoding: dict | None = None,
):
zarr_path = raw_dir / "cup_in_the_wild.zarr"
zarr_data = zarr.open(zarr_path, mode="r")
@@ -92,74 +88,79 @@ def load_from_raw(raw_dir, out_dir, fps, video, debug):
episode_ends = zarr_data["meta/episode_ends"][:]
num_episodes = episode_ends.shape[0]
episode_ids = torch.from_numpy(get_episode_idxs(episode_ends))
# We convert it in torch tensor later because the jit function does not support torch tensors
episode_ends = torch.from_numpy(episode_ends)
# load data indices from which each episode starts and ends
from_ids, to_ids = [], []
from_idx = 0
for to_idx in episode_ends:
from_ids.append(from_idx)
to_ids.append(to_idx)
from_idx = to_idx
ep_dicts_dir = videos_dir / "ep_dicts"
ep_dicts_dir.mkdir(exist_ok=True, parents=True)
ep_dicts = []
episode_data_index = {"from": [], "to": []}
id_from = 0
for ep_idx in tqdm.tqdm(range(num_episodes)):
id_to = episode_ends[ep_idx]
num_frames = id_to - id_from
ep_ids = episodes if episodes else range(num_episodes)
for ep_idx, selected_ep_idx in tqdm.tqdm(enumerate(ep_ids)):
ep_dict_path = ep_dicts_dir / f"{ep_idx}"
if not ep_dict_path.is_file():
from_idx = from_ids[selected_ep_idx]
to_idx = to_ids[selected_ep_idx]
num_frames = to_idx - from_idx
# sanity heck
assert (episode_ids[id_from:id_to] == ep_idx).all()
# TODO(rcadene): save temporary images of the episode?
# TODO(rcadene): save temporary images of the episode?
state = states[from_idx:to_idx]
state = states[id_from:id_to]
ep_dict = {}
ep_dict = {}
# load 57MB of images in RAM (400x224x224x3 uint8)
imgs_array = zarr_data["data/camera0_rgb"][from_idx:to_idx]
img_key = "observation.image"
if video:
fname = f"{img_key}_episode_{ep_idx:06d}.mp4"
video_path = videos_dir / fname
if not video_path.is_file():
# save png images in temporary directory
tmp_imgs_dir = videos_dir / "tmp_images"
save_images_concurrently(imgs_array, tmp_imgs_dir)
# load 57MB of images in RAM (400x224x224x3 uint8)
imgs_array = zarr_data["data/camera0_rgb"][id_from:id_to]
img_key = "observation.image"
if video:
# save png images in temporary directory
tmp_imgs_dir = out_dir / "tmp_images"
save_images_concurrently(imgs_array, tmp_imgs_dir)
# encode images to a mp4 video
encode_video_frames(tmp_imgs_dir, video_path, fps, **(encoding or {}))
# encode images to a mp4 video
fname = f"{img_key}_episode_{ep_idx:06d}.mp4"
video_path = out_dir / "videos" / fname
encode_video_frames(tmp_imgs_dir, video_path, fps)
# clean temporary images directory
shutil.rmtree(tmp_imgs_dir)
# clean temporary images directory
shutil.rmtree(tmp_imgs_dir)
# store the reference to the video frame
ep_dict[img_key] = [
{"path": f"videos/{fname}", "timestamp": i / fps} for i in range(num_frames)
]
else:
ep_dict[img_key] = [PILImage.fromarray(x) for x in imgs_array]
# store the reference to the video frame
ep_dict[img_key] = [{"path": f"videos/{fname}", "timestamp": i / fps} for i in range(num_frames)]
ep_dict["observation.state"] = state
ep_dict["episode_index"] = torch.tensor([ep_idx] * num_frames, dtype=torch.int64)
ep_dict["frame_index"] = torch.arange(0, num_frames, 1)
ep_dict["timestamp"] = torch.arange(0, num_frames, 1) / fps
ep_dict["episode_data_index_from"] = torch.tensor([from_idx] * num_frames)
ep_dict["episode_data_index_to"] = torch.tensor([from_idx + num_frames] * num_frames)
ep_dict["end_pose"] = end_pose[from_idx:to_idx]
ep_dict["start_pos"] = start_pos[from_idx:to_idx]
ep_dict["gripper_width"] = gripper_width[from_idx:to_idx]
torch.save(ep_dict, ep_dict_path)
else:
ep_dict[img_key] = [PILImage.fromarray(x) for x in imgs_array]
ep_dict = torch.load(ep_dict_path)
ep_dict["observation.state"] = state
ep_dict["episode_index"] = torch.tensor([ep_idx] * num_frames, dtype=torch.int64)
ep_dict["frame_index"] = torch.arange(0, num_frames, 1)
ep_dict["timestamp"] = torch.arange(0, num_frames, 1) / fps
ep_dict["episode_data_index_from"] = torch.tensor([id_from] * num_frames)
ep_dict["episode_data_index_to"] = torch.tensor([id_from + num_frames] * num_frames)
ep_dict["end_pose"] = end_pose[id_from:id_to]
ep_dict["start_pos"] = start_pos[id_from:id_to]
ep_dict["gripper_width"] = gripper_width[id_from:id_to]
ep_dicts.append(ep_dict)
episode_data_index["from"].append(id_from)
episode_data_index["to"].append(id_from + num_frames)
id_from += num_frames
# process first episode only
if debug:
break
data_dict = concatenate_episodes(ep_dicts)
total_frames = id_from
total_frames = data_dict["frame_index"].shape[0]
data_dict["index"] = torch.arange(0, total_frames, 1)
return data_dict, episode_data_index
return data_dict
def to_hf_dataset(data_dict, video):
@@ -199,7 +200,14 @@ def to_hf_dataset(data_dict, video):
return hf_dataset
def from_raw_to_lerobot_format(raw_dir: Path, out_dir: Path, fps=None, video=True, debug=False):
def from_raw_to_lerobot_format(
raw_dir: Path,
videos_dir: Path,
fps: int | None = None,
video: bool = True,
episodes: list[int] | None = None,
encoding: dict | None = None,
):
# sanity check
check_format(raw_dir)
@@ -212,11 +220,15 @@ def from_raw_to_lerobot_format(raw_dir: Path, out_dir: Path, fps=None, video=Tru
"Generating UMI dataset without `video=True` creates ~150GB on disk and requires ~80GB in RAM."
)
data_dict, episode_data_index = load_from_raw(raw_dir, out_dir, fps, video, debug)
data_dict = load_from_raw(raw_dir, videos_dir, fps, video, episodes, encoding)
hf_dataset = to_hf_dataset(data_dict, video)
episode_data_index = calculate_episode_data_index(hf_dataset)
info = {
"codebase_version": CODEBASE_VERSION,
"fps": fps,
"video": video,
}
if video:
info["encoding"] = get_default_encoding()
return hf_dataset, episode_data_index, info

View File

@@ -13,13 +13,18 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from concurrent.futures import ThreadPoolExecutor
from pathlib import Path
from typing import Dict
import datasets
import numpy
import PIL
import torch
from lerobot.common.datasets.video_utils import encode_video_frames
def concatenate_episodes(ep_dicts):
data_dict = {}
@@ -51,3 +56,76 @@ def save_images_concurrently(imgs_array: numpy.array, out_dir: Path, max_workers
num_images = len(imgs_array)
with ThreadPoolExecutor(max_workers=max_workers) as executor:
[executor.submit(save_image, imgs_array[i], i, out_dir) for i in range(num_images)]
def get_default_encoding() -> dict:
"""Returns the default ffmpeg encoding parameters used by `encode_video_frames`."""
signature = inspect.signature(encode_video_frames)
return {
k: v.default
for k, v in signature.parameters.items()
if v.default is not inspect.Parameter.empty and k in ["vcodec", "pix_fmt", "g", "crf"]
}
def check_repo_id(repo_id: str) -> None:
if len(repo_id.split("/")) != 2:
raise ValueError(
f"""`repo_id` is expected to contain a community or user id `/` the name of the dataset
(e.g. 'lerobot/pusht'), but contains '{repo_id}'."""
)
# TODO(aliberts): remove
def calculate_episode_data_index(hf_dataset: datasets.Dataset) -> Dict[str, torch.Tensor]:
"""
Calculate episode data index for the provided HuggingFace Dataset. Relies on episode_index column of hf_dataset.
Parameters:
- hf_dataset (datasets.Dataset): A HuggingFace dataset containing the episode index.
Returns:
- episode_data_index: A dictionary containing the data index for each episode. The dictionary has two keys:
- "from": A tensor containing the starting index of each episode.
- "to": A tensor containing the ending index of each episode.
"""
episode_data_index = {"from": [], "to": []}
current_episode = None
"""
The episode_index is a list of integers, each representing the episode index of the corresponding example.
For instance, the following is a valid episode_index:
[0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2]
Below, we iterate through the episode_index and populate the episode_data_index dictionary with the starting and
ending index of each episode. For the episode_index above, the episode_data_index dictionary will look like this:
{
"from": [0, 3, 7],
"to": [3, 7, 12]
}
"""
if len(hf_dataset) == 0:
episode_data_index = {
"from": torch.tensor([]),
"to": torch.tensor([]),
}
return episode_data_index
for idx, episode_idx in enumerate(hf_dataset["episode_index"]):
if episode_idx != current_episode:
# We encountered a new episode, so we append its starting location to the "from" list
episode_data_index["from"].append(idx)
# If this is not the first episode, we append the ending location of the previous episode to the "to" list
if current_episode is not None:
episode_data_index["to"].append(idx)
# Let's keep track of the current episode index
current_episode = episode_idx
else:
# We are still in the same episode, so there is nothing for us to do here
pass
# We have reached the end of the dataset, so we append the ending location of the last episode to the "to" list
episode_data_index["to"].append(idx + 1)
for k in ["from", "to"]:
episode_data_index[k] = torch.tensor(episode_data_index[k])
return episode_data_index

View File

@@ -25,7 +25,13 @@ import tqdm
from datasets import Dataset, Features, Image, Sequence, Value
from PIL import Image as PILImage
from lerobot.common.datasets.push_dataset_to_hub.utils import concatenate_episodes, save_images_concurrently
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
from lerobot.common.datasets.push_dataset_to_hub.utils import (
calculate_episode_data_index,
concatenate_episodes,
get_default_encoding,
save_images_concurrently,
)
from lerobot.common.datasets.utils import (
hf_transform_to_torch,
)
@@ -54,37 +60,49 @@ def check_format(raw_dir):
assert all(len(nested_dict[subkey]) == expected_len for subkey in subkeys if subkey in nested_dict)
def load_from_raw(raw_dir, out_dir, fps, video, debug):
def load_from_raw(
raw_dir: Path,
videos_dir: Path,
fps: int,
video: bool,
episodes: list[int] | None = None,
encoding: dict | None = None,
):
pkl_path = raw_dir / "buffer.pkl"
with open(pkl_path, "rb") as f:
pkl_data = pickle.load(f)
ep_dicts = []
episode_data_index = {"from": [], "to": []}
id_from = 0
id_to = 0
ep_idx = 0
total_frames = pkl_data["actions"].shape[0]
for i in tqdm.tqdm(range(total_frames)):
id_to += 1
if not pkl_data["dones"][i]:
# load data indices from which each episode starts and ends
from_ids, to_ids = [], []
from_idx, to_idx = 0, 0
for done in pkl_data["dones"]:
to_idx += 1
if not done:
continue
from_ids.append(from_idx)
to_ids.append(to_idx)
from_idx = to_idx
num_frames = id_to - id_from
num_episodes = len(from_ids)
image = torch.tensor(pkl_data["observations"]["rgb"][id_from:id_to])
ep_dicts = []
ep_ids = episodes if episodes else range(num_episodes)
for ep_idx, selected_ep_idx in tqdm.tqdm(enumerate(ep_ids)):
from_idx = from_ids[selected_ep_idx]
to_idx = to_ids[selected_ep_idx]
num_frames = to_idx - from_idx
image = torch.tensor(pkl_data["observations"]["rgb"][from_idx:to_idx])
image = einops.rearrange(image, "b c h w -> b h w c")
state = torch.tensor(pkl_data["observations"]["state"][id_from:id_to])
action = torch.tensor(pkl_data["actions"][id_from:id_to])
state = torch.tensor(pkl_data["observations"]["state"][from_idx:to_idx])
action = torch.tensor(pkl_data["actions"][from_idx:to_idx])
# TODO(rcadene): we have a missing last frame which is the observation when the env is done
# it is critical to have this frame for tdmpc to predict a "done observation/state"
# next_image = torch.tensor(pkl_data["next_observations"]["rgb"][id_from:id_to])
# next_state = torch.tensor(pkl_data["next_observations"]["state"][id_from:id_to])
next_reward = torch.tensor(pkl_data["rewards"][id_from:id_to])
next_done = torch.tensor(pkl_data["dones"][id_from:id_to])
# next_image = torch.tensor(pkl_data["next_observations"]["rgb"][from_idx:to_idx])
# next_state = torch.tensor(pkl_data["next_observations"]["state"][from_idx:to_idx])
next_reward = torch.tensor(pkl_data["rewards"][from_idx:to_idx])
next_done = torch.tensor(pkl_data["dones"][from_idx:to_idx])
ep_dict = {}
@@ -92,13 +110,13 @@ def load_from_raw(raw_dir, out_dir, fps, video, debug):
img_key = "observation.image"
if video:
# save png images in temporary directory
tmp_imgs_dir = out_dir / "tmp_images"
tmp_imgs_dir = videos_dir / "tmp_images"
save_images_concurrently(imgs_array, tmp_imgs_dir)
# encode images to a mp4 video
fname = f"{img_key}_episode_{ep_idx:06d}.mp4"
video_path = out_dir / "videos" / fname
encode_video_frames(tmp_imgs_dir, video_path, fps)
video_path = videos_dir / fname
encode_video_frames(tmp_imgs_dir, video_path, fps, **(encoding or {}))
# clean temporary images directory
shutil.rmtree(tmp_imgs_dir)
@@ -119,18 +137,11 @@ def load_from_raw(raw_dir, out_dir, fps, video, debug):
ep_dict["next.done"] = next_done
ep_dicts.append(ep_dict)
episode_data_index["from"].append(id_from)
episode_data_index["to"].append(id_from + num_frames)
id_from = id_to
ep_idx += 1
# process first episode only
if debug:
break
data_dict = concatenate_episodes(ep_dicts)
return data_dict, episode_data_index
total_frames = data_dict["frame_index"].shape[0]
data_dict["index"] = torch.arange(0, total_frames, 1)
return data_dict
def to_hf_dataset(data_dict, video):
@@ -161,18 +172,29 @@ def to_hf_dataset(data_dict, video):
return hf_dataset
def from_raw_to_lerobot_format(raw_dir: Path, out_dir: Path, fps=None, video=True, debug=False):
def from_raw_to_lerobot_format(
raw_dir: Path,
videos_dir: Path,
fps: int | None = None,
video: bool = True,
episodes: list[int] | None = None,
encoding: dict | None = None,
):
# sanity check
check_format(raw_dir)
if fps is None:
fps = 15
data_dict, episode_data_index = load_from_raw(raw_dir, out_dir, fps, video, debug)
data_dict = load_from_raw(raw_dir, videos_dir, fps, video, episodes, encoding)
hf_dataset = to_hf_dataset(data_dict, video)
episode_data_index = calculate_episode_data_index(hf_dataset)
info = {
"codebase_version": CODEBASE_VERSION,
"fps": fps,
"video": video,
}
if video:
info["encoding"] = get_default_encoding()
return hf_dataset, episode_data_index, info

View File

@@ -0,0 +1,197 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
from typing import Any, Callable, Dict, Sequence
import torch
from torchvision.transforms import v2
from torchvision.transforms.v2 import Transform
from torchvision.transforms.v2 import functional as F # noqa: N812
class RandomSubsetApply(Transform):
"""Apply a random subset of N transformations from a list of transformations.
Args:
transforms: list of transformations.
p: represents the multinomial probabilities (with no replacement) used for sampling the transform.
If the sum of the weights is not 1, they will be normalized. If ``None`` (default), all transforms
have the same probability.
n_subset: number of transformations to apply. If ``None``, all transforms are applied.
Must be in [1, len(transforms)].
random_order: apply transformations in a random order.
"""
def __init__(
self,
transforms: Sequence[Callable],
p: list[float] | None = None,
n_subset: int | None = None,
random_order: bool = False,
) -> None:
super().__init__()
if not isinstance(transforms, Sequence):
raise TypeError("Argument transforms should be a sequence of callables")
if p is None:
p = [1] * len(transforms)
elif len(p) != len(transforms):
raise ValueError(
f"Length of p doesn't match the number of transforms: {len(p)} != {len(transforms)}"
)
if n_subset is None:
n_subset = len(transforms)
elif not isinstance(n_subset, int):
raise TypeError("n_subset should be an int or None")
elif not (1 <= n_subset <= len(transforms)):
raise ValueError(f"n_subset should be in the interval [1, {len(transforms)}]")
self.transforms = transforms
total = sum(p)
self.p = [prob / total for prob in p]
self.n_subset = n_subset
self.random_order = random_order
def forward(self, *inputs: Any) -> Any:
needs_unpacking = len(inputs) > 1
selected_indices = torch.multinomial(torch.tensor(self.p), self.n_subset)
if not self.random_order:
selected_indices = selected_indices.sort().values
selected_transforms = [self.transforms[i] for i in selected_indices]
for transform in selected_transforms:
outputs = transform(*inputs)
inputs = outputs if needs_unpacking else (outputs,)
return outputs
def extra_repr(self) -> str:
return (
f"transforms={self.transforms}, "
f"p={self.p}, "
f"n_subset={self.n_subset}, "
f"random_order={self.random_order}"
)
class SharpnessJitter(Transform):
"""Randomly change the sharpness of an image or video.
Similar to a v2.RandomAdjustSharpness with p=1 and a sharpness_factor sampled randomly.
While v2.RandomAdjustSharpness applies — with a given probability — a fixed sharpness_factor to an image,
SharpnessJitter applies a random sharpness_factor each time. This is to have a more diverse set of
augmentations as a result.
A sharpness_factor of 0 gives a blurred image, 1 gives the original image while 2 increases the sharpness
by a factor of 2.
If the input is a :class:`torch.Tensor`,
it is expected to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
Args:
sharpness: How much to jitter sharpness. sharpness_factor is chosen uniformly from
[max(0, 1 - sharpness), 1 + sharpness] or the given
[min, max]. Should be non negative numbers.
"""
def __init__(self, sharpness: float | Sequence[float]) -> None:
super().__init__()
self.sharpness = self._check_input(sharpness)
def _check_input(self, sharpness):
if isinstance(sharpness, (int, float)):
if sharpness < 0:
raise ValueError("If sharpness is a single number, it must be non negative.")
sharpness = [1.0 - sharpness, 1.0 + sharpness]
sharpness[0] = max(sharpness[0], 0.0)
elif isinstance(sharpness, collections.abc.Sequence) and len(sharpness) == 2:
sharpness = [float(v) for v in sharpness]
else:
raise TypeError(f"{sharpness=} should be a single number or a sequence with length 2.")
if not 0.0 <= sharpness[0] <= sharpness[1]:
raise ValueError(f"sharpnesss values should be between (0., inf), but got {sharpness}.")
return float(sharpness[0]), float(sharpness[1])
def _generate_value(self, left: float, right: float) -> float:
return torch.empty(1).uniform_(left, right).item()
def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
sharpness_factor = self._generate_value(self.sharpness[0], self.sharpness[1])
return self._call_kernel(F.adjust_sharpness, inpt, sharpness_factor=sharpness_factor)
def get_image_transforms(
brightness_weight: float = 1.0,
brightness_min_max: tuple[float, float] | None = None,
contrast_weight: float = 1.0,
contrast_min_max: tuple[float, float] | None = None,
saturation_weight: float = 1.0,
saturation_min_max: tuple[float, float] | None = None,
hue_weight: float = 1.0,
hue_min_max: tuple[float, float] | None = None,
sharpness_weight: float = 1.0,
sharpness_min_max: tuple[float, float] | None = None,
max_num_transforms: int | None = None,
random_order: bool = False,
):
def check_value(name, weight, min_max):
if min_max is not None:
if len(min_max) != 2:
raise ValueError(
f"`{name}_min_max` is expected to be a tuple of 2 dimensions, but {min_max} provided."
)
if weight < 0.0:
raise ValueError(
f"`{name}_weight` is expected to be 0 or positive, but is negative ({weight})."
)
check_value("brightness", brightness_weight, brightness_min_max)
check_value("contrast", contrast_weight, contrast_min_max)
check_value("saturation", saturation_weight, saturation_min_max)
check_value("hue", hue_weight, hue_min_max)
check_value("sharpness", sharpness_weight, sharpness_min_max)
weights = []
transforms = []
if brightness_min_max is not None and brightness_weight > 0.0:
weights.append(brightness_weight)
transforms.append(v2.ColorJitter(brightness=brightness_min_max))
if contrast_min_max is not None and contrast_weight > 0.0:
weights.append(contrast_weight)
transforms.append(v2.ColorJitter(contrast=contrast_min_max))
if saturation_min_max is not None and saturation_weight > 0.0:
weights.append(saturation_weight)
transforms.append(v2.ColorJitter(saturation=saturation_min_max))
if hue_min_max is not None and hue_weight > 0.0:
weights.append(hue_weight)
transforms.append(v2.ColorJitter(hue=hue_min_max))
if sharpness_min_max is not None and sharpness_weight > 0.0:
weights.append(sharpness_weight)
transforms.append(SharpnessJitter(sharpness=sharpness_min_max))
n_subset = len(transforms)
if max_num_transforms is not None:
n_subset = min(n_subset, max_num_transforms)
if n_subset == 0:
return v2.Identity()
else:
# TODO(rcadene, aliberts): add v2.ToDtype float16?
return RandomSubsetApply(transforms, p=weights, n_subset=n_subset, random_order=random_order)

View File

@@ -13,21 +13,58 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib.resources
import json
import re
import logging
import textwrap
from itertools import accumulate
from pathlib import Path
from typing import Dict
from pprint import pformat
from typing import Any
import datasets
import jsonlines
import numpy as np
import pyarrow.compute as pc
import torch
from datasets import load_dataset, load_from_disk
from huggingface_hub import hf_hub_download, snapshot_download
from datasets.table import embed_table_storage
from huggingface_hub import DatasetCard, DatasetCardData, HfApi
from PIL import Image as PILImage
from safetensors.torch import load_file
from torchvision import transforms
from lerobot.common.robot_devices.robots.utils import Robot
def flatten_dict(d, parent_key="", sep="/"):
DEFAULT_CHUNK_SIZE = 1000 # Max number of episodes per chunk
INFO_PATH = "meta/info.json"
EPISODES_PATH = "meta/episodes.jsonl"
STATS_PATH = "meta/stats.json"
TASKS_PATH = "meta/tasks.jsonl"
DEFAULT_VIDEO_PATH = "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4"
DEFAULT_PARQUET_PATH = "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet"
DEFAULT_IMAGE_PATH = "images/{image_key}/episode_{episode_index:06d}/frame_{frame_index:06d}.png"
DATASET_CARD_TEMPLATE = """
---
# Metadata will go there
---
This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
## {}
"""
DEFAULT_FEATURES = {
"timestamp": {"dtype": "float32", "shape": (1,), "names": None},
"frame_index": {"dtype": "int64", "shape": (1,), "names": None},
"episode_index": {"dtype": "int64", "shape": (1,), "names": None},
"index": {"dtype": "int64", "shape": (1,), "names": None},
"task_index": {"dtype": "int64", "shape": (1,), "names": None},
}
def flatten_dict(d: dict, parent_key: str = "", sep: str = "/") -> dict:
"""Flatten a nested dictionary structure by collapsing nested keys into one key with a separator.
For example:
@@ -46,7 +83,7 @@ def flatten_dict(d, parent_key="", sep="/"):
return dict(items)
def unflatten_dict(d, sep="/"):
def unflatten_dict(d: dict, sep: str = "/") -> dict:
outdict = {}
for key, value in d.items():
parts = key.split(sep)
@@ -59,6 +96,82 @@ def unflatten_dict(d, sep="/"):
return outdict
def serialize_dict(stats: dict[str, torch.Tensor | np.ndarray | dict]) -> dict:
serialized_dict = {key: value.tolist() for key, value in flatten_dict(stats).items()}
return unflatten_dict(serialized_dict)
def write_parquet(dataset: datasets.Dataset, fpath: Path) -> None:
# Embed image bytes into the table before saving to parquet
format = dataset.format
dataset = dataset.with_format("arrow")
dataset = dataset.map(embed_table_storage, batched=False)
dataset = dataset.with_format(**format)
dataset.to_parquet(fpath)
def load_json(fpath: Path) -> Any:
with open(fpath) as f:
return json.load(f)
def write_json(data: dict, fpath: Path) -> None:
fpath.parent.mkdir(exist_ok=True, parents=True)
with open(fpath, "w") as f:
json.dump(data, f, indent=4, ensure_ascii=False)
def load_jsonlines(fpath: Path) -> list[Any]:
with jsonlines.open(fpath, "r") as reader:
return list(reader)
def write_jsonlines(data: dict, fpath: Path) -> None:
fpath.parent.mkdir(exist_ok=True, parents=True)
with jsonlines.open(fpath, "w") as writer:
writer.write_all(data)
def append_jsonlines(data: dict, fpath: Path) -> None:
fpath.parent.mkdir(exist_ok=True, parents=True)
with jsonlines.open(fpath, "a") as writer:
writer.write(data)
def load_info(local_dir: Path) -> dict:
info = load_json(local_dir / INFO_PATH)
for ft in info["features"].values():
ft["shape"] = tuple(ft["shape"])
return info
def load_stats(local_dir: Path) -> dict:
if not (local_dir / STATS_PATH).exists():
return None
stats = load_json(local_dir / STATS_PATH)
stats = {key: torch.tensor(value) for key, value in flatten_dict(stats).items()}
return unflatten_dict(stats)
def load_tasks(local_dir: Path) -> dict:
tasks = load_jsonlines(local_dir / TASKS_PATH)
return {item["task_index"]: item["task"] for item in sorted(tasks, key=lambda x: x["task_index"])}
def load_episodes(local_dir: Path) -> dict:
return load_jsonlines(local_dir / EPISODES_PATH)
def load_image_as_numpy(fpath: str | Path, dtype="float32", channel_first: bool = True) -> np.ndarray:
img = PILImage.open(fpath).convert("RGB")
img_array = np.array(img, dtype=dtype)
if channel_first: # (H, W, C) -> (C, H, W)
img_array = np.transpose(img_array, (2, 0, 1))
if "float" in dtype:
img_array /= 255.0
return img_array
def hf_transform_to_torch(items_dict: dict[torch.Tensor | None]):
"""Get a transform function that convert items from Hugging Face dataset (pyarrow)
to torch tensors. Importantly, images are converted from PIL, which corresponds to
@@ -70,9 +183,6 @@ def hf_transform_to_torch(items_dict: dict[torch.Tensor | None]):
if isinstance(first_item, PILImage.Image):
to_tensor = transforms.ToTensor()
items_dict[key] = [to_tensor(img) for img in items_dict[key]]
elif isinstance(first_item, dict) and "path" in first_item and "timestamp" in first_item:
# video frame will be processed downstream
pass
elif first_item is None:
pass
else:
@@ -80,267 +190,253 @@ def hf_transform_to_torch(items_dict: dict[torch.Tensor | None]):
return items_dict
def load_hf_dataset(repo_id, version, root, split) -> datasets.Dataset:
"""hf_dataset contains all the observations, states, actions, rewards, etc."""
if root is not None:
hf_dataset = load_from_disk(str(Path(root) / repo_id / "train"))
# TODO(rcadene): clean this which enables getting a subset of dataset
if split != "train":
if "%" in split:
raise NotImplementedError(f"We dont support splitting based on percentage for now ({split}).")
match_from = re.search(r"train\[(\d+):\]", split)
match_to = re.search(r"train\[:(\d+)\]", split)
if match_from:
from_frame_index = int(match_from.group(1))
hf_dataset = hf_dataset.select(range(from_frame_index, len(hf_dataset)))
elif match_to:
to_frame_index = int(match_to.group(1))
hf_dataset = hf_dataset.select(range(to_frame_index))
else:
raise ValueError(
f'`split` ({split}) should either be "train", "train[INT:]", or "train[:INT]"'
)
else:
hf_dataset = load_dataset(repo_id, revision=version, split=split)
hf_dataset.set_transform(hf_transform_to_torch)
return hf_dataset
def _get_major_minor(version: str) -> tuple[int]:
split = version.strip("v").split(".")
return int(split[0]), int(split[1])
def load_episode_data_index(repo_id, version, root) -> dict[str, torch.Tensor]:
"""episode_data_index contains the range of indices for each episode
class BackwardCompatibilityError(Exception):
def __init__(self, repo_id, version):
message = textwrap.dedent(f"""
BackwardCompatibilityError: The dataset you requested ({repo_id}) is in {version} format.
Example:
```python
from_id = episode_data_index["from"][episode_id].item()
to_id = episode_data_index["to"][episode_id].item()
episode_frames = [dataset[i] for i in range(from_id, to_id)]
```
"""
if root is not None:
path = Path(root) / repo_id / "meta_data" / "episode_data_index.safetensors"
else:
path = hf_hub_download(
repo_id, "meta_data/episode_data_index.safetensors", repo_type="dataset", revision=version
We introduced a new format since v2.0 which is not backward compatible with v1.x.
Please, use our conversion script. Modify the following command with your own task description:
```
python lerobot/common/datasets/v2/convert_dataset_v1_to_v2.py \\
--repo-id {repo_id} \\
--single-task "TASK DESCRIPTION." # <---- /!\\ Replace TASK DESCRIPTION /!\\
```
A few examples to replace TASK DESCRIPTION: "Pick up the blue cube and place it into the bin.",
"Insert the peg into the socket.", "Slide open the ziploc bag.", "Take the elevator to the 1st floor.",
"Open the top cabinet, store the pot inside it then close the cabinet.", "Push the T-shaped block onto the T-shaped target.",
"Grab the spray paint on the shelf and place it in the bin on top of the robot dog.", "Fold the sweatshirt.", ...
If you encounter a problem, contact LeRobot maintainers on [Discord](https://discord.com/invite/s3KuuzsPFb)
or open an [issue on GitHub](https://github.com/huggingface/lerobot/issues/new/choose).
""")
super().__init__(message)
def check_version_compatibility(
repo_id: str, version_to_check: str, current_version: str, enforce_breaking_major: bool = True
) -> None:
current_major, _ = _get_major_minor(current_version)
major_to_check, _ = _get_major_minor(version_to_check)
if major_to_check < current_major and enforce_breaking_major:
raise BackwardCompatibilityError(repo_id, version_to_check)
elif float(version_to_check.strip("v")) < float(current_version.strip("v")):
logging.warning(
f"""The dataset you requested ({repo_id}) was created with a previous version ({version_to_check}) of the
codebase. The current codebase version is {current_version}. You should be fine since
backward compatibility is maintained. If you encounter a problem, contact LeRobot maintainers on
Discord ('https://discord.com/invite/s3KuuzsPFb') or open an issue on github.""",
)
return load_file(path)
def get_hub_safe_version(repo_id: str, version: str) -> str:
api = HfApi()
dataset_info = api.list_repo_refs(repo_id, repo_type="dataset")
branches = [b.name for b in dataset_info.branches]
if version not in branches:
num_version = float(version.strip("v"))
hub_num_versions = [float(v.strip("v")) for v in branches if v.startswith("v")]
if num_version >= 2.0 and all(v < 2.0 for v in hub_num_versions):
raise BackwardCompatibilityError(repo_id, version)
def load_stats(repo_id, version, root) -> dict[str, dict[str, torch.Tensor]]:
"""stats contains the statistics per modality computed over the full dataset, such as max, min, mean, std
Example:
```python
normalized_action = (action - stats["action"]["mean"]) / stats["action"]["std"]
```
"""
if root is not None:
path = Path(root) / repo_id / "meta_data" / "stats.safetensors"
else:
path = hf_hub_download(repo_id, "meta_data/stats.safetensors", repo_type="dataset", revision=version)
stats = load_file(path)
return unflatten_dict(stats)
def load_info(repo_id, version, root) -> dict:
"""info contains useful information regarding the dataset that are not stored elsewhere
Example:
```python
print("frame per second used to collect the video", info["fps"])
```
"""
if root is not None:
path = Path(root) / repo_id / "meta_data" / "info.json"
else:
path = hf_hub_download(repo_id, "meta_data/info.json", repo_type="dataset", revision=version)
with open(path) as f:
info = json.load(f)
return info
def load_videos(repo_id, version, root) -> Path:
if root is not None:
path = Path(root) / repo_id / "videos"
else:
# TODO(rcadene): we download the whole repo here. see if we can avoid this
repo_dir = snapshot_download(repo_id, repo_type="dataset", revision=version)
path = Path(repo_dir) / "videos"
return path
def load_previous_and_future_frames(
item: dict[str, torch.Tensor],
hf_dataset: datasets.Dataset,
episode_data_index: dict[str, torch.Tensor],
delta_timestamps: dict[str, list[float]],
tolerance_s: float,
) -> dict[torch.Tensor]:
"""
Given a current item in the dataset containing a timestamp (e.g. 0.6 seconds), and a list of time differences of
some modalities (e.g. delta_timestamps={"observation.image": [-0.8, -0.2, 0, 0.2]}), this function computes for each
given modality (e.g. "observation.image") a list of query timestamps (e.g. [-0.2, 0.4, 0.6, 0.8]) and loads the closest
frames in the dataset.
Importantly, when no frame can be found around a query timestamp within a specified tolerance window, this function
raises an AssertionError. When a timestamp is queried before the first available timestamp of the episode or after
the last available timestamp, the violation of the tolerance doesnt raise an AssertionError, and the function
populates a boolean array indicating which frames are outside of the episode range. For instance, this boolean array
is useful during batched training to not supervise actions associated to timestamps coming after the end of the
episode, or to pad the observations in a specific way. Note that by default the observation frames before the start
of the episode are the same as the first frame of the episode.
Parameters:
- item (dict): A dictionary containing all the data related to a frame. It is the result of `dataset[idx]`. Each key
corresponds to a different modality (e.g., "timestamp", "observation.image", "action").
- hf_dataset (datasets.Dataset): A dictionary containing the full dataset. Each key corresponds to a different
modality (e.g., "timestamp", "observation.image", "action").
- episode_data_index (dict): A dictionary containing two keys ("from" and "to") associated to dataset indices.
They indicate the start index and end index of each episode in the dataset.
- delta_timestamps (dict): A dictionary containing lists of delta timestamps for each possible modality to be
retrieved. These deltas are added to the item timestamp to form the query timestamps.
- tolerance_s (float, optional): The tolerance level (in seconds) used to determine if a data point is close enough to the query
timestamp by asserting `tol > difference`. It is suggested to set `tol` to a smaller value than the
smallest expected inter-frame period, but large enough to account for jitter.
Returns:
- The same item with the queried frames for each modality specified in delta_timestamps, with an additional key for
each modality (e.g. "observation.image_is_pad").
Raises:
- AssertionError: If any of the frames unexpectedly violate the tolerance level. This could indicate synchronization
issues with timestamps during data collection.
"""
# get indices of the frames associated to the episode, and their timestamps
ep_id = item["episode_index"].item()
ep_data_id_from = episode_data_index["from"][ep_id].item()
ep_data_id_to = episode_data_index["to"][ep_id].item()
ep_data_ids = torch.arange(ep_data_id_from, ep_data_id_to, 1)
# load timestamps
ep_timestamps = hf_dataset.select_columns("timestamp")[ep_data_id_from:ep_data_id_to]["timestamp"]
ep_timestamps = torch.stack(ep_timestamps)
# we make the assumption that the timestamps are sorted
ep_first_ts = ep_timestamps[0]
ep_last_ts = ep_timestamps[-1]
current_ts = item["timestamp"].item()
for key in delta_timestamps:
# get timestamps used as query to retrieve data of previous/future frames
delta_ts = delta_timestamps[key]
query_ts = current_ts + torch.tensor(delta_ts)
# compute distances between each query timestamp and all timestamps of all the frames belonging to the episode
dist = torch.cdist(query_ts[:, None], ep_timestamps[:, None], p=1)
min_, argmin_ = dist.min(1)
# TODO(rcadene): synchronize timestamps + interpolation if needed
is_pad = min_ > tolerance_s
# check violated query timestamps are all outside the episode range
assert ((query_ts[is_pad] < ep_first_ts) | (ep_last_ts < query_ts[is_pad])).all(), (
f"One or several timestamps unexpectedly violate the tolerance ({min_} > {tolerance_s=}) inside episode range."
"This might be due to synchronization issues with timestamps during data collection."
logging.warning(
f"""You are trying to load a dataset from {repo_id} created with a previous version of the
codebase. The following versions are available: {branches}.
The requested version ('{version}') is not found. You should be fine since
backward compatibility is maintained. If you encounter a problem, contact LeRobot maintainers on
Discord ('https://discord.com/invite/s3KuuzsPFb') or open an issue on github.""",
)
if "main" not in branches:
raise ValueError(f"Version 'main' not found on {repo_id}")
return "main"
else:
return version
# get dataset indices corresponding to frames to be loaded
data_ids = ep_data_ids[argmin_]
# load frames modality
item[key] = hf_dataset.select_columns(key)[data_ids][key]
if isinstance(item[key][0], dict) and "path" in item[key][0]:
# video mode where frame are expressed as dict of path and timestamp
item[key] = item[key]
def get_hf_features_from_features(features: dict) -> datasets.Features:
hf_features = {}
for key, ft in features.items():
if ft["dtype"] == "video":
continue
elif ft["dtype"] == "image":
hf_features[key] = datasets.Image()
elif ft["shape"] == (1,):
hf_features[key] = datasets.Value(dtype=ft["dtype"])
else:
item[key] = torch.stack(item[key])
assert len(ft["shape"]) == 1
hf_features[key] = datasets.Sequence(
length=ft["shape"][0], feature=datasets.Value(dtype=ft["dtype"])
)
item[f"{key}_is_pad"] = is_pad
return item
return datasets.Features(hf_features)
def calculate_episode_data_index(hf_dataset: datasets.Dataset) -> Dict[str, torch.Tensor]:
"""
Calculate episode data index for the provided HuggingFace Dataset. Relies on episode_index column of hf_dataset.
Parameters:
- hf_dataset (datasets.Dataset): A HuggingFace dataset containing the episode index.
Returns:
- episode_data_index: A dictionary containing the data index for each episode. The dictionary has two keys:
- "from": A tensor containing the starting index of each episode.
- "to": A tensor containing the ending index of each episode.
"""
episode_data_index = {"from": [], "to": []}
current_episode = None
"""
The episode_index is a list of integers, each representing the episode index of the corresponding example.
For instance, the following is a valid episode_index:
[0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2]
Below, we iterate through the episode_index and populate the episode_data_index dictionary with the starting and
ending index of each episode. For the episode_index above, the episode_data_index dictionary will look like this:
{
"from": [0, 3, 7],
"to": [3, 7, 12]
def get_features_from_robot(robot: Robot, use_videos: bool = True) -> dict:
camera_ft = {}
if robot.cameras:
camera_ft = {
key: {"dtype": "video" if use_videos else "image", **ft}
for key, ft in robot.camera_features.items()
}
"""
if len(hf_dataset) == 0:
episode_data_index = {
"from": torch.tensor([]),
"to": torch.tensor([]),
}
return episode_data_index
for idx, episode_idx in enumerate(hf_dataset["episode_index"]):
if episode_idx != current_episode:
# We encountered a new episode, so we append its starting location to the "from" list
episode_data_index["from"].append(idx)
# If this is not the first episode, we append the ending location of the previous episode to the "to" list
if current_episode is not None:
episode_data_index["to"].append(idx)
# Let's keep track of the current episode index
current_episode = episode_idx
else:
# We are still in the same episode, so there is nothing for us to do here
pass
# We have reached the end of the dataset, so we append the ending location of the last episode to the "to" list
episode_data_index["to"].append(idx + 1)
for k in ["from", "to"]:
episode_data_index[k] = torch.tensor(episode_data_index[k])
return episode_data_index
return {**robot.motor_features, **camera_ft, **DEFAULT_FEATURES}
def reset_episode_index(hf_dataset: datasets.Dataset) -> datasets.Dataset:
"""Reset the `episode_index` of the provided HuggingFace Dataset.
`episode_data_index` (and related functionality such as `load_previous_and_future_frames`) requires the
`episode_index` to be sorted, continuous (1,1,1 and not 1,2,1) and start at 0.
This brings the `episode_index` to the required format.
"""
if len(hf_dataset) == 0:
return hf_dataset
unique_episode_idxs = torch.stack(hf_dataset["episode_index"]).unique().tolist()
episode_idx_to_reset_idx_mapping = {
ep_id: reset_ep_id for reset_ep_id, ep_id in enumerate(unique_episode_idxs)
def create_empty_dataset_info(
codebase_version: str,
fps: int,
robot_type: str,
features: dict,
use_videos: bool,
) -> dict:
return {
"codebase_version": codebase_version,
"robot_type": robot_type,
"total_episodes": 0,
"total_frames": 0,
"total_tasks": 0,
"total_videos": 0,
"total_chunks": 0,
"chunks_size": DEFAULT_CHUNK_SIZE,
"fps": fps,
"splits": {},
"data_path": DEFAULT_PARQUET_PATH,
"video_path": DEFAULT_VIDEO_PATH if use_videos else None,
"features": features,
}
def modify_ep_idx_func(example):
example["episode_index"] = episode_idx_to_reset_idx_mapping[example["episode_index"].item()]
return example
hf_dataset = hf_dataset.map(modify_ep_idx_func)
def get_episode_data_index(
episode_dicts: list[dict], episodes: list[int] | None = None
) -> dict[str, torch.Tensor]:
episode_lengths = {ep_idx: ep_dict["length"] for ep_idx, ep_dict in enumerate(episode_dicts)}
if episodes is not None:
episode_lengths = {ep_idx: episode_lengths[ep_idx] for ep_idx in episodes}
return hf_dataset
cumulative_lenghts = list(accumulate(episode_lengths.values()))
return {
"from": torch.LongTensor([0] + cumulative_lenghts[:-1]),
"to": torch.LongTensor(cumulative_lenghts),
}
def calculate_total_episode(
hf_dataset: datasets.Dataset, raise_if_not_contiguous: bool = True
) -> dict[str, torch.Tensor]:
episode_indices = sorted(hf_dataset.unique("episode_index"))
total_episodes = len(episode_indices)
if raise_if_not_contiguous and episode_indices != list(range(total_episodes)):
raise ValueError("episode_index values are not sorted and contiguous.")
return total_episodes
def calculate_episode_data_index(hf_dataset: datasets.Dataset) -> dict[str, torch.Tensor]:
episode_lengths = []
table = hf_dataset.data.table
total_episodes = calculate_total_episode(hf_dataset)
for ep_idx in range(total_episodes):
ep_table = table.filter(pc.equal(table["episode_index"], ep_idx))
episode_lengths.insert(ep_idx, len(ep_table))
cumulative_lenghts = list(accumulate(episode_lengths))
return {
"from": torch.LongTensor([0] + cumulative_lenghts[:-1]),
"to": torch.LongTensor(cumulative_lenghts),
}
def check_timestamps_sync(
hf_dataset: datasets.Dataset,
episode_data_index: dict[str, torch.Tensor],
fps: int,
tolerance_s: float,
raise_value_error: bool = True,
) -> bool:
"""
This check is to make sure that each timestamps is separated to the next by 1/fps +/- tolerance to
account for possible numerical error.
"""
timestamps = torch.stack(hf_dataset["timestamp"])
diffs = torch.diff(timestamps)
within_tolerance = torch.abs(diffs - 1 / fps) <= tolerance_s
# We mask differences between the timestamp at the end of an episode
# and the one at the start of the next episode since these are expected
# to be outside tolerance.
mask = torch.ones(len(diffs), dtype=torch.bool)
ignored_diffs = episode_data_index["to"][:-1] - 1
mask[ignored_diffs] = False
filtered_within_tolerance = within_tolerance[mask]
if not torch.all(filtered_within_tolerance):
# Track original indices before masking
original_indices = torch.arange(len(diffs))
filtered_indices = original_indices[mask]
outside_tolerance_filtered_indices = torch.nonzero(~filtered_within_tolerance) # .squeeze()
outside_tolerance_indices = filtered_indices[outside_tolerance_filtered_indices]
episode_indices = torch.stack(hf_dataset["episode_index"])
outside_tolerances = []
for idx in outside_tolerance_indices:
entry = {
"timestamps": [timestamps[idx], timestamps[idx + 1]],
"diff": diffs[idx],
"episode_index": episode_indices[idx].item(),
}
outside_tolerances.append(entry)
if raise_value_error:
raise ValueError(
f"""One or several timestamps unexpectedly violate the tolerance inside episode range.
This might be due to synchronization issues with timestamps during data collection.
\n{pformat(outside_tolerances)}"""
)
return False
return True
def check_delta_timestamps(
delta_timestamps: dict[str, list[float]], fps: int, tolerance_s: float, raise_value_error: bool = True
) -> bool:
"""This will check if all the values in delta_timestamps are multiples of 1/fps +/- tolerance.
This is to ensure that these delta_timestamps added to any timestamp from a dataset will themselves be
actual timestamps from the dataset.
"""
outside_tolerance = {}
for key, delta_ts in delta_timestamps.items():
within_tolerance = [abs(ts * fps - round(ts * fps)) / fps <= tolerance_s for ts in delta_ts]
if not all(within_tolerance):
outside_tolerance[key] = [
ts for ts, is_within in zip(delta_ts, within_tolerance, strict=True) if not is_within
]
if len(outside_tolerance) > 0:
if raise_value_error:
raise ValueError(
f"""
The following delta_timestamps are found outside of tolerance range.
Please make sure they are multiples of 1/{fps} +/- tolerance and adjust
their values accordingly.
\n{pformat(outside_tolerance)}
"""
)
return False
return True
def get_delta_indices(delta_timestamps: dict[str, list[float]], fps: int) -> dict[str, list[int]]:
delta_indices = {}
for key, delta_ts in delta_timestamps.items():
delta_indices[key] = (torch.tensor(delta_ts) * fps).long().tolist()
return delta_indices
def cycle(iterable):
@@ -354,3 +450,55 @@ def cycle(iterable):
yield next(iterator)
except StopIteration:
iterator = iter(iterable)
def create_branch(repo_id, *, branch: str, repo_type: str | None = None) -> None:
"""Create a branch on a existing Hugging Face repo. Delete the branch if it already
exists before creating it.
"""
api = HfApi()
branches = api.list_repo_refs(repo_id, repo_type=repo_type).branches
refs = [branch.ref for branch in branches]
ref = f"refs/heads/{branch}"
if ref in refs:
api.delete_branch(repo_id, repo_type=repo_type, branch=branch)
api.create_branch(repo_id, repo_type=repo_type, branch=branch)
def create_lerobot_dataset_card(
tags: list | None = None,
dataset_info: dict | None = None,
**kwargs,
) -> DatasetCard:
"""
Keyword arguments will be used to replace values in ./lerobot/common/datasets/card_template.md.
Note: If specified, license must be one of https://huggingface.co/docs/hub/repositories-licenses.
"""
card_tags = ["LeRobot"]
card_template_path = importlib.resources.path("lerobot.common.datasets", "card_template.md")
if tags:
card_tags += tags
if dataset_info:
dataset_structure = "[meta/info.json](meta/info.json):\n"
dataset_structure += f"```json\n{json.dumps(dataset_info, indent=4)}\n```\n"
kwargs = {**kwargs, "dataset_structure": dataset_structure}
card_data = DatasetCardData(
license=kwargs.get("license"),
tags=card_tags,
task_categories=["robotics"],
configs=[
{
"config_name": "default",
"data_files": "data/*/*.parquet",
}
],
)
return DatasetCard.from_template(
card_data=card_data,
template_path=str(card_template_path),
**kwargs,
)

View File

@@ -0,0 +1,882 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script is for internal use to convert all datasets under the 'lerobot' hub user account to v2.
Note: Since the original Aloha datasets don't use shadow motors, you need to comment those out in
lerobot/configs/robot/aloha.yaml before running this script.
"""
import traceback
from pathlib import Path
from textwrap import dedent
from lerobot import available_datasets
from lerobot.common.datasets.v2.convert_dataset_v1_to_v2 import convert_dataset, parse_robot_config
LOCAL_DIR = Path("data/")
ALOHA_CONFIG = Path("lerobot/configs/robot/aloha.yaml")
ALOHA_MOBILE_INFO = {
"robot_config": parse_robot_config(ALOHA_CONFIG),
"license": "mit",
"url": "https://mobile-aloha.github.io/",
"paper": "https://arxiv.org/abs/2401.02117",
"citation_bibtex": dedent(r"""
@inproceedings{fu2024mobile,
author = {Fu, Zipeng and Zhao, Tony Z. and Finn, Chelsea},
title = {Mobile ALOHA: Learning Bimanual Mobile Manipulation with Low-Cost Whole-Body Teleoperation},
booktitle = {arXiv},
year = {2024},
}""").lstrip(),
}
ALOHA_STATIC_INFO = {
"robot_config": parse_robot_config(ALOHA_CONFIG),
"license": "mit",
"url": "https://tonyzhaozh.github.io/aloha/",
"paper": "https://arxiv.org/abs/2304.13705",
"citation_bibtex": dedent(r"""
@article{Zhao2023LearningFB,
title={Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware},
author={Tony Zhao and Vikash Kumar and Sergey Levine and Chelsea Finn},
journal={RSS},
year={2023},
volume={abs/2304.13705},
url={https://arxiv.org/abs/2304.13705}
}""").lstrip(),
}
PUSHT_INFO = {
"license": "mit",
"url": "https://diffusion-policy.cs.columbia.edu/",
"paper": "https://arxiv.org/abs/2303.04137v5",
"citation_bibtex": dedent(r"""
@article{chi2024diffusionpolicy,
author = {Cheng Chi and Zhenjia Xu and Siyuan Feng and Eric Cousineau and Yilun Du and Benjamin Burchfiel and Russ Tedrake and Shuran Song},
title ={Diffusion Policy: Visuomotor Policy Learning via Action Diffusion},
journal = {The International Journal of Robotics Research},
year = {2024},
}""").lstrip(),
}
XARM_INFO = {
"license": "mit",
"url": "https://www.nicklashansen.com/td-mpc/",
"paper": "https://arxiv.org/abs/2203.04955",
"citation_bibtex": dedent(r"""
@inproceedings{Hansen2022tdmpc,
title={Temporal Difference Learning for Model Predictive Control},
author={Nicklas Hansen and Xiaolong Wang and Hao Su},
booktitle={ICML},
year={2022}
}
"""),
}
UNITREEH_INFO = {
"license": "apache-2.0",
}
DATASETS = {
"aloha_mobile_cabinet": {
"single_task": "Open the top cabinet, store the pot inside it then close the cabinet.",
**ALOHA_MOBILE_INFO,
},
"aloha_mobile_chair": {
"single_task": "Push the chairs in front of the desk to place them against it.",
**ALOHA_MOBILE_INFO,
},
"aloha_mobile_elevator": {
"single_task": "Take the elevator to the 1st floor.",
**ALOHA_MOBILE_INFO,
},
"aloha_mobile_shrimp": {
"single_task": "Sauté the raw shrimp on both sides, then serve it in the bowl.",
**ALOHA_MOBILE_INFO,
},
"aloha_mobile_wash_pan": {
"single_task": "Pick up the pan, rinse it in the sink and then place it in the drying rack.",
**ALOHA_MOBILE_INFO,
},
"aloha_mobile_wipe_wine": {
"single_task": "Pick up the wet cloth on the faucet and use it to clean the spilled wine on the table and underneath the glass.",
**ALOHA_MOBILE_INFO,
},
"aloha_static_battery": {
"single_task": "Place the battery into the slot of the remote controller.",
**ALOHA_STATIC_INFO,
},
"aloha_static_candy": {"single_task": "Pick up the candy and unwrap it.", **ALOHA_STATIC_INFO},
"aloha_static_coffee": {
"single_task": "Place the coffee capsule inside the capsule container, then place the cup onto the center of the cup tray, then push the 'Hot Water' and 'Travel Mug' buttons.",
**ALOHA_STATIC_INFO,
},
"aloha_static_coffee_new": {
"single_task": "Place the coffee capsule inside the capsule container, then place the cup onto the center of the cup tray.",
**ALOHA_STATIC_INFO,
},
"aloha_static_cups_open": {
"single_task": "Pick up the plastic cup and open its lid.",
**ALOHA_STATIC_INFO,
},
"aloha_static_fork_pick_up": {
"single_task": "Pick up the fork and place it on the plate.",
**ALOHA_STATIC_INFO,
},
"aloha_static_pingpong_test": {
"single_task": "Transfer one of the two balls in the right glass into the left glass, then transfer it back to the right glass.",
**ALOHA_STATIC_INFO,
},
"aloha_static_pro_pencil": {
"single_task": "Pick up the pencil with the right arm, hand it over to the left arm then place it back onto the table.",
**ALOHA_STATIC_INFO,
},
"aloha_static_screw_driver": {
"single_task": "Pick up the screwdriver with the right arm, hand it over to the left arm then place it into the cup.",
**ALOHA_STATIC_INFO,
},
"aloha_static_tape": {
"single_task": "Cut a small piece of tape from the tape dispenser then place it on the cardboard box's edge.",
**ALOHA_STATIC_INFO,
},
"aloha_static_thread_velcro": {
"single_task": "Pick up the velcro cable tie with the left arm, then insert the end of the velcro tie into the other end's loop with the right arm.",
**ALOHA_STATIC_INFO,
},
"aloha_static_towel": {
"single_task": "Pick up a piece of paper towel and place it on the spilled liquid.",
**ALOHA_STATIC_INFO,
},
"aloha_static_vinh_cup": {
"single_task": "Pick up the platic cup with the right arm, then pop its lid open with the left arm.",
**ALOHA_STATIC_INFO,
},
"aloha_static_vinh_cup_left": {
"single_task": "Pick up the platic cup with the left arm, then pop its lid open with the right arm.",
**ALOHA_STATIC_INFO,
},
"aloha_static_ziploc_slide": {"single_task": "Slide open the ziploc bag.", **ALOHA_STATIC_INFO},
"aloha_sim_insertion_scripted": {"single_task": "Insert the peg into the socket.", **ALOHA_STATIC_INFO},
"aloha_sim_insertion_scripted_image": {
"single_task": "Insert the peg into the socket.",
**ALOHA_STATIC_INFO,
},
"aloha_sim_insertion_human": {"single_task": "Insert the peg into the socket.", **ALOHA_STATIC_INFO},
"aloha_sim_insertion_human_image": {
"single_task": "Insert the peg into the socket.",
**ALOHA_STATIC_INFO,
},
"aloha_sim_transfer_cube_scripted": {
"single_task": "Pick up the cube with the right arm and transfer it to the left arm.",
**ALOHA_STATIC_INFO,
},
"aloha_sim_transfer_cube_scripted_image": {
"single_task": "Pick up the cube with the right arm and transfer it to the left arm.",
**ALOHA_STATIC_INFO,
},
"aloha_sim_transfer_cube_human": {
"single_task": "Pick up the cube with the right arm and transfer it to the left arm.",
**ALOHA_STATIC_INFO,
},
"aloha_sim_transfer_cube_human_image": {
"single_task": "Pick up the cube with the right arm and transfer it to the left arm.",
**ALOHA_STATIC_INFO,
},
"pusht": {"single_task": "Push the T-shaped block onto the T-shaped target.", **PUSHT_INFO},
"pusht_image": {"single_task": "Push the T-shaped block onto the T-shaped target.", **PUSHT_INFO},
"unitreeh1_fold_clothes": {"single_task": "Fold the sweatshirt.", **UNITREEH_INFO},
"unitreeh1_rearrange_objects": {"single_task": "Put the object into the bin.", **UNITREEH_INFO},
"unitreeh1_two_robot_greeting": {
"single_task": "Greet the other robot with a high five.",
**UNITREEH_INFO,
},
"unitreeh1_warehouse": {
"single_task": "Grab the spray paint on the shelf and place it in the bin on top of the robot dog.",
**UNITREEH_INFO,
},
"xarm_lift_medium": {"single_task": "Pick up the cube and lift it.", **XARM_INFO},
"xarm_lift_medium_image": {"single_task": "Pick up the cube and lift it.", **XARM_INFO},
"xarm_lift_medium_replay": {"single_task": "Pick up the cube and lift it.", **XARM_INFO},
"xarm_lift_medium_replay_image": {"single_task": "Pick up the cube and lift it.", **XARM_INFO},
"xarm_push_medium": {"single_task": "Push the cube onto the target.", **XARM_INFO},
"xarm_push_medium_image": {"single_task": "Push the cube onto the target.", **XARM_INFO},
"xarm_push_medium_replay": {"single_task": "Push the cube onto the target.", **XARM_INFO},
"xarm_push_medium_replay_image": {"single_task": "Push the cube onto the target.", **XARM_INFO},
"umi_cup_in_the_wild": {
"single_task": "Put the cup on the plate.",
"license": "apache-2.0",
},
"asu_table_top": {
"tasks_col": "language_instruction",
"license": "mit",
"paper": "https://link.springer.com/article/10.1007/s10514-023-10129-1",
"citation_bibtex": dedent(r"""
@inproceedings{zhou2023modularity,
title={Modularity through Attention: Efficient Training and Transfer of Language-Conditioned Policies for Robot Manipulation},
author={Zhou, Yifan and Sonawani, Shubham and Phielipp, Mariano and Stepputtis, Simon and Amor, Heni},
booktitle={Conference on Robot Learning},
pages={1684--1695},
year={2023},
organization={PMLR}
}
@article{zhou2023learning,
title={Learning modular language-conditioned robot policies through attention},
author={Zhou, Yifan and Sonawani, Shubham and Phielipp, Mariano and Ben Amor, Heni and Stepputtis, Simon},
journal={Autonomous Robots},
pages={1--21},
year={2023},
publisher={Springer}
}""").lstrip(),
},
"austin_buds_dataset": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://ut-austin-rpl.github.io/BUDS-website/",
"paper": "https://arxiv.org/abs/2109.13841",
"citation_bibtex": dedent(r"""
@article{zhu2022bottom,
title={Bottom-Up Skill Discovery From Unsegmented Demonstrations for Long-Horizon Robot Manipulation},
author={Zhu, Yifeng and Stone, Peter and Zhu, Yuke},
journal={IEEE Robotics and Automation Letters},
volume={7},
number={2},
pages={4126--4133},
year={2022},
publisher={IEEE}
}""").lstrip(),
},
"austin_sailor_dataset": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://ut-austin-rpl.github.io/sailor/",
"paper": "https://arxiv.org/abs/2210.11435",
"citation_bibtex": dedent(r"""
@inproceedings{nasiriany2022sailor,
title={Learning and Retrieval from Prior Data for Skill-based Imitation Learning},
author={Soroush Nasiriany and Tian Gao and Ajay Mandlekar and Yuke Zhu},
booktitle={Conference on Robot Learning (CoRL)},
year={2022}
}""").lstrip(),
},
"austin_sirius_dataset": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://ut-austin-rpl.github.io/sirius/",
"paper": "https://arxiv.org/abs/2211.08416",
"citation_bibtex": dedent(r"""
@inproceedings{liu2022robot,
title = {Robot Learning on the Job: Human-in-the-Loop Autonomy and Learning During Deployment},
author = {Huihan Liu and Soroush Nasiriany and Lance Zhang and Zhiyao Bao and Yuke Zhu},
booktitle = {Robotics: Science and Systems (RSS)},
year = {2023}
}""").lstrip(),
},
"berkeley_autolab_ur5": {
"tasks_col": "language_instruction",
"license": "cc-by-4.0",
"url": "https://sites.google.com/view/berkeley-ur5/home",
"citation_bibtex": dedent(r"""
@misc{BerkeleyUR5Website,
title = {Berkeley {UR5} Demonstration Dataset},
author = {Lawrence Yunliang Chen and Simeon Adebola and Ken Goldberg},
howpublished = {https://sites.google.com/view/berkeley-ur5/home},
}""").lstrip(),
},
"berkeley_cable_routing": {
"tasks_col": "language_instruction",
"license": "cc-by-4.0",
"url": "https://sites.google.com/view/cablerouting/home",
"paper": "https://arxiv.org/abs/2307.08927",
"citation_bibtex": dedent(r"""
@article{luo2023multistage,
author = {Jianlan Luo and Charles Xu and Xinyang Geng and Gilbert Feng and Kuan Fang and Liam Tan and Stefan Schaal and Sergey Levine},
title = {Multi-Stage Cable Routing through Hierarchical Imitation Learning},
journal = {arXiv pre-print},
year = {2023},
url = {https://arxiv.org/abs/2307.08927},
}""").lstrip(),
},
"berkeley_fanuc_manipulation": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://sites.google.com/berkeley.edu/fanuc-manipulation",
"citation_bibtex": dedent(r"""
@article{fanuc_manipulation2023,
title={Fanuc Manipulation: A Dataset for Learning-based Manipulation with FANUC Mate 200iD Robot},
author={Zhu, Xinghao and Tian, Ran and Xu, Chenfeng and Ding, Mingyu and Zhan, Wei and Tomizuka, Masayoshi},
year={2023},
}""").lstrip(),
},
"berkeley_gnm_cory_hall": {
"tasks_col": "language_instruction",
"license": "mit",
"paper": "https://arxiv.org/abs/1709.10489",
"citation_bibtex": dedent(r"""
@inproceedings{kahn2018self,
title={Self-supervised deep reinforcement learning with generalized computation graphs for robot navigation},
author={Kahn, Gregory and Villaflor, Adam and Ding, Bosen and Abbeel, Pieter and Levine, Sergey},
booktitle={2018 IEEE international conference on robotics and automation (ICRA)},
pages={5129--5136},
year={2018},
organization={IEEE}
}""").lstrip(),
},
"berkeley_gnm_recon": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://sites.google.com/view/recon-robot",
"paper": "https://arxiv.org/abs/2104.05859",
"citation_bibtex": dedent(r"""
@inproceedings{shah2021rapid,
title={Rapid Exploration for Open-World Navigation with Latent Goal Models},
author={Dhruv Shah and Benjamin Eysenbach and Nicholas Rhinehart and Sergey Levine},
booktitle={5th Annual Conference on Robot Learning },
year={2021},
url={https://openreview.net/forum?id=d_SWJhyKfVw}
}""").lstrip(),
},
"berkeley_gnm_sac_son": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://sites.google.com/view/SACSoN-review",
"paper": "https://arxiv.org/abs/2306.01874",
"citation_bibtex": dedent(r"""
@article{hirose2023sacson,
title={SACSoN: Scalable Autonomous Data Collection for Social Navigation},
author={Hirose, Noriaki and Shah, Dhruv and Sridhar, Ajay and Levine, Sergey},
journal={arXiv preprint arXiv:2306.01874},
year={2023}
}""").lstrip(),
},
"berkeley_mvp": {
"tasks_col": "language_instruction",
"license": "mit",
"paper": "https://arxiv.org/abs/2203.06173",
"citation_bibtex": dedent(r"""
@InProceedings{Radosavovic2022,
title = {Real-World Robot Learning with Masked Visual Pre-training},
author = {Ilija Radosavovic and Tete Xiao and Stephen James and Pieter Abbeel and Jitendra Malik and Trevor Darrell},
booktitle = {CoRL},
year = {2022}
}""").lstrip(),
},
"berkeley_rpt": {
"tasks_col": "language_instruction",
"license": "mit",
"paper": "https://arxiv.org/abs/2306.10007",
"citation_bibtex": dedent(r"""
@article{Radosavovic2023,
title={Robot Learning with Sensorimotor Pre-training},
author={Ilija Radosavovic and Baifeng Shi and Letian Fu and Ken Goldberg and Trevor Darrell and Jitendra Malik},
year={2023},
journal={arXiv:2306.10007}
}""").lstrip(),
},
"cmu_franka_exploration_dataset": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://human-world-model.github.io/",
"paper": "https://arxiv.org/abs/2308.10901",
"citation_bibtex": dedent(r"""
@inproceedings{mendonca2023structured,
title={Structured World Models from Human Videos},
author={Mendonca, Russell and Bahl, Shikhar and Pathak, Deepak},
journal={RSS},
year={2023}
}""").lstrip(),
},
"cmu_play_fusion": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://play-fusion.github.io/",
"paper": "https://arxiv.org/abs/2312.04549",
"citation_bibtex": dedent(r"""
@inproceedings{chen2023playfusion,
title={PlayFusion: Skill Acquisition via Diffusion from Language-Annotated Play},
author={Chen, Lili and Bahl, Shikhar and Pathak, Deepak},
booktitle={CoRL},
year={2023}
}""").lstrip(),
},
"cmu_stretch": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://robo-affordances.github.io/",
"paper": "https://arxiv.org/abs/2304.08488",
"citation_bibtex": dedent(r"""
@inproceedings{bahl2023affordances,
title={Affordances from Human Videos as a Versatile Representation for Robotics},
author={Bahl, Shikhar and Mendonca, Russell and Chen, Lili and Jain, Unnat and Pathak, Deepak},
booktitle={CVPR},
year={2023}
}
@article{mendonca2023structured,
title={Structured World Models from Human Videos},
author={Mendonca, Russell and Bahl, Shikhar and Pathak, Deepak},
journal={CoRL},
year={2023}
}""").lstrip(),
},
"columbia_cairlab_pusht_real": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://diffusion-policy.cs.columbia.edu/",
"paper": "https://arxiv.org/abs/2303.04137v5",
"citation_bibtex": dedent(r"""
@inproceedings{chi2023diffusionpolicy,
title={Diffusion Policy: Visuomotor Policy Learning via Action Diffusion},
author={Chi, Cheng and Feng, Siyuan and Du, Yilun and Xu, Zhenjia and Cousineau, Eric and Burchfiel, Benjamin and Song, Shuran},
booktitle={Proceedings of Robotics: Science and Systems (RSS)},
year={2023}
}""").lstrip(),
},
"conq_hose_manipulation": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://sites.google.com/view/conq-hose-manipulation-dataset/home",
"citation_bibtex": dedent(r"""
@misc{ConqHoseManipData,
author={Peter Mitrano and Dmitry Berenson},
title={Conq Hose Manipulation Dataset, v1.15.0},
year={2024},
howpublished={https://sites.google.com/view/conq-hose-manipulation-dataset}
}""").lstrip(),
},
"dlr_edan_shared_control": {
"tasks_col": "language_instruction",
"license": "mit",
"paper": "https://ieeexplore.ieee.org/document/9341156",
"citation_bibtex": dedent(r"""
@inproceedings{vogel_edan_2020,
title = {EDAN - an EMG-Controlled Daily Assistant to Help People with Physical Disabilities},
language = {en},
booktitle = {2020 {IEEE}/{RSJ} {International} {Conference} on {Intelligent} {Robots} and {Systems} ({IROS})},
author = {Vogel, Jörn and Hagengruber, Annette and Iskandar, Maged and Quere, Gabriel and Leipscher, Ulrike and Bustamante, Samuel and Dietrich, Alexander and Hoeppner, Hannes and Leidner, Daniel and Albu-Schäffer, Alin},
year = {2020}
}
@inproceedings{quere_shared_2020,
address = {Paris, France},
title = {Shared {Control} {Templates} for {Assistive} {Robotics}},
language = {en},
booktitle = {2020 {IEEE} {International} {Conference} on {Robotics} and {Automation} ({ICRA})},
author = {Quere, Gabriel and Hagengruber, Annette and Iskandar, Maged and Bustamante, Samuel and Leidner, Daniel and Stulp, Freek and Vogel, Joern},
year = {2020},
pages = {7},
}""").lstrip(),
},
"dlr_sara_grid_clamp": {
"tasks_col": "language_instruction",
"license": "mit",
"paper": "https://www.researchsquare.com/article/rs-3289569/v1",
"citation_bibtex": dedent(r"""
@article{padalkar2023guided,
title={A guided reinforcement learning approach using shared control templates for learning manipulation skills in the real world},
author={Padalkar, Abhishek and Quere, Gabriel and Raffin, Antonin and Silv{\'e}rio, Jo{\~a}o and Stulp, Freek},
journal={Research square preprint rs-3289569/v1},
year={2023}
}""").lstrip(),
},
"dlr_sara_pour": {
"tasks_col": "language_instruction",
"license": "mit",
"paper": "https://elib.dlr.de/193739/1/padalkar2023rlsct.pdf",
"citation_bibtex": dedent(r"""
@inproceedings{padalkar2023guiding,
title={Guiding Reinforcement Learning with Shared Control Templates},
author={Padalkar, Abhishek and Quere, Gabriel and Steinmetz, Franz and Raffin, Antonin and Nieuwenhuisen, Matthias and Silv{\'e}rio, Jo{\~a}o and Stulp, Freek},
booktitle={40th IEEE International Conference on Robotics and Automation, ICRA 2023},
year={2023},
organization={IEEE}
}""").lstrip(),
},
"droid_100": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://droid-dataset.github.io/",
"paper": "https://arxiv.org/abs/2403.12945",
"citation_bibtex": dedent(r"""
@article{khazatsky2024droid,
title = {DROID: A Large-Scale In-The-Wild Robot Manipulation Dataset},
author = {Alexander Khazatsky and Karl Pertsch and Suraj Nair and Ashwin Balakrishna and Sudeep Dasari and Siddharth Karamcheti and Soroush Nasiriany and Mohan Kumar Srirama and Lawrence Yunliang Chen and Kirsty Ellis and Peter David Fagan and Joey Hejna and Masha Itkina and Marion Lepert and Yecheng Jason Ma and Patrick Tree Miller and Jimmy Wu and Suneel Belkhale and Shivin Dass and Huy Ha and Arhan Jain and Abraham Lee and Youngwoon Lee and Marius Memmel and Sungjae Park and Ilija Radosavovic and Kaiyuan Wang and Albert Zhan and Kevin Black and Cheng Chi and Kyle Beltran Hatch and Shan Lin and Jingpei Lu and Jean Mercat and Abdul Rehman and Pannag R Sanketi and Archit Sharma and Cody Simpson and Quan Vuong and Homer Rich Walke and Blake Wulfe and Ted Xiao and Jonathan Heewon Yang and Arefeh Yavary and Tony Z. Zhao and Christopher Agia and Rohan Baijal and Mateo Guaman Castro and Daphne Chen and Qiuyu Chen and Trinity Chung and Jaimyn Drake and Ethan Paul Foster and Jensen Gao and David Antonio Herrera and Minho Heo and Kyle Hsu and Jiaheng Hu and Donovon Jackson and Charlotte Le and Yunshuang Li and Kevin Lin and Roy Lin and Zehan Ma and Abhiram Maddukuri and Suvir Mirchandani and Daniel Morton and Tony Nguyen and Abigail O'Neill and Rosario Scalise and Derick Seale and Victor Son and Stephen Tian and Emi Tran and Andrew E. Wang and Yilin Wu and Annie Xie and Jingyun Yang and Patrick Yin and Yunchu Zhang and Osbert Bastani and Glen Berseth and Jeannette Bohg and Ken Goldberg and Abhinav Gupta and Abhishek Gupta and Dinesh Jayaraman and Joseph J Lim and Jitendra Malik and Roberto Martín-Martín and Subramanian Ramamoorthy and Dorsa Sadigh and Shuran Song and Jiajun Wu and Michael C. Yip and Yuke Zhu and Thomas Kollar and Sergey Levine and Chelsea Finn},
year = {2024},
}""").lstrip(),
},
"fmb": {
"tasks_col": "language_instruction",
"license": "cc-by-4.0",
"url": "https://functional-manipulation-benchmark.github.io/",
"paper": "https://arxiv.org/abs/2401.08553",
"citation_bibtex": dedent(r"""
@article{luo2024fmb,
title={FMB: a Functional Manipulation Benchmark for Generalizable Robotic Learning},
author={Luo, Jianlan and Xu, Charles and Liu, Fangchen and Tan, Liam and Lin, Zipeng and Wu, Jeffrey and Abbeel, Pieter and Levine, Sergey},
journal={arXiv preprint arXiv:2401.08553},
year={2024}
}""").lstrip(),
},
"iamlab_cmu_pickup_insert": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://openreview.net/forum?id=WuBv9-IGDUA",
"paper": "https://arxiv.org/abs/2401.14502",
"citation_bibtex": dedent(r"""
@inproceedings{saxena2023multiresolution,
title={Multi-Resolution Sensing for Real-Time Control with Vision-Language Models},
author={Saumya Saxena and Mohit Sharma and Oliver Kroemer},
booktitle={7th Annual Conference on Robot Learning},
year={2023},
url={https://openreview.net/forum?id=WuBv9-IGDUA}
}""").lstrip(),
},
"imperialcollege_sawyer_wrist_cam": {
"tasks_col": "language_instruction",
"license": "mit",
},
"jaco_play": {
"tasks_col": "language_instruction",
"license": "cc-by-4.0",
"url": "https://github.com/clvrai/clvr_jaco_play_dataset",
"citation_bibtex": dedent(r"""
@software{dass2023jacoplay,
author = {Dass, Shivin and Yapeter, Jullian and Zhang, Jesse and Zhang, Jiahui
and Pertsch, Karl and Nikolaidis, Stefanos and Lim, Joseph J.},
title = {CLVR Jaco Play Dataset},
url = {https://github.com/clvrai/clvr_jaco_play_dataset},
version = {1.0.0},
year = {2023}
}""").lstrip(),
},
"kaist_nonprehensile": {
"tasks_col": "language_instruction",
"license": "cc-by-4.0",
"url": "https://github.com/JaeHyung-Kim/rlds_dataset_builder",
"citation_bibtex": dedent(r"""
@article{kimpre,
title={Pre-and post-contact policy decomposition for non-prehensile manipulation with zero-shot sim-to-real transfer},
author={Kim, Minchan and Han, Junhyek and Kim, Jaehyung and Kim, Beomjoon},
booktitle={2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
year={2023},
organization={IEEE}
}""").lstrip(),
},
"nyu_door_opening_surprising_effectiveness": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://jyopari.github.io/VINN/",
"paper": "https://arxiv.org/abs/2112.01511",
"citation_bibtex": dedent(r"""
@misc{pari2021surprising,
title={The Surprising Effectiveness of Representation Learning for Visual Imitation},
author={Jyothish Pari and Nur Muhammad Shafiullah and Sridhar Pandian Arunachalam and Lerrel Pinto},
year={2021},
eprint={2112.01511},
archivePrefix={arXiv},
primaryClass={cs.RO}
}""").lstrip(),
},
"nyu_franka_play_dataset": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://play-to-policy.github.io/",
"paper": "https://arxiv.org/abs/2210.10047",
"citation_bibtex": dedent(r"""
@article{cui2022play,
title = {From Play to Policy: Conditional Behavior Generation from Uncurated Robot Data},
author = {Cui, Zichen Jeff and Wang, Yibin and Shafiullah, Nur Muhammad Mahi and Pinto, Lerrel},
journal = {arXiv preprint arXiv:2210.10047},
year = {2022}
}""").lstrip(),
},
"nyu_rot_dataset": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://rot-robot.github.io/",
"paper": "https://arxiv.org/abs/2206.15469",
"citation_bibtex": dedent(r"""
@inproceedings{haldar2023watch,
title={Watch and match: Supercharging imitation with regularized optimal transport},
author={Haldar, Siddhant and Mathur, Vaibhav and Yarats, Denis and Pinto, Lerrel},
booktitle={Conference on Robot Learning},
pages={32--43},
year={2023},
organization={PMLR}
}""").lstrip(),
},
"roboturk": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://roboturk.stanford.edu/dataset_real.html",
"paper": "PAPER",
"citation_bibtex": dedent(r"""
@inproceedings{mandlekar2019scaling,
title={Scaling robot supervision to hundreds of hours with roboturk: Robotic manipulation dataset through human reasoning and dexterity},
author={Mandlekar, Ajay and Booher, Jonathan and Spero, Max and Tung, Albert and Gupta, Anchit and Zhu, Yuke and Garg, Animesh and Savarese, Silvio and Fei-Fei, Li},
booktitle={2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
pages={1048--1055},
year={2019},
organization={IEEE}
}""").lstrip(),
},
"stanford_hydra_dataset": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://sites.google.com/view/hydra-il-2023",
"paper": "https://arxiv.org/abs/2306.17237",
"citation_bibtex": dedent(r"""
@article{belkhale2023hydra,
title={HYDRA: Hybrid Robot Actions for Imitation Learning},
author={Belkhale, Suneel and Cui, Yuchen and Sadigh, Dorsa},
journal={arxiv},
year={2023}
}""").lstrip(),
},
"stanford_kuka_multimodal_dataset": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://sites.google.com/view/visionandtouch",
"paper": "https://arxiv.org/abs/1810.10191",
"citation_bibtex": dedent(r"""
@inproceedings{lee2019icra,
title={Making sense of vision and touch: Self-supervised learning of multimodal representations for contact-rich tasks},
author={Lee, Michelle A and Zhu, Yuke and Srinivasan, Krishnan and Shah, Parth and Savarese, Silvio and Fei-Fei, Li and Garg, Animesh and Bohg, Jeannette},
booktitle={2019 IEEE International Conference on Robotics and Automation (ICRA)},
year={2019},
url={https://arxiv.org/abs/1810.10191}
}""").lstrip(),
},
"stanford_robocook": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://hshi74.github.io/robocook/",
"paper": "https://arxiv.org/abs/2306.14447",
"citation_bibtex": dedent(r"""
@article{shi2023robocook,
title={RoboCook: Long-Horizon Elasto-Plastic Object Manipulation with Diverse Tools},
author={Shi, Haochen and Xu, Huazhe and Clarke, Samuel and Li, Yunzhu and Wu, Jiajun},
journal={arXiv preprint arXiv:2306.14447},
year={2023}
}""").lstrip(),
},
"taco_play": {
"tasks_col": "language_instruction",
"license": "cc-by-4.0",
"url": "https://www.kaggle.com/datasets/oiermees/taco-robot",
"paper": "https://arxiv.org/abs/2209.08959, https://arxiv.org/abs/2210.01911",
"citation_bibtex": dedent(r"""
@inproceedings{rosete2022tacorl,
author = {Erick Rosete-Beas and Oier Mees and Gabriel Kalweit and Joschka Boedecker and Wolfram Burgard},
title = {Latent Plans for Task Agnostic Offline Reinforcement Learning},
journal = {Proceedings of the 6th Conference on Robot Learning (CoRL)},
year = {2022}
}
@inproceedings{mees23hulc2,
title={Grounding Language with Visual Affordances over Unstructured Data},
author={Oier Mees and Jessica Borja-Diaz and Wolfram Burgard},
booktitle = {Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)},
year={2023},
address = {London, UK}
}""").lstrip(),
},
"tokyo_u_lsmo": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "URL",
"paper": "https://arxiv.org/abs/2107.05842",
"citation_bibtex": dedent(r"""
@Article{Osa22,
author = {Takayuki Osa},
journal = {The International Journal of Robotics Research},
title = {Motion Planning by Learning the Solution Manifold in Trajectory Optimization},
year = {2022},
number = {3},
pages = {291--311},
volume = {41},
}""").lstrip(),
},
"toto": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://toto-benchmark.org/",
"paper": "https://arxiv.org/abs/2306.00942",
"citation_bibtex": dedent(r"""
@inproceedings{zhou2023train,
author={Zhou, Gaoyue and Dean, Victoria and Srirama, Mohan Kumar and Rajeswaran, Aravind and Pari, Jyothish and Hatch, Kyle and Jain, Aryan and Yu, Tianhe and Abbeel, Pieter and Pinto, Lerrel and Finn, Chelsea and Gupta, Abhinav},
booktitle={2023 IEEE International Conference on Robotics and Automation (ICRA)},
title={Train Offline, Test Online: A Real Robot Learning Benchmark},
year={2023},
}""").lstrip(),
},
"ucsd_kitchen_dataset": {
"tasks_col": "language_instruction",
"license": "mit",
"citation_bibtex": dedent(r"""
@ARTICLE{ucsd_kitchens,
author = {Ge Yan, Kris Wu, and Xiaolong Wang},
title = {{ucsd kitchens Dataset}},
year = {2023},
month = {August}
}""").lstrip(),
},
"ucsd_pick_and_place_dataset": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://owmcorl.github.io/#",
"paper": "https://arxiv.org/abs/2310.16029",
"citation_bibtex": dedent(r"""
@preprint{Feng2023Finetuning,
title={Finetuning Offline World Models in the Real World},
author={Yunhai Feng, Nicklas Hansen, Ziyan Xiong, Chandramouli Rajagopalan, Xiaolong Wang},
year={2023}
}""").lstrip(),
},
"uiuc_d3field": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://robopil.github.io/d3fields/",
"paper": "https://arxiv.org/abs/2309.16118",
"citation_bibtex": dedent(r"""
@article{wang2023d3field,
title={D^3Field: Dynamic 3D Descriptor Fields for Generalizable Robotic Manipulation},
author={Wang, Yixuan and Li, Zhuoran and Zhang, Mingtong and Driggs-Campbell, Katherine and Wu, Jiajun and Fei-Fei, Li and Li, Yunzhu},
journal={arXiv preprint arXiv:},
year={2023},
}""").lstrip(),
},
"usc_cloth_sim": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://uscresl.github.io/dmfd/",
"paper": "https://arxiv.org/abs/2207.10148",
"citation_bibtex": dedent(r"""
@article{salhotra2022dmfd,
author={Salhotra, Gautam and Liu, I-Chun Arthur and Dominguez-Kuhne, Marcus and Sukhatme, Gaurav S.},
journal={IEEE Robotics and Automation Letters},
title={Learning Deformable Object Manipulation From Expert Demonstrations},
year={2022},
volume={7},
number={4},
pages={8775-8782},
doi={10.1109/LRA.2022.3187843}
}""").lstrip(),
},
"utaustin_mutex": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://ut-austin-rpl.github.io/MUTEX/",
"paper": "https://arxiv.org/abs/2309.14320",
"citation_bibtex": dedent(r"""
@inproceedings{shah2023mutex,
title={{MUTEX}: Learning Unified Policies from Multimodal Task Specifications},
author={Rutav Shah and Roberto Mart{\'\i}n-Mart{\'\i}n and Yuke Zhu},
booktitle={7th Annual Conference on Robot Learning},
year={2023},
url={https://openreview.net/forum?id=PwqiqaaEzJ}
}""").lstrip(),
},
"utokyo_pr2_opening_fridge": {
"tasks_col": "language_instruction",
"license": "mit",
"citation_bibtex": dedent(r"""
@misc{oh2023pr2utokyodatasets,
author={Jihoon Oh and Naoaki Kanazawa and Kento Kawaharazuka},
title={X-Embodiment U-Tokyo PR2 Datasets},
year={2023},
url={https://github.com/ojh6404/rlds_dataset_builder},
}""").lstrip(),
},
"utokyo_pr2_tabletop_manipulation": {
"tasks_col": "language_instruction",
"license": "mit",
"citation_bibtex": dedent(r"""
@misc{oh2023pr2utokyodatasets,
author={Jihoon Oh and Naoaki Kanazawa and Kento Kawaharazuka},
title={X-Embodiment U-Tokyo PR2 Datasets},
year={2023},
url={https://github.com/ojh6404/rlds_dataset_builder},
}""").lstrip(),
},
"utokyo_saytap": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://saytap.github.io/",
"paper": "https://arxiv.org/abs/2306.07580",
"citation_bibtex": dedent(r"""
@article{saytap2023,
author = {Yujin Tang and Wenhao Yu and Jie Tan and Heiga Zen and Aleksandra Faust and
Tatsuya Harada},
title = {SayTap: Language to Quadrupedal Locomotion},
eprint = {arXiv:2306.07580},
url = {https://saytap.github.io},
note = {https://saytap.github.io},
year = {2023}
}""").lstrip(),
},
"utokyo_xarm_bimanual": {
"tasks_col": "language_instruction",
"license": "cc-by-4.0",
"citation_bibtex": dedent(r"""
@misc{matsushima2023weblab,
title={Weblab xArm Dataset},
author={Tatsuya Matsushima and Hiroki Furuta and Yusuke Iwasawa and Yutaka Matsuo},
year={2023},
}""").lstrip(),
},
"utokyo_xarm_pick_and_place": {
"tasks_col": "language_instruction",
"license": "cc-by-4.0",
"citation_bibtex": dedent(r"""
@misc{matsushima2023weblab,
title={Weblab xArm Dataset},
author={Tatsuya Matsushima and Hiroki Furuta and Yusuke Iwasawa and Yutaka Matsuo},
year={2023},
}""").lstrip(),
},
"viola": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://ut-austin-rpl.github.io/VIOLA/",
"paper": "https://arxiv.org/abs/2210.11339",
"citation_bibtex": dedent(r"""
@article{zhu2022viola,
title={VIOLA: Imitation Learning for Vision-Based Manipulation with Object Proposal Priors},
author={Zhu, Yifeng and Joshi, Abhishek and Stone, Peter and Zhu, Yuke},
journal={6th Annual Conference on Robot Learning (CoRL)},
year={2022}
}""").lstrip(),
},
}
def batch_convert():
status = {}
logfile = LOCAL_DIR / "conversion_log.txt"
assert set(DATASETS) == {id_.split("/")[1] for id_ in available_datasets}
for num, (name, kwargs) in enumerate(DATASETS.items()):
repo_id = f"lerobot/{name}"
print(f"\nConverting {repo_id} ({num}/{len(DATASETS)})")
print("---------------------------------------------------------")
try:
convert_dataset(repo_id, LOCAL_DIR, **kwargs)
status = f"{repo_id}: success."
with open(logfile, "a") as file:
file.write(status + "\n")
except Exception:
status = f"{repo_id}: failed\n {traceback.format_exc()}"
with open(logfile, "a") as file:
file.write(status + "\n")
continue
if __name__ == "__main__":
batch_convert()

View File

@@ -0,0 +1,665 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script will help you convert any LeRobot dataset already pushed to the hub from codebase version 1.6 to
2.0. You will be required to provide the 'tasks', which is a short but accurate description in plain English
for each of the task performed in the dataset. This will allow to easily train models with task-conditionning.
We support 3 different scenarios for these tasks (see instructions below):
1. Single task dataset: all episodes of your dataset have the same single task.
2. Single task episodes: the episodes of your dataset each contain a single task but they can differ from
one episode to the next.
3. Multi task episodes: episodes of your dataset may each contain several different tasks.
Can you can also provide a robot config .yaml file (not mandatory) to this script via the option
'--robot-config' so that it writes information about the robot (robot type, motors names) this dataset was
recorded with. For now, only Aloha/Koch type robots are supported with this option.
# 1. Single task dataset
If your dataset contains a single task, you can simply provide it directly via the CLI with the
'--single-task' option.
Examples:
```bash
python lerobot/common/datasets/v2/convert_dataset_v1_to_v2.py \
--repo-id lerobot/aloha_sim_insertion_human_image \
--single-task "Insert the peg into the socket." \
--robot-config lerobot/configs/robot/aloha.yaml \
--local-dir data
```
```bash
python lerobot/common/datasets/v2/convert_dataset_v1_to_v2.py \
--repo-id aliberts/koch_tutorial \
--single-task "Pick the Lego block and drop it in the box on the right." \
--robot-config lerobot/configs/robot/koch.yaml \
--local-dir data
```
# 2. Single task episodes
If your dataset is a multi-task dataset, you have two options to provide the tasks to this script:
- If your dataset already contains a language instruction column in its parquet file, you can simply provide
this column's name with the '--tasks-col' arg.
Example:
```bash
python lerobot/common/datasets/v2/convert_dataset_v1_to_v2.py \
--repo-id lerobot/stanford_kuka_multimodal_dataset \
--tasks-col "language_instruction" \
--local-dir data
```
- If your dataset doesn't contain a language instruction, you should provide the path to a .json file with the
'--tasks-path' arg. This file should have the following structure where keys correspond to each
episode_index in the dataset, and values are the language instruction for that episode.
Example:
```json
{
"0": "Do something",
"1": "Do something else",
"2": "Do something",
"3": "Go there",
...
}
```
# 3. Multi task episodes
If you have multiple tasks per episodes, your dataset should contain a language instruction column in its
parquet file, and you must provide this column's name with the '--tasks-col' arg.
Example:
```bash
python lerobot/common/datasets/v2/convert_dataset_v1_to_v2.py \
--repo-id lerobot/stanford_kuka_multimodal_dataset \
--tasks-col "language_instruction" \
--local-dir data
```
"""
import argparse
import contextlib
import filecmp
import json
import logging
import math
import shutil
import subprocess
import tempfile
from pathlib import Path
import datasets
import pyarrow.compute as pc
import pyarrow.parquet as pq
import torch
from datasets import Dataset
from huggingface_hub import HfApi
from huggingface_hub.errors import EntryNotFoundError, HfHubHTTPError
from safetensors.torch import load_file
from lerobot.common.datasets.utils import (
DEFAULT_CHUNK_SIZE,
DEFAULT_PARQUET_PATH,
DEFAULT_VIDEO_PATH,
EPISODES_PATH,
INFO_PATH,
STATS_PATH,
TASKS_PATH,
create_branch,
create_lerobot_dataset_card,
flatten_dict,
get_hub_safe_version,
load_json,
unflatten_dict,
write_json,
write_jsonlines,
)
from lerobot.common.datasets.video_utils import (
VideoFrame, # noqa: F401
get_image_pixel_channels,
get_video_info,
)
from lerobot.common.utils.utils import init_hydra_config
V16 = "v1.6"
V20 = "v2.0"
GITATTRIBUTES_REF = "aliberts/gitattributes_reference"
V1_VIDEO_FILE = "{video_key}_episode_{episode_index:06d}.mp4"
V1_INFO_PATH = "meta_data/info.json"
V1_STATS_PATH = "meta_data/stats.safetensors"
def parse_robot_config(config_path: Path, config_overrides: list[str] | None = None) -> tuple[str, dict]:
robot_cfg = init_hydra_config(config_path, config_overrides)
if robot_cfg["robot_type"] in ["aloha", "koch"]:
state_names = [
f"{arm}_{motor}" if len(robot_cfg["follower_arms"]) > 1 else motor
for arm in robot_cfg["follower_arms"]
for motor in robot_cfg["follower_arms"][arm]["motors"]
]
action_names = [
# f"{arm}_{motor}" for arm in ["left", "right"] for motor in robot_cfg["leader_arms"][arm]["motors"]
f"{arm}_{motor}" if len(robot_cfg["leader_arms"]) > 1 else motor
for arm in robot_cfg["leader_arms"]
for motor in robot_cfg["leader_arms"][arm]["motors"]
]
# elif robot_cfg["robot_type"] == "stretch3": TODO
else:
raise NotImplementedError(
"Please provide robot_config={'robot_type': ..., 'names': ...} directly to convert_dataset()."
)
return {
"robot_type": robot_cfg["robot_type"],
"names": {
"observation.state": state_names,
"observation.effort": state_names,
"action": action_names,
},
}
def convert_stats_to_json(v1_dir: Path, v2_dir: Path) -> None:
safetensor_path = v1_dir / V1_STATS_PATH
stats = load_file(safetensor_path)
serialized_stats = {key: value.tolist() for key, value in stats.items()}
serialized_stats = unflatten_dict(serialized_stats)
json_path = v2_dir / STATS_PATH
json_path.parent.mkdir(exist_ok=True, parents=True)
with open(json_path, "w") as f:
json.dump(serialized_stats, f, indent=4)
# Sanity check
with open(json_path) as f:
stats_json = json.load(f)
stats_json = flatten_dict(stats_json)
stats_json = {key: torch.tensor(value) for key, value in stats_json.items()}
for key in stats:
torch.testing.assert_close(stats_json[key], stats[key])
def get_features_from_hf_dataset(dataset: Dataset, robot_config: dict | None = None) -> dict[str, list]:
features = {}
for key, ft in dataset.features.items():
if isinstance(ft, datasets.Value):
dtype = ft.dtype
shape = (1,)
names = None
if isinstance(ft, datasets.Sequence):
assert isinstance(ft.feature, datasets.Value)
dtype = ft.feature.dtype
shape = (ft.length,)
motor_names = (
robot_config["names"][key] if robot_config else [f"motor_{i}" for i in range(ft.length)]
)
assert len(motor_names) == shape[0]
names = {"motors": motor_names}
elif isinstance(ft, datasets.Image):
dtype = "image"
image = dataset[0][key] # Assuming first row
channels = get_image_pixel_channels(image)
shape = (image.height, image.width, channels)
names = ["height", "width", "channel"]
elif ft._type == "VideoFrame":
dtype = "video"
shape = None # Add shape later
names = ["height", "width", "channel"]
features[key] = {
"dtype": dtype,
"shape": shape,
"names": names,
}
return features
def add_task_index_by_episodes(dataset: Dataset, tasks_by_episodes: dict) -> tuple[Dataset, list[str]]:
df = dataset.to_pandas()
tasks = list(set(tasks_by_episodes.values()))
tasks_to_task_index = {task: task_idx for task_idx, task in enumerate(tasks)}
episodes_to_task_index = {ep_idx: tasks_to_task_index[task] for ep_idx, task in tasks_by_episodes.items()}
df["task_index"] = df["episode_index"].map(episodes_to_task_index).astype(int)
features = dataset.features
features["task_index"] = datasets.Value(dtype="int64")
dataset = Dataset.from_pandas(df, features=features, split="train")
return dataset, tasks
def add_task_index_from_tasks_col(
dataset: Dataset, tasks_col: str
) -> tuple[Dataset, dict[str, list[str]], list[str]]:
df = dataset.to_pandas()
# HACK: This is to clean some of the instructions in our version of Open X datasets
prefix_to_clean = "tf.Tensor(b'"
suffix_to_clean = "', shape=(), dtype=string)"
df[tasks_col] = df[tasks_col].str.removeprefix(prefix_to_clean).str.removesuffix(suffix_to_clean)
# Create task_index col
tasks_by_episode = df.groupby("episode_index")[tasks_col].unique().apply(lambda x: x.tolist()).to_dict()
tasks = df[tasks_col].unique().tolist()
tasks_to_task_index = {task: idx for idx, task in enumerate(tasks)}
df["task_index"] = df[tasks_col].map(tasks_to_task_index).astype(int)
# Build the dataset back from df
features = dataset.features
features["task_index"] = datasets.Value(dtype="int64")
dataset = Dataset.from_pandas(df, features=features, split="train")
dataset = dataset.remove_columns(tasks_col)
return dataset, tasks, tasks_by_episode
def split_parquet_by_episodes(
dataset: Dataset,
total_episodes: int,
total_chunks: int,
output_dir: Path,
) -> list:
table = dataset.data.table
episode_lengths = []
for ep_chunk in range(total_chunks):
ep_chunk_start = DEFAULT_CHUNK_SIZE * ep_chunk
ep_chunk_end = min(DEFAULT_CHUNK_SIZE * (ep_chunk + 1), total_episodes)
chunk_dir = "/".join(DEFAULT_PARQUET_PATH.split("/")[:-1]).format(episode_chunk=ep_chunk)
(output_dir / chunk_dir).mkdir(parents=True, exist_ok=True)
for ep_idx in range(ep_chunk_start, ep_chunk_end):
ep_table = table.filter(pc.equal(table["episode_index"], ep_idx))
episode_lengths.insert(ep_idx, len(ep_table))
output_file = output_dir / DEFAULT_PARQUET_PATH.format(
episode_chunk=ep_chunk, episode_index=ep_idx
)
pq.write_table(ep_table, output_file)
return episode_lengths
def move_videos(
repo_id: str,
video_keys: list[str],
total_episodes: int,
total_chunks: int,
work_dir: Path,
clean_gittatributes: Path,
branch: str = "main",
) -> None:
"""
HACK: Since HfApi() doesn't provide a way to move files directly in a repo, this function will run git
commands to fetch git lfs video files references to move them into subdirectories without having to
actually download them.
"""
_lfs_clone(repo_id, work_dir, branch)
videos_moved = False
video_files = [str(f.relative_to(work_dir)) for f in work_dir.glob("videos*/*.mp4")]
if len(video_files) == 0:
video_files = [str(f.relative_to(work_dir)) for f in work_dir.glob("videos*/*/*/*.mp4")]
videos_moved = True # Videos have already been moved
assert len(video_files) == total_episodes * len(video_keys)
lfs_untracked_videos = _get_lfs_untracked_videos(work_dir, video_files)
current_gittatributes = work_dir / ".gitattributes"
if not filecmp.cmp(current_gittatributes, clean_gittatributes, shallow=False):
fix_gitattributes(work_dir, current_gittatributes, clean_gittatributes)
if lfs_untracked_videos:
fix_lfs_video_files_tracking(work_dir, video_files)
if videos_moved:
return
video_dirs = sorted(work_dir.glob("videos*/"))
for ep_chunk in range(total_chunks):
ep_chunk_start = DEFAULT_CHUNK_SIZE * ep_chunk
ep_chunk_end = min(DEFAULT_CHUNK_SIZE * (ep_chunk + 1), total_episodes)
for vid_key in video_keys:
chunk_dir = "/".join(DEFAULT_VIDEO_PATH.split("/")[:-1]).format(
episode_chunk=ep_chunk, video_key=vid_key
)
(work_dir / chunk_dir).mkdir(parents=True, exist_ok=True)
for ep_idx in range(ep_chunk_start, ep_chunk_end):
target_path = DEFAULT_VIDEO_PATH.format(
episode_chunk=ep_chunk, video_key=vid_key, episode_index=ep_idx
)
video_file = V1_VIDEO_FILE.format(video_key=vid_key, episode_index=ep_idx)
if len(video_dirs) == 1:
video_path = video_dirs[0] / video_file
else:
for dir in video_dirs:
if (dir / video_file).is_file():
video_path = dir / video_file
break
video_path.rename(work_dir / target_path)
commit_message = "Move video files into chunk subdirectories"
subprocess.run(["git", "add", "."], cwd=work_dir, check=True)
subprocess.run(["git", "commit", "-m", commit_message], cwd=work_dir, check=True)
subprocess.run(["git", "push"], cwd=work_dir, check=True)
def fix_lfs_video_files_tracking(work_dir: Path, lfs_untracked_videos: list[str]) -> None:
"""
HACK: This function fixes the tracking by git lfs which was not properly set on some repos. In that case,
there's no other option than to download the actual files and reupload them with lfs tracking.
"""
for i in range(0, len(lfs_untracked_videos), 100):
files = lfs_untracked_videos[i : i + 100]
try:
subprocess.run(["git", "rm", "--cached", *files], cwd=work_dir, capture_output=True, check=True)
except subprocess.CalledProcessError as e:
print("git rm --cached ERROR:")
print(e.stderr)
subprocess.run(["git", "add", *files], cwd=work_dir, check=True)
commit_message = "Track video files with git lfs"
subprocess.run(["git", "commit", "-m", commit_message], cwd=work_dir, check=True)
subprocess.run(["git", "push"], cwd=work_dir, check=True)
def fix_gitattributes(work_dir: Path, current_gittatributes: Path, clean_gittatributes: Path) -> None:
shutil.copyfile(clean_gittatributes, current_gittatributes)
subprocess.run(["git", "add", ".gitattributes"], cwd=work_dir, check=True)
subprocess.run(["git", "commit", "-m", "Fix .gitattributes"], cwd=work_dir, check=True)
subprocess.run(["git", "push"], cwd=work_dir, check=True)
def _lfs_clone(repo_id: str, work_dir: Path, branch: str) -> None:
subprocess.run(["git", "lfs", "install"], cwd=work_dir, check=True)
repo_url = f"https://huggingface.co/datasets/{repo_id}"
env = {"GIT_LFS_SKIP_SMUDGE": "1"} # Prevent downloading LFS files
subprocess.run(
["git", "clone", "--branch", branch, "--single-branch", "--depth", "1", repo_url, str(work_dir)],
check=True,
env=env,
)
def _get_lfs_untracked_videos(work_dir: Path, video_files: list[str]) -> list[str]:
lfs_tracked_files = subprocess.run(
["git", "lfs", "ls-files", "-n"], cwd=work_dir, capture_output=True, text=True, check=True
)
lfs_tracked_files = set(lfs_tracked_files.stdout.splitlines())
return [f for f in video_files if f not in lfs_tracked_files]
def get_videos_info(repo_id: str, local_dir: Path, video_keys: list[str], branch: str) -> dict:
# Assumes first episode
video_files = [
DEFAULT_VIDEO_PATH.format(episode_chunk=0, video_key=vid_key, episode_index=0)
for vid_key in video_keys
]
hub_api = HfApi()
hub_api.snapshot_download(
repo_id=repo_id, repo_type="dataset", local_dir=local_dir, revision=branch, allow_patterns=video_files
)
videos_info_dict = {}
for vid_key, vid_path in zip(video_keys, video_files, strict=True):
videos_info_dict[vid_key] = get_video_info(local_dir / vid_path)
return videos_info_dict
def convert_dataset(
repo_id: str,
local_dir: Path,
single_task: str | None = None,
tasks_path: Path | None = None,
tasks_col: Path | None = None,
robot_config: dict | None = None,
test_branch: str | None = None,
**card_kwargs,
):
v1 = get_hub_safe_version(repo_id, V16)
v1x_dir = local_dir / V16 / repo_id
v20_dir = local_dir / V20 / repo_id
v1x_dir.mkdir(parents=True, exist_ok=True)
v20_dir.mkdir(parents=True, exist_ok=True)
hub_api = HfApi()
hub_api.snapshot_download(
repo_id=repo_id, repo_type="dataset", revision=v1, local_dir=v1x_dir, ignore_patterns="videos*/"
)
branch = "main"
if test_branch:
branch = test_branch
create_branch(repo_id=repo_id, branch=test_branch, repo_type="dataset")
metadata_v1 = load_json(v1x_dir / V1_INFO_PATH)
dataset = datasets.load_dataset("parquet", data_dir=v1x_dir / "data", split="train")
features = get_features_from_hf_dataset(dataset, robot_config)
video_keys = [key for key, ft in features.items() if ft["dtype"] == "video"]
if single_task and "language_instruction" in dataset.column_names:
logging.warning(
"'single_task' provided but 'language_instruction' tasks_col found. Using 'language_instruction'.",
)
single_task = None
tasks_col = "language_instruction"
# Episodes & chunks
episode_indices = sorted(dataset.unique("episode_index"))
total_episodes = len(episode_indices)
assert episode_indices == list(range(total_episodes))
total_videos = total_episodes * len(video_keys)
total_chunks = total_episodes // DEFAULT_CHUNK_SIZE
if total_episodes % DEFAULT_CHUNK_SIZE != 0:
total_chunks += 1
# Tasks
if single_task:
tasks_by_episodes = {ep_idx: single_task for ep_idx in episode_indices}
dataset, tasks = add_task_index_by_episodes(dataset, tasks_by_episodes)
tasks_by_episodes = {ep_idx: [task] for ep_idx, task in tasks_by_episodes.items()}
elif tasks_path:
tasks_by_episodes = load_json(tasks_path)
tasks_by_episodes = {int(ep_idx): task for ep_idx, task in tasks_by_episodes.items()}
dataset, tasks = add_task_index_by_episodes(dataset, tasks_by_episodes)
tasks_by_episodes = {ep_idx: [task] for ep_idx, task in tasks_by_episodes.items()}
elif tasks_col:
dataset, tasks, tasks_by_episodes = add_task_index_from_tasks_col(dataset, tasks_col)
else:
raise ValueError
assert set(tasks) == {task for ep_tasks in tasks_by_episodes.values() for task in ep_tasks}
tasks = [{"task_index": task_idx, "task": task} for task_idx, task in enumerate(tasks)]
write_jsonlines(tasks, v20_dir / TASKS_PATH)
features["task_index"] = {
"dtype": "int64",
"shape": (1,),
"names": None,
}
# Videos
if video_keys:
assert metadata_v1.get("video", False)
dataset = dataset.remove_columns(video_keys)
clean_gitattr = Path(
hub_api.hf_hub_download(
repo_id=GITATTRIBUTES_REF, repo_type="dataset", local_dir=local_dir, filename=".gitattributes"
)
).absolute()
with tempfile.TemporaryDirectory() as tmp_video_dir:
move_videos(
repo_id, video_keys, total_episodes, total_chunks, Path(tmp_video_dir), clean_gitattr, branch
)
videos_info = get_videos_info(repo_id, v1x_dir, video_keys=video_keys, branch=branch)
for key in video_keys:
features[key]["shape"] = (
videos_info[key].pop("video.height"),
videos_info[key].pop("video.width"),
videos_info[key].pop("video.channels"),
)
features[key]["video_info"] = videos_info[key]
assert math.isclose(videos_info[key]["video.fps"], metadata_v1["fps"], rel_tol=1e-3)
if "encoding" in metadata_v1:
assert videos_info[key]["video.pix_fmt"] == metadata_v1["encoding"]["pix_fmt"]
else:
assert metadata_v1.get("video", 0) == 0
videos_info = None
# Split data into 1 parquet file by episode
episode_lengths = split_parquet_by_episodes(dataset, total_episodes, total_chunks, v20_dir)
if robot_config is not None:
robot_type = robot_config["robot_type"]
repo_tags = [robot_type]
else:
robot_type = "unknown"
repo_tags = None
# Episodes
episodes = [
{"episode_index": ep_idx, "tasks": tasks_by_episodes[ep_idx], "length": episode_lengths[ep_idx]}
for ep_idx in episode_indices
]
write_jsonlines(episodes, v20_dir / EPISODES_PATH)
# Assemble metadata v2.0
metadata_v2_0 = {
"codebase_version": V20,
"robot_type": robot_type,
"total_episodes": total_episodes,
"total_frames": len(dataset),
"total_tasks": len(tasks),
"total_videos": total_videos,
"total_chunks": total_chunks,
"chunks_size": DEFAULT_CHUNK_SIZE,
"fps": metadata_v1["fps"],
"splits": {"train": f"0:{total_episodes}"},
"data_path": DEFAULT_PARQUET_PATH,
"video_path": DEFAULT_VIDEO_PATH if video_keys else None,
"features": features,
}
write_json(metadata_v2_0, v20_dir / INFO_PATH)
convert_stats_to_json(v1x_dir, v20_dir)
card = create_lerobot_dataset_card(tags=repo_tags, dataset_info=metadata_v2_0, **card_kwargs)
with contextlib.suppress(EntryNotFoundError, HfHubHTTPError):
hub_api.delete_folder(repo_id=repo_id, path_in_repo="data", repo_type="dataset", revision=branch)
with contextlib.suppress(EntryNotFoundError, HfHubHTTPError):
hub_api.delete_folder(repo_id=repo_id, path_in_repo="meta_data", repo_type="dataset", revision=branch)
with contextlib.suppress(EntryNotFoundError, HfHubHTTPError):
hub_api.delete_folder(repo_id=repo_id, path_in_repo="meta", repo_type="dataset", revision=branch)
hub_api.upload_folder(
repo_id=repo_id,
path_in_repo="data",
folder_path=v20_dir / "data",
repo_type="dataset",
revision=branch,
)
hub_api.upload_folder(
repo_id=repo_id,
path_in_repo="meta",
folder_path=v20_dir / "meta",
repo_type="dataset",
revision=branch,
)
card.push_to_hub(repo_id=repo_id, repo_type="dataset", revision=branch)
if not test_branch:
create_branch(repo_id=repo_id, branch=V20, repo_type="dataset")
def main():
parser = argparse.ArgumentParser()
task_args = parser.add_mutually_exclusive_group(required=True)
parser.add_argument(
"--repo-id",
type=str,
required=True,
help="Repository identifier on Hugging Face: a community or a user name `/` the name of the dataset (e.g. `lerobot/pusht`, `cadene/aloha_sim_insertion_human`).",
)
task_args.add_argument(
"--single-task",
type=str,
help="A short but accurate description of the single task performed in the dataset.",
)
task_args.add_argument(
"--tasks-col",
type=str,
help="The name of the column containing language instructions",
)
task_args.add_argument(
"--tasks-path",
type=Path,
help="The path to a .json file containing one language instruction for each episode_index",
)
parser.add_argument(
"--robot-config",
type=Path,
default=None,
help="Path to the robot's config yaml the dataset during conversion.",
)
parser.add_argument(
"--robot-overrides",
type=str,
nargs="*",
help="Any key=value arguments to override the robot config values (use dots for.nested=overrides)",
)
parser.add_argument(
"--local-dir",
type=Path,
default=None,
help="Local directory to store the dataset during conversion. Defaults to /tmp/lerobot_dataset_v2",
)
parser.add_argument(
"--license",
type=str,
default="apache-2.0",
help="Repo license. Must be one of https://huggingface.co/docs/hub/repositories-licenses. Defaults to mit.",
)
parser.add_argument(
"--test-branch",
type=str,
default=None,
help="Repo branch to test your conversion first (e.g. 'v2.0.test')",
)
args = parser.parse_args()
if not args.local_dir:
args.local_dir = Path("/tmp/lerobot_dataset_v2")
robot_config = parse_robot_config(args.robot_config, args.robot_overrides) if args.robot_config else None
del args.robot_config, args.robot_overrides
convert_dataset(**vars(args), robot_config=robot_config)
if __name__ == "__main__":
main()

View File

@@ -13,9 +13,11 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import logging
import subprocess
import warnings
from collections import OrderedDict
from dataclasses import dataclass, field
from pathlib import Path
from typing import Any, ClassVar
@@ -24,50 +26,29 @@ import pyarrow as pa
import torch
import torchvision
from datasets.features.features import register_feature
def load_from_videos(
item: dict[str, torch.Tensor], video_frame_keys: list[str], videos_dir: Path, tolerance_s: float
):
"""Note: When using data workers (e.g. DataLoader with num_workers>0), do not call this function
in the main process (e.g. by using a second Dataloader with num_workers=0). It will result in a Segmentation Fault.
This probably happens because a memory reference to the video loader is created in the main process and a
subprocess fails to access it.
"""
# since video path already contains "videos" (e.g. videos_dir="data/videos", path="videos/episode_0.mp4")
data_dir = videos_dir.parent
for key in video_frame_keys:
if isinstance(item[key], list):
# load multiple frames at once (expected when delta_timestamps is not None)
timestamps = [frame["timestamp"] for frame in item[key]]
paths = [frame["path"] for frame in item[key]]
if len(set(paths)) > 1:
raise NotImplementedError("All video paths are expected to be the same for now.")
video_path = data_dir / paths[0]
frames = decode_video_frames_torchvision(video_path, timestamps, tolerance_s)
item[key] = frames
else:
# load one frame
timestamps = [item[key]["timestamp"]]
video_path = data_dir / item[key]["path"]
frames = decode_video_frames_torchvision(video_path, timestamps, tolerance_s)
item[key] = frames[0]
return item
from PIL import Image
def decode_video_frames_torchvision(
video_path: str,
video_path: Path | str,
timestamps: list[float],
tolerance_s: float,
device: str = "cpu",
backend: str = "pyav",
log_loaded_timestamps: bool = False,
):
) -> torch.Tensor:
"""Loads frames associated to the requested timestamps of a video
The backend can be either "pyav" (default) or "video_reader".
"video_reader" requires installing torchvision from source, see:
https://github.com/pytorch/vision/blob/main/torchvision/csrc/io/decoder/gpu/README.rst
(note that you need to compile against ffmpeg<4.3)
While both use cpu, "video_reader" is supposedly faster than "pyav" but requires additional setup.
For more info on video decoding, see `benchmark/video/README.md`
See torchvision doc for more info on these two backends:
https://pytorch.org/vision/0.18/index.html?highlight=backend#torchvision.set_video_backend
Note: Video benefits from inter-frame compression. Instead of storing every frame individually,
the encoder stores a reference frame (or a key frame) and subsequent frames as differences relative to
that key frame. As a consequence, to access a requested frame, we need to load the preceding key frame,
@@ -78,21 +59,9 @@ def decode_video_frames_torchvision(
# set backend
keyframes_only = False
if device == "cpu":
# explicitely use pyav
torchvision.set_video_backend("pyav")
torchvision.set_video_backend(backend)
if backend == "pyav":
keyframes_only = True # pyav doesnt support accuracte seek
elif device == "cuda":
# TODO(rcadene, aliberts): implement video decoding with GPU
# torchvision.set_video_backend("cuda")
# torchvision.set_video_backend("video_reader")
# requires installing torchvision from source, see: https://github.com/pytorch/vision/blob/main/torchvision/csrc/io/decoder/gpu/README.rst
# check possible bug: https://github.com/pytorch/vision/issues/7745
raise NotImplementedError(
"Video decoding on gpu with cuda is currently not supported. Use `device='cpu'`."
)
else:
raise ValueError(device)
# set a video stream reader
# TODO(rcadene): also load audio stream at the same time
@@ -120,7 +89,9 @@ def decode_video_frames_torchvision(
if current_ts >= last_ts:
break
reader.container.close()
if backend == "pyav":
reader.container.close()
reader = None
query_ts = torch.tensor(timestamps)
@@ -136,6 +107,10 @@ def decode_video_frames_torchvision(
"It means that the closest frame that can be loaded from the video is too far away in time."
"This might be due to synchronization issues with timestamps during data collection."
"To be safe, we advise to ignore this item during training."
f"\nqueried timestamps: {query_ts}"
f"\nloaded timestamps: {loaded_ts}"
f"\nvideo: {video_path}"
f"\nbackend: {backend}"
)
# get closest frames to the query timestamps
@@ -152,22 +127,59 @@ def decode_video_frames_torchvision(
return closest_frames
def encode_video_frames(imgs_dir: Path, video_path: Path, fps: int):
"""More info on ffmpeg arguments tuning on `lerobot/common/datasets/_video_benchmark/README.md`"""
def encode_video_frames(
imgs_dir: Path | str,
video_path: Path | str,
fps: int,
vcodec: str = "libsvtav1",
pix_fmt: str = "yuv420p",
g: int | None = 2,
crf: int | None = 30,
fast_decode: int = 0,
log_level: str | None = "error",
overwrite: bool = False,
) -> None:
"""More info on ffmpeg arguments tuning on `benchmark/video/README.md`"""
video_path = Path(video_path)
video_path.parent.mkdir(parents=True, exist_ok=True)
ffmpeg_cmd = (
f"ffmpeg -r {fps} "
"-f image2 "
"-loglevel error "
f"-i {str(imgs_dir / 'frame_%06d.png')} "
"-vcodec libx264 "
"-g 2 "
"-pix_fmt yuv444p "
f"{str(video_path)}"
ffmpeg_args = OrderedDict(
[
("-f", "image2"),
("-r", str(fps)),
("-i", str(imgs_dir / "frame_%06d.png")),
("-vcodec", vcodec),
("-pix_fmt", pix_fmt),
]
)
subprocess.run(ffmpeg_cmd.split(" "), check=True)
if g is not None:
ffmpeg_args["-g"] = str(g)
if crf is not None:
ffmpeg_args["-crf"] = str(crf)
if fast_decode:
key = "-svtav1-params" if vcodec == "libsvtav1" else "-tune"
value = f"fast-decode={fast_decode}" if vcodec == "libsvtav1" else "fastdecode"
ffmpeg_args[key] = value
if log_level is not None:
ffmpeg_args["-loglevel"] = str(log_level)
ffmpeg_args = [item for pair in ffmpeg_args.items() for item in pair]
if overwrite:
ffmpeg_args.append("-y")
ffmpeg_cmd = ["ffmpeg"] + ffmpeg_args + [str(video_path)]
# redirect stdin to subprocess.DEVNULL to prevent reading random keyboard inputs from terminal
subprocess.run(ffmpeg_cmd, check=True, stdin=subprocess.DEVNULL)
if not video_path.exists():
raise OSError(
f"Video encoding did not work. File not found: {video_path}. "
f"Try running the command manually to debug: `{''.join(ffmpeg_cmd)}`"
)
@dataclass
@@ -200,3 +212,104 @@ with warnings.catch_warnings():
)
# to make VideoFrame available in HuggingFace `datasets`
register_feature(VideoFrame, "VideoFrame")
def get_audio_info(video_path: Path | str) -> dict:
ffprobe_audio_cmd = [
"ffprobe",
"-v",
"error",
"-select_streams",
"a:0",
"-show_entries",
"stream=channels,codec_name,bit_rate,sample_rate,bit_depth,channel_layout,duration",
"-of",
"json",
str(video_path),
]
result = subprocess.run(ffprobe_audio_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
if result.returncode != 0:
raise RuntimeError(f"Error running ffprobe: {result.stderr}")
info = json.loads(result.stdout)
audio_stream_info = info["streams"][0] if info.get("streams") else None
if audio_stream_info is None:
return {"has_audio": False}
# Return the information, defaulting to None if no audio stream is present
return {
"has_audio": True,
"audio.channels": audio_stream_info.get("channels", None),
"audio.codec": audio_stream_info.get("codec_name", None),
"audio.bit_rate": int(audio_stream_info["bit_rate"]) if audio_stream_info.get("bit_rate") else None,
"audio.sample_rate": int(audio_stream_info["sample_rate"])
if audio_stream_info.get("sample_rate")
else None,
"audio.bit_depth": audio_stream_info.get("bit_depth", None),
"audio.channel_layout": audio_stream_info.get("channel_layout", None),
}
def get_video_info(video_path: Path | str) -> dict:
ffprobe_video_cmd = [
"ffprobe",
"-v",
"error",
"-select_streams",
"v:0",
"-show_entries",
"stream=r_frame_rate,width,height,codec_name,nb_frames,duration,pix_fmt",
"-of",
"json",
str(video_path),
]
result = subprocess.run(ffprobe_video_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
if result.returncode != 0:
raise RuntimeError(f"Error running ffprobe: {result.stderr}")
info = json.loads(result.stdout)
video_stream_info = info["streams"][0]
# Calculate fps from r_frame_rate
r_frame_rate = video_stream_info["r_frame_rate"]
num, denom = map(int, r_frame_rate.split("/"))
fps = num / denom
pixel_channels = get_video_pixel_channels(video_stream_info["pix_fmt"])
video_info = {
"video.fps": fps,
"video.height": video_stream_info["height"],
"video.width": video_stream_info["width"],
"video.channels": pixel_channels,
"video.codec": video_stream_info["codec_name"],
"video.pix_fmt": video_stream_info["pix_fmt"],
"video.is_depth_map": False,
**get_audio_info(video_path),
}
return video_info
def get_video_pixel_channels(pix_fmt: str) -> int:
if "gray" in pix_fmt or "depth" in pix_fmt or "monochrome" in pix_fmt:
return 1
elif "rgba" in pix_fmt or "yuva" in pix_fmt:
return 4
elif "rgb" in pix_fmt or "yuv" in pix_fmt:
return 3
else:
raise ValueError("Unknown format")
def get_image_pixel_channels(image: Image):
if image.mode == "L":
return 1 # Grayscale
elif image.mode == "LA":
return 2 # Grayscale + Alpha
elif image.mode == "RGB":
return 3 # RGB
elif image.mode == "RGBA":
return 4 # RGBA
else:
raise ValueError("Unknown format")

View File

@@ -19,7 +19,7 @@ import gymnasium as gym
from omegaconf import DictConfig
def make_env(cfg: DictConfig, n_envs: int | None = None) -> gym.vector.VectorEnv:
def make_env(cfg: DictConfig, n_envs: int | None = None) -> gym.vector.VectorEnv | None:
"""Makes a gym vector environment according to the evaluation config.
n_envs can be used to override eval.batch_size in the configuration. Must be at least 1.
@@ -27,6 +27,9 @@ def make_env(cfg: DictConfig, n_envs: int | None = None) -> gym.vector.VectorEnv
if n_envs is not None and n_envs < 1:
raise ValueError("`n_envs must be at least 1")
if cfg.env.name == "real_world":
return
package_name = f"gym_{cfg.env.name}"
try:

View File

@@ -28,31 +28,35 @@ def preprocess_observation(observations: dict[str, np.ndarray]) -> dict[str, Ten
"""
# map to expected inputs for the policy
return_observations = {}
if "pixels" in observations:
if isinstance(observations["pixels"], dict):
imgs = {f"observation.images.{key}": img for key, img in observations["pixels"].items()}
else:
imgs = {"observation.image": observations["pixels"]}
if isinstance(observations["pixels"], dict):
imgs = {f"observation.images.{key}": img for key, img in observations["pixels"].items()}
else:
imgs = {"observation.image": observations["pixels"]}
for imgkey, img in imgs.items():
img = torch.from_numpy(img)
for imgkey, img in imgs.items():
img = torch.from_numpy(img)
# sanity check that images are channel last
_, h, w, c = img.shape
assert c < h and c < w, f"expect channel last images, but instead got {img.shape=}"
# sanity check that images are channel last
_, h, w, c = img.shape
assert c < h and c < w, f"expect channel first images, but instead {img.shape}"
# sanity check that images are uint8
assert img.dtype == torch.uint8, f"expect torch.uint8, but instead {img.dtype=}"
# sanity check that images are uint8
assert img.dtype == torch.uint8, f"expect torch.uint8, but instead {img.dtype=}"
# convert to channel first of type float32 in range [0,1]
img = einops.rearrange(img, "b h w c -> b c h w").contiguous()
img = img.type(torch.float32)
img /= 255
# convert to channel first of type float32 in range [0,1]
img = einops.rearrange(img, "b h w c -> b c h w").contiguous()
img = img.type(torch.float32)
img /= 255
return_observations[imgkey] = img
return_observations[imgkey] = img
if "environment_state" in observations:
return_observations["observation.environment_state"] = torch.from_numpy(
observations["environment_state"]
).float()
# TODO(rcadene): enable pixels only baseline with `obs_type="pixels"` in environment by removing
# requirement for "agent_pos"
return_observations["observation.state"] = torch.from_numpy(observations["agent_pos"]).float()
return return_observations

View File

@@ -25,6 +25,7 @@ from glob import glob
from pathlib import Path
import torch
import wandb
from huggingface_hub.constants import SAFETENSORS_SINGLE_FILE
from omegaconf import DictConfig, OmegaConf
from termcolor import colored
@@ -107,8 +108,6 @@ class Logger:
self._wandb = None
else:
os.environ["WANDB_SILENT"] = "true"
import wandb
wandb_run_id = None
if cfg.resume:
wandb_run_id = get_wandb_run_id_from_filesystem(self.checkpoints_dir)
@@ -189,7 +188,7 @@ class Logger:
training_state["scheduler"] = scheduler.state_dict()
torch.save(training_state, save_dir / self.training_state_file_name)
def save_checkpont(
def save_checkpoint(
self,
train_step: int,
policy: Policy,
@@ -232,7 +231,7 @@ class Logger:
# TODO(alexander-soare): Add local text log.
if self._wandb is not None:
for k, v in d.items():
if not isinstance(v, (int, float, str)):
if not isinstance(v, (int, float, str, wandb.Table)):
logging.warning(
f'WandB logging of key "{k}" was ignored as its type is not handled by this wrapper.'
)
@@ -241,5 +240,6 @@ class Logger:
def log_video(self, video_path: str, step: int, mode: str = "train"):
assert mode in {"train", "eval"}
assert self._wandb is not None
wandb_video = self._wandb.Video(video_path, fps=self._cfg.fps, format="mp4")
self._wandb.log({f"{mode}/video": wandb_video}, step=step)

View File

@@ -26,7 +26,10 @@ class ACTConfig:
Those are: `input_shapes` and 'output_shapes`.
Notes on the inputs and outputs:
- At least one key starting with "observation.image is required as an input.
- Either:
- At least one key starting with "observation.image is required as an input.
AND/OR
- The key "observation.environment_state" is required as input.
- If there are multiple keys beginning with "observation.images." they are treated as multiple camera
views. Right now we only support all images having the same shape.
- May optionally work without an "observation.state" key for the proprioceptive robot state.
@@ -73,12 +76,10 @@ class ACTConfig:
documentation in the policy class).
latent_dim: The VAE's latent dimension.
n_vae_encoder_layers: The number of transformer layers to use for the VAE's encoder.
temporal_ensemble_momentum: Exponential moving average (EMA) momentum parameter (α) for ensembling
actions for a given time step over multiple policy invocations. Updates are calculated as:
x⁻ₙ = αx⁻ₙ₋₁ + (1-α)xₙ. Note that the ACT paper and original ACT code describes a different
parameter here: they refer to a weighting scheme wᵢ = exp(-m⋅i) and set m = 0.01. With our
formulation, this is equivalent to α = exp(-0.01) ≈ 0.99. When this parameter is provided, we
require `n_action_steps == 1` (since we need to query the policy every step anyway).
temporal_ensemble_coeff: Coefficient for the exponential weighting scheme to apply for temporal
ensembling. Defaults to None which means temporal ensembling is not used. `n_action_steps` must be
1 when using this feature, as inference needs to happen at every step to form an ensemble. For
more information on how ensembling works, please see `ACTTemporalEnsembler`.
dropout: Dropout to use in the transformer layers (see code for details).
kl_weight: The weight to use for the KL-divergence component of the loss if the variational objective
is enabled. Loss is then calculated as: `reconstruction_loss + kl_weight * kld_loss`.
@@ -136,7 +137,8 @@ class ACTConfig:
n_vae_encoder_layers: int = 4
# Inference.
temporal_ensemble_momentum: float | None = None
# Note: the value used in ACT when temporal ensembling is enabled is 0.01.
temporal_ensemble_coeff: float | None = None
# Training and loss computation.
dropout: float = 0.1
@@ -148,7 +150,7 @@ class ACTConfig:
raise ValueError(
f"`vision_backbone` must be one of the ResNet variants. Got {self.vision_backbone}."
)
if self.temporal_ensemble_momentum is not None and self.n_action_steps > 1:
if self.temporal_ensemble_coeff is not None and self.n_action_steps > 1:
raise NotImplementedError(
"`n_action_steps` must be 1 when using temporal ensembling. This is "
"because the policy needs to be queried every step to compute the ensembled action."
@@ -162,3 +164,8 @@ class ACTConfig:
raise ValueError(
f"Multiple observation steps not handled yet. Got `nobs_steps={self.n_obs_steps}`"
)
if (
not any(k.startswith("observation.image") for k in self.input_shapes)
and "observation.environment_state" not in self.input_shapes
):
raise ValueError("You must provide at least one image or the environment state among the inputs.")

View File

@@ -38,7 +38,13 @@ from lerobot.common.policies.act.configuration_act import ACTConfig
from lerobot.common.policies.normalize import Normalize, Unnormalize
class ACTPolicy(nn.Module, PyTorchModelHubMixin):
class ACTPolicy(
nn.Module,
PyTorchModelHubMixin,
library_name="lerobot",
repo_url="https://github.com/huggingface/lerobot",
tags=["robotics", "act"],
):
"""
Action Chunking Transformer Policy as per Learning Fine-Grained Bimanual Manipulation with Low-Cost
Hardware (paper: https://arxiv.org/abs/2304.13705, code: https://github.com/tonyzhaozh/act)
@@ -77,12 +83,15 @@ class ACTPolicy(nn.Module, PyTorchModelHubMixin):
self.expected_image_keys = [k for k in config.input_shapes if k.startswith("observation.image")]
if config.temporal_ensemble_coeff is not None:
self.temporal_ensembler = ACTTemporalEnsembler(config.temporal_ensemble_coeff, config.chunk_size)
self.reset()
def reset(self):
"""This should be called whenever the environment is reset."""
if self.config.temporal_ensemble_momentum is not None:
self._ensembled_actions = None
if self.config.temporal_ensemble_coeff is not None:
self.temporal_ensembler.reset()
else:
self._action_queue = deque([], maxlen=self.config.n_action_steps)
@@ -97,26 +106,16 @@ class ACTPolicy(nn.Module, PyTorchModelHubMixin):
self.eval()
batch = self.normalize_inputs(batch)
batch["observation.images"] = torch.stack([batch[k] for k in self.expected_image_keys], dim=-4)
if len(self.expected_image_keys) > 0:
batch = dict(batch) # shallow copy so that adding a key doesn't modify the original
batch["observation.images"] = torch.stack([batch[k] for k in self.expected_image_keys], dim=-4)
# If we are doing temporal ensembling, keep track of the exponential moving average (EMA), and return
# the first action.
if self.config.temporal_ensemble_momentum is not None:
# If we are doing temporal ensembling, do online updates where we keep track of the number of actions
# we are ensembling over.
if self.config.temporal_ensemble_coeff is not None:
actions = self.model(batch)[0] # (batch_size, chunk_size, action_dim)
actions = self.unnormalize_outputs({"action": actions})["action"]
if self._ensembled_actions is None:
# Initializes `self._ensembled_action` to the sequence of actions predicted during the first
# time step of the episode.
self._ensembled_actions = actions.clone()
else:
# self._ensembled_actions will have shape (batch_size, chunk_size - 1, action_dim). Compute
# the EMA update for those entries.
alpha = self.config.temporal_ensemble_momentum
self._ensembled_actions = alpha * self._ensembled_actions + (1 - alpha) * actions[:, :-1]
# The last action, which has no prior moving average, needs to get concatenated onto the end.
self._ensembled_actions = torch.cat([self._ensembled_actions, actions[:, -1:]], dim=1)
# "Consume" the first action.
action, self._ensembled_actions = self._ensembled_actions[:, 0], self._ensembled_actions[:, 1:]
action = self.temporal_ensembler.update(actions)
return action
# Action queue logic for n_action_steps > 1. When the action_queue is depleted, populate it by
@@ -135,7 +134,9 @@ class ACTPolicy(nn.Module, PyTorchModelHubMixin):
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
"""Run the batch through the model and compute the loss for training or validation."""
batch = self.normalize_inputs(batch)
batch["observation.images"] = torch.stack([batch[k] for k in self.expected_image_keys], dim=-4)
if len(self.expected_image_keys) > 0:
batch = dict(batch) # shallow copy so that adding a key doesn't modify the original
batch["observation.images"] = torch.stack([batch[k] for k in self.expected_image_keys], dim=-4)
batch = self.normalize_targets(batch)
actions_hat, (mu_hat, log_sigma_x2_hat) = self.model(batch)
@@ -160,6 +161,97 @@ class ACTPolicy(nn.Module, PyTorchModelHubMixin):
return loss_dict
class ACTTemporalEnsembler:
def __init__(self, temporal_ensemble_coeff: float, chunk_size: int) -> None:
"""Temporal ensembling as described in Algorithm 2 of https://arxiv.org/abs/2304.13705.
The weights are calculated as wᵢ = exp(-temporal_ensemble_coeff * i) where w₀ is the oldest action.
They are then normalized to sum to 1 by dividing by Σwᵢ. Here's some intuition around how the
coefficient works:
- Setting it to 0 uniformly weighs all actions.
- Setting it positive gives more weight to older actions.
- Setting it negative gives more weight to newer actions.
NOTE: The default value for `temporal_ensemble_coeff` used by the original ACT work is 0.01. This
results in older actions being weighed more highly than newer actions (the experiments documented in
https://github.com/huggingface/lerobot/pull/319 hint at why highly weighing new actions might be
detrimental: doing so aggressively may diminish the benefits of action chunking).
Here we use an online method for computing the average rather than caching a history of actions in
order to compute the average offline. For a simple 1D sequence it looks something like:
```
import torch
seq = torch.linspace(8, 8.5, 100)
print(seq)
m = 0.01
exp_weights = torch.exp(-m * torch.arange(len(seq)))
print(exp_weights)
# Calculate offline
avg = (exp_weights * seq).sum() / exp_weights.sum()
print("offline", avg)
# Calculate online
for i, item in enumerate(seq):
if i == 0:
avg = item
continue
avg *= exp_weights[:i].sum()
avg += item * exp_weights[i]
avg /= exp_weights[:i+1].sum()
print("online", avg)
```
"""
self.chunk_size = chunk_size
self.ensemble_weights = torch.exp(-temporal_ensemble_coeff * torch.arange(chunk_size))
self.ensemble_weights_cumsum = torch.cumsum(self.ensemble_weights, dim=0)
self.reset()
def reset(self):
"""Resets the online computation variables."""
self.ensembled_actions = None
# (chunk_size,) count of how many actions are in the ensemble for each time step in the sequence.
self.ensembled_actions_count = None
def update(self, actions: Tensor) -> Tensor:
"""
Takes a (batch, chunk_size, action_dim) sequence of actions, update the temporal ensemble for all
time steps, and pop/return the next batch of actions in the sequence.
"""
self.ensemble_weights = self.ensemble_weights.to(device=actions.device)
self.ensemble_weights_cumsum = self.ensemble_weights_cumsum.to(device=actions.device)
if self.ensembled_actions is None:
# Initializes `self._ensembled_action` to the sequence of actions predicted during the first
# time step of the episode.
self.ensembled_actions = actions.clone()
# Note: The last dimension is unsqueeze to make sure we can broadcast properly for tensor
# operations later.
self.ensembled_actions_count = torch.ones(
(self.chunk_size, 1), dtype=torch.long, device=self.ensembled_actions.device
)
else:
# self.ensembled_actions will have shape (batch_size, chunk_size - 1, action_dim). Compute
# the online update for those entries.
self.ensembled_actions *= self.ensemble_weights_cumsum[self.ensembled_actions_count - 1]
self.ensembled_actions += actions[:, :-1] * self.ensemble_weights[self.ensembled_actions_count]
self.ensembled_actions /= self.ensemble_weights_cumsum[self.ensembled_actions_count]
self.ensembled_actions_count = torch.clamp(self.ensembled_actions_count + 1, max=self.chunk_size)
# The last action, which has no prior online average, needs to get concatenated onto the end.
self.ensembled_actions = torch.cat([self.ensembled_actions, actions[:, -1:]], dim=1)
self.ensembled_actions_count = torch.cat(
[self.ensembled_actions_count, torch.ones_like(self.ensembled_actions_count[-1:])]
)
# "Consume" the first action.
action, self.ensembled_actions, self.ensembled_actions_count = (
self.ensembled_actions[:, 0],
self.ensembled_actions[:, 1:],
self.ensembled_actions_count[1:],
)
return action
class ACT(nn.Module):
"""Action Chunking Transformer: The underlying neural network for ACTPolicy.
@@ -200,12 +292,14 @@ class ACT(nn.Module):
self.config = config
# BERT style VAE encoder with input tokens [cls, robot_state, *action_sequence].
# The cls token forms parameters of the latent's distribution (like this [*means, *log_variances]).
self.use_input_state = "observation.state" in config.input_shapes
self.use_robot_state = "observation.state" in config.input_shapes
self.use_images = any(k.startswith("observation.image") for k in config.input_shapes)
self.use_env_state = "observation.environment_state" in config.input_shapes
if self.config.use_vae:
self.vae_encoder = ACTEncoder(config)
self.vae_encoder = ACTEncoder(config, is_vae_encoder=True)
self.vae_encoder_cls_embed = nn.Embedding(1, config.dim_model)
# Projection layer for joint-space configuration to hidden dimension.
if self.use_input_state:
if self.use_robot_state:
self.vae_encoder_robot_state_input_proj = nn.Linear(
config.input_shapes["observation.state"][0], config.dim_model
)
@@ -218,7 +312,7 @@ class ACT(nn.Module):
# Fixed sinusoidal positional embedding for the input to the VAE encoder. Unsqueeze for batch
# dimension.
num_input_token_encoder = 1 + config.chunk_size
if self.use_input_state:
if self.use_robot_state:
num_input_token_encoder += 1
self.register_buffer(
"vae_encoder_pos_enc",
@@ -226,34 +320,45 @@ class ACT(nn.Module):
)
# Backbone for image feature extraction.
backbone_model = getattr(torchvision.models, config.vision_backbone)(
replace_stride_with_dilation=[False, False, config.replace_final_stride_with_dilation],
weights=config.pretrained_backbone_weights,
norm_layer=FrozenBatchNorm2d,
)
# Note: The assumption here is that we are using a ResNet model (and hence layer4 is the final feature
# map).
# Note: The forward method of this returns a dict: {"feature_map": output}.
self.backbone = IntermediateLayerGetter(backbone_model, return_layers={"layer4": "feature_map"})
if self.use_images:
backbone_model = getattr(torchvision.models, config.vision_backbone)(
replace_stride_with_dilation=[False, False, config.replace_final_stride_with_dilation],
weights=config.pretrained_backbone_weights,
norm_layer=FrozenBatchNorm2d,
)
# Note: The assumption here is that we are using a ResNet model (and hence layer4 is the final
# feature map).
# Note: The forward method of this returns a dict: {"feature_map": output}.
self.backbone = IntermediateLayerGetter(backbone_model, return_layers={"layer4": "feature_map"})
# Transformer (acts as VAE decoder when training with the variational objective).
self.encoder = ACTEncoder(config)
self.decoder = ACTDecoder(config)
# Transformer encoder input projections. The tokens will be structured like
# [latent, robot_state, image_feature_map_pixels].
if self.use_input_state:
# [latent, (robot_state), (env_state), (image_feature_map_pixels)].
if self.use_robot_state:
self.encoder_robot_state_input_proj = nn.Linear(
config.input_shapes["observation.state"][0], config.dim_model
)
if self.use_env_state:
self.encoder_env_state_input_proj = nn.Linear(
config.input_shapes["observation.environment_state"][0], config.dim_model
)
self.encoder_latent_input_proj = nn.Linear(config.latent_dim, config.dim_model)
self.encoder_img_feat_input_proj = nn.Conv2d(
backbone_model.fc.in_features, config.dim_model, kernel_size=1
)
if self.use_images:
self.encoder_img_feat_input_proj = nn.Conv2d(
backbone_model.fc.in_features, config.dim_model, kernel_size=1
)
# Transformer encoder positional embeddings.
num_input_token_decoder = 2 if self.use_input_state else 1
self.encoder_robot_and_latent_pos_embed = nn.Embedding(num_input_token_decoder, config.dim_model)
self.encoder_cam_feat_pos_embed = ACTSinusoidalPositionEmbedding2d(config.dim_model // 2)
n_1d_tokens = 1 # for the latent
if self.use_robot_state:
n_1d_tokens += 1
if self.use_env_state:
n_1d_tokens += 1
self.encoder_1d_feature_pos_embed = nn.Embedding(n_1d_tokens, config.dim_model)
if self.use_images:
self.encoder_cam_feat_pos_embed = ACTSinusoidalPositionEmbedding2d(config.dim_model // 2)
# Transformer decoder.
# Learnable positional embedding for the transformer's decoder (in the style of DETR object queries).
@@ -274,10 +379,13 @@ class ACT(nn.Module):
"""A forward pass through the Action Chunking Transformer (with optional VAE encoder).
`batch` should have the following structure:
{
"observation.state": (B, state_dim) batch of robot states.
"observation.state" (optional): (B, state_dim) batch of robot states.
"observation.images": (B, n_cameras, C, H, W) batch of images.
AND/OR
"observation.environment_state": (B, env_dim) batch of environment states.
"action" (optional, only if training with VAE): (B, chunk_size, action dim) batch of actions.
}
@@ -291,7 +399,11 @@ class ACT(nn.Module):
"action" in batch
), "actions must be provided when using the variational objective in training mode."
batch_size = batch["observation.images"].shape[0]
batch_size = (
batch["observation.images"]
if "observation.images" in batch
else batch["observation.environment_state"]
).shape[0]
# Prepare the latent for input to the transformer encoder.
if self.config.use_vae and "action" in batch:
@@ -299,12 +411,12 @@ class ACT(nn.Module):
cls_embed = einops.repeat(
self.vae_encoder_cls_embed.weight, "1 d -> b 1 d", b=batch_size
) # (B, 1, D)
if self.use_input_state:
if self.use_robot_state:
robot_state_embed = self.vae_encoder_robot_state_input_proj(batch["observation.state"])
robot_state_embed = robot_state_embed.unsqueeze(1) # (B, 1, D)
action_embed = self.vae_encoder_action_input_proj(batch["action"]) # (B, S, D)
if self.use_input_state:
if self.use_robot_state:
vae_encoder_input = [cls_embed, robot_state_embed, action_embed] # (B, S+2, D)
else:
vae_encoder_input = [cls_embed, action_embed]
@@ -314,9 +426,23 @@ class ACT(nn.Module):
# Note: detach() shouldn't be necessary but leaving it the same as the original code just in case.
pos_embed = self.vae_encoder_pos_enc.clone().detach() # (1, S+2, D)
# Prepare key padding mask for the transformer encoder. We have 1 or 2 extra tokens at the start of the
# sequence depending whether we use the input states or not (cls and robot state)
# False means not a padding token.
cls_joint_is_pad = torch.full(
(batch_size, 2 if self.use_robot_state else 1),
False,
device=batch["observation.state"].device,
)
key_padding_mask = torch.cat(
[cls_joint_is_pad, batch["action_is_pad"]], axis=1
) # (bs, seq+1 or 2)
# Forward pass through VAE encoder to get the latent PDF parameters.
cls_token_out = self.vae_encoder(
vae_encoder_input.permute(1, 0, 2), pos_embed=pos_embed.permute(1, 0, 2)
vae_encoder_input.permute(1, 0, 2),
pos_embed=pos_embed.permute(1, 0, 2),
key_padding_mask=key_padding_mask,
)[0] # select the class token, with shape (B, D)
latent_pdf_params = self.vae_encoder_latent_output_proj(cls_token_out)
mu = latent_pdf_params[:, : self.config.latent_dim]
@@ -333,56 +459,54 @@ class ACT(nn.Module):
batch["observation.state"].device
)
# Prepare all other transformer encoder inputs.
# Prepare transformer encoder inputs.
encoder_in_tokens = [self.encoder_latent_input_proj(latent_sample)]
encoder_in_pos_embed = list(self.encoder_1d_feature_pos_embed.weight.unsqueeze(1))
# Robot state token.
if self.use_robot_state:
encoder_in_tokens.append(self.encoder_robot_state_input_proj(batch["observation.state"]))
# Environment state token.
if self.use_env_state:
encoder_in_tokens.append(
self.encoder_env_state_input_proj(batch["observation.environment_state"])
)
# Camera observation features and positional embeddings.
all_cam_features = []
all_cam_pos_embeds = []
images = batch["observation.images"]
if self.use_images:
all_cam_features = []
all_cam_pos_embeds = []
for cam_index in range(images.shape[-4]):
cam_features = self.backbone(images[:, cam_index])["feature_map"]
# TODO(rcadene, alexander-soare): remove call to `.to` to speedup forward ; precompute and use buffer
cam_pos_embed = self.encoder_cam_feat_pos_embed(cam_features).to(dtype=cam_features.dtype)
cam_features = self.encoder_img_feat_input_proj(cam_features) # (B, C, h, w)
all_cam_features.append(cam_features)
all_cam_pos_embeds.append(cam_pos_embed)
# Concatenate camera observation feature maps and positional embeddings along the width dimension.
encoder_in = torch.cat(all_cam_features, axis=-1)
cam_pos_embed = torch.cat(all_cam_pos_embeds, axis=-1)
for cam_index in range(batch["observation.images"].shape[-4]):
cam_features = self.backbone(batch["observation.images"][:, cam_index])["feature_map"]
# TODO(rcadene, alexander-soare): remove call to `.to` to speedup forward ; precompute and use
# buffer
cam_pos_embed = self.encoder_cam_feat_pos_embed(cam_features).to(dtype=cam_features.dtype)
cam_features = self.encoder_img_feat_input_proj(cam_features) # (B, C, h, w)
all_cam_features.append(cam_features)
all_cam_pos_embeds.append(cam_pos_embed)
# Concatenate camera observation feature maps and positional embeddings along the width dimension,
# and move to (sequence, batch, dim).
all_cam_features = torch.cat(all_cam_features, axis=-1)
encoder_in_tokens.extend(einops.rearrange(all_cam_features, "b c h w -> (h w) b c"))
all_cam_pos_embeds = torch.cat(all_cam_pos_embeds, axis=-1)
encoder_in_pos_embed.extend(einops.rearrange(all_cam_pos_embeds, "b c h w -> (h w) b c"))
# Get positional embeddings for robot state and latent.
if self.use_input_state:
robot_state_embed = self.encoder_robot_state_input_proj(batch["observation.state"]) # (B, C)
latent_embed = self.encoder_latent_input_proj(latent_sample) # (B, C)
# Stack encoder input and positional embeddings moving to (S, B, C).
encoder_in_feats = [latent_embed, robot_state_embed] if self.use_input_state else [latent_embed]
encoder_in = torch.cat(
[
torch.stack(encoder_in_feats, axis=0),
einops.rearrange(encoder_in, "b c h w -> (h w) b c"),
]
)
pos_embed = torch.cat(
[
self.encoder_robot_and_latent_pos_embed.weight.unsqueeze(1),
cam_pos_embed.flatten(2).permute(2, 0, 1),
],
axis=0,
)
# Stack all tokens along the sequence dimension.
encoder_in_tokens = torch.stack(encoder_in_tokens, axis=0)
encoder_in_pos_embed = torch.stack(encoder_in_pos_embed, axis=0)
# Forward pass through the transformer modules.
encoder_out = self.encoder(encoder_in, pos_embed=pos_embed)
encoder_out = self.encoder(encoder_in_tokens, pos_embed=encoder_in_pos_embed)
# TODO(rcadene, alexander-soare): remove call to `device` ; precompute and use buffer
decoder_in = torch.zeros(
(self.config.chunk_size, batch_size, self.config.dim_model),
dtype=pos_embed.dtype,
device=pos_embed.device,
dtype=encoder_in_pos_embed.dtype,
device=encoder_in_pos_embed.device,
)
decoder_out = self.decoder(
decoder_in,
encoder_out,
encoder_pos_embed=pos_embed,
encoder_pos_embed=encoder_in_pos_embed,
decoder_pos_embed=self.decoder_pos_embed.weight.unsqueeze(1),
)
@@ -397,14 +521,18 @@ class ACT(nn.Module):
class ACTEncoder(nn.Module):
"""Convenience module for running multiple encoder layers, maybe followed by normalization."""
def __init__(self, config: ACTConfig):
def __init__(self, config: ACTConfig, is_vae_encoder: bool = False):
super().__init__()
self.layers = nn.ModuleList([ACTEncoderLayer(config) for _ in range(config.n_encoder_layers)])
self.is_vae_encoder = is_vae_encoder
num_layers = config.n_vae_encoder_layers if self.is_vae_encoder else config.n_encoder_layers
self.layers = nn.ModuleList([ACTEncoderLayer(config) for _ in range(num_layers)])
self.norm = nn.LayerNorm(config.dim_model) if config.pre_norm else nn.Identity()
def forward(self, x: Tensor, pos_embed: Tensor | None = None) -> Tensor:
def forward(
self, x: Tensor, pos_embed: Tensor | None = None, key_padding_mask: Tensor | None = None
) -> Tensor:
for layer in self.layers:
x = layer(x, pos_embed=pos_embed)
x = layer(x, pos_embed=pos_embed, key_padding_mask=key_padding_mask)
x = self.norm(x)
return x
@@ -427,12 +555,13 @@ class ACTEncoderLayer(nn.Module):
self.activation = get_activation_fn(config.feedforward_activation)
self.pre_norm = config.pre_norm
def forward(self, x, pos_embed: Tensor | None = None) -> Tensor:
def forward(self, x, pos_embed: Tensor | None = None, key_padding_mask: Tensor | None = None) -> Tensor:
skip = x
if self.pre_norm:
x = self.norm1(x)
q = k = x if pos_embed is None else x + pos_embed
x = self.self_attn(q, k, value=x)[0] # select just the output, not the attention weights
x = self.self_attn(q, k, value=x, key_padding_mask=key_padding_mask)
x = x[0] # note: [0] to select just the output, not the attention weights
x = skip + self.dropout1(x)
if self.pre_norm:
skip = x

View File

@@ -28,7 +28,12 @@ class DiffusionConfig:
Notes on the inputs and outputs:
- "observation.state" is required as an input key.
- A key starting with "observation.image is required as an input.
- Either:
- At least one key starting with "observation.image is required as an input.
AND/OR
- The key "observation.environment_state" is required as input.
- If there are multiple keys beginning with "observation.image" they are treated as multiple camera
views. Right now we only support all images having the same shape.
- "action" is required as an output key.
Args:
@@ -62,6 +67,7 @@ class DiffusionConfig:
use_group_norm: Whether to replace batch normalization with group normalization in the backbone.
The group sizes are set to be about 16 (to be precise, feature_dim // 16).
spatial_softmax_num_keypoints: Number of keypoints for SpatialSoftmax.
use_separate_rgb_encoders_per_camera: Whether to use a separate RGB encoder for each camera view.
down_dims: Feature dimension for each stage of temporal downsampling in the diffusion modeling Unet.
You may provide a variable number of dimensions, therefore also controlling the degree of
downsampling.
@@ -125,6 +131,7 @@ class DiffusionConfig:
pretrained_backbone_weights: str | None = None
use_group_norm: bool = True
spatial_softmax_num_keypoints: int = 32
use_separate_rgb_encoder_per_camera: bool = False
# Unet.
down_dims: tuple[int, ...] = (512, 1024, 2048)
kernel_size: int = 5
@@ -153,22 +160,33 @@ class DiffusionConfig:
raise ValueError(
f"`vision_backbone` must be one of the ResNet variants. Got {self.vision_backbone}."
)
# There should only be one image key.
image_keys = {k for k in self.input_shapes if k.startswith("observation.image")}
if len(image_keys) != 1:
raise ValueError(
f"{self.__class__.__name__} only handles one image for now. Got image keys {image_keys}."
)
image_key = next(iter(image_keys))
if self.crop_shape is not None and (
self.crop_shape[0] > self.input_shapes[image_key][1]
or self.crop_shape[1] > self.input_shapes[image_key][2]
):
raise ValueError(
f"`crop_shape` should fit within `input_shapes[{image_key}]`. Got {self.crop_shape} "
f"for `crop_shape` and {self.input_shapes[image_key]} for "
"`input_shapes[{image_key}]`."
)
if len(image_keys) == 0 and "observation.environment_state" not in self.input_shapes:
raise ValueError("You must provide at least one image or the environment state among the inputs.")
if len(image_keys) > 0:
if self.crop_shape is not None:
for image_key in image_keys:
if (
self.crop_shape[0] > self.input_shapes[image_key][1]
or self.crop_shape[1] > self.input_shapes[image_key][2]
):
raise ValueError(
f"`crop_shape` should fit within `input_shapes[{image_key}]`. Got {self.crop_shape} "
f"for `crop_shape` and {self.input_shapes[image_key]} for "
"`input_shapes[{image_key}]`."
)
# Check that all input images have the same shape.
first_image_key = next(iter(image_keys))
for image_key in image_keys:
if self.input_shapes[image_key] != self.input_shapes[first_image_key]:
raise ValueError(
f"`input_shapes[{image_key}]` does not match `input_shapes[{first_image_key}]`, but we "
"expect all image shapes to match."
)
supported_prediction_types = ["epsilon", "sample"]
if self.prediction_type not in supported_prediction_types:
raise ValueError(
@@ -180,3 +198,12 @@ class DiffusionConfig:
f"`noise_scheduler_type` must be one of {supported_noise_schedulers}. "
f"Got {self.noise_scheduler_type}."
)
# Check that the horizon size and U-Net downsampling is compatible.
# U-Net downsamples by 2 with each stage.
downsampling_factor = 2 ** len(self.down_dims)
if self.horizon % downsampling_factor != 0:
raise ValueError(
"The horizon should be an integer multiple of the downsampling factor (which is determined "
f"by `len(down_dims)`). Got {self.horizon=} and {self.down_dims=}"
)

View File

@@ -18,7 +18,6 @@
TODO(alexander-soare):
- Remove reliance on diffusers for DDPMScheduler and LR scheduler.
- Make compatible with multiple image keys.
"""
import math
@@ -44,7 +43,13 @@ from lerobot.common.policies.utils import (
)
class DiffusionPolicy(nn.Module, PyTorchModelHubMixin):
class DiffusionPolicy(
nn.Module,
PyTorchModelHubMixin,
library_name="lerobot",
repo_url="https://github.com/huggingface/lerobot",
tags=["robotics", "diffusion-policy"],
):
"""
Diffusion Policy as per "Diffusion Policy: Visuomotor Policy Learning via Action Diffusion"
(paper: https://arxiv.org/abs/2303.04137, code: https://github.com/real-stanford/diffusion_policy).
@@ -83,23 +88,21 @@ class DiffusionPolicy(nn.Module, PyTorchModelHubMixin):
self.diffusion = DiffusionModel(config)
image_keys = [k for k in config.input_shapes if k.startswith("observation.image")]
# Note: This check is covered in the post-init of the config but have a sanity check just in case.
if len(image_keys) != 1:
raise NotImplementedError(
f"{self.__class__.__name__} only handles one image for now. Got image keys {image_keys}."
)
self.input_image_key = image_keys[0]
self.expected_image_keys = [k for k in config.input_shapes if k.startswith("observation.image")]
self.use_env_state = "observation.environment_state" in config.input_shapes
self.reset()
def reset(self):
"""Clear observation and action queues. Should be called on `env.reset()`"""
self._queues = {
"observation.image": deque(maxlen=self.config.n_obs_steps),
"observation.state": deque(maxlen=self.config.n_obs_steps),
"action": deque(maxlen=self.config.n_action_steps),
}
if len(self.expected_image_keys) > 0:
self._queues["observation.images"] = deque(maxlen=self.config.n_obs_steps)
if self.use_env_state:
self._queues["observation.environment_state"] = deque(maxlen=self.config.n_obs_steps)
@torch.no_grad
def select_action(self, batch: dict[str, Tensor]) -> Tensor:
@@ -114,18 +117,20 @@ class DiffusionPolicy(nn.Module, PyTorchModelHubMixin):
Schematically this looks like:
----------------------------------------------------------------------------------------------
(legend: o = n_obs_steps, h = horizon, a = n_action_steps)
|timestep | n-o+1 | n-o+2 | ..... | n | ..... | n+a-1 | n+a | ..... |n-o+1+h|
|observation is used | YES | YES | YES | NO | NO | NO | NO | NO | NO |
|timestep | n-o+1 | n-o+2 | ..... | n | ..... | n+a-1 | n+a | ..... | n-o+h |
|observation is used | YES | YES | YES | YES | NO | NO | NO | NO | NO |
|action is generated | YES | YES | YES | YES | YES | YES | YES | YES | YES |
|action is used | NO | NO | NO | YES | YES | YES | NO | NO | NO |
----------------------------------------------------------------------------------------------
Note that this means we require: `n_action_steps < horizon - n_obs_steps + 1`. Also, note that
Note that this means we require: `n_action_steps <= horizon - n_obs_steps + 1`. Also, note that
"horizon" may not the best name to describe what the variable actually means, because this period is
actually measured from the first observation which (if `n_obs_steps` > 1) happened in the past.
"""
batch = self.normalize_inputs(batch)
batch["observation.image"] = batch[self.input_image_key]
if len(self.expected_image_keys) > 0:
batch = dict(batch) # shallow copy so that adding a key doesn't modify the original
batch["observation.images"] = torch.stack([batch[k] for k in self.expected_image_keys], dim=-4)
# Note: It's important that this happens after stacking the images into a single key.
self._queues = populate_queues(self._queues, batch)
if len(self._queues["action"]) == 0:
@@ -144,7 +149,9 @@ class DiffusionPolicy(nn.Module, PyTorchModelHubMixin):
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
"""Run the batch through the model and compute the loss for training or validation."""
batch = self.normalize_inputs(batch)
batch["observation.image"] = batch[self.input_image_key]
if len(self.expected_image_keys) > 0:
batch = dict(batch) # shallow copy so that adding a key doesn't modify the original
batch["observation.images"] = torch.stack([batch[k] for k in self.expected_image_keys], dim=-4)
batch = self.normalize_targets(batch)
loss = self.diffusion.compute_loss(batch)
return {"loss": loss}
@@ -168,12 +175,25 @@ class DiffusionModel(nn.Module):
super().__init__()
self.config = config
self.rgb_encoder = DiffusionRgbEncoder(config)
self.unet = DiffusionConditionalUnet1d(
config,
global_cond_dim=(config.output_shapes["action"][0] + self.rgb_encoder.feature_dim)
* config.n_obs_steps,
)
# Build observation encoders (depending on which observations are provided).
global_cond_dim = config.input_shapes["observation.state"][0]
num_images = len([k for k in config.input_shapes if k.startswith("observation.image")])
self._use_images = False
self._use_env_state = False
if num_images > 0:
self._use_images = True
if self.config.use_separate_rgb_encoder_per_camera:
encoders = [DiffusionRgbEncoder(config) for _ in range(num_images)]
self.rgb_encoder = nn.ModuleList(encoders)
global_cond_dim += encoders[0].feature_dim * num_images
else:
self.rgb_encoder = DiffusionRgbEncoder(config)
global_cond_dim += self.rgb_encoder.feature_dim * num_images
if "observation.environment_state" in config.input_shapes:
self._use_env_state = True
global_cond_dim += config.input_shapes["observation.environment_state"][0]
self.unet = DiffusionConditionalUnet1d(config, global_cond_dim=global_cond_dim * config.n_obs_steps)
self.noise_scheduler = _make_noise_scheduler(
config.noise_scheduler_type,
@@ -220,23 +240,60 @@ class DiffusionModel(nn.Module):
return sample
def _prepare_global_conditioning(self, batch: dict[str, Tensor]) -> Tensor:
"""Encode image features and concatenate them all together along with the state vector."""
batch_size, n_obs_steps = batch["observation.state"].shape[:2]
global_cond_feats = [batch["observation.state"]]
# Extract image features.
if self._use_images:
if self.config.use_separate_rgb_encoder_per_camera:
# Combine batch and sequence dims while rearranging to make the camera index dimension first.
images_per_camera = einops.rearrange(batch["observation.images"], "b s n ... -> n (b s) ...")
img_features_list = torch.cat(
[
encoder(images)
for encoder, images in zip(self.rgb_encoder, images_per_camera, strict=True)
]
)
# Separate batch and sequence dims back out. The camera index dim gets absorbed into the
# feature dim (effectively concatenating the camera features).
img_features = einops.rearrange(
img_features_list, "(n b s) ... -> b s (n ...)", b=batch_size, s=n_obs_steps
)
else:
# Combine batch, sequence, and "which camera" dims before passing to shared encoder.
img_features = self.rgb_encoder(
einops.rearrange(batch["observation.images"], "b s n ... -> (b s n) ...")
)
# Separate batch dim and sequence dim back out. The camera index dim gets absorbed into the
# feature dim (effectively concatenating the camera features).
img_features = einops.rearrange(
img_features, "(b s n) ... -> b s (n ...)", b=batch_size, s=n_obs_steps
)
global_cond_feats.append(img_features)
if self._use_env_state:
global_cond_feats.append(batch["observation.environment_state"])
# Concatenate features then flatten to (B, global_cond_dim).
return torch.cat(global_cond_feats, dim=-1).flatten(start_dim=1)
def generate_actions(self, batch: dict[str, Tensor]) -> Tensor:
"""
This function expects `batch` to have:
{
"observation.state": (B, n_obs_steps, state_dim)
"observation.image": (B, n_obs_steps, C, H, W)
"observation.images": (B, n_obs_steps, num_cameras, C, H, W)
AND/OR
"observation.environment_state": (B, environment_dim)
}
"""
batch_size, n_obs_steps = batch["observation.state"].shape[:2]
assert n_obs_steps == self.config.n_obs_steps
# Extract image feature (first combine batch and sequence dims).
img_features = self.rgb_encoder(einops.rearrange(batch["observation.image"], "b n ... -> (b n) ..."))
# Separate batch and sequence dims.
img_features = einops.rearrange(img_features, "(b n) ... -> b n ...", b=batch_size)
# Concatenate state and image features then flatten to (B, global_cond_dim).
global_cond = torch.cat([batch["observation.state"], img_features], dim=-1).flatten(start_dim=1)
# Encode image features and concatenate them all together along with the state vector.
global_cond = self._prepare_global_conditioning(batch) # (B, global_cond_dim)
# run sampling
actions = self.conditional_sample(batch_size, global_cond=global_cond)
@@ -253,28 +310,28 @@ class DiffusionModel(nn.Module):
This function expects `batch` to have (at least):
{
"observation.state": (B, n_obs_steps, state_dim)
"observation.image": (B, n_obs_steps, C, H, W)
"observation.images": (B, n_obs_steps, num_cameras, C, H, W)
AND/OR
"observation.environment_state": (B, environment_dim)
"action": (B, horizon, action_dim)
"action_is_pad": (B, horizon)
}
"""
# Input validation.
assert set(batch).issuperset({"observation.state", "observation.image", "action", "action_is_pad"})
batch_size, n_obs_steps = batch["observation.state"].shape[:2]
assert set(batch).issuperset({"observation.state", "action", "action_is_pad"})
assert "observation.images" in batch or "observation.environment_state" in batch
n_obs_steps = batch["observation.state"].shape[1]
horizon = batch["action"].shape[1]
assert horizon == self.config.horizon
assert n_obs_steps == self.config.n_obs_steps
# Extract image feature (first combine batch and sequence dims).
img_features = self.rgb_encoder(einops.rearrange(batch["observation.image"], "b n ... -> (b n) ..."))
# Separate batch and sequence dims.
img_features = einops.rearrange(img_features, "(b n) ... -> b n ...", b=batch_size)
# Concatenate state and image features then flatten to (B, global_cond_dim).
global_cond = torch.cat([batch["observation.state"], img_features], dim=-1).flatten(start_dim=1)
trajectory = batch["action"]
# Encode image features and concatenate them all together along with the state vector.
global_cond = self._prepare_global_conditioning(batch) # (B, global_cond_dim)
# Forward diffusion.
trajectory = batch["action"]
# Sample noise to add to the trajectory.
eps = torch.randn(trajectory.shape, device=trajectory.device)
# Sample a random noising timestep for each item in the batch.
@@ -305,7 +362,8 @@ class DiffusionModel(nn.Module):
if self.config.do_mask_loss_for_padding:
if "action_is_pad" not in batch:
raise ValueError(
f"You need to provide 'action_is_pad' in the batch when {self.config.do_mask_loss_for_padding=}."
"You need to provide 'action_is_pad' in the batch when "
f"{self.config.do_mask_loss_for_padding=}."
)
in_episode_bound = ~batch["action_is_pad"]
loss = loss * in_episode_bound.unsqueeze(-1)
@@ -428,7 +486,7 @@ class DiffusionRgbEncoder(nn.Module):
# use the height and width from `config.crop_shape` if it is provided, otherwise it should use the
# height and width from `config.input_shapes`.
image_keys = [k for k in config.input_shapes if k.startswith("observation.image")]
assert len(image_keys) == 1
# Note: we have a check in the config class to make sure all images have the same shape.
image_key = image_keys[0]
dummy_input_h_w = (
config.crop_shape if config.crop_shape is not None else config.input_shapes[image_key][1:]

View File

@@ -28,9 +28,15 @@ def _policy_cfg_from_hydra_cfg(policy_cfg_class, hydra_cfg):
logging.warning(
f"Hydra config is missing arguments: {set(expected_kwargs).difference(hydra_cfg.policy)}"
)
# OmegaConf.to_container returns lists where sequences are found, but our dataclasses use tuples to avoid
# issues with mutable defaults. This filter changes all lists to tuples.
def list_to_tuple(item):
return tuple(item) if isinstance(item, list) else item
policy_cfg = policy_cfg_class(
**{
k: v
k: list_to_tuple(v)
for k, v in OmegaConf.to_container(hydra_cfg.policy, resolve=True).items()
if k in expected_kwargs
}
@@ -55,6 +61,11 @@ def get_policy_and_config_classes(name: str) -> tuple[Policy, object]:
from lerobot.common.policies.act.modeling_act import ACTPolicy
return ACTPolicy, ACTConfig
elif name == "vqbet":
from lerobot.common.policies.vqbet.configuration_vqbet import VQBeTConfig
from lerobot.common.policies.vqbet.modeling_vqbet import VQBeTPolicy
return VQBeTPolicy, VQBeTConfig
else:
raise NotImplementedError(f"Policy with name {name} is not implemented.")
@@ -75,7 +86,9 @@ def make_policy(
policy. Therefore, this argument is mutually exclusive with `pretrained_policy_name_or_path`.
"""
if not (pretrained_policy_name_or_path is None) ^ (dataset_stats is None):
raise ValueError("Only one of `pretrained_policy_name_or_path` and `dataset_stats` may be provided.")
raise ValueError(
"Exactly one of `pretrained_policy_name_or_path` and `dataset_stats` must be provided."
)
policy_cls, policy_cfg_class = get_policy_and_config_classes(hydra_cfg.policy.name)
@@ -86,9 +99,10 @@ def make_policy(
else:
# Load a pretrained policy and override the config if needed (for example, if there are inference-time
# hyperparameters that we want to vary).
# TODO(alexander-soare): This hack makes use of huggingface_hub's tooling to load the policy with, pretrained
# weights which are then loaded into a fresh policy with the desired config. This PR in huggingface_hub should
# make it possible to avoid the hack: https://github.com/huggingface/huggingface_hub/pull/2274.
# TODO(alexander-soare): This hack makes use of huggingface_hub's tooling to load the policy with,
# pretrained weights which are then loaded into a fresh policy with the desired config. This PR in
# huggingface_hub should make it possible to avoid the hack:
# https://github.com/huggingface/huggingface_hub/pull/2274.
policy = policy_cls(policy_cfg)
policy.load_state_dict(policy_cls.from_pretrained(pretrained_policy_name_or_path).state_dict())

View File

@@ -0,0 +1,36 @@
import json
import os
from dataclasses import asdict, dataclass
import torch
@dataclass
class ClassifierConfig:
"""Configuration for the Classifier model."""
num_classes: int = 2
hidden_dim: int = 256
dropout_rate: float = 0.1
model_name: str = "microsoft/resnet-50"
device: str = "cuda" if torch.cuda.is_available() else "mps"
model_type: str = "cnn" # "transformer" or "cnn"
def save_pretrained(self, save_dir):
"""Save config to json file."""
os.makedirs(save_dir, exist_ok=True)
# Convert to dict and save as JSON
config_dict = asdict(self)
with open(os.path.join(save_dir, "config.json"), "w") as f:
json.dump(config_dict, f, indent=2)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path):
"""Load config from json file."""
config_file = os.path.join(pretrained_model_name_or_path, "config.json")
with open(config_file) as f:
config_dict = json.load(f)
return cls(**config_dict)

View File

@@ -0,0 +1,134 @@
import logging
from typing import Optional
import torch
from huggingface_hub import PyTorchModelHubMixin
from torch import Tensor, nn
from transformers import AutoImageProcessor, AutoModel
from .configuration_classifier import ClassifierConfig
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
class ClassifierOutput:
"""Wrapper for classifier outputs with additional metadata."""
def __init__(
self, logits: Tensor, probabilities: Optional[Tensor] = None, hidden_states: Optional[Tensor] = None
):
self.logits = logits
self.probabilities = probabilities
self.hidden_states = hidden_states
class Classifier(
nn.Module,
PyTorchModelHubMixin,
# Add Hub metadata
library_name="lerobot",
repo_url="https://github.com/huggingface/lerobot",
tags=["robotics", "vision-classifier"],
):
"""Image classifier built on top of a pre-trained encoder."""
# Add name attribute for factory
name = "classifier"
def __init__(self, config: ClassifierConfig):
super().__init__()
self.config = config
self.processor = AutoImageProcessor.from_pretrained(self.config.model_name, trust_remote_code=True)
encoder = AutoModel.from_pretrained(self.config.model_name, trust_remote_code=True)
# Extract vision model if we're given a multimodal model
if hasattr(encoder, "vision_model"):
logging.info("Multimodal model detected - using vision encoder only")
self.encoder = encoder.vision_model
self.vision_config = encoder.config.vision_config
else:
self.encoder = encoder
self.vision_config = getattr(encoder, "config", None)
# Model type from config
self.is_cnn = self.config.model_type == "cnn"
# For CNNs, initialize backbone
if self.is_cnn:
self._setup_cnn_backbone()
self._freeze_encoder()
self._build_classifier_head()
def _setup_cnn_backbone(self):
"""Set up CNN encoder"""
if hasattr(self.encoder, "fc"):
self.feature_dim = self.encoder.fc.in_features
self.encoder = nn.Sequential(*list(self.encoder.children())[:-1])
elif hasattr(self.encoder.config, "hidden_sizes"):
self.feature_dim = self.encoder.config.hidden_sizes[-1] # Last channel dimension
else:
raise ValueError("Unsupported CNN architecture")
def _freeze_encoder(self) -> None:
"""Freeze the encoder parameters."""
for param in self.encoder.parameters():
param.requires_grad = False
def _build_classifier_head(self) -> None:
"""Initialize the classifier head architecture."""
# Get input dimension based on model type
if self.is_cnn:
input_dim = self.feature_dim
else: # Transformer models
if hasattr(self.encoder.config, "hidden_size"):
input_dim = self.encoder.config.hidden_size
else:
raise ValueError("Unsupported transformer architecture since hidden_size is not found")
self.classifier_head = nn.Sequential(
nn.Linear(input_dim, self.config.hidden_dim),
nn.Dropout(self.config.dropout_rate),
nn.LayerNorm(self.config.hidden_dim),
nn.ReLU(),
nn.Linear(self.config.hidden_dim, 1 if self.config.num_classes == 2 else self.config.num_classes),
)
def _get_encoder_output(self, x: torch.Tensor) -> torch.Tensor:
"""Extract the appropriate output from the encoder."""
# Process images with the processor (handles resizing and normalization)
processed = self.processor(
images=x, # LeRobotDataset already provides proper tensor format
return_tensors="pt",
)
processed = processed["pixel_values"].to(x.device)
with torch.no_grad():
if self.is_cnn:
# The HF ResNet applies pooling internally
outputs = self.encoder(processed)
# Get pooled output directly
features = outputs.pooler_output
if features.dim() > 2:
features = features.squeeze(-1).squeeze(-1)
return features
else: # Transformer models
outputs = self.encoder(processed)
if hasattr(outputs, "pooler_output") and outputs.pooler_output is not None:
return outputs.pooler_output
return outputs.last_hidden_state[:, 0, :]
def forward(self, x: torch.Tensor) -> ClassifierOutput:
"""Forward pass of the classifier."""
# For training, we expect input to be a tensor directly from LeRobotDataset
encoder_output = self._get_encoder_output(x)
logits = self.classifier_head(encoder_output)
if self.config.num_classes == 2:
logits = logits.squeeze(-1)
probabilities = torch.sigmoid(logits)
else:
probabilities = torch.softmax(logits, dim=-1)
return ClassifierOutput(logits=logits, probabilities=probabilities, hidden_states=encoder_output)

View File

@@ -0,0 +1,23 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
@dataclass
class HILSerlConfig:
pass

View File

@@ -0,0 +1,29 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch.nn as nn
from huggingface_hub import PyTorchModelHubMixin
class HILSerlPolicy(
nn.Module,
PyTorchModelHubMixin,
library_name="lerobot",
repo_url="https://github.com/huggingface/lerobot",
tags=["robotics", "hilserl"],
):
pass

View File

@@ -132,6 +132,7 @@ class Normalize(nn.Module):
# TODO(rcadene): should we remove torch.no_grad?
@torch.no_grad
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
batch = dict(batch) # shallow copy avoids mutating the input batch
for key, mode in self.modes.items():
buffer = getattr(self, "buffer_" + key.replace(".", "_"))
@@ -197,6 +198,7 @@ class Unnormalize(nn.Module):
# TODO(rcadene): should we remove torch.no_grad?
@torch.no_grad
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
batch = dict(batch) # shallow copy avoids mutating the input batch
for key, mode in self.modes.items():
buffer = getattr(self, "buffer_" + key.replace(".", "_"))

View File

@@ -57,7 +57,7 @@ class Policy(Protocol):
other items should be logging-friendly, native Python types.
"""
def select_action(self, batch: dict[str, Tensor]):
def select_action(self, batch: dict[str, Tensor]) -> Tensor:
"""Return one action to run in the environment (potentially in batch mode).
When the model uses a history of observations, or outputs a sequence of actions, this method deals

View File

@@ -0,0 +1,39 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
@dataclass
class SACConfig:
discount = 0.99
temperature_init = 1.0
num_critics = 2
critic_lr = 3e-4
actor_lr = 3e-4
critic_network_kwargs = {
"hidden_dims": [256, 256],
"activate_final": True,
}
actor_network_kwargs = {
"hidden_dims": [256, 256],
"activate_final": True,
}
policy_kwargs = {
"tanh_squash_distribution": True,
"std_parameterization": "uniform",
}

View File

@@ -0,0 +1,683 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: (1) better device management
from collections import deque
from copy import deepcopy
from functools import partial
import einops
import torch
import torch.nn as nn
import torch.nn.functional as F # noqa: N812
from torch import Tensor
from huggingface_hub import PyTorchModelHubMixin
from lerobot.common.policies.normalize import Normalize, Unnormalize
from lerobot.common.policies.sac.configuration_sac import SACConfig
import numpy as np
from typing import Callable, Optional, Tuple, Sequence
class SACPolicy(
nn.Module,
PyTorchModelHubMixin,
library_name="lerobot",
repo_url="https://github.com/huggingface/lerobot",
tags=["robotics", "RL", "SAC"],
):
def __init__(
self, config: SACConfig | None = None, dataset_stats: dict[str, dict[str, Tensor]] | None = None
):
super().__init__()
if config is None:
config = SACConfig()
self.config = config
if config.input_normalization_modes is not None:
self.normalize_inputs = Normalize(
config.input_shapes, config.input_normalization_modes, dataset_stats
)
else:
self.normalize_inputs = nn.Identity()
self.normalize_targets = Normalize(
config.output_shapes, config.output_normalization_modes, dataset_stats
)
self.unnormalize_outputs = Unnormalize(
config.output_shapes, config.output_normalization_modes, dataset_stats
)
encoder = SACObservationEncoder(config)
# Define networks
critic_nets = []
for _ in range(config.num_critics):
critic_net = Critic(
encoder=encoder,
network=MLP(**config.critic_network_kwargs)
)
critic_nets.append(critic_net)
self.critic_ensemble = create_critic_ensemble(critic_nets, config.num_critics)
self.critic_target = deepcopy(self.critic_ensemble)
self.actor_network = Policy(
encoder=encoder,
network=MLP(**config.actor_network_kwargs),
action_dim=config.output_shapes["action"][0],
**config.policy_kwargs
)
self.temperature = LagrangeMultiplier(init_value=config.temperature_init)
def reset(self):
"""
Clear observation and action queues. Should be called on `env.reset()`
queues are populated during rollout of the policy, they contain the n latest observations and actions
"""
self._queues = {
"observation.state": deque(maxlen=1),
"action": deque(maxlen=1),
}
if self._use_image:
self._queues["observation.image"] = deque(maxlen=1)
if self._use_env_state:
self._queues["observation.environment_state"] = deque(maxlen=1)
@torch.no_grad()
def select_action(self, batch: dict[str, Tensor]) -> Tensor:
actions, _ = self.actor_network(batch['observations'])###
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor | float]:
"""Run the batch through the model and compute the loss.
Returns a dictionary with loss as a tensor, and other information as native floats.
"""
batch = self.normalize_inputs(batch)
# batch shape is (b, 2, ...) where index 1 returns the current observation and
# the next observation for caluculating the right td index.
actions = batch["action"][:, 0]
rewards = batch["next.reward"][:, 0]
observations = {}
next_observations = {}
for k in batch:
if k.startswith("observation."):
observations[k] = batch[k][:, 0]
next_observations[k] = batch[k][:, 1]
# perform image augmentation
# reward bias
# from HIL-SERL code base
# add_or_replace={"rewards": batch["rewards"] + self.config["reward_bias"]} in reward_batch
# calculate critics loss
# 1- compute actions from policy
action_preds, log_probs = self.actor_network(observations)
# 2- compute q targets
q_targets = self.target_qs(next_observations, action_preds)
# critics subsample size
min_q = q_targets.min(dim=0)
# backup entropy
td_target = rewards + self.discount * min_q
# 3- compute predicted qs
q_preds = self.critic_ensemble(observations, actions)
# 4- Calculate loss
# Compute state-action value loss (TD loss) for all of the Q functions in the ensemble.
critics_loss = (
F.mse_loss(
q_preds,
einops.repeat(td_target, "t b -> e t b", e=q_preds.shape[0]),
reduction="none",
).sum(0) # sum over ensemble
# `q_preds_ensemble` depends on the first observation and the actions.
* ~batch["observation.state_is_pad"][0]
* ~batch["action_is_pad"]
# q_targets depends on the reward and the next observations.
* ~batch["next.reward_is_pad"]
* ~batch["observation.state_is_pad"][1:]
).sum(0).mean()
# calculate actors loss
# 1- temperature
temperature = self.temperature()
# 2- get actions (batch_size, action_dim) and log probs (batch_size,)
actions, log_probs = self.actor_network(observations) \
# 3- get q-value predictions
with torch.no_grad():
q_preds = self.critic_ensemble(observations, actions, return_type="mean")
actor_loss = (
-(q_preds - temperature * log_probs).mean()
* ~batch["observation.state_is_pad"][0]
* ~batch["action_is_pad"]
).mean()
# calculate temperature loss
# 1- calculate entropy
entropy = -log_probs.mean()
temperature_loss = temperature * (entropy - self.target_entropy).mean()
loss = critics_loss + actor_loss + temperature_loss
return {
"critics_loss": critics_loss.item(),
"actor_loss": actor_loss.item(),
"temperature_loss": temperature_loss.item(),
"temperature": temperature.item(),
"entropy": entropy.item(),
"loss": loss,
}
def update(self):
self.critic_target.lerp_(self.critic_ensemble, self.config.critic_target_update_weight)
#for target_param, param in zip(self.critic_target.parameters(), self.critic_ensemble.parameters()):
# target_param.data.copy_(target_param.data * (1.0 - self.config.critic_target_update_weight) + param.data * self.critic_target_update_weight)
class MLP(nn.Module):
def __init__(
self,
config: SACConfig,
activations: Callable[[torch.Tensor], torch.Tensor] | str = nn.SiLU(),
activate_final: bool = False,
dropout_rate: Optional[float] = None,
):
super().__init__()
self.activate_final = config.activate_final
layers = []
for i, size in enumerate(config.network_hidden_dims):
layers.append(nn.Linear(config.network_hidden_dims[i-1] if i > 0 else config.network_hidden_dims[0], size))
if i + 1 < len(config.network_hidden_dims) or activate_final:
if dropout_rate is not None and dropout_rate > 0:
layers.append(nn.Dropout(p=dropout_rate))
layers.append(nn.LayerNorm(size))
layers.append(activations if isinstance(activations, nn.Module) else getattr(nn, activations)())
self.net = nn.Sequential(*layers)
def forward(self, x: torch.Tensor, train: bool = False) -> torch.Tensor:
# in training mode or not. TODO: find better way to do this
self.train(train)
return self.net(x)
class Critic(nn.Module):
def __init__(
self,
encoder: Optional[nn.Module],
network: nn.Module,
init_final: Optional[float] = None,
activate_final: bool = False,
device: str = "cuda"
):
super().__init__()
self.device = torch.device(device)
self.encoder = encoder
self.network = network
self.init_final = init_final
self.activate_final = activate_final
# Output layer
if init_final is not None:
if self.activate_final:
self.output_layer = nn.Linear(network.net[-3].out_features, 1)
else:
self.output_layer = nn.Linear(network.net[-2].out_features, 1)
nn.init.uniform_(self.output_layer.weight, -init_final, init_final)
nn.init.uniform_(self.output_layer.bias, -init_final, init_final)
else:
if self.activate_final:
self.output_layer = nn.Linear(network.net[-3].out_features, 1)
else:
self.output_layer = nn.Linear(network.net[-2].out_features, 1)
orthogonal_init()(self.output_layer.weight)
self.to(self.device)
def forward(
self,
observations: torch.Tensor,
actions: torch.Tensor,
train: bool = False
) -> torch.Tensor:
self.train(train)
observations = observations.to(self.device)
actions = actions.to(self.device)
if self.encoder is not None:
obs_enc = self.encoder(observations)
else:
obs_enc = observations
inputs = torch.cat([obs_enc, actions], dim=-1)
x = self.network(inputs)
value = self.output_layer(x)
return value.squeeze(-1)
def q_value_ensemble(
self,
observations: torch.Tensor,
actions: torch.Tensor,
train: bool = False
) -> torch.Tensor:
observations = observations.to(self.device)
actions = actions.to(self.device)
if len(actions.shape) == 3: # [batch_size, num_actions, action_dim]
batch_size, num_actions = actions.shape[:2]
obs_expanded = observations.unsqueeze(1).expand(-1, num_actions, -1)
obs_flat = obs_expanded.reshape(-1, observations.shape[-1])
actions_flat = actions.reshape(-1, actions.shape[-1])
q_values = self(obs_flat, actions_flat, train)
return q_values.reshape(batch_size, num_actions)
else:
return self(observations, actions, train)
class Policy(nn.Module):
def __init__(
self,
encoder: Optional[nn.Module],
network: nn.Module,
action_dim: int,
std_parameterization: str = "exp",
std_min: float = 1e-5,
std_max: float = 10.0,
tanh_squash_distribution: bool = False,
fixed_std: Optional[torch.Tensor] = None,
init_final: Optional[float] = None,
activate_final: bool = False,
device: str = "cuda"
):
super().__init__()
self.device = torch.device(device)
self.encoder = encoder
self.network = network
self.action_dim = action_dim
self.std_parameterization = std_parameterization
self.std_min = std_min
self.std_max = std_max
self.tanh_squash_distribution = tanh_squash_distribution
self.fixed_std = fixed_std.to(self.device) if fixed_std is not None else None
self.activate_final = activate_final
# Mean layer
if self.activate_final:
self.mean_layer = nn.Linear(network.net[-3].out_features, action_dim)
else:
self.mean_layer = nn.Linear(network.net[-2].out_features, action_dim)
if init_final is not None:
nn.init.uniform_(self.mean_layer.weight, -init_final, init_final)
nn.init.uniform_(self.mean_layer.bias, -init_final, init_final)
else:
orthogonal_init()(self.mean_layer.weight)
# Standard deviation layer or parameter
if fixed_std is None:
if std_parameterization == "uniform":
self.log_stds = nn.Parameter(torch.zeros(action_dim, device=self.device))
else:
if self.activate_final:
self.std_layer = nn.Linear(network.net[-3].out_features, action_dim)
else:
self.std_layer = nn.Linear(network.net[-2].out_features, action_dim)
if init_final is not None:
nn.init.uniform_(self.std_layer.weight, -init_final, init_final)
nn.init.uniform_(self.std_layer.bias, -init_final, init_final)
else:
orthogonal_init()(self.std_layer.weight)
self.to(self.device)
def forward(
self,
observations: torch.Tensor,
temperature: float = 1.0,
train: bool = False,
non_squash_distribution: bool = False
) -> torch.distributions.Distribution:
self.train(train)
# Encode observations if encoder exists
if self.encoder is not None:
with torch.set_grad_enabled(train):
obs_enc = self.encoder(observations, train=train)
else:
obs_enc = observations
# Get network outputs
outputs = self.network(obs_enc)
means = self.mean_layer(outputs)
# Compute standard deviations
if self.fixed_std is None:
if self.std_parameterization == "exp":
log_stds = self.std_layer(outputs)
stds = torch.exp(log_stds)
elif self.std_parameterization == "softplus":
stds = torch.nn.functional.softplus(self.std_layer(outputs))
elif self.std_parameterization == "uniform":
stds = torch.exp(self.log_stds).expand_as(means)
else:
raise ValueError(
f"Invalid std_parameterization: {self.std_parameterization}"
)
else:
assert self.std_parameterization == "fixed"
stds = self.fixed_std.expand_as(means)
# Clip standard deviations and scale with temperature
temperature = torch.tensor(temperature, device=self.device)
stds = torch.clamp(stds, self.std_min, self.std_max) * torch.sqrt(temperature)
# Create distribution
if self.tanh_squash_distribution and not non_squash_distribution:
distribution = TanhMultivariateNormalDiag(
loc=means,
scale_diag=stds,
)
else:
distribution = torch.distributions.Normal(
loc=means,
scale=stds,
)
return distribution
def get_features(self, observations: torch.Tensor) -> torch.Tensor:
"""Get encoded features from observations"""
observations = observations.to(self.device)
if self.encoder is not None:
with torch.no_grad():
return self.encoder(observations, train=False)
return observations
class SACObservationEncoder(nn.Module):
"""Encode image and/or state vector observations.
TODO(ke-wang): The original work allows for (1) stacking multiple history frames and (2) using pretrained resnet encoders.
"""
def __init__(self, config: SACConfig):
"""
Creates encoders for pixel and/or state modalities.
"""
super().__init__()
self.config = config
if "observation.image" in config.input_shapes:
self.image_enc_layers = nn.Sequential(
nn.Conv2d(
config.input_shapes["observation.image"][0], config.image_encoder_hidden_dim, 7, stride=2
),
nn.ReLU(),
nn.Conv2d(config.image_encoder_hidden_dim, config.image_encoder_hidden_dim, 5, stride=2),
nn.ReLU(),
nn.Conv2d(config.image_encoder_hidden_dim, config.image_encoder_hidden_dim, 3, stride=2),
nn.ReLU(),
nn.Conv2d(config.image_encoder_hidden_dim, config.image_encoder_hidden_dim, 3, stride=2),
nn.ReLU(),
)
dummy_batch = torch.zeros(1, *config.input_shapes["observation.image"])
with torch.inference_mode():
out_shape = self.image_enc_layers(dummy_batch).shape[1:]
self.image_enc_layers.extend(
nn.Sequential(
nn.Flatten(),
nn.Linear(np.prod(out_shape), config.latent_dim),
nn.LayerNorm(config.latent_dim),
nn.Tanh(),
)
)
if "observation.state" in config.input_shapes:
self.state_enc_layers = nn.Sequential(
nn.Linear(config.input_shapes["observation.state"][0], config.state_encoder_hidden_dim),
nn.ELU(),
nn.Linear(config.state_encoder_hidden_dim, config.latent_dim),
nn.LayerNorm(config.latent_dim),
nn.Tanh(),
)
if "observation.environment_state" in config.input_shapes:
self.env_state_enc_layers = nn.Sequential(
nn.Linear(
config.input_shapes["observation.environment_state"][0], config.state_encoder_hidden_dim
),
nn.ELU(),
nn.Linear(config.state_encoder_hidden_dim, config.latent_dim),
nn.LayerNorm(config.latent_dim),
nn.Tanh(),
)
def forward(self, obs_dict: dict[str, Tensor]) -> Tensor:
"""Encode the image and/or state vector.
Each modality is encoded into a feature vector of size (latent_dim,) and then a uniform mean is taken
over all features.
"""
feat = []
# Concatenate all images along the channel dimension.
image_keys = [k for k in self.config.input_shapes if k.startswith("observation.image")]
for image_key in image_keys:
feat.append(flatten_forward_unflatten(self.image_enc_layers, obs_dict[image_key]))
if "observation.environment_state" in self.config.input_shapes:
feat.append(self.env_state_enc_layers(obs_dict["observation.environment_state"]))
if "observation.state" in self.config.input_shapes:
feat.append(self.state_enc_layers(obs_dict["observation.state"]))
return torch.stack(feat, dim=0).mean(0)
class LagrangeMultiplier(nn.Module):
def __init__(
self,
init_value: float = 1.0,
constraint_shape: Sequence[int] = (),
device: str = "cuda"
):
super().__init__()
self.device = torch.device(device)
init_value = torch.log(torch.exp(torch.tensor(init_value, device=self.device)) - 1)
# Initialize the Lagrange multiplier as a parameter
self.lagrange = nn.Parameter(
torch.full(constraint_shape, init_value, dtype=torch.float32, device=self.device)
)
self.to(self.device)
def forward(
self,
lhs: Optional[torch.Tensor] = None,
rhs: Optional[torch.Tensor] = None
) -> torch.Tensor:
# Get the multiplier value based on parameterization
multiplier = torch.nn.functional.softplus(self.lagrange)
# Return the raw multiplier if no constraint values provided
if lhs is None:
return multiplier
# Move inputs to device
lhs = lhs.to(self.device)
if rhs is not None:
rhs = rhs.to(self.device)
# Use the multiplier to compute the Lagrange penalty
if rhs is None:
rhs = torch.zeros_like(lhs, device=self.device)
diff = lhs - rhs
assert diff.shape == multiplier.shape, f"Shape mismatch: {diff.shape} vs {multiplier.shape}"
return multiplier * diff
# The TanhMultivariateNormalDiag is a probability distribution that represents a transformed normal (Gaussian) distribution where:
# 1. The base distribution is a diagonal multivariate normal distribution
# 2. The samples from this normal distribution are transformed through a tanh function, which squashes the values to be between -1 and 1
# 3. Optionally, the values can be further transformed to fit within arbitrary bounds [low, high] using an affine transformation
# This type of distribution is commonly used in reinforcement learning, particularly for continuous action spaces
class TanhMultivariateNormalDiag(torch.distributions.TransformedDistribution):
def __init__(
self,
loc: torch.Tensor,
scale_diag: torch.Tensor,
low: Optional[torch.Tensor] = None,
high: Optional[torch.Tensor] = None,
):
# Create base normal distribution
base_distribution = torch.distributions.Normal(loc=loc, scale=scale_diag)
# Create list of transforms
transforms = []
# Add tanh transform
transforms.append(torch.distributions.transforms.TanhTransform())
# Add rescaling transform if bounds are provided
if low is not None and high is not None:
transforms.append(
torch.distributions.transforms.AffineTransform(
loc=(high + low) / 2,
scale=(high - low) / 2
)
)
# Initialize parent class
super().__init__(
base_distribution=base_distribution,
transforms=transforms
)
# Store parameters
self.loc = loc
self.scale_diag = scale_diag
self.low = low
self.high = high
def mode(self) -> torch.Tensor:
"""Get the mode of the transformed distribution"""
# The mode of a normal distribution is its mean
mode = self.loc
# Apply transforms
for transform in self.transforms:
mode = transform(mode)
return mode
def rsample(self, sample_shape=torch.Size()) -> torch.Tensor:
"""
Reparameterized sample from the distribution
"""
# Sample from base distribution
x = self.base_dist.rsample(sample_shape)
# Apply transforms
for transform in self.transforms:
x = transform(x)
return x
def log_prob(self, value: torch.Tensor) -> torch.Tensor:
"""
Compute log probability of a value
Includes the log det jacobian for the transforms
"""
# Initialize log prob
log_prob = torch.zeros_like(value[..., 0])
# Inverse transforms to get back to normal distribution
q = value
for transform in reversed(self.transforms):
q = transform.inv(q)
log_prob = log_prob - transform.log_abs_det_jacobian(q, transform(q))
# Add base distribution log prob
log_prob = log_prob + self.base_dist.log_prob(q).sum(-1)
return log_prob
def sample_and_log_prob(self, sample_shape=torch.Size()) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Sample from the distribution and compute log probability
"""
x = self.rsample(sample_shape)
log_prob = self.log_prob(x)
return x, log_prob
def entropy(self) -> torch.Tensor:
"""
Compute entropy of the distribution
"""
# Start with base distribution entropy
entropy = self.base_dist.entropy().sum(-1)
# Add log det jacobian for each transform
x = self.rsample()
for transform in self.transforms:
entropy = entropy + transform.log_abs_det_jacobian(x, transform(x))
x = transform(x)
return entropy
def create_critic_ensemble(critic_class, num_critics: int, device: str = "cuda") -> nn.ModuleList:
"""Creates an ensemble of critic networks"""
critics = nn.ModuleList([critic_class() for _ in range(num_critics)])
return critics.to(device)
def orthogonal_init():
return lambda x: torch.nn.init.orthogonal_(x, gain=1.0)
# borrowed from tdmpc
def flatten_forward_unflatten(fn: Callable[[Tensor], Tensor], image_tensor: Tensor) -> Tensor:
"""Helper to temporarily flatten extra dims at the start of the image tensor.
Args:
fn: Callable that the image tensor will be passed to. It should accept (B, C, H, W) and return
(B, *), where * is any number of dimensions.
image_tensor: An image tensor of shape (**, C, H, W), where ** is any number of dimensions and
can be more than 1 dimensions, generally different from *.
Returns:
A return value from the callable reshaped to (**, *).
"""
if image_tensor.ndim == 4:
return fn(image_tensor)
start_dims = image_tensor.shape[:-3]
inp = torch.flatten(image_tensor, end_dim=-4)
flat_out = fn(inp)
return torch.reshape(flat_out, (*start_dims, *flat_out.shape[1:]))

View File

@@ -25,12 +25,16 @@ class TDMPCConfig:
camera observations.
The parameters you will most likely need to change are the ones which depend on the environment / sensors.
Those are: `input_shapes`, `output_shapes`, and perhaps `max_random_shift`.
Those are: `input_shapes`, `output_shapes`, and perhaps `max_random_shift_ratio`.
Args:
n_action_repeats: The number of times to repeat the action returned by the planning. (hint: Google
action repeats in Q-learning or ask your favorite chatbot)
horizon: Horizon for model predictive control.
n_action_steps: Number of action steps to take from the plan given by model predictive control. This
is an alternative to using action repeats. If this is set to more than 1, then we require
`n_action_repeats == 1`, `use_mpc == True` and `n_action_steps <= horizon`. Note that this
approach of using multiple steps from the plan is not in the original implementation.
input_shapes: A dictionary defining the shapes of the input data for the policy. The key represents
the input data name, and the value is a list indicating the dimensions of the corresponding data.
For example, "observation.image" refers to an input from a camera with dimensions [3, 96, 96],
@@ -100,6 +104,7 @@ class TDMPCConfig:
# Input / output structure.
n_action_repeats: int = 2
horizon: int = 5
n_action_steps: int = 1
input_shapes: dict[str, list[int]] = field(
default_factory=lambda: {
@@ -158,17 +163,18 @@ class TDMPCConfig:
"""Input validation (not exhaustive)."""
# There should only be one image key.
image_keys = {k for k in self.input_shapes if k.startswith("observation.image")}
if len(image_keys) != 1:
if len(image_keys) > 1:
raise ValueError(
f"{self.__class__.__name__} only handles one image for now. Got image keys {image_keys}."
)
image_key = next(iter(image_keys))
if self.input_shapes[image_key][-2] != self.input_shapes[image_key][-1]:
# TODO(alexander-soare): This limitation is solely because of code in the random shift
# augmentation. It should be able to be removed.
raise ValueError(
f"Only square images are handled now. Got image shape {self.input_shapes[image_key]}."
f"{self.__class__.__name__} handles at most one image for now. Got image keys {image_keys}."
)
if len(image_keys) > 0:
image_key = next(iter(image_keys))
if self.input_shapes[image_key][-2] != self.input_shapes[image_key][-1]:
# TODO(alexander-soare): This limitation is solely because of code in the random shift
# augmentation. It should be able to be removed.
raise ValueError(
f"Only square images are handled now. Got image shape {self.input_shapes[image_key]}."
)
if self.n_gaussian_samples <= 0:
raise ValueError(
f"The number of guassian samples for CEM should be non-zero. Got `{self.n_gaussian_samples=}`"
@@ -179,3 +185,12 @@ class TDMPCConfig:
f"advised that you stick with the default. See {self.__class__.__name__} docstring for more "
"information."
)
if self.n_action_steps > 1:
if self.n_action_repeats != 1:
raise ValueError(
"If `n_action_steps > 1`, `n_action_repeats` must be left to its default value of 1."
)
if not self.use_mpc:
raise ValueError("If `n_action_steps > 1`, `use_mpc` must be set to `True`.")
if self.n_action_steps > self.horizon:
raise ValueError("`n_action_steps` must be less than or equal to `horizon`.")

View File

@@ -19,14 +19,10 @@
The comments in this code may sometimes refer to these references:
TD-MPC paper: Temporal Difference Learning for Model Predictive Control (https://arxiv.org/abs/2203.04955)
FOWM paper: Finetuning Offline World Models in the Real World (https://arxiv.org/abs/2310.16029)
TODO(alexander-soare): Make rollout work for batch sizes larger than 1.
TODO(alexander-soare): Use batch-first throughout.
"""
# ruff: noqa: N806
import logging
from collections import deque
from copy import deepcopy
from functools import partial
@@ -45,7 +41,13 @@ from lerobot.common.policies.tdmpc.configuration_tdmpc import TDMPCConfig
from lerobot.common.policies.utils import get_device_from_parameters, populate_queues
class TDMPCPolicy(nn.Module, PyTorchModelHubMixin):
class TDMPCPolicy(
nn.Module,
PyTorchModelHubMixin,
library_name="lerobot",
repo_url="https://github.com/huggingface/lerobot",
tags=["robotics", "tdmpc"],
):
"""Implementation of TD-MPC learning + inference.
Please note several warnings for this policy.
@@ -56,9 +58,11 @@ class TDMPCPolicy(nn.Module, PyTorchModelHubMixin):
process communication to use the xarm environment from FOWM. This is because our xarm
environment uses newer dependencies and does not match the environment in FOWM. See
https://github.com/huggingface/lerobot/pull/103 for implementation details.
- We have NOT checked that training on LeRobot reproduces SOTA results. This is a TODO.
- We have NOT checked that training on LeRobot reproduces the results from FOWM.
- Nevertheless, we have verified that we can train TD-MPC for PushT. See
`lerobot/configs/policy/tdmpc_pusht_keypoints.yaml`.
- Our current xarm datasets were generated using the environment from FOWM. Therefore they do not
match our xarm environment.
match our xarm environment.
"""
name = "tdmpc"
@@ -74,22 +78,6 @@ class TDMPCPolicy(nn.Module, PyTorchModelHubMixin):
that they will be passed with a call to `load_state_dict` before the policy is used.
"""
super().__init__()
logging.warning(
"""
Please note several warnings for this policy.
- Evaluation of pretrained weights created with the original FOWM code
(https://github.com/fyhMer/fowm) works as expected. To be precise: we trained and evaluated a
model with the FOWM code for the xarm_lift_medium_replay dataset. We ported the weights across
to LeRobot, and were able to evaluate with the same success metric. BUT, we had to use inter-
process communication to use the xarm environment from FOWM. This is because our xarm
environment uses newer dependencies and does not match the environment in FOWM. See
https://github.com/huggingface/lerobot/pull/103 for implementation details.
- We have NOT checked that training on LeRobot reproduces SOTA results. This is a TODO.
- Our current xarm datasets were generated using the environment from FOWM. Therefore they do not
match our xarm environment.
"""
)
if config is None:
config = TDMPCConfig()
@@ -114,8 +102,14 @@ class TDMPCPolicy(nn.Module, PyTorchModelHubMixin):
image_keys = [k for k in config.input_shapes if k.startswith("observation.image")]
# Note: This check is covered in the post-init of the config but have a sanity check just in case.
assert len(image_keys) == 1
self.input_image_key = image_keys[0]
self._use_image = False
self._use_env_state = False
if len(image_keys) > 0:
assert len(image_keys) == 1
self._use_image = True
self.input_image_key = image_keys[0]
if "observation.environment_state" in config.input_shapes:
self._use_env_state = True
self.reset()
@@ -125,19 +119,24 @@ class TDMPCPolicy(nn.Module, PyTorchModelHubMixin):
called on `env.reset()`
"""
self._queues = {
"observation.image": deque(maxlen=1),
"observation.state": deque(maxlen=1),
"action": deque(maxlen=self.config.n_action_repeats),
"action": deque(maxlen=max(self.config.n_action_steps, self.config.n_action_repeats)),
}
if self._use_image:
self._queues["observation.image"] = deque(maxlen=1)
if self._use_env_state:
self._queues["observation.environment_state"] = deque(maxlen=1)
# Previous mean obtained from the cross-entropy method (CEM) used during MPC. It is used to warm start
# CEM for the next step.
self._prev_mean: torch.Tensor | None = None
@torch.no_grad()
def select_action(self, batch: dict[str, Tensor]):
def select_action(self, batch: dict[str, Tensor]) -> Tensor:
"""Select a single action given environment observations."""
batch = self.normalize_inputs(batch)
batch["observation.image"] = batch[self.input_image_key]
if self._use_image:
batch = dict(batch) # shallow copy so that adding a key doesn't modify the original
batch["observation.image"] = batch[self.input_image_key]
self._queues = populate_queues(self._queues, batch)
@@ -151,49 +150,57 @@ class TDMPCPolicy(nn.Module, PyTorchModelHubMixin):
batch[key] = batch[key][:, 0]
# NOTE: Order of observations matters here.
z = self.model.encode({k: batch[k] for k in ["observation.image", "observation.state"]})
if self.config.use_mpc:
batch_size = batch["observation.image"].shape[0]
# Batch processing is not handled in MPC mode, so process the batch in a loop.
action = [] # will be a batch of actions for one step
for i in range(batch_size):
# Note: self.plan does not handle batches, hence the squeeze.
action.append(self.plan(z[i]))
action = torch.stack(action)
encode_keys = []
if self._use_image:
encode_keys.append("observation.image")
if self._use_env_state:
encode_keys.append("observation.environment_state")
encode_keys.append("observation.state")
z = self.model.encode({k: batch[k] for k in encode_keys})
if self.config.use_mpc: # noqa: SIM108
actions = self.plan(z) # (horizon, batch, action_dim)
else:
# Plan with the policy (π) alone.
action = self.model.pi(z)
# Plan with the policy (π) alone. This always returns one action so unsqueeze to get a
# sequence dimension like in the MPC branch.
actions = self.model.pi(z).unsqueeze(0)
self.unnormalize_outputs({"action": action})["action"]
actions = torch.clamp(actions, -1, +1)
for _ in range(self.config.n_action_repeats):
self._queues["action"].append(action)
actions = self.unnormalize_outputs({"action": actions})["action"]
if self.config.n_action_repeats > 1:
for _ in range(self.config.n_action_repeats):
self._queues["action"].append(actions[0])
else:
# Action queue is (n_action_steps, batch_size, action_dim), so we transpose the action.
self._queues["action"].extend(actions[: self.config.n_action_steps])
action = self._queues["action"].popleft()
return torch.clamp(action, -1, 1)
return action
@torch.no_grad()
def plan(self, z: Tensor) -> Tensor:
"""Plan next action using TD-MPC inference.
"""Plan sequence of actions using TD-MPC inference.
Args:
z: (latent_dim,) tensor for the initial state.
z: (batch, latent_dim,) tensor for the initial state.
Returns:
(action_dim,) tensor for the next action.
TODO(alexander-soare) Extend this to be able to work with batches.
(horizon, batch, action_dim,) tensor for the planned trajectory of actions.
"""
device = get_device_from_parameters(self)
batch_size = z.shape[0]
# Sample Nπ trajectories from the policy.
pi_actions = torch.empty(
self.config.horizon,
self.config.n_pi_samples,
batch_size,
self.config.output_shapes["action"][0],
device=device,
)
if self.config.n_pi_samples > 0:
_z = einops.repeat(z, "d -> n d", n=self.config.n_pi_samples)
_z = einops.repeat(z, "b d -> n b d", n=self.config.n_pi_samples)
for t in range(self.config.horizon):
# Note: Adding a small amount of noise here doesn't hurt during inference and may even be
# helpful for CEM.
@@ -202,12 +209,14 @@ class TDMPCPolicy(nn.Module, PyTorchModelHubMixin):
# In the CEM loop we will need this for a call to estimate_value with the gaussian sampled
# trajectories.
z = einops.repeat(z, "d -> n d", n=self.config.n_gaussian_samples + self.config.n_pi_samples)
z = einops.repeat(z, "b d -> n b d", n=self.config.n_gaussian_samples + self.config.n_pi_samples)
# Model Predictive Path Integral (MPPI) with the cross-entropy method (CEM) as the optimization
# algorithm.
# The initial mean and standard deviation for the cross-entropy method (CEM).
mean = torch.zeros(self.config.horizon, self.config.output_shapes["action"][0], device=device)
mean = torch.zeros(
self.config.horizon, batch_size, self.config.output_shapes["action"][0], device=device
)
# Maybe warm start CEM with the mean from the previous step.
if self._prev_mean is not None:
mean[:-1] = self._prev_mean[1:]
@@ -218,6 +227,7 @@ class TDMPCPolicy(nn.Module, PyTorchModelHubMixin):
std_normal_noise = torch.randn(
self.config.horizon,
self.config.n_gaussian_samples,
batch_size,
self.config.output_shapes["action"][0],
device=std.device,
)
@@ -226,21 +236,24 @@ class TDMPCPolicy(nn.Module, PyTorchModelHubMixin):
# Compute elite actions.
actions = torch.cat([gaussian_actions, pi_actions], dim=1)
value = self.estimate_value(z, actions).nan_to_num_(0)
elite_idxs = torch.topk(value, self.config.n_elites, dim=0).indices
elite_value, elite_actions = value[elite_idxs], actions[:, elite_idxs]
elite_idxs = torch.topk(value, self.config.n_elites, dim=0).indices # (n_elites, batch)
elite_value = value.take_along_dim(elite_idxs, dim=0) # (n_elites, batch)
# (horizon, n_elites, batch, action_dim)
elite_actions = actions.take_along_dim(einops.rearrange(elite_idxs, "n b -> 1 n b 1"), dim=1)
# Update guassian PDF parameters to be the (weighted) mean and standard deviation of the elites.
max_value = elite_value.max(0)[0]
# Update gaussian PDF parameters to be the (weighted) mean and standard deviation of the elites.
max_value = elite_value.max(0, keepdim=True)[0] # (1, batch)
# The weighting is a softmax over trajectory values. Note that this is not the same as the usage
# of Ω in eqn 4 of the TD-MPC paper. Instead it is the normalized version of it: s = Ω/ΣΩ. This
# makes the equations: μ = Σ(s⋅Γ), σ = Σ(s⋅(Γ-μ)²).
score = torch.exp(self.config.elite_weighting_temperature * (elite_value - max_value))
score /= score.sum()
_mean = torch.sum(einops.rearrange(score, "n -> n 1") * elite_actions, dim=1)
score /= score.sum(axis=0, keepdim=True)
# (horizon, batch, action_dim)
_mean = torch.sum(einops.rearrange(score, "n b -> n b 1") * elite_actions, dim=1)
_std = torch.sqrt(
torch.sum(
einops.rearrange(score, "n -> n 1")
* (elite_actions - einops.rearrange(_mean, "h d -> h 1 d")) ** 2,
einops.rearrange(score, "n b -> n b 1")
* (elite_actions - einops.rearrange(_mean, "h b d -> h 1 b d")) ** 2,
dim=1,
)
)
@@ -255,11 +268,9 @@ class TDMPCPolicy(nn.Module, PyTorchModelHubMixin):
# Randomly select one of the elite actions from the last iteration of MPPI/CEM using the softmax
# scores from the last iteration.
actions = elite_actions[:, torch.multinomial(score, 1).item()]
actions = elite_actions[:, torch.multinomial(score.T, 1).squeeze(), torch.arange(batch_size)]
# Select only the first action
action = actions[0]
return action
return actions
@torch.no_grad()
def estimate_value(self, z: Tensor, actions: Tensor):
@@ -311,12 +322,17 @@ class TDMPCPolicy(nn.Module, PyTorchModelHubMixin):
G -= running_discount * self.config.uncertainty_regularizer_coeff * terminal_values.std(0)
return G
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
"""Run the batch through the model and compute the loss."""
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor | float]:
"""Run the batch through the model and compute the loss.
Returns a dictionary with loss as a tensor, and other information as native floats.
"""
device = get_device_from_parameters(self)
batch = self.normalize_inputs(batch)
batch["observation.image"] = batch[self.input_image_key]
if self._use_image:
batch = dict(batch) # shallow copy so that adding a key doesn't modify the original
batch["observation.image"] = batch[self.input_image_key]
batch = self.normalize_targets(batch)
info = {}
@@ -326,12 +342,12 @@ class TDMPCPolicy(nn.Module, PyTorchModelHubMixin):
if batch[key].ndim > 1:
batch[key] = batch[key].transpose(1, 0)
action = batch["action"] # (t, b)
reward = batch["next.reward"] # (t,)
action = batch["action"] # (t, b, action_dim)
reward = batch["next.reward"] # (t, b)
observations = {k: v for k, v in batch.items() if k.startswith("observation.")}
# Apply random image augmentations.
if self.config.max_random_shift_ratio > 0:
if self._use_image and self.config.max_random_shift_ratio > 0:
observations["observation.image"] = flatten_forward_unflatten(
partial(random_shifts_aug, max_random_shift_ratio=self.config.max_random_shift_ratio),
observations["observation.image"],
@@ -343,7 +359,9 @@ class TDMPCPolicy(nn.Module, PyTorchModelHubMixin):
for k in observations:
current_observation[k] = observations[k][0]
next_observations[k] = observations[k][1:]
horizon = next_observations["observation.image"].shape[0]
horizon, batch_size = next_observations[
"observation.image" if self._use_image else "observation.environment_state"
].shape[:2]
# Run latent rollout using the latent dynamics model and policy model.
# Note this has shape `horizon+1` because there are `horizon` actions and a current `z`. Each action
@@ -413,7 +431,8 @@ class TDMPCPolicy(nn.Module, PyTorchModelHubMixin):
# Compute state-action value loss (TD loss) for all of the Q functions in the ensemble.
q_value_loss = (
(
F.mse_loss(
temporal_loss_coeffs
* F.mse_loss(
q_preds_ensemble,
einops.repeat(q_targets, "t b -> e t b", e=q_preds_ensemble.shape[0]),
reduction="none",
@@ -462,10 +481,11 @@ class TDMPCPolicy(nn.Module, PyTorchModelHubMixin):
action_preds = self.model.pi(z_preds[:-1]) # (t, b, a)
# Calculate the MSE between the actions and the action predictions.
# Note: FOWM's original code calculates the log probability (wrt to a unit standard deviation
# gaussian) and sums over the action dimension. Computing the log probability amounts to multiplying
# the MSE by 0.5 and adding a constant offset (the log(2*pi) term) . Here we drop the constant offset
# as it doesn't change the optimization step, and we drop the 0.5 as we instead make a configuration
# parameter for it (see below where we compute the total loss).
# gaussian) and sums over the action dimension. Computing the (negative) log probability amounts to
# multiplying the MSE by 0.5 and adding a constant offset (the log(2*pi)/2 term, times the action
# dimension). Here we drop the constant offset as it doesn't change the optimization step, and we drop
# the 0.5 as we instead make a configuration parameter for it (see below where we compute the total
# loss).
mse = F.mse_loss(action_preds, action, reduction="none").sum(-1) # (t, b)
# NOTE: The original implementation does not take the sum over the temporal dimension like with the
# other losses.
@@ -726,6 +746,16 @@ class TDMPCObservationEncoder(nn.Module):
nn.LayerNorm(config.latent_dim),
nn.Sigmoid(),
)
if "observation.environment_state" in config.input_shapes:
self.env_state_enc_layers = nn.Sequential(
nn.Linear(
config.input_shapes["observation.environment_state"][0], config.state_encoder_hidden_dim
),
nn.ELU(),
nn.Linear(config.state_encoder_hidden_dim, config.latent_dim),
nn.LayerNorm(config.latent_dim),
nn.Sigmoid(),
)
def forward(self, obs_dict: dict[str, Tensor]) -> Tensor:
"""Encode the image and/or state vector.
@@ -734,8 +764,11 @@ class TDMPCObservationEncoder(nn.Module):
over all features.
"""
feat = []
# NOTE: Order of observations matters here.
if "observation.image" in self.config.input_shapes:
feat.append(flatten_forward_unflatten(self.image_enc_layers, obs_dict["observation.image"]))
if "observation.environment_state" in self.config.input_shapes:
feat.append(self.env_state_enc_layers(obs_dict["observation.environment_state"]))
if "observation.state" in self.config.input_shapes:
feat.append(self.state_enc_layers(obs_dict["observation.state"]))
return torch.stack(feat, dim=0).mean(0)

View File

@@ -0,0 +1,167 @@
#!/usr/bin/env python
# Copyright 2024 Seungjae Lee and Yibin Wang and Haritheja Etukuru
# and H. Jin Kim and Nur Muhammad Mahi Shafiullah and Lerrel Pinto
# and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
@dataclass
class VQBeTConfig:
"""Configuration class for VQ-BeT.
Defaults are configured for training with PushT providing proprioceptive and single camera observations.
The parameters you will most likely need to change are the ones which depend on the environment / sensors.
Those are: `input_shapes` and `output_shapes`.
Notes on the inputs and outputs:
- "observation.state" is required as an input key.
- At least one key starting with "observation.image is required as an input.
- If there are multiple keys beginning with "observation.image" they are treated as multiple camera
views. Right now we only support all images having the same shape.
- "action" is required as an output key.
Args:
n_obs_steps: Number of environment steps worth of observations to pass to the policy (takes the
current step and additional steps going back).
n_action_pred_token: Total number of current token and future tokens that VQ-BeT predicts.
action_chunk_size: Action chunk size of each action prediction token.
input_shapes: A dictionary defining the shapes of the input data for the policy.
The key represents the input data name, and the value is a list indicating the dimensions
of the corresponding data. For example, "observation.image" refers to an input from
a camera with dimensions [3, 96, 96], indicating it has three color channels and 96x96 resolution.
Importantly, shapes doesnt include batch dimension or temporal dimension.
output_shapes: A dictionary defining the shapes of the output data for the policy.
The key represents the output data name, and the value is a list indicating the dimensions
of the corresponding data. For example, "action" refers to an output shape of [14], indicating
14-dimensional actions. Importantly, shapes doesnt include batch dimension or temporal dimension.
input_normalization_modes: A dictionary with key representing the modality (e.g. "observation.state"),
and the value specifies the normalization mode to apply. The two available modes are "mean_std"
which subtracts the mean and divides by the standard deviation and "min_max" which rescale in a
[-1, 1] range.
output_normalization_modes: Similar dictionary as `normalize_input_modes`, but to unnormalize to the
original scale. Note that this is also used for normalizing the training targets.
vision_backbone: Name of the torchvision resnet backbone to use for encoding images.
crop_shape: (H, W) shape to crop images to as a preprocessing step for the vision backbone. Must fit
within the image size. If None, no cropping is done.
crop_is_random: Whether the crop should be random at training time (it's always a center crop in eval
mode).
pretrained_backbone_weights: Pretrained weights from torchvision to initalize the backbone.
`None` means no pretrained weights.
use_group_norm: Whether to replace batch normalization with group normalization in the backbone.
The group sizes are set to be about 16 (to be precise, feature_dim // 16).
spatial_softmax_num_keypoints: Number of keypoints for SpatialSoftmax.
n_vqvae_training_steps: Number of optimization steps for training Residual VQ.
vqvae_n_embed: Number of embedding vectors in the RVQ dictionary (each layer).
vqvae_embedding_dim: Dimension of each embedding vector in the RVQ dictionary.
vqvae_enc_hidden_dim: Size of hidden dimensions of Encoder / Decoder part of Residaul VQ-VAE
gpt_block_size: Max block size of minGPT (should be larger than the number of input tokens)
gpt_input_dim: Size of output input of GPT. This is also used as the dimension of observation features.
gpt_output_dim: Size of output dimension of GPT. This is also used as a input dimension of offset / bin prediction headers.
gpt_n_layer: Number of layers of GPT
gpt_n_head: Number of headers of GPT
gpt_hidden_dim: Size of hidden dimensions of GPT
dropout: Dropout rate for GPT
mlp_hidden_dim: Size of hidden dimensions of offset header / bin prediction headers parts of VQ-BeT
offset_loss_weight: A constant that is multiplied to the offset loss
primary_code_loss_weight: A constant that is multiplied to the primary code prediction loss
secondary_code_loss_weight: A constant that is multiplied to the secondary code prediction loss
bet_softmax_temperature: Sampling temperature of code for rollout with VQ-BeT
sequentially_select: Whether select code of primary / secondary as sequentially (pick primary code,
and then select secodnary code), or at the same time.
"""
# Inputs / output structure.
n_obs_steps: int = 5
n_action_pred_token: int = 3
action_chunk_size: int = 5
input_shapes: dict[str, list[int]] = field(
default_factory=lambda: {
"observation.image": [3, 96, 96],
"observation.state": [2],
}
)
output_shapes: dict[str, list[int]] = field(
default_factory=lambda: {
"action": [2],
}
)
# Normalization / Unnormalization
input_normalization_modes: dict[str, str] = field(
default_factory=lambda: {
"observation.image": "mean_std",
"observation.state": "min_max",
}
)
output_normalization_modes: dict[str, str] = field(default_factory=lambda: {"action": "min_max"})
# Architecture / modeling.
# Vision backbone.
vision_backbone: str = "resnet18"
crop_shape: tuple[int, int] | None = (84, 84)
crop_is_random: bool = True
pretrained_backbone_weights: str | None = None
use_group_norm: bool = True
spatial_softmax_num_keypoints: int = 32
# VQ-VAE
n_vqvae_training_steps: int = 20000
vqvae_n_embed: int = 16
vqvae_embedding_dim: int = 256
vqvae_enc_hidden_dim: int = 128
# VQ-BeT
gpt_block_size: int = 500
gpt_input_dim: int = 512
gpt_output_dim: int = 512
gpt_n_layer: int = 8
gpt_n_head: int = 8
gpt_hidden_dim: int = 512
dropout: float = 0.1
mlp_hidden_dim: int = 1024
offset_loss_weight: float = 10000.0
primary_code_loss_weight: float = 5.0
secondary_code_loss_weight: float = 0.5
bet_softmax_temperature: float = 0.1
sequentially_select: bool = False
def __post_init__(self):
"""Input validation (not exhaustive)."""
if not self.vision_backbone.startswith("resnet"):
raise ValueError(
f"`vision_backbone` must be one of the ResNet variants. Got {self.vision_backbone}."
)
image_keys = {k for k in self.input_shapes if k.startswith("observation.image")}
if self.crop_shape is not None:
for image_key in image_keys:
if (
self.crop_shape[0] > self.input_shapes[image_key][1]
or self.crop_shape[1] > self.input_shapes[image_key][2]
):
raise ValueError(
f"`crop_shape` should fit within `input_shapes[{image_key}]`. Got {self.crop_shape} "
f"for `crop_shape` and {self.input_shapes[image_key]} for "
"`input_shapes[{image_key}]`."
)
# Check that all input images have the same shape.
first_image_key = next(iter(image_keys))
for image_key in image_keys:
if self.input_shapes[image_key] != self.input_shapes[first_image_key]:
raise ValueError(
f"`input_shapes[{image_key}]` does not match `input_shapes[{first_image_key}]`, but we "
"expect all image shapes to match."
)

View File

@@ -0,0 +1,964 @@
#!/usr/bin/env python
# Copyright 2024 Seungjae Lee and Yibin Wang and Haritheja Etukuru
# and H. Jin Kim and Nur Muhammad Mahi Shafiullah and Lerrel Pinto
# and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import warnings
from collections import deque
from typing import Callable, List
import einops
import numpy as np
import torch
import torch.nn.functional as F # noqa: N812
import torchvision
from huggingface_hub import PyTorchModelHubMixin
from torch import Tensor, nn
from torch.optim.lr_scheduler import LambdaLR
from lerobot.common.policies.normalize import Normalize, Unnormalize
from lerobot.common.policies.utils import get_device_from_parameters, populate_queues
from lerobot.common.policies.vqbet.configuration_vqbet import VQBeTConfig
from lerobot.common.policies.vqbet.vqbet_utils import GPT, ResidualVQ
# ruff: noqa: N806
class VQBeTPolicy(
nn.Module,
PyTorchModelHubMixin,
library_name="lerobot",
repo_url="https://github.com/huggingface/lerobot",
tags=["robotics", "vqbet"],
):
"""
VQ-BeT Policy as per "Behavior Generation with Latent Actions"
"""
name = "vqbet"
def __init__(
self,
config: VQBeTConfig | None = None,
dataset_stats: dict[str, dict[str, Tensor]] | None = None,
):
"""
Args:
config: Policy configuration class instance or None, in which case the default instantiation of
the configuration class is used.
dataset_stats: Dataset statistics to be used for normalization. If not passed here, it is expected
that they will be passed with a call to `load_state_dict` before the policy is used.
"""
super().__init__()
if config is None:
config = VQBeTConfig()
self.config = config
self.normalize_inputs = Normalize(
config.input_shapes, config.input_normalization_modes, dataset_stats
)
self.normalize_targets = Normalize(
config.output_shapes, config.output_normalization_modes, dataset_stats
)
self.unnormalize_outputs = Unnormalize(
config.output_shapes, config.output_normalization_modes, dataset_stats
)
self.vqbet = VQBeTModel(config)
self.expected_image_keys = [k for k in config.input_shapes if k.startswith("observation.image")]
self.reset()
def reset(self):
"""
Clear observation and action queues. Should be called on `env.reset()`
queues are populated during rollout of the policy, they contain the n latest observations and actions
"""
self._queues = {
"observation.images": deque(maxlen=self.config.n_obs_steps),
"observation.state": deque(maxlen=self.config.n_obs_steps),
"action": deque(maxlen=self.config.action_chunk_size),
}
@torch.no_grad
def select_action(self, batch: dict[str, Tensor]) -> Tensor:
"""Select a single action given environment observations.
This method wraps `select_actions` in order to return one action at a time for execution in the
environment. It works by managing the actions in a queue and only calling `select_actions` when the
queue is empty.
"""
batch = self.normalize_inputs(batch)
batch = dict(batch) # shallow copy so that adding a key doesn't modify the original
batch["observation.images"] = torch.stack([batch[k] for k in self.expected_image_keys], dim=-4)
# Note: It's important that this happens after stacking the images into a single key.
self._queues = populate_queues(self._queues, batch)
if not self.vqbet.action_head.vqvae_model.discretized.item():
warnings.warn(
"To evaluate in the environment, your VQ-BeT model should contain a pretrained Residual VQ.",
stacklevel=1,
)
if len(self._queues["action"]) == 0:
batch = {k: torch.stack(list(self._queues[k]), dim=1) for k in batch if k in self._queues}
actions = self.vqbet(batch, rollout=True)[:, : self.config.action_chunk_size]
# the dimension of returned action is (batch_size, action_chunk_size, action_dim)
actions = self.unnormalize_outputs({"action": actions})["action"]
# since the data in the action queue's dimension is (action_chunk_size, batch_size, action_dim), we transpose the action and fill the queue
self._queues["action"].extend(actions.transpose(0, 1))
action = self._queues["action"].popleft()
return action
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
"""Run the batch through the model and compute the loss for training or validation."""
batch = self.normalize_inputs(batch)
batch = dict(batch) # shallow copy so that adding a key doesn't modify the original
batch["observation.images"] = torch.stack([batch[k] for k in self.expected_image_keys], dim=-4)
batch = self.normalize_targets(batch)
# VQ-BeT discretizes action using VQ-VAE before training BeT (please refer to section 3.2 in the VQ-BeT paper https://arxiv.org/pdf/2403.03181)
if not self.vqbet.action_head.vqvae_model.discretized.item():
# loss: total loss of training RVQ
# n_different_codes: how many of the total possible VQ codes are being used in single batch (how many of them have at least one encoder embedding as a nearest neighbor). This can be at most `vqvae_n_embed * number of layers of RVQ (=2)`.
# n_different_combinations: how many different code combinations are being used out of all possible combinations in single batch. This can be at most `vqvae_n_embed ^ number of layers of RVQ (=2)` (hint consider the RVQ as a decision tree).
loss, n_different_codes, n_different_combinations, recon_l1_error = (
self.vqbet.action_head.discretize(self.config.n_vqvae_training_steps, batch["action"])
)
return {
"loss": loss,
"n_different_codes": n_different_codes,
"n_different_combinations": n_different_combinations,
"recon_l1_error": recon_l1_error,
}
# if Residual VQ is already trained, VQ-BeT trains its GPT and bin prediction head / offset prediction head parts.
_, loss_dict = self.vqbet(batch, rollout=False)
return loss_dict
class SpatialSoftmax(nn.Module):
"""
Spatial Soft Argmax operation described in "Deep Spatial Autoencoders for Visuomotor Learning" by Finn et al.
(https://arxiv.org/pdf/1509.06113). A minimal port of the robomimic implementation.
At a high level, this takes 2D feature maps (from a convnet/ViT) and returns the "center of mass"
of activations of each channel, i.e., keypoints in the image space for the policy to focus on.
Example: take feature maps of size (512x10x12). We generate a grid of normalized coordinates (10x12x2):
-----------------------------------------------------
| (-1., -1.) | (-0.82, -1.) | ... | (1., -1.) |
| (-1., -0.78) | (-0.82, -0.78) | ... | (1., -0.78) |
| ... | ... | ... | ... |
| (-1., 1.) | (-0.82, 1.) | ... | (1., 1.) |
-----------------------------------------------------
This is achieved by applying channel-wise softmax over the activations (512x120) and computing the dot
product with the coordinates (120x2) to get expected points of maximal activation (512x2).
The example above results in 512 keypoints (corresponding to the 512 input channels). We can optionally
provide num_kp != None to control the number of keypoints. This is achieved by a first applying a learnable
linear mapping (in_channels, H, W) -> (num_kp, H, W).
"""
def __init__(self, input_shape, num_kp=None):
"""
Args:
input_shape (list): (C, H, W) input feature map shape.
num_kp (int): number of keypoints in output. If None, output will have the same number of channels as input.
"""
super().__init__()
assert len(input_shape) == 3
self._in_c, self._in_h, self._in_w = input_shape
if num_kp is not None:
self.nets = torch.nn.Conv2d(self._in_c, num_kp, kernel_size=1)
self._out_c = num_kp
else:
self.nets = None
self._out_c = self._in_c
# we could use torch.linspace directly but that seems to behave slightly differently than numpy
# and causes a small degradation in pc_success of pre-trained models.
pos_x, pos_y = np.meshgrid(np.linspace(-1.0, 1.0, self._in_w), np.linspace(-1.0, 1.0, self._in_h))
pos_x = torch.from_numpy(pos_x.reshape(self._in_h * self._in_w, 1)).float()
pos_y = torch.from_numpy(pos_y.reshape(self._in_h * self._in_w, 1)).float()
# register as buffer so it's moved to the correct device.
self.register_buffer("pos_grid", torch.cat([pos_x, pos_y], dim=1))
def forward(self, features: Tensor) -> Tensor:
"""
Args:
features: (B, C, H, W) input feature maps.
Returns:
(B, K, 2) image-space coordinates of keypoints.
"""
if self.nets is not None:
features = self.nets(features)
# [B, K, H, W] -> [B * K, H * W] where K is number of keypoints
features = features.reshape(-1, self._in_h * self._in_w)
# 2d softmax normalization
attention = F.softmax(features, dim=-1)
# [B * K, H * W] x [H * W, 2] -> [B * K, 2] for spatial coordinate mean in x and y dimensions
expected_xy = attention @ self.pos_grid
# reshape to [B, K, 2]
feature_keypoints = expected_xy.view(-1, self._out_c, 2)
return feature_keypoints
class VQBeTModel(nn.Module):
"""VQ-BeT: The underlying neural network for VQ-BeT
Note: In this code we use the terms `rgb_encoder`, 'policy', `action_head`. The meanings are as follows.
- The `rgb_encoder` process rgb-style image observations to one-dimensional embedding vectors
- A `policy` is a minGPT architecture, that takes observation sequences and action query tokens to generate `features`.
- These `features` pass through the action head, which passes through the code prediction, offset prediction head,
and finally generates a prediction for the action chunks.
-------------------------------** legend **-------------------------------
│ n = n_obs_steps, p = n_action_pred_token, c = action_chunk_size) │
│ o_{t} : visual observation at timestep {t}
│ s_{t} : state observation at timestep {t}
│ a_{t} : action at timestep {t}
│ A_Q : action_query_token │
--------------------------------------------------------------------------
Training Phase 1. Discretize action using Residual VQ (for config.n_vqvae_training_steps steps)
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ │ │ │ │ │
│ RVQ encoder │ ─► │ Residual │ ─► │ RVQ Decoder │
│ (a_{t}~a_{t+p}) │ │ Code Quantizer │ │ │
│ │ │ │ │ │
└─────────────────┘ └─────────────────┘ └─────────────────┘
Training Phase 2.
timestep {t-n+1} timestep {t-n+2} timestep {t}
┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐
o_{t-n+1} o_{t-n+2} ... o_{t}
│ │ │
│ s_{t-n+1} │ s_{t-n+2} ... │ s_{t} p
│ │ │ │ │ │ ┌───────┴───────┐
│ │ A_Q │ │ A_Q ... │ │ A_Q ... A_Q
│ │ │ │ │ │ │ │ │ │
┌───▼─────▼─────▼─────▼─────▼─────▼─────────────────▼─────▼─────▼───────────────▼───┐
│ │
│ GPT │ => policy
│ │
└───────────────▼─────────────────▼─────────────────────────────▼───────────────▼───┘
│ │ │ │
┌───┴───┐ ┌───┴───┐ ┌───┴───┐ ┌───┴───┐
code offset code offset code offset code offset
▼ │ ▼ │ ▼ │ ▼ │ => action_head
RVQ Decoder │ RVQ Decoder │ RVQ Decoder │ RVQ Decoder │
└── + ──┘ └── + ──┘ └── + ──┘ └── + ──┘
▼ ▼ ▼ ▼
action chunk action chunk action chunk action chunk
a_{t-n+1} ~ a_{t-n+2} ~ a_{t} ~ ... a_{t+p-1} ~
a_{t-n+c} a_{t-n+c+1} a_{t+c-1} a_{t+p+c-1}
ONLY this chunk is used in rollout!
"""
def __init__(self, config: VQBeTConfig):
super().__init__()
self.config = config
self.rgb_encoder = VQBeTRgbEncoder(config)
self.num_images = len([k for k in config.input_shapes if k.startswith("observation.image")])
# This action query token is used as a prompt for querying action chunks. Please refer to "A_Q" in the image above.
# Note: During the forward pass, this token is repeated as many times as needed. The authors also experimented with initializing the necessary number of tokens independently and observed inferior results.
self.action_token = nn.Parameter(torch.randn(1, 1, self.config.gpt_input_dim))
# To input state and observation features into GPT layers, we first project the features to fit the shape of input size of GPT.
self.state_projector = MLP(
config.input_shapes["observation.state"][0], hidden_channels=[self.config.gpt_input_dim]
)
self.rgb_feature_projector = MLP(
self.rgb_encoder.feature_dim, hidden_channels=[self.config.gpt_input_dim]
)
# GPT part of VQ-BeT
self.policy = GPT(config)
# bin prediction head / offset prediction head part of VQ-BeT
self.action_head = VQBeTHead(config)
# Action tokens for: each observation step, the current action token, and all future action tokens.
num_tokens = self.config.n_action_pred_token + self.config.n_obs_steps - 1
self.register_buffer(
"select_target_actions_indices",
torch.row_stack([torch.arange(i, i + self.config.action_chunk_size) for i in range(num_tokens)]),
)
def forward(self, batch: dict[str, Tensor], rollout: bool) -> Tensor:
# Input validation.
assert set(batch).issuperset({"observation.state", "observation.images"})
batch_size, n_obs_steps = batch["observation.state"].shape[:2]
assert n_obs_steps == self.config.n_obs_steps
# Extract image feature (first combine batch and sequence dims).
img_features = self.rgb_encoder(
einops.rearrange(batch["observation.images"], "b s n ... -> (b s n) ...")
)
# Separate batch and sequence dims.
img_features = einops.rearrange(
img_features, "(b s n) ... -> b s n ...", b=batch_size, s=n_obs_steps, n=self.num_images
)
# Arrange prior and current observation step tokens as shown in the class docstring.
# First project features to token dimension.
rgb_tokens = self.rgb_feature_projector(
img_features
) # (batch, obs_step, number of different cameras, projection dims)
input_tokens = [rgb_tokens[:, :, i] for i in range(rgb_tokens.size(2))]
input_tokens.append(
self.state_projector(batch["observation.state"])
) # (batch, obs_step, projection dims)
input_tokens.append(einops.repeat(self.action_token, "1 1 d -> b n d", b=batch_size, n=n_obs_steps))
# Interleave tokens by stacking and rearranging.
input_tokens = torch.stack(input_tokens, dim=2)
input_tokens = einops.rearrange(input_tokens, "b n t d -> b (n t) d")
len_additional_action_token = self.config.n_action_pred_token - 1
future_action_tokens = self.action_token.repeat(batch_size, len_additional_action_token, 1)
# add additional action query tokens for predicting future action chunks
input_tokens = torch.cat([input_tokens, future_action_tokens], dim=1)
# get action features (pass through GPT)
features = self.policy(input_tokens)
# len(self.config.input_shapes) is the number of different observation modes.
# this line gets the index of action prompt tokens.
historical_act_pred_index = np.arange(0, n_obs_steps) * (len(self.config.input_shapes) + 1) + len(
self.config.input_shapes
)
# only extract the output tokens at the position of action query:
# Behavior Transformer (BeT), and VQ-BeT are both sequence-to-sequence prediction models,
# mapping sequential observation to sequential action (please refer to section 2.2 in BeT paper https://arxiv.org/pdf/2206.11251).
# Thus, it predicts a historical action sequence, in addition to current and future actions (predicting future actions : optional).
if len_additional_action_token > 0:
features = torch.cat(
[features[:, historical_act_pred_index], features[:, -len_additional_action_token:]], dim=1
)
else:
features = features[:, historical_act_pred_index]
# pass through action head
action_head_output = self.action_head(features)
# if rollout, VQ-BeT don't calculate loss
if rollout:
return action_head_output["predicted_action"][:, n_obs_steps - 1, :].reshape(
batch_size, self.config.action_chunk_size, -1
)
# else, it calculate overall loss (bin prediction loss, and offset loss)
else:
output = batch["action"][:, self.select_target_actions_indices]
loss = self.action_head.loss_fn(action_head_output, output, reduction="mean")
return action_head_output, loss
class VQBeTHead(nn.Module):
def __init__(self, config: VQBeTConfig):
"""
VQBeTHead takes output of GPT layers, and pass the feature through bin prediction head (`self.map_to_cbet_preds_bin`), and offset prediction head (`self.map_to_cbet_preds_offset`)
self.map_to_cbet_preds_bin: outputs probability of each code (for each layer).
The input dimension of `self.map_to_cbet_preds_bin` is same with the output of GPT,
and the output dimension of `self.map_to_cbet_preds_bin` is `self.vqvae_model.vqvae_num_layers (=fixed as 2) * self.config.vqvae_n_embed`.
if the agent select the code sequentially, we use self.map_to_cbet_preds_primary_bin and self.map_to_cbet_preds_secondary_bin instead of self._map_to_cbet_preds_bin.
self.map_to_cbet_preds_offset: output the predicted offsets for all the codes in all the layers.
The input dimension of ` self.map_to_cbet_preds_offset` is same with the output of GPT,
and the output dimension of ` self.map_to_cbet_preds_offset` is `self.vqvae_model.vqvae_num_layers (=fixed as 2) * self.config.vqvae_n_embed * config.action_chunk_size * config.output_shapes["action"][0]`.
"""
super().__init__()
self.config = config
# init vqvae
self.vqvae_model = VqVae(config)
if config.sequentially_select:
self.map_to_cbet_preds_primary_bin = MLP(
in_channels=config.gpt_output_dim,
hidden_channels=[self.config.vqvae_n_embed],
)
self.map_to_cbet_preds_secondary_bin = MLP(
in_channels=config.gpt_output_dim + self.config.vqvae_n_embed,
hidden_channels=[self.config.vqvae_n_embed],
)
else:
self.map_to_cbet_preds_bin = MLP(
in_channels=config.gpt_output_dim,
hidden_channels=[self.vqvae_model.vqvae_num_layers * self.config.vqvae_n_embed],
)
self.map_to_cbet_preds_offset = MLP(
in_channels=config.gpt_output_dim,
hidden_channels=[
self.vqvae_model.vqvae_num_layers
* self.config.vqvae_n_embed
* config.action_chunk_size
* config.output_shapes["action"][0],
],
)
# loss
self._focal_loss_fn = FocalLoss(gamma=2.0)
def discretize(self, n_vqvae_training_steps, actions):
# Resize the action sequence data to fit the action chunk size using a sliding window approach.
actions = torch.cat(
[
actions[:, j : j + self.config.action_chunk_size, :]
for j in range(actions.shape[1] + 1 - self.config.action_chunk_size)
],
dim=0,
)
# `actions` is a tensor of shape (new_batch, action_chunk_size, action_dim) where new_batch is the number of possible chunks created from the original sequences using the sliding window.
loss, metric = self.vqvae_model.vqvae_forward(actions)
n_different_codes = sum(
[len(torch.unique(metric[2][:, i])) for i in range(self.vqvae_model.vqvae_num_layers)]
)
n_different_combinations = len(torch.unique(metric[2], dim=0))
recon_l1_error = metric[0].detach().cpu().item()
self.vqvae_model.optimized_steps += 1
# if we updated RVQ more than `n_vqvae_training_steps` steps, we freeze the RVQ part.
if self.vqvae_model.optimized_steps >= n_vqvae_training_steps:
self.vqvae_model.discretized = torch.tensor(True)
self.vqvae_model.vq_layer.freeze_codebook = torch.tensor(True)
print("Finished discretizing action data!")
self.vqvae_model.eval()
for param in self.vqvae_model.vq_layer.parameters():
param.requires_grad = False
return loss, n_different_codes, n_different_combinations, recon_l1_error
def forward(self, x, **kwargs):
# N is the batch size, and T is number of action query tokens, which are process through same GPT
N, T, _ = x.shape
# we calculate N and T side parallely. Thus, the dimensions would be
# (batch size * number of action query tokens, action chunk size, action dimension)
x = einops.rearrange(x, "N T WA -> (N T) WA")
# sample offsets
cbet_offsets = self.map_to_cbet_preds_offset(x)
cbet_offsets = einops.rearrange(
cbet_offsets,
"(NT) (G C WA) -> (NT) G C WA",
G=self.vqvae_model.vqvae_num_layers,
C=self.config.vqvae_n_embed,
)
# if self.config.sequentially_select is True, bin prediction head first sample the primary code, and then sample secondary code
if self.config.sequentially_select:
cbet_primary_logits = self.map_to_cbet_preds_primary_bin(x)
# select primary bin first
cbet_primary_probs = torch.softmax(
cbet_primary_logits / self.config.bet_softmax_temperature, dim=-1
)
NT, choices = cbet_primary_probs.shape
sampled_primary_centers = einops.rearrange(
torch.multinomial(cbet_primary_probs.view(-1, choices), num_samples=1),
"(NT) 1 -> NT",
NT=NT,
)
cbet_secondary_logits = self.map_to_cbet_preds_secondary_bin(
torch.cat(
(x, F.one_hot(sampled_primary_centers, num_classes=self.config.vqvae_n_embed)),
axis=1,
)
)
cbet_secondary_probs = torch.softmax(
cbet_secondary_logits / self.config.bet_softmax_temperature, dim=-1
)
sampled_secondary_centers = einops.rearrange(
torch.multinomial(cbet_secondary_probs.view(-1, choices), num_samples=1),
"(NT) 1 -> NT",
NT=NT,
)
sampled_centers = torch.stack((sampled_primary_centers, sampled_secondary_centers), axis=1)
cbet_logits = torch.stack([cbet_primary_logits, cbet_secondary_logits], dim=1)
# if self.config.sequentially_select is False, bin prediction head samples primary and secondary code at once.
else:
cbet_logits = self.map_to_cbet_preds_bin(x)
cbet_logits = einops.rearrange(
cbet_logits, "(NT) (G C) -> (NT) G C", G=self.vqvae_model.vqvae_num_layers
)
cbet_probs = torch.softmax(cbet_logits / self.config.bet_softmax_temperature, dim=-1)
NT, G, choices = cbet_probs.shape
sampled_centers = einops.rearrange(
torch.multinomial(cbet_probs.view(-1, choices), num_samples=1),
"(NT G) 1 -> NT G",
NT=NT,
)
device = get_device_from_parameters(self)
indices = (
torch.arange(NT, device=device).unsqueeze(1),
torch.arange(self.vqvae_model.vqvae_num_layers, device=device).unsqueeze(0),
sampled_centers,
)
# Use advanced indexing to sample the values (Extract the only offsets corresponding to the sampled codes.)
sampled_offsets = cbet_offsets[indices]
# Then, sum the offsets over the RVQ layers to get a net offset for the bin prediction
sampled_offsets = sampled_offsets.sum(dim=1)
with torch.no_grad():
# Get the centroids (= vectors corresponding to the codes) of each layer to pass it through RVQ decoder
return_decoder_input = self.vqvae_model.get_embeddings_from_code(sampled_centers).clone().detach()
# pass the centroids through decoder to get actions.
decoded_action = self.vqvae_model.get_action_from_latent(return_decoder_input).clone().detach()
# reshaped extracted offset to match with decoded centroids
sampled_offsets = einops.rearrange(
sampled_offsets, "NT (W A) -> NT W A", W=self.config.action_chunk_size
)
# add offset and decoded centroids
predicted_action = decoded_action + sampled_offsets
predicted_action = einops.rearrange(
predicted_action,
"(N T) W A -> N T (W A)",
N=N,
T=T,
W=self.config.action_chunk_size,
)
return {
"cbet_logits": cbet_logits,
"predicted_action": predicted_action,
"sampled_centers": sampled_centers,
"decoded_action": decoded_action,
}
def loss_fn(self, pred, target, **kwargs):
"""
for given ground truth action values (target), and prediction (pred) this function calculates the overall loss.
predicted_action: predicted action chunk (offset + decoded centroids)
sampled_centers: sampled centroids (code of RVQ)
decoded_action: decoded action, which is produced by passing sampled_centers through RVQ decoder
NT: batch size * T
T: number of action query tokens, which are process through same GPT
cbet_logits: probability of all codes in each layer
"""
action_seq = target
predicted_action = pred["predicted_action"]
sampled_centers = pred["sampled_centers"]
decoded_action = pred["decoded_action"]
NT = predicted_action.shape[0] * predicted_action.shape[1]
cbet_logits = pred["cbet_logits"]
predicted_action = einops.rearrange(
predicted_action, "N T (W A) -> (N T) W A", W=self.config.action_chunk_size
)
action_seq = einops.rearrange(action_seq, "N T W A -> (N T) W A")
# Figure out the loss for the actions.
# First, we need to find the closest cluster center for each ground truth action.
with torch.no_grad():
state_vq, action_bins = self.vqvae_model.get_code(action_seq) # action_bins: NT, G
# Now we can compute the loss.
# offset loss is L1 distance between the predicted action and ground truth action
offset_loss = F.l1_loss(action_seq, predicted_action)
# calculate primary code prediction loss
cbet_loss1 = self._focal_loss_fn(
cbet_logits[:, 0, :],
action_bins[:, 0],
)
# calculate secondary code prediction loss
cbet_loss2 = self._focal_loss_fn(
cbet_logits[:, 1, :],
action_bins[:, 1],
)
# add all the prediction loss
cbet_loss = (
cbet_loss1 * self.config.primary_code_loss_weight
+ cbet_loss2 * self.config.secondary_code_loss_weight
)
equal_primary_code_rate = torch.sum((action_bins[:, 0] == sampled_centers[:, 0]).int()) / (NT)
equal_secondary_code_rate = torch.sum((action_bins[:, 1] == sampled_centers[:, 1]).int()) / (NT)
action_mse_error = torch.mean((action_seq - predicted_action) ** 2)
vq_action_error = torch.mean(torch.abs(action_seq - decoded_action))
offset_action_error = torch.mean(torch.abs(action_seq - predicted_action))
action_error_max = torch.max(torch.abs(action_seq - predicted_action))
loss = cbet_loss + self.config.offset_loss_weight * offset_loss
loss_dict = {
"loss": loss,
"classification_loss": cbet_loss.detach().cpu().item(),
"offset_loss": offset_loss.detach().cpu().item(),
"equal_primary_code_rate": equal_primary_code_rate.detach().cpu().item(),
"equal_secondary_code_rate": equal_secondary_code_rate.detach().cpu().item(),
"vq_action_error": vq_action_error.detach().cpu().item(),
"offset_action_error": offset_action_error.detach().cpu().item(),
"action_error_max": action_error_max.detach().cpu().item(),
"action_mse_error": action_mse_error.detach().cpu().item(),
}
return loss_dict
class VQBeTOptimizer(torch.optim.Adam):
def __init__(self, policy, cfg):
vqvae_params = (
list(policy.vqbet.action_head.vqvae_model.encoder.parameters())
+ list(policy.vqbet.action_head.vqvae_model.decoder.parameters())
+ list(policy.vqbet.action_head.vqvae_model.vq_layer.parameters())
)
decay_params, no_decay_params = policy.vqbet.policy.configure_parameters()
decay_params = (
decay_params
+ list(policy.vqbet.rgb_encoder.parameters())
+ list(policy.vqbet.state_projector.parameters())
+ list(policy.vqbet.rgb_feature_projector.parameters())
+ [policy.vqbet.action_token]
+ list(policy.vqbet.action_head.map_to_cbet_preds_offset.parameters())
)
if cfg.policy.sequentially_select:
decay_params = (
decay_params
+ list(policy.vqbet.action_head.map_to_cbet_preds_primary_bin.parameters())
+ list(policy.vqbet.action_head.map_to_cbet_preds_secondary_bin.parameters())
)
else:
decay_params = decay_params + list(policy.vqbet.action_head.map_to_cbet_preds_bin.parameters())
optim_groups = [
{
"params": decay_params,
"weight_decay": cfg.training.adam_weight_decay,
"lr": cfg.training.lr,
},
{
"params": vqvae_params,
"weight_decay": 0.0001,
"lr": cfg.training.vqvae_lr,
},
{
"params": no_decay_params,
"weight_decay": 0.0,
"lr": cfg.training.lr,
},
]
super().__init__(
optim_groups,
cfg.training.lr,
cfg.training.adam_betas,
cfg.training.adam_eps,
)
class VQBeTScheduler(nn.Module):
def __init__(self, optimizer, cfg):
super().__init__()
n_vqvae_training_steps = cfg.training.n_vqvae_training_steps
num_warmup_steps = cfg.training.lr_warmup_steps
num_training_steps = cfg.training.offline_steps
num_cycles = 0.5
def lr_lambda(current_step):
if current_step < n_vqvae_training_steps:
return float(1)
else:
current_step = current_step - n_vqvae_training_steps
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
progress = float(current_step - num_warmup_steps) / float(
max(1, num_training_steps - num_warmup_steps)
)
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))
self.lr_scheduler = LambdaLR(optimizer, lr_lambda, -1)
def step(self):
self.lr_scheduler.step()
class VQBeTRgbEncoder(nn.Module):
"""Encode an RGB image into a 1D feature vector.
Includes the ability to normalize and crop the image first.
Same with DiffusionRgbEncoder from modeling_diffusion.py
"""
def __init__(self, config: VQBeTConfig):
super().__init__()
# Set up optional preprocessing.
if config.crop_shape is not None:
self.do_crop = True
# Always use center crop for eval
self.center_crop = torchvision.transforms.CenterCrop(config.crop_shape)
if config.crop_is_random:
self.maybe_random_crop = torchvision.transforms.RandomCrop(config.crop_shape)
else:
self.maybe_random_crop = self.center_crop
else:
self.do_crop = False
# Set up backbone.
backbone_model = getattr(torchvision.models, config.vision_backbone)(
weights=config.pretrained_backbone_weights
)
# Note: This assumes that the layer4 feature map is children()[-3]
# TODO(alexander-soare): Use a safer alternative.
self.backbone = nn.Sequential(*(list(backbone_model.children())[:-2]))
if config.use_group_norm:
if config.pretrained_backbone_weights:
raise ValueError(
"You can't replace BatchNorm in a pretrained model without ruining the weights!"
)
self.backbone = _replace_submodules(
root_module=self.backbone,
predicate=lambda x: isinstance(x, nn.BatchNorm2d),
func=lambda x: nn.GroupNorm(num_groups=x.num_features // 16, num_channels=x.num_features),
)
# Set up pooling and final layers.
# Use a dry run to get the feature map shape.
# The dummy input should take the number of image channels from `config.input_shapes` and it should
# use the height and width from `config.crop_shape` if it is provided, otherwise it should use the
# height and width from `config.input_shapes`.
image_keys = [k for k in config.input_shapes if k.startswith("observation.image")]
assert len(image_keys) == 1
image_key = image_keys[0]
dummy_input_h_w = (
config.crop_shape if config.crop_shape is not None else config.input_shapes[image_key][1:]
)
dummy_input = torch.zeros(size=(1, config.input_shapes[image_key][0], *dummy_input_h_w))
with torch.inference_mode():
dummy_feature_map = self.backbone(dummy_input)
feature_map_shape = tuple(dummy_feature_map.shape[1:])
self.pool = SpatialSoftmax(feature_map_shape, num_kp=config.spatial_softmax_num_keypoints)
self.feature_dim = config.spatial_softmax_num_keypoints * 2
self.out = nn.Linear(config.spatial_softmax_num_keypoints * 2, self.feature_dim)
self.relu = nn.ReLU()
def forward(self, x: Tensor) -> Tensor:
"""
Args:
x: (B, C, H, W) image tensor with pixel values in [0, 1].
Returns:
(B, D) image feature.
"""
# Preprocess: maybe crop (if it was set up in the __init__).
if self.do_crop:
if self.training: # noqa: SIM108
x = self.maybe_random_crop(x)
else:
# Always use center crop for eval.
x = self.center_crop(x)
# Extract backbone feature.
x = torch.flatten(self.pool(self.backbone(x)), start_dim=1)
# Final linear layer with non-linearity.
x = self.relu(self.out(x))
return x
def _replace_submodules(
root_module: nn.Module, predicate: Callable[[nn.Module], bool], func: Callable[[nn.Module], nn.Module]
) -> nn.Module:
"""
Args:
root_module: The module for which the submodules need to be replaced
predicate: Takes a module as an argument and must return True if the that module is to be replaced.
func: Takes a module as an argument and returns a new module to replace it with.
Returns:
The root module with its submodules replaced.
"""
if predicate(root_module):
return func(root_module)
replace_list = [k.split(".") for k, m in root_module.named_modules(remove_duplicate=True) if predicate(m)]
for *parents, k in replace_list:
parent_module = root_module
if len(parents) > 0:
parent_module = root_module.get_submodule(".".join(parents))
if isinstance(parent_module, nn.Sequential):
src_module = parent_module[int(k)]
else:
src_module = getattr(parent_module, k)
tgt_module = func(src_module)
if isinstance(parent_module, nn.Sequential):
parent_module[int(k)] = tgt_module
else:
setattr(parent_module, k, tgt_module)
# verify that all BN are replaced
assert not any(predicate(m) for _, m in root_module.named_modules(remove_duplicate=True))
return root_module
class VqVae(nn.Module):
def __init__(
self,
config: VQBeTConfig,
):
"""
VQ-VAE is composed of three parts: encoder, vq_layer, and decoder.
Encoder and decoder are MLPs consisting of an input, output layer, and hidden layer, respectively.
The vq_layer uses residual VQs.
This class contains functions for training the encoder and decoder along with the residual VQ layer (for trainign phase 1),
as well as functions to help BeT training part in training phase 2.
"""
super().__init__()
self.config = config
# 'discretized' indicates whether the Residual VQ part is trained or not. (After finishing the training, we set discretized=True)
self.register_buffer("discretized", torch.tensor(False))
self.optimized_steps = 0
# we use the fixed number of layers for Residual VQ across all environments.
self.vqvae_num_layers = 2
self.vq_layer = ResidualVQ(
dim=config.vqvae_embedding_dim,
num_quantizers=self.vqvae_num_layers,
codebook_size=config.vqvae_n_embed,
)
self.encoder = MLP(
in_channels=self.config.output_shapes["action"][0] * self.config.action_chunk_size,
hidden_channels=[
config.vqvae_enc_hidden_dim,
config.vqvae_enc_hidden_dim,
config.vqvae_embedding_dim,
],
)
self.decoder = MLP(
in_channels=config.vqvae_embedding_dim,
hidden_channels=[
config.vqvae_enc_hidden_dim,
config.vqvae_enc_hidden_dim,
self.config.output_shapes["action"][0] * self.config.action_chunk_size,
],
)
def get_embeddings_from_code(self, encoding_indices):
# This function gets code indices as inputs, and outputs embedding vectors corresponding to the code indices.
with torch.no_grad():
z_embed = self.vq_layer.get_codebook_vector_from_indices(encoding_indices)
# since the RVQ has multiple layers, it adds the vectors in the axis of layers to provide a vector for that code combination.
z_embed = z_embed.sum(dim=0)
return z_embed
def get_action_from_latent(self, latent):
# given latent vector, this function outputs the decoded action.
output = self.decoder(latent)
if self.config.action_chunk_size == 1:
return einops.rearrange(output, "N (T A) -> N T A", A=self.config.output_shapes["action"][0])
else:
return einops.rearrange(output, "N (T A) -> N T A", A=self.config.output_shapes["action"][0])
def get_code(self, state):
# in phase 2 of VQ-BeT training, we need a `ground truth labels of action data` to calculate the Focal loss for code prediction head. (please refer to section 3.3 in the paper https://arxiv.org/pdf/2403.03181)
# this function outputs the `GT code` of given action using frozen encoder and quantization layers. (please refer to Figure 2. in the paper https://arxiv.org/pdf/2403.03181)
state = einops.rearrange(state, "N T A -> N (T A)")
with torch.no_grad():
state_rep = self.encoder(state)
state_rep_shape = state_rep.shape[:-1]
state_rep_flat = state_rep.view(state_rep.size(0), -1, state_rep.size(1))
state_rep_flat, vq_code, vq_loss_state = self.vq_layer(state_rep_flat)
state_vq = state_rep_flat.view(*state_rep_shape, -1)
vq_code = vq_code.view(*state_rep_shape, -1)
vq_loss_state = torch.sum(vq_loss_state)
return state_vq, vq_code
def vqvae_forward(self, state):
# This function passes the given data through Residual VQ with Encoder and Decoder. Please refer to section 3.2 in the paper https://arxiv.org/pdf/2403.03181).
state = einops.rearrange(state, "N T A -> N (T A)")
# We start with passing action (or action chunk) at:t+n through the encoder ϕ.
state_rep = self.encoder(state)
state_rep_shape = state_rep.shape[:-1]
state_rep_flat = state_rep.view(state_rep.size(0), -1, state_rep.size(1))
# The resulting latent embedding vector x = ϕ(at:t+n) is then mapped to an embedding vector in the codebook of the RVQ layers by the nearest neighbor look-up.
state_rep_flat, vq_code, vq_loss_state = self.vq_layer(state_rep_flat)
state_vq = state_rep_flat.view(*state_rep_shape, -1)
vq_code = vq_code.view(*state_rep_shape, -1)
# since the RVQ has multiple layers, it adds the vectors in the axis of layers to provide a vector for that code combination.
vq_loss_state = torch.sum(vq_loss_state)
# Then, the discretized vector zq(x) is reconstructed as ψ(zq(x)) by passing through the decoder ψ.
dec_out = self.decoder(state_vq)
# Calculate L1 reconstruction loss
encoder_loss = (state - dec_out).abs().mean()
# add encoder reconstruction loss and commitment loss
rep_loss = encoder_loss + vq_loss_state * 5
metric = (
encoder_loss.clone().detach(),
vq_loss_state.clone().detach(),
vq_code,
rep_loss.item(),
)
return rep_loss, metric
class FocalLoss(nn.Module):
"""
From https://github.com/notmahi/miniBET/blob/main/behavior_transformer/bet.py
"""
def __init__(self, gamma: float = 0, size_average: bool = True):
super().__init__()
self.gamma = gamma
self.size_average = size_average
def forward(self, input, target):
if len(input.shape) == 3:
N, T, _ = input.shape
logpt = F.log_softmax(input, dim=-1)
logpt = logpt.gather(-1, target.view(N, T, 1)).view(N, T)
elif len(input.shape) == 2:
logpt = F.log_softmax(input, dim=-1)
logpt = logpt.gather(-1, target.view(-1, 1)).view(-1)
pt = logpt.exp()
loss = -1 * (1 - pt) ** self.gamma * logpt
if self.size_average:
return loss.mean()
else:
return loss.sum()
class MLP(torch.nn.Sequential):
def __init__(
self,
in_channels: int,
hidden_channels: List[int],
):
layers = []
in_dim = in_channels
for hidden_dim in hidden_channels[:-1]:
layers.append(torch.nn.Linear(in_dim, hidden_dim))
layers.append(torch.nn.ReLU())
in_dim = hidden_dim
layers.append(torch.nn.Linear(in_dim, hidden_channels[-1]))
super().__init__(*layers)

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,561 @@
"""
This file contains utilities for recording frames from Intel Realsense cameras.
"""
import argparse
import concurrent.futures
import logging
import math
import shutil
import threading
import time
import traceback
from collections import Counter
from dataclasses import dataclass, replace
from pathlib import Path
from threading import Thread
import numpy as np
from PIL import Image
from lerobot.common.robot_devices.utils import (
RobotDeviceAlreadyConnectedError,
RobotDeviceNotConnectedError,
busy_wait,
)
from lerobot.common.utils.utils import capture_timestamp_utc
SERIAL_NUMBER_INDEX = 1
def find_cameras(raise_when_empty=True, mock=False) -> list[dict]:
"""
Find the names and the serial numbers of the Intel RealSense cameras
connected to the computer.
"""
if mock:
import tests.mock_pyrealsense2 as rs
else:
import pyrealsense2 as rs
cameras = []
for device in rs.context().query_devices():
serial_number = int(device.get_info(rs.camera_info(SERIAL_NUMBER_INDEX)))
name = device.get_info(rs.camera_info.name)
cameras.append(
{
"serial_number": serial_number,
"name": name,
}
)
if raise_when_empty and len(cameras) == 0:
raise OSError(
"Not a single camera was detected. Try re-plugging, or re-installing `librealsense` and its python wrapper `pyrealsense2`, or updating the firmware."
)
return cameras
def save_image(img_array, serial_number, frame_index, images_dir):
try:
img = Image.fromarray(img_array)
path = images_dir / f"camera_{serial_number}_frame_{frame_index:06d}.png"
path.parent.mkdir(parents=True, exist_ok=True)
img.save(str(path), quality=100)
logging.info(f"Saved image: {path}")
except Exception as e:
logging.error(f"Failed to save image for camera {serial_number} frame {frame_index}: {e}")
def save_images_from_cameras(
images_dir: Path,
serial_numbers: list[int] | None = None,
fps=None,
width=None,
height=None,
record_time_s=2,
mock=False,
):
"""
Initializes all the cameras and saves images to the directory. Useful to visually identify the camera
associated to a given serial number.
"""
if serial_numbers is None or len(serial_numbers) == 0:
camera_infos = find_cameras(mock=mock)
serial_numbers = [cam["serial_number"] for cam in camera_infos]
if mock:
import tests.mock_cv2 as cv2
else:
import cv2
print("Connecting cameras")
cameras = []
for cam_sn in serial_numbers:
print(f"{cam_sn=}")
camera = IntelRealSenseCamera(cam_sn, fps=fps, width=width, height=height, mock=mock)
camera.connect()
print(
f"IntelRealSenseCamera({camera.serial_number}, fps={camera.fps}, width={camera.width}, height={camera.height}, color_mode={camera.color_mode})"
)
cameras.append(camera)
images_dir = Path(images_dir)
if images_dir.exists():
shutil.rmtree(
images_dir,
)
images_dir.mkdir(parents=True, exist_ok=True)
print(f"Saving images to {images_dir}")
frame_index = 0
start_time = time.perf_counter()
try:
with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor:
while True:
now = time.perf_counter()
for camera in cameras:
# If we use async_read when fps is None, the loop will go full speed, and we will end up
# saving the same images from the cameras multiple times until the RAM/disk is full.
image = camera.read() if fps is None else camera.async_read()
if image is None:
print("No Frame")
bgr_converted_image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
executor.submit(
save_image,
bgr_converted_image,
camera.serial_number,
frame_index,
images_dir,
)
if fps is not None:
dt_s = time.perf_counter() - now
busy_wait(1 / fps - dt_s)
if time.perf_counter() - start_time > record_time_s:
break
print(f"Frame: {frame_index:04d}\tLatency (ms): {(time.perf_counter() - now) * 1000:.2f}")
frame_index += 1
finally:
print(f"Images have been saved to {images_dir}")
for camera in cameras:
camera.disconnect()
@dataclass
class IntelRealSenseCameraConfig:
"""
Example of tested options for Intel Real Sense D405:
```python
IntelRealSenseCameraConfig(30, 640, 480)
IntelRealSenseCameraConfig(60, 640, 480)
IntelRealSenseCameraConfig(90, 640, 480)
IntelRealSenseCameraConfig(30, 1280, 720)
IntelRealSenseCameraConfig(30, 640, 480, use_depth=True)
IntelRealSenseCameraConfig(30, 640, 480, rotation=90)
```
"""
fps: int | None = None
width: int | None = None
height: int | None = None
color_mode: str = "rgb"
channels: int | None = None
use_depth: bool = False
force_hardware_reset: bool = True
rotation: int | None = None
mock: bool = False
def __post_init__(self):
if self.color_mode not in ["rgb", "bgr"]:
raise ValueError(
f"`color_mode` is expected to be 'rgb' or 'bgr', but {self.color_mode} is provided."
)
self.channels = 3
at_least_one_is_not_none = self.fps is not None or self.width is not None or self.height is not None
at_least_one_is_none = self.fps is None or self.width is None or self.height is None
if at_least_one_is_not_none and at_least_one_is_none:
raise ValueError(
"For `fps`, `width` and `height`, either all of them need to be set, or none of them, "
f"but {self.fps=}, {self.width=}, {self.height=} were provided."
)
if self.rotation not in [-90, None, 90, 180]:
raise ValueError(f"`rotation` must be in [-90, None, 90, 180] (got {self.rotation})")
class IntelRealSenseCamera:
"""
The IntelRealSenseCamera class is similar to OpenCVCamera class but adds additional features for Intel Real Sense cameras:
- is instantiated with the serial number of the camera - won't randomly change as it can be the case of OpenCVCamera for Linux,
- can also be instantiated with the camera's name — if it's unique — using IntelRealSenseCamera.init_from_name(),
- depth map can be returned.
To find the camera indices of your cameras, you can run our utility script that will save a few frames for each camera:
```bash
python lerobot/common/robot_devices/cameras/intelrealsense.py --images-dir outputs/images_from_intelrealsense_cameras
```
When an IntelRealSenseCamera is instantiated, if no specific config is provided, the default fps, width, height and color_mode
of the given camera will be used.
Example of usage:
```python
# Instantiate with its serial number
camera = IntelRealSenseCamera(128422271347)
# Or by its name if it's unique
camera = IntelRealSenseCamera.init_from_name("Intel RealSense D405")
camera.connect()
color_image = camera.read()
# when done using the camera, consider disconnecting
camera.disconnect()
```
Example of changing default fps, width, height and color_mode:
```python
camera = IntelRealSenseCamera(serial_number, fps=30, width=1280, height=720)
camera = connect() # applies the settings, might error out if these settings are not compatible with the camera
camera = IntelRealSenseCamera(serial_number, fps=90, width=640, height=480)
camera = connect()
camera = IntelRealSenseCamera(serial_number, fps=90, width=640, height=480, color_mode="bgr")
camera = connect()
```
Example of returning depth:
```python
camera = IntelRealSenseCamera(serial_number, use_depth=True)
camera.connect()
color_image, depth_map = camera.read()
```
"""
def __init__(
self,
serial_number: int,
config: IntelRealSenseCameraConfig | None = None,
**kwargs,
):
if config is None:
config = IntelRealSenseCameraConfig()
# Overwrite the config arguments using kwargs
config = replace(config, **kwargs)
self.serial_number = serial_number
self.fps = config.fps
self.width = config.width
self.height = config.height
self.channels = config.channels
self.color_mode = config.color_mode
self.use_depth = config.use_depth
self.force_hardware_reset = config.force_hardware_reset
self.mock = config.mock
self.camera = None
self.is_connected = False
self.thread = None
self.stop_event = None
self.color_image = None
self.depth_map = None
self.logs = {}
if self.mock:
import tests.mock_cv2 as cv2
else:
import cv2
# TODO(alibets): Do we keep original width/height or do we define them after rotation?
self.rotation = None
if config.rotation == -90:
self.rotation = cv2.ROTATE_90_COUNTERCLOCKWISE
elif config.rotation == 90:
self.rotation = cv2.ROTATE_90_CLOCKWISE
elif config.rotation == 180:
self.rotation = cv2.ROTATE_180
@classmethod
def init_from_name(cls, name: str, config: IntelRealSenseCameraConfig | None = None, **kwargs):
camera_infos = find_cameras()
camera_names = [cam["name"] for cam in camera_infos]
this_name_count = Counter(camera_names)[name]
if this_name_count > 1:
# TODO(aliberts): Test this with multiple identical cameras (Aloha)
raise ValueError(
f"Multiple {name} cameras have been detected. Please use their serial number to instantiate them."
)
name_to_serial_dict = {cam["name"]: cam["serial_number"] for cam in camera_infos}
cam_sn = name_to_serial_dict[name]
if config is None:
config = IntelRealSenseCameraConfig()
# Overwrite the config arguments using kwargs
config = replace(config, **kwargs)
return cls(serial_number=cam_sn, config=config, **kwargs)
def connect(self):
if self.is_connected:
raise RobotDeviceAlreadyConnectedError(
f"IntelRealSenseCamera({self.serial_number}) is already connected."
)
if self.mock:
import tests.mock_pyrealsense2 as rs
else:
import pyrealsense2 as rs
config = rs.config()
config.enable_device(str(self.serial_number))
if self.fps and self.width and self.height:
# TODO(rcadene): can we set rgb8 directly?
config.enable_stream(rs.stream.color, self.width, self.height, rs.format.rgb8, self.fps)
else:
config.enable_stream(rs.stream.color)
if self.use_depth:
if self.fps and self.width and self.height:
config.enable_stream(rs.stream.depth, self.width, self.height, rs.format.z16, self.fps)
else:
config.enable_stream(rs.stream.depth)
self.camera = rs.pipeline()
try:
profile = self.camera.start(config)
is_camera_open = True
except RuntimeError:
is_camera_open = False
traceback.print_exc()
# If the camera doesn't work, display the camera indices corresponding to
# valid cameras.
if not is_camera_open:
# Verify that the provided `serial_number` is valid before printing the traceback
camera_infos = find_cameras()
serial_numbers = [cam["serial_number"] for cam in camera_infos]
if self.serial_number not in serial_numbers:
raise ValueError(
f"`serial_number` is expected to be one of these available cameras {serial_numbers}, but {self.serial_number} is provided instead. "
"To find the serial number you should use, run `python lerobot/common/robot_devices/cameras/intelrealsense.py`."
)
raise OSError(f"Can't access IntelRealSenseCamera({self.serial_number}).")
color_stream = profile.get_stream(rs.stream.color)
color_profile = color_stream.as_video_stream_profile()
actual_fps = color_profile.fps()
actual_width = color_profile.width()
actual_height = color_profile.height()
# Using `math.isclose` since actual fps can be a float (e.g. 29.9 instead of 30)
if self.fps is not None and not math.isclose(self.fps, actual_fps, rel_tol=1e-3):
# Using `OSError` since it's a broad that encompasses issues related to device communication
raise OSError(
f"Can't set {self.fps=} for IntelRealSenseCamera({self.serial_number}). Actual value is {actual_fps}."
)
if self.width is not None and self.width != actual_width:
raise OSError(
f"Can't set {self.width=} for IntelRealSenseCamera({self.serial_number}). Actual value is {actual_width}."
)
if self.height is not None and self.height != actual_height:
raise OSError(
f"Can't set {self.height=} for IntelRealSenseCamera({self.serial_number}). Actual value is {actual_height}."
)
self.fps = round(actual_fps)
self.width = round(actual_width)
self.height = round(actual_height)
self.is_connected = True
def read(self, temporary_color: str | None = None) -> np.ndarray | tuple[np.ndarray, np.ndarray]:
"""Read a frame from the camera returned in the format height x width x channels (e.g. 480 x 640 x 3)
of type `np.uint8`, contrarily to the pytorch format which is float channel first.
When `use_depth=True`, returns a tuple `(color_image, depth_map)` with a depth map in the format
height x width (e.g. 480 x 640) of type np.uint16.
Note: Reading a frame is done every `camera.fps` times per second, and it is blocking.
If you are reading data from other sensors, we advise to use `camera.async_read()` which is non blocking version of `camera.read()`.
"""
if not self.is_connected:
raise RobotDeviceNotConnectedError(
f"IntelRealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
)
if self.mock:
import tests.mock_cv2 as cv2
else:
import cv2
start_time = time.perf_counter()
frame = self.camera.wait_for_frames(timeout_ms=5000)
color_frame = frame.get_color_frame()
if not color_frame:
raise OSError(f"Can't capture color image from IntelRealSenseCamera({self.serial_number}).")
color_image = np.asanyarray(color_frame.get_data())
requested_color_mode = self.color_mode if temporary_color is None else temporary_color
if requested_color_mode not in ["rgb", "bgr"]:
raise ValueError(
f"Expected color values are 'rgb' or 'bgr', but {requested_color_mode} is provided."
)
# IntelRealSense uses RGB format as default (red, green, blue).
if requested_color_mode == "bgr":
color_image = cv2.cvtColor(color_image, cv2.COLOR_RGB2BGR)
h, w, _ = color_image.shape
if h != self.height or w != self.width:
raise OSError(
f"Can't capture color image with expected height and width ({self.height} x {self.width}). ({h} x {w}) returned instead."
)
if self.rotation is not None:
color_image = cv2.rotate(color_image, self.rotation)
# log the number of seconds it took to read the image
self.logs["delta_timestamp_s"] = time.perf_counter() - start_time
# log the utc time at which the image was received
self.logs["timestamp_utc"] = capture_timestamp_utc()
if self.use_depth:
depth_frame = frame.get_depth_frame()
if not depth_frame:
raise OSError(f"Can't capture depth image from IntelRealSenseCamera({self.serial_number}).")
depth_map = np.asanyarray(depth_frame.get_data())
h, w = depth_map.shape
if h != self.height or w != self.width:
raise OSError(
f"Can't capture depth map with expected height and width ({self.height} x {self.width}). ({h} x {w}) returned instead."
)
if self.rotation is not None:
depth_map = cv2.rotate(depth_map, self.rotation)
return color_image, depth_map
else:
return color_image
def read_loop(self):
while not self.stop_event.is_set():
if self.use_depth:
self.color_image, self.depth_map = self.read()
else:
self.color_image = self.read()
def async_read(self):
"""Access the latest color image"""
if not self.is_connected:
raise RobotDeviceNotConnectedError(
f"IntelRealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
)
if self.thread is None:
self.stop_event = threading.Event()
self.thread = Thread(target=self.read_loop, args=())
self.thread.daemon = True
self.thread.start()
num_tries = 0
while self.color_image is None:
# TODO(rcadene, aliberts): intelrealsense has diverged compared to opencv over here
num_tries += 1
time.sleep(1 / self.fps)
if num_tries > self.fps and (self.thread.ident is None or not self.thread.is_alive()):
raise Exception(
"The thread responsible for `self.async_read()` took too much time to start. There might be an issue. Verify that `self.thread.start()` has been called."
)
if self.use_depth:
return self.color_image, self.depth_map
else:
return self.color_image
def disconnect(self):
if not self.is_connected:
raise RobotDeviceNotConnectedError(
f"IntelRealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
)
if self.thread is not None and self.thread.is_alive():
# wait for the thread to finish
self.stop_event.set()
self.thread.join()
self.thread = None
self.stop_event = None
self.camera.stop()
self.camera = None
self.is_connected = False
def __del__(self):
if getattr(self, "is_connected", False):
self.disconnect()
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Save a few frames using `IntelRealSenseCamera` for all cameras connected to the computer, or a selected subset."
)
parser.add_argument(
"--serial-numbers",
type=int,
nargs="*",
default=None,
help="List of serial numbers used to instantiate the `IntelRealSenseCamera`. If not provided, find and use all available camera indices.",
)
parser.add_argument(
"--fps",
type=int,
default=30,
help="Set the number of frames recorded per seconds for all cameras. If not provided, use the default fps of each camera.",
)
parser.add_argument(
"--width",
type=str,
default=640,
help="Set the width for all cameras. If not provided, use the default width of each camera.",
)
parser.add_argument(
"--height",
type=str,
default=480,
help="Set the height for all cameras. If not provided, use the default height of each camera.",
)
parser.add_argument(
"--images-dir",
type=Path,
default="outputs/images_from_intelrealsense_cameras",
help="Set directory to save a few frames for each camera.",
)
parser.add_argument(
"--record-time-s",
type=float,
default=2.0,
help="Set the number of seconds used to record the frames. By default, 2 seconds.",
)
args = parser.parse_args()
save_images_from_cameras(**vars(args))

View File

@@ -0,0 +1,520 @@
"""
This file contains utilities for recording frames from cameras. For more info look at `OpenCVCamera` docstring.
"""
import argparse
import concurrent.futures
import math
import platform
import shutil
import threading
import time
from dataclasses import dataclass, replace
from pathlib import Path
from threading import Thread
import numpy as np
from PIL import Image
from lerobot.common.robot_devices.utils import (
RobotDeviceAlreadyConnectedError,
RobotDeviceNotConnectedError,
busy_wait,
)
from lerobot.common.utils.utils import capture_timestamp_utc
# The maximum opencv device index depends on your operating system. For instance,
# if you have 3 cameras, they should be associated to index 0, 1, and 2. This is the case
# on MacOS. However, on Ubuntu, the indices are different like 6, 16, 23.
# When you change the USB port or reboot the computer, the operating system might
# treat the same cameras as new devices. Thus we select a higher bound to search indices.
MAX_OPENCV_INDEX = 60
def find_cameras(raise_when_empty=False, max_index_search_range=MAX_OPENCV_INDEX, mock=False) -> list[dict]:
cameras = []
if platform.system() == "Linux":
print("Linux detected. Finding available camera indices through scanning '/dev/video*' ports")
possible_ports = [str(port) for port in Path("/dev").glob("video*")]
ports = _find_cameras(possible_ports, mock=mock)
for port in ports:
cameras.append(
{
"port": port,
"index": int(port.removeprefix("/dev/video")),
}
)
else:
print(
"Mac or Windows detected. Finding available camera indices through "
f"scanning all indices from 0 to {MAX_OPENCV_INDEX}"
)
possible_indices = range(max_index_search_range)
indices = _find_cameras(possible_indices, mock=mock)
for index in indices:
cameras.append(
{
"port": None,
"index": index,
}
)
return cameras
def _find_cameras(
possible_camera_ids: list[int | str], raise_when_empty=False, mock=False
) -> list[int | str]:
if mock:
import tests.mock_cv2 as cv2
else:
import cv2
camera_ids = []
for camera_idx in possible_camera_ids:
camera = cv2.VideoCapture(camera_idx)
is_open = camera.isOpened()
camera.release()
if is_open:
print(f"Camera found at index {camera_idx}")
camera_ids.append(camera_idx)
if raise_when_empty and len(camera_ids) == 0:
raise OSError(
"Not a single camera was detected. Try re-plugging, or re-installing `opencv2`, "
"or your camera driver, or make sure your camera is compatible with opencv2."
)
return camera_ids
def is_valid_unix_path(path: str) -> bool:
"""Note: if 'path' points to a symlink, this will return True only if the target exists"""
p = Path(path)
return p.is_absolute() and p.exists()
def get_camera_index_from_unix_port(port: Path) -> int:
return int(str(port.resolve()).removeprefix("/dev/video"))
def save_image(img_array, camera_index, frame_index, images_dir):
img = Image.fromarray(img_array)
path = images_dir / f"camera_{camera_index:02d}_frame_{frame_index:06d}.png"
path.parent.mkdir(parents=True, exist_ok=True)
img.save(str(path), quality=100)
def save_images_from_cameras(
images_dir: Path,
camera_ids: list | None = None,
fps=None,
width=None,
height=None,
record_time_s=2,
mock=False,
):
"""
Initializes all the cameras and saves images to the directory. Useful to visually identify the camera
associated to a given camera index.
"""
if camera_ids is None or len(camera_ids) == 0:
camera_infos = find_cameras(mock=mock)
camera_ids = [cam["index"] for cam in camera_infos]
print("Connecting cameras")
cameras = []
for cam_idx in camera_ids:
camera = OpenCVCamera(cam_idx, fps=fps, width=width, height=height, mock=mock)
camera.connect()
print(
f"OpenCVCamera({camera.camera_index}, fps={camera.fps}, width={camera.width}, "
f"height={camera.height}, color_mode={camera.color_mode})"
)
cameras.append(camera)
images_dir = Path(images_dir)
if images_dir.exists():
shutil.rmtree(
images_dir,
)
images_dir.mkdir(parents=True, exist_ok=True)
print(f"Saving images to {images_dir}")
frame_index = 0
start_time = time.perf_counter()
with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor:
while True:
now = time.perf_counter()
for camera in cameras:
# If we use async_read when fps is None, the loop will go full speed, and we will endup
# saving the same images from the cameras multiple times until the RAM/disk is full.
image = camera.read() if fps is None else camera.async_read()
executor.submit(
save_image,
image,
camera.camera_index,
frame_index,
images_dir,
)
if fps is not None:
dt_s = time.perf_counter() - now
busy_wait(1 / fps - dt_s)
print(f"Frame: {frame_index:04d}\tLatency (ms): {(time.perf_counter() - now) * 1000:.2f}")
if time.perf_counter() - start_time > record_time_s:
break
frame_index += 1
print(f"Images have been saved to {images_dir}")
@dataclass
class OpenCVCameraConfig:
"""
Example of tested options for Intel Real Sense D405:
```python
OpenCVCameraConfig(30, 640, 480)
OpenCVCameraConfig(60, 640, 480)
OpenCVCameraConfig(90, 640, 480)
OpenCVCameraConfig(30, 1280, 720)
```
"""
fps: int | None = None
width: int | None = None
height: int | None = None
color_mode: str = "rgb"
channels: int | None = None
rotation: int | None = None
mock: bool = False
def __post_init__(self):
if self.color_mode not in ["rgb", "bgr"]:
raise ValueError(
f"`color_mode` is expected to be 'rgb' or 'bgr', but {self.color_mode} is provided."
)
self.channels = 3
if self.rotation not in [-90, None, 90, 180]:
raise ValueError(f"`rotation` must be in [-90, None, 90, 180] (got {self.rotation})")
class OpenCVCamera:
"""
The OpenCVCamera class allows to efficiently record images from cameras. It relies on opencv2 to communicate
with the cameras. Most cameras are compatible. For more info, see the [Video I/O with OpenCV Overview](https://docs.opencv.org/4.x/d0/da7/videoio_overview.html).
An OpenCVCamera instance requires a camera index (e.g. `OpenCVCamera(camera_index=0)`). When you only have one camera
like a webcam of a laptop, the camera index is expected to be 0, but it might also be very different, and the camera index
might change if you reboot your computer or re-plug your camera. This behavior depends on your operation system.
To find the camera indices of your cameras, you can run our utility script that will be save a few frames for each camera:
```bash
python lerobot/common/robot_devices/cameras/opencv.py --images-dir outputs/images_from_opencv_cameras
```
When an OpenCVCamera is instantiated, if no specific config is provided, the default fps, width, height and color_mode
of the given camera will be used.
Example of usage:
```python
camera = OpenCVCamera(camera_index=0)
camera.connect()
color_image = camera.read()
# when done using the camera, consider disconnecting
camera.disconnect()
```
Example of changing default fps, width, height and color_mode:
```python
camera = OpenCVCamera(0, fps=30, width=1280, height=720)
camera = connect() # applies the settings, might error out if these settings are not compatible with the camera
camera = OpenCVCamera(0, fps=90, width=640, height=480)
camera = connect()
camera = OpenCVCamera(0, fps=90, width=640, height=480, color_mode="bgr")
camera = connect()
```
"""
def __init__(self, camera_index: int | str, config: OpenCVCameraConfig | None = None, **kwargs):
if config is None:
config = OpenCVCameraConfig()
# Overwrite config arguments using kwargs
config = replace(config, **kwargs)
self.camera_index = camera_index
self.port = None
# Linux uses ports for connecting to cameras
if platform.system() == "Linux":
if isinstance(self.camera_index, int):
self.port = Path(f"/dev/video{self.camera_index}")
elif isinstance(self.camera_index, str) and is_valid_unix_path(self.camera_index):
self.port = Path(self.camera_index)
# Retrieve the camera index from a potentially symlinked path
self.camera_index = get_camera_index_from_unix_port(self.port)
else:
raise ValueError(f"Please check the provided camera_index: {camera_index}")
self.fps = config.fps
self.width = config.width
self.height = config.height
self.channels = config.channels
self.color_mode = config.color_mode
self.mock = config.mock
self.camera = None
self.is_connected = False
self.thread = None
self.stop_event = None
self.color_image = None
self.logs = {}
if self.mock:
import tests.mock_cv2 as cv2
else:
import cv2
# TODO(aliberts): Do we keep original width/height or do we define them after rotation?
self.rotation = None
if config.rotation == -90:
self.rotation = cv2.ROTATE_90_COUNTERCLOCKWISE
elif config.rotation == 90:
self.rotation = cv2.ROTATE_90_CLOCKWISE
elif config.rotation == 180:
self.rotation = cv2.ROTATE_180
def connect(self):
if self.is_connected:
raise RobotDeviceAlreadyConnectedError(f"OpenCVCamera({self.camera_index}) is already connected.")
if self.mock:
import tests.mock_cv2 as cv2
else:
import cv2
# Use 1 thread to avoid blocking the main thread. Especially useful during data collection
# when other threads are used to save the images.
cv2.setNumThreads(1)
camera_idx = f"/dev/video{self.camera_index}" if platform.system() == "Linux" else self.camera_index
# First create a temporary camera trying to access `camera_index`,
# and verify it is a valid camera by calling `isOpened`.
tmp_camera = cv2.VideoCapture(camera_idx)
is_camera_open = tmp_camera.isOpened()
# Release camera to make it accessible for `find_camera_indices`
tmp_camera.release()
del tmp_camera
# If the camera doesn't work, display the camera indices corresponding to
# valid cameras.
if not is_camera_open:
# Verify that the provided `camera_index` is valid before printing the traceback
cameras_info = find_cameras()
available_cam_ids = [cam["index"] for cam in cameras_info]
if self.camera_index not in available_cam_ids:
raise ValueError(
f"`camera_index` is expected to be one of these available cameras {available_cam_ids}, but {self.camera_index} is provided instead. "
"To find the camera index you should use, run `python lerobot/common/robot_devices/cameras/opencv.py`."
)
raise OSError(f"Can't access OpenCVCamera({camera_idx}).")
# Secondly, create the camera that will be used downstream.
# Note: For some unknown reason, calling `isOpened` blocks the camera which then
# needs to be re-created.
self.camera = cv2.VideoCapture(camera_idx)
if self.fps is not None:
self.camera.set(cv2.CAP_PROP_FPS, self.fps)
if self.width is not None:
self.camera.set(cv2.CAP_PROP_FRAME_WIDTH, self.width)
if self.height is not None:
self.camera.set(cv2.CAP_PROP_FRAME_HEIGHT, self.height)
actual_fps = self.camera.get(cv2.CAP_PROP_FPS)
actual_width = self.camera.get(cv2.CAP_PROP_FRAME_WIDTH)
actual_height = self.camera.get(cv2.CAP_PROP_FRAME_HEIGHT)
# Using `math.isclose` since actual fps can be a float (e.g. 29.9 instead of 30)
if self.fps is not None and not math.isclose(self.fps, actual_fps, rel_tol=1e-3):
# Using `OSError` since it's a broad that encompasses issues related to device communication
raise OSError(
f"Can't set {self.fps=} for OpenCVCamera({self.camera_index}). Actual value is {actual_fps}."
)
if self.width is not None and not math.isclose(self.width, actual_width, rel_tol=1e-3):
raise OSError(
f"Can't set {self.width=} for OpenCVCamera({self.camera_index}). Actual value is {actual_width}."
)
if self.height is not None and not math.isclose(self.height, actual_height, rel_tol=1e-3):
raise OSError(
f"Can't set {self.height=} for OpenCVCamera({self.camera_index}). Actual value is {actual_height}."
)
self.fps = round(actual_fps)
self.width = round(actual_width)
self.height = round(actual_height)
self.is_connected = True
def read(self, temporary_color_mode: str | None = None) -> np.ndarray:
"""Read a frame from the camera returned in the format (height, width, channels)
(e.g. 480 x 640 x 3), contrarily to the pytorch format which is channel first.
Note: Reading a frame is done every `camera.fps` times per second, and it is blocking.
If you are reading data from other sensors, we advise to use `camera.async_read()` which is non blocking version of `camera.read()`.
"""
if not self.is_connected:
raise RobotDeviceNotConnectedError(
f"OpenCVCamera({self.camera_index}) is not connected. Try running `camera.connect()` first."
)
start_time = time.perf_counter()
ret, color_image = self.camera.read()
if not ret:
raise OSError(f"Can't capture color image from camera {self.camera_index}.")
requested_color_mode = self.color_mode if temporary_color_mode is None else temporary_color_mode
if requested_color_mode not in ["rgb", "bgr"]:
raise ValueError(
f"Expected color values are 'rgb' or 'bgr', but {requested_color_mode} is provided."
)
# OpenCV uses BGR format as default (blue, green, red) for all operations, including displaying images.
# However, Deep Learning framework such as LeRobot uses RGB format as default to train neural networks,
# so we convert the image color from BGR to RGB.
if requested_color_mode == "rgb":
if self.mock:
import tests.mock_cv2 as cv2
else:
import cv2
color_image = cv2.cvtColor(color_image, cv2.COLOR_BGR2RGB)
h, w, _ = color_image.shape
if h != self.height or w != self.width:
raise OSError(
f"Can't capture color image with expected height and width ({self.height} x {self.width}). ({h} x {w}) returned instead."
)
if self.rotation is not None:
color_image = cv2.rotate(color_image, self.rotation)
# log the number of seconds it took to read the image
self.logs["delta_timestamp_s"] = time.perf_counter() - start_time
# log the utc time at which the image was received
self.logs["timestamp_utc"] = capture_timestamp_utc()
self.color_image = color_image
return color_image
def read_loop(self):
while not self.stop_event.is_set():
try:
self.color_image = self.read()
except Exception as e:
print(f"Error reading in thread: {e}")
def async_read(self):
if not self.is_connected:
raise RobotDeviceNotConnectedError(
f"OpenCVCamera({self.camera_index}) is not connected. Try running `camera.connect()` first."
)
if self.thread is None:
self.stop_event = threading.Event()
self.thread = Thread(target=self.read_loop, args=())
self.thread.daemon = True
self.thread.start()
num_tries = 0
while True:
if self.color_image is not None:
return self.color_image
time.sleep(1 / self.fps)
num_tries += 1
if num_tries > self.fps * 2:
raise TimeoutError("Timed out waiting for async_read() to start.")
def disconnect(self):
if not self.is_connected:
raise RobotDeviceNotConnectedError(
f"OpenCVCamera({self.camera_index}) is not connected. Try running `camera.connect()` first."
)
if self.thread is not None:
self.stop_event.set()
self.thread.join() # wait for the thread to finish
self.thread = None
self.stop_event = None
self.camera.release()
self.camera = None
self.is_connected = False
def __del__(self):
if getattr(self, "is_connected", False):
self.disconnect()
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Save a few frames using `OpenCVCamera` for all cameras connected to the computer, or a selected subset."
)
parser.add_argument(
"--camera-ids",
type=int,
nargs="*",
default=None,
help="List of camera indices used to instantiate the `OpenCVCamera`. If not provided, find and use all available camera indices.",
)
parser.add_argument(
"--fps",
type=int,
default=None,
help="Set the number of frames recorded per seconds for all cameras. If not provided, use the default fps of each camera.",
)
parser.add_argument(
"--width",
type=str,
default=None,
help="Set the width for all cameras. If not provided, use the default width of each camera.",
)
parser.add_argument(
"--height",
type=str,
default=None,
help="Set the height for all cameras. If not provided, use the default height of each camera.",
)
parser.add_argument(
"--images-dir",
type=Path,
default="outputs/images_from_opencv_cameras",
help="Set directory to save a few frames for each camera.",
)
parser.add_argument(
"--record-time-s",
type=float,
default=4.0,
help="Set the number of seconds used to record the frames. By default, 2 seconds.",
)
args = parser.parse_args()
save_images_from_cameras(**vars(args))

View File

@@ -0,0 +1,11 @@
from typing import Protocol
import numpy as np
# Defines a camera type
class Camera(Protocol):
def connect(self): ...
def read(self, temporary_color: str | None = None) -> np.ndarray: ...
def async_read(self) -> np.ndarray: ...
def disconnect(self): ...

View File

@@ -0,0 +1,382 @@
########################################################################################
# Utilities
########################################################################################
import logging
import time
import traceback
from contextlib import nullcontext
from copy import copy
from functools import cache
import cv2
import torch
import tqdm
from deepdiff import DeepDiff
from termcolor import colored
from lerobot.common.datasets.image_writer import safe_stop_image_writer
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.datasets.utils import get_features_from_robot
from lerobot.common.policies.factory import make_policy
from lerobot.common.robot_devices.robots.utils import Robot
from lerobot.common.robot_devices.utils import busy_wait
from lerobot.common.utils.utils import get_safe_torch_device, init_hydra_config, set_global_seed
from lerobot.scripts.eval import get_pretrained_policy_path
def log_control_info(robot: Robot, dt_s, episode_index=None, frame_index=None, fps=None):
log_items = []
if episode_index is not None:
log_items.append(f"ep:{episode_index}")
if frame_index is not None:
log_items.append(f"frame:{frame_index}")
def log_dt(shortname, dt_val_s):
nonlocal log_items, fps
info_str = f"{shortname}:{dt_val_s * 1000:5.2f} ({1/ dt_val_s:3.1f}hz)"
if fps is not None:
actual_fps = 1 / dt_val_s
if actual_fps < fps - 1:
info_str = colored(info_str, "yellow")
log_items.append(info_str)
# total step time displayed in milliseconds and its frequency
log_dt("dt", dt_s)
# TODO(aliberts): move robot-specific logs logic in robot.print_logs()
if not robot.robot_type.startswith("stretch"):
for name in robot.leader_arms:
key = f"read_leader_{name}_pos_dt_s"
if key in robot.logs:
log_dt("dtRlead", robot.logs[key])
for name in robot.follower_arms:
key = f"write_follower_{name}_goal_pos_dt_s"
if key in robot.logs:
log_dt("dtWfoll", robot.logs[key])
key = f"read_follower_{name}_pos_dt_s"
if key in robot.logs:
log_dt("dtRfoll", robot.logs[key])
for name in robot.cameras:
key = f"read_camera_{name}_dt_s"
if key in robot.logs:
log_dt(f"dtR{name}", robot.logs[key])
info_str = " ".join(log_items)
logging.info(info_str)
@cache
def is_headless():
"""Detects if python is running without a monitor."""
try:
import pynput # noqa
return False
except Exception:
print(
"Error trying to import pynput. Switching to headless mode. "
"As a result, the video stream from the cameras won't be shown, "
"and you won't be able to change the control flow with keyboards. "
"For more info, see traceback below.\n"
)
traceback.print_exc()
print()
return True
def has_method(_object: object, method_name: str):
return hasattr(_object, method_name) and callable(getattr(_object, method_name))
def predict_action(observation, policy, device, use_amp):
observation = copy(observation)
with (
torch.inference_mode(),
torch.autocast(device_type=device.type) if device.type == "cuda" and use_amp else nullcontext(),
):
# Convert to pytorch format: channel first and float32 in [0,1] with batch dimension
for name in observation:
if "image" in name:
observation[name] = observation[name].type(torch.float32) / 255
observation[name] = observation[name].permute(2, 0, 1).contiguous()
observation[name] = observation[name].unsqueeze(0)
observation[name] = observation[name].to(device)
# Compute the next action with the policy
# based on the current observation
action = policy.select_action(observation)
# Remove batch dimension
action = action.squeeze(0)
# Move to cpu, if not already the case
action = action.to("cpu")
return action
def init_keyboard_listener(assign_rewards=False):
"""
Initializes a keyboard listener to enable early termination of an episode
or environment reset by pressing the right arrow key ('->'). This may require
sudo permissions to allow the terminal to monitor keyboard events.
Args:
assign_rewards (bool): If True, allows annotating the collected trajectory
with a binary reward at the end of the episode to indicate success.
"""
events = {}
events["exit_early"] = False
events["rerecord_episode"] = False
events["stop_recording"] = False
if assign_rewards:
events["next.reward"] = 0
if is_headless():
logging.warning(
"Headless environment detected. On-screen cameras display and keyboard inputs will not be available."
)
listener = None
return listener, events
# Only import pynput if not in a headless environment
from pynput import keyboard
def on_press(key):
try:
if key == keyboard.Key.right:
print("Right arrow key pressed. Exiting loop...")
events["exit_early"] = True
elif key == keyboard.Key.left:
print("Left arrow key pressed. Exiting loop and rerecord the last episode...")
events["rerecord_episode"] = True
events["exit_early"] = True
elif key == keyboard.Key.esc:
print("Escape key pressed. Stopping data recording...")
events["stop_recording"] = True
events["exit_early"] = True
elif assign_rewards and key == keyboard.Key.space:
events["next.reward"] = 1 if events["next.reward"] == 0 else 0
print(
"Space key pressed. Assigning new reward to the subsequent frames. New reward:",
events["next.reward"],
)
except Exception as e:
print(f"Error handling key press: {e}")
listener = keyboard.Listener(on_press=on_press)
listener.start()
return listener, events
def init_policy(pretrained_policy_name_or_path, policy_overrides):
"""Instantiate the policy and load fps, device and use_amp from config yaml"""
pretrained_policy_path = get_pretrained_policy_path(pretrained_policy_name_or_path)
hydra_cfg = init_hydra_config(pretrained_policy_path / "config.yaml", policy_overrides)
policy = make_policy(hydra_cfg=hydra_cfg, pretrained_policy_name_or_path=pretrained_policy_path)
# Check device is available
device = get_safe_torch_device(hydra_cfg.device, log=True)
use_amp = hydra_cfg.use_amp
policy_fps = hydra_cfg.env.fps
policy.eval()
policy.to(device)
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
set_global_seed(hydra_cfg.seed)
return policy, policy_fps, device, use_amp
def warmup_record(
robot,
events,
enable_teleoperation,
warmup_time_s,
display_cameras,
fps,
):
control_loop(
robot=robot,
control_time_s=warmup_time_s,
display_cameras=display_cameras,
events=events,
fps=fps,
teleoperate=enable_teleoperation,
)
def record_episode(
robot,
dataset,
events,
episode_time_s,
display_cameras,
policy,
device,
use_amp,
fps,
):
control_loop(
robot=robot,
control_time_s=episode_time_s,
display_cameras=display_cameras,
dataset=dataset,
events=events,
policy=policy,
device=device,
use_amp=use_amp,
fps=fps,
teleoperate=policy is None,
)
@safe_stop_image_writer
def control_loop(
robot,
control_time_s=None,
teleoperate=False,
display_cameras=False,
dataset: LeRobotDataset | None = None,
events=None,
policy=None,
device=None,
use_amp=None,
fps=None,
):
# TODO(rcadene): Add option to record logs
if not robot.is_connected:
robot.connect()
if events is None:
events = {"exit_early": False}
if control_time_s is None:
control_time_s = float("inf")
if teleoperate and policy is not None:
raise ValueError("When `teleoperate` is True, `policy` should be None.")
if dataset is not None and fps is not None and dataset.fps != fps:
raise ValueError(f"The dataset fps should be equal to requested fps ({dataset['fps']} != {fps}).")
timestamp = 0
start_episode_t = time.perf_counter()
while timestamp < control_time_s:
start_loop_t = time.perf_counter()
if teleoperate:
observation, action = robot.teleop_step(record_data=True)
else:
observation = robot.capture_observation()
if policy is not None:
pred_action = predict_action(observation, policy, device, use_amp)
# Action can eventually be clipped using `max_relative_target`,
# so action actually sent is saved in the dataset.
action = robot.send_action(pred_action)
action = {"action": action}
if dataset is not None:
frame = {**observation, **action}
if "next.reward" in events:
frame["next.reward"] = events["next.reward"]
dataset.add_frame(frame)
if display_cameras and not is_headless():
image_keys = [key for key in observation if "image" in key]
for key in image_keys:
cv2.imshow(key, cv2.cvtColor(observation[key].numpy(), cv2.COLOR_RGB2BGR))
cv2.waitKey(1)
if fps is not None:
dt_s = time.perf_counter() - start_loop_t
busy_wait(1 / fps - dt_s)
dt_s = time.perf_counter() - start_loop_t
log_control_info(robot, dt_s, fps=fps)
timestamp = time.perf_counter() - start_episode_t
if events["exit_early"]:
events["exit_early"] = False
break
def reset_environment(robot, events, reset_time_s):
# TODO(rcadene): refactor warmup_record and reset_environment
# TODO(alibets): allow for teleop during reset
if has_method(robot, "teleop_safety_stop"):
robot.teleop_safety_stop()
timestamp = 0
start_vencod_t = time.perf_counter()
if "next.reward" in events:
events["next.reward"] = 0
# Wait if necessary
with tqdm.tqdm(total=reset_time_s, desc="Waiting") as pbar:
while timestamp < reset_time_s:
time.sleep(1)
timestamp = time.perf_counter() - start_vencod_t
pbar.update(1)
if events["exit_early"]:
events["exit_early"] = False
break
def stop_recording(robot, listener, display_cameras):
robot.disconnect()
if not is_headless():
if listener is not None:
listener.stop()
if display_cameras:
cv2.destroyAllWindows()
def sanity_check_dataset_name(repo_id, policy):
_, dataset_name = repo_id.split("/")
# either repo_id doesnt start with "eval_" and there is no policy
# or repo_id starts with "eval_" and there is a policy
# Check if dataset_name starts with "eval_" but policy is missing
if dataset_name.startswith("eval_") and policy is None:
raise ValueError(
f"Your dataset name begins with 'eval_' ({dataset_name}), but no policy is provided."
)
# Check if dataset_name does not start with "eval_" but policy is provided
if not dataset_name.startswith("eval_") and policy is not None:
raise ValueError(
f"Your dataset name does not begin with 'eval_' ({dataset_name}), but a policy is provided ({policy})."
)
def sanity_check_dataset_robot_compatibility(
dataset: LeRobotDataset, robot: Robot, fps: int, use_videos: bool
) -> None:
fields = [
("robot_type", dataset.meta.robot_type, robot.robot_type),
("fps", dataset.fps, fps),
("features", dataset.features, get_features_from_robot(robot, use_videos)),
]
mismatches = []
for field, dataset_value, present_value in fields:
diff = DeepDiff(dataset_value, present_value, exclude_regex_paths=[r".*\['info'\]$"])
if diff:
mismatches.append(f"{field}: expected {present_value}, got {dataset_value}")
if mismatches:
raise ValueError(
"Dataset metadata compatibility check failed with mismatches:\n" + "\n".join(mismatches)
)

View File

@@ -0,0 +1,867 @@
import enum
import logging
import math
import time
import traceback
from copy import deepcopy
import numpy as np
import tqdm
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
from lerobot.common.utils.utils import capture_timestamp_utc
PROTOCOL_VERSION = 2.0
BAUDRATE = 1_000_000
TIMEOUT_MS = 1000
MAX_ID_RANGE = 252
# The following bounds define the lower and upper joints range (after calibration).
# For joints in degree (i.e. revolute joints), their nominal range is [-180, 180] degrees
# which corresponds to a half rotation on the left and half rotation on the right.
# Some joints might require higher range, so we allow up to [-270, 270] degrees until
# an error is raised.
LOWER_BOUND_DEGREE = -270
UPPER_BOUND_DEGREE = 270
# For joints in percentage (i.e. joints that move linearly like the prismatic joint of a gripper),
# their nominal range is [0, 100] %. For instance, for Aloha gripper, 0% is fully
# closed, and 100% is fully open. To account for slight calibration issue, we allow up to
# [-10, 110] until an error is raised.
LOWER_BOUND_LINEAR = -10
UPPER_BOUND_LINEAR = 110
HALF_TURN_DEGREE = 180
# https://emanual.robotis.com/docs/en/dxl/x/xl330-m077
# https://emanual.robotis.com/docs/en/dxl/x/xl330-m288
# https://emanual.robotis.com/docs/en/dxl/x/xl430-w250
# https://emanual.robotis.com/docs/en/dxl/x/xm430-w350
# https://emanual.robotis.com/docs/en/dxl/x/xm540-w270
# https://emanual.robotis.com/docs/en/dxl/x/xc430-w150
# data_name: (address, size_byte)
X_SERIES_CONTROL_TABLE = {
"Model_Number": (0, 2),
"Model_Information": (2, 4),
"Firmware_Version": (6, 1),
"ID": (7, 1),
"Baud_Rate": (8, 1),
"Return_Delay_Time": (9, 1),
"Drive_Mode": (10, 1),
"Operating_Mode": (11, 1),
"Secondary_ID": (12, 1),
"Protocol_Type": (13, 1),
"Homing_Offset": (20, 4),
"Moving_Threshold": (24, 4),
"Temperature_Limit": (31, 1),
"Max_Voltage_Limit": (32, 2),
"Min_Voltage_Limit": (34, 2),
"PWM_Limit": (36, 2),
"Current_Limit": (38, 2),
"Acceleration_Limit": (40, 4),
"Velocity_Limit": (44, 4),
"Max_Position_Limit": (48, 4),
"Min_Position_Limit": (52, 4),
"Shutdown": (63, 1),
"Torque_Enable": (64, 1),
"LED": (65, 1),
"Status_Return_Level": (68, 1),
"Registered_Instruction": (69, 1),
"Hardware_Error_Status": (70, 1),
"Velocity_I_Gain": (76, 2),
"Velocity_P_Gain": (78, 2),
"Position_D_Gain": (80, 2),
"Position_I_Gain": (82, 2),
"Position_P_Gain": (84, 2),
"Feedforward_2nd_Gain": (88, 2),
"Feedforward_1st_Gain": (90, 2),
"Bus_Watchdog": (98, 1),
"Goal_PWM": (100, 2),
"Goal_Current": (102, 2),
"Goal_Velocity": (104, 4),
"Profile_Acceleration": (108, 4),
"Profile_Velocity": (112, 4),
"Goal_Position": (116, 4),
"Realtime_Tick": (120, 2),
"Moving": (122, 1),
"Moving_Status": (123, 1),
"Present_PWM": (124, 2),
"Present_Current": (126, 2),
"Present_Velocity": (128, 4),
"Present_Position": (132, 4),
"Velocity_Trajectory": (136, 4),
"Position_Trajectory": (140, 4),
"Present_Input_Voltage": (144, 2),
"Present_Temperature": (146, 1),
}
X_SERIES_BAUDRATE_TABLE = {
0: 9_600,
1: 57_600,
2: 115_200,
3: 1_000_000,
4: 2_000_000,
5: 3_000_000,
6: 4_000_000,
}
CALIBRATION_REQUIRED = ["Goal_Position", "Present_Position"]
CONVERT_UINT32_TO_INT32_REQUIRED = ["Goal_Position", "Present_Position"]
MODEL_CONTROL_TABLE = {
"x_series": X_SERIES_CONTROL_TABLE,
"xl330-m077": X_SERIES_CONTROL_TABLE,
"xl330-m288": X_SERIES_CONTROL_TABLE,
"xl430-w250": X_SERIES_CONTROL_TABLE,
"xm430-w350": X_SERIES_CONTROL_TABLE,
"xm540-w270": X_SERIES_CONTROL_TABLE,
"xc430-w150": X_SERIES_CONTROL_TABLE,
}
MODEL_RESOLUTION = {
"x_series": 4096,
"xl330-m077": 4096,
"xl330-m288": 4096,
"xl430-w250": 4096,
"xm430-w350": 4096,
"xm540-w270": 4096,
"xc430-w150": 4096,
}
MODEL_BAUDRATE_TABLE = {
"x_series": X_SERIES_BAUDRATE_TABLE,
"xl330-m077": X_SERIES_BAUDRATE_TABLE,
"xl330-m288": X_SERIES_BAUDRATE_TABLE,
"xl430-w250": X_SERIES_BAUDRATE_TABLE,
"xm430-w350": X_SERIES_BAUDRATE_TABLE,
"xm540-w270": X_SERIES_BAUDRATE_TABLE,
"xc430-w150": X_SERIES_BAUDRATE_TABLE,
}
NUM_READ_RETRY = 10
NUM_WRITE_RETRY = 10
def convert_degrees_to_steps(degrees: float | np.ndarray, models: str | list[str]) -> np.ndarray:
"""This function converts the degree range to the step range for indicating motors rotation.
It assumes a motor achieves a full rotation by going from -180 degree position to +180.
The motor resolution (e.g. 4096) corresponds to the number of steps needed to achieve a full rotation.
"""
resolutions = [MODEL_RESOLUTION[model] for model in models]
steps = degrees / 180 * np.array(resolutions) / 2
steps = steps.astype(int)
return steps
def convert_to_bytes(value, bytes, mock=False):
if mock:
return value
import dynamixel_sdk as dxl
# Note: No need to convert back into unsigned int, since this byte preprocessing
# already handles it for us.
if bytes == 1:
data = [
dxl.DXL_LOBYTE(dxl.DXL_LOWORD(value)),
]
elif bytes == 2:
data = [
dxl.DXL_LOBYTE(dxl.DXL_LOWORD(value)),
dxl.DXL_HIBYTE(dxl.DXL_LOWORD(value)),
]
elif bytes == 4:
data = [
dxl.DXL_LOBYTE(dxl.DXL_LOWORD(value)),
dxl.DXL_HIBYTE(dxl.DXL_LOWORD(value)),
dxl.DXL_LOBYTE(dxl.DXL_HIWORD(value)),
dxl.DXL_HIBYTE(dxl.DXL_HIWORD(value)),
]
else:
raise NotImplementedError(
f"Value of the number of bytes to be sent is expected to be in [1, 2, 4], but "
f"{bytes} is provided instead."
)
return data
def get_group_sync_key(data_name, motor_names):
group_key = f"{data_name}_" + "_".join(motor_names)
return group_key
def get_result_name(fn_name, data_name, motor_names):
group_key = get_group_sync_key(data_name, motor_names)
rslt_name = f"{fn_name}_{group_key}"
return rslt_name
def get_queue_name(fn_name, data_name, motor_names):
group_key = get_group_sync_key(data_name, motor_names)
queue_name = f"{fn_name}_{group_key}"
return queue_name
def get_log_name(var_name, fn_name, data_name, motor_names):
group_key = get_group_sync_key(data_name, motor_names)
log_name = f"{var_name}_{fn_name}_{group_key}"
return log_name
def assert_same_address(model_ctrl_table, motor_models, data_name):
all_addr = []
all_bytes = []
for model in motor_models:
addr, bytes = model_ctrl_table[model][data_name]
all_addr.append(addr)
all_bytes.append(bytes)
if len(set(all_addr)) != 1:
raise NotImplementedError(
f"At least two motor models use a different address for `data_name`='{data_name}' ({list(zip(motor_models, all_addr, strict=False))}). Contact a LeRobot maintainer."
)
if len(set(all_bytes)) != 1:
raise NotImplementedError(
f"At least two motor models use a different bytes representation for `data_name`='{data_name}' ({list(zip(motor_models, all_bytes, strict=False))}). Contact a LeRobot maintainer."
)
class TorqueMode(enum.Enum):
ENABLED = 1
DISABLED = 0
class DriveMode(enum.Enum):
NON_INVERTED = 0
INVERTED = 1
class CalibrationMode(enum.Enum):
# Joints with rotational motions are expressed in degrees in nominal range of [-180, 180]
DEGREE = 0
# Joints with linear motions (like gripper of Aloha) are experessed in nominal range of [0, 100]
LINEAR = 1
class JointOutOfRangeError(Exception):
def __init__(self, message="Joint is out of range"):
self.message = message
super().__init__(self.message)
class DynamixelMotorsBus:
# TODO(rcadene): Add a script to find the motor indices without DynamixelWizzard2
"""
The DynamixelMotorsBus class allows to efficiently read and write to the attached motors. It relies on
the python dynamixel sdk to communicate with the motors. For more info, see the [Dynamixel SDK Documentation](https://emanual.robotis.com/docs/en/software/dynamixel/dynamixel_sdk/sample_code/python_read_write_protocol_2_0/#python-read-write-protocol-20).
A DynamixelMotorsBus instance requires a port (e.g. `DynamixelMotorsBus(port="/dev/tty.usbmodem575E0031751"`)).
To find the port, you can run our utility script:
```bash
python lerobot/scripts/find_motors_bus_port.py
>>> Finding all available ports for the MotorBus.
>>> ['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
>>> Remove the usb cable from your DynamixelMotorsBus and press Enter when done.
>>> The port of this DynamixelMotorsBus is /dev/tty.usbmodem575E0031751.
>>> Reconnect the usb cable.
```
Example of usage for 1 motor connected to the bus:
```python
motor_name = "gripper"
motor_index = 6
motor_model = "xl330-m288"
motors_bus = DynamixelMotorsBus(
port="/dev/tty.usbmodem575E0031751",
motors={motor_name: (motor_index, motor_model)},
)
motors_bus.connect()
position = motors_bus.read("Present_Position")
# move from a few motor steps as an example
few_steps = 30
motors_bus.write("Goal_Position", position + few_steps)
# when done, consider disconnecting
motors_bus.disconnect()
```
"""
def __init__(
self,
port: str,
motors: dict[str, tuple[int, str]],
extra_model_control_table: dict[str, list[tuple]] | None = None,
extra_model_resolution: dict[str, int] | None = None,
mock=False,
):
self.port = port
self.motors = motors
self.mock = mock
self.model_ctrl_table = deepcopy(MODEL_CONTROL_TABLE)
if extra_model_control_table:
self.model_ctrl_table.update(extra_model_control_table)
self.model_resolution = deepcopy(MODEL_RESOLUTION)
if extra_model_resolution:
self.model_resolution.update(extra_model_resolution)
self.port_handler = None
self.packet_handler = None
self.calibration = None
self.is_connected = False
self.group_readers = {}
self.group_writers = {}
self.logs = {}
def connect(self):
if self.is_connected:
raise RobotDeviceAlreadyConnectedError(
f"DynamixelMotorsBus({self.port}) is already connected. Do not call `motors_bus.connect()` twice."
)
if self.mock:
import tests.mock_dynamixel_sdk as dxl
else:
import dynamixel_sdk as dxl
self.port_handler = dxl.PortHandler(self.port)
self.packet_handler = dxl.PacketHandler(PROTOCOL_VERSION)
try:
if not self.port_handler.openPort():
raise OSError(f"Failed to open port '{self.port}'.")
except Exception:
traceback.print_exc()
print(
"\nTry running `python lerobot/scripts/find_motors_bus_port.py` to make sure you are using the correct port.\n"
)
raise
# Allow to read and write
self.is_connected = True
self.port_handler.setPacketTimeoutMillis(TIMEOUT_MS)
def reconnect(self):
if self.mock:
import tests.mock_dynamixel_sdk as dxl
else:
import dynamixel_sdk as dxl
self.port_handler = dxl.PortHandler(self.port)
self.packet_handler = dxl.PacketHandler(PROTOCOL_VERSION)
if not self.port_handler.openPort():
raise OSError(f"Failed to open port '{self.port}'.")
self.is_connected = True
def are_motors_configured(self):
# Only check the motor indices and not baudrate, since if the motor baudrates are incorrect,
# a ConnectionError will be raised anyway.
try:
return (self.motor_indices == self.read("ID")).all()
except ConnectionError as e:
print(e)
return False
def find_motor_indices(self, possible_ids=None, num_retry=2):
if possible_ids is None:
possible_ids = range(MAX_ID_RANGE)
indices = []
for idx in tqdm.tqdm(possible_ids):
try:
present_idx = self.read_with_motor_ids(self.motor_models, [idx], "ID", num_retry=num_retry)[0]
except ConnectionError:
continue
if idx != present_idx:
# sanity check
raise OSError(
"Motor index used to communicate through the bus is not the same as the one present in the motor memory. The motor memory might be damaged."
)
indices.append(idx)
return indices
def set_bus_baudrate(self, baudrate):
present_bus_baudrate = self.port_handler.getBaudRate()
if present_bus_baudrate != baudrate:
print(f"Setting bus baud rate to {baudrate}. Previously {present_bus_baudrate}.")
self.port_handler.setBaudRate(baudrate)
if self.port_handler.getBaudRate() != baudrate:
raise OSError("Failed to write bus baud rate.")
@property
def motor_names(self) -> list[str]:
return list(self.motors.keys())
@property
def motor_models(self) -> list[str]:
return [model for _, model in self.motors.values()]
@property
def motor_indices(self) -> list[int]:
return [idx for idx, _ in self.motors.values()]
def set_calibration(self, calibration: dict[str, list]):
self.calibration = calibration
def apply_calibration_autocorrect(self, values: np.ndarray | list, motor_names: list[str] | None):
"""This function applies the calibration, automatically detects out of range errors for motors values and attempts to correct.
For more info, see docstring of `apply_calibration` and `autocorrect_calibration`.
"""
try:
values = self.apply_calibration(values, motor_names)
except JointOutOfRangeError as e:
print(e)
self.autocorrect_calibration(values, motor_names)
values = self.apply_calibration(values, motor_names)
return values
def apply_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
"""Convert from unsigned int32 joint position range [0, 2**32[ to the universal float32 nominal degree range ]-180.0, 180.0[ with
a "zero position" at 0 degree.
Note: We say "nominal degree range" since the motors can take values outside this range. For instance, 190 degrees, if the motor
rotate more than a half a turn from the zero position. However, most motors can't rotate more than 180 degrees and will stay in this range.
Joints values are original in [0, 2**32[ (unsigned int32). Each motor are expected to complete a full rotation
when given a goal position that is + or - their resolution. For instance, dynamixel xl330-m077 have a resolution of 4096, and
at any position in their original range, let's say the position 56734, they complete a full rotation clockwise by moving to 60830,
or anticlockwise by moving to 52638. The position in the original range is arbitrary and might change a lot between each motor.
To harmonize between motors of the same model, different robots, or even models of different brands, we propose to work
in the centered nominal degree range ]-180, 180[.
"""
if motor_names is None:
motor_names = self.motor_names
# Convert from unsigned int32 original range [0, 2**32] to signed float32 range
values = values.astype(np.float32)
for i, name in enumerate(motor_names):
calib_idx = self.calibration["motor_names"].index(name)
calib_mode = self.calibration["calib_mode"][calib_idx]
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
drive_mode = self.calibration["drive_mode"][calib_idx]
homing_offset = self.calibration["homing_offset"][calib_idx]
_, model = self.motors[name]
resolution = self.model_resolution[model]
# Update direction of rotation of the motor to match between leader and follower.
# In fact, the motor of the leader for a given joint can be assembled in an
# opposite direction in term of rotation than the motor of the follower on the same joint.
if drive_mode:
values[i] *= -1
# Convert from range [-2**31, 2**31] to
# nominal range [-resolution//2, resolution//2] (e.g. [-2048, 2048])
values[i] += homing_offset
# Convert from range [-resolution//2, resolution//2] to
# universal float32 centered degree range [-180, 180]
# (e.g. 2048 / (4096 // 2) * 180 = 180)
values[i] = values[i] / (resolution // 2) * HALF_TURN_DEGREE
if (values[i] < LOWER_BOUND_DEGREE) or (values[i] > UPPER_BOUND_DEGREE):
raise JointOutOfRangeError(
f"Wrong motor position range detected for {name}. "
f"Expected to be in nominal range of [-{HALF_TURN_DEGREE}, {HALF_TURN_DEGREE}] degrees (a full rotation), "
f"with a maximum range of [{LOWER_BOUND_DEGREE}, {UPPER_BOUND_DEGREE}] degrees to account for joints that can rotate a bit more, "
f"but present value is {values[i]} degree. "
"This might be due to a cable connection issue creating an artificial 360 degrees jump in motor values. "
"You need to recalibrate by running: `python lerobot/scripts/control_robot.py calibrate`"
)
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
start_pos = self.calibration["start_pos"][calib_idx]
end_pos = self.calibration["end_pos"][calib_idx]
# Rescale the present position to a nominal range [0, 100] %,
# useful for joints with linear motions like Aloha gripper
values[i] = (values[i] - start_pos) / (end_pos - start_pos) * 100
if (values[i] < LOWER_BOUND_LINEAR) or (values[i] > UPPER_BOUND_LINEAR):
raise JointOutOfRangeError(
f"Wrong motor position range detected for {name}. "
f"Expected to be in nominal range of [0, 100] % (a full linear translation), "
f"with a maximum range of [{LOWER_BOUND_LINEAR}, {UPPER_BOUND_LINEAR}] % to account for some imprecision during calibration, "
f"but present value is {values[i]} %. "
"This might be due to a cable connection issue creating an artificial jump in motor values. "
"You need to recalibrate by running: `python lerobot/scripts/control_robot.py calibrate`"
)
return values
def autocorrect_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
"""This function automatically detects issues with values of motors after calibration, and correct for these issues.
Some motors might have values outside of expected maximum bounds after calibration.
For instance, for a joint in degree, its value can be outside [-270, 270] degrees, which is totally unexpected given
a nominal range of [-180, 180] degrees, which represents half a turn to the left or right starting from zero position.
Known issues:
#1: Motor value randomly shifts of a full turn, caused by hardware/connection errors.
#2: Motor internal homing offset is shifted by a full turn, caused by using default calibration (e.g Aloha).
#3: motor internal homing offset is shifted by less or more than a full turn, caused by using default calibration
or by human error during manual calibration.
Issues #1 and #2 can be solved by shifting the calibration homing offset by a full turn.
Issue #3 will be visually detected by user and potentially captured by the safety feature `max_relative_target`,
that will slow down the motor, raise an error asking to recalibrate. Manual recalibrating will solve the issue.
Note: A full turn corresponds to 360 degrees but also to 4096 steps for a motor resolution of 4096.
"""
if motor_names is None:
motor_names = self.motor_names
# Convert from unsigned int32 original range [0, 2**32] to signed float32 range
values = values.astype(np.float32)
for i, name in enumerate(motor_names):
calib_idx = self.calibration["motor_names"].index(name)
calib_mode = self.calibration["calib_mode"][calib_idx]
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
drive_mode = self.calibration["drive_mode"][calib_idx]
homing_offset = self.calibration["homing_offset"][calib_idx]
_, model = self.motors[name]
resolution = self.model_resolution[model]
# Update direction of rotation of the motor to match between leader and follower.
# In fact, the motor of the leader for a given joint can be assembled in an
# opposite direction in term of rotation than the motor of the follower on the same joint.
if drive_mode:
values[i] *= -1
# Convert from initial range to range [-180, 180] degrees
calib_val = (values[i] + homing_offset) / (resolution // 2) * HALF_TURN_DEGREE
in_range = (calib_val > LOWER_BOUND_DEGREE) and (calib_val < UPPER_BOUND_DEGREE)
# Solve this inequality to find the factor to shift the range into [-180, 180] degrees
# values[i] = (values[i] + homing_offset + resolution * factor) / (resolution // 2) * HALF_TURN_DEGREE
# - HALF_TURN_DEGREE <= (values[i] + homing_offset + resolution * factor) / (resolution // 2) * HALF_TURN_DEGREE <= HALF_TURN_DEGREE
# (- (resolution // 2) - values[i] - homing_offset) / resolution <= factor <= ((resolution // 2) - values[i] - homing_offset) / resolution
low_factor = (-(resolution // 2) - values[i] - homing_offset) / resolution
upp_factor = ((resolution // 2) - values[i] - homing_offset) / resolution
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
start_pos = self.calibration["start_pos"][calib_idx]
end_pos = self.calibration["end_pos"][calib_idx]
# Convert from initial range to range [0, 100] in %
calib_val = (values[i] - start_pos) / (end_pos - start_pos) * 100
in_range = (calib_val > LOWER_BOUND_LINEAR) and (calib_val < UPPER_BOUND_LINEAR)
# Solve this inequality to find the factor to shift the range into [0, 100] %
# values[i] = (values[i] - start_pos + resolution * factor) / (end_pos + resolution * factor - start_pos - resolution * factor) * 100
# values[i] = (values[i] - start_pos + resolution * factor) / (end_pos - start_pos) * 100
# 0 <= (values[i] - start_pos + resolution * factor) / (end_pos - start_pos) * 100 <= 100
# (start_pos - values[i]) / resolution <= factor <= (end_pos - values[i]) / resolution
low_factor = (start_pos - values[i]) / resolution
upp_factor = (end_pos - values[i]) / resolution
if not in_range:
# Get first integer between the two bounds
if low_factor < upp_factor:
factor = math.ceil(low_factor)
if factor > upp_factor:
raise ValueError(f"No integer found between bounds [{low_factor=}, {upp_factor=}]")
else:
factor = math.ceil(upp_factor)
if factor > low_factor:
raise ValueError(f"No integer found between bounds [{low_factor=}, {upp_factor=}]")
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
out_of_range_str = f"{LOWER_BOUND_DEGREE} < {calib_val} < {UPPER_BOUND_DEGREE} degrees"
in_range_str = f"{LOWER_BOUND_DEGREE} < {calib_val} < {UPPER_BOUND_DEGREE} degrees"
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
out_of_range_str = f"{LOWER_BOUND_LINEAR} < {calib_val} < {UPPER_BOUND_LINEAR} %"
in_range_str = f"{LOWER_BOUND_LINEAR} < {calib_val} < {UPPER_BOUND_LINEAR} %"
logging.warning(
f"Auto-correct calibration of motor '{name}' by shifting value by {abs(factor)} full turns, "
f"from '{out_of_range_str}' to '{in_range_str}'."
)
# A full turn corresponds to 360 degrees but also to 4096 steps for a motor resolution of 4096.
self.calibration["homing_offset"][calib_idx] += resolution * factor
def revert_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
"""Inverse of `apply_calibration`."""
if motor_names is None:
motor_names = self.motor_names
for i, name in enumerate(motor_names):
calib_idx = self.calibration["motor_names"].index(name)
calib_mode = self.calibration["calib_mode"][calib_idx]
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
drive_mode = self.calibration["drive_mode"][calib_idx]
homing_offset = self.calibration["homing_offset"][calib_idx]
_, model = self.motors[name]
resolution = self.model_resolution[model]
# Convert from nominal 0-centered degree range [-180, 180] to
# 0-centered resolution range (e.g. [-2048, 2048] for resolution=4096)
values[i] = values[i] / HALF_TURN_DEGREE * (resolution // 2)
# Substract the homing offsets to come back to actual motor range of values
# which can be arbitrary.
values[i] -= homing_offset
# Remove drive mode, which is the rotation direction of the motor, to come back to
# actual motor rotation direction which can be arbitrary.
if drive_mode:
values[i] *= -1
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
start_pos = self.calibration["start_pos"][calib_idx]
end_pos = self.calibration["end_pos"][calib_idx]
# Convert from nominal lnear range of [0, 100] % to
# actual motor range of values which can be arbitrary.
values[i] = values[i] / 100 * (end_pos - start_pos) + start_pos
values = np.round(values).astype(np.int32)
return values
def read_with_motor_ids(self, motor_models, motor_ids, data_name, num_retry=NUM_READ_RETRY):
if self.mock:
import tests.mock_dynamixel_sdk as dxl
else:
import dynamixel_sdk as dxl
return_list = True
if not isinstance(motor_ids, list):
return_list = False
motor_ids = [motor_ids]
assert_same_address(self.model_ctrl_table, self.motor_models, data_name)
addr, bytes = self.model_ctrl_table[motor_models[0]][data_name]
group = dxl.GroupSyncRead(self.port_handler, self.packet_handler, addr, bytes)
for idx in motor_ids:
group.addParam(idx)
for _ in range(num_retry):
comm = group.txRxPacket()
if comm == dxl.COMM_SUCCESS:
break
if comm != dxl.COMM_SUCCESS:
raise ConnectionError(
f"Read failed due to communication error on port {self.port_handler.port_name} for indices {motor_ids}: "
f"{self.packet_handler.getTxRxResult(comm)}"
)
values = []
for idx in motor_ids:
value = group.getData(idx, addr, bytes)
values.append(value)
if return_list:
return values
else:
return values[0]
def read(self, data_name, motor_names: str | list[str] | None = None):
if not self.is_connected:
raise RobotDeviceNotConnectedError(
f"DynamixelMotorsBus({self.port}) is not connected. You need to run `motors_bus.connect()`."
)
start_time = time.perf_counter()
if self.mock:
import tests.mock_dynamixel_sdk as dxl
else:
import dynamixel_sdk as dxl
if motor_names is None:
motor_names = self.motor_names
if isinstance(motor_names, str):
motor_names = [motor_names]
motor_ids = []
models = []
for name in motor_names:
motor_idx, model = self.motors[name]
motor_ids.append(motor_idx)
models.append(model)
assert_same_address(self.model_ctrl_table, models, data_name)
addr, bytes = self.model_ctrl_table[model][data_name]
group_key = get_group_sync_key(data_name, motor_names)
if data_name not in self.group_readers:
# create new group reader
self.group_readers[group_key] = dxl.GroupSyncRead(
self.port_handler, self.packet_handler, addr, bytes
)
for idx in motor_ids:
self.group_readers[group_key].addParam(idx)
for _ in range(NUM_READ_RETRY):
comm = self.group_readers[group_key].txRxPacket()
if comm == dxl.COMM_SUCCESS:
break
if comm != dxl.COMM_SUCCESS:
raise ConnectionError(
f"Read failed due to communication error on port {self.port} for group_key {group_key}: "
f"{self.packet_handler.getTxRxResult(comm)}"
)
values = []
for idx in motor_ids:
value = self.group_readers[group_key].getData(idx, addr, bytes)
values.append(value)
values = np.array(values)
# Convert to signed int to use range [-2048, 2048] for our motor positions.
if data_name in CONVERT_UINT32_TO_INT32_REQUIRED:
values = values.astype(np.int32)
if data_name in CALIBRATION_REQUIRED and self.calibration is not None:
values = self.apply_calibration_autocorrect(values, motor_names)
# log the number of seconds it took to read the data from the motors
delta_ts_name = get_log_name("delta_timestamp_s", "read", data_name, motor_names)
self.logs[delta_ts_name] = time.perf_counter() - start_time
# log the utc time at which the data was received
ts_utc_name = get_log_name("timestamp_utc", "read", data_name, motor_names)
self.logs[ts_utc_name] = capture_timestamp_utc()
return values
def write_with_motor_ids(self, motor_models, motor_ids, data_name, values, num_retry=NUM_WRITE_RETRY):
if self.mock:
import tests.mock_dynamixel_sdk as dxl
else:
import dynamixel_sdk as dxl
if not isinstance(motor_ids, list):
motor_ids = [motor_ids]
if not isinstance(values, list):
values = [values]
assert_same_address(self.model_ctrl_table, motor_models, data_name)
addr, bytes = self.model_ctrl_table[motor_models[0]][data_name]
group = dxl.GroupSyncWrite(self.port_handler, self.packet_handler, addr, bytes)
for idx, value in zip(motor_ids, values, strict=True):
data = convert_to_bytes(value, bytes, self.mock)
group.addParam(idx, data)
for _ in range(num_retry):
comm = group.txPacket()
if comm == dxl.COMM_SUCCESS:
break
if comm != dxl.COMM_SUCCESS:
raise ConnectionError(
f"Write failed due to communication error on port {self.port_handler.port_name} for indices {motor_ids}: "
f"{self.packet_handler.getTxRxResult(comm)}"
)
def write(self, data_name, values: int | float | np.ndarray, motor_names: str | list[str] | None = None):
if not self.is_connected:
raise RobotDeviceNotConnectedError(
f"DynamixelMotorsBus({self.port}) is not connected. You need to run `motors_bus.connect()`."
)
start_time = time.perf_counter()
if self.mock:
import tests.mock_dynamixel_sdk as dxl
else:
import dynamixel_sdk as dxl
if motor_names is None:
motor_names = self.motor_names
if isinstance(motor_names, str):
motor_names = [motor_names]
if isinstance(values, (int, float, np.integer)):
values = [int(values)] * len(motor_names)
values = np.array(values)
motor_ids = []
models = []
for name in motor_names:
motor_idx, model = self.motors[name]
motor_ids.append(motor_idx)
models.append(model)
if data_name in CALIBRATION_REQUIRED and self.calibration is not None:
values = self.revert_calibration(values, motor_names)
values = values.tolist()
assert_same_address(self.model_ctrl_table, models, data_name)
addr, bytes = self.model_ctrl_table[model][data_name]
group_key = get_group_sync_key(data_name, motor_names)
init_group = data_name not in self.group_readers
if init_group:
self.group_writers[group_key] = dxl.GroupSyncWrite(
self.port_handler, self.packet_handler, addr, bytes
)
for idx, value in zip(motor_ids, values, strict=True):
data = convert_to_bytes(value, bytes, self.mock)
if init_group:
self.group_writers[group_key].addParam(idx, data)
else:
self.group_writers[group_key].changeParam(idx, data)
comm = self.group_writers[group_key].txPacket()
if comm != dxl.COMM_SUCCESS:
raise ConnectionError(
f"Write failed due to communication error on port {self.port} for group_key {group_key}: "
f"{self.packet_handler.getTxRxResult(comm)}"
)
# log the number of seconds it took to write the data to the motors
delta_ts_name = get_log_name("delta_timestamp_s", "write", data_name, motor_names)
self.logs[delta_ts_name] = time.perf_counter() - start_time
# TODO(rcadene): should we log the time before sending the write command?
# log the utc time when the write has been completed
ts_utc_name = get_log_name("timestamp_utc", "write", data_name, motor_names)
self.logs[ts_utc_name] = capture_timestamp_utc()
def disconnect(self):
if not self.is_connected:
raise RobotDeviceNotConnectedError(
f"DynamixelMotorsBus({self.port}) is not connected. Try running `motors_bus.connect()` first."
)
if self.port_handler is not None:
self.port_handler.closePort()
self.port_handler = None
self.packet_handler = None
self.group_readers = {}
self.group_writers = {}
self.is_connected = False
def __del__(self):
if getattr(self, "is_connected", False):
self.disconnect()

View File

@@ -0,0 +1,887 @@
import enum
import logging
import math
import time
import traceback
from copy import deepcopy
import numpy as np
import tqdm
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
from lerobot.common.utils.utils import capture_timestamp_utc
PROTOCOL_VERSION = 0
BAUDRATE = 1_000_000
TIMEOUT_MS = 1000
MAX_ID_RANGE = 252
# The following bounds define the lower and upper joints range (after calibration).
# For joints in degree (i.e. revolute joints), their nominal range is [-180, 180] degrees
# which corresponds to a half rotation on the left and half rotation on the right.
# Some joints might require higher range, so we allow up to [-270, 270] degrees until
# an error is raised.
LOWER_BOUND_DEGREE = -270
UPPER_BOUND_DEGREE = 270
# For joints in percentage (i.e. joints that move linearly like the prismatic joint of a gripper),
# their nominal range is [0, 100] %. For instance, for Aloha gripper, 0% is fully
# closed, and 100% is fully open. To account for slight calibration issue, we allow up to
# [-10, 110] until an error is raised.
LOWER_BOUND_LINEAR = -10
UPPER_BOUND_LINEAR = 110
HALF_TURN_DEGREE = 180
# See this link for STS3215 Memory Table:
# https://docs.google.com/spreadsheets/d/1GVs7W1VS1PqdhA1nW-abeyAHhTUxKUdR/edit?usp=sharing&ouid=116566590112741600240&rtpof=true&sd=true
# data_name: (address, size_byte)
SCS_SERIES_CONTROL_TABLE = {
"Model": (3, 2),
"ID": (5, 1),
"Baud_Rate": (6, 1),
"Return_Delay": (7, 1),
"Response_Status_Level": (8, 1),
"Min_Angle_Limit": (9, 2),
"Max_Angle_Limit": (11, 2),
"Max_Temperature_Limit": (13, 1),
"Max_Voltage_Limit": (14, 1),
"Min_Voltage_Limit": (15, 1),
"Max_Torque_Limit": (16, 2),
"Phase": (18, 1),
"Unloading_Condition": (19, 1),
"LED_Alarm_Condition": (20, 1),
"P_Coefficient": (21, 1),
"D_Coefficient": (22, 1),
"I_Coefficient": (23, 1),
"Minimum_Startup_Force": (24, 2),
"CW_Dead_Zone": (26, 1),
"CCW_Dead_Zone": (27, 1),
"Protection_Current": (28, 2),
"Angular_Resolution": (30, 1),
"Offset": (31, 2),
"Mode": (33, 1),
"Protective_Torque": (34, 1),
"Protection_Time": (35, 1),
"Overload_Torque": (36, 1),
"Speed_closed_loop_P_proportional_coefficient": (37, 1),
"Over_Current_Protection_Time": (38, 1),
"Velocity_closed_loop_I_integral_coefficient": (39, 1),
"Torque_Enable": (40, 1),
"Acceleration": (41, 1),
"Goal_Position": (42, 2),
"Goal_Time": (44, 2),
"Goal_Speed": (46, 2),
"Torque_Limit": (48, 2),
"Lock": (55, 1),
"Present_Position": (56, 2),
"Present_Speed": (58, 2),
"Present_Load": (60, 2),
"Present_Voltage": (62, 1),
"Present_Temperature": (63, 1),
"Status": (65, 1),
"Moving": (66, 1),
"Present_Current": (69, 2),
# Not in the Memory Table
"Maximum_Acceleration": (85, 2),
}
SCS_SERIES_BAUDRATE_TABLE = {
0: 1_000_000,
1: 500_000,
2: 250_000,
3: 128_000,
4: 115_200,
5: 57_600,
6: 38_400,
7: 19_200,
}
CALIBRATION_REQUIRED = ["Goal_Position", "Present_Position"]
CONVERT_UINT32_TO_INT32_REQUIRED = ["Goal_Position", "Present_Position"]
MODEL_CONTROL_TABLE = {
"scs_series": SCS_SERIES_CONTROL_TABLE,
"sts3215": SCS_SERIES_CONTROL_TABLE,
}
MODEL_RESOLUTION = {
"scs_series": 4096,
"sts3215": 4096,
}
MODEL_BAUDRATE_TABLE = {
"scs_series": SCS_SERIES_BAUDRATE_TABLE,
"sts3215": SCS_SERIES_BAUDRATE_TABLE,
}
# High number of retries is needed for feetech compared to dynamixel motors.
NUM_READ_RETRY = 20
NUM_WRITE_RETRY = 20
def convert_degrees_to_steps(degrees: float | np.ndarray, models: str | list[str]) -> np.ndarray:
"""This function converts the degree range to the step range for indicating motors rotation.
It assumes a motor achieves a full rotation by going from -180 degree position to +180.
The motor resolution (e.g. 4096) corresponds to the number of steps needed to achieve a full rotation.
"""
resolutions = [MODEL_RESOLUTION[model] for model in models]
steps = degrees / 180 * np.array(resolutions) / 2
steps = steps.astype(int)
return steps
def convert_to_bytes(value, bytes, mock=False):
if mock:
return value
import scservo_sdk as scs
# Note: No need to convert back into unsigned int, since this byte preprocessing
# already handles it for us.
if bytes == 1:
data = [
scs.SCS_LOBYTE(scs.SCS_LOWORD(value)),
]
elif bytes == 2:
data = [
scs.SCS_LOBYTE(scs.SCS_LOWORD(value)),
scs.SCS_HIBYTE(scs.SCS_LOWORD(value)),
]
elif bytes == 4:
data = [
scs.SCS_LOBYTE(scs.SCS_LOWORD(value)),
scs.SCS_HIBYTE(scs.SCS_LOWORD(value)),
scs.SCS_LOBYTE(scs.SCS_HIWORD(value)),
scs.SCS_HIBYTE(scs.SCS_HIWORD(value)),
]
else:
raise NotImplementedError(
f"Value of the number of bytes to be sent is expected to be in [1, 2, 4], but "
f"{bytes} is provided instead."
)
return data
def get_group_sync_key(data_name, motor_names):
group_key = f"{data_name}_" + "_".join(motor_names)
return group_key
def get_result_name(fn_name, data_name, motor_names):
group_key = get_group_sync_key(data_name, motor_names)
rslt_name = f"{fn_name}_{group_key}"
return rslt_name
def get_queue_name(fn_name, data_name, motor_names):
group_key = get_group_sync_key(data_name, motor_names)
queue_name = f"{fn_name}_{group_key}"
return queue_name
def get_log_name(var_name, fn_name, data_name, motor_names):
group_key = get_group_sync_key(data_name, motor_names)
log_name = f"{var_name}_{fn_name}_{group_key}"
return log_name
def assert_same_address(model_ctrl_table, motor_models, data_name):
all_addr = []
all_bytes = []
for model in motor_models:
addr, bytes = model_ctrl_table[model][data_name]
all_addr.append(addr)
all_bytes.append(bytes)
if len(set(all_addr)) != 1:
raise NotImplementedError(
f"At least two motor models use a different address for `data_name`='{data_name}' ({list(zip(motor_models, all_addr, strict=False))}). Contact a LeRobot maintainer."
)
if len(set(all_bytes)) != 1:
raise NotImplementedError(
f"At least two motor models use a different bytes representation for `data_name`='{data_name}' ({list(zip(motor_models, all_bytes, strict=False))}). Contact a LeRobot maintainer."
)
class TorqueMode(enum.Enum):
ENABLED = 1
DISABLED = 0
class DriveMode(enum.Enum):
NON_INVERTED = 0
INVERTED = 1
class CalibrationMode(enum.Enum):
# Joints with rotational motions are expressed in degrees in nominal range of [-180, 180]
DEGREE = 0
# Joints with linear motions (like gripper of Aloha) are experessed in nominal range of [0, 100]
LINEAR = 1
class JointOutOfRangeError(Exception):
def __init__(self, message="Joint is out of range"):
self.message = message
super().__init__(self.message)
class FeetechMotorsBus:
"""
The FeetechMotorsBus class allows to efficiently read and write to the attached motors. It relies on
the python feetech sdk to communicate with the motors. For more info, see the [feetech SDK Documentation](https://emanual.robotis.com/docs/en/software/feetech/feetech_sdk/sample_code/python_read_write_protocol_2_0/#python-read-write-protocol-20).
A FeetechMotorsBus instance requires a port (e.g. `FeetechMotorsBus(port="/dev/tty.usbmodem575E0031751"`)).
To find the port, you can run our utility script:
```bash
python lerobot/scripts/find_motors_bus_port.py
>>> Finding all available ports for the MotorsBus.
>>> ['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
>>> Remove the usb cable from your FeetechMotorsBus and press Enter when done.
>>> The port of this FeetechMotorsBus is /dev/tty.usbmodem575E0031751.
>>> Reconnect the usb cable.
```
Example of usage for 1 motor connected to the bus:
```python
motor_name = "gripper"
motor_index = 6
motor_model = "sts3215"
motors_bus = FeetechMotorsBus(
port="/dev/tty.usbmodem575E0031751",
motors={motor_name: (motor_index, motor_model)},
)
motors_bus.connect()
position = motors_bus.read("Present_Position")
# move from a few motor steps as an example
few_steps = 30
motors_bus.write("Goal_Position", position + few_steps)
# when done, consider disconnecting
motors_bus.disconnect()
```
"""
def __init__(
self,
port: str,
motors: dict[str, tuple[int, str]],
extra_model_control_table: dict[str, list[tuple]] | None = None,
extra_model_resolution: dict[str, int] | None = None,
mock=False,
):
self.port = port
self.motors = motors
self.mock = mock
self.model_ctrl_table = deepcopy(MODEL_CONTROL_TABLE)
if extra_model_control_table:
self.model_ctrl_table.update(extra_model_control_table)
self.model_resolution = deepcopy(MODEL_RESOLUTION)
if extra_model_resolution:
self.model_resolution.update(extra_model_resolution)
self.port_handler = None
self.packet_handler = None
self.calibration = None
self.is_connected = False
self.group_readers = {}
self.group_writers = {}
self.logs = {}
self.track_positions = {}
def connect(self):
if self.is_connected:
raise RobotDeviceAlreadyConnectedError(
f"FeetechMotorsBus({self.port}) is already connected. Do not call `motors_bus.connect()` twice."
)
if self.mock:
import tests.mock_scservo_sdk as scs
else:
import scservo_sdk as scs
self.port_handler = scs.PortHandler(self.port)
self.packet_handler = scs.PacketHandler(PROTOCOL_VERSION)
try:
if not self.port_handler.openPort():
raise OSError(f"Failed to open port '{self.port}'.")
except Exception:
traceback.print_exc()
print(
"\nTry running `python lerobot/scripts/find_motors_bus_port.py` to make sure you are using the correct port.\n"
)
raise
# Allow to read and write
self.is_connected = True
self.port_handler.setPacketTimeoutMillis(TIMEOUT_MS)
def reconnect(self):
if self.mock:
import tests.mock_scservo_sdk as scs
else:
import scservo_sdk as scs
self.port_handler = scs.PortHandler(self.port)
self.packet_handler = scs.PacketHandler(PROTOCOL_VERSION)
if not self.port_handler.openPort():
raise OSError(f"Failed to open port '{self.port}'.")
self.is_connected = True
def are_motors_configured(self):
# Only check the motor indices and not baudrate, since if the motor baudrates are incorrect,
# a ConnectionError will be raised anyway.
try:
return (self.motor_indices == self.read("ID")).all()
except ConnectionError as e:
print(e)
return False
def find_motor_indices(self, possible_ids=None, num_retry=2):
if possible_ids is None:
possible_ids = range(MAX_ID_RANGE)
indices = []
for idx in tqdm.tqdm(possible_ids):
try:
present_idx = self.read_with_motor_ids(self.motor_models, [idx], "ID", num_retry=num_retry)[0]
except ConnectionError:
continue
if idx != present_idx:
# sanity check
raise OSError(
"Motor index used to communicate through the bus is not the same as the one present in the motor memory. The motor memory might be damaged."
)
indices.append(idx)
return indices
def set_bus_baudrate(self, baudrate):
present_bus_baudrate = self.port_handler.getBaudRate()
if present_bus_baudrate != baudrate:
print(f"Setting bus baud rate to {baudrate}. Previously {present_bus_baudrate}.")
self.port_handler.setBaudRate(baudrate)
if self.port_handler.getBaudRate() != baudrate:
raise OSError("Failed to write bus baud rate.")
@property
def motor_names(self) -> list[str]:
return list(self.motors.keys())
@property
def motor_models(self) -> list[str]:
return [model for _, model in self.motors.values()]
@property
def motor_indices(self) -> list[int]:
return [idx for idx, _ in self.motors.values()]
def set_calibration(self, calibration: dict[str, list]):
self.calibration = calibration
def apply_calibration_autocorrect(self, values: np.ndarray | list, motor_names: list[str] | None):
"""This function apply the calibration, automatically detects out of range errors for motors values and attempt to correct.
For more info, see docstring of `apply_calibration` and `autocorrect_calibration`.
"""
try:
values = self.apply_calibration(values, motor_names)
except JointOutOfRangeError as e:
print(e)
self.autocorrect_calibration(values, motor_names)
values = self.apply_calibration(values, motor_names)
return values
def apply_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
"""Convert from unsigned int32 joint position range [0, 2**32[ to the universal float32 nominal degree range ]-180.0, 180.0[ with
a "zero position" at 0 degree.
Note: We say "nominal degree range" since the motors can take values outside this range. For instance, 190 degrees, if the motor
rotate more than a half a turn from the zero position. However, most motors can't rotate more than 180 degrees and will stay in this range.
Joints values are original in [0, 2**32[ (unsigned int32). Each motor are expected to complete a full rotation
when given a goal position that is + or - their resolution. For instance, feetech xl330-m077 have a resolution of 4096, and
at any position in their original range, let's say the position 56734, they complete a full rotation clockwise by moving to 60830,
or anticlockwise by moving to 52638. The position in the original range is arbitrary and might change a lot between each motor.
To harmonize between motors of the same model, different robots, or even models of different brands, we propose to work
in the centered nominal degree range ]-180, 180[.
"""
if motor_names is None:
motor_names = self.motor_names
# Convert from unsigned int32 original range [0, 2**32] to signed float32 range
values = values.astype(np.float32)
for i, name in enumerate(motor_names):
calib_idx = self.calibration["motor_names"].index(name)
calib_mode = self.calibration["calib_mode"][calib_idx]
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
drive_mode = self.calibration["drive_mode"][calib_idx]
homing_offset = self.calibration["homing_offset"][calib_idx]
_, model = self.motors[name]
resolution = self.model_resolution[model]
# Update direction of rotation of the motor to match between leader and follower.
# In fact, the motor of the leader for a given joint can be assembled in an
# opposite direction in term of rotation than the motor of the follower on the same joint.
if drive_mode:
values[i] *= -1
# Convert from range [-2**31, 2**31[ to
# nominal range ]-resolution, resolution[ (e.g. ]-2048, 2048[)
values[i] += homing_offset
# Convert from range ]-resolution, resolution[ to
# universal float32 centered degree range ]-180, 180[
values[i] = values[i] / (resolution // 2) * HALF_TURN_DEGREE
if (values[i] < LOWER_BOUND_DEGREE) or (values[i] > UPPER_BOUND_DEGREE):
raise JointOutOfRangeError(
f"Wrong motor position range detected for {name}. "
f"Expected to be in nominal range of [-{HALF_TURN_DEGREE}, {HALF_TURN_DEGREE}] degrees (a full rotation), "
f"with a maximum range of [{LOWER_BOUND_DEGREE}, {UPPER_BOUND_DEGREE}] degrees to account for joints that can rotate a bit more, "
f"but present value is {values[i]} degree. "
"This might be due to a cable connection issue creating an artificial 360 degrees jump in motor values. "
"You need to recalibrate by running: `python lerobot/scripts/control_robot.py calibrate`"
)
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
start_pos = self.calibration["start_pos"][calib_idx]
end_pos = self.calibration["end_pos"][calib_idx]
# Rescale the present position to a nominal range [0, 100] %,
# useful for joints with linear motions like Aloha gripper
values[i] = (values[i] - start_pos) / (end_pos - start_pos) * 100
if (values[i] < LOWER_BOUND_LINEAR) or (values[i] > UPPER_BOUND_LINEAR):
raise JointOutOfRangeError(
f"Wrong motor position range detected for {name}. "
f"Expected to be in nominal range of [0, 100] % (a full linear translation), "
f"with a maximum range of [{LOWER_BOUND_LINEAR}, {UPPER_BOUND_LINEAR}] % to account for some imprecision during calibration, "
f"but present value is {values[i]} %. "
"This might be due to a cable connection issue creating an artificial jump in motor values. "
"You need to recalibrate by running: `python lerobot/scripts/control_robot.py calibrate`"
)
return values
def autocorrect_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
"""This function automatically detects issues with values of motors after calibration, and correct for these issues.
Some motors might have values outside of expected maximum bounds after calibration.
For instance, for a joint in degree, its value can be outside [-270, 270] degrees, which is totally unexpected given
a nominal range of [-180, 180] degrees, which represents half a turn to the left or right starting from zero position.
Known issues:
#1: Motor value randomly shifts of a full turn, caused by hardware/connection errors.
#2: Motor internal homing offset is shifted of a full turn, caused by using default calibration (e.g Aloha).
#3: motor internal homing offset is shifted of less or more than a full turn, caused by using default calibration
or by human error during manual calibration.
Issues #1 and #2 can be solved by shifting the calibration homing offset by a full turn.
Issue #3 will be visually detected by user and potentially captured by the safety feature `max_relative_target`,
that will slow down the motor, raise an error asking to recalibrate. Manual recalibrating will solve the issue.
Note: A full turn corresponds to 360 degrees but also to 4096 steps for a motor resolution of 4096.
"""
if motor_names is None:
motor_names = self.motor_names
# Convert from unsigned int32 original range [0, 2**32] to signed float32 range
values = values.astype(np.float32)
for i, name in enumerate(motor_names):
calib_idx = self.calibration["motor_names"].index(name)
calib_mode = self.calibration["calib_mode"][calib_idx]
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
drive_mode = self.calibration["drive_mode"][calib_idx]
homing_offset = self.calibration["homing_offset"][calib_idx]
_, model = self.motors[name]
resolution = self.model_resolution[model]
if drive_mode:
values[i] *= -1
# Convert from initial range to range [-180, 180] degrees
calib_val = (values[i] + homing_offset) / (resolution // 2) * HALF_TURN_DEGREE
in_range = (calib_val > LOWER_BOUND_DEGREE) and (calib_val < UPPER_BOUND_DEGREE)
# Solve this inequality to find the factor to shift the range into [-180, 180] degrees
# values[i] = (values[i] + homing_offset + resolution * factor) / (resolution // 2) * HALF_TURN_DEGREE
# - HALF_TURN_DEGREE <= (values[i] + homing_offset + resolution * factor) / (resolution // 2) * HALF_TURN_DEGREE <= HALF_TURN_DEGREE
# (- HALF_TURN_DEGREE / HALF_TURN_DEGREE * (resolution // 2) - values[i] - homing_offset) / resolution <= factor <= (HALF_TURN_DEGREE / 180 * (resolution // 2) - values[i] - homing_offset) / resolution
low_factor = (
-HALF_TURN_DEGREE / HALF_TURN_DEGREE * (resolution // 2) - values[i] - homing_offset
) / resolution
upp_factor = (
HALF_TURN_DEGREE / HALF_TURN_DEGREE * (resolution // 2) - values[i] - homing_offset
) / resolution
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
start_pos = self.calibration["start_pos"][calib_idx]
end_pos = self.calibration["end_pos"][calib_idx]
# Convert from initial range to range [0, 100] in %
calib_val = (values[i] - start_pos) / (end_pos - start_pos) * 100
in_range = (calib_val > LOWER_BOUND_LINEAR) and (calib_val < UPPER_BOUND_LINEAR)
# Solve this inequality to find the factor to shift the range into [0, 100] %
# values[i] = (values[i] - start_pos + resolution * factor) / (end_pos + resolution * factor - start_pos - resolution * factor) * 100
# values[i] = (values[i] - start_pos + resolution * factor) / (end_pos - start_pos) * 100
# 0 <= (values[i] - start_pos + resolution * factor) / (end_pos - start_pos) * 100 <= 100
# (start_pos - values[i]) / resolution <= factor <= (end_pos - values[i]) / resolution
low_factor = (start_pos - values[i]) / resolution
upp_factor = (end_pos - values[i]) / resolution
if not in_range:
# Get first integer between the two bounds
if low_factor < upp_factor:
factor = math.ceil(low_factor)
if factor > upp_factor:
raise ValueError(f"No integer found between bounds [{low_factor=}, {upp_factor=}]")
else:
factor = math.ceil(upp_factor)
if factor > low_factor:
raise ValueError(f"No integer found between bounds [{low_factor=}, {upp_factor=}]")
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
out_of_range_str = f"{LOWER_BOUND_DEGREE} < {calib_val} < {UPPER_BOUND_DEGREE} degrees"
in_range_str = f"{LOWER_BOUND_DEGREE} < {calib_val} < {UPPER_BOUND_DEGREE} degrees"
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
out_of_range_str = f"{LOWER_BOUND_LINEAR} < {calib_val} < {UPPER_BOUND_LINEAR} %"
in_range_str = f"{LOWER_BOUND_LINEAR} < {calib_val} < {UPPER_BOUND_LINEAR} %"
logging.warning(
f"Auto-correct calibration of motor '{name}' by shifting value by {abs(factor)} full turns, "
f"from '{out_of_range_str}' to '{in_range_str}'."
)
# A full turn corresponds to 360 degrees but also to 4096 steps for a motor resolution of 4096.
self.calibration["homing_offset"][calib_idx] += resolution * factor
def revert_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
"""Inverse of `apply_calibration`."""
if motor_names is None:
motor_names = self.motor_names
for i, name in enumerate(motor_names):
calib_idx = self.calibration["motor_names"].index(name)
calib_mode = self.calibration["calib_mode"][calib_idx]
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
drive_mode = self.calibration["drive_mode"][calib_idx]
homing_offset = self.calibration["homing_offset"][calib_idx]
_, model = self.motors[name]
resolution = self.model_resolution[model]
# Convert from nominal 0-centered degree range [-180, 180] to
# 0-centered resolution range (e.g. [-2048, 2048] for resolution=4096)
values[i] = values[i] / HALF_TURN_DEGREE * (resolution // 2)
# Substract the homing offsets to come back to actual motor range of values
# which can be arbitrary.
values[i] -= homing_offset
# Remove drive mode, which is the rotation direction of the motor, to come back to
# actual motor rotation direction which can be arbitrary.
if drive_mode:
values[i] *= -1
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
start_pos = self.calibration["start_pos"][calib_idx]
end_pos = self.calibration["end_pos"][calib_idx]
# Convert from nominal lnear range of [0, 100] % to
# actual motor range of values which can be arbitrary.
values[i] = values[i] / 100 * (end_pos - start_pos) + start_pos
values = np.round(values).astype(np.int32)
return values
def avoid_rotation_reset(self, values, motor_names, data_name):
if data_name not in self.track_positions:
self.track_positions[data_name] = {
"prev": [None] * len(self.motor_names),
# Assume False at initialization
"below_zero": [False] * len(self.motor_names),
"above_max": [False] * len(self.motor_names),
}
track = self.track_positions[data_name]
if motor_names is None:
motor_names = self.motor_names
for i, name in enumerate(motor_names):
idx = self.motor_names.index(name)
if track["prev"][idx] is None:
track["prev"][idx] = values[i]
continue
# Detect a full rotation occured
if abs(track["prev"][idx] - values[i]) > 2048:
# Position went below 0 and got reset to 4095
if track["prev"][idx] < values[i]:
# So we set negative value by adding a full rotation
values[i] -= 4096
# Position went above 4095 and got reset to 0
elif track["prev"][idx] > values[i]:
# So we add a full rotation
values[i] += 4096
track["prev"][idx] = values[i]
return values
def read_with_motor_ids(self, motor_models, motor_ids, data_name, num_retry=NUM_READ_RETRY):
if self.mock:
import tests.mock_scservo_sdk as scs
else:
import scservo_sdk as scs
return_list = True
if not isinstance(motor_ids, list):
return_list = False
motor_ids = [motor_ids]
assert_same_address(self.model_ctrl_table, self.motor_models, data_name)
addr, bytes = self.model_ctrl_table[motor_models[0]][data_name]
group = scs.GroupSyncRead(self.port_handler, self.packet_handler, addr, bytes)
for idx in motor_ids:
group.addParam(idx)
for _ in range(num_retry):
comm = group.txRxPacket()
if comm == scs.COMM_SUCCESS:
break
if comm != scs.COMM_SUCCESS:
raise ConnectionError(
f"Read failed due to communication error on port {self.port_handler.port_name} for indices {motor_ids}: "
f"{self.packet_handler.getTxRxResult(comm)}"
)
values = []
for idx in motor_ids:
value = group.getData(idx, addr, bytes)
values.append(value)
if return_list:
return values
else:
return values[0]
def read(self, data_name, motor_names: str | list[str] | None = None):
if self.mock:
import tests.mock_scservo_sdk as scs
else:
import scservo_sdk as scs
if not self.is_connected:
raise RobotDeviceNotConnectedError(
f"FeetechMotorsBus({self.port}) is not connected. You need to run `motors_bus.connect()`."
)
start_time = time.perf_counter()
if motor_names is None:
motor_names = self.motor_names
if isinstance(motor_names, str):
motor_names = [motor_names]
motor_ids = []
models = []
for name in motor_names:
motor_idx, model = self.motors[name]
motor_ids.append(motor_idx)
models.append(model)
assert_same_address(self.model_ctrl_table, models, data_name)
addr, bytes = self.model_ctrl_table[model][data_name]
group_key = get_group_sync_key(data_name, motor_names)
if data_name not in self.group_readers:
# create new group reader
self.group_readers[group_key] = scs.GroupSyncRead(
self.port_handler, self.packet_handler, addr, bytes
)
for idx in motor_ids:
self.group_readers[group_key].addParam(idx)
for _ in range(NUM_READ_RETRY):
comm = self.group_readers[group_key].txRxPacket()
if comm == scs.COMM_SUCCESS:
break
if comm != scs.COMM_SUCCESS:
raise ConnectionError(
f"Read failed due to communication error on port {self.port} for group_key {group_key}: "
f"{self.packet_handler.getTxRxResult(comm)}"
)
values = []
for idx in motor_ids:
value = self.group_readers[group_key].getData(idx, addr, bytes)
values.append(value)
values = np.array(values)
# Convert to signed int to use range [-2048, 2048] for our motor positions.
if data_name in CONVERT_UINT32_TO_INT32_REQUIRED:
values = values.astype(np.int32)
if data_name in CALIBRATION_REQUIRED:
values = self.avoid_rotation_reset(values, motor_names, data_name)
if data_name in CALIBRATION_REQUIRED and self.calibration is not None:
values = self.apply_calibration_autocorrect(values, motor_names)
# log the number of seconds it took to read the data from the motors
delta_ts_name = get_log_name("delta_timestamp_s", "read", data_name, motor_names)
self.logs[delta_ts_name] = time.perf_counter() - start_time
# log the utc time at which the data was received
ts_utc_name = get_log_name("timestamp_utc", "read", data_name, motor_names)
self.logs[ts_utc_name] = capture_timestamp_utc()
return values
def write_with_motor_ids(self, motor_models, motor_ids, data_name, values, num_retry=NUM_WRITE_RETRY):
if self.mock:
import tests.mock_scservo_sdk as scs
else:
import scservo_sdk as scs
if not isinstance(motor_ids, list):
motor_ids = [motor_ids]
if not isinstance(values, list):
values = [values]
assert_same_address(self.model_ctrl_table, motor_models, data_name)
addr, bytes = self.model_ctrl_table[motor_models[0]][data_name]
group = scs.GroupSyncWrite(self.port_handler, self.packet_handler, addr, bytes)
for idx, value in zip(motor_ids, values, strict=True):
data = convert_to_bytes(value, bytes, self.mock)
group.addParam(idx, data)
for _ in range(num_retry):
comm = group.txPacket()
if comm == scs.COMM_SUCCESS:
break
if comm != scs.COMM_SUCCESS:
raise ConnectionError(
f"Write failed due to communication error on port {self.port_handler.port_name} for indices {motor_ids}: "
f"{self.packet_handler.getTxRxResult(comm)}"
)
def write(self, data_name, values: int | float | np.ndarray, motor_names: str | list[str] | None = None):
if not self.is_connected:
raise RobotDeviceNotConnectedError(
f"FeetechMotorsBus({self.port}) is not connected. You need to run `motors_bus.connect()`."
)
start_time = time.perf_counter()
if self.mock:
import tests.mock_scservo_sdk as scs
else:
import scservo_sdk as scs
if motor_names is None:
motor_names = self.motor_names
if isinstance(motor_names, str):
motor_names = [motor_names]
if isinstance(values, (int, float, np.integer)):
values = [int(values)] * len(motor_names)
values = np.array(values)
motor_ids = []
models = []
for name in motor_names:
motor_idx, model = self.motors[name]
motor_ids.append(motor_idx)
models.append(model)
if data_name in CALIBRATION_REQUIRED and self.calibration is not None:
values = self.revert_calibration(values, motor_names)
values = values.tolist()
assert_same_address(self.model_ctrl_table, models, data_name)
addr, bytes = self.model_ctrl_table[model][data_name]
group_key = get_group_sync_key(data_name, motor_names)
init_group = data_name not in self.group_readers
if init_group:
self.group_writers[group_key] = scs.GroupSyncWrite(
self.port_handler, self.packet_handler, addr, bytes
)
for idx, value in zip(motor_ids, values, strict=True):
data = convert_to_bytes(value, bytes, self.mock)
if init_group:
self.group_writers[group_key].addParam(idx, data)
else:
self.group_writers[group_key].changeParam(idx, data)
comm = self.group_writers[group_key].txPacket()
if comm != scs.COMM_SUCCESS:
raise ConnectionError(
f"Write failed due to communication error on port {self.port} for group_key {group_key}: "
f"{self.packet_handler.getTxRxResult(comm)}"
)
# log the number of seconds it took to write the data to the motors
delta_ts_name = get_log_name("delta_timestamp_s", "write", data_name, motor_names)
self.logs[delta_ts_name] = time.perf_counter() - start_time
# TODO(rcadene): should we log the time before sending the write command?
# log the utc time when the write has been completed
ts_utc_name = get_log_name("timestamp_utc", "write", data_name, motor_names)
self.logs[ts_utc_name] = capture_timestamp_utc()
def disconnect(self):
if not self.is_connected:
raise RobotDeviceNotConnectedError(
f"FeetechMotorsBus({self.port}) is not connected. Try running `motors_bus.connect()` first."
)
if self.port_handler is not None:
self.port_handler.closePort()
self.port_handler = None
self.packet_handler = None
self.group_readers = {}
self.group_writers = {}
self.is_connected = False
def __del__(self):
if getattr(self, "is_connected", False):
self.disconnect()

View File

@@ -0,0 +1,10 @@
from typing import Protocol
class MotorsBus(Protocol):
def motor_names(self): ...
def set_calibration(self): ...
def apply_calibration(self): ...
def revert_calibration(self): ...
def read(self): ...
def write(self): ...

View File

@@ -0,0 +1,130 @@
"""Logic to calibrate a robot arm built with dynamixel motors"""
# TODO(rcadene, aliberts): move this logic into the robot code when refactoring
import numpy as np
from lerobot.common.robot_devices.motors.dynamixel import (
CalibrationMode,
TorqueMode,
convert_degrees_to_steps,
)
from lerobot.common.robot_devices.motors.utils import MotorsBus
URL_TEMPLATE = (
"https://raw.githubusercontent.com/huggingface/lerobot/main/media/{robot}/{arm}_{position}.webp"
)
# The following positions are provided in nominal degree range ]-180, +180[
# For more info on these constants, see comments in the code where they get used.
ZERO_POSITION_DEGREE = 0
ROTATED_POSITION_DEGREE = 90
def assert_drive_mode(drive_mode):
# `drive_mode` is in [0,1] with 0 means original rotation direction for the motor, and 1 means inverted.
if not np.all(np.isin(drive_mode, [0, 1])):
raise ValueError(f"`drive_mode` contains values other than 0 or 1: ({drive_mode})")
def apply_drive_mode(position, drive_mode):
assert_drive_mode(drive_mode)
# Convert `drive_mode` from [0, 1] with 0 indicates original rotation direction and 1 inverted,
# to [-1, 1] with 1 indicates original rotation direction and -1 inverted.
signed_drive_mode = -(drive_mode * 2 - 1)
position *= signed_drive_mode
return position
def compute_nearest_rounded_position(position, models):
delta_turn = convert_degrees_to_steps(ROTATED_POSITION_DEGREE, models)
nearest_pos = np.round(position.astype(float) / delta_turn) * delta_turn
return nearest_pos.astype(position.dtype)
def run_arm_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
"""This function ensures that a neural network trained on data collected on a given robot
can work on another robot. For instance before calibration, setting a same goal position
for each motor of two different robots will get two very different positions. But after calibration,
the two robots will move to the same position.To this end, this function computes the homing offset
and the drive mode for each motor of a given robot.
Homing offset is used to shift the motor position to a ]-2048, +2048[ nominal range (when the motor uses 2048 steps
to complete a half a turn). This range is set around an arbitrary "zero position" corresponding to all motor positions
being 0. During the calibration process, you will need to manually move the robot to this "zero position".
Drive mode is used to invert the rotation direction of the motor. This is useful when some motors have been assembled
in the opposite orientation for some robots. During the calibration process, you will need to manually move the robot
to the "rotated position".
After calibration, the homing offsets and drive modes are stored in a cache.
Example of usage:
```python
run_arm_calibration(arm, "koch", "left", "follower")
```
"""
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
raise ValueError("To run calibration, the torque must be disabled on all motors.")
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
print("\nMove arm to zero position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="zero"))
input("Press Enter to continue...")
# We arbitrarily chose our zero target position to be a straight horizontal position with gripper upwards and closed.
# It is easy to identify and all motors are in a "quarter turn" position. Once calibration is done, this position will
# correspond to every motor angle being 0. If you set all 0 as Goal Position, the arm will move in this position.
zero_target_pos = convert_degrees_to_steps(ZERO_POSITION_DEGREE, arm.motor_models)
# Compute homing offset so that `present_position + homing_offset ~= target_position`.
zero_pos = arm.read("Present_Position")
zero_nearest_pos = compute_nearest_rounded_position(zero_pos, arm.motor_models)
homing_offset = zero_target_pos - zero_nearest_pos
# The rotated target position corresponds to a rotation of a quarter turn from the zero position.
# This allows to identify the rotation direction of each motor.
# For instance, if the motor rotates 90 degree, and its value is -90 after applying the homing offset, then we know its rotation direction
# is inverted. However, for the calibration being successful, we need everyone to follow the same target position.
# Sometimes, there is only one possible rotation direction. For instance, if the gripper is closed, there is only one direction which
# corresponds to opening the gripper. When the rotation direction is ambiguous, we arbitrarely rotate clockwise from the point of view
# of the previous motor in the kinetic chain.
print("\nMove arm to rotated target position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rotated"))
input("Press Enter to continue...")
rotated_target_pos = convert_degrees_to_steps(ROTATED_POSITION_DEGREE, arm.motor_models)
# Find drive mode by rotating each motor by a quarter of a turn.
# Drive mode indicates if the motor rotation direction should be inverted (=1) or not (=0).
rotated_pos = arm.read("Present_Position")
drive_mode = (rotated_pos < zero_pos).astype(np.int32)
# Re-compute homing offset to take into account drive mode
rotated_drived_pos = apply_drive_mode(rotated_pos, drive_mode)
rotated_nearest_pos = compute_nearest_rounded_position(rotated_drived_pos, arm.motor_models)
homing_offset = rotated_target_pos - rotated_nearest_pos
print("\nMove arm to rest position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rest"))
input("Press Enter to continue...")
print()
# Joints with rotational motions are expressed in degrees in nominal range of [-180, 180]
calib_mode = [CalibrationMode.DEGREE.name] * len(arm.motor_names)
# TODO(rcadene): make type of joints (DEGREE or LINEAR) configurable from yaml?
if robot_type in ["aloha"] and "gripper" in arm.motor_names:
# Joints with linear motions (like gripper of Aloha) are experessed in nominal range of [0, 100]
calib_idx = arm.motor_names.index("gripper")
calib_mode[calib_idx] = CalibrationMode.LINEAR.name
calib_data = {
"homing_offset": homing_offset.tolist(),
"drive_mode": drive_mode.tolist(),
"start_pos": zero_pos.tolist(),
"end_pos": rotated_pos.tolist(),
"calib_mode": calib_mode,
"motor_names": arm.motor_names,
}
return calib_data

View File

@@ -0,0 +1,9 @@
import hydra
from omegaconf import DictConfig
from lerobot.common.robot_devices.robots.utils import Robot
def make_robot(cfg: DictConfig) -> Robot:
robot = hydra.utils.instantiate(cfg)
return robot

View File

@@ -0,0 +1,484 @@
"""Logic to calibrate a robot arm built with feetech motors"""
# TODO(rcadene, aliberts): move this logic into the robot code when refactoring
import time
import numpy as np
from lerobot.common.robot_devices.motors.feetech import (
CalibrationMode,
TorqueMode,
convert_degrees_to_steps,
)
from lerobot.common.robot_devices.motors.utils import MotorsBus
URL_TEMPLATE = (
"https://raw.githubusercontent.com/huggingface/lerobot/main/media/{robot}/{arm}_{position}.webp"
)
# The following positions are provided in nominal degree range ]-180, +180[
# For more info on these constants, see comments in the code where they get used.
ZERO_POSITION_DEGREE = 0
ROTATED_POSITION_DEGREE = 90
def assert_drive_mode(drive_mode):
# `drive_mode` is in [0,1] with 0 means original rotation direction for the motor, and 1 means inverted.
if not np.all(np.isin(drive_mode, [0, 1])):
raise ValueError(f"`drive_mode` contains values other than 0 or 1: ({drive_mode})")
def apply_drive_mode(position, drive_mode):
assert_drive_mode(drive_mode)
# Convert `drive_mode` from [0, 1] with 0 indicates original rotation direction and 1 inverted,
# to [-1, 1] with 1 indicates original rotation direction and -1 inverted.
signed_drive_mode = -(drive_mode * 2 - 1)
position *= signed_drive_mode
return position
def move_until_block(arm, motor_name, positive_direction=True, while_move_hook=None):
count = 0
while True:
present_pos = arm.read("Present_Position", motor_name)
if positive_direction:
# Move +100 steps every time. Lower the steps to lower the speed at which the arm moves.
arm.write("Goal_Position", present_pos + 100, motor_name)
else:
arm.write("Goal_Position", present_pos - 100, motor_name)
if while_move_hook is not None:
while_move_hook()
present_pos = arm.read("Present_Position", motor_name).item()
present_speed = arm.read("Present_Speed", motor_name).item()
present_current = arm.read("Present_Current", motor_name).item()
# present_load = arm.read("Present_Load", motor_name).item()
# present_voltage = arm.read("Present_Voltage", motor_name).item()
# present_temperature = arm.read("Present_Temperature", motor_name).item()
# print(f"{present_pos=}")
# print(f"{present_speed=}")
# print(f"{present_current=}")
# print(f"{present_load=}")
# print(f"{present_voltage=}")
# print(f"{present_temperature=}")
if present_speed == 0 and present_current > 40:
count += 1
if count > 100 or present_current > 300:
return present_pos
else:
count = 0
def move_to_calibrate(
arm,
motor_name,
invert_drive_mode=False,
positive_first=True,
in_between_move_hook=None,
while_move_hook=None,
):
initial_pos = arm.read("Present_Position", motor_name)
if positive_first:
p_present_pos = move_until_block(
arm, motor_name, positive_direction=True, while_move_hook=while_move_hook
)
else:
n_present_pos = move_until_block(
arm, motor_name, positive_direction=False, while_move_hook=while_move_hook
)
if in_between_move_hook is not None:
in_between_move_hook()
if positive_first:
n_present_pos = move_until_block(
arm, motor_name, positive_direction=False, while_move_hook=while_move_hook
)
else:
p_present_pos = move_until_block(
arm, motor_name, positive_direction=True, while_move_hook=while_move_hook
)
zero_pos = (n_present_pos + p_present_pos) / 2
calib_data = {
"initial_pos": initial_pos,
"homing_offset": zero_pos if invert_drive_mode else -zero_pos,
"invert_drive_mode": invert_drive_mode,
"drive_mode": -1 if invert_drive_mode else 0,
"zero_pos": zero_pos,
"start_pos": n_present_pos if invert_drive_mode else p_present_pos,
"end_pos": p_present_pos if invert_drive_mode else n_present_pos,
}
return calib_data
def apply_offset(calib, offset):
calib["zero_pos"] += offset
if calib["drive_mode"]:
calib["homing_offset"] += offset
else:
calib["homing_offset"] -= offset
return calib
def run_arm_auto_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
if robot_type == "so100":
return run_arm_auto_calibration_so100(arm, robot_type, arm_name, arm_type)
elif robot_type == "moss":
return run_arm_auto_calibration_moss(arm, robot_type, arm_name, arm_type)
else:
raise ValueError(robot_type)
def run_arm_auto_calibration_so100(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
"""All the offsets and magic numbers are hand tuned, and are unique to SO-100 follower arms"""
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
raise ValueError("To run calibration, the torque must be disabled on all motors.")
if not (robot_type == "so100" and arm_type == "follower"):
raise NotImplementedError("Auto calibration only supports the follower of so100 arms for now.")
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
print("\nMove arm to initial position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="initial"))
input("Press Enter to continue...")
# Lower the acceleration of the motors (in [0,254])
initial_acceleration = arm.read("Acceleration")
arm.write("Lock", 0)
arm.write("Acceleration", 10)
time.sleep(1)
arm.write("Torque_Enable", TorqueMode.ENABLED.value)
print(f'{arm.read("Present_Position", "elbow_flex")=}')
calib = {}
init_wf_pos = arm.read("Present_Position", "wrist_flex")
init_sl_pos = arm.read("Present_Position", "shoulder_lift")
init_ef_pos = arm.read("Present_Position", "elbow_flex")
arm.write("Goal_Position", init_wf_pos - 800, "wrist_flex")
arm.write("Goal_Position", init_sl_pos + 150 + 1024, "shoulder_lift")
arm.write("Goal_Position", init_ef_pos - 2048, "elbow_flex")
time.sleep(2)
print("Calibrate shoulder_pan")
calib["shoulder_pan"] = move_to_calibrate(arm, "shoulder_pan")
arm.write("Goal_Position", calib["shoulder_pan"]["zero_pos"], "shoulder_pan")
time.sleep(1)
print("Calibrate gripper")
calib["gripper"] = move_to_calibrate(arm, "gripper", invert_drive_mode=True)
time.sleep(1)
print("Calibrate wrist_flex")
calib["wrist_flex"] = move_to_calibrate(arm, "wrist_flex")
calib["wrist_flex"] = apply_offset(calib["wrist_flex"], offset=80)
def in_between_move_hook():
nonlocal arm, calib
time.sleep(2)
ef_pos = arm.read("Present_Position", "elbow_flex")
sl_pos = arm.read("Present_Position", "shoulder_lift")
arm.write("Goal_Position", ef_pos + 1024, "elbow_flex")
arm.write("Goal_Position", sl_pos - 1024, "shoulder_lift")
time.sleep(2)
print("Calibrate elbow_flex")
calib["elbow_flex"] = move_to_calibrate(
arm, "elbow_flex", positive_first=False, in_between_move_hook=in_between_move_hook
)
calib["elbow_flex"] = apply_offset(calib["elbow_flex"], offset=80 - 1024)
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] + 1024 + 512, "elbow_flex")
time.sleep(1)
def in_between_move_hook():
nonlocal arm, calib
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"], "elbow_flex")
print("Calibrate shoulder_lift")
calib["shoulder_lift"] = move_to_calibrate(
arm,
"shoulder_lift",
invert_drive_mode=True,
positive_first=False,
in_between_move_hook=in_between_move_hook,
)
# add an 30 steps as offset to align with body
calib["shoulder_lift"] = apply_offset(calib["shoulder_lift"], offset=1024 - 50)
def while_move_hook():
nonlocal arm, calib
positions = {
"shoulder_lift": round(calib["shoulder_lift"]["zero_pos"] - 1600),
"elbow_flex": round(calib["elbow_flex"]["zero_pos"] + 1700),
"wrist_flex": round(calib["wrist_flex"]["zero_pos"] + 800),
"gripper": round(calib["gripper"]["end_pos"]),
}
arm.write("Goal_Position", list(positions.values()), list(positions.keys()))
arm.write("Goal_Position", round(calib["shoulder_lift"]["zero_pos"] - 1600), "shoulder_lift")
time.sleep(2)
arm.write("Goal_Position", round(calib["elbow_flex"]["zero_pos"] + 1700), "elbow_flex")
time.sleep(2)
arm.write("Goal_Position", round(calib["wrist_flex"]["zero_pos"] + 800), "wrist_flex")
time.sleep(2)
arm.write("Goal_Position", round(calib["gripper"]["end_pos"]), "gripper")
time.sleep(2)
print("Calibrate wrist_roll")
calib["wrist_roll"] = move_to_calibrate(
arm, "wrist_roll", invert_drive_mode=True, positive_first=False, while_move_hook=while_move_hook
)
arm.write("Goal_Position", calib["wrist_roll"]["zero_pos"], "wrist_roll")
time.sleep(1)
arm.write("Goal_Position", calib["gripper"]["start_pos"], "gripper")
time.sleep(1)
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"], "wrist_flex")
time.sleep(1)
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] + 2048, "elbow_flex")
arm.write("Goal_Position", calib["shoulder_lift"]["zero_pos"] - 2048, "shoulder_lift")
time.sleep(1)
arm.write("Goal_Position", calib["shoulder_pan"]["zero_pos"], "shoulder_pan")
time.sleep(1)
calib_modes = []
for name in arm.motor_names:
if name == "gripper":
calib_modes.append(CalibrationMode.LINEAR.name)
else:
calib_modes.append(CalibrationMode.DEGREE.name)
calib_dict = {
"homing_offset": [calib[name]["homing_offset"] for name in arm.motor_names],
"drive_mode": [calib[name]["drive_mode"] for name in arm.motor_names],
"start_pos": [calib[name]["start_pos"] for name in arm.motor_names],
"end_pos": [calib[name]["end_pos"] for name in arm.motor_names],
"calib_mode": calib_modes,
"motor_names": arm.motor_names,
}
# Re-enable original accerlation
arm.write("Lock", 0)
arm.write("Acceleration", initial_acceleration)
time.sleep(1)
return calib_dict
def run_arm_auto_calibration_moss(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
"""All the offsets and magic numbers are hand tuned, and are unique to SO-100 follower arms"""
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
raise ValueError("To run calibration, the torque must be disabled on all motors.")
if not (robot_type == "moss" and arm_type == "follower"):
raise NotImplementedError("Auto calibration only supports the follower of moss arms for now.")
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
print("\nMove arm to initial position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="initial"))
input("Press Enter to continue...")
# Lower the acceleration of the motors (in [0,254])
initial_acceleration = arm.read("Acceleration")
arm.write("Lock", 0)
arm.write("Acceleration", 10)
time.sleep(1)
arm.write("Torque_Enable", TorqueMode.ENABLED.value)
sl_pos = arm.read("Present_Position", "shoulder_lift")
arm.write("Goal_Position", sl_pos - 1024 - 450, "shoulder_lift")
ef_pos = arm.read("Present_Position", "elbow_flex")
arm.write("Goal_Position", ef_pos + 1024 + 450, "elbow_flex")
time.sleep(2)
calib = {}
print("Calibrate shoulder_pan")
calib["shoulder_pan"] = move_to_calibrate(arm, "shoulder_pan")
arm.write("Goal_Position", calib["shoulder_pan"]["zero_pos"], "shoulder_pan")
time.sleep(1)
print("Calibrate gripper")
calib["gripper"] = move_to_calibrate(arm, "gripper", invert_drive_mode=True)
time.sleep(1)
print("Calibrate wrist_flex")
calib["wrist_flex"] = move_to_calibrate(arm, "wrist_flex", invert_drive_mode=True)
calib["wrist_flex"] = apply_offset(calib["wrist_flex"], offset=-210 + 1024)
wr_pos = arm.read("Present_Position", "wrist_roll")
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 1024, "wrist_flex")
time.sleep(1)
arm.write("Goal_Position", wr_pos - 1024, "wrist_roll")
time.sleep(1)
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 2048, "wrist_flex")
time.sleep(1)
arm.write("Goal_Position", calib["gripper"]["end_pos"], "gripper")
time.sleep(1)
print("Calibrate wrist_roll")
calib["wrist_roll"] = move_to_calibrate(arm, "wrist_roll", invert_drive_mode=True)
calib["wrist_roll"] = apply_offset(calib["wrist_roll"], offset=790)
arm.write("Goal_Position", calib["wrist_roll"]["zero_pos"] - 1024, "wrist_roll")
arm.write("Goal_Position", calib["gripper"]["start_pos"], "gripper")
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 1024, "wrist_flex")
time.sleep(1)
arm.write("Goal_Position", calib["wrist_roll"]["zero_pos"], "wrist_roll")
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 2048, "wrist_flex")
def in_between_move_elbow_flex_hook():
nonlocal arm, calib
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"], "wrist_flex")
print("Calibrate elbow_flex")
calib["elbow_flex"] = move_to_calibrate(
arm,
"elbow_flex",
invert_drive_mode=True,
in_between_move_hook=in_between_move_elbow_flex_hook,
)
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 1024, "wrist_flex")
def in_between_move_shoulder_lift_hook():
nonlocal arm, calib
sl = arm.read("Present_Position", "shoulder_lift")
arm.write("Goal_Position", sl - 1500, "shoulder_lift")
time.sleep(1)
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] + 1536, "elbow_flex")
time.sleep(1)
arm.write("Goal_Position", calib["wrist_flex"]["start_pos"], "wrist_flex")
time.sleep(1)
print("Calibrate shoulder_lift")
calib["shoulder_lift"] = move_to_calibrate(
arm, "shoulder_lift", in_between_move_hook=in_between_move_shoulder_lift_hook
)
calib["shoulder_lift"] = apply_offset(calib["shoulder_lift"], offset=-1024)
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 1024, "wrist_flex")
time.sleep(1)
arm.write("Goal_Position", calib["shoulder_lift"]["zero_pos"] + 2048, "shoulder_lift")
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] - 1024 - 400, "elbow_flex")
time.sleep(2)
calib_modes = []
for name in arm.motor_names:
if name == "gripper":
calib_modes.append(CalibrationMode.LINEAR.name)
else:
calib_modes.append(CalibrationMode.DEGREE.name)
calib_dict = {
"homing_offset": [calib[name]["homing_offset"] for name in arm.motor_names],
"drive_mode": [calib[name]["drive_mode"] for name in arm.motor_names],
"start_pos": [calib[name]["start_pos"] for name in arm.motor_names],
"end_pos": [calib[name]["end_pos"] for name in arm.motor_names],
"calib_mode": calib_modes,
"motor_names": arm.motor_names,
}
# Re-enable original accerlation
arm.write("Lock", 0)
arm.write("Acceleration", initial_acceleration)
time.sleep(1)
return calib_dict
def run_arm_manual_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
"""This function ensures that a neural network trained on data collected on a given robot
can work on another robot. For instance before calibration, setting a same goal position
for each motor of two different robots will get two very different positions. But after calibration,
the two robots will move to the same position.To this end, this function computes the homing offset
and the drive mode for each motor of a given robot.
Homing offset is used to shift the motor position to a ]-2048, +2048[ nominal range (when the motor uses 2048 steps
to complete a half a turn). This range is set around an arbitrary "zero position" corresponding to all motor positions
being 0. During the calibration process, you will need to manually move the robot to this "zero position".
Drive mode is used to invert the rotation direction of the motor. This is useful when some motors have been assembled
in the opposite orientation for some robots. During the calibration process, you will need to manually move the robot
to the "rotated position".
After calibration, the homing offsets and drive modes are stored in a cache.
Example of usage:
```python
run_arm_calibration(arm, "so100", "left", "follower")
```
"""
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
raise ValueError("To run calibration, the torque must be disabled on all motors.")
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
print("\nMove arm to zero position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="zero"))
input("Press Enter to continue...")
# We arbitrarily chose our zero target position to be a straight horizontal position with gripper upwards and closed.
# It is easy to identify and all motors are in a "quarter turn" position. Once calibration is done, this position will
# correspond to every motor angle being 0. If you set all 0 as Goal Position, the arm will move in this position.
zero_target_pos = convert_degrees_to_steps(ZERO_POSITION_DEGREE, arm.motor_models)
# Compute homing offset so that `present_position + homing_offset ~= target_position`.
zero_pos = arm.read("Present_Position")
homing_offset = zero_target_pos - zero_pos
# The rotated target position corresponds to a rotation of a quarter turn from the zero position.
# This allows to identify the rotation direction of each motor.
# For instance, if the motor rotates 90 degree, and its value is -90 after applying the homing offset, then we know its rotation direction
# is inverted. However, for the calibration being successful, we need everyone to follow the same target position.
# Sometimes, there is only one possible rotation direction. For instance, if the gripper is closed, there is only one direction which
# corresponds to opening the gripper. When the rotation direction is ambiguous, we arbitrarely rotate clockwise from the point of view
# of the previous motor in the kinetic chain.
print("\nMove arm to rotated target position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rotated"))
input("Press Enter to continue...")
rotated_target_pos = convert_degrees_to_steps(ROTATED_POSITION_DEGREE, arm.motor_models)
# Find drive mode by rotating each motor by a quarter of a turn.
# Drive mode indicates if the motor rotation direction should be inverted (=1) or not (=0).
rotated_pos = arm.read("Present_Position")
drive_mode = (rotated_pos < zero_pos).astype(np.int32)
# Re-compute homing offset to take into account drive mode
rotated_drived_pos = apply_drive_mode(rotated_pos, drive_mode)
homing_offset = rotated_target_pos - rotated_drived_pos
print("\nMove arm to rest position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rest"))
input("Press Enter to continue...")
print()
# Joints with rotational motions are expressed in degrees in nominal range of [-180, 180]
calib_modes = []
for name in arm.motor_names:
if name == "gripper":
calib_modes.append(CalibrationMode.LINEAR.name)
else:
calib_modes.append(CalibrationMode.DEGREE.name)
calib_dict = {
"homing_offset": homing_offset.tolist(),
"drive_mode": drive_mode.tolist(),
"start_pos": zero_pos.tolist(),
"end_pos": rotated_pos.tolist(),
"calib_mode": calib_modes,
"motor_names": arm.motor_names,
}
return calib_dict

View File

@@ -0,0 +1,686 @@
"""Contains logic to instantiate a robot, read information from its motors and cameras,
and send orders to its motors.
"""
# TODO(rcadene, aliberts): reorganize the codebase into one file per robot, with the associated
# calibration procedure, to make it easy for people to add their own robot.
import json
import logging
import time
import warnings
from dataclasses import dataclass, field, replace
from pathlib import Path
from typing import Sequence
import numpy as np
import torch
from lerobot.common.robot_devices.cameras.utils import Camera
from lerobot.common.robot_devices.motors.utils import MotorsBus
from lerobot.common.robot_devices.robots.utils import get_arm_id
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
def ensure_safe_goal_position(
goal_pos: torch.Tensor, present_pos: torch.Tensor, max_relative_target: float | list[float]
):
# Cap relative action target magnitude for safety.
diff = goal_pos - present_pos
max_relative_target = torch.tensor(max_relative_target)
safe_diff = torch.minimum(diff, max_relative_target)
safe_diff = torch.maximum(safe_diff, -max_relative_target)
safe_goal_pos = present_pos + safe_diff
if not torch.allclose(goal_pos, safe_goal_pos):
logging.warning(
"Relative goal position magnitude had to be clamped to be safe.\n"
f" requested relative goal position target: {diff}\n"
f" clamped relative goal position target: {safe_diff}"
)
return safe_goal_pos
@dataclass
class ManipulatorRobotConfig:
"""
Example of usage:
```python
ManipulatorRobotConfig()
```
"""
# Define all components of the robot
robot_type: str = "koch"
leader_arms: dict[str, MotorsBus] = field(default_factory=lambda: {})
follower_arms: dict[str, MotorsBus] = field(default_factory=lambda: {})
cameras: dict[str, Camera] = field(default_factory=lambda: {})
# Optionally limit the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length
# as the number of motors in your follower arms (assumes all follower arms have the same number of
# motors).
max_relative_target: list[float] | float | None = None
# Optionally set the leader arm in torque mode with the gripper motor set to this angle. This makes it
# possible to squeeze the gripper and have it spring back to an open position on its own. If None, the
# gripper is not put in torque mode.
gripper_open_degree: float | None = None
def __setattr__(self, prop: str, val):
if prop == "max_relative_target" and val is not None and isinstance(val, Sequence):
for name in self.follower_arms:
if len(self.follower_arms[name].motors) != len(val):
raise ValueError(
f"len(max_relative_target)={len(val)} but the follower arm with name {name} has "
f"{len(self.follower_arms[name].motors)} motors. Please make sure that the "
f"`max_relative_target` list has as many parameters as there are motors per arm. "
"Note: This feature does not yet work with robots where different follower arms have "
"different numbers of motors."
)
super().__setattr__(prop, val)
def __post_init__(self):
if self.robot_type not in ["koch", "koch_bimanual", "aloha", "so100", "moss"]:
raise ValueError(f"Provided robot type ({self.robot_type}) is not supported.")
class ManipulatorRobot:
# TODO(rcadene): Implement force feedback
"""This class allows to control any manipulator robot of various number of motors.
Non exaustive list of robots:
- [Koch v1.0](https://github.com/AlexanderKoch-Koch/low_cost_robot), with and without the wrist-to-elbow expansion, developed
by Alexander Koch from [Tau Robotics](https://tau-robotics.com)
- [Koch v1.1](https://github.com/jess-moss/koch-v1-1) developed by Jess Moss
- [Aloha](https://www.trossenrobotics.com/aloha-kits) developed by Trossen Robotics
Example of highest frequency teleoperation without camera:
```python
# Defines how to communicate with the motors of the leader and follower arms
leader_arms = {
"main": DynamixelMotorsBus(
port="/dev/tty.usbmodem575E0031751",
motors={
# name: (index, model)
"shoulder_pan": (1, "xl330-m077"),
"shoulder_lift": (2, "xl330-m077"),
"elbow_flex": (3, "xl330-m077"),
"wrist_flex": (4, "xl330-m077"),
"wrist_roll": (5, "xl330-m077"),
"gripper": (6, "xl330-m077"),
},
),
}
follower_arms = {
"main": DynamixelMotorsBus(
port="/dev/tty.usbmodem575E0032081",
motors={
# name: (index, model)
"shoulder_pan": (1, "xl430-w250"),
"shoulder_lift": (2, "xl430-w250"),
"elbow_flex": (3, "xl330-m288"),
"wrist_flex": (4, "xl330-m288"),
"wrist_roll": (5, "xl330-m288"),
"gripper": (6, "xl330-m288"),
},
),
}
robot = ManipulatorRobot(
robot_type="koch",
calibration_dir=".cache/calibration/koch",
leader_arms=leader_arms,
follower_arms=follower_arms,
)
# Connect motors buses and cameras if any (Required)
robot.connect()
while True:
robot.teleop_step()
```
Example of highest frequency data collection without camera:
```python
# Assumes leader and follower arms have been instantiated already (see first example)
robot = ManipulatorRobot(
robot_type="koch",
calibration_dir=".cache/calibration/koch",
leader_arms=leader_arms,
follower_arms=follower_arms,
)
robot.connect()
while True:
observation, action = robot.teleop_step(record_data=True)
```
Example of highest frequency data collection with cameras:
```python
# Defines how to communicate with 2 cameras connected to the computer.
# Here, the webcam of the laptop and the phone (connected in USB to the laptop)
# can be reached respectively using the camera indices 0 and 1. These indices can be
# arbitrary. See the documentation of `OpenCVCamera` to find your own camera indices.
cameras = {
"laptop": OpenCVCamera(camera_index=0, fps=30, width=640, height=480),
"phone": OpenCVCamera(camera_index=1, fps=30, width=640, height=480),
}
# Assumes leader and follower arms have been instantiated already (see first example)
robot = ManipulatorRobot(
robot_type="koch",
calibration_dir=".cache/calibration/koch",
leader_arms=leader_arms,
follower_arms=follower_arms,
cameras=cameras,
)
robot.connect()
while True:
observation, action = robot.teleop_step(record_data=True)
```
Example of controlling the robot with a policy (without running multiple policies in parallel to ensure highest frequency):
```python
# Assumes leader and follower arms + cameras have been instantiated already (see previous example)
robot = ManipulatorRobot(
robot_type="koch",
calibration_dir=".cache/calibration/koch",
leader_arms=leader_arms,
follower_arms=follower_arms,
cameras=cameras,
)
robot.connect()
while True:
# Uses the follower arms and cameras to capture an observation
observation = robot.capture_observation()
# Assumes a policy has been instantiated
with torch.inference_mode():
action = policy.select_action(observation)
# Orders the robot to move
robot.send_action(action)
```
Example of disconnecting which is not mandatory since we disconnect when the object is deleted:
```python
robot.disconnect()
```
"""
def __init__(
self,
config: ManipulatorRobotConfig | None = None,
calibration_dir: Path = ".cache/calibration/koch",
**kwargs,
):
if config is None:
config = ManipulatorRobotConfig()
# Overwrite config arguments using kwargs
self.config = replace(config, **kwargs)
self.calibration_dir = Path(calibration_dir)
self.robot_type = self.config.robot_type
self.leader_arms = self.config.leader_arms
self.follower_arms = self.config.follower_arms
self.cameras = self.config.cameras
self.is_connected = False
self.logs = {}
def get_motor_names(self, arm: dict[str, MotorsBus]) -> list:
return [f"{arm}_{motor}" for arm, bus in arm.items() for motor in bus.motors]
@property
def camera_features(self) -> dict:
cam_ft = {}
for cam_key, cam in self.cameras.items():
key = f"observation.images.{cam_key}"
cam_ft[key] = {
"shape": (cam.height, cam.width, cam.channels),
"names": ["height", "width", "channels"],
"info": None,
}
return cam_ft
@property
def motor_features(self) -> dict:
action_names = self.get_motor_names(self.leader_arms)
state_names = self.get_motor_names(self.leader_arms)
return {
"action": {
"dtype": "float32",
"shape": (len(action_names),),
"names": action_names,
},
"observation.state": {
"dtype": "float32",
"shape": (len(state_names),),
"names": state_names,
},
}
@property
def features(self):
return {**self.motor_features, **self.camera_features}
@property
def has_camera(self):
return len(self.cameras) > 0
@property
def num_cameras(self):
return len(self.cameras)
@property
def available_arms(self):
available_arms = []
for name in self.follower_arms:
arm_id = get_arm_id(name, "follower")
available_arms.append(arm_id)
for name in self.leader_arms:
arm_id = get_arm_id(name, "leader")
available_arms.append(arm_id)
return available_arms
def connect(self):
if self.is_connected:
raise RobotDeviceAlreadyConnectedError(
"ManipulatorRobot is already connected. Do not run `robot.connect()` twice."
)
if not self.leader_arms and not self.follower_arms and not self.cameras:
raise ValueError(
"ManipulatorRobot doesn't have any device to connect. See example of usage in docstring of the class."
)
# Connect the arms
for name in self.follower_arms:
print(f"Connecting {name} follower arm.")
self.follower_arms[name].connect()
for name in self.leader_arms:
print(f"Connecting {name} leader arm.")
self.leader_arms[name].connect()
if self.robot_type in ["koch", "koch_bimanual", "aloha"]:
from lerobot.common.robot_devices.motors.dynamixel import TorqueMode
elif self.robot_type in ["so100", "moss"]:
from lerobot.common.robot_devices.motors.feetech import TorqueMode
# We assume that at connection time, arms are in a rest position, and torque can
# be safely disabled to run calibration and/or set robot preset configurations.
for name in self.follower_arms:
self.follower_arms[name].write("Torque_Enable", TorqueMode.DISABLED.value)
for name in self.leader_arms:
self.leader_arms[name].write("Torque_Enable", TorqueMode.DISABLED.value)
self.activate_calibration()
# Set robot preset (e.g. torque in leader gripper for Koch v1.1)
if self.robot_type in ["koch", "koch_bimanual"]:
self.set_koch_robot_preset()
elif self.robot_type == "aloha":
self.set_aloha_robot_preset()
elif self.robot_type in ["so100", "moss"]:
self.set_so100_robot_preset()
# Enable torque on all motors of the follower arms
for name in self.follower_arms:
print(f"Activating torque on {name} follower arm.")
self.follower_arms[name].write("Torque_Enable", 1)
if self.config.gripper_open_degree is not None:
if self.robot_type not in ["koch", "koch_bimanual"]:
raise NotImplementedError(
f"{self.robot_type} does not support position AND current control in the handle, which is require to set the gripper open."
)
# Set the leader arm in torque mode with the gripper motor set to an angle. This makes it possible
# to squeeze the gripper and have it spring back to an open position on its own.
for name in self.leader_arms:
self.leader_arms[name].write("Torque_Enable", 1, "gripper")
self.leader_arms[name].write("Goal_Position", self.config.gripper_open_degree, "gripper")
# Check both arms can be read
for name in self.follower_arms:
self.follower_arms[name].read("Present_Position")
for name in self.leader_arms:
self.leader_arms[name].read("Present_Position")
# Connect the cameras
for name in self.cameras:
self.cameras[name].connect()
self.is_connected = True
def activate_calibration(self):
"""After calibration all motors function in human interpretable ranges.
Rotations are expressed in degrees in nominal range of [-180, 180],
and linear motions (like gripper of Aloha) in nominal range of [0, 100].
"""
def load_or_run_calibration_(name, arm, arm_type):
arm_id = get_arm_id(name, arm_type)
arm_calib_path = self.calibration_dir / f"{arm_id}.json"
if arm_calib_path.exists():
with open(arm_calib_path) as f:
calibration = json.load(f)
else:
# TODO(rcadene): display a warning in __init__ if calibration file not available
print(f"Missing calibration file '{arm_calib_path}'")
if self.robot_type in ["koch", "koch_bimanual", "aloha"]:
from lerobot.common.robot_devices.robots.dynamixel_calibration import run_arm_calibration
calibration = run_arm_calibration(arm, self.robot_type, name, arm_type)
elif self.robot_type in ["so100", "moss"]:
from lerobot.common.robot_devices.robots.feetech_calibration import (
run_arm_manual_calibration,
)
calibration = run_arm_manual_calibration(arm, self.robot_type, name, arm_type)
print(f"Calibration is done! Saving calibration file '{arm_calib_path}'")
arm_calib_path.parent.mkdir(parents=True, exist_ok=True)
with open(arm_calib_path, "w") as f:
json.dump(calibration, f)
return calibration
for name, arm in self.follower_arms.items():
calibration = load_or_run_calibration_(name, arm, "follower")
arm.set_calibration(calibration)
for name, arm in self.leader_arms.items():
calibration = load_or_run_calibration_(name, arm, "leader")
arm.set_calibration(calibration)
def set_koch_robot_preset(self):
def set_operating_mode_(arm):
from lerobot.common.robot_devices.motors.dynamixel import TorqueMode
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
raise ValueError("To run set robot preset, the torque must be disabled on all motors.")
# Use 'extended position mode' for all motors except gripper, because in joint mode the servos can't
# rotate more than 360 degrees (from 0 to 4095) And some mistake can happen while assembling the arm,
# you could end up with a servo with a position 0 or 4095 at a crucial point See [
# https://emanual.robotis.com/docs/en/dxl/x/x_series/#operating-mode11]
all_motors_except_gripper = [name for name in arm.motor_names if name != "gripper"]
if len(all_motors_except_gripper) > 0:
# 4 corresponds to Extended Position on Koch motors
arm.write("Operating_Mode", 4, all_motors_except_gripper)
# Use 'position control current based' for gripper to be limited by the limit of the current.
# For the follower gripper, it means it can grasp an object without forcing too much even tho,
# it's goal position is a complete grasp (both gripper fingers are ordered to join and reach a touch).
# For the leader gripper, it means we can use it as a physical trigger, since we can force with our finger
# to make it move, and it will move back to its original target position when we release the force.
# 5 corresponds to Current Controlled Position on Koch gripper motors "xl330-m077, xl330-m288"
arm.write("Operating_Mode", 5, "gripper")
for name in self.follower_arms:
set_operating_mode_(self.follower_arms[name])
# Set better PID values to close the gap between recorded states and actions
# TODO(rcadene): Implement an automatic procedure to set optimial PID values for each motor
self.follower_arms[name].write("Position_P_Gain", 1500, "elbow_flex")
self.follower_arms[name].write("Position_I_Gain", 0, "elbow_flex")
self.follower_arms[name].write("Position_D_Gain", 600, "elbow_flex")
if self.config.gripper_open_degree is not None:
for name in self.leader_arms:
set_operating_mode_(self.leader_arms[name])
# Enable torque on the gripper of the leader arms, and move it to 45 degrees,
# so that we can use it as a trigger to close the gripper of the follower arms.
self.leader_arms[name].write("Torque_Enable", 1, "gripper")
self.leader_arms[name].write("Goal_Position", self.config.gripper_open_degree, "gripper")
def set_aloha_robot_preset(self):
def set_shadow_(arm):
# Set secondary/shadow ID for shoulder and elbow. These joints have two motors.
# As a result, if only one of them is required to move to a certain position,
# the other will follow. This is to avoid breaking the motors.
if "shoulder_shadow" in arm.motor_names:
shoulder_idx = arm.read("ID", "shoulder")
arm.write("Secondary_ID", shoulder_idx, "shoulder_shadow")
if "elbow_shadow" in arm.motor_names:
elbow_idx = arm.read("ID", "elbow")
arm.write("Secondary_ID", elbow_idx, "elbow_shadow")
for name in self.follower_arms:
set_shadow_(self.follower_arms[name])
for name in self.leader_arms:
set_shadow_(self.leader_arms[name])
for name in self.follower_arms:
# Set a velocity limit of 131 as advised by Trossen Robotics
self.follower_arms[name].write("Velocity_Limit", 131)
# Use 'extended position mode' for all motors except gripper, because in joint mode the servos can't
# rotate more than 360 degrees (from 0 to 4095) And some mistake can happen while assembling the arm,
# you could end up with a servo with a position 0 or 4095 at a crucial point See [
# https://emanual.robotis.com/docs/en/dxl/x/x_series/#operating-mode11]
all_motors_except_gripper = [
name for name in self.follower_arms[name].motor_names if name != "gripper"
]
if len(all_motors_except_gripper) > 0:
# 4 corresponds to Extended Position on Aloha motors
self.follower_arms[name].write("Operating_Mode", 4, all_motors_except_gripper)
# Use 'position control current based' for follower gripper to be limited by the limit of the current.
# It can grasp an object without forcing too much even tho,
# it's goal position is a complete grasp (both gripper fingers are ordered to join and reach a touch).
# 5 corresponds to Current Controlled Position on Aloha gripper follower "xm430-w350"
self.follower_arms[name].write("Operating_Mode", 5, "gripper")
# Note: We can't enable torque on the leader gripper since "xc430-w150" doesn't have
# a Current Controlled Position mode.
if self.config.gripper_open_degree is not None:
warnings.warn(
f"`gripper_open_degree` is set to {self.config.gripper_open_degree}, but None is expected for Aloha instead",
stacklevel=1,
)
def set_so100_robot_preset(self):
for name in self.follower_arms:
# Mode=0 for Position Control
self.follower_arms[name].write("Mode", 0)
# Set P_Coefficient to lower value to avoid shakiness (Default is 32)
self.follower_arms[name].write("P_Coefficient", 16)
# Set I_Coefficient and D_Coefficient to default value 0 and 32
self.follower_arms[name].write("I_Coefficient", 0)
self.follower_arms[name].write("D_Coefficient", 32)
# Close the write lock so that Maximum_Acceleration gets written to EPROM address,
# which is mandatory for Maximum_Acceleration to take effect after rebooting.
self.follower_arms[name].write("Lock", 0)
# Set Maximum_Acceleration to 254 to speedup acceleration and deceleration of
# the motors. Note: this configuration is not in the official STS3215 Memory Table
self.follower_arms[name].write("Maximum_Acceleration", 254)
self.follower_arms[name].write("Acceleration", 254)
def teleop_step(
self, record_data=False
) -> None | tuple[dict[str, torch.Tensor], dict[str, torch.Tensor]]:
if not self.is_connected:
raise RobotDeviceNotConnectedError(
"ManipulatorRobot is not connected. You need to run `robot.connect()`."
)
# Prepare to assign the position of the leader to the follower
leader_pos = {}
for name in self.leader_arms:
before_lread_t = time.perf_counter()
leader_pos[name] = self.leader_arms[name].read("Present_Position")
leader_pos[name] = torch.from_numpy(leader_pos[name])
self.logs[f"read_leader_{name}_pos_dt_s"] = time.perf_counter() - before_lread_t
# Send goal position to the follower
follower_goal_pos = {}
for name in self.follower_arms:
before_fwrite_t = time.perf_counter()
goal_pos = leader_pos[name]
# Cap goal position when too far away from present position.
# Slower fps expected due to reading from the follower.
if self.config.max_relative_target is not None:
present_pos = self.follower_arms[name].read("Present_Position")
present_pos = torch.from_numpy(present_pos)
goal_pos = ensure_safe_goal_position(goal_pos, present_pos, self.config.max_relative_target)
# Used when record_data=True
follower_goal_pos[name] = goal_pos
goal_pos = goal_pos.numpy().astype(np.int32)
self.follower_arms[name].write("Goal_Position", goal_pos)
self.logs[f"write_follower_{name}_goal_pos_dt_s"] = time.perf_counter() - before_fwrite_t
# Early exit when recording data is not requested
if not record_data:
return
# TODO(rcadene): Add velocity and other info
# Read follower position
follower_pos = {}
for name in self.follower_arms:
before_fread_t = time.perf_counter()
follower_pos[name] = self.follower_arms[name].read("Present_Position")
follower_pos[name] = torch.from_numpy(follower_pos[name])
self.logs[f"read_follower_{name}_pos_dt_s"] = time.perf_counter() - before_fread_t
# Create state by concatenating follower current position
state = []
for name in self.follower_arms:
if name in follower_pos:
state.append(follower_pos[name])
state = torch.cat(state)
# Create action by concatenating follower goal position
action = []
for name in self.follower_arms:
if name in follower_goal_pos:
action.append(follower_goal_pos[name])
action = torch.cat(action)
# Capture images from cameras
images = {}
for name in self.cameras:
before_camread_t = time.perf_counter()
images[name] = self.cameras[name].async_read()
images[name] = torch.from_numpy(images[name])
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"]
self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - before_camread_t
# Populate output dictionnaries
obs_dict, action_dict = {}, {}
obs_dict["observation.state"] = state
action_dict["action"] = action
for name in self.cameras:
obs_dict[f"observation.images.{name}"] = images[name]
return obs_dict, action_dict
def capture_observation(self):
"""The returned observations do not have a batch dimension."""
if not self.is_connected:
raise RobotDeviceNotConnectedError(
"ManipulatorRobot is not connected. You need to run `robot.connect()`."
)
# Read follower position
follower_pos = {}
for name in self.follower_arms:
before_fread_t = time.perf_counter()
follower_pos[name] = self.follower_arms[name].read("Present_Position")
follower_pos[name] = torch.from_numpy(follower_pos[name])
self.logs[f"read_follower_{name}_pos_dt_s"] = time.perf_counter() - before_fread_t
# Create state by concatenating follower current position
state = []
for name in self.follower_arms:
if name in follower_pos:
state.append(follower_pos[name])
state = torch.cat(state)
# Capture images from cameras
images = {}
for name in self.cameras:
before_camread_t = time.perf_counter()
images[name] = self.cameras[name].async_read()
images[name] = torch.from_numpy(images[name])
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"]
self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - before_camread_t
# Populate output dictionnaries and format to pytorch
obs_dict = {}
obs_dict["observation.state"] = state
for name in self.cameras:
obs_dict[f"observation.images.{name}"] = images[name]
return obs_dict
def send_action(self, action: torch.Tensor) -> torch.Tensor:
"""Command the follower arms to move to a target joint configuration.
The relative action magnitude may be clipped depending on the configuration parameter
`max_relative_target`. In this case, the action sent differs from original action.
Thus, this function always returns the action actually sent.
Args:
action: tensor containing the concatenated goal positions for the follower arms.
"""
if not self.is_connected:
raise RobotDeviceNotConnectedError(
"ManipulatorRobot is not connected. You need to run `robot.connect()`."
)
from_idx = 0
to_idx = 0
action_sent = []
for name in self.follower_arms:
# Get goal position of each follower arm by splitting the action vector
to_idx += len(self.follower_arms[name].motor_names)
goal_pos = action[from_idx:to_idx]
from_idx = to_idx
# Cap goal position when too far away from present position.
# Slower fps expected due to reading from the follower.
if self.config.max_relative_target is not None:
present_pos = self.follower_arms[name].read("Present_Position")
present_pos = torch.from_numpy(present_pos)
goal_pos = ensure_safe_goal_position(goal_pos, present_pos, self.config.max_relative_target)
# Save tensor to concat and return
action_sent.append(goal_pos)
# Send goal position to each follower
goal_pos = goal_pos.numpy().astype(np.int32)
self.follower_arms[name].write("Goal_Position", goal_pos)
return torch.cat(action_sent)
def print_logs(self):
pass
# TODO(aliberts): move robot-specific logs logic here
def disconnect(self):
if not self.is_connected:
raise RobotDeviceNotConnectedError(
"ManipulatorRobot is not connected. You need to run `robot.connect()` before disconnecting."
)
for name in self.follower_arms:
self.follower_arms[name].disconnect()
for name in self.leader_arms:
self.leader_arms[name].disconnect()
for name in self.cameras:
self.cameras[name].disconnect()
self.is_connected = False
def __del__(self):
if getattr(self, "is_connected", False):
self.disconnect()

View File

@@ -0,0 +1,216 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
from dataclasses import dataclass, field, replace
import torch
from stretch_body.gamepad_teleop import GamePadTeleop
from stretch_body.robot import Robot as StretchAPI
from stretch_body.robot_params import RobotParams
from lerobot.common.robot_devices.cameras.utils import Camera
@dataclass
class StretchRobotConfig:
robot_type: str | None = "stretch"
cameras: dict[str, Camera] = field(default_factory=lambda: {})
# TODO(aliberts): add feature with max_relative target
# TODO(aliberts): add comment on max_relative target
max_relative_target: list[float] | float | None = None
class StretchRobot(StretchAPI):
"""Wrapper of stretch_body.robot.Robot"""
def __init__(self, config: StretchRobotConfig | None = None, **kwargs):
super().__init__()
if config is None:
config = StretchRobotConfig()
# Overwrite config arguments using kwargs
self.config = replace(config, **kwargs)
self.robot_type = self.config.robot_type
self.cameras = self.config.cameras
self.is_connected = False
self.teleop = None
self.logs = {}
# TODO(aliberts): test this
RobotParams.set_logging_level("WARNING")
RobotParams.set_logging_formatter("brief_console_formatter")
self.state_keys = None
self.action_keys = None
def connect(self) -> None:
self.is_connected = self.startup()
if not self.is_connected:
print("Another process is already using Stretch. Try running 'stretch_free_robot_process.py'")
raise ConnectionError()
for name in self.cameras:
self.cameras[name].connect()
self.is_connected = self.is_connected and self.cameras[name].is_connected
if not self.is_connected:
print("Could not connect to the cameras, check that all cameras are plugged-in.")
raise ConnectionError()
self.run_calibration()
def run_calibration(self) -> None:
if not self.is_homed():
self.home()
def teleop_step(
self, record_data=False
) -> None | tuple[dict[str, torch.Tensor], dict[str, torch.Tensor]]:
# TODO(aliberts): return ndarrays instead of torch.Tensors
if not self.is_connected:
raise ConnectionError()
if self.teleop is None:
self.teleop = GamePadTeleop(robot_instance=False)
self.teleop.startup(robot=self)
before_read_t = time.perf_counter()
state = self.get_state()
action = self.teleop.gamepad_controller.get_state()
self.logs["read_pos_dt_s"] = time.perf_counter() - before_read_t
before_write_t = time.perf_counter()
self.teleop.do_motion(robot=self)
self.push_command()
self.logs["write_pos_dt_s"] = time.perf_counter() - before_write_t
if self.state_keys is None:
self.state_keys = list(state)
if not record_data:
return
state = torch.as_tensor(list(state.values()))
action = torch.as_tensor(list(action.values()))
# Capture images from cameras
images = {}
for name in self.cameras:
before_camread_t = time.perf_counter()
images[name] = self.cameras[name].async_read()
images[name] = torch.from_numpy(images[name])
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"]
self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - before_camread_t
# Populate output dictionnaries
obs_dict, action_dict = {}, {}
obs_dict["observation.state"] = state
action_dict["action"] = action
for name in self.cameras:
obs_dict[f"observation.images.{name}"] = images[name]
return obs_dict, action_dict
def get_state(self) -> dict:
status = self.get_status()
return {
"head_pan.pos": status["head"]["head_pan"]["pos"],
"head_tilt.pos": status["head"]["head_tilt"]["pos"],
"lift.pos": status["lift"]["pos"],
"arm.pos": status["arm"]["pos"],
"wrist_pitch.pos": status["end_of_arm"]["wrist_pitch"]["pos"],
"wrist_roll.pos": status["end_of_arm"]["wrist_roll"]["pos"],
"wrist_yaw.pos": status["end_of_arm"]["wrist_yaw"]["pos"],
"gripper.pos": status["end_of_arm"]["stretch_gripper"]["pos"],
"base_x.vel": status["base"]["x_vel"],
"base_y.vel": status["base"]["y_vel"],
"base_theta.vel": status["base"]["theta_vel"],
}
def capture_observation(self) -> dict:
# TODO(aliberts): return ndarrays instead of torch.Tensors
before_read_t = time.perf_counter()
state = self.get_state()
self.logs["read_pos_dt_s"] = time.perf_counter() - before_read_t
if self.state_keys is None:
self.state_keys = list(state)
state = torch.as_tensor(list(state.values()))
# Capture images from cameras
images = {}
for name in self.cameras:
before_camread_t = time.perf_counter()
images[name] = self.cameras[name].async_read()
images[name] = torch.from_numpy(images[name])
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"]
self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - before_camread_t
# Populate output dictionnaries
obs_dict = {}
obs_dict["observation.state"] = state
for name in self.cameras:
obs_dict[f"observation.images.{name}"] = images[name]
return obs_dict
def send_action(self, action: torch.Tensor) -> torch.Tensor:
# TODO(aliberts): return ndarrays instead of torch.Tensors
if not self.is_connected:
raise ConnectionError()
if self.teleop is None:
self.teleop = GamePadTeleop(robot_instance=False)
self.teleop.startup(robot=self)
if self.action_keys is None:
dummy_action = self.teleop.gamepad_controller.get_state()
self.action_keys = list(dummy_action.keys())
action_dict = dict(zip(self.action_keys, action.tolist(), strict=True))
before_write_t = time.perf_counter()
self.teleop.do_motion(state=action_dict, robot=self)
self.push_command()
self.logs["write_pos_dt_s"] = time.perf_counter() - before_write_t
# TODO(aliberts): return action_sent when motion is limited
return action
def print_logs(self) -> None:
pass
# TODO(aliberts): move robot-specific logs logic here
def teleop_safety_stop(self) -> None:
if self.teleop is not None:
self.teleop._safety_stop(robot=self)
def disconnect(self) -> None:
self.stop()
if self.teleop is not None:
self.teleop.gamepad_controller.stop()
self.teleop.stop()
if len(self.cameras) > 0:
for cam in self.cameras.values():
cam.disconnect()
self.is_connected = False
def __del__(self):
self.disconnect()

View File

@@ -0,0 +1,21 @@
from typing import Protocol
def get_arm_id(name, arm_type):
"""Returns the string identifier of a robot arm. For instance, for a bimanual manipulator
like Aloha, it could be left_follower, right_follower, left_leader, or right_leader.
"""
return f"{name}_{arm_type}"
class Robot(Protocol):
# TODO(rcadene, aliberts): Add unit test checking the protocol is implemented in the corresponding classes
robot_type: str
features: dict
def connect(self): ...
def run_calibration(self): ...
def teleop_step(self, record_data=False): ...
def capture_observation(self): ...
def send_action(self, action): ...
def disconnect(self): ...

View File

@@ -0,0 +1,51 @@
import platform
import time
def busy_wait(seconds):
if platform.system() == "Darwin":
# On Mac, `time.sleep` is not accurate and we need to use this while loop trick,
# but it consumes CPU cycles.
# TODO(rcadene): find an alternative: from python 11, time.sleep is precise
end_time = time.perf_counter() + seconds
while time.perf_counter() < end_time:
pass
else:
# On Linux time.sleep is accurate
if seconds > 0:
time.sleep(seconds)
def safe_disconnect(func):
# TODO(aliberts): Allow to pass custom exceptions
# (e.g. ThreadServiceExit, KeyboardInterrupt, SystemExit, UnpluggedError, DynamixelCommError)
def wrapper(robot, *args, **kwargs):
try:
return func(robot, *args, **kwargs)
except Exception as e:
if robot.is_connected:
robot.disconnect()
raise e
return wrapper
class RobotDeviceNotConnectedError(Exception):
"""Exception raised when the robot device is not connected."""
def __init__(
self, message="This robot device is not connected. Try calling `robot_device.connect()` first."
):
self.message = message
super().__init__(self.message)
class RobotDeviceAlreadyConnectedError(Exception):
"""Exception raised when the robot device is already connected."""
def __init__(
self,
message="This robot device is already connected. Try not calling `robot_device.connect()` twice.",
):
self.message = message
super().__init__(self.message)

View File

@@ -0,0 +1,92 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import threading
import time
from contextlib import ContextDecorator
class TimeBenchmark(ContextDecorator):
"""
Measures execution time using a context manager or decorator.
This class supports both context manager and decorator usage, and is thread-safe for multithreaded
environments.
Args:
print: If True, prints the elapsed time upon exiting the context or completing the function. Defaults
to False.
Examples:
Using as a context manager:
>>> benchmark = TimeBenchmark()
>>> with benchmark:
... time.sleep(1)
>>> print(f"Block took {benchmark.result:.4f} seconds")
Block took approximately 1.0000 seconds
Using with multithreading:
```python
import threading
benchmark = TimeBenchmark()
def context_manager_example():
with benchmark:
time.sleep(0.01)
print(f"Block took {benchmark.result_ms:.2f} milliseconds")
threads = []
for _ in range(3):
t1 = threading.Thread(target=context_manager_example)
threads.append(t1)
for t in threads:
t.start()
for t in threads:
t.join()
```
Expected output:
Block took approximately 10.00 milliseconds
Block took approximately 10.00 milliseconds
Block took approximately 10.00 milliseconds
"""
def __init__(self, print=False):
self.local = threading.local()
self.print_time = print
def __enter__(self):
self.local.start_time = time.perf_counter()
return self
def __exit__(self, *exc):
self.local.end_time = time.perf_counter()
self.local.elapsed_time = self.local.end_time - self.local.start_time
if self.print_time:
print(f"Elapsed time: {self.local.elapsed_time:.4f} seconds")
return False
@property
def result(self):
return getattr(self.local, "elapsed_time", None)
@property
def result_ms(self):
return self.result * 1e3

View File

@@ -14,10 +14,12 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
import os.path as osp
import platform
import random
from contextlib import contextmanager
from datetime import datetime
from datetime import datetime, timezone
from pathlib import Path
from typing import Any, Generator
@@ -27,6 +29,18 @@ import torch
from omegaconf import DictConfig
def none_or_int(value):
if value == "None":
return None
return int(value)
def inside_slurm():
"""Check whether the python process was launched through slurm"""
# TODO(rcadene): return False for interactive mode `--pty bash`
return "SLURM_JOB_ID" in os.environ
def get_safe_torch_device(cfg_device: str, log: bool = False) -> torch.device:
"""Given a string, return a torch.device with checks on whether the device is available."""
match cfg_device:
@@ -172,3 +186,34 @@ def print_cuda_memory_usage():
print("Maximum GPU Memory Allocated: {:.2f} MB".format(torch.cuda.max_memory_allocated(0) / 1024**2))
print("Current GPU Memory Reserved: {:.2f} MB".format(torch.cuda.memory_reserved(0) / 1024**2))
print("Maximum GPU Memory Reserved: {:.2f} MB".format(torch.cuda.max_memory_reserved(0) / 1024**2))
def capture_timestamp_utc():
return datetime.now(timezone.utc)
def say(text, blocking=False):
# Check if mac, linux, or windows.
if platform.system() == "Darwin":
cmd = f'say "{text}"'
if not blocking:
cmd += " &"
elif platform.system() == "Linux":
cmd = f'spd-say "{text}"'
if blocking:
cmd += " --wait"
elif platform.system() == "Windows":
# TODO(rcadene): Make blocking option work for Windows
cmd = (
'PowerShell -Command "Add-Type -AssemblyName System.Speech; '
f"(New-Object System.Speech.Synthesis.SpeechSynthesizer).Speak('{text}')\""
)
os.system(cmd)
def log_say(text, play_sounds, blocking=False):
logging.info(text)
if play_sounds:
say(text, blocking)

Some files were not shown because too many files have changed in this diff Show More